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Notation

X, Y real Banach spaces.

E metric space.

∥.∥X the norm of X.

X∗ topological dual space of X.

⟨., .⟩X duality product of X and X∗.

P(X) the set of all subsets of X.

Pcl(X) the set of all closed subsets of X.

→ the strong convergence.

⇀ the weak convergence.

L(X, Y ) the space of continuous linear operators from X to Y.

∇ the gradient.

ℜ(z) the real part of z.

|.| the euclidean norm of Rn.

C(E,F ) the space of continuous functions from E to F.

CB(X) the collection of all nonempty bounded and closed subsets of X.

Lp(Ω) the space of measurable functions on Ω such that:
∫
Ω
|u|dx <∞, 1 ≤ p <∞.

L∞(Ω) the space of essentially bounded functions on Ω.
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Fractional derivatives will lead to a paradox, from which one day

useful consequences will be drawn.

-Gottfried Leibniz
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Introduction

The seeds of fractional derivatives were planted over 300 years ago, although it only con-

tained some pure mathematical manipulations with little to no use, but around 30 years

ago this paradigm started to shift more towards the applied mathematics allowing the

subject of fractional differential equations and inclusions as well to emerge as an impor-

tant area of investigation. In fact, many systems in physics and engineering and some

biological phenomena can be modeled more accurately by fractional derivatives or frac-

tional integrals than traditional integer order derivatives or integrals,Applications include

bio-mechanics, behaviors of viscoelastic materials, control, electrochemical processes, di-

electric polarization, colored noise and chaos (See:[1],[2],[3],[4] and[5]).

Traditionally, differential equations describe the relationship between a function and its

derivatives by using integer-order derivatives. However, in many real-world applications,

phenomena such as anomalous diffusion, viscoelasticity, and fractional calculus arise, in-

dicating the need to consider fractional derivatives, which extends the concept of differen-

tiation and integration to non-integer orders. Unlike integer-order derivatives, fractional

derivatives capture the memory of past states, making them suitable for modeling systems

with long-range dependencies and complex dynamics.

The notion of inclusions involves a family of differential equations or inequalities, encom-

passing a range of possible solutions. This allows for a more flexible modeling of systems

where the dynamics are uncertain or exhibit multiple possible trajectories.

In this thesis we attempt to study some of these fractional inclusion problems.

Precisely, the first chapter is devoted to recalling some notions and properties of set valued

operators, exploring the fractional calculus, and citing theorems and principles that are

7
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used in the following chapters.

The second chapter, is intended to highlighting the connection between the variational

inequalities and inclusions. Presenting types of inclusion problems solvable by the exis-

tence theorems for on the pseudo-monotone perturbation of the maximal monotone set

valued operator, as well as another type which follows another approach like a hybrid

integro-differential inclusion model.

And in the third chapter, we study the existence and uniqueness of a generalized Caputo

fractional inclusion of the thermostat model using the endpoint concept and finishing with

numerical application by the ANN method.
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Chapter 1

Preliminaries

In this section we are going to present some important definitions as well as useful theorems

related to our field of research.

1.1 Single valued functions

Here we consider the single valued function A : X → X∗.

Definition 1.1 [6, page 11]If (X,M) and (Y,N ) are measurable spaces, a mapping f :

X → Y is called (M,N )-measurable or just measurable if f−1(E) ∈ M,∀E ∈ N .

Definition 1.2 [7, page 12]

• A map f : X → Y is said to be continuous at x0 ∈ X if for a given ϵ > 0 there

exists δ > 0,δ = δ(ϵ, x0),such that:

||f(x)− f(x0)||Y < ϵ whenever ||x− x0||X < δ

f is continuous on X if it is continuous on every point in X.

• A map f : X → Y is said to be uniformly continuous at x0 ∈ X if for a given

ϵ > 0 there exists δ > 0 independent of x0,such that:

||f(x)− f(x0)||Y < ϵ whenever ||x− x0||X < δ

Definition 1.3 [7, page 109]A family of functions A mapping a metric space E into the

real or complex numbers is said to be equi-continuous if: ∀x0 ∈ E and ϵ > 0,∃δ > 0,
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CHAPTER 1. PRELIMINARIES

such that:

d(x, x0) < ϵ implies |f(x)− f(x0)| < δ, ∀f ∈ A

Note that δ may depends on x0 or ϵ but not on f .

Definition 1.4 [8, page 8]Let the function φ : X →]−∞,+∞]:

▷ φ is said to be lower semi-continous if for all λ ∈ R

the set {x ∈ X : φ(x) ≤ λ} is closed.

or, if for every sequence (xn)n∈N in Xsuch that xn → x, we have

lim inf
n−→∞

φ(xn) ≥ φ(x).

▷ φ is said to be upper semi-continous if for all λ ∈ R

the set {x ∈ X : φ(x) ≥ λ} is closed.

or, if for every sequence (xn)n∈N in X such that xn → x, we hav

lim sup
n−→∞

φ(xn) ≤ φ(x).

Definition 1.5 [9, page 500,501]

▷ The operator A is said to be monotone if and only if

⟨Au− Av, u− v⟩X ≥ 0 for all u, v ∈ X.

▷ The operator A is said to be strictly monotone if and only if

⟨Au− Av, u− v⟩X > 0 for all u, v ∈ X with u ̸= v.

▷ The operator A is said to be coercive if and only if

lim
∥u∥−→∞

⟨Au, u⟩X
∥u∥X

= +∞.

10



CHAPTER 1. PRELIMINARIES

Definition 1.6 [10, page 546] The operator A is said to be maximal monotone if it is

monotone and if that: ⟨Au− w, u− v⟩X ≥ 0 for all u ∈ X implies w = Av.

Definition 1.7 [9, page 515] The operator A : M ⊂ X → X∗ is said to be pseudo-

monotone if and only if for all u ∈M and for every sequence (un) in M :

un ⇀ u when n→ ∞ and lim sup
n−→∞

⟨Aun, un − u⟩X ≤ 0,

implies that:

lim inf
n−→∞

⟨Aun, un − w⟩X ≥ ⟨Au, u− w⟩X for all w ∈ X.

Definition 1.8 [9, page 554] The operator A is said to be hemi-continuous if and only

if the real function

t 7→ ⟨A(u+ tv), w⟩X

is continuous on [0,1] for all u, v, w ∈ X.

Definition 1.9 [9, page 554] A is said to be demi-continuous if and only if

un → u when n→ ∞

implies Aun ⇀ Au when n→ ∞.

Definition 1.10 [7, page 53] An operator T ∈ L(X, Y ) is said to be compact if T maps

bounded sets of a Banach space X into relatively compact sets of a Banach space Y .

An equivalent definition is that T is linear and for any bounded sequence {xk} in X,{Txk}

has a convergent sub-sequence in Y .

(this definition can be extended to set-valued functions).

Definition 1.11 [11, page 3] A mapping p : I × R → R is said to be Carathéodory if:

• t→ p(t, u)is measurable for each u ∈ R.

• u→ p(t, u)is continuous a.e. for each t ∈ I.
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CHAPTER 1. PRELIMINARIES

1.2 Set-valued functions

Unlike ordinary functions, set-valued functions can return multiple values for a single

input. These functions are widely used in many branches of mathematics, such as opti-

mization, game theory, and topology.

Definition 1.12 [9, page 850] Let T : X → P(Y ) be a set-valued function that is

T associates for each element u ∈ X a subset Tu ⊂ Y .(it also can be referred to as

multi-function or multi-valued map)

• The set D(T ) = {u ∈ X : Tu ̸= ϕ} is called the domain of T .

• The set R(T ) =
⋃

u∈X Tu is called the range of T .

• The set G(T ) = {(u, v) ∈ X × Y : u ∈ D(T ), v ∈ Tu} is called the graph of T .

Definition 1.13 [9, page 851]The inverse of a set-valued function T−1 : Y → P(X) is

defined by:

T−1(v) = {u ∈ X : v ∈ Tu}

such that D(T−1) = R(T )

and: (u, v) ∈ G(T ) if and only if (v, u) ∈ G(T−1)

Definition 1.14 [9, page 851] Let M ⊆ X.

For the given multi-functions

A,B :M → P(Y )

and for α, β ∈ R, we define the linear composition

αA+ βB :M → P(Y )

By:

(αA+ βB)(u) =

 αAu+ βBu if u ∈ D(A) ∩D(B),

ϕ else.

and we have: D(αA+ βB) = D(A) ∩D(B).

12



CHAPTER 1. PRELIMINARIES

Definition 1.15 [12, page 4] For a set Bof real numbers, let {Ik}∞k=1 be an open cover for

B. We define the set function Lebesgue outer measure, sometimes called an exterior

measure, as:

m∗(B) = inf{
∞∑
k=1

l(Ik) | B ⊆
∞⋃
k=1

Ik}

With:

l(I) =


b− a, ifI =]a, b[

∞, ifIis unbounded.

Definition 1.16 [12, page 7] A subset M of R is said to be Lebesgue measurable if

for given ϵ > 0, there exists an open set G such that:

M ⊂ G and m∗(G\M) < ϵ

Definition 1.17 [13, page 7] A multi-valued map T : I → Pcl(R) is said to be measur-

able if:

For every open U ⊂ R,the set {t ∈ I, T (t) ⊂ U}is Lebesgue measurable in I.

Definition 1.18 [14, page 36] If the images of the set valued map T are closed, we say

that T is closed-valued.

Definition 1.19 [15, page 160] A multi-function F : Ω → P(X) is called integrably

bounded if there is a ρ ∈ L1(Ω,X) such that:

||x|| ≤ ρ(ω)

for any x and ω with: x ∈ F (ω).

Definition 1.20 [9, page 851] The operator B:M → P(Y ) is called an extension of the

operator A:M → P(Y ) if and only if G(A) ⊆ G(B).

Definition 1.21 [14, page 38]A set valued map T : X → P(Y ) is called upper semi

continuous at x ∈ D(T ) if and only if for any neighborhood V of T (x), ∃η > 0 such

13



CHAPTER 1. PRELIMINARIES

that:

∀x′ ∈ BX(x, η), T (x′) ⊂ V.

T is said to be upper semi continuous if it is upper semi continuous in any point of D(T ).

Definition 1.22 [16, page 47] We say that a multi-function operator A :M ⊆ X → P(Y )

is bounded if its graph G(A) is bounded in X × Y ,

that is, let (xn, yn) ∈ M × Y such that yn ∈ Axn for all n ∈ N, and xn → x in X and

yn → y in Y implies y ∈ Ax.

Definition 1.23 [9, page 851] Let A :M → P(X∗) be a set valued function, where M is

a sub set of the Banach space X.

(a) A subset S of M ×X∗ is called monotone if and only if

⟨u∗ − v∗, u− v⟩X ⩾ 0 for all (u, u∗), (v, v∗) ∈ S

(b) A subset S of M ×X∗ is called maximal monotone if and only if it is monotone and

that it has no proper monotonic extension in M ×X∗.

(c) The multi-function A is called monotone if and only if the graph G(A) is a monotone

set in M ×X∗, that is:

⟨u∗ − v∗, u− v⟩X ⩾ 0 for all (u, u∗), (v, v∗) ∈ G(A)

(d) The multi-function A is called maximal monotone if and only if the graph G(A) is a

maximal monotone set in M ×X∗, that is:

A monotone and (u, u∗) ∈M ×X∗ and

⟨u∗ − v∗, u− v⟩X ⩾ 0 for all (v, v∗) ∈ G(A)

implies that (u, u∗) ∈ G(A).

14
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Definition 1.24 [10, page 546] Let X be a real reflexive Banach space.

The multi-function operator T:X → P(X∗) is generalized pseudo-monotone if for

every sequence {un} ⊂ X and {u∗n} ⊂ X∗ such that un ⇀ u in X, u∗n ∈ Tun for n ⩾ 1,

u∗n ⇀ u∗ and lim sup
n−→∞

⟨u∗n, un − u⟩X ⩽ 0,

we have u∗ ∈ Tu

and lim
n−→∞

⟨u∗n, un⟩X = ⟨u∗, u⟩X .

For the following, let (X, d) be a metric space.

Definition 1.25 [17, page 132] Let F : X → P(X) be a set valued function.

An element x ∈ X is said to be a fixed point of F if: x ∈ Fx. An element x ∈ X is

said to be an endpoint (or stationary point) of F if: Fx = {x}.

Definition 1.26 [17, page 132]We say that a set-valued map F : X → P(X) has the

approximate endpoint property if:

inf
x∈X

sup
y∈Fx

d(x, y) = 0

Definition 1.27 [18, page 10]For each u ∈ X, we define the set of selection of T by

ST = {ν ∈ L1([0, 1],R) : ν(t) ∈ T (t, u(t))}

Definition 1.28 [19, page 21] A countable family {fn}∞n=1 ⊂ SF is said to be casting

representation of F if:

∪∞
n=1fn(t) = F (t)

for µ-a.e. t ∈ I.

1.3 Some useful lemmas and theorems

Theorem 1.1 Arzela-Ascoli Theorem[7, page 109-110]

Let E be a compact metric space,and C(E) the Banach space of real or complex valued

15
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continuous functions with respect to the norm:

||f || = sup
x∈E

|f(x)|.

If A = {fn} is a sequence in C(E) such that:

• fn(x) is uniformly bounded (i.e. supn≥1 supx∈E |fn(x)| <∞).

• {fn} is equi-continuous.

Then Ā is compact.

Theorem 1.2 Lebesgue dominated convergence[7, page 30]

If {un} is a sequence of measurable functions on E such that: un(ω) → u(ω) as n → ∞

a.e. on E, and |un(ω)| ≤ ν(ω)a.e. on E, where ν is an integrable function on E. Then:

∫
E

u dµ = lim
n→∞

∫
E

un dµ

Theorem 1.3 the Schauder-Tychonoff fixed point theorem[20, page 161]

Let E be a separated LCTVS, and K a non empty convex subset of a E, and let T be a

continuous mapping of K into itself. Then T has a fixed point in K.

Lemma 1.1 [21, page 236] Let ψ : [0,∞) → [0,∞) be an upper semi continuous function

such that:

• lim inft→∞(t− ψ(t)) > 0,∀t > 0.

• ψ(t) < t,∀t > 0.

With (X, d) a complete metric space and T : X → CB(X) a multi function such that:

Hd(T (x), T (y)) ≤ ψ(d(x, y)), ∀x, y ∈ X,

where Hd(A,B) = max{supx∈A d(x,B), supy∈B d(y, A)}.

Then T has a unique endpoint if and only if T has approximated endpoint property.
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Lemma 1.2 [18, page 3]Let E be a separable metric space and let G : [a, b] → P(E) be a

measurable set-valued map with closed values. Then G has a measurable selection.

Theorem 1.4 [19, page 22]

Let X be a separable Banach space, For a multi function F : I → K(X) the following

conditions are equivalent:

(1) F is measurable .

(2) for every countable dense subset {xn}∞n=1 of X the functions {gn}∞n=1,

gn : I → R are measurable.

(3) F has a casting representation.

(4) F is strongly measurable.

(5) is measurable as a single-valued map from I into a metric space (K(X), h).

(6) F has the Lusin property: for every δ > 0 there exists a closed subset Iδ ⊂ I such

that µ(I\Iδ) ≤ δ and the restriction of F on Iδ is continuous.

Theorem 1.5 [19, page 29]

Let X,X0 (not necessarily separable) Banach spaces, and let F : I × X0 → K(X) be a

multi-function, such that:

(1) for every x ∈ X0 the multi-function F (., x) : I → K(X) has a strongly measurable

selection.

(2) for µ -a.e. t ∈ I, the multi-map F (t, .) : X0 → K(X) is upper semi continuous.

Then for every strongly measurable function q : I → X0 there exists a strongly measurable

selection φ : I → X of the multi-function F : I → K(X), such that:

F(t) = F (t, q(t))

17
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1.4 Fractional calculus

Have you ever wondered what lies between the function and its derivative?

The main idea of fractional calculus is to extend the concept of integer-order differentiation

and integration to non-integer orders. This involves defining fractional derivatives and

integrals which we are going to introduce in this section.

1.4.1 Gamma function

Euler’s Gamma function is certainly one of the fundamental applications of fractional

calculus, as it extends the notion of factorial to non-integer and even complex values of

n.

Definition 1.29 [22, page 1] The Gamma function is defined by the integral:

Γ(z) =

∫ ∞

0

e−ttz−1dt

Which converges in the right half of the complex plane ℜ(z) > 0.

Properties [22, page 2,4]

Based on the information provided, we can draw several crucial properties of the Gamma

function, some of which are outlined below.:

1. Γ(z + 1) = zΓ(z), for all z ∈ Z.

2. Γ(n) = (n− 1)! , for all n ∈ N.

3. Γ

(
1

2

)
=

√
π.

4. Γ(1) = 1.

Example 1.1 We are welling to express the fractional derivative of the function

f(x) = xn by the Gamma function:

18
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Since the classic integer derivative of order p of f(x) = xn is given by:

f (p)(x) =
n!

(n− p)!
xn−p

Then for α ∈ R and by using the proprieties of Gamma function, we arrive at

f (α)(x) =
Γ(n+ 1)

Γ(n− α + 1)
xn−α

1.4.2 Riemann-Liouville fractional integrals

The Riemann-Liouville integral is a generalization of the Riemann integral that allows for

the integration of functions with singularities or other irregularities.

Definition 1.30 [23, page 69] Let [a, b] be a finite interval. The Riemann-Liouville in-

tegrals of f with respect to x over the interval [a, b] are defined as:

(Iαa+f)(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, (x > a,ℜ(α) > 0)

(Iαb−f)(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, (x < b,ℜ(α) > 0)

Where Γ(α) is the Gamma function, these integrals are called the left-sided and the right-

sided fractional integrals.

For n = 0, we set:

Iαa+f(x) = f(x)

Lemma 1.3 [23, page 73] If ℜ(α) > 0 and ℜ(β) > 0, then the equations

(Iαa+I
β
a+f)(x) = Iα+β

a+ f(x)

is satisfied almost on every point x ∈ [a, b] for f ∈ Lp(a,b),if α+ β > 1 then the equation

holds at any point of [a, b].
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1.4.3 Riemann–Liouville derivative

Definition 1.31 [18, page 2] Let n− 1 < α < n. The Riemann–Liouville derivative of a

continous function f : [0,+∞[→ R of the order α is given by:

Dα
0+f(t) =

1

Γ(n− α)

( d
dt

)n ∫ t

0

(t− s)n−α−1f(s)ds

where n = [α] + 1 and [α] denotes the greatest integer number less than α.

The following lemma presents some important properties of the Riemann–Liouville deriva-

tive.

Lemma 1.4 [18, page 2] Let u ∈ L1([0, 1],R) and β > α > 0. Then,

• Dα
0+I

β
0+u(t) = Iβ−α

0+ u(t).

• Dα
0+I

α
0+u(t) = u(t).

1.4.4 Caputo derivative

The Caputo derivative is a type of fractional derivative that generalizes the classical

derivative to non-integer orders and even the Riemann-Liouville derivative. It is named

after Michel Caputo, who introduced it in 1967 as a way to solve fractional differential

equations.

Definition 1.32 [21, page 235] The Caputo derivative of the f of the order α, denoted

by CDα
a+, is defined as:

CDα
a+f(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1 d
n

dτn
f(τ), dτ

where n is the smallest integer greater than or equals to α, Γ is the Gamma function, and

f is in C([a, b],R).
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Lemma 1.5 [23, page 95] Let ℜ(α) > 0 and let y(t) ∈ L∞([a, b]) or y(t) ∈ C([a, b]).

If ℜ(α) /∈ N or α ∈ N, then

(CDα
a+I

α
a+y)(t) = y(t)

Lemma 1.6 [22, page 81]Let ℜ(α) > 0, m ∈ N and let y(t) ∈ C([a, b]).

CDα
a+(

CDm
a+y(t)) =

C Dα+m
a+ y(t)

Remak 1.1 Using the definitions of both the Caputo derivative and Riemann-Liouville

integral, we can easily prove that:

(CDα
a+I

n
a+y)(t) = In−α

a+ y(n)(t)

Remak 1.2 If α /∈ N0 (ℜ(α) > 0) and y(x) is a continuous function. Caputo derivative

and Riemann-Liouville derivative are connected with each other by the following relations:

(CDα
a+y)(x) = (Dα

a+y)(x)−
k=0∑
n−1

y(k)(a)

Γ(k − α + 1)
(x− a)k−α (n = [ℜ(α)] + 1)

(CDα
b−y)(x) = (Dα

b−y)(x)−
k=0∑
n−1

y(k)(b)

Γ(k − α + 1)
(b− x)k−α (n = [ℜ(α)] + 1)
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Chapter 2

Some inclusion problems

The existence and uniqueness of solutions are key problems in studying set-valued inclu-

sions. Generally, solutions to set-valued inclusions are not unique and may not exist at

all.

One should also know that there’s a certain type of inclusions which is differential inclu-

sions this type is used to model systems that are subject to uncertain or unpredictable

influences such as systems of noise or disturbances, or systems with multiple possible

modes of operation.

Definition 2.1 [14, page 383] A differential inclusion is simply defined as:

x′(t) ∈ F (t, x(t))

Where F is set-valued map from R×X to finite dimensional victor space X.

In this chapter, we distinguish two types of inclusion problems: one in which we can apply

the theorems of perturbed and non-perturbed inclusion on, and another type in which we

can’t, so instead these inclusions are analyzed individually using the fixed point theorems

and so on.
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2.1 The main theorem on the pseudo-monotone pertur-

bation of the maximal monotone set valued opera-

tor

Maximal monotone mappings are set-valued mappings with a well-defined inverse, com-

position closeness, and the ability to generate other set-valued mappings. They are im-

portant in studying set-valued mappings. Pseudo-monotone mappings, though weaker,

are also useful as their graphs are subsets of maximal monotone operators’ graphs.

This part includes some important theorems on the existence of the solution related to

maximal monotone and pseudo-monotone multi functions (the theorems of perturbed and

non-perturbed inclusion).

Theorem 2.1 (Browder (1968)) [9, page 867]

The objective of this theorem is to solve the following perturbed inclusion:

b ∈ Au+Bu, u ∈ C (2.1)

where A : C ⊆ X → P(X∗) is maximal monotone and B : C → X∗ is pseudo-monotone.

Explicitly, the inclusion (2.1) means the following: For a given b ∈ X∗, find u ∈ C such

that

b = v + w, where v ∈ Au and w ∈ Bu.

Suppose that:

(H1) C is a convex, closed and non empty set in a reflexive Banach space X.

(H2) The multi-function operator A : C → P(X∗) is maximal monotone.

(H3) The multi-function operator B : C → X∗ is pseudo-monotone, bounded and demi-

continuous.

(H4) If the set C is non bounded, then the operator B is A-coercive with respect to the

fixed element b ∈ X∗, that is, there exists a point u0 ∈ C ∩ D(A) and a number
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r > 0 such that:

⟨Bu, u− u0⟩ > ⟨b, u− u0⟩ for all u ∈ C with ∥u∥ > r.

Let b ∈ X∗ and suppose that (H1), (H2), (H3) and (H4) are satisfied, then the original

problem (2.1) admits at least one solution. If A and B are single valued, then (2.1) is

equivalent to the equation

b = Au+Bu, u ∈ C.

This theorem represents a fundamental result in the theory of monotone operators .

Proof: (See[9], page 868)

Now we will introduce the non perturbed inclusion:

b ∈ Au, u ∈ C (2.2)

Corollary 2.1 ([9], page 868) we suppose that:

(i) C est un ensemble non vide convexe et fermé dans un espace de Banach réflexif réel

X.

(ii) The multi-function operator A : C → P(X∗) is maximal monotone.

(iii) If the set C is non bounded, them the operator A is coercive with respect to the fixed

element b ∈ X∗, that is, there exists u0 ∈ D(A) and r>0 such that:

⟨u∗, u− u0⟩ > ⟨b, u− u0⟩ for all (u, u∗) ∈ G(A) with ∥u∥ > r

Then, the inclusion (2.2) admits at least one solution.

Proof: (See[9], page 868)
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2.2 Variational inequalities and inclusions

Variational inequalities and inclusions are related concepts, with inclusions being a gen-

eralization of variational inequalities. Both concepts are important in optimization and

analysis.

The term "variational" in variational inequality comes from the fact that the problem

can be formulated as a variational problem which is a type of mathematical optimiza-

tion problem that involves finding the function that minimizes or maximizes a certain

functional.

Definition 2.2 [24, page 283]Given a Banach space X, a subset K of X, and a functional

F : K → X∗, the variational inequality problem is the problem of seeking the variable x

belonging to K that satisfies:

⟨F (x), y − x⟩X ≤ 0 for all y ∈ K

Definition 2.3 [9, page 856] Let f : X → [−∞,∞] be a function in the real Banach

space X.

▷The function u∗ in X∗ is called the sub-gradient of f in the point u if and only if

f ̸= ±∞ and the following inequality is satisfied:

f(v) ⩾ f(u) + ⟨u∗, v − u⟩X for all v ∈ X. (2.3)

▷ The set of sub-gradients of f in the point u is called sub-differential ∂f(u) in a point

u.
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2.2.1 Illustrative examples

First example

Considering the following variational inequality

⟨b− Au, v − u⟩X + φ(u) ≤ φ(v) for all v ∈M (2.4)

for u ∈M . Alongside this, the multi-function inclusion :

b ∈ Au+ ∂φ(u), u ∈M (2.5)

According to these assumptions:

(H1) X is a real and reflexive Banach space.

(H2) M is a non-empty, closed, and convex subset of X.

(H3) φ :M →]−∞,+∞] is convex, lower semi-continuous and φ ̸≡ +∞.

In what follows, we assume that the extension of φ in X is defined by φ(v) = +∞(by

definition) for v ∈ X −M . Then φ : X →] − ∞,+∞] is convex and lower semi-

continuous.

(H4) A :M ⊆ X → X∗ is pseudo-monotone, demi-continuous, and bounded.

For now, these assumptions are satisfied when A : M ⊆ X → X∗ is monotone,

hemi-continuous, and bounded.

(H5) Coercivity. If M is non bounded, then there exists u0 ∈M ,v0 ∈ X∗ such that

v0 ∈ ∂φ(u0), that is, φ(u0) < +∞ and

φ(u0) + ⟨v0, u− u0⟩X ≤ φ(v) for all v ∈M

also
⟨Au, v − u0⟩X

∥u∥
→ +∞ when ∥u∥ → +∞, u ∈M.
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(H6) b is a fixed element in X∗.

Theorem 2.2 [25, page 551] With the hypotheses (H1)-(H6), the following two assertions

are true:

(a) Equivalence. (2.4) and (2.5) are equivalents.

(b) Existence. (2.4) admits at least one solution.

Proof: (see [25], page 551)

Second example

We are going to extend the inequality (2.4) by replacing the map φ by a map of two

variables:

⟨b− Au, v − u⟩X + φ(u, u) ≤ φ(u, v) for all v ∈M (2.6)

where:

• X is a real and reflexive Banach space.

• M is a non-empty, closed and convex subset.

• A : X → X∗ is an operator.

Theorem 2.3 We assume the following assumptions:

A is a monotone, hemi-continuous and bounded operator. (2.7)

φ is inferiorly weakly semi-continuous in M ×M. (2.8)

∀v ∈ X,φ(., v) :M →]−∞,+∞] is superiorly weakly

semi-continuous in M.
(2.9)

∀u ∈M,φ(u, .) :M →]−∞,+∞] is convex and inferiorly

semi-continuous in M and φ(u, .) ̸≡ +∞.

(2.10)
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Then, the quasi-variational inequality (2.6) admits at least one solution in M if one of the

two conditions are satisfied:

M is bounded. (2.11)

∃v0 ∈M such that lim
∥v∥−→+∞

v∈M

⟨Av, v − v0⟩X + φ(v, v)− φ(v, v0)

∥v∥
= +∞ (2.12)

Sketch of the proof:

• For a fixed u ∈M , We consider the following auxiliary problem:

 find w ∈M such that

⟨b− Aw, v − w⟩X + φ(u,w) ≤ φ(u, v) ∀v ∈M
(2.13)

Which is equivalent to the inclusion

b ∈ Aw + ∂φu(w) ∀w ∈M (2.14)

such that ∀u ∈M,φu(.) = φ(u, .).

• We will define an operator S :M → 2M such that

S(u) = {w ∈M : w is a solution of(2.13)}

• We show that S has a fixed point.

2.3 Model of a hybrid integro-differential inclusion

Now we shall investigate the solutions of an inclusion in which we can’t use the previous

theorems on. Let’s consider the following non-local problem of the Chandrasekhar hybrid

second-order functional integro-differential inclusion:

− d2

dt2

(
x(t)

g(t, x(t))

)
∈
∫ 1

0

t

t+ s
Φ

(
s,

∫ 1

0

s

s+ τ
ψ(τ, x(τ))dτ

)
ds, t ∈ [0, 1] (2.15)
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with the non-local hybrid boundary value conditions:


D
(

x(t)
g(t,x(t))

) ∣∣∣
t=0

= 0,

λcDϱ

(
x(t)

g(t, x(t))

) ∣∣∣
t=σ

+

(
x(t)

g(t, x(t))

) ∣∣∣
t=η

= 0, ϱ ∈ (0, 1] , σ ∈ (0, 1] , η ∈ (0, 1] ,

(2.16)

where D = d
dt

, λ is a positive real parameter, cDϱ is the Caputo derivative of order ϱ,

Φ : I × R → P(R) is a multi-valued map, ψ : I × R → R and g : I × R → R \ {0}.

2.3.1 The existence of the solution

Considering the problem (2.15)-(2.16) together with the following assumptions:

(H1) Let Φ : I×R → P(R) be a nonempty,closed, and convex subset for all (t, u) ∈ I×R

such that:

• Φ(t, .) is upper semicontinous in u ∈ R,∀t ∈ I.

• Φ(., u) is measurable in t ∈ I,∀u ∈ R.

• there exist two integrable functions m, k1 : I → I such that:

|Φ(t, u)| = sup{|ϕ| : ϕ ∈ Φ(t, u)} ≤ m(t) + k1|u|, t ∈ I

and: ∫ 1

0

|m(τ)|dτ = m∗,

∫ 1

0

|k1(τ)|dτ = k∗1

(H2) ψ ∈ C(I × R,R) and there exists a continuous function k1 : I × I → R and a

continuous non decreasing map χ : [0,∞) → [0,∞), such that:

|ψ(t, u)| ≤ k2(t)χ(∥u∥), ∀t ∈ I,∀τ ∈ R

and: ∫ 1

0

|k2(τ)|dτ = k∗2.
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(H3) g ∈ C(I × R,R\{0}) and there is a positive constant ω, such that:

|g(t, µ1)− g(t, µ2)| ≤ ω|µ1(t)− µ2(t)|, ∀t ∈ I,∀µ1, µ2 ∈ R.

(H4) There is a positive root r of the equation:

(m∗ + k∗1k
∗
2χ(r))(rω +G)Λ = r

where

G = sup
t∈I

|g(t, 0)|, Λ = λ+ 2

Remak 2.1 From (H1) the set of selections of Φ is non empty.

Proof: Φ is a measurable set valued function, by using the theorem (1.4) we conclude

that it has a casting representation.

As a result there exists a sequence fm measurable and fm(t) ∈ Φ(t, u),∀m ≥ 1. So f is

strongly measurable selection.

From (H1), the multimap is upper semi continuous.

By the theorem (1.5), there exists φ : I → R such that: φ(t) ∈ Φ(t, u(t)).

The only thing left is to prove that this selection φ is in fact in L1(I,R) which is a direct

result of third condition in (H1), so
∫ 1

0
|φ(t)|dt ≤ m+ k1 ≤ ∞.

Which proves that Sϕ is not empty.

Thus there exists a function ϕ(t, u) which is measurable in t ∈ I,∀u ∈ R, and continuous

in u ∈ R, ∀t ∈ I, in other words ϕ(t, u) is a Carathédory function, such that:

|ϕ(t, u)| ≤ m(t) + k1|u|, t ∈ I
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And it satisfies the non-local problem of the Chandrasekhar hybrid second-order functional

integro-differential equation:

− d2

dt2

(
x(t)

g(t, x(t))

)
=

∫ 1

0

t

t+ s
ϕ

(
s,

∫ 1

0

s

s+ τ
ψ(τ, x(τ))dτ

)
ds, t ∈ [0, 1] (2.17)

with the condition (2.16). It is clear that if the problem (2.17)-(2.16) has a solution, then

the main problem (2.15)-(2.16) has a solution as well.

Remak 2.2 By using the assumption (H3), and having µ1 = µ, µ2 = 0 one can get:

|g(t, µ)| − |g(t, 0)| ≤ |g(t, µ)− g(t, 0)| ≤ ω|µ(t)− 0|

Then

|g(t, µ)| ≤ ω|µ(t)|+ |g(t, 0)|

|g(t, µ)| ≤ ω|µ(t)|+ sup
t∈I

|g(t, 0)|

Finally

|g(t, µ)| ≤ ω|µ(t)|+G.

Now, we present a key lemma for the existence of the solution x(t) ∈ C(I):

Lemma 2.1 [26, page 5]

A function x ∈ C(I) is a solution for the hybrid differential equation:

d2

dt2
(

x(t)

g(t, x(t))
) + φ(t, x(t)) = 0, t ∈ I. (2.18)

with the nonlocal hybrid condition (2.16), if and only if x ∈ C(I) is a solution for the
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integral equation:

x(t) = g(t, x(t))[−
∫ t

0

(t− s)φ(s, x(s))ds (2.19)

+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)
φ(s, x(s))ds+

∫ η

0

(η − s)φ(s, x(s))ds].

Proof:

▷ Let x be the solution for the hybrid fractional equation (2.18), then by integration:

∫ t

0

d2

ds2
(

x(s)

g(s, x(s))
)ds = −

∫ t

0

φ(s, x(s))ds

d

ds
(

x(s)

g(s, x(s))
)
∣∣∣t
0
=

d

dt
(

x(t)

g(t, x(t))
)− d

dt
(

x(t)

g(t, x(t))
)
∣∣∣
t=0

= −
∫ t

0

φ(s, x(s))ds.

Using the condition(2.16), we get

d

dt
(

x(t)

g(t, x(t))
) = −

∫ t

0

φ(s, x(s))ds. (2.20)

And by integration for the second time

(
x(t)

g(t, x(t))
) = −

∫ t

0

(t− s)φ(s, x(s))ds+ c0. (2.21)

The Riemann Liouville integration of φ is given by:

I2φ(t, x(t)) =
1

Γ(2)

∫ t

0

(t− s)φ(s, x(s))ds =

∫ t

0

(t− s)φ(s, x(s))ds. (2.22)

Then

(
x(t)

g(t, x(t))
) = c0 − I2φ(t, x(t)). (2.23)

When t = η

(
x(t)

g(t, x(t))
)|t=η = c0 − I2φ(t, x(t))

∣∣∣
t=η
. (2.24)
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Now, according to the remark 1.1 we obtain

λcDϱ(
x(t)

g(t, x(t))
)
∣∣∣
t=σ

= λI1−ϱ d

dt
(

x(t)

g(t, x(t))
)
∣∣∣
t=σ

. (2.25)

In the other hand we already have from (2.20)

d

dt
(

x(t)

g(t, x(t))
) = −Iφ(t, x(t)).

Then by using the proprieties of RLI, we get

λI1−ϱ d

dt
(

x(t)

g(t, x(t))
) = λI1−ϱ(−Iφ(t, x(t))) = −λI2−ϱφ(t, x(t)). (2.26)

Using the latter in (2.25), we obtain

λcDϱ(
x(t)

g(t, x(t))
)
∣∣∣
t=σ

= −λI2−ϱφ(t, x(t))|t=σ. (2.27)

Substituting (2.24) and (2.27) in the condition(2.16)

−λI2−ϱφ(t, x(t))|t=σ + c0 − I2φ(t, x(t))|t=η = 0. (2.28)

So

c0 = λI2−ϱφ(t, x(t))|t=σ + I2φ(t, x(t))|t=η. (2.29)

From the equation (2.23), it results

c0 = (
x(t)

g(t, x(t))
) + I2φ(t, x(t)). (2.30)

Together with (2.29) we can have

x(t) = g(t, x(t))[λI2−ϱφ(t, x(t))|t=σ + I2φ(t, x(t))|t=η − I2φ(t, x(t))]. (2.31)

33



CHAPTER 2. SOME INCLUSION PROBLEMS

And finally since

I2φ(t, x(t)) =

∫ t

0

(t− s)φ(s, x(s))ds.

I2φ(t, x(t))|t=η =

∫ η

0

(η − s)φ(s, x(s))ds.

I2−ϱφ(t, x(t))|t=σ =
1

Γ(2− ϱ)

∫ t

0

(t− s)1−ϱφ(s, x(s))ds|t=σ =

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)
φ(s, x(s))ds.

Hence, we obtain the desired result

x(t) = g(t, x(t))[−
∫ t

0

(t−s)φ(s, x(s))ds+λ
∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)
φ(s, x(s))ds+

∫ η

0

(η−s)φ(s, x(s))ds].

▷ Conversely, from (2.19) one can get

(
x(t)

g(t, x(t))
) = −I2φ(t, x(t)) + λI2−ϱφ(σ, x(σ)) + I2φ(η, x(η)). (2.32)

By derivation
d

dt
(

x(t)

g(t, x(t))
) = −Iφ(t, x(t)). (2.33)

Then
d2

dt2
(

x(t)

g(t, x(t))
) = −φ(t, x(t)).

Which leads to (2.18).

Also we have from (2.33)

d

dt
(

x(t)

g(t, x(t))
)
∣∣∣
t=0

= −
∫ t

0

φ(s, x(s))ds
∣∣∣
t=0

= 0. (2.34)

From (2.32), with t = η, one can gain

(
x(t)

g(t, x(t))
)
∣∣∣
t=η

= −I2φ(η, x(η)) + λI2−ϱφ(σ, x(σ)) + I2φ(η, x(η)) = λI2−ϱφ(σ, x(σ)).

(2.35)

34



CHAPTER 2. SOME INCLUSION PROBLEMS

Now, operating by λcDϱ in the equation (2.32) with t = σ, along with the propriety:

λcDϱ(
x(t)

g(t, x(t))
)
∣∣∣
t=σ

= −λcDϱI2φ(t, x(t))
∣∣∣
t=σ

= −λI2−ϱφ(σ, x(σ)). (2.36)

And we finally conclude the second bounday condition by adding (2.36) to (2.35).

Corollary 2.2 If the solution x ∈ C(I) of the non-local problem (2.17)-(2.16) exists,

then it is given by the integral equation:

x(t) = g(t, x(t))[−
∫ t

0

(t− s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds]. (2.37)

Proof: Immediately from Lemma(2.1) , with :

φ(t, x(t)) =

∫ 1

0

t

t+ s
ϕ

(
s,

∫ 1

0

s

s+ τ
ψ(τ, x(τ))dτ

)
ds, t ∈ [0, 1]

Theorem 2.4 Assuming that the assumptions (H1)− (H4) are satisfied, if:

(m + k1k2χ(r))Λ ≤ 1. Then, there exists at least one solution for the problem (2.17)-

(2.16).

Proof: We define the operator A as follows:

(Ax)(t) = g(t, x(t))[−
∫ t

0

(t− s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds]. (2.38)

35



CHAPTER 2. SOME INCLUSION PROBLEMS

Considering the ball Vr = {x ∈ C(I) : ∥x∥ = ∥x∥C(I) ≤ r}.

Clearly Vr is a closed, convex and bounded subset of the Banach space C(I).

Let x ∈ Vr and t ∈ I, then:

∣∣(Ax)(t)∣∣ = ∣∣g(t, x(t))∣∣∣∣∣− ∫ t

0

(t− s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

∣∣∣.

∣∣(Ax)(t)∣∣ ≤ ∣∣g(t, x(t))∣∣∣∣∣− ∫ t

0

(t− s)

∫ 1

0

s

s+ τ

∣∣∣ϕ(τ, ∫ 1

0

τ

τ + ς
ψ(ς, x(ς))dς

) ∣∣∣dτds
+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ

∣∣∣ϕ(τ, ∫ 1

0

τ

τ + ς
ψ(ς, x(ς))dς

) ∣∣∣dτds
+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ

∣∣∣ϕ(τ, ∫ 1

0

τ

τ + ς
ψ(ς, x(ς))dς

) ∣∣∣dτds∣∣∣.

∣∣(Ax)(t)∣∣ ≤ ∣∣g(t, x(t))∣∣∣∣∣− ∫ t

0

(t− s)

∫ 1

0

s

s+ τ

[
m(τ) + k1(τ)

∫ 1

0

τ

τ + ς

∣∣ψ(ς, x(ς))∣∣dς]dτds
+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ

[
m(τ) + k1(τ)

∫ 1

0

τ

τ + ς

∣∣ψ(ς, x(ς))∣∣dς]dτds
+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ

[
m(τ) + k1(τ)

∫ 1

0

τ

τ + ς

∣∣ψ(ς, x(ς))∣∣dς]dτds∣∣∣.
By (H2):

∣∣(Ax)(t)∣∣ ≤ [ω|x(t)|+G
]∣∣∣− ∫ t

0

(t− s)

∫ 1

0

s

s+ τ

[
|m(τ)|+ |k1(τ)|

∫ 1

0

τ

τ + ς

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds
+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ

[
|m(τ)|+ |k1(τ)|

∫ 1

0

τ

τ + ς

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds
+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ

[
|m(τ)|+ |k1(τ)|

∫ 1

0

τ

τ + ς

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds∣∣∣.
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Using the supremum:

sup
s∈I

(t− s) = t ≤ 1 sup
τ∈I

s

s+ τ
= 1 sup

ς∈I

τ

τ + ς
= 1

we get:

∣∣(Ax)(t)∣∣ ≤ [ω|x(t)|+G
]( ∫ t

0

∫ 1

0

[
|m(τ)|+ |k1(τ)|

∫ 1

0

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds
+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

[
|m(τ)|+ |k1(τ)|

∫ 1

0

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds
+

∫ η

0

∫ 1

0

[
|m(τ)|+ |k1(τ)|

∫ 1

0

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds).
Calculating the integrals:

∣∣(Ax)(t)∣∣ ≤ [ω|x(t)|+G
]( ∫ t

0

∫ 1

0

[
|m(τ)|+ |k1(τ)|k2χ(∥x∥)

]
dτds

+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

[
|m(τ)|+ |k1(τ)|k2χ(∥x∥)

]
dτds

+

∫ η

0

(η − s)

∫ 1

0

[
|m(τ)|+ |k1(τ)|k2χ(∥x∥)

]
dτds

)
.

≤
[
ω|x(t)|+G

](
m∗ + k∗1k

∗
2χ(∥x∥) + λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)
(m∗ + k∗1k

∗
2χ(∥x∥))ds

+m∗ + k∗1k
∗
2χ(∥x∥)

)
.

Calculating the remaining integral:

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)
ds =

1

Γ(2− ϱ)

[
−(σ − s)2−ϱ

2− ϱ

]σ
0

=
1

Γ(2− ϱ)
× (σ − s)2−ϱ

(2− ϱ)

Using the properties of the Γ function and the fact that σ ∈ I we get

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)
ds =

(σ)2−ϱ

Γ(3− ϱ)
≤ 1

Γ(3− ϱ)
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Now, taking the supremum over t ∈ I we obtain

∣∣∣∣(Ax)(t)∣∣∣∣ ≤ [rω +G
](

m∗ + k∗1k
∗
2χ(r) + λ

λ

Γ(3− ϱ)
(m∗ + k∗1k

∗
2χ(r))ds+m∗ + k∗1k

∗
2χ(r))

)
.

≤ (m∗ + k∗1k
∗
2χ(r))(rω +G)Λ = r.

then:
∣∣∣∣(Ax)(t)∣∣∣∣ = r.

Hence (Ax)(t) : Vr → Vr, and the class {Ax} is uniformly bounded on Vr.

Now, for the continuity of A, let {xn} be a converging sequence towards a certain point

x ∈ Vr.

By using the continuity of the function g(t, x(t)) and the Lebesgue Dominated Conver-

gence Theorem together with the assumptions (H1), (H2) on ϕ and ψ (since m, k1 and k2

are Lebesgue integrable functions) we gain

lim
n→∞

(Axn)(t) = lim
n→∞

g(t, xn(t))[− lim
n→∞

∫ t

0

(t− s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, xn(ς))dς

)
dτds

+ lim
n→∞

λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, xn(ς))dς

)
dτds

+ lim
n→∞

∫ η

0

(η − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, xn(ς))dς

)
dτds].

= g(t, x(t))[−
∫ t

0

(t− s)

∫ 1

0

s

s+ τ
lim
n→∞

ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, xn(ς))dς

)
dτds

+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ
lim
n→∞

ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, xn(ς))dς

)
dτds

+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ
lim
n→∞

ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, xn(ς))dς

)
dτds].

= g(t, x(t))[−
∫ t

0

(t− s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
lim
n→∞

ψ(ς, xn(ς))dς

)
dτds

+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
lim
n→∞

ψ(ς, xn(ς))dς

)
dτds

+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
lim
n→∞

ψ(ς, xn(ς))dς

)
dτds].
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= g(t, x(t))[−
∫ t

0

(t− s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+ λ

∫ σ

0

(σ − s)1−ϱ

Γ(2− ϱ)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+

∫ η

0

(η − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds].

= (Ax)(t).

As a result:

lim
n→∞

(Axn)(t) = (Ax)(t).

Hence, A is continuous.

We define the following set:

θg(δ) = sup{
∣∣g(t2, x)− g(t1, x)

∣∣ : t1, t2 ∈ I, t1 < t2, |t1 − t2| < δ, |x| < ϵ}

Therefore, based on the uniform continuity of the function ϕ : I × Vr → R using the

assumptions (H1) and (H3), we can conclude that θg(δ) → 0 as δ → 0 independent of

x ∈ Vr.

Let t1, t2 ∈ I, |t2 − t1| < δ. Then

∣∣(Ax)(t2)− (Ax)(t1)
∣∣ = ∣∣g(t2, x(t2))∫ t2

0

(t2 − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

− g(t1, x(t1))

∫ t1

0

(t1 − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

∣∣
Then adding the following values:

∣∣(Ax)(t2)− (Ax)(t1)
∣∣

=
∣∣g(t2, x(t2))∫ t2

0

(t2 − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

− g(t2, x(t2))

∫ t2

0

(t1 − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds
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+ g(t2, x(t2))

∫ t2

0

(t1 − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

− g(t2, x(t2))

∫ t1

0

(t1 − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

+ g(t2, x(t2))

∫ t1

0

(t1 − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

− g(t1, x(t1))

∫ t1

0

(t1 − s)

∫ 1

0

s

s+ τ
ϕ

(
τ,

∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

)
dτds

∣∣
≤
∣∣g(t2, x(t2))∣∣× ∫ t2

0

(
(t2 − s)− (t1 − s)

) ∫ 1

0

s

s+ τ

∣∣∣ϕ(τ, ∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

) ∣∣∣dτds
+
∣∣g(t2, x(t2))∣∣ ∫ t2

t1

(t1 − s)

∫ 1

0

s

s+ τ

∣∣∣ϕ(τ, ∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

) ∣∣∣dτds
+
∣∣g(t2, x(t2))− g(t1, x(t1))

∣∣× ∫ t1

0

(t1 − s)

∫ 1

0

s

s+ τ

∣∣∣ϕ(τ, ∫ 1

0

τ

τ + s
ψ(ς, x(ς))dς

) ∣∣∣dτds
By using the assumptions, we get

∣∣(Ax)(t2)− (Ax)(t1)
∣∣

≤
[
|x(t2)ω +G|

]
×
∫ t2

0

(
(t2 − s)− (t1 − s)

) ∫ 1

0

s

s+ τ

[
m(τ) + k1(τ)

∫ 1

0

τ

τ + ς

∣∣ψ(ς, x(ς))∣∣dς]dτds
+
[
|x(t2)ω +G|

] ∫ t2

t1

(t1 − s)

∫ 1

0

s

s+ τ

[
m(τ) + k1(τ)

∫ 1

0

τ

τ + ς

∣∣ψ(ς, x(ς))∣∣dς]dτds
+ θg(δ)×

∫ t1

0

(t1 − s)

∫ 1

0

s

s+ τ

[
m(τ) + k1(τ)

∫ 1

0

τ

τ + ς

∣∣ψ(ς, x(ς))∣∣dς]dτds
≤
[
||x(t2)||ω +G

]
×
∫ t2

0

(
(t2 − s)− (t1 − s)

) ∫ 1

0

[
|m(τ)|+ |k1(τ)|

∫ 1

0

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds
+
[
||x(t2)||ω +G

] ∫ t2

t1

(t1 − s)

∫ 1

0

[
|m(τ)|+ |k1(τ)|

∫ 1

0

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds
+ θg(δ)×

∫ t1

0

(t1 − s)

∫ 1

0

[
|m(τ)|+ |k1(τ)|

∫ 1

0

∣∣k2(ς)∣∣χ(∥x∥)dς]dτds
≤
[
||x(t2)||ω +G

]
×
∫ t2

0

(
(t2 − s)− (t1 − s)

) ∫ 1

0

[
|m(τ)|+ |k1(τ)|k2χ(∥x∥)

]
dτds

+
[
||x(t2)||ω +G

] ∫ t2

t1

(t1 − s)

∫ 1

0

[
|m(τ)|+ |k1(τ)|k2χ(∥x∥)

]
dτds

+ θg(δ)×
∫ t1

0

(t1 − s)

∫ 1

0

[
|m(τ)|+ |k1(τ)|k2χ(∥x∥)

]
dτds

≤
[
rω +G

][
m∗ + k∗1k

∗
2χ(r)

][ ∫ t2

0

(
(t2 − s)− (t1 − s)ds+

∫ t2

t1

(t1 − s)ds

]

+ θg(δ)
[
m+ k1k2χ(r)

] ∫ t1

0

(t1 − s)ds.
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Calculating the integrals, it results

∣∣(Ax)(t2)− (Ax)(t1)
∣∣ ≤ [rω +G

][
m∗ + k∗1k

∗
2χ(r)

]∣∣∣δt2 + (−(t1 − s)2

2

)∣∣∣t2
t1

∣∣∣
+ θg(δ)

[
m∗ + k∗1k

∗
2χ(r)

]∣∣∣(−(t1 − s)2

2

)∣∣∣t1
0

∣∣∣.
≤
[
rω +G

][
m∗ + k∗1k

∗
2χ(r)

]
(δ +

δ2

2
) + θg(δ)

[
m∗ + k∗1k

∗
2χ(r)

]
× 1

2
.

Therefore, since it only depends on δ, the class {Ax} is equi-continuous.

By relying on the Arzela-Ascoli Theorem, we conclude that the operator A is compact.

Since the operator A : Vr → Vr is continuous, then it satisfies the hypotheses of Schauder

Fixed Point Theorem, hence A admits at least one fixed point x ∈ Vr.

As a result of the corollary(2.2), the problem (2.15)-(2.16) has a solution in C(I).

2.3.2 Example

By this example we proceed to investigate the existence of the solution for the following

Chandrasekhar hybrid second order integrodifferential inclusion

− d2

dt2

(
x(t)

t|x(t)|2
1+|x(t)|2 + 4

)
∈

[∫ 1

0

t

t+ s

(
s

100
+

1

10

∫ 1

0

s

s+ τ

τcos2(2πτ)cos(x(τ))

200
dτ

)
ds, 0

]
, t ∈ [0, 1]

(2.39)

with the boundary conditions


D
(

x(t)
t|x(t)|2

1+|x(t)|2
+4

) ∣∣∣
t=0

= 0,

7

3
×c D

4
3

(
x(t)

t|x(t)|2
1+|x(t)|2 + 4

)∣∣∣
t=1

+

(
x(t)

t|x(t)|2
1+|x(t)|2 + 4

)∣∣∣
t=0.76

= 0, ,

(2.40)

Consider the continuous map g : [0, 1]× R → R\{0} such that

g(t, x(t)) =
x(t)

t|x(t)|2
1+|x(t)|2 + 4
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And the set valued map Φ : [0, 1]× R → P(R) by

Φ
(
t,

∫ 1

0

t

t+ τ
ψ(τ, x(τ))dτ

)
=

[
t

100
+

1

10

∫ 1

0

t

t+ τ

τcos2(2πτ)cos(x(τ))

200
ds, 0

]

Then, for ϕ ∈ Φ(t, x(t)) we have:

ϕ(t, x(t)) =
t

100
+

1

10
x(t), ψ(t, x(t)) =

tcos2(2πt)cos(x(t))

200

We have

g(t, x(t)) =
t|x(t)|2

1 + |x(t)|2
+ 4 =

|x(t)|2

1 + |x(t)|2
+ 4 = |x(t)| × |x(t)|

1 + |x(t)|2
+ 4 = |x(t)|+ 4

Which leads to ω = 1 and G = 4. Obviously m(t) = t
100

and k1(t) = 1
10

because:

|ϕ(t, x(t))| = | t

100
+

1

10
x(t)| ≤ t

100
+

1

10
|x(t)|

We also can get k2(t) = 1
200

and χ(||x||) = 1 because:

|ψ(t, x(t))| = |tcos
2(2πt)cos(x(t))

200
| ≤ 1

200

In this case we obtain Λ = 0.0357 ≤ 1. By using the theorem 2.4, then the fractional

hybrid inclusion(2.39) with the boundary conditions(2.40) has at least one solution.
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Chapter 3

Analytical and numerical study of some

fractional differential inclusions

3.1 Analytical study

3.1.1 Main problem

Inspired by the work of Infante and Webb in 2006 [27], and that of Nieto and Pimentel

in 2013 [28] concerning the thermostat model, we investigate the existence aspects of

solutions for the following generalized Caputo fractional inclusion:


cDµ

0+u(t) ∈ F
(
t, u(t), cDσ

0+u(t),
)
, t ∈ O = [0, 1],

cD1
0+u(0) = β1

m∑
k=1

u(ξk), βc
2D

µ−1
0+ u(1) + u(ξ) = β3

m∑
k=1

u(ξk),

(3.1)

in which µ ∈ (1, 2], σ ∈ (0, 1), 0 < ξ1 < ξ2 < · · · < ξm < ξ < 1, m ∈ N, β1, β2, β3 ∈ R and

cD1
0+ = d

dt
, cDϱ

0+ displays the Caputo fractional derivation of order ϱ ∈ {µ, σ, 1, µ−1} and

F : O× R2 −→ P(R) is a compact set-valued function.

It is known that X = {u : u, cDσ
0+u ∈ C(O,R)} together with the norm ||u||X =

supt∈O |u(t)|+ supt∈O |cDσ
0+u(t)| is a Banach space (see [29, page 65-66]).
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3.1.2 Existence result

Lemma 3.1 [28, page 3]

IµcDµ
0+u(t) = u(t) + a0 + a1t+ a2t

2 + · · ·+ an−1t
n−1

Where ai ∈ R, i = 0, 1, . . . , n− 1(n− 1 < µ < n).

We provide the general solution of

cDµ
0+u(t) = h(t),

which is given by:

u(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1h(τ)dτ + c0 + c1t. (3.2)

Proof: Let h, u be two functions in C[0, 1], such that:

cDµ
0+u(t) = h(t).

Since 1 < µ ≤ 2, then n = 2.

Using Lemma 3.1, we obtain:

u(t) + a0 + a1t = Iµh(t)

u(t) = Iµh(t) + c0 + c1t,

with: c0 = −a0, c1 = −a1, for some constants c0, c1 ∈ R. As a result:

u(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1h(τ)dτ + c0 + c1t.
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Now we calculate the first and second derivatives:

u′(t) =
1

Γ(µ− 1)

∫ t

0

(t− τ)µ−2h(τ)dτ + c1, (3.3)

u′′(t) =
1

Γ(µ− 2)

∫ t

0

(t− τ)µ−3h(τ)dτ. (3.4)

For the first boundary condition:

cD1
0+u(0) = u′(0) = β1

m∑
k=1

u(ξk). (3.5)

By substituting t = 0 in (3.3) we get:

u′(0) = c1.

Then

c1 = β1

m∑
k=1

u(ξk). (3.6)

We compute the value of u(ξk), by using (3.2):

u(ξk) =
1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ + c0 + c1ξk.

As a result

c1 = β1

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ + β1

m∑
k=1

c0 + β1

m∑
k=1

c1ξk

c1 = β1

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ + β1mc0 + β1

m∑
k=1

c1ξk

(1− β1

m∑
k=1

ξk)c1 = β1

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ + β1mc0

c1 =
β1

(1− β1
∑m

k=1 ξk)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ +m
β1

(1− β1
∑m

k=1 ξk)
c0.

(3.7)

From the last equation, we can conclude the value of
∑m

k=1 u(ξk) which depends only on
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c0:

m∑
k=1

u(ξk) =
1

(1− β1
∑m

k=1 ξk)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ +m
1

(1− β1
∑m

k=1 ξk)
c0.

(3.8)

For the second condition:

βc
2D

µ−1
0+ u(1) + u(ξ) = β3

m∑
k=1

u(ξk).

Firstly, we calculate cDµ−1
0+ u(t). Since we have 1 < µ ≤ 2 then 0 < µ− 1 ≤ 1 so n = 1,

cDµ−1
0+ u(t) =

1

Γ(1− µ+ 1)

∫ t

0

(t− τ)1−µ+1−1u′(τ)dτ

=
1

Γ(2− µ)

∫ t

0

(t− τ)1−µu′(τ)dτ

=
1

Γ(2− µ)

∫ t

0

(t− τ)1−µ[

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
ds+ c1]dτ

=
1

Γ(2− µ)

∫ t

0

(t− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ +

c1
Γ(2− µ)

∫ t

0

(t− τ)1−µdτ,

(3.9)

Which leads to

cDµ−1
0+ u(1) =

1

Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ +

c1
Γ(2− µ)

∫ 1

0

(1− τ)1−µdτ.

Integral calculation:

∫ 1

0

(1− τ)1−µdτ = −(1− τ)2−µ

2− µ

∣∣∣1
0
=

1

2− µ

cDµ−1
0+ u(1) =

1

Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ +

c1
Γ(3− µ)

.
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Based on the value of c1:

βc
2D

µ−1
0+ u(1) =

β2
Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
β1β2

(1− β1
∑m

k=1 ξk)Γ(3− µ)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ

+m
β1β2

(1− β1
∑m

k=1 ξk)Γ(3− µ)
c0. (3.10)

We already have:

u(ξ) =
1

Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ + c0 + c1ξ.

By using the value of c1 from (3.7), we can have:

u(ξ) =
1

Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ + c0 +
β1ξ

(1− β1
∑m

k=1 ξk)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ

+m
β1ξ

(1− β1
∑m

k=1 ξk)
c0. (3.11)

Substituting the given values from (3.8), (3.10) and (3.11) into the second condition,

yields

β2
Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
β1β2

(1− β1
∑m

k=1 ξk)Γ(3− µ)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ +m
β1β2

(1− β1
∑m

k=1 ξk)Γ(3− µ)
c0

+
1

Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ + c0 +
β1ξ

(1− β1
∑m

k=1 ξk)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ

+m
β1ξ

(1− β1
∑m

k=1 ξk)
c0 =

β3
(1− β1

∑m
k=1 ξk)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ +m
β3

(1− β1
∑m

k=1 ξk)
c0.
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So

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

Γ(3− µ)(1− β1
∑m

k=1 ξk)
c0 =

β2
Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
1

Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ +
β1β2 + (β1ξ − β3)Γ(3− µ)

Γ(3− µ)(1− β1
∑m

k=1 ξk)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ.

This means:

c0 =
Γ(3− µ)(1− β1

∑m
k=1 ξk)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

β2
Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)(1− β1

∑m
k=1 ξk)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

1

Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ

+
β1β2 + (β1ξ − β3)Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ.

The next step is to substitute the value of c0 in (3.7), we have

c1 =
β1

(1− β1
∑m

k=1 ξk)

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ

+
mβ1Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

β2
Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
mβ1Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

1

Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ

+
mβ1

(1− β1
∑m

k=1 ξk)

β1β2 + (β1ξ − β3)Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ.

Finally

c1 =
mβ1Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

β2
Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
mβ1Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

1

Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ

+
β1
[
Γ(3− µ)

[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

]
+mβ1

[
β1β2 + (β1ξ − β3)Γ(3− µ)

]
(1− β1

∑m
k=1 ξk)

[
Γ(3− µ)

[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

]
×

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ.
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We get

c1 =
mβ1Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

β2
Γ(2− µ)

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
mβ1Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

1

Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ

− β1Γ(3− µ)

Γ(3− µ)
[
mβ3 − 1 + β1(

∑m
k=1 ξk −mξ)

]
−mβ1β2

m∑
k=1

1

Γ(µ)

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ.

We can note that

∆ = Γ(3− µ)
[
mβ3 − 1 + β1(

m∑
k=1

ξk −mξ)
]
−mβ1β2.

Now we find c1t+ c0:

β2(2− µ)(mβ1t+ 1− β1
∑m

k=1 ξk)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)(mβ1t+ 1− β1

∑m
k=1 ξk)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ

+
Γ(3− µ)

(
β1(ξ − t)− β3

)
+ β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ.

Then, the solution is

u(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1h(τ)dτ

+
β2(2− µ)(mβ1t+ 1− β1

∑m
k=1 ξk)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)(mβ1t+ 1− β1

∑m
k=1 ξk)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ

+
Γ(3− µ)

(
β1(ξ − t)− β3

)
+ β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ. (3.12)
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We can write

u(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1h(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2h(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1h(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1h(τ)dτ, (3.13)

with

A(t) = mβ1t+ 1− β1

m∑
k=1

ξk (3.14)

B(t) = β1(ξ − t)− β3, (3.15)

and ∆ ̸= 0.

Remak 3.1 Since t ∈ [0, 1],β1, β2, β3 ∈ R and ξi < 1,∀i ∈ {0, . . . ,m}, notice that

|A(t)| = |mβ1t+ 1− β1

m∑
k=1

ξk|

≤ |mβ1|+ 1 + |β1
m∑
k=1

1|

≤ 2|mβ1|+ 1 = A0

|B(t)| = |β1(ξ − t)− β3|

≤ |β1|+ |β3| = B0.
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We also have σ ∈ (0, 1), so

cDσ
0+A(t) =

∫ t

0

(t− τ)1−σ−1

Γ(1− σ)
A′(τ)dτ

=

∫ t

0

(t− τ)−σ

Γ(1− σ)
mβ1dτ.

By calculating the integral we obtain

cDσ
0+A(t) =

mβ1t
1−σ

Γ(2− σ)
.

In the same way we have

cDσ
0+B(t) =

−β1t1−σ

Γ(2− σ)
.

As a result

|cDσ
0+A(t)| ≤

m|β1|
Γ(2− σ)

= A1

|cDσ
0+B(t)| ≤ |β1|

Γ(2− σ)
= B1.

Remak 3.2 The function u ∈ X is a solution for the boundary problem (3.1) if it satisfies

the boundary conditions and if there exists a function (selection) ν ∈ SF ,u, such that:

u(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1ν(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2ν(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν(τ)dτ. (3.16)

Where A(t), B(t) are defined in (3.14) and (3.15).
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Let the set valued operator N : X → P(X) be defined as follows:

N(u) =



f ∈ X :

f(t) =



1
Γ(µ)

∫ t

0
(t− τ)µ−1ν(τ)dτ

+β2(2−µ)A(t)
∆

∫ 1

0
(1− τ)1−µ

∫ τ

0
(τ−s)µ−2ν(s)

Γ(µ−1)
dsdτ

+Γ(3−µ)A(t)
∆Γ(µ)

∫ ξ

0
(ξ − τ)µ−1ν(τ)dτ

+
Γ(3−µ)B(t)+β1β2

∆Γ(µ)

∑m
k=1

∫ ξk
0
(ξk − τ)µ−1ν(τ)dτ,

such that ν ∈ SF ,u.

Theorem 3.1 Let F : O× R2 −→ P(R) be a set-valued map such that:

(A1) F is an integrably bounded set-valued function with closed values, and F(., u, w) :

O −→ P(R) is measurable for all u,w ∈ R.

(A2) There exists ψ : [0,∞[→ [0,∞[ a non-decreasing upper semi continuous mapping

such that:

1. lim inft→∞(t− ψ(t)) > 0,∀t > 0.

2. ψ(t) < t,∀t > 0.

(A3) There exists a function γ ∈ C(O, [0,∞[)) which satisfies

Hd(F(t, u1, u2),F(t, u′1, u
′
2)) ≤

1

Λ1 + Λ2

γ(t)ψ
( 2∑

i=1

|ui − u′i|
)
,

for all t ∈ O and ui, u′i ∈ R, where

Λ1 = ||γ||
(

1

Γ(µ+ 1)
+

|β2|A0

Γ(µ)|∆|
+

Γ(3− µ)A0

Γ(µ+ 1)|∆|
+

(Γ(3− µ)B0 + |β1||β2|)m
Γ(µ+ 1)|∆|

)
,

Λ2 = ||γ||
(

1

Γ(µ)Γ(2− σ)
+

|β2|A1(2− µ)

Γ(µ)|∆|
+

Γ(3− µ)A1

Γ(µ+ 1)|∆|
+

Γ(3− µ)B1m

Γ(µ+ 1)|∆|

)
.

(A4) The set-valued map N has the approximate endpoint property.
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If (A1)-(A4) are satisfied. Then the boundary value inclusion (3.1) has a solution.

Proof:

Firstly, we prove that SF ,u ̸= ϕ for all u ∈ X:

Since F(., u, w) is measurable for all u,w ∈ R with closed values, then by relaying on the

lemma 1.2, we deduce that: ∃ν(t) ∈ F
(
t, u(t), cDσ

0+u(t)
)

for all t ∈ [0, 1].

Moreover, F is integrably bounded, which means: for all ν ∈ F
(
t, u(t), cDσ

0+u(t)
)
, there

exists a function g ∈ L1(O,R) satisfies:

|ν(t)| ≤ g(t)

So:

|ν(t)| ≤ |g(t)|

Then one can get: ∫ 1

0

|ν(s)|ds ≤
∫ 1

0

|g(s)|ds ≤ ∞

This proves that ν ∈ L1(O,R), which ends the proof.

Secondly, we prove that N(u) is closed.

Assume that u ∈ X and {Zn}n≥1 be a sequence in N(u) which tends towards Z. For

every n ∈ N, we choose νn ∈ SF ,u such that

Zn(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1νn(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2νn(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1νn(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1νn(τ)dτ,

for all t ∈ O.

By compactness of F , the sequence {νn}n≥1 has a subsequence converging to a certain

ν ∈ L1(O,R), obviously ν ∈ SF ,u,∀t ∈ O. Denoting this subsequence again by {νn}n≥1,
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one can obtain

lim
n→∞

Zn(t) = lim
n→∞

1

Γ(µ)

∫ t

0

(t− τ)µ−1νn(τ)dτ

+ lim
n→∞

β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2νn(s)

Γ(µ− 1)
dsdτ

+ lim
n→∞

Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1νn(τ)dτ

+ lim
n→∞

Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1νn(τ)dτ.

Then

lim
n→∞

Zn(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1 lim
n→∞

νn(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
lim
n→∞

νn(s)dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1 lim
n→∞

νn(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1 lim
n→∞

νn(τ)dτ

Z(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1ν(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
ν(s)dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν(τ)dτ.

This shows that Z ∈ N(u), as a result N is closed-valued.

Furthermore, N(u) is a bounded set for all u ∈ X due to the following result:
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Let f ∈ N(u) and g ∈ L1(O,R), we have:

|f(t)| =
∣∣∣ 1

Γ(µ)

∫ t

0

(t− τ)µ−1ν(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2ν(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν(τ)dτ
∣∣∣

≤ 1

Γ(µ)

∫ t

0

(t− τ)µ−1|ν(τ)|dτ

+
|β2|(2− µ)A0

|∆|

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2|ν(s)|
Γ(µ− 1)

dsdτ

+
Γ(3− µ)A0

|∆|Γ(µ)

∫ ξ

0

(ξ − τ)µ−1|ν(τ)|dτ

+
Γ(3− µ)B0 + |β1||β2|

|∆|Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1|ν(τ)|dτ

≤ 1

Γ(µ)

∫ 1

0

|ν(τ)|dτ

+
|β2|(2− µ)A0

|∆|Γ(µ− 1)

∫ 1

0

∫ 1

0

|ν(s)|dsdτ

+
Γ(3− µ)A0

|∆|Γ(µ)

∫ 1

0

|ν(τ)|dτ

+
Γ(3− µ)B0 + |β1||β2|

|∆|Γ(µ)
m

∫ 1

0

|ν(τ)|dτ

From (A1) we know that F is integrably bounded, so we obtain

∫ 1

0

|ν(τ)|dτ ≤
∫ 1

0

|g(τ)|dτ = ||g||L1(O,R)

Then, there exists C > 0 independent of u such that: |f(t)| ≤ C for all t ∈ [0, 1]. Hence

N(u) is bounded.

Finally, we show that

Hd(N(u), N(w)) ≤ ψ(||u− w||)
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Let u,w ∈ X and y1 ∈ N(u), y2 ∈ N(w), choosing ν1 ∈ SF ,u such that

y1(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1ν1(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
ν1(s)dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν1(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν1(τ)dτ,

for all t ∈ O.

Since we assumed in (A3) that there exists a function γ ∈ C(O, [0,∞[)) which satisfies

Hd(F(t, u(t), cDσ
0+u(t)),F(t, w(t), cDσ

0+w(t))) ≤
1

Λ1 + Λ2

γ(t)ψ
(
|u(t)−w(t)|+|cDσ

0+u(t)−cDσ
0+w(t)|

)
.

Then ∃ν2 ∈ SF ,w satisfies:

|ν1(t)− ν2(t)| ≤
1

Λ1 + Λ2

γ(t)ψ
(
|u(t)− w(t)|+ |cDσ

0+u(t)− cDσ
0+w(t)|

)
,

for all t ∈ O.

Thus we define y2(t) as follows:

y2(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1ν2(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
ν2(s)dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν2(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν2(τ)dτ,
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Let supt∈O |γ(t)| = ||γ||, thus one can obtain

|y1(t)− y2(t)| ≤
1

Γ(µ)

∫ t

0

(t− τ)µ−1|ν1(τ)− ν2(τ)|dτ

+
|β2|(2− µ)|A(t)|

|∆|

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
|ν1(s)− ν2(s)|dsdτ

+
Γ(3− µ)|A(t)|

|∆|Γ(µ)

∫ ξ

0

(ξ − τ)µ−1|ν1(τ)− ν2(τ)|dτ

+
Γ(3− µ)

∣∣B(t)|+ |β1||β2|
|∆|Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1|ν1(τ)− ν2(τ)|dτ.

So

|y1(t)− y2(t)| ≤
1

Λ1 + Λ2

||γ||ψ(||u− w||)
[ 1

Γ(µ)

∫ t

0

(t− τ)µ−1dτ

+
|β2|(2− µ)|A(t)|

|∆|

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
dsdτ

+
Γ(3− µ)|A(t)|

|∆|Γ(µ)

∫ ξ

0

(ξ − τ)µ−1dτ

+
Γ(3− µ)

∣∣B(t)|+ |β1||β2|
|∆|Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1dτ
]
.

By calculating the integrals and using the results of Remark 3.1, we get

|y1(t)− y2(t)| ≤
1

Λ1 + Λ2

||γ||ψ(||u− w||){ 1

Γ(µ+ 1)
+

|β2|A0

Γ(µ)|∆|

+
Γ(3− µ)A0

Γ(µ+ 1)|∆|
+

(Γ(3− µ)B0 + |β1||β2|)m
Γ(µ+ 1)|∆|

}

|y1(t)− y2(t)| ≤
Λ1

Λ1 + Λ2

ψ(||u− w||). (3.17)

On the other hand σ ∈ (0, 1) which allows us to have

cDσ
0+y1(t) =

∫ t

0

(t− ω)−σ

Γ(1− σ)
y′1(ω)dω,
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with

y′1(ω) =
(µ− 1)

Γ(µ)

∫ ω

0

(ω − τ)µ−2ν2(τ)dτ

+
β2(2− µ)A′(ω)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
ν2(s)dsdτ

+
Γ(3− µ)A′(ω)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν2(τ)dτ

+
Γ(3− µ)B

′
(ω)

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν2(τ)dτ,

y′1(ω) =
(µ− 1)

Γ(µ)

∫ ω

0

(ω − τ)µ−2ν1(τ)dτ

+
mβ1β2(2− µ)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
ν1(s)dsdτ

+
mβ1Γ(3− µ)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν1(τ)dτ

− β1Γ(3− µ)

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν1(τ)dτ.

Thus

cDσ
0+y1(t) =

∫ t

0

(t− ω)−σ

Γ(1− σ)

[(µ− 1)

Γ(µ)

∫ ω

0

(ω − τ)µ−2ν1(τ)dτ

+
mβ1β2(2− µ)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
ν1(s)dsdτ

+
mβ1Γ(3− µ)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν1(τ)dτ

− β1Γ(3− µ)

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν1(τ)dτ
]
dω.
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So we have

|cDσ
0+y1(t)− cDσ

0+y2(t)| ≤
∫ t

0

(t− ω)−σ

Γ(1− σ)

[(µ− 1)

Γ(µ)

∫ ω

0

(ω − τ)µ−2|ν1(τ)− ν2(τ)|dτ

+
m|β1||β2|(2− µ)

|∆|

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
|ν1(s)− ν2(s)|dsdτ

+
m|β1|Γ(3− µ)

|∆|Γ(µ)

∫ ξ

0

(ξ − τ)µ−1|ν1(τ)− ν2(τ)|dτ

+
|β1|Γ(3− µ)

|∆|Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1|ν1(τ)− ν2(τ)|dτ
]
dω,

|cDσ
0+y1(t)− cDσ

0+y2(t)| ≤
1

Λ1 + Λ2

||γ||ψ(||u− w||)
[ ∫ t

0

(t− ω)−σ

Γ(1− σ)

[(µ− 1)

Γ(µ)

∫ ω

0

(ω − τ)µ−2dτ

+
m|β1||β2|(2− µ)

|∆|

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2

Γ(µ− 1)
dsdτ

+
m|β1|Γ(3− µ)

|∆|Γ(µ)

∫ ξ

0

(ξ − τ)µ−1dτ

+
|β1|Γ(3− µ)

|∆|Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1dτ
]
dω
]
.

By calculating the integrals and using the results of remark 3.1, we get

|cDσ
0+y1(t)− cDσ

0+y2(t)| ≤
1

Λ1 + Λ2

||γ||ψ(||u− w||){ 1

Γ(µ)Γ(2− σ)
+

|β2|A1(2− µ)

Γ(µ)|∆|

+
Γ(3− µ)A1

Γ(µ+ 1)|∆|
+

Γ(3− µ)B1m

Γ(µ+ 1)|∆|
}

|cDσ
0+y1(t)− cDσ

0+y2(t)| ≤
Λ2

Λ1 + Λ2

ψ(||u− w||). (3.18)

Therefore

||y1(t)− y2(t)|| = sup
t∈O

|y1(t)− y2(t)|+ sup
t∈O

|cDσ
0+y1(t)− cDσ

0+y2(t)|

≤ 1

Λ1 + Λ2

ψ(||u− w||)(Λ1 + Λ2) = ψ(||u− w||).

Hence Hd(N(u), N(w)) ≤ ψ(||u − w||) for all u,w ∈ X. Using lemma 1.1. Since the set

valued function N has approximate endpoint property by (A4), then there exists u∗ ∈ X
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such that N(u∗) = {u∗}, which leads to the existence of at least one solution for the

inclusion problem (3.1), and that completes the proof.

Remak 3.3 Notice that 0 is always a solution if F(t, x(t), y(t)) contains 0.

3.1.3 Uniqueness approach

Theorem 3.2 Let the hypotheses of theorem 3.1 be satisfied, and assume that:

• F(t, ., .) is Lipschitzean, that is ∃k > 0 such that ∀x, y ∈ R

F(t, x, .) ⊂ F(t, y, .) +B(0, k|x− y|)

where B(0, k|x− y|) = [−k|x− y|,+k|x− y|].

• The following condition is satisfied: (Λ1 + Λ2)k < 1

Then the problem main inclusion (3.1) has a unique solution.

Proof: Let u1, u2 be two solutions of the main inclusion(3.1). This leads to {u1} = N(u1)

and {u2} = N(u2) with:

u1(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1ν1(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2ν1(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν1(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν1(τ)dτ
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u2(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1ν2(τ)dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2ν2(s)

Γ(µ− 1)
dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1ν2(τ)dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1ν2(τ)dτ,

|u1(t)− u2(t)| =
∣∣∣ 1

Γ(µ)

∫ t

0

(t− τ)µ−1(ν1(τ)− ν2(τ))dτ

+
β2(2− µ)A(t)

∆

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2(ν1(s)− ν2(s))

Γ(µ− 1)
dsdτ

+
Γ(3− µ)A(t)

∆Γ(µ)

∫ ξ

0

(ξ − τ)µ−1(ν1(τ)− ν2(τ))dτ

+
Γ(3− µ)B(t) + β1β2

∆Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1(ν1(τ)− ν2(τ))dτ
∣∣∣,

≤ 1

Γ(µ)

∫ t

0

(t− τ)µ−1|ν1(τ)− ν2(τ)|dτ

+
|β2|(2− µ)|A(t)|

|∆|

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2|ν1(s)− ν2(s)|
Γ(µ− 1)

dsdτ

+
Γ(3− µ)|A(t)|

|∆|Γ(µ)

∫ ξ

0

(ξ − τ)µ−1|ν1(τ)− ν2(τ)|dτ

+
Γ(3− µ)|B(t)|+ |β1||β2|

|∆|Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1|ν1(τ)− ν2(τ)|dτ

Relaying on the first hypothesis we get

|ν1(t)− ν2(t)| ≤ k||u1 − u2||X
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It results that

|u1(t)− u2(t)| ≤
1

Γ(µ)

∫ t

0

(t− τ)µ−1k||u1 − u2||X(τ)dτ

+
|β2|(2− µ)|A(t)|

|∆|

∫ 1

0

(1− τ)1−µ

∫ τ

0

(τ − s)µ−2k||u1 − u2||X
Γ(µ− 1)

dsdτ

+
Γ(3− µ)|A(t)|

|∆|Γ(µ)

∫ ξ

0

(ξ − τ)µ−1k||u1 − u2||Xdτ

+
Γ(3− µ)|B(t)|+ |β1||β2|

|∆|Γ(µ)

m∑
k=1

∫ ξk

0

(ξk − τ)µ−1k||u1 − u2||Xdτ

|u1(t)− u2(t)| ≤ {
1

Γ(µ+ 1)
+

|β2|A0

Γ(µ)|∆|

+
Γ(3− µ)A0

Γ(µ+ 1)|∆|
+

(Γ(3− µ)B0 + |β1||β2|)m
Γ(µ+ 1)|∆|

}k||u1 − u2||X

|u1(t)− u2(t)| ≤ kΛ1||u1 − u2||X

On the other hand, in the same way we have

|cDσ
0+u1(t)− cDσ

0+u2(t)| ≤ {
1

Γ(µ)Γ(2− σ)
+

|β2|A1(2− µ)

Γ(µ)|∆|

+
Γ(3− µ)A1

Γ(µ+ 1)|∆|
+

Γ(3− µ)B1m

Γ(µ+ 1)|∆|
}k||u1 − u2||X

|cDσ
0+u1(t)− cDσ

0+u2(t)| ≤ kΛ2||u1 − u2||X

Then

||u1 − u2||X = sup
t∈[0,1]

|u1(t)− u2(t)|+ sup
t∈[0,1]

|cDσ
0+u1(t)− cDσ

0+u2(t)| ≤ k(Λ1 + Λ2)||u1 − u2||X

Using the second condition of the theorem 3.2

(
1− k(Λ1 + Λ2)

)
||u1 − u2||X ≤ 0.

||u1 − u2||X ≤ 0
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This means that

u1(t) = u2(t) ∀t ∈ [0, 1]

3.1.4 First numerical example

Let’s consider the following fractional differential inclusion:

cD3/2

0+ u(t) ∈
[
0,

4|u(t)|
Γ(1/2)

]
, t ∈ O = [0, 1], (3.19)

With the boundary conditions:


u′(0) = 0,

Γ(1/2)cD1/2

0+ u(1) + u(0.8) = 1.3375
∑6

i=1 u(ξi)

(3.20)

with ξ1 = 0.2, ξ2 = 0.3, ξ3 = 0.4, ξ4 = 0.5, ξ5 = 0.6, ξ6 = 0.7

It’s clear that

µ = 3/2,m = 6, β1 = 0, β2 = Γ(1/2), β3 = 1.3375

Now we define: F : O× R2 −→ P(R) by:

F(t, x(t), y(t)) =
[
0,

4|x(t)|
Γ(1/2)

]
, t ∈ O = [0, 1],

In this case we choose γ : [0, 1] → [0,∞[ such that γ(t) = 8
Γ(1/2)

and ψ(t) = t
2

Obviously we have

• lim inft→∞(t− t
2
) = lim inft→∞( t

2
) > 0.

• ψ(t) = t
2
< t ∀t > 0.

We aim to prove

Hd(F(t, x1, y1),F(t, x2, y2)) ≤
1

Λ1 + Λ2

γ(t)ψ(|x1(t)− x2(t)|)
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So we consider

F∗(t, x∗(t), y∗(t)) =
[
0,

0.04|x∗(t)|
Γ(1/2)

]
, t ∈ O = [0, 1],

As a result

Hd(F(t, x1(t), y1(t)),F(t, x2(t), y2(t))) ≤
0.04

Γ(1/2)
|x∗1(t)− x∗2(t)|

≤ 0.08

Γ(1/2)

|x∗1(t)− x∗2(t)|
2

≤ γ∗(t)ψ(|x∗1(t)− x∗2(t)|)

Now we calculate some important values using γ∗(t) = 0.08
Γ(1/2)

we get

Λ∗
1 = 0.0597493012793817, Λ∗

2 = 0.056416336022008656

Λ∗
1 + Λ∗

2 = 0.11616563730139036

Then, for any x∗, y∗ ∈ R, we have

Hd(F∗(t, x∗1, y
∗
1),F(t, x∗2, y

∗
2)) ≤

γ∗(t)

Λ∗
1 + Λ∗

2

ψ(|x∗1(t)− x∗2(t)|)

Taking x1(t) = 100x∗1(t), γ(t) = 100γ∗(t) gives us

Hd(F(t, x1(t), y1(t)),F(t, x2(t), y2(t))) ≤
1

Λ1 + Λ2

γ(t)ψ(|x1(t)− x2(t)|)
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Let X = {u : u, cD3/2

0+ u ∈ C(O,R)}, we define the operator N : (X) → P(R) such that

N(u) = {f ∈ X : ∃ν ∈ SF ,u

f(t) =
1

Γ(3/2)

∫ t

0

(t− τ)1/2ν(τ)dτ

+
1

2∆

∫ 1

0

(1− τ)−1/2

∫ τ

0

(τ − s)−1/2ν(s)dsdτ

+
1

∆

∫ 0.8

0

(0.8− τ)1/2ν(τ)dτ

− 1.3375

∆

6∑
i=1

∫ ξi

0

(ξi − τ)1/2ν(τ)dτ}

Since supu∈N(0) ||u||X = 0, it results infu∈X supw∈N(u) ||u− w||X = 0.

Thus, N has the approximate endpoint property, therefore the conditions of the theorem

3.1 are satisfied which implies that the fractional differential inclusion problem (3.19) has

a solution.

3.1.5 Second numerical example

Let’s consider the following fractional differential inclusion:

cD3/2

0+ u(t) ∈ { 4|u(t)|
Γ(1/2)

}, t ∈ O = [0, 1], (3.21)

With the boundary conditions:


u′(0) = 0,

Γ(1/2)cD1/2

0+ u(1) + u(0.8) = 1.3375
∑6

i=1 u(ξi)

(3.22)

with ξ1 = 0.2, ξ2 = 0.3, ξ3 = 0.4, ξ4 = 0.5, ξ5 = 0.6, ξ6 = 0.7

It’s clear that

µ = 3/2,m = 6, β1 = 0, β2 = Γ(1/2), β3 = 1.3375

In a similar way as the first example, we can verify the existence theorem. As a result

there exist a solution for the problem (3.21).
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For the uniqueness, and since F(t, x(t), y(t))) = { 4|u(t)|
Γ(1/2)

}, then the inequality

|ν1(t)− ν2(t)| ≤ k||u− v||X

holds for every k > 0.

Choosing k = 0.04 and with Λ1 = 11.94986025587634,Λ2 = 11.28326720440173 we get:

(Λ1 + Λ2)k = 0.9293250984111228 < 1

Then the problem (3.21) admits only one solution.

3.1.6 Third numerical example

Let’s consider the following fractional differential inclusion:

cD3/2

0+ u(t) ∈ { 8|u(t)|
Γ(1/2)

}, t ∈ O = [0, 1], (3.23)

With the boundary conditions:


u′(0) = −12.5

∑6
i=1 u(ξi),

Γ(1/2)cD1/2

0+ u(1) + u(0.8) = 1.3375
∑6

i=1 u(ξi)

(3.24)

with ξ1 = 0.2, ξ2 = 0.3, ξ3 = 0.4, ξ4 = 0.5, ξ5 = 0.6, ξ6 = 0.7

It’s clear that

µ = 3/2,m = 6, β1 = −12.5, β2 = Γ(1/2), β3 = 1.3375

Now we define: F : O× R2 −→ P(R) by:

F(t, x(t), y(t)) = { 8|x(t)|
Γ(1/2)

}, t ∈ O = [0, 1],

In this case we choose γ : [0, 1] → [0,∞[ such that γ(t) = 16
Γ(1/2)

and ψ(t) = t
2

Obviously we have
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• lim inft→∞(t− t
2
) = lim inft→∞( t

2
) > 0.

• ψ(t) = t
2
< t ∀t > 0.

We aim to prove

Hd(F(t, x1, y1),F(t, x2, y2)) ≤
1

Λ1 + Λ2

γ(t)ψ(|x1(t)− x2(t)|)

So we consider

F∗(t, x∗(t), y∗(t)) = {0.08|u(t)|
Γ(1/2)

}, t ∈ O = [0, 1],

As a result

Hd(F(t, x1(t), y1(t)),F(t, x2(t), y2(t))) ≤
0.08

Γ(1/2)
|x∗1(t)− x∗2(t)|

≤ 0.16

Γ(1/2)

|x∗1(t)− x∗2(t)|
2

≤ γ∗(t)ψ(|x∗1(t)− x∗2(t)|)

Now we calculate some important values using γ∗(t) = 0.16
Γ(1/2)

we get

Λ∗
1 = 0.3524008759077773, Λ∗

2 = 0.22057069743272514

Λ∗
1 + Λ∗

2 = 0.5729715733405024

Then, for any x∗, y∗ ∈ R, we have

Hd(F∗(t, x∗1, y
∗
1),F(t, x∗2, y

∗
2)) ≤

γ∗(t)

Λ∗
1 + Λ∗

2

ψ(|x∗1(t)− x∗2(t)|)

Taking x1(t) = 100x∗1(t), γ(t) = 100γ∗(t) gives us

Hd(F(t, x1(t), y1(t)),F(t, x2(t), y2(t))) ≤
1

Λ1 + Λ2

γ(t)ψ(|x1(t)− x2(t)|)
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Let X = {u : u, cD3/2

0+ u ∈ C(O,R)}, we define the operator N : (X) → P(R) such that

N(u) = {f ∈ X : ∃ν ∈ SF ,u

f(t) =
1

Γ(3/2)

∫ t

0

(t− τ)1/2ν(τ)dτ

+
A(t)

2∆

∫ 1

0

(1− τ)−1/2

∫ τ

0

(τ − s)−1/2ν(s)dsdτ

+
A(t)

∆

∫ 0.8

0

(0.8− τ)1/2ν(τ)dτ

+
Γ(3/2)B(t)− 12.5Γ(1/2)

∆Γ(3/2)

6∑
i=1

∫ ξi

0

(ξi − τ)1/2ν(τ)dτ}

with A(t) = −75t+ 3.7 and B(t) = −12.5(0.8− t)− Γ(1/2).

Since N(u) contains only one element because the set of selections contains only one

element. Thus, N has the approximate endpoint property, therefore the conditions of the

theorem 3.1 are satisfied which implies that the fractional differential inclusion problem

(3.23) has a solution.

For the uniqueness, and since F(t, x(t), y(t))) = { 8|u(t)|
Γ(1/2)

}, then the inequality

|ν1(t)− ν2(t)| ≤ k||u− v||X

holds for every k > 0.

Choosing k = 0.01 and with Λ1 = 35.240087590777726,Λ2 = 22.057069743272514 we get:

(Λ1 + Λ2)k = 0.5729715733405024 < 1

Then the problem (3.23) admits only one solution.
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3.2 Numerical application

3.2.1 What is the ANN?

ANN stands for Artificial Neural Network. It is a computational model inspired by the

structure and functioning of biological neural networks, such as the human brain (see

the underneath figure1). ANNs are widely used in the field of machine learning and are

designed to mimic the way neurons in the brain process information.

Figure 3.1: Comparison between biological neuron and artificial neuron

ANNs are capable of learning and recognizing complex patterns and relationships in data,

making them valuable for tasks such as classification, regression, pattern recognition, and

decision making.
1This figure was taking from the article [30] by Xianlin Wang, Yuqing Liu, and Haohui Xin.
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3.2.2 Approximating the solution using artificial neural networks

The initial endeavor to simulate a biological neuron was accomplished by McCulloch and

Pitts[31] in 1943, where they combined a step function and an affine combination of

signals. In 1958, Rosenblatt[32] introduced a multilayer perceptron as a basic model for

a neuron network. This model consists of an input layer, hidden layers, and an output

layer, as depicted in Figure 1. By utilizing this structure, a function A is constructed:

A : Ω ⊂Rn → Rm

x 7−→ xL

where xL is the result of the following scheme:

• Through input layer: x0 = x.

• Through hidden layer: xl = ρ(Al(xl−1)), for l = 1, . . . , L− 1.

• Through output layer: xL = AL(xL−1).

where ρ : R → R is an activation function, which acts as follows: ρ(x1, . . . , xNl
) =

(ρ(x1), . . . , ρ(xNl
)), and Al = (x) = Wlx+bl, with (Wl)

L
l=1 ∈ RNl×Nl−1 denotes the weights,

and bl ∈ RNl denotes the biases. The structure of such a neural network is defined by

N0, N1, . . . , NL and the activation function ρ. We denote the set of such functions by

NN . The density of this set is important in the approximation.

Many theorems of density were obtained such as Cybenko[33] in 1989, Kurt Hornik[34] in

1991 and more, following that multiple outcomes are obtained regarding the quantity of

neurons in a hidden layer to demonstrate the density of artificial neural networks within

diverse function spaces.

Note that NN ρ
n,m,k is the class of functions Rn → Rm characterized by feedforward neural

networks with n neurons in the input layer, m neurons in the output layer, and k neurons

in the hidden layers. In this problem we use the following theorem of density:
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Theorem 3.3 [35, page 2] Let ρ : R → R be any nonaffine continuous function which is

continuously differentiable at at least one point, with nonzero derivative at that point. Let

K ∈ Rn be compact. Then NN ρ
n,m,n+m+2 is dense in C(K,Rm) with respect to the uniform

norm.

3.2.3 The used algorithm

In the following u(t) represents the solution while y(t) represents the selection.

• We are looking for a certain uθ(t) such that:



cDµ
0+uθ(t) ∈ F

(
t, uθ(t),

cDσ
0+uθ(t)

)
, t ∈ O = [0, 1],

u′θ(0)− β1

m∑
k=1

uθ(ξk) = 0, . . . (I0)

βc
2D

µ−1
0+ uθ(1) + uθ(ξ)− β3

∑m
k=1 uθ(ξk) = 0, . . . (I1)

• To make sure that cDµ
0+uθ(t) is in the set of selections we verify if the projection of

this element on the set of selections is itself, that is:

PSF
cDµ

0+uθ(t)−
cDµ

0+uθ(t) = 0, . . . (I(t))

with P[a,b]x = max(a,min(x, b))

• We chose the lost function formula according to our objective, in general we have:

Lossθ = min |I(t)|+ |I0|+ |I1|

• For θ we have the following formula:

θn+1 = θn − l × dn
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where

– l is the learning rate.

– dn is given by dn = ∇θLoss(θn)

• The number of layers and nodes were taken according to the theorem 3.3, we can

see it in the following figure:

Figure 3.2: Neurons structure

• The activation function used was Sigmoid, while the optimizer chosen was Adam.
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3.2.4 The obtained results

Applying the ANN method on the example (3.19) revealed the following results with the

number of epochs is 150 :

Figure 3.3: ANN results

Figure 3.4: Comparison between the exact and the approximate solutions
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Figure 3.5: The approximate solution graphs

And on the example (3.21) with the number of epochs is 350 :

Figure 3.6: ANN results
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And on the example (3.23) with the number of epochs is 400 :

Figure 3.7: ANN results

Observation:

From observing the figures above, we can see that the approximated function of u by the

ANN is indeed close to the exact solution ue in the three examples.

However, this is not the case for the selection y and the Caputo derivative cD3/2

0+ ue(t),

even though both of them are in the range of F . We interpret this by the possibility that

the equivalence between the inclusion problem (3.1) and the integral equation (3.16) does

not hold on the numerical level, so it can be seen as an implication only.
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Conclusion

In conclusion, this master thesis has explored the fascinating field of fractional differential

inclusions and their applications. Through a comprehensive study of fractional derivatives,

inclusions, and their existence theorems, we have studied the existence of perturbed and

unperturbed inclusions. We also investigated the existence and uniqueness of the solution

for a thermostat inclusion model with numerical application.

Upon completing this study, several questions arise:

What would be the difference if we chose the fixed point approach? will it provide a better

results?

Is there a way to extend the results to some Hilbert spaces?

In comparison to the integer derivative, where exactly can we spot the difference?

In the end, I wish that this work can provide even a small spotlight in this field.
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Résumé :
Dans ce travail, nous avons étudié l’existence et l’unicité des solutions pour
certaines inclusions différentielles fractionnaires, en utilisant le concept de
point final, puis nous avons appliqué l’ANN sur les résultats obtenus.
mots clés:Inclusions différentielles fractionnaires, fonctions multivoques,
calcul fractionnaire.

Summary:
In this work, we investigated the existence and uniqueness of the solutions
for some fractional differential inclusions, using the concept of endpoint,
then we applied the ANN on the obtained results.
Key words: Fractional differential inclusions, set-valued functions, frac-
tional calculus.
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