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Abstract

The aim of this work is to present the reader with some very effective methods for
proving the existence result for some classes of nonlinear partial differential equations. In
the first chapter, we give the reader some basic definitions, theorems, lemmas, and inequal-
ities that will be useful in the last part of the work. In the second chapter, we consider
a semi-linear generalized hyperbolic boundary value problem associated with the linear
elastic equations with general damping term and nonlinearities of variable exponent type.
By using the Faedo-Galerkin method we show the local existence and the global existence,
then the uniqueness of the solution has been gotten by eliminating some hypotheses. Fi-
nally, the stability of the solution will be discussed. In the third chapter, we proved the
local and global existence, (without the uniqueness) of generalized nonlinear problem with
variable exponent, then the stability of solutions by the same steps that have been used
in the second chapter. Finally, we give a numerical example by using the finite difference

method to obtain the approach solution.

Keywords : Generalized semi-linear elasticity equation, Local solution, Lebesgue space,

Sobolev spaces with variable exponents, global solution.
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Résumé

L’objectif de ce travail est de présenter au lecteur des méthodes tres efficaces pour
prouver le résultat d’existence pour certaines classes d’équations aux dérivées partielles
non linéaires. Dans le premier chapitre, nous donnons au lecteur quelques définitions de
base, théoremes, lemmes et inégalités qui seront utiles dans la derniere partie du travail.
Dans le deuxieme chapitre, nous examinons un probleme de valeur limite généralisé semi-
linéaire associé aux équations élastiques linéaires avec un terme d’amortissement général
et des non-linéarités de type exposant variable. Ainsi, en utilisant la méthode de Faedo-
Galerkin, nous montrons l'existence locale et 'existence globale. Ensuite, 'unicité de la
solution est obtenue en éliminant certaines hypotheses. Enfin, la stabilité de la solution
sera discutée. Dans le troisieme chapitre, nous avons prouvé l'existence locale et globale
sans 'unicité du probléme non linéaire généralisé avec exposant variable, puis la stabilité
des solutions en utilisant les mémes étapes que celles utilisées dans le deuxieme chapitre.
Enfin, nous donnons un exemple numérique en utilisant la méthode des différences finies

pour obtenir la solution approchée.

Mots clés : Equation d’élasticité semi-linéaire généralisée, solution localen, Espace de

Lebesgue, , Espaces de Sobolev a exposants variables, solution global
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Notation

Q : bounded domain in R2.

I' : topological boundary of 2.

x = (z1,72) : generic point of R2.

dx = dxidxy : Lebesgue measuring on ().

Vu : gradient of u.

Awu : Laplacien of u.

D (Q) : space of differentiable functions with compact support in €.
D' (Q) : distribution space.

C*k () : space of functions k-times continuously differentiable in €.

LP (Q) : space of functions p-th power integrated on with measure of dx.
1

111, = (1 (1217) )

Wir(Q) ={ue LP (), Vu e LP(Q)}.
H : Hilbert space.

Hg () = Wy,
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If X is a Banach space

T
LP(0, T; X) = {f : (0,T) — Xis measurable; d = tf O dt < oo}.

t €0, T]

L>(0, T; X) = {f : (0,T) — X is measurable; ess —sup || f (t)||%; < oo

C* ([0, T]; X) :Space of functions k—times continuously differentiable
from [0, T] — X.

D ([0, T); X): space of functions continuously differentiable with compact

support in [0, T .

} |
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General Introduction

Let Q be a bounded domain in R™(n > 1) with a smooth boundary I';, I's. We consider

the following initial and boundary value problem

(

uy — divo(u) + [u]'®@u + g(uy) = f, in Qx(0,7),
o) = F(e(w)), in Ox(0,T),

u=0onI1%x(0,7),0(u)n =0 on I'yx(0,7),

Lu(@,0) = uo(z), ue(7,0) = ur(z), x € L.

Where u, f and o(u) represent the displacement field, the density of volume forces and
the tensor of constraints, respectively. div denotes the divergence operator of the tensor
valued functions and o = (0y5),4,j = 1,2, ...,n stands for the stress tensor field.The latter
is obtained from the displacement field by the constitutive law of linear elasticity defined by
the second equation in (1). F is a linear elastic constitutive law, and e(u) = % (Vu+ VTu)
is the linearized strain tensor. We can generalized the problem (1) into the following

problem with variable exponents:

Let Q is a bounded domain in R?, the boundary 9 of € is assumed to be regular and
is composed of two parts 9; and 9. For x € Q and ¢ € ]0, T, we denote u(x,t) to be

the displacement field, we consider the law of the nonlinear elasticity behavior with the
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variable exponents given by
3
ot (u) = (204 1d (WO ) dig(w) + A de(w)dig, 1 <35 <3,
k=1

where

1 (Ou; Ouj
dij(u) = = . J
i) =3 (axj * ax) ’
here ¢;; is the Kronecker symbol, A, p are the Lamé constants and d;;(-) the deformation

tensor.

The equation which governs the deformations of an isotropic nonlinear elastic body
with variable exponent and a nonlinear source and a linear dissipative terms in dynamic

regime is the following

o 2, ¢ 52
3_;; —div (0" (u)) + [u" % +ﬁ8_1; = [, in Q]0, 7T, )

where |.| denotes the Euclidean norm of R3, f represents a force density, p (+) is the variable

exponent such that 2 < p(-) and «, f € R,.

To describe the boundary conditions we use the usual notation
Up = UN, Ur = U — U.T, Jﬁ(') = (Jp(').n) ., Uf(') = o — (07’;(')) .,

where n = (n1,ng,n3) is the unit outward normal to 0f2.

e The displacement is known on 0§2;]0, T

u(x,t)=0 on 0]0,TT. (3)

e On 02, the stress tensor satisfies the following condition

o’ (u).n =0 on 0Q,)0,T]. (4)
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The problem consists in finding u satisfying (3.1) — (4) and the following initial conditions

ou
U(%,O) :190(13), E(I‘,O) :191<$), Va € (. (5)
The study of the problems with variable exponent is a new and important topic. These
problems are motivated by the applications of electrofluids, non-Newtonian fluid dynamics,
applications related to image processing, Poisson equation and elasticity equations see [22],

[19], [43], [15], [24], [37]. Moreover, the variable exponent spaces are involved in studies

that provide other types of applications, like the contact mechanics [21].

Recently, the parabolic and elliptic equations which involve variable exponents have
been intensively studied in the literature. For the questions of the existence and the
uniqueness, we mention: Antontsev and Shmarev in [33] proved the existence and unique-
ness of weak solutions of the Dirichlet problem for the nonlinear degenerate parabolic
equation. In the article [30] Antontsev proved the existence and blow up for the weak
solution of a wave equation with p(-;¢)-Laplacian and damping terms. Boureanu in [20]
studied the existence of solutions for a class of quasilinear elliptic equations involving the
anisotropic p(-)-Laplace operator, on a bounded domain with smooth boundary. Stegliriski
in the work [27], used the Dual Fountain Theorem to obtain some infinite existence for
many solutions of local and nonlocal elliptic equations with a variable exponent. Simsen et
al. [11], studied the asymptotic behavior of coupled systems of p(-)-Laplacian differential
inclusions; they obtained that the generalized semiflow generated by the coupled system
has a global attractor, and proved the continuity of the solutions with respect to initial
conditions. Otmani et al. in [34], they focus on the numerical side of the problem of the
parabolic equations with variable exponent. A comprehensive analysis of nonlinear partial

differential equations with variable exponent can be found in [39].

For the stability of solutions of the hyperbolic problems with nonlinearities of variable-

exponent type, there are some interesting works, for instance, Messaoudi and Talahmeh
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(28], proved the finite-time blow up of solutions of the following equation

m(-)—1 ou B
ot

ou

— —div <|Vu|r(')_2 Vu) +a e

B a9 (6)

Messaoudi et al. [29], studied (6) with 5 = 0 and proved decay estimates for the solution
under suitable assumptions on the variable exponents m(-), r(-) and the initial data. In

[23] N. Mezouar and Salah Boulaaras discussed the following problem

( |oul' 6%u ou '
0 0
10191( S (2. ) + 2o (G (.t = 7(1))) = 0, in Q,teR,,
\ u(z,t) =0, on OOR,,
ou .
u(z,0) = uo, a—t(x, 0) = uy, in €,
| Pt = 7(0)) = ol £~ 7(0)), in 0]0, 7(0)],

and proved the global existence of a unique solution under assumptions [ > 0, u; and po

are positive real numbers.
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The work is organized as follows:

)

1))

I11)

In the first chapter, we introduce some necessary notations and we lay down some
fundamental definitions and theorems on functional analysis, which will be needed

some them in the body of the work.

In second chaptre, we prove the existence and uniqueness of the weak solution by
using Faedo-Galerkin methods, the global existence and the stability of solution is

established to th problem (1).

Finally, in the third chaptre we generalized the problem (1) in to (3.1), then we
prove the existence without the uniugeness and stability by the same methods of the

second chaptre.



Chapter 1

Preliminaries

In this chapter, present the elemantary symbols, defintions and provide many tools on

the basic concepts of inequalities and spaces, we will use later.

1.1 Functional spaces

1.1.1 Lebesgue spaces

Definition 1.1
[7] Let Q be a domain in R™(n € N), for 1 < p < oo, the Lebesgue space LP(2) is defined

by:
LP(Q) ={u: Q — R, u is measurable and/ lu(x)|Pdz < oo},
Q

ful = ( [ |u<x>rpdm)’l’ ,

In addition, we define L>°(Q2) by:

with the norm

L>*(Q) = {u:Q — R,u is measurable and Jc > 0 such that |u(z)| < ¢ a.e on Q}, equipped
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with the norm

|t]|o = esssup |u(z)| = inf{c: |u(z)| < ¢ a.e on Q}.
e

1.1.2 Hilbert spaces

Definition 1.2

An inner product on a complex linear space X is a map
(,): XX —C.

Such that, for all x,y,z € X and \,;n € C : (a) (x,\y + pz) = Nz, y) + p(z, 2) (linear in

the second argument):
1. (y,z) = (z,y) (Hermitian symmetric);
2. (z,z) > 0 (nonnegative);
3. (x,z) =0 if and only if x = 0 (positive definite).

We call a linear space with an inner product a pre-Hilbert space.

If X is a linear space with an inner product (.,.), then we can define an norm in X by:

2]l = v/ (z, z). (1.1)

Definition 1.3

A Hilbert space is a complete inner product space.

Example 1.1
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The stander inner product on C" is given by
(x,y) = Z;Ejy_j, (1.2)
j=1

where x = (x1,..,x,) and y = (Y1, .., Yn), with z;,y; € C.

Example 1.2
Let C([a,b]) denote the space of all complez-valued continuous functions defined on the

interval |a,b]. We define an inner product on C([a,b]) by

b
mmz/fmﬁmn (1.3)

where f,q : [a,b] — C are continuous functions.

Example 1.3
Let u,v € L*(Q) the inner product is defined by

(u,v) :/QuﬁdQ, (1.4)

with respect to the associated norm,

HMMz(ém@WM)? (15)

Remark 1.1

The spaces LP([a,b]) are Banach spaces but they are not Hilbert spaces when p # 2.

Theorem 1.1 (Lax-Milgram)
[7] Assume that a(u,v) is a continuous coercive bilinear form on H. Then, given any ¢ € H'

there exists a unique element uw € H such that

a(u,v) =< ¢,v >,Vv € H.
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Moreover, if a is symmetric, then u is characterized by the property

1 1
§a(u,v)— <, U >= E}rgg{éa(u,v)— < o, U >}.

1.1.3 Sobolev spaces

Definition 1.4
[8] For k € N and 1 <p < oo . We define the Sobolev space

WPH(Q) = {u € LP(Q), D*u € LP(Q)Va € N'with|a| < k, }

equipped with the norm

3=

lullp = { D ID%ullp | ,1<p<oo

| <k
[ullk,00 = max || D%ul|oc,
jal <k

where D% is the a-th weak derivative of u which is defined as

/ u(z)Dp(z) = — 11 / v(@)p(z), Yo € C2(Q),
Q Q

o] =1+ + a,, and
ooy

v=D% = ———.
ax(lxlax%n

The space WE2(Q) is denoted by H*(Y), which is a Hilbert space with respect to the inner

product

uka—/ZDO‘ (z)dz,Yu,v € H*(Q).

a<k
Definition 1.5
[8] We denote by WEP(Q) the closure of C°(Q) in WFP(1).
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1.2 Some inequalities

Theorem 1.2 (Cauchy-Schwarz inequality)
Let u,v € L*(Q) and v € L*(Q), then uwv € L'(Q) and

Juvlly < flull2]|vllz

Theorem 1.3 (Hoélder’s inequality)
Let 1 <p < oo, ifu€ LP(Q) and v € LY (), then uv € LY() and

[wolly < llullpllvlly

1, 1
where = + = = 1.
> +p/

Theorem 1.4 (Young’s inequality)

Let 1 < p < oo. then a,b > 0, Then for any € > 0, we have

ab < ed? + C'Ebp/,

1

~. For p = p’= 2, we have

where C, = -
&

P’ (ep)

bQ
ab < ea® + —.
4e

1.2.1 Some results about Sobolev spaces

In this Section, we list a few pertinent qualities that Sobolev space-related functions benefit

from without providing any supporting evidence.

Theorem 1.5 (Trace theorem [35])
Let Q be a bounded open set of find with Lipschitz continuous boundary and let s > 1/2.

10
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1. There exists a unique linear continuous map o : H*(Q) — H*"Y2(08) such that

Yov = v]aq for each v € H*(Q) N C(R).

2. There exists a linear continuous map Ro : H>~/2(0Q) — H*(Q) such that yRop = ¢
for each ¢ € H*"V/2(08)). Analogous results also hold true if we consider the trace

s over a Lipschitz continuous subset 32 of the boundary OS2

The so-called Poincare inequality is a crucial finding that will be widely applied in the

sequel.

Theorem 1.6 (Poincare inequality [2])

Assume that Q0 is a bounded connected open set of R? and that X is a (non-empty)
Lipschitz continuous subset of the boundary 0S). Then there exists a constant Cq > 0 such
that

/QUQ(X)dX < CQ/Q|VU(X)|2dX, (1.6)

for each v € HE().

Lemma 1.1 (Sobolev—Poincaré inequality)

Let g be a number with

2n
n—2

2<g<o0,(n=1,2),2<¢< (n>3),

then there exists a constant Cs = Cs(Q2, q) such that

lully < el Vullz for u € Hy(%). (1.7)

Theorem 1.7 (Sobolev embedding theorem [2])
Assume that Q2 is a (bounded or unbounded) open set of R® with a Lipschitz continuous

boundary, and that . Then the following continuous embeddings hold:

1. If 1 <p < d, then WP (Q) C LP*() for px = dp/(d — sp).

11
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2. If sp = d, then W*P(Q) C LYQ) for any q such that p < q < oc.

3. If sp > d, then W*P(Q) C C°(Q).

Lemma 1.2 (Korn’s inequality)

Let €2 be an open, connected domain in n-dimensional Fuclidean space R", n > 2. Let
HY(Q) be the Sobolev space of all vector fields v = (v, ...,v™)on Q that, along with their
(first) weak derivatives, lie in the Lebesque space L'(Q). Denoting the partial derivative
with respect to the ith component by ;,the norm in H'(Q)is given by

v laey= ( / S vi(a) P do+ / S o) | da)?
=1 =1

Then there is a constant C > 0, known as the Korn constant of €, such that, for all
ve HY(Q),
[0 7)< C Jo 2oim (L' (@) [P+ | (egv) (@) [P)da

where e denotes the symmetrized gradient given by

1 ) )
eijv = 5(8iv] + 8]"UZ>

1.2.2 Green’s formula

Proposition 1.1
[10] Let ) be an open subset of R? | with a Lipschitz boundary. Then for all u,v € H* (Q),

we have

Ju ov .
/(2(8in * axi“) dz = /aQ Yo(w)yo(v)nds, i=1,..,d.

Where n; is the i-th component of the outward normal vector 1.

12
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1.3 Logarithmic Holder Conttinuty

In this section we introduce the most important condition on the exponent in the study of

variable exponent spaces,the log-Holder continuity condition.

Definition 1.6 ([13],page 100)
We say that the function o : Q — R is locally log-HOlder continuous on ) if there exists

c1 > 0 such that
&1

<
~ logle+ 1/|z + yl|)

|a(z) — a(y)| (1.8)

for all z,y € Q) we say that o satisfies the log-Hélder decay condition if there exist ao, € R

and constant co > 0 such that

C2

20 = S g Tl

for all xze Q0 we say that « is globally log-Hélder continuous in Q) if it is locally log-Hélder

continuous and satisfies the log-Hdolder decay condition.

The constant ¢; and co are called the local log-Hélder constant and the log-Hélder decay
constant , respectively. The mazimum max{ci,ca} is just called the log-Hdlder constant of

Q.

1.3.1 L*O) Whrl) spaces
We define the space
C*(Q) = { continuous function p(.) : © — R, such that 2 < p~ < p* < 0}

, where

p~ = minp(x) and p* = max p(x).
e e

13
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We define the Lebesgue space with variable exponent

PO = {u : 0 — R measurable : / () [P dm}
Q

endowed with Luxembourg norm :

. ulxr X
by = bl =t {= > 0. [ 122 per s <1
Q

The space (LPX(Q), ||.|l,)) is a reflexive Banach space, uniformly convex and its dual space

is isomorphic to (LPU)(2), ||.]l4w)) where

LS S
p(x)  qlz)

and

W@ (Q) = {u € LP)(Q),|Vu| € LW (Q)},

with the norm

lull = Mletllpe) + 1Vullp), w € WHE(Q).

14
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Remark 1.2
We denote by Wol’p(x)(Q) the closure of C§° in W1P()(Q).
1.3.2 L?(0, T; X) spaces

Definition 1.7

Let X be a Banach space, denote by LP (0, T'; X') the space of measurable functions

f:10, T[] — X

such that
T 1
JUT ORI =11l 7., <.
0

If p =00
1fll oo, 7, xy = sup_ess|[f(t)]x-
t €]0, T
Theorem 1.8

The space LP (0, T, X) is a Banach space.

Lemma 1.3

0
Let f € LP(0, T, X) and (‘9_{ € LP(0, T, X), (1 <p<o0), then, the function f is

continuous from [0, T to X. i. e. f € C'(0,T,X).

1.4 Results in spaces with exponents variables

Proposition 1.2 (see, [41, 42])
Let u,, u € LP® (Q) and pt < +oo, then

D) ull poory < 1 (resp, =1, > 1) <= [, P de < 1 (resp, =1, > 1);

15
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2) lfull oy > 1= lull sy < Jo [l do <l o
3) lull ooy < 1= lllpion oy < Jo [ul™™ do < Jlullfy o

4) unll oy ) — 0 = Jq | [P dzz — 0.

Lemma 1.4 (Poincaré inequality [41, 42])
Let Q be a bounded domain of R™ an suppose that p(.) satisfies (1.8). Then,

lull,y < () [Vl Yu € Wy (Q),

where ¢ = ¢(p1,p2, |2]) >0

Next we have a Sobolev—Poincaré inequality

Lemma 1.5 (Generalized Holder inequality [41, 42])

For any functions u € LP® (Q) and v € L1® (Q), we have

/Qu(:v)v(a:)dx

where

Lemma 1.6

If p: Q — [1,00) is continuous,

2<p <plx) <py <

satisfies, thenthe embedding HL(Q) — LPO(Q) is continuous.

Lemma 1.7 (see [31])

(1.9)

1 1
g(;~gz)mmm>uwm@ < 2l oy [0 ooy (110)

(1.11)

if po < 00 and p: Q — [1,00) is a measurable function, then C§°(Q) is dense in LP1)(€2).

Lemma 1.8 ([35|Ho6lder inquality)

16



Chapter 1. Preliminaries

Let p,q,s > 1 be measurable functions defined on €2 and

= + for a.ey € Q,
satisfies. If f € LPY)(Q) and g € L1 (Q) and

1£-9lls¢) < Wl llgllac)-

Lemma 1.9 (see [31])

If p > 1 is a mesurable function on €1, then

min {2l } < ey () < mae {2, [l }

for any v € LPY(Q) and for a.e. x € Q.

Lemma 1.10 (see,[31]Gronwall inequality )
Let C > 0,u(t) and y(t) be continous nonnegative functions defind for 0 < t < oo
satisfying the inequality

u(t) < C+ /tu(s)y(s)ds , 0<t < o0.

Show that

u(t) < C exp </0ty(s)ds) 0<t<oo

Lemma 1.11 ( Modified Gronwall inequality)
Let w and h be continous nonnegative functions defind for 0 < t < oo satisfying the

inequality

t
Ogu(t)SC’—i-/ u(s)h(s)ds , 0 <t < oo.
0

17
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with C >0

—1

ult) < (C‘T—r/oth(s)ds>r 0<t< oo

as long as the right-hand side exists.

18



Chapter 2

On the Existence, Uniqueness and
Stability of Solutions for Semi-linear
Generalized Elasticity Equation with

General Damping Term

In this chapter, we will study the local,global existence and uniquenees of the solution of

the problem (1) then will study the asymptotic behavior of it.

2.1 Existence Result

In this section, we will sudy the local existence solution of the problem (1) by using Faedo-

Galerkin method.

19
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2.1.1 Variational formulation

In this part, we present the weak formula of the problem (1) by multiplying equation (1)

by the test-function v and we integrate on 2 ;

/(uttv — divo(u)v + [u)"@uv + g(uy)v)dz = / fodx,
0 Q

/uttvdm—/diva(u)vdw—l—/ |u\"(x)uv+/g(ut)vdaﬁ:/fvda:.
Q 0 0 O Q

We use the Green’s formula,

/uttv+/0(u)Vvdx—/ a(u)vnds+/ |u|”($)uvdx—|—/g(ut)vd$:/fvdx,
Q Q I Q 0 Q

/Quttv—l—/ﬂa(u)Vvdw%—/Q\u!”(w)uvdw—l—/gg(ut)vdx:/vadzz:,
/Q dyvds + /Q Ple(w))e(v) + /Q g + /Q @ /Q fuds.

Theorem 2.1

Let the following assumptions be satisfied:

2 <p- <p(r) <ps <o, (2.1)

zg(z) > dolz|”®, Vz eR
lg(z)| < dy|z| + do|z|°@~t, Vo e R,d; >0 (2.2)

2<o0_<o(x)<op <plz)<p, <o

feL*Q),u € VNLFQ), plz)=wv(z)+2u € L}NQ). (2.3)

For every T > 0 and every initial data ug, uy satisfying (2.3) , under the assumptions (2.1)
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2.2 there exists a unique u which solves the problem(1) such that

we L0, T;V N LPD(Q)), p(z) = v(z) + 2, (2.4)
g(u) -u € LY0,T; L' (Q)), (2.5)
uy € L(0,T; L*()). (2.6)

Proof. Let’s befor assume that the function F': OxS,, — S, satisfies the following condi-

tions:
(2.7)
(a)3r > 0; (F(x,¢),¢) > r|e|?, Vee S, aex €
(b) (F(x,e),7) = (F(x,¢),7), Ve, 7 €S, a.e x €
(c¢) For any € € S,,, x — F(z,¢e is measurable function on €2,) (2.8)

where §,, will denote the space of second-order symmetric tensor on R™. Let us assume
also that the function g : R — R be an montonous continous as g(0) = 0 and o(.) be a

continuois measurable function on Q such that the following inequalities hold:

rg(z) > do|z|°™®, VreR
lg(z)| < dy|z| + do|z|°@~t, Vo e R, d; >0

2<o0_<o(x)<or <plx)<py <0

And we assume that the given data f,ug and u; verify
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fe L@,
u € VN LPD(Q), plx) =v(z)+2,

Uy € L2(Q)

We shall prove the existence by means of the Faedo-Galerkin approximation scheme.

For every i > 1, let V¥ = span{w,w,, ..., w*}, where {w;} is one of the orthogonal

complete system of eigenfunctions in V' N LP(®)(Q) . Construct the approximate solutions

of problem
k
uf(t) =Y CFtyw, k=1,2... (2.9)
i=1
solving the system
(ugs (£),00) + a(u®, w;) + (Ju* Ok wi) + (g(uy), w) = (f,w), 1< i<k, (2.10)

which is a nonlinear system of ordinary differential equations and will be completed by the

following initial conditions.

k

uF(0) = uf = Z ofw; — u, when k — ooV N LP@(Q), (2.11)
i=1
k

uf (0) = ut = Zﬁfwi — u, when k — oo in N L*(Q), (2.12)
i=1

As the family {wy, ws,...,w*} is linearly independent, by virtue of the theory of ordinary
differential equations we can get a unique local solution u* extended to a maximal interval

(0, T%), having the following regularity

uP(t) € L2(0,T% ") uF(t) € L*(0,T%;v%).
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A priori , the time interval (0, T) depends on k and there after we shall prove that t* does

not depend on m based on the following a priori estimates. First we set

lull? = a(u,u) = /QF(s(u))e(u)dx (2.13)

Then, using (2.8) and Korn’s inequality it can be shown that ||u||; is a norm on V' equivalent
to the norm |jul| on H'(2). Multiplying the equation (2.10) by CF(t) and performing the

summation over ¢ = 1 to k, yields

(ury (), ur (8)) + a(u®(£), uy (6) + (WDt (@), (k) + (g(uy), (up (1)) = (f,ui (1)) (2.14)

On the other hand

Salut (D), a" (1)

= (Fe(u* (1)), (e(ur (1)) + (F(e(uy), e(u (1)) = a(u®(t), ug (1)) + alug (1), u*(t))

Then, using (2.8) (b), we obtain

20 (1), (1)) = Sa(u (1), k(1)) = 0, (2.15)
dt dt
also

Ld oo k k
O = (1), (1) (2.16)

1 d p(z) kw(x), k k
ﬁ—Hu (@, )| o ) = (W7 (8), w (1), p(a) = v(x) + 2. (2.17)
Then, according to (2.15)-(2.17) by the Cauchy—Schwarz’s inequality, from (2.14) we obtain

d x

5 77 (1 (OF + Cull (B)]) + ﬁ—llu (2, 1550 )+/Qg(uf(f))uf(t)d:c < |f()ug(s)]-

(2.18)
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Integrating on (0,t) and applying Young inequality we deduce
Lo k2
5 ([ OF + Crllu*@)1) +

p(z)

Since

1 1 [t .
ST+ I + b2 + 5 [ 1 (9)Pds < Ok e -
0

p()

Hence it follows from (2.18) and Gronwall’s inequality that

[ut ()] < Cr.

Therefore, (2.19) gives

[ (O, 0 + Il ()2 + //‘w E(s)dads < Cr.

for every k > 1, and Cr > 0 is independent of k. Thus, we obtain

;

(u*) is a bounded sequence in L>=(0,T;V N L@ (Q)),
(uf) is a bounded sequence in L>°(0,T; L*(9)),

g(uf)u¥ is a bounded sequence in L'(0,T; L1(12)).

Lemma 2.1

There exists a constant K > 0 such that

g (t))]) -2 <c

L@ =1 qx0,1))

for all £ € N.

()H’“ M, / / ot () )ub (s)dads

1
< Sluff + &+WMF+——Hﬂmmm 1/U@Wm+—/hm@2
2 2 Jo 2 Jo

(2.19)

(2.20)

(2.21)

(2.22)
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Proof. We exploit Holder’s and Young’s inequalities from (2.2),

T i g(z)l T k k G(z>1
| ot s = [ [ latublgtut) 7 o
0 Q 0 Q

/ /|gut (1] ()] + A2l (1)) 7 ddt

<c/ /|gut (e ()7 + [l (1))l

e / / g (b () [ (£) 7 et
e / / (g (ub () b ()| dedt

o(x)
M) |7@ T dadt

+C(oy,0 //\ut f’(@ 7T dpdt
c / / g (8))| ol (1) derdt

/ /|g uf(t °<Z 1d3:dt<00+, / /\ut ”> T ddt
T
e / / (b (8))] (1) dedt

o o ()
C< |ut (t)[-@-Tdt

+C/ /|g ut Hut t)|dxdt.

which yields, by the estimate (2.22),

T
[ [ otk naa <
0 Q

Therefore,
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[
From (2.22) and Lemma 2.1 there exists a subsequence (u*) of (u*) such that
(
ut — u weak star in L>=(0,T;V N LP@(Q)),
ul — uy weak star in L2(0,T; L*(9)),
(2.23)

o(x)
g(ut') — X weak star in Lo@-1(Qx(0,T)),

| —divF (e(u”(t))) — k weak stars L*(0, T; H™(Q2)).

From the equation (2.22), it is obtained that the sequences (u*),(uf) are bounded in

L*0,T;V) C L*0,T; L*(Q)) = L*(Q), L*(Q), respectively. Then, in particular,(u*) is a
bounded sequence in H'(Q). Tt is known, see [16], that the injection of H*(Q) in L*(Q) is

compact. Then, from (2.23) we
u — uin L*(Q) Strongly , (2.24)

Setting ]ﬁ + ﬁ =1 p(z) = v(x) + 2, using (2.22) we have that (|u*|®u*) is a bounded

sequence in L>(0,T; LP(*)(€))). Therefore
Jub @yl — |u[* @y in L0, T;p @ (Q)) weak star. (2.25)

Because the operator —divF(e(-)) : Hi(Q)to H~ () is bounded, monotone, and hemi-

continuous, then we have
—divF(e(u”(t)) is bounded in L*>(0,T; H(Q)), (2.26)

as k — oo. Using the standard monotonicity argument as in [14, 17, 26|, we can, thus,

suppose that
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—divF(e(u"(t)) — —divF (e(u(t))F is bounded in L®(0,T; H (9)), weak stars.

similarly by using the result in Lemma 2.1 and the estimate (2.22)

o(z) o(z)
(uf) = g(ug) in Le@1 (0,7, L=®1(Q)), weak stars. (2.27)

Let i be fixed and p > 4. Then, by (2.10) we have

(', wi) + a(u, wi) + (Ju*[(@)u,; wi) + (g(u"), wi) = (f, wi). (2.28)

Therefore (2.23), (2.24) (2.25) (2.29) and (2.24) implies

(
a(ut; w;) = a(u, w;) in L>(0,T) weak star ,

(uf',w;) = (u,w;) in L=(0,T) weak star ,
(ué‘(t)’ wz) — (u(t)v wz) in D<07 T), (229)

(||u*]|(z)ut, w;) — (Ju|(z)u, w;) in L>=(0,T) weak star ,

(g(ut),w;) = (g(u),w;) in L>=(0,T) weak star.

\

Then (2.24) takes the form
(wee, wi) + alu, wi) + (Jul(@)u, wi) + (g(we), wi) = (f, wi).
Finally, be using the density of V* in V N LP(*)(Q) we obtain
(uge, v) + a(u, v) + (Ju]"@u, v) + (g(u),v) = (f,v),Yv € VN Lp!®(Q).(3.25)
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Then u satisfies (1) . From (2.23) we have
u”(0) — u(0) weakly in L*(€2).
Then, using (2.11) we deduce in particular that
u,(0) = u” = ug in V N Lp(z)().
Thus, the first initial condition in (1) is obtained. On the other hand, by using (2.29)

(u(t),w;) = (u(t),w;) in L>(0,T") weak star.

(u'(0), w;) = (u(0),w;). since (u”(0),w;) = (uy,w;), we have (u (0),w;) = (ug,w;),

Vi. Then the second initial condition in (1) is satisfied.

2.1.2 Uniqueness

Many authors, for some particular problems, when v(z) = v is a constant number, have
showed the uniqueness of the solution basing on the condition v < % In this subsection

the uniqueness of the solution will be proved without any condition on v(x).

Theorem 2.2
Let the conditions of Theorem (2.1) hold and in addition

2k
v(iz) <wvy < m,keN*,(n:2;y+ < o0 if n=2). (2.30)

Then, the solution u obtained in Theorem (2.1) is unique.
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Proof. Let u, v be two solutions of problem (1), to the sense of the Theorem . Setting

w = u — v, since F is linear we have

wy — divF(e(w)) + (Jul(z)u — [v|(z)(v) + (9(u): — g(v)) = 0, in @, (2.31)
w(0) = w;(0) = 0, in €, (2.32)

w=0on %y, 0(w) =0 on Xy, (2.33) (2.33)

w e L=(0,T;V N LPD(Q)),p(z) = (z) + 2. (2.34)

w e L=(0,T; L*(Q)). (2.35)

Multiplying the equation (2.1.2) by w and integrating on €. Then, by using Green’s
formula together with the conditions (2.32) ,(2.33) ,we obtain

1d

§Eﬂwﬂﬂﬁ+%Nw@%wxﬂ)+(9@0—9@0ﬂwﬁﬁ=i/(WV@U—WV@W%m¢v (2.36)

Q

Then by (2.8) (b), we have

d 2
~Cigglulf - [ Fletw))e(wits

d 2
= G vl —a(w(?), w(?)).

In this case (2.36) takes the form

5 37 1O + CullwlP) + (gl =g o)) = [ (w0 = o ©ujud. (237

Also, we have

| [l = @
Q
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< [ sup(lul, o)
Q

Next, by using the Holder inequality we have

@+ < Ca]||v]"™

\/Q(!vl”(””)v = lul"Pu)widz] < Co([[[ul” @) [[w (@)l @lwi (1)1,

where - + _ + 3 = L.Also, by referring to [1] we have

lv

1
vro) = [l 7a)Vrg €N (2.38)

v(z)

Therefore by (2.38) [[v||rq(y for all v(z) € R, using we have v(z)n < v+ n < rq. Then,

this conditions implies that
om0y < V1750 qy < V152 0) < Ilotay = V1711 @y
acal v(z)
<[l < Clvll
which implies by the estimate and as H}(2) C L(Q) that
\/Q(IV!”(”””U = [ulP D 2 uyweda| < C(l[ul| " + (ol lw() [y o lwe(t) < Callwt|fuwe].
Then, by Young inequality from (2.37) we deduce

5 o0 + Gl ) < SCulu®F + (o)) (2:30)

Integrating equation (2.39) together with the initial conditions (2.33) , we use Gronwall’s
inequality to find w = 0. 0

Corollary 2.1
Assume that the conditions of Theorem (2.1) hold. Then, for all v(x) € R the solution u

found to Theorem (2.1) is unique.
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Proof. Proof For all n > 2, set

—9
r = Ent (—V+<Z )>+1,

where Ent(x) denotes the integer part of . Then, we have

2r
n—2

v(r) <vt < ,r €N (n#2;v+ < ooifn =2).

Thus, using Theorem (2.2), there exists a unique solution satisfying (2.1.2)-(2.6). O

2.2 Global Existence and Nonlinear Internal Stabi-

lization

In this section, we discuss the global existence and the stability property of the unique

weak solution u of the problem (1). To this aim, we define the modified energy function

corresponding to the unique solution by the formula
1

e ()P, teR* (2.40)

1 1
E(t) = 5lu(®F + 5l + L) (@)

The goal of this note is to get the stability of the system considered under the appropriate
conditions on the functions g. Suppose that for the continuous functions p(x), p;(x) > 1

and for the positive constants C', Cy, C3, Cy the following statements hold:

Cy|2P@) < |g(x)] < Cola|7® if|2] < 1, (2.41)
Cslz| < |g(x)],if|z] > 1, (2.42)
g(z)| < CylzP@ if|z| > 1 and n > 3. (2.43)
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The following lemma demonstrates that during the trajectory of solution of (1), our func-

tional energy (2.40) is a nonincreasing function.

Lemma 2.2

The energy E : RY — RT is a nonincreasing function for t > 0 and

E(t) = —/Qutg(ut)d:v <0. (2.44)

Proof. For all 0 < S < T < oo, multiplying the equation of (1) by ut and integrating over

(), using integrating by parts and summing up the product results, we get

B(t) — B(0) = /O t /Q weg(u)dads, fort > 0. (2.45)

The equality(2.44) is met because E(t), the primitive of an integrable function, is absolutely
continuousand the equality (2.44) is satisfied. []

2.2.1 Global Existence

Theorem 2.3
Let the assumptions of Theorem (2.1) right-hand side be true. The answer to issue (1)zists

is then used to validate the subsequent estimations..
uwe CRY, VN LPD(N),u € CRT, L*(Q)).
Proof. Proof Under the hypotheses of Theorem (2.1), (u,u;) € (VALP® (Q))x L?(Q)on[0,T).

Then by the identity (2.44) we have

1

1 9 1 9 (@)
Slu @ + S lluOly + o) ) o ) < £(0),VE =0

bounded independently of t. [
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2.2.2 Stability of Solution

Theorem 2.4
Supposes that (2.41) (2.43) hold. Then the solution of the problem (1) verifies for positive

constants ¢ and w the estimates :
=2
E(t) < ctr+ 'Vt € RTifpy > 1, (2.46)

and

E(t) < BE(0)e~"Y vt e RYifp, = 1.

Here, the constant ¢ depends on the initial energy E(0), the constant w does not depend
of E(0). First, we shall give some lemmas which will be used for the proof of Theorem

(2.4).

Lemma 2.3
Let E : RT — RT be a nonincreasing function verifying for two constants o > 0 and T > 0

the estimates :

/ Eo(s)ds < TE*(0)E(t), ¥t € R*.
t

Then

T+at)~
E(t) < E(0) (T ::T) Vt e RTifa >0

and

E(t) < E(0)e'~ 7Vt € R*ifa = 0.

Lemma 2.4

For all0 < 8§ < T < 0o we have the estimate

33



Chapter 2. On the Existence, Uniqueness and Stability of Solutions for

Semi-linear Generalized Elasticity Equation with General Damping Term

1 T p(z)—3
+%/ fok: (t)Et(t)/utudxdt
s Q

+ / EY (1) /Q (2(us)? — ug(uyg))dzdt.

Proof. First, note that fQ ugudr = % fQ upudr — fQ(ut)2dx then

T
0= / oaal) / (g — divo(u) + |u]"@u(t) + g(up))dwdt
s Q

p(z)—1 Top@) =1 [T s
= [E 2 (t)/utudx} i / E™ (t)Et(t)/utudxdt
Q s Q

S

Proof First, note that [, ugudz = 4 [ ugudr — [, (u;)?dz then

T
0= / EP (1) / Wy — dive(w) + [ul*@u(t) + g(u,))dzdt
s Q

p(a)=1 Top) =1 [T pwes
= {E 2 (t)/utudx} -3 / E (t)Et(t)/utudxdt
Q s Q

S

+/ EW(t)L((—U-diva(U)) + [+ ug(u) — (ur)?)dadt.

By using the definition of the energy we have (2.40)

—udivo(u w|P@)dx — ug)?de.
| (udiva(a + e = 26(0) ~ [ @ )a

Q

By substitution (2.49) in (2.48) it gives

p(2)-1 T ope) =1 (T s
0> {E 2 (t)/utudx} —T/ E (t)E’t(t)/utudxdt
Q s Q

S

+ / B (1) /Q (QE() — (u)? + ug(us) — (u)?))dudt.

Then .
p(z)—1 — 1 T p(z)—
0> [E(Q) () / utuda:] —% / E™ () Edt) / weudzdt
Q s Q

s

(2.47)

(2.48)

(2.49)
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) / " g (t)dt — / TE%(@ /Q (2(w)? — ug(us))ddt.

deriving(2.47) . O

Lemma 2.5

The energy E verifies the estimate

p(z)+1

2 / " e (H)dt < eE"7(S) + / ' EY (1) / (2(w)? — ug(u))dwdt — (2.50)

for all 0 < S < T < oo, where ¢ design, from this lemma, a positive constant independent

of E(0), S and of T
Proof. The boundary condition and assumptions (2.8) imply

/—udz’va(u)daz = Cl/ |u||?dz > c/ |u|*dz. (2.51)
Q 0 Q

From (2.51), (2.40) and Young inequality, we have

|E" (1) /Q wupdz| < cEP5 (1) / ()2 + (u,)?)da.

Q

<cE 2 (t) /Q(—udz'vcr(u) + (ug)?)dw.

p(z)+1
2

<cE 2 (H)E(t) =cE (1).

Therefore
T
p(z)+1

{E”@‘l ) /Q uutdm} < eE"F(9).

S

—1 T p(x)=:
|%/ o d(t)Et(t)/utud:cdﬂ
s Q

p(z)—3

< cB*F ()(~ By(t) E(t)dt

On the other hand,

B2(S) — cBMT(T) < cBMET(S)

=C
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One replaces these two estimates in(2.47) to find(2.50). O

Lemma 2.6

Forall0<S<T <ooandalle >0 :

p(z)+1

/ "B [ wysi < | B B+ B ), (25)
S Q s

Proof. For t € RT fixed, we have

/Q(Ut)zdfz/|ut|<1(ut)2dx+At|>1(ut)2dx.

Using the Holder inequality we get

2
T
/(ut)2dx <c </ |ut]p(m)+1dx> +/ (uz)?dz.
Q |ug| <1 |ue[>1

By virtue of(2.41) , (2.42) and(2.44) we observe that

2
(z)+1
/ (uy)?dz < c( / \utyp@)da:)p + / wpyda.
Q lug| <1 lug|>1

o=y
<ec (/ |utg(ut)|dx> + c/ lurg(uy)|dx
ug| <1 Jue|>1

2
p(@)+1
=c (/ utg(ut)dx) + c/ urg(ug)dx
Jut|<1 |ug|>1

< e~ By()TT — cEy(t).

Therefore,

/STE“”BH@)/Q(W)?dxdt < C/ST E“””Q”(t)(—Et@))mfmdt—c/T B (1) (= By(1) dt.

s
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Using Young inequality, we yield

T T
p(z)—1 2 — ]_ p(z)—1 p(z)—1
c / E%(t)(—Et(t))Wmdt < cp—(x) / E 72 p@F(t)dt.
s p(l’) +1 S

_2
p(z)+1

p(z)+1

T 2
S

+c

p(z)+1 T

< e/ST E2(t)dt—c(e)/s E,(t)dt

T e T
< e/ E = (t)dt — c(e)/ E(S)
5 s
Combining the last two inequalities, we find

p(x)+1
2

T @ ) T pla)+1
/5 o) /Q ()2t < € /S B3 (4)dt + () B(S) + B3 (S)

Thus(2.52) holds. O

Lemma 2.7

Forall0<S<T <ooandalle >0 :

T w1 T @1
| /S B (1) /Q ug(uy)dedt] < ¢ /S E™H (1)dt + o) E(S). (2.53)

Proof. By applying the generalized young inequality, for all &, > 0 we have

u?dz + c(e;) / g (uy)dx

Ju| <1

[ ugtudsl <

lue|<1 lue| <1

then from (2.41) and (2.51) we get

—udivo (u)dx + c(et) / g (uy)dx

Jug | <1

[ ugluda] < /

|ue| <1 lug| <1

2
p(z)+1
< 2B (1) + () ( / |g<ut>|p<x>“dx)
|

ug|<1
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—26,0(1) + (e, (/CHS1|g@%npwug<ug|dx)p”“*

< 2eE(t) + cc(e) (/ Ig(ut)||ut|dg;> o

ut|§1
_2
p(x)+1

— 92, E(t) + cole,) ( /|

ug|<1

utg(ut)dx>
— 26, E(t) + ce(e,) (— E(t)) 7o

Therefore,

| wg(ug)dz| < 26, B(t) + cc(e,)(— E(t)) s (2.54)

lut|<1

For all p(z) > 1, and all n > 2 | we put r = Ent(w, where the notation Ent(x)

2n

designates the integer part of real x, and therefore k must verify the condition
2nr .
pt($)+1§pt++1§mﬁranEN ;M F 2
By referring to (2.27) we have the following inequalities:

1
[l o) < Wlrae) = [l | Loy < cllvllio@) < ellvlla @)

Consequently
1
pt(x)+1
(/| | |u|pt(m)+1dx> t < cf ull g < C’E(t)%.
u|>1
From (2.43) we have

pe(z)+1 Ptp(tT()z‘*)'l 1 Ptp(tﬂg)zll
o) 5 ) = J9(un)llg () 7
ue]>1 |ut|>1

pe(z)

et
sc(/ wwwoMQ
|ug|>1

pt(z)

< (~B(1)ntT,
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which implies
pi ()

| ug(up)da| < cE(t)? (—E(t)nte,

[ut|>1

Then from (2.54) and (2.55) we arrives to

T p(z)—1 T p(z)—1
]/ E™ (t)/ug(ut)d:vdﬂ < 2675/ E =2 (t)E(t)dt
s Q

S

T —1 2
+cc(er) / B (t)(—Ey(t))r@+1dt
s

T p(z)— 1 pt(z)
+C/ E “ 1(t)E(t)§(—Et(t))Pt(zH-ldt
S

or
p(z)+1

| /S TE%@) /Q ug(uy)drdt| < 2, /S TET(t)E(t)dt
tee(er) /S ' F

r p(z py(z)
+c/ B (1) B(t)} (— B, (t))m dt.
S

p(z)—1
2

(1) (= Ey(t)) 71 dt

Using the fact that p(s — + ﬁ Eg: = 1, by the Young inequality we see

p(z)+1 T

" _— " g -
cc(st)/s E 72 (t)(—FEy(t))r® dtggt/s E (t)dt—i—c(et)/( E(t))dt.

S

pt(x) 1

OISR 1 we have

In the same way, since

T p(x) 1 pt(x) T
c / B (1) B(t) (— Eu(t)) w5 dt < o /
S

S

Combine (2.57) with (2.56) to get

T p(z)—1
| / o) / ug(ue)dwdt]
S Q

p(z)(pt(x)+1) T
{0 B et / (—E,(t))dt.
S

(2.55)

(2.56)

(2.57)
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T p(x)+1 T p(z)+1
§25t/ E™ (t)dt+5t/ E" 2 (t)dt
S S

p(z)(pg(z)+1)
2

+c(5t)/s (E(t))dt+c/3 E(t) dt+c/s (E.(t))dt

p(z)(pt(z)+1)
2

:3&/TEWT%®ﬁ—c@Q/T@MﬂMt+?/TE@ dt.
S

S S

As E nonincreasing and as p(x)(p:(z) + 1) > p(x) + 1, then

T T
/ E(t)mz)(pt;zm) dt < C/ Ep<x2>+1 (1)dt.
s s

Thus, it follows from (2.58) and (2.59) that

|L%E&r@%4ummMmmga/qEWT%ﬂﬁ+d@E@)

s
This is (2.53).

Lemma 2.8

For all0 < § < T < 0o we have the estimate

p(z)+1

T
/.E2®ﬁ§0u+E
S

p(z)—1
2

(0)E(5),0< S <T < o0

Proof. Choosing ¢ = % in (2.52) and in(2.53) it finds

p(z)+1

T w1 2 (T pwn
/‘EQ @/@@m&gg/‘Ez (1)t + cB(s) + cE™F (5)
S Q S

and

T s 1T e
—/ £ (f)/uy(ut)dxdté—/ ET%2 (t)dt + cE(s).
s Q 3 Js
Therefore, by addition of (2.61) and (2.62) it comes

p(z)+1

T T
/ E"F (1) /(Quf — ug(uy))drdt < / B2 (1)t + cB(s) + cE"57 (s).
S & 5

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)
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Using in (2.50) the inequality (2.63) we find that

p(z)+1 p(z)+1 p(z)+1 p(z)+1

) / "R (gt < cBMS (5) 1 / " (0t 4 cB(s) + cB"E (s).

Therefore,

p(z)—1

T
/ B (t)dt < e(1+ B™57 () B(s) < e(1+ B3 (0))B(s),0 < S < T < o0,
S
O

The Lemmas (2.2) and (2.8) imply that E : Rt — R* is a nonincreasing function and

verify the inequality

p(z)+1

/ E™5 (s)ds < / E"F* (s)ds < cE(t),Vt € R*, (2.64)
t t

The applications of the well-known Lemma (2.3) and (2.64) yield the estimates (2.46) and
(2.42) and we complete the proof of Theorem (2.4).

Example 2.1

Consider the following function
F(e(u)) = 2e(u) — Trace(e(u))I,

where I denotes the identity operator and Trace denotes the trace operator. Then, the

problem (1) , without the condition o(u)n =0 on )_,, is reduced to the following problem

(

&5 — Au+ [ul"@u+ g(w) = f, € Q0,7),

u="0o0n >, (2.65)

\u(x,O) = up(z), u(z,0) = uy(x),x € Q.

F is linear, hence it complies with the assumption (2.8). Then, the problem (2.65) is
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used to verify the theorems (2.1) (2.2),(2.1), and (2.4), which highlights the significance of

this generic problem.
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Chapter 3

Existence and asymptotic stability
for generalized elasticity equation

with variable exponent

In this chapter,we present the problem (3.1),like a generalization of the problem (1)
then maybe by the same methods we present of the reader the globale, locale existence of
the solutions without the uniqueness of the solution, and we show the stability behaver of

the solution.

3.1 Weak formula of the problem 3.1

Here,we build the weak formula of the problem (3.1), of course by using Green’s formula.

;

2% — div (") (u) + aful"" P u+ 8% = f,in Q]0,T],

u(z,t) =0 on 04]0,T7, (3.1)

oV (u).m =0 on 000, T].
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By multiplying equation (3.1) by a test-function ¢, then integrating over {2 and using the

Green formula, we get the following variational formulation

Find u € K, V¢ €]0,T[ such that

82u p(-)—2 ou
(@a@) + ap() (U7%0)+04(|U| U»@) + 5 (E’¢>

=(f,¢), Voe K",

u(z,0) = Jo(x), %(LO) =1 (z),

where

ap(y(u, p) = /Q (2# + |d (u)|p(')_2> d(u) :d(p)dr+ A /Q div (u) div (¢) dz,

with

Also we denote by A the nonlinear operator

AWt ()2 — w0 ()

u— A(u),

where

(A(u),v) = ay) (u,v), forall ve Wt ()3

3.2 Existence of weak solution

(3.2)

In this part, we are interested the local existence of the solution for the problem (3.1) —(5).

Theorem 3.1
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Under the assumptions

£, % e L1 (0,T, L7 (),

o € WHPO(Q), 9y € L2(Q), (3.3)

there exists a weak solution u of (3.2) such that

we L (0,7, Wr0(Q)),

ou - 9
5 € L>* (0,7, L* () .

Proof. We use the standard Faedo-Galerkin method to prove our result.
We introduce a sequence of functions (v;) having the following properties:
oeVic{l, . k} v; € KPO,
e The family {vl, Vo, ..., vk’} is linearly independent,
e The space K* = [vi],<i<, generated by the family, {vl,v2, s v’“}, is dense in KP0).

Let u® = u* (t) be an approached solution of the problem (3.1) — (5) such that

k
uF () = nf (v, k=1,2,3..,
i=1
verifies the system of equations

62 k N 8 k
(8—;,01') + Qp(.) (uk’vi) + « (‘uk’p() 2uk’vi) +B <8—ut,1)i) (34)

:(favi)a ].SZSIC,

which is a nonlinear system of ordinary deferential equations and will be completed by the

following initial conditions

k
uf (2,0) = I = vaz — ¥y when k — oo in W0 (Q)? (3.5)

=1
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and
k

(z,0) = 9% = fovi —¥; when ¥ — oo in L2 (). (3.6)

i=1

ouk
ot

From the general results on systems of differential equations, we are assured of the existence
of a solution of (3.4) (note that det (v;,v;) # 0) thanks to the linear independence of

V1,2, ..., 0% in an interval [0,¢%], (see [14]).

Multiplying the equation (3.4) by 7., (f) and performing the summation over i = 1 to

m, we find
0?ur ouk . OuP pip()—2 5 Ouf
(W,W) +6Lp( ( at ) + « (}U ‘ u ,E) (37)
ouk ouF
P (E’ W)
our
= (f ’ W) |
On the other hand, we have

HLP(')(Q)3 ’ (3'8)

also

ou®
ap(-) (Uk> W) (3.9)

d i 2
dt{ [t () 250 s 1 o 0 2

+§ |div (u* (z,1)) Hi?(ﬂ)} '
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By using Egs. (3.8) — (3.9) in Eq. (3.7), we obtain

ou® (t)

ot

1d
2dt

2 d | 1 )
3 [THd( Ot

L2(Q)3

0 (0) [ + 5 v (o t>>uiz(m}

R ] s

_ (f7 auat( )) .

By integrating the last equation on ]0,¢[ and applying Hélder and Young inequalities, we

L2()?

deduce
Lt )| > 1 0
5 ‘ ot 2()? TH Hd (uk (t>) HLQ(Q)33 + _ Hd (uk (t)) Hip(.)(g)&% (310)
« () 8u
+muk< .

2,u+)\ 2

) )
+—H190m||Lp() Q)3+/ Hu “ip()(ﬂ?’ds_’_?Hu ){ZP(J(Q)?’

*(ZP) IO+ [ 0f (5)[[%

ot
+ £ O 05 + 1025, s -

ds

Lat)(Q)3

Now, using Korn’s inequality (??) and W0 (Q) < LPO) (Q) we have

Hd )7

_) H k HWl p()(Q)3 Lr() ()33 7

" (s

j < o [|uf (s wa()

HLP()(Q
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Then the inequality (3.10) will be

1||ouk ()] uC C 3
3|75 e T I Ol + 14 Ol
ot [ HLP(-)(Q) L2y ds
af (s)]*

<o [0 Gy ds +
(IT

2p* 2
#(Z5) 1 OIS g+ 1010y

14+ acy+  2p+ A
+ (1+ — b + 9 ) ||19Om||W1p() Q)37

) s + £ O,

La0) (Q)3

as

t 8f($) q(’) %
T W)M(a) 17 O gy + 17 O,

1 2 A
+(1+ AL A

2 *
9 ) ”190m||W1 »(-) Q)S + ||191mHL2(Q)3 S O, Vm c N y

where C' is a constant independent of m. So, we get

2

SIS S Ol S I Oy @)
e LUl Ry e I
<c+ cp+/ e ——
by using the Gronwall inequality, we obtain
e (][50 < (3.12)
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i

The estimates (3.12) and (3.13) imply

Therefore, (3.11) gives

2

ou® (t)
ot

+ [l Ot e < € (3.13)
L2(Q)?

u* bounded in L™ (O, T; whet) (Q)S) ,

8uk . e’} 2 3
o bounded in L (0,T; L* ()°) ,

from this, we deduce that we can extract a subsequence u* such that

uF = in L (0,T; W0 (Q)?), (3.14)

ouk ou

= in L®(0, T, L*(Q)°

o "o LT
‘uk‘p(')_z uf — x in L™ (0,7 L0 (Q)?

A (u¥) =0 in L= (0,T; W10 (Q)%).

We have the sequences u”, aai: are bounded in L? (0,T; L? (Q)S) = L*(Q), then by the

compactness lemma of Lions [14], we can deduce
ub S i 2 (0,T;L? (Q)g) .
On the other hand, we have

/ “uk‘l?(x)—Q o
Q

So ‘uﬂp(')ﬂ ¥ is bounded in L= (0,T; L1 (Q)?).

q(

? dr = / |uk|p(x) dr < C.
Q

As uf "8y in L2 (0,T; L2 (2)%) we get
|uklp(')—2 uF — Y = |u|p(')72u in L>® (0, T: Li0) (Q)3> . (3.15)
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As the operator A (+) is bounded, monotone and hemicontinuous, we can prove that (see

for exemple [36])

0< /Ot (0(s)— A(u(s)),w(s))ds, Ywe L? (0,T; Wyt (Q)3> .

From this we conclude that 6 = A (u).

Now, let i be fixed and [ > i. Then, using (3.4), we get

0%u N ou
(ngﬂ)i) + ap(l) (ul,vi) + « <|ul|p() QUla Ui) + ﬁ (a—tl,’l}i> (316)

From (3.14) and (3.15), it results
<|Ul|p(.)72 Ulﬂh’) et <|U|p(')72 Uﬂ’i) in L>(0,T),

aul Weahstar Ju . 2
(Ewi) (E,Uz) in L (0,7),

weak star . 00
p(-) (ul7 Ui) N p(.) <u> Ui) in L (07 T) )

82'&[ aQU/ . /
(W’Ui) <w,’0i> in D (O,T) .

Then (3.16) as | — oo takes the form

therefore

aQU p(-)—2 ou .
(w, Ui) + ap(y (u,v;) + (‘U’ u, Uz‘) + 5 (E?Uz’) = (f,v).

Now, using the density of K* in K?(), we obtain
0? N 0
(a—tﬁ‘, @) +ay() (u, ) +a (Iulp() “u, sO) + (a—?m) = (f,9), Vo € K*V.
Thus, u satisfies (3.1) — (4).
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To handle the initial conditions, we note that

ue L? (O, T; whet) (9)3) ,

u 2 T2 3
aeL (0,73 L% (2)7) .

Thus, using Lion’s Lemma [14] and Eq. (3.5), we easily obtain
u(z,0) — Jg ().
For the scond condition, we have

[](Zed2.000)

< /  Japy (0 (5), () ds + / ) (lu )P0 u(s), 0 (5)) | dst

5 [ (% 000)

This implies

i

ds +/0 (f(s),p(s))ds, Yo (s) € L (O,T; Kp(')) )

ou (s)
ot

(82;;58) , (8))

L2(2)°*

T
ds<e | (uu s+
0

F1F )o@ ) 19 (5l e ds

sc ||90||L2(0,T;W1,p(~>(g)3) , Vo(s) e L? (O,T; Kp(')) 7

it means that
0%u 2 —Laq(") 3

Recalling that 2% € L* (0, T; L (Q)?’), we obtain

g—;‘ € C(0,T; W0 (Q)%).
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ouF (z,0
So, 229 1akes sense and

ot

ou* (z,0)  Ou(x,0) i

n W—hat) (Q)3

ot ot
But
8uk (..'E, O) 2 3
py Y1 (z) in L (92)7,
hence
Ou (z,0)

3.3 Stability behavior

We will now show a stability behavior of the solution of the problem (3.1) — (5) with f = 0.

To this aim, we introduce the “modified” energy associated to the problem by the formula

1 2

20 :5'

Ou (t)
ot

1
HII? —
. + pllu (@) [y + 20) [ (t )||W1 b0 ()

A 2 «
+ 5 v (u (D)2 + o0 lu )15

Lemma 3.1

The energy £ : Ry — R is a nonincreasing function for all t > 0.

Proof. Choosing ¢ = a%as) in (3.2), we get

E(t)-€(0) =

L2(9)°

This means that

<0, for all ¢ > 0. (3.17)

2
,t):_ﬁH&éit)

L*(Q)
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Theorem 3.2
[Global Ezistence] Under the hypotheses of Theorem 3.1, the solution u of the problem
(3.1) — (5) satisfies

ou

ue C (R, W0 (Q)%) o €C (R, 17 (Q)%) .

Proof. We have u and 2% verify the identity (3.17), then

2

du (¢)
ot

2

:

o 2 1
L2(2)* * 2 ez + p() e (@ >HW1 P (@)

A
+ 5 Iiv (w (O) [0 + 75 p<> o ()5

< &(0), forallt >0,

this estimate independently of ¢. O]

Next, we establish several technical lemmas for proof the main result of stability be-

havior.

Lemma 3.2 ([38] Theorem 8.1)

Let £ : Ry — R, be a nonincreasing function verifying the estimate
/ €741 (s)ds < KE” (0)E (1), Vt € R,
t

then
K +vK

T VteR,, i
K—l—l/t) ,Vie Ry, ifv >0,

e<t>ss<0>(

and

E()<E) e, VteR,, ifv =0
where v > 0 and K > 0 are two constants.

53



Chapter 3. Existence and asymptotic stability for generalized elasticity
equation with variable exponent

Lemma 3.3
The energy functional & (+) satisfies the following estimate for all T > Ty > 0
T

/ e (t)dt < — {5” (t) /Q %udw] (3.18)

To To

n 1#/: (gp"%“ (t) & (t)/g%udm) dt

T ) 2
+/ o (t)/ (2 Ou —u@> dzdt.
To Q

ot ot
p()—2

Proof. By multiplying Eq. (3.1) by £ 2

() .u and integrating over )Ty, T'[, we get

T 2
0= /TO g (t)/Qu {% — dive?™@ (u) 4 o [uP' 7w + 5%} dxdt,
using the fact that [, %udm =4 [ Pudr — [, %‘2 dx, we easily obtain
p()=2 Ju T op)y =2 (T s ou
0= {5 2 (t)/ —udx} — / Ez ()€ (t)/ —udzdt
oot > Ju o Ol
T 2
+ [ em ) / —udive”® (u) 4 o [u'™ + 82— 2 gt
T Q ot | ot
On the other side, we have
. p(x) p(x) Qu |”
[—udlvap (u) + aul ] de >2E(t) — | |=| dz,

thus, we get

p()-2 ou 17 p()=2 [T o, ou
> 2 - _ 2 __
0> {g ) /Q atudm] : / £"5 (1) € (1) / O s

T(] T()

4 TTgp('%z ) /Q [25@)—

2
ou
MR

ou

ot

ou

ot
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then

0> {5(%_ (t)/ g— d:c]T —p(')_Q/TS”“%_4 (1) & (t) 8—“udazdt

0

T p() T p()—2
+2/ 52(t)—/52 (t)/
To To Q

7
)

In the following, we denote by ¢ generic positive constant, which may have different

values at different occurrences.

Lemma 3.4
There exist a positive constant ¢ independent of € (0), To and of T such that the energy
E (+) verifies the following estimate

/ e (t) dt (3.19)

To
T
RRCIAE
To Q

Proof. We know that there exist a positive constant ¢; such that

oul?

S gp() (To) 4 o

dr — Bu—) dzdt, for all T > Ty > 0.

| =i () do > e [l + ] = e [ ol .
Q

The use of the Young inequality gives

g (t)/u%dw

2
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On the other hand, we have

p_<'>—2/T e o2
‘ 5 & (t)E (t) Quatdxdt

Then, we replace these two estimates in (3.18) to find (3.19). O

Lemma 3.5

For all ¢ > 0, we have

T 2
/ 5 (1) / 0ul fwdt (3.20)
To Q at
T
<o EF (W dt+c(o)E(Ty) + € (Ty), for all T > Ty > 0.
To

Proof. For t € R, fixed, we see that

2

2 2
/ 6_u dr = / @ dx + / @ dx.
al Ot A [g¢l>11 9%
Also, there exists a constant ¢ > 0 such that
2 2\ 5@
/ @ de <c / @ dx )
ou)<i ot o)<y | O
Then
2 2 ) 2
ou / ou me / ou
—| dx <c —| dx +c —
/ﬂ o ( el 191 ) Bl 1O

< (=& (4)70 — & (t).
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Therefore

T 2
p()—2 ou
E 2 (¢t / —| dzdt

A (t) o
T -2 S T s, o,

<c Ez (t) (=& (t)*O dt — ¢ E = (t)&E'(t)dt,
To To

using the Young inequality, we get

C/Tg”%? (t) (=€ ()70 dt

< PO=2 [Temm gy 2 /T(—g' (1) dt

p() Ty p() To
T b0
< C/ Ex (t)dt+c(s)E(Th).

To

So, we find

T sz ou|’ T w0 p()
/ E (t)/ — dajdtgg/ ET (t)dt+c(s)E(Ty) +c€ 7 (Ty),
T ol ot To
thus (3.20) holds. O

Lemma 3.6

The energy € (-) satisfies the following estimate, for all ¢ > 0

T b= ou T w0 o)
E 2 () | u=dzdt| <gs [ E7 (t)dt+c(s)E 2 (Tp). (3.21)
0

Ty ot T,

Proof. By applying the Young inequality, we have for all ¢ > 0

2

ou 9 ou
u—dmﬁg/u dx—l—cg/— dx
|5 [uf et e [ |5
<< [ —udiv (c?™ (u)) dz+c(s) [ |=| do

<E@)+c(s) (=& (1)) .
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Then we conclude that, for any 7" > Ty > 0

s 2()/u%dmdt' << g%()dHc(g)g% (Ty).
T() Q t TO
[
Lemma 3.7
For all T > Ty > 0, we have the estimate
r r() p()=2
/ £ ()dt<c( 2 (0)>S(T0).
To
Proof. By (3.20) and (3.21), we obtain
T 2
/ gr (t)/ (2 Ou dx—ﬁu—) dxdt
T Q ot
T p() r()
<2 [ E7 ()dt+c(s)E(To)+c(s)E7 (1),
To
choosing ¢ = %L, to find
T 2
/ 5 (1) / (2 Oul’ ﬂu—) dwdt (3.22)
T ot

<= [ % (t)dt + & (Ty) + £ (Th).
2 Jr,

Now, we use the inequality (3.22) in (3.19), we get

T 0 1 (T 0 2()
E2 W)dt<= [ &% W)dt+cE(Ty)+c€2 (Ty), 0< Ty < T.

To To
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This implies that

O

The Lemmas 3.1 and 3.7 imply that £ : R, — R, is a nonincreasing function and

verify the following inequalities
ot pt_2
/ Ex (s)ds<cE 2 (0)E(t), Vt>D0. (3.23)
t

Theorem 3.3 (Stability of the Solution)
There exists tow positives constants A and B such that the solution of the problem (3.1)

verify the following estimates
=2
E(t) < Atr 2 VYVt >0, if pt > 2,

and

E)<E0) P vt >0, if pt =2,

where the constant A depends on the initial energy € (0) and the constant B independent
of £(0).

Proof. Thanks to the inquality (3.23) the modified energy of the problem verify
> pt pt—2
/ E7 (s)ds<cE 2 (0)E(), Vt>N0.
t

direct application of the lemma 2 we get the result with

k+ vk\”
A= (k+ut) ’
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and

1
B=—.
v
O
which completed the proof of the theorem
3.4 Nemurical analyses
In this section we consider the following ordinary equation:
%—i—u::ﬂ, x € [0,1],
u(0) =0, (3.24)
u(l) = 1.
\
h = %, x; = th u(z;) = u;
by using finite Difference Method
L Wir1 — Uy
() = ML
Uip1 — 2U; + Uiy
g (1) = ——— : (3.25)
The equation (3.25) and (3.24) we get:
—Uj i h? +2
Uiy M (U2 e, (3.26)

12 _hz (h2

i=1,....N

For i = 1, we have;
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For i = 2, we have;

—Uus Uy
o R?
For i = (N — 1), we have;
—Uun UN-2

By applying t in the Matlab we get,
For n =5 we get,

x = 0.2000

0.4000

0.6000

0.8000

1.0000

-(hi;Q) % 0

-5 (B2 -2 o0

0 - (BB -

00 g (5
e

I 0 0 —

Uy

U2

Uus

Uy

UN-1

h2
4h*
9h®
16h8

(N — 122

(3.27)
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0.0400
0.1600
0.3600
0.6400
1.0000

0.0234
0.0461
0.0643
0.0707
0.0542

51.0000
—25.0000
0
0
0

—25.0000
51.0000
—25.0000
0
0

0
—25.0000
51.0000
—25.0000
0

0 0
0 0
—25.0000 0

51.0000  —25.0000
—25.0000  51.0000
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0.055 T T T T T T T T

0.05F

0045} e

0.03+

0015 -

0.005 1 1 1 1 1 ! 1 1
0.1 0.2 03 0.4 05 06 0.7 08 09 1

Figure 3.1: Approximated in the interval [0,1]when n=5

For n = 10 we have

T =

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
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1.0000
201.0000 —100.0000 0 0 0 0 0 0 0 0
—100.0000 201.0000 -—100.0000 0 0 0 0 0 0 0
0 —100.0000 201.0000 —100.00 0 0 0 0 0 0
0 0 —100.0000 201.0000 —100.0000 0 0 0 0 0
0 0 0 —100.0000 201.0000 —100.0000 0 0 0 0
0 0 0 0 —100.000 201.000 —100.0000 0 0 0
0 0 0 0 0 —100.0000 201.0000 -—100.0000 0 0
0 0 0 0 0 0 —100.0000 201.0000 —100.0000 0
0 0 0 0 0 0 0 —100.0000 201.0000 —100.0000
0 0 0 0 0 0 0 0 —100.000 201.0000
(3.28)

0.0100

0.0400

0.0900

0.1600

0.2500

0.3600

0.4900

0.6400

0.8100

1.0000

u =

0.0094

0.0189

0.0281

0.0367

0.0441

0.0494

0.0516

0.0494
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Figure 3.2: Approximated in the interval [0,1] when n=10
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