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Abstract

Elaboration and characterization of titanium dioxide thin films by Sol-Gel

(spin - coating) process for photovoltaic applications.

Titanium oxide thin films have been deposited on glass substrates by sol-gel spin
coating method wusing titanium tetra-isopropoxide (TTIP), absolute methanol and
acetylacetone as precursor solution, solvent and catalyzer, respectively. The effect of the
number of layers, the mixed solvent's percentage of ethanol and methanol, the drying
temperature, the stirring (mixing) time, lanthanum (La) doping and manganes (Mn) doping on
the structural, optical and electrical properties of TiO: films, these films were annealed at 500
°C.

All films have been characterized by multiple techniques such as X-ray diffraction
(XRD), UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and four
probe method to investigate the physical properties of titanium dioxide films. X-ray
diffraction analysis showed that the films are polycrystalline in nature having tetragonal
structure of anatase phase with preferred growth orientation along (101) plane. The
transmittance of TiO2 films was high up to 90 % and it is probably related to the good
crystalline quality of the films. The band gap was varied between 3.37 and 3.75 eV.
Furthermore, the electrical measurements revealed that prepared TiO; films at different drying
temperatures have a low resistivity (about 11.10 x 10%— 1.22x 10% (Q.cm)) which made these

films suitable for photovoltaic and optoelectronic applications.

Keywords: Thin films, Titanium oxide, Sol-Gel, spin coating technique, Doping, Structural

properties, Optical properties, Electrical properties. Photovoltaic applications.



Resume

Elaboration et caractérisation des couches minces d’oxyde de titane par voie

Sol-Gel (spin - coating) en vue d’applications photovoltaiques.

Des films minces de d'oxyde de titane ont été déposes sur des substrats de verre par la
trchnique de revétement par centrifugation sol-gel en utilisant du tétra-isopropoxyde de titane
(TTIP), du méthanol absolu et de l'acétylacétone comme solution précurseur, solvant et
catalyseur, respectivement. L’effets de la nombres des couches, du pourcentage d'éthanol et
de méthanol du solvant melangé, la température de séchage, le temps d'agitation (mélange),
dopage par lanthane (La) et dopage par manganes (Mn) sur les propriétés structurelles,
optiques et électriques des films de TiO-, ces films ont été recuits a 500 °C.

Tous les films ont été caractérises par de points pour étudier les proprietés physiques
des films d'oxyde de titane. L'analyse par diffraction des nombreuses techniques telles que la
diffraction des rayons X (DRX), la spectroscopie UV-Visible, la spectroscopie infrarouge a
transformée de Fourier (IR-TF) et la méthode de quatre rayons X a montré que les films sont
de nature polycristalline et présentent une structure tétragonale de phase anatase avec une
orientation de croissance préférée selon le plan (101). La transmittance des couches d'TiO>
était élevée jusqu'a 90% et elle est probablement liée a la bonne qualité cristalline des films.
La bande interdite variait entre 3.37 et 3,75 eV. De plus, les mesures électriques ont révelé
que les films de TiO préparés a différentes températures de séchage ont une faible resistivité
(environ 11.10 x 10? — 1.22 x 10% (Q.cm)) ce qui rend ces films adaptés aux applications

photovoltaiques et optoélectroniques.

Mots-clés: Couche mince, Dioxyde de titane, Sol-Gel, Technique de spin coating, Dopage,

Propriétés electrique, Propriétés optique, Propriétés électrique, Applications photovoltaiques.
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eneral infroduction

Solid thin films represent a class of materials that has aroused growing interest both
from a fundamental and technological point of view since the beginning of the 1980 s. They
can be produced from conductive, insulating, semi-conductive and polymeric materials. The
thickness of films deposited on substrates can vary from an atomic plane (a few Angstroms)
to several micrometers. Their physical properties are closely related to the deposition
parameters. Where, in the last decades, a growing interest paid to thin films of transparent
conducting oxides (TCO) which degenerate semiconductors with a large gap (> 3eV) [1]. Due
to the interest of transparent conductive oxides, many research works is devoted to the study and
synthesis different physical and chemical properties of these materials such as In.Oz, TiO,
SiO2, ZnO and Bi»03 etc [2,3]. Titanium dioxide (TiO2) is one of the most important group
I1-VI semiconductor materials on the part of both industry and science fields because of its
flexible properties that include a high refractive index, a wide band gap (3.2 eV), and high
physical and chemical stability and non-toxic nature [4,5]. Furthermore, titanium oxide can be
grouped into three crystalline phases: rutile, anatase and brookite [6,7]. The presence of any
one or more than one phase in the material can effect on the micro-structural, optical and
electrical properties of the material [8]. Among these phases rutile is the most stable phase
and it is usually obtained after annealing at temperature above 500 °C [9]. While the other two
phases are metastable which are difficult to synthesize and are continuously studied [10]. In
addition, titanium dioxide has been extensively investigated nano-materials owing to their
great potential application in this field: photo-catalysis [11], photonic device and solar cell
[12], optical filters, antireflection coatings [13], ferroelectric and gas sensing [14]. In order to
obtain enhanced their properties of titanium dioxide (TiO.), several working have been
widely studied the effect of different parameters on the physical properties of TiO> thin films
have been reported by various method [15,16]. In order to obtain high quality optoelectronic
devices based on TiO, usually the perfect film thickness is necessary for best device
performance. Furthermore, it is highly motivating to study the influence of film thickness on
the structural, optical and electrical properties due to the most important decisive of this factor
for film physical properties.

Conventional technigue can be achieved to the fabrications of titanium dioxide films

include, ultrasonic spray pyrolysis [17], radio frequency (RF) magnetron sputtering [18],



chemical vapor deposition (CVD) [19], pulsed laser deposition (PLD) [20] and sol-gel
process [21].

The sol-gel method allows the production of a wide variety of oxides in different
configurations (monoliths, thin films, fibers, powders). This great diversity, both in materials
and in shaping, has made this process very attractive in technological fields such as optics
[22] electronics [23], biomaterials [24]. It also has the advantage of using a soft chemistry and
being able to lead to very pure and stoichiometric materials [25]. The basic principle of the
sol-gel process corresponding to the abbreviation of "solution-gelation™ is as follows: a
solution based on precursors in the liquid phase is transformed into a solid by a set of
chemical reactions of the polymerization type at ambient temperature. Moreover, among of
these methods, sol-gel method offers several advantages including simplicity of equipment
and ease of implementation of the material, low energy cost, high purity and better
homogeneity of the material, and realization of multi-component deposits in a single
operation [26].

This thesis contains the following seven chapters:

Chapter | : This chapter is concerned with studying of the transparent conductive
oxides (TCO) and presents the definition of it, their properties and applications. In addition, a
brief overview of titanium dioxide's structural, optical, and electrical properties is offered,

with a focus on its photovoltaic applications.

Chapter Il : This is chapter discusses the different techniques used for the deposition of
titanium oxide (TiO2) thin films. And in particular, the technique of Sol-Gel (spin coating).
This chapter also discusses the analysis techniques used in the characterization of the samples,
which characterized using X-ray diffractometer (XRD), spectroscopy and fourier transform
infrared spectroscopy (FTIR). On the other hand, for the study of the optical properties, UV-
VIS spectroscopy was used and the four-point technique for the study of the electrical
properties. Furthermore, the study of different relationship of calculation of the deposit’s
characteristics (crystallite size, Strain, dislocation density, stress, conductivity and optical

gap...etc.).

Chapter 111 : Deals with the preparation and characterization of titanium oxide (TiOz)
films deposited by sol - gel (spin coating) method on glass substrates with different number of

spin-coated layers. In addition, this is chapter devoted to studied the influence of the mixed



solvent's (ethanol + methaol) ratios on the crystalline structure, optical, and electrical

properties of TiOz thin films

Chapter 1V : The influence of drying temperature and stirring time on the properties
structural, optical and electrical of prepared titanim dioxide thin films by sol-gel (spin
coating) technique was investigated.

Chapter V : Gives an account of lanthanum and manganese doped titanium dioxide
(TiO2) films prepared by sol-gel (spin coating) on glass substrates at equal to 500 °C with
different mol.% of La and Mn doping. The films were prepared in well conditions.

The thesis objective :

The main objective of this thesis work is the synthesis and the study of the structural,
optical and electrical properties of TiO> thin films and to optimize the growth conditions of
TiO2 thin films for photovoltaic applications (front electrodes for solar cells, photocatalysis,
gas sensors...etc.), which are grown on glass substrates and cost effective technique’s use

which is Sol-Gel spin-coating process.
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Chapter I : Titanuim dioxide thin films and their applications : an overview

I.1. Introduction

Transparent conductive oxides are degenerate semiconductors with a large gap (> 3eV),
it also constitutes a special type of material that combines two physical properties together,
high optical transparency and high electrical conductivity. This unusual set of physical
features is produced by creating free electron or hole carriers in a material with a big enough
energy band gap to be non-absorbing or transparent to visible light. Due to the interest of
transparent conductive oxides, a lot of research work are devoted to the study and synthesis of
these materials. Metal oxides are generally big gap semiconductors. They can be represented
by MOn (with M denotes the metal atom and O an oxygen atom), and the Titanium dioxide is
one of transparent conductive oxides (TCOs) [1].

Titanium dioxide is a unique material because of its flexible properties that include a
high refractive index, a wide band gap (3.2 eV), and resistance to chemical and physical
impacts. In addition, titanium dioxide has very good semiconducting properties, including
photocatalysis, photonic device and solar cell, optical filters, antireflection coatings,
ferroelectric and sensors. This wide range of the application of TiO2 is due to its unique
electronique and structural properties. TiO. can be grouped into three crystalline phases:
rutile, anatase and brookite. The presence of any one or more than one phases in the material
can affect on the micro-structural, optical and electrical properties of the material. Among
these phases rutile is the most stable phase and it is usually obtained after annealing at
temperature above 500 °C. While the other two phases are metastable which are difficult to
synthesize and are continuously studied [2].

This chapter is concerned with studying one of the transparent conductive oxides,
titanium oxide, and studying the most important general properties of it and its various

appliations.
1.2. Transparent conductive oxides (TCOs)
1.2.1. Definition of TCOs

Transparent Conductive Oxides (TCOs) are promising materials. Since the discovery of
the dual property of electrical conductivity and transparency in the visual domain at the turn
of the century [3] , and also they are defined as oxides which are made from metal oxides of
single, binary and more recently multiple elements. They are applied as thin films using
various deposition techniques such as jet pyrolysis, evaporation, sputtering, and laser ablation,

molecular beam epitaxy [4,5].
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Transparent conducting oxides (TCOs) have the unique combination of transparency
and electronic conductivity and are key enablers of technologies like pressure-sensitive
displays. The combinations of indium (In203), zinc (ZnO) and tin oxide (SnOz), and cadmium
oxide (CdO) dominate on TCOs, with indium-tin oxide (ITO) prevalent (Pasquarelli et al,
2011) [6]. In addition that TCOs generally have relatively high melting points but also high
density, low hardness and high refractive indices. However, they transmit in the visible and
can feature luminescence, high electron mobilities and semiconductor and piezoelectric
behavior (Weber, 2003) [7]. As a result, three different electrical states are attainable:
conductor, semiconductor and insulator, according to the energy band theory, (Figure 1.1). In
the conductor, the valence band (VB) and the conduction band (CB) overlap, as a result,
electrons can freely flow. The semiconductor has, for its part, a prohibited band which
separates CB and VB commonly called gap. The electrons cannot take the located energies in
this band. They need to acquire energy to move into the CB. For a gap greater than 4 eV, we

speak of insulation because even at room temperature, CB is empty [8].
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Figure 1.1. The classification of materials based on bands theory (e = electrons, o = holes) [9].

1.2.2. Properties of TCOs
Historically, Karl Baedeker observed the first cohabitation of electrical conductivity and
optical transparency in the visible range in 1907 [10] on thin layers of cadmium oxides CdO

[11] , which could be considered to be the first oxide that appeared to be transparent and
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conductive. But, the first TCOs useful for practical applications was tin-doped indium oxide
[(In203: SnO2) (90wt%: 10wt%)], commonly known as ITO. It was developed in the early
1950s, and remained among the materials offering the best optical and electrical performance
[12,13]. It has been the TCOs of choice for the past 50 years intended for applications
requiring high conductivity and transparency in the visible region. Research in the early 1980s
focused on intrinsically doped ZnO thin films [14,15], only their electrical properties were
found to be unstable above 150 °C [16]. This problem has been solved by employing the
extrinsically doped films [16].

1.2.2.1. Optical properties

The existence of an optical window covering the entire visible domain is characteristic
of TCOs. Optical transmission is defined as the ratio between the intensity of the incident
light and the intensity of the light transmitted through the material under consideration. The
absorption spectrum is deduced from the transmission and reflection spectra [17]. For
exemple TCOs are produced polycrystalline or amorphous and are often doped with several
elements, such as fluorine (F) [18], antimony (Sb) [19], titanium (Ti) [20] and galium (Ga)
[21].Visible transparency can be up to 90% (thin coatings) with transmission windows
spanning from 0.35 to 3.5 um . Moreover, they can absorb UV and reflect IR wavelengths,
making them useful heat reflectors with UV protection.

1.2.2.2. Electrical properties

The physics of large gap semiconductors describes the electrical properties of TCOs.
The conductivity 6 expressed in Q*.cm™ is the product of the density of charge carriers ny in
cm3, the mobility p of these charges in cm2.V1.s? and the elementary electric charge of the

electron q (formula I.1). Resistivity p, defined as the inverse of conductivity, is expressed in

Q.cm [22].

6 =(Q nvll=% (1.2)

An important surface electrical property in the field of TCOs is the surface resistance Rs
defined as the ratio of the resistivity to the thickness of the layer according to the relation (1.2)
[22]:

R=p/e (1.2)



Chapter I : Titanuim dioxide thin films and their applications : an overview

1.2.2.3. General properties of TCO

In addition to good optical and electrical properties, other factors influence the materials
and deposition procedures that are used. The etching of the layers, The cost of production, as
well as the toxicity, are essential considerations. The plasma frequency, the hardness of the
layers and the adhesion, the thermal and chemical resistance of the layers are also essential
parameters. Gordon has studied the different influences of all these parameters giving criteria
for various applications [23].

Control of the parameters of the deposition method is of great importance for the growth
of high quality TCO films. The physical properties of the TCO thin film are strongly related
to the structure, morphology and composition of the deposit. These factors are effected by the
deposition parameters of the different methods. For TCOs, a wide variety of deposition
techniques are used.

TCOs must have a strong electrical conductivity and low visual absorption in the visible
range. This is why tests for the quantitative evaluation of the quality of TCO have been
proposed in the form of "figures of merit" [Haacke, 1976], an example of which is described
by Gordon's equation (1.3) [24].

c 1

« Rsq In(T+R) (1-3)
where : ¢ is the conductivity (Qr.cm™), o is the absorption coefficient (cm™), Rsq is the
square resistance (Q2), T [%] is the coefficient of transmission, and R [%] is the coefficient of

reflection.

1.3. Titanium dioxide

1.3.1. Generality

Titanium dioxide (TiO.) is a unique material due to its flexible properties which include
a high refractive index, a wide forbidden band (3.2 eV), and resistance to chemical and
physical impacts. In addition, titanium dioxide has very good semiconductor properties,
which has generated significant enthusiasm on the part of scientists for various applications,
and in particular for photocatalysis, antireflection coatings, optical waveguides, photonic
crystals, devices based on a metal, insulator, ferroelectric, semiconductor structure [25].
Moreover the properties of titanium oxide (TiO2) depend on several parameters, namely the
nature of the phase, the microstructure, the crystallinity and the chemical composition. These

parameters can be modified either by the method of preparation or by heat treatment or by
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additions. The modification of the properties of TiO., using a doping metal, depends both on

the type of metal of its concentration and on its distribution [15].

Titanium oxide (TiO2) has been the subject of several studies because with interesting
physicochemical properties due to its chemical stability, low cost and many other aspects
presented in what follows. In 2010, the world production of TiO2 used as pigment is estimated
at 5.3 million tons, 55 to 60% by the chlorine process, 40 to 45% by the sulfuric process,
mainly in China. This production reached 6.55 million tonnes in 2012 and the market is
expected to reach 6.8 million tonnes in 2016. Titanium oxide is very chemically stable, non-
volatile and non-flammable. It is non-toxic and has both a very high refractive index and a
very high dielectric constant. It is obtained from titanium ore, about 95% of the amount of ore
extracted is used for the production of the pigment and only 5% for the preparation of the
metal [26].

1.3.2. structural properties of TiO-

Titanium dioxide exists in several forms, the three main ones being anatase, rutile and
brookite [27] :

1.3.2.1. Anatase structure

Anatase crystallizes in a quadratic or tetragonal system, whose lattice parameters are
a=b=23.784 Aand c = 9.515 A [28], it has a theoretical density of 3.79 (g/cm®), is also an
insulator with a band gap of about 3.2 eV [29] .When heated to 700 °C, it turns into rutile.
The crystal structure of anatase is far more complicated than that of rutile, the octahedra there
have been "deformed”. Figure 1.2 shows the structure of anatase. The crystal structure of
anatase is formed of octohedra linked together by edges, these octahedra being elongated
along the c¢ axis. It has its own 2 atoms of titanium and 4 atoms of oxygen where the mean
Ti-O distances (1.917 A). This structure is formed at temperatures lower than those of rutile
formation and those of broukite, it crystallizes at about 400 °C and it shares several properties

with rutile such as hardness and density [30].

1.3.2.1. Rutile structure

The rutile is most thermodynamically stable phase , derives its name from the latin
rutilus, which means red, in reference to the observation of a red shade transmitted through
this structure, where it strongly refracts light, with a high refractive index of value between

(2.7-3.1) [31], so it has been widely applied in pigments and in opacifieds. The mesh of rutile

10



Chapter I : Titanuim dioxide thin films and their applications : an overview

is quadratic or tetragonal system, whose lattice parameters are (a = b = 4.5936 A, ¢ = 2.9587
A) [28]. The rutile mesh is shown in Figure 1.2. Moreover, each titanium (Ti) atom is
coordinated with six (O) oxygen atoms and is surrounded by three coplanar titanium atoms at
the vertices of an almost equilateral triangle, the average inter-ionic distance in rutile is
1.959 A for Ti-O bonds and 2.960 A for Ti-Ti bonds [32]. This form is produced at high

temperature [33].

1.3.2.3. Broukite structure

Broukite crystallizes in the orthorhombic crystal system. Its mesh parameters are:
a=9.184 A; b = 5447 A; ¢ = 5.145 A [28] (Figure 1.2). Brookite has a more complex
structure, although the Ti — O distances are similar to other structures [32]. Almost all studies
relating to the synthesis of TiO2 brookite reveals the presence of brookite and rutile and/or
anatase phases at the same time. The brookite phases transform into rutile phases at high

temperatures, starting around 750 °C. [34].

(b)

Oxygen

Titanium

Figure 1.2. Crystalline structures of titanium dioxide (TiO,) in different phases:

(a) anatase, (b) rutile, (c) brookite [35].
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Table 1.1. Properties of the different phases of titanium dioxide [36].

Phase Anatase Rutile Broukite
Crystal structure tetragonal tetragonal orthorhombic
Lattice constants a=hb=3784 a=b=4.5936 a=9.184

(A c=9514 ¢ =2.9587 b = 5.447
c=5.145
Molecule/cel 4 2 8
The density (g/cm?®) 3.79 4.13 3.99
Volume/molecule 34.061 31.216 32.172
(A%
O -Ti-0 bond 77.7° 81.2° 77°~105°
angle 92.6° 90°
Ti-0 bond length 1.937 (4) 1.949 (4) 1.87~22.04
(A) 1.965 (2) 1.980 (2)

Hardness (Mohs) 55-6.0 6-6.5 55-6.0
Refractive index 2.48 — 2.56 2.61 -2.89 2.58 - 2.70
Atomic radius (A) r (Ti**) = 0.605 r (Ti**) = 0.605 r (Ti**) = 0.605

r(02)=1.36 r(02)=1.36 r(02)=1.36
d (Ti*- 02) (A) 1.93-1.98 1.95-1.99 1.86 — 2.04
Coordination [Ti*]=6 [Ti*]=6 [Ti*]=6
[02]=3 [02]=3 [02]=3
Compactness 0.645 0.708 0.655

1.3.3. Optical properties of TiO-
1.3.3.1. Refractive index of TiO>

In the visible spectrum, several kinds of titanium oxide have a high refractive index n.
rutile has the highest index (n ~ 2.66) of the three stable crystalline phases, which is higher
than that of anatase (n ~ 2.54). This, paired with a high visible light dispersion coefficient,
makes the rutile phase a popular white pigment of choice for industry (paints, food or

pharmaceutical dyes, etc.) [37,38].

12
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1.3.3.2. Gap of TiO>

As a result, TiO> is portrayed as a semiconductor with a broad prohibited band (band-
gap). The Rutile, Anatase and Brookite gaps have a value of 3 eV, 3.2 eV and 3.1 eV
respectively (Eg between the valence band (corresponding to the O2p orbital) and the
conduction band (corresponding to orbital Ti3d). Transitions corresponding to photons in the
ultraviolet domain result from these gap values [39].

1.3.4. Electrical properties of TiO>

Titanium dioxide is an n-type semiconductor, TiO single crystals have a resistivity of
about 10 Q.cm at room temperature, and about 10” Q.cm at 250 °C. These values are similar
to conductivities reported for a rutile single crystal : while the conductivity was 5 x 1014
(Q.cm)?tat 30 °C, it is increased to 3.3 x 10 (Q.cm)?at 260 °C. Therefore, TiO> is generally
considered to be an insulator at temperatures below 200 °C. Highly insulating TiO> films have
a variety of applications, including serving as a dielectric "gate" in metal-oxide-
semiconductor field-effect transistor (MOSFET) devices. The electrical properties of the TiO>
sheet, furthermore, can be changed to make it particularly conductive for a variety of
applications, including humidity and gas sensors [40].

1.3.5. Electronic properties of TiO:

TiO2 can be considered either as a wide band gap n-type semiconductor or as a narrow
band gap oxide. It has a band gap slightly greater than 3eV. In its stoichiometric state,
occupied states derive mainly from oxygen atoms; free states derive from Ti atoms. When
reduced, the material contains oxygen vacancies [17]. For the three crystalline forms of TiO>
mentioned above, the valence band is formed by the overlap of orbitals eg of titanium and 2p
of oxygen (Figure 1.2). The conduction band is formed by the eg and t2g orbitals of titanium
[39].
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Figure 1.3. Schematic representation of the electronic structure of TiO, [25].
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1.4. Stability of crystalline phases

Rutile is the stable phase at high temperature, the anatase phase is mainly obtained
during syntheses by soft chemistry. The anatase phase is stabilized in nanomaterials. This
reversal of stability is due to the surface energy of materials.

The particular behavior of nanomaterials has been explained by the surface effect. At
the nanoscale, a large number of atoms are found on the surface of the grains. As a result, the
material properties show significant changes compared to the same coarse-grained materials.
Thus, the surface energy, called vy, for a phase to be thermodynamically stable outside the
classical stability domains is expressed as follows:

Y=oV +BS (I.3)

with o and P the free energies respectively by volume V and by surface S.

where we find that the free energy in volume is less in the case of rutile , the trend is reversed
in the case of free surface energy . In the case of small crystals, the role of surface energy is

enhanced: free energy is then minimized in the case of anatase which is stabilized.

Banfield et al. [41] studied the stability of various polymorphic phases of TiO2 by
X-ray diffraction during isochronous and isothermal reactions. Banfied showed that rutile is
energetically stable when the particle size is greater than 35nm, and that the brookite phase is
energetically stable between 11 and 35 nm, and that anatase is energetically favored for the

smallest particles less than 11nm (see Figure 1.4) [42].
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Figure 1.4. Evolution of the enthalpy of anatase (thick line), rutile (thin line) and brookite (dotted
line) as a function of the size of the nanocrystals. The vertical lines correspond to the brookite-anatase
transition for a diameter of 11 nm, the anatase-rutile transition for a diameter of 16 nm and the
broukite rutile transition at 35 nm [42].

Finally, experimental analyzes, thermodynamic calculations and calculations are based
on the structure that confirm the properties of TiO. which are in the form of thin layers and
strongly depend on the phase of its microstructure. These vary according to the techniques

and the conditions of preparation, as well as by the heat treatments.

1.5. The titanium-oxygen phase diagram

From the phase diagram, rutile is the most stable structure, it exists in a temperature
range below 1870 °C, which is the melting temperature of TiO>. Which disappears completely
at a temperature above 700 °C during the anatase structure after an irreversible of anatase-
rutile transformation. This transformation can take place at temperatures lower or higher than
700 °C, namely the type and the percentage of impurities which contains the TiO2 matrix.
When the stoichiometry of titanium dioxide varies from 0 to 2, we find the following phases:
Ti, Ti2O, TiO, Ti203, TizOs, TinO2n-1 and TiO2 (see Figure 1.5) [19].
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Figure 1.5. Phases diagram of titanium-oxygen [43].

1.6. Doping of titanium dioxide (TiO2)

Several studies have been devoted to doping and its influence on the structural
properties of thin titanium oxide films obtained by different methods. The modulation of these

properties does not only depend on the type of dopant, but also on its concentration, its
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distribution in the TiO2 network, the technique and the conditions of preparation. The doping
of TiOz thin films is accompanied by significant changes in structure and morphology, such as
the transformation of the anatase structure to the rutile structure, the transformation of the
brookite structure to the rutile structure and the appearance of new phases.

One of the most essential ways is to doping TiO> dioxide with transition metals [44],
and multiple studies have been carried out with various metals: iron (111) (Fe), zirconium (Zr),
cerium (Ce), manganese (Mn), chromium (Cr) and cobalt (Co), tungsten (W) , silver (Ag),
zinc (Zn), copper (Cu) [45,46], other metals, for example: magnesium (Mg), strontium (Sr),
barium (Ba), calcium (Ca), lead (Pb).

Several authors claim that this form of cationic doping lowers TiO2 energy barrier by
narrowing the width prohibited band's [47]. However, the majority of works adhere to the fact

that this doping increases the recombination of charges (electrons and holes) [48].

The effect of lanthanum (La-TiO2) and manganese (Mn-TiOz) doping on titanium

dioxide is investigated in this thesis.
1.6.1. Lanthanum properties

Lanthanum takes its name from the greek word « lanthanum » which means hiding,
because this element has long remained hidden in cesium oxide. Lanthanum comes in the
form of a malleable, ductile, silvery-gray metal which, like sodium, is soft enough to be split

with a blade. It oxidizes both in air and in water. (Table 1.2).

Table 1.2. Lanthanum properties.

Sympol La
Atomic number 57
Atomic mass 138.91 (g.mol?)
Density 6.18 (g.cm™) at 20°C
Melting point 920°C
Boiling point 3463°C
Electronic configuration [Xe] 5d* 65>

Group, Periode, Bloc 3,6, f

16
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1.6.2. Manganese properties

Manganese is a chemical element with the symbol Mn and is a pinkinsh-gray,
chemically active element. It is a hard metal and is very brittle. It is hard to melt, but easily
oxidized. Manganese is reactive when pure, and as a powder it will burn in oxygen, it reacts

with water (it rusts like iron) and dissolves in dilute acids. (Table 1.4).

Table 1.3. Manganese properties.

Sympol Mn
Atomic number 25
Atomic mass 54.9380 (g.mol?)
Density 7.43 (g.cm™) at 20°C
Melting point 1247°C
Boiling point 2061°C
Electronic configuration [Ar] 3d°4s®
Group, Periode, Bloc 7,4,d

1.7. Applications of TiO; thin films
|.7.1. Photocatalyst

Like all transition metal oxides, titanium dioxide has many applications, in catalysis,
electronics and optics. Since the discovery of the photoelectrochemical properties of TiO3, in
particular the capacity to decompose water by producing hydrogen in 1972, photocatalysis
begun to have more attention, therefore, research intensifies, and the applications of this
emerging technology are diversifying (Table 1.4). The electronic properties of TiO, its low
economic cost, its chemical stability and its non-toxicity, make it a occupies a privileged

place among these oxides and a catalyst of choice for this technology [49].

But what exactly is the process of photocatalysis and the photocatalysts that make it

happen?

A photocatalyst is a coating agent containing titanium dioxide as its active component.
An oxidation-reduction chemical reaction occurs when light comes into contact with the
photocatalyst. When applied to surfaces it functions to purify air so as to prevent the
contamination of the surface. Moreover, this technology functions as a revolutionary catalyst

for protecting the environment.
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Table 1.4. Summary of TiO; applications in photocatalysis [50].

Category Application Properties
Cements, roof tiles, window e Self-cleaning.
tents, plastic sheets, coated, e Antibacterial.
aluminum panels, curtains e Air purification.
Soundproof walls, coated, e Water purification.

Building Materials )
tunnel walls, signage and

reflectors, deposit on tunnel
lamps.
Wallpaper, window shade
Air purifier, air conditioners,
purification system for used
Effluent purification system o
water and sewage, purification
for swimming pools.
Tile, operating room walls, e Sterilization.

Hospitals tools, uniforms. e (TiO2 - Cu).

e Self-cleaning.

The correct definition of photocatalysis includes the process of photosensitization by
which photochemical damage is performed on a chemical species resulting from the initial
absorption of radiation by other chemical species called photosensitizers. Heterogeneous
photocatalysis that has been the subject of numerous research studies involves photo-reactions
at the surface of the catalyst. As with any process involving heterogeneous phase reactions.
Hence, the photocatalytic process can be divided into five steps : transfer of reactive
molecules dispersed in the fluid to the surface of the catalyst, adsorption of reactive molecules
on the surface of the catalyst, reaction on the surface of the adsorbed phase, desorption of

products and removal of products from the fluid / catalyst interface [51].

Photocatalytic reactions with TiO> are limited to wavelengths below 400 nm, in the UV
ultraviolet. Figure (1.6), it is also materials that can work in the visible are more desirable in
terms of using natural light. Indeed, only 5% of sunlight is used in the case of anatase. For this
reason, the doping of TiO, anatase has been studied to move its gap in the visible. This has

shown that doping with different transition metals such as V, Cr, Mn, Fe and Ni, allows a
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visible shift of the absorption band of TiO2. This shift depends on the amount of dopant

introduced. The efficiency in the shift is as follows: V, Cr, Mn, Fe, Ni. This allows sunlight to
be used more efficiently and up to 20% to 30% better [52].

Organics,
microorganisms

VIS

Figure 1.6. Scheme of the photocatalytic action of TiO, under UV (1) and visible (2) irradiation [53].

The photocatalytic method is based on the excitation of TiO2 by light radiation with a

wavelength of less than 387 nm, which equates to an energy larger than or equal to the
forbidden band width (3.2 eV):

TiOs+hv > h* + ¢ (1.4)

An electron from the valence band is promoted to the conduction band with the formation of a

positive hole (h*). The holes react with water and organic pollutants adsorbed on the surface
of TiO», according to reactions (1.5) and (1.6):

H.O + h* (valence band) —» OH + H* (1.5)

(1.6)
The hydroxyl radicals formed in the reaction (1.5) also participate in the degradation of
pollutants:

h* (valence band) + pollutant— pollutant®

OH + pollutant — CO2 + H>O (1.7)
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We must also consider the electron-hole recombination reaction in the volume of the particle

or on the surface:

h* +e — heat (1.8)

The rate of creation of electron-hole pairs under the influence of reaction photons (equation
1.4) is determined by the incident light intensity as well as the photocatalyst's optical and
physical properties. The speed of diffusion of the pairs and their rate of recombination depend
on several factors, mainly structural: the allotropic composition [54], the crystallinity [55], the
size of the crystallites [56], and the ionic doping rate [57]. These factors influence the
photocatalytic activity as well. On the other hand, photocatalytic activity depends on the
chemical nature of the pollutant and the chemical complexity of its molecule [52].
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Figure 1.7. Principle of photocatalysis of titanium dioxide (TiO,).
1.7.2. Dye sensitized solar cells
1.7.2.1. What is dye sensitized solar cells ?

Dye-sensitized solar cells (DSCs) have exhibited solar energy conversion efficiency of
over 10% and remain one of the most promising candidates, as they possess advantages of
being flexible, inexpensive, and easier to manufacture than brittle silicon solar cells [58,59]. A

very important feature of DSCs is the photoelectrode, which includes mesoporous wide band
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gap oxide semiconductor films with an enormous internal surface area, typically a thousand
times larger than those of bulk films [60,61].To date, the highest solar-to-electric conversion
efficiency has been achieved with films that consist of 20 nm TiO2 nanocrystallites sensitized
by ruthenium-based dyes. Hence, solar cells play a vital role in converting solar energy into
electrical energy, which is known as the PV effect. Solar cells exposed to sunlight will see

changes in electrical characteristics such as voltage, resistance, and current.

= Counter Electrode

Figure 1.8. Schematic illustration of a generic dye-sensitized solar cell [62].
1.7.2.2. How do dye sensitized solar cells work?

The working principle of DSSC involves four basic steps: light absorption, electron
injection, transportation of carrier, and collection of current. The following steps are involved

in the conversion of photons into current (as shown in Figure I. 8) [63]:

1- Firstly, the incident light (photon) is absorbed by a photosensitizer, and thus, due to
the photon absorption, electrons get promoted from the ground state (S*/S) to the
excited state (S*/S*) of the dye, where the absorption for most of the dye is in the
range of 700 nm which corresponds to the photon energy almost about 1.72 eV.

2- Now, the excited electrons with a lifetime of nanosecond range are injected into the
conduction band of nanoporous TiO2 electrode which lies below the excited state of
the dye, where the TiO> absorbs a small fraction of the solar photons from the UV
region. As a result, the dye gets oxidized.
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S +hv — S* (1.9)
S* — S*+e (TiOy) (1.10)

3- These injected electrons are transported between TiO2 nanoparticles and diffuse
towards the back contact (transparent conducting oxide [TCQ]), through the external
circuit, electrons reach at the counter electrode.

4- The electrons at the counter electrode reduce 13 to I7; thus, dye regeneration or the
regeneration of the ground state of the dye takes place due to the acceptance of
electrons from I~ ion redox mediator, and 1~ gets oxidized to 12 (oxidized state).

S*+e —S (1.11)

5- Again, the oxidized mediator (equation I—3) diffuses towards the counter electrode

and reduces to | ion.

I~ +26” >31° (1.12)
Conducting
Glass FTO  TiO;  Dye Electrolyte Counter electrode
A & nJi
{ §°/S* (Excited state)
e

light

\ M c,
N Voltage 5
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o
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/
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Figure 1.9. Construction and working principle of the dye-sensitized nanocrystalline solar cells [63].
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1.7.2.3. Advantages and disavantges of dye sensitized Solar Cells

1.7.2.3.1. The advantages

Dye sensitized solar cells are the most efficient third-generation solar technology
available is greatly used in applications like rooftop solar collectors. The power
production efficiency is around 11%, as compared to thin-film technology cells which
are between 5% and 13%, and traditional commercial silicon panels which operate
between 12% and 15%.

In a silicon solar cell, it acts both as a source of electrons as well as an electric field
provider, whereas in a DSSC, the semiconductor is used mainly for charge transport &
the photo electrons are supplied by a different source (dye).

DSSCs work even in low-light conditions. Hence they are very popular under cloudy
weather conditions and non-direct sunlight, where traditional cells would be a failure.
The cutoff in DSSC is so low, they have been proposed for indoor usage, to collect
energy for small devices from the lights in houses.

A traditional solar cell is encased in glass with a metal at back for increasing its
strength. Such setup may cause a decrease in its efficiency, as the cells heat up
internally. However DSSCs are built up with only a thin layer of conductive plastic on
the front side to allow radiation of heat much easily & quickly and therefore operate at
low internal temperatures. Also the cell’s mechanical structure is such that it indirectly

leads to higher efficiencies in higher temperatures [64,65].

1.7.2.3.2. The disavantages

DSSCs are not considered as an option, for large-scale deployments where higher-cost
higher-efficiency cells are more viable. DSCC is not manufactured in commercial
scale yet.The sharp cut in silicon solar panels costs have led other types of solar
technology like Solar Thermal and Thin Film Technology taking a back seat.

Another major drawback is the electrolyte solution, which contains volatile organic
solvents and must be carefully sealed. Replacing the liquid electrolyte with a solid has

been a major ongoing field of research [66,67].
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I1.1. Introduction

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to
several micrometers in thickness. The controlled synthesis of materials as thin films is a
fundamental step in many applications. A familiar example is the household mirror, which
typically has a thin metal coating on the back of a sheet of glass to form a reflective interface.
The process of silvering was once commonly used to produce mirrors, while more recently
the metal layer is deposited using techniques such as sputtering. Advances in thin film
deposition techniques during the 20" century have enabled a wide range of technological
breakthroughs in areas such as magnetic recording media, electronic semiconductor devices,
integrated passive devices, LEDs, optical coatings (such as anti-reflective coatings), hard
coatings on cutting tools, and for both energy generation (e.g. thin-film solar cells) and
storage (thin-film batteries). It is also being applied to pharmaceuticals, via thin-film drug
delivery. A stack of thin films is called a multilayer [1].

Thin film deposition is the process of creating and depositing thin film coatings onto a
substrate material. These coatings can be made of many different materials, from metals to
oxides to compounds. Thin film coatings also have many different characteristics which are
leveraged to alter or improve some element of the substrate performance. For example, some
are transparent; some are very durable and scratch-resistant; and some increase or decrease
the conductivity of electricity or transmission of signals. Hence, deposition techniques fall

into two broad categories, depending on whether the process is primarily chemical or physical

[1].

Conventional technique can be achieved to the fabrications of titanium dioxide films
include, ultrasonic spray pyrolysis, radio frequency (RF) magnetron sputtering, chemical
vapor deposition (CVD), pulsed laser deposition (PLD) and sol-gel process [2]. Among of
these methods, sol-gel method offers several advantages including simplicity of equipment
and ease of implementation of the material, low energy cost, high purity and better
homogeneity of the material, and realization of multi-component deposits in a single

operation.

In this chapter, we will make a detailed investigation on the different depositing
titanium oxide (TiO2) thin films. In particular, the technique of sol-gel (spin coating) and

different relationships, which are used to describe films.
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11.2. What is a thin film ?

Thin films is a thin layers of material and thickness typically less than 1 pm. Thin
film devices are typically 5 to 50 um thick. Thin layer refers to growth that occurs atom by
atom or molecule by molecule, while thick layer refers to growth is grain by grain [3].
Coalescence, nucleation, and the growth process all contribute to the production of thin films.
Since, the absorbent species are not in thermodynamic equilibrium with the substrate, they
migrate across its surface until their temperature matches that of the substrate. As a result of
these displacements, when they arrive at favorable places (impurities, crystal defects, etc.)
which are called nucleation sites, they create germs which will be growth for the formation of
the layer [3]. These thin layers modify the properties of the substrate on which they are
deposited. Because of their insulating or conductive qualities, they are mostly utilized in the
fabrication of electronic components such as solar cells.

e For objects protection and improved mechanical properties, resistance to wear,
corrosion or by serving as a thermal barrier. This is, for example, chrome plating;

e To modify the optical properties of objects. In particular, let us cite decorative
coatings (example of gilding) or modifying the reflective power of surfaces (anti-

reflective glasses or mirrors) [4].

Since thin films are nano-objects in one direction of space, the physical and chemical
properties of thin films can differ from those of macroscopic objects in all their dimensions.
For example, an insulating material when it is of macroscopic dimensions can become an
electrical conductor in the form of a thin layer due to the tunnel effect .So , generally thin
films are typically utilized when an object's surface qualities need to be improved or modified

by adding or changing functionality in some way. [5].

11.3. Thin film preparation methods

The deposition of thin films on different substrates is an essential step in the majority of
fields of modern technological manufacture of materials which can be semiconductors,
metals, insulators, oxides [6]. The thin film production methods are distinguished by two

routes:

* Physical methods that combine evaporation, spraying and laser ablation of all of these

forms.

» Chemical methods include sol-gel, spray, MOCVD, etc.
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There are several techniques for producing thin solid films but practically, there are two
main methods of depositing thin films are: deposition by physical process and by chemical
process. The classification of techniques is presented in Figure 11.1.

In a high vacuum environment:
=" e Vacuum evaporation
I .
Physical methods I *  Laserablation
" " (PVD) !
I I In plasma environment:
1 L)
: e Sputterring
General methods I Epitaxy by jets
to file a thin layer |~ ': g molecular : :
| In a reactive gas environment:
| - = e« CVD
[ 1 e LPCVD
[ .
: Chemical methods | | ¢ Plasma CVD (PECVD)
- (CVD) ™
I
I In liquid medium:
I
I e Spray
L —
e Sol gel
o Electro-deposition

Figure 11.1. Presentation of the main thin film deposition techniques [7].

11.3.1. Physical methods
11.3.1.1. Physical vapor deposition (PVD)

The development of vacuum technology has progressed considerably during the last
three decades and this has enabled the development of vacuum deposition techniques such as
basic PVD techniques the basis of evaporation and spraying under all these shapes. Hence, the
physical vapor deposition is easy to control also the layers obtained by PVD are dense. The
PVD technique is based on the vaporization or sublimation of the material to be deposited.
This is put in a crucible under vacuum, then it is heated to high temperature using a filament
or with an intense and energetic beam of electrons or using a laser. Once evaporated, the
material in the form of molecules, atoms or clusters is deposited by condensation on the

substrate, thus forming the desired thin layer [8].
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These techniques have been widely used for obtaining refractory linings resistant to

erosion and wear, such as alumina Al,Osz and stainless steel [9].
Physical vapor deposition (PVVD) has a number advantages over chemical vapor deposition,
for example the films are dense, the process is simple to control and there is no pollution [10].
The most widely used PVD processes are:

1- Thermal (or Vacuum) Evaporation

2- Sputtering

3- Laser ablation

11.3.1.1.1. Thermal (or Vacuum) Evaporation deposition

Thermal (or vacuum) evaporation is an old deposition process used for the formation
and growth of the thin film on the surface of solid materials. Where the vapors of the material
to be deposited are obtained by various methods of heating it: Joule effect, induction (a high-
frequency generator's coupling), electron gun, laser beam or electric arc. Evaporation is
carried out under high vacuum (pressures ranging from 107 to 10 Pa) in order to increase its
speed [11], hence in order to achieve homogeneous deposits and uniform thickness, it is
important to allow rotational or translational movement of the substrate to the evaporation
source [12]. He process is still beneficial in a contemporary environment and widely
applicable in the laboratory and industries for thin film deposition. The basic sequential steps
for thermal or vacuum evaporation are shown below:

e Steam is created by subjecting the target material to a very high temperature by
sublimation or boiling,

e The vapor ejected from the target material is transported to the substrate through a
vacuum,

e Condensation of vapor takes place to form a solid thin film on the surface of the
substrate, and additional repeatability of deposition cycles results in thin film growth and
nucleation
During the thermal evaporation process, the target material vaporized from the thermal
process sources gets to the substrate material with minimal interference. The process is often
carried out at a high vacuum pressure (HV), and the trajectory of the movement of the target
material to the substrate is a straight path trajectory termed line of sight [13]. Vapour flux is
created by heating the surface of source material to a sufficiently elevated temperature in a
vacuum. The flux can then condense to the surface of the substrate material to form a thin

film. The vacuum environment creates a safe zone to reduce gaseous contaminants in the

Bl



Chapter 11 : Deposition thechniques study on titanium dioxide

deposition process to an acceptable and minimal level and allows the evaporated atoms to
undergo essentially collisionless transport from the source onto the substrate.The thermal
vaporization rate might be very high compared to other PVD processes [13,14]. Tungsten
wire coils are commonly used as the source of the thermal heat or by using high energy
electron beam for heating the target material to an elevated temperature.

One of the most salient advantages of thermal vacuum evaporation is that it enables
fabrication of multilayer devices in which the thickness of each layer can be controlled easily,
in contrast to spin-coating , This combinatorial fabrication greatly enhances the efficiency of
systematic device fabrication aimed at optimizing the varied parameters.Consequently, the
thermal vacuum deposition technique is undergoing major developments. Where, Kido and
coworkers [15] have developed a linear deposition procedure with a constantly moving
substrate. In this design, the sources evaporate uniformly through long narrow parallel slits as

the substrate moves at a constant speed, resulting in uniform multilayer devices

‘ s”wr#? Holder ‘ Depaosited
Substrate 4 S THin Film

& Vaporized
Material

Target

Material w Evaporator

Heaoter

Figure 11.2. Scheme of thermal evaporation deposition [16].
11.3.1.1.2. Sputtering deposition

Sputtering is the thin film deposition manufacturing process at the core of today’s
semiconductors, disk drives, CDs, and optical devices industries. On an atomic level,
sputtering is a Physical vapor Deposition method, utilizing argon ions for bombarding a
cathodically connected target, made of the coating material, atoms of the target are knocked
out by the high energy ions and deposit on the substrate surface such as a silicon wafer, solar
panel or optical device [17]. Basically the steps of sputtering process are the following (see
Figure 11.3) :
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1-  The neutral gas is ionized by an external power supply, producing a glow
discharge or plasma

2- A source (the cathode, also called the target) is bombarded in high vacuum by gas
ions due to the potential drop acceleration in the cathode sheath

3- lons from the target are ejected by momentum transfer and diffuse through the
vacuum chamber

4-  lons are deposited on the substrate to be coated and form a thin film

The sputtering process begins when a substrate to be coated is placed in a vacuum chamber
containing an inert gas - usually Argon - and a negative charge is applied to a target source
material that will be deposited onto the substrate causing the plasma to glow .In addition that ,
free electrons flow from the negatively charged target source material in the plasma
environment, colliding with the outer electronic shell of the Argon gas atoms driving these
electrons off due to their like charge. The inert gas atoms become positively charged ions
attracted to the negatively charged target material at a very high velocity that “Sputters off”
atomic size particles from the target source material due to the momentum of the collisions.
These particles cross the vacuum deposition chamber of the sputter coater and are deposited
as a thin film of material on the surface of the substrate to be coated [18]. Several different
methods of physical vapor deposition are widely used in sputter coaters, including ion beam
and ion-assisted sputtering, reactive sputtering in an Oxygen gas environment, gas flow and

magnetron sputtering.

Substrate

Figure 11.3. Schematic of sputtering process [19].
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11.3.1.1.3. Laser ablation deposition

Laser ablation (PLD: Pulsed Laser Deposition) is a complex process. The laser
penetrates to the sample surface, depending on the wavelength of the laser and the refractive
index of the target material. Morever, it is a deposition technique that involves depositing
layers by ablating a target of the desired material using a pulsed laser [20]. This process took
off at the end of the 1980s with the first realization of thin layers of the new superconducting
material YBa2Cu304-6 with good crystalline quality, perfect control of stoichiometry and a
high critical temperature which had not been reached, laser ablation could achieve a
resolution around 25 nm [21].

The principle of laser ablation consist of placing the target and the substrate on which
the thin film will be deposited are placed facing each other in a vacuum chamber. Above the
ablation threshold, atoms, electrons, agglomerates and clusters are ejected from the surface
and a plasma appears which has a very strong particle density and high excitation
temperature. The laser fluence (energy per unit area) required to produce the plasma depends
on the target material, its morphology and the laser wavelength. The power can reach a few
tens, the plasma, generally referred to as the plume, is then condensed on a substrate heated to
a high temperature (500 <T <720 ° C) to ensure crystallization of the material [22]. The laser
ablation deposition process therefore involves the following steps (see Figure 11.4):

1

2

3

Interaction of the radiation with the target.

Dynamics of materials having undergone ablation.

Deposit of materials torn from the target on the substrate.

AN
1

Nucleation and growth of the thin film on the surface of the substrate.

Laser Beam Growing Nanctubes Cu Collector

: !

Nt

Furnace Argon Gas Graphite Target

Figure 11.4. Schematic diagram of laser ablation method [23].
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11.3.2. Chemical methods
11.3.2.1. Chemical vapor deposition (CVD)

The CVD technique is a versatile and quick method to produce high performance, high
purity solid materials. This process is often used in the semiconductor industry to produce
thin films. In a typical CVD process, the substrate is exposed to one or more gas phase
precursors, which react and / or decompose on the surface of the substrate to generate the
desired deposit. Where, the composition and morphology of layers varies depending on the
chosen precursors and substrate, temperature, chamber pressure, carrier gas flow rate, quantity
and ratio of source materials, and source-substrate distance for the CVD process. Atomic
layer deposition (ALD), a subclass of CVD, can provide further control of thin film
deposition through sequential, self-limiting reactions of precursors on a substrate [24].
Microfabrication processes widely use CVD to deposit materials in various forms:
monocrystalline, polycrystalline, amorphous, epitaxial. These materials include silicon, silica,
silicon germanium, silicon carbides, carbon diamond, fibers, nanofibers, filaments, carbon
nanotubes, tungsten, materials with high electrical permittivity, etc.

Generally, A thermally activated chemical vapor deposition (CVD) process involves seven
steps, Explained as follows:

1-  Transfer of material in the gas phase, from the inlet of the reactor to the surface of
the deposit, supply by convection (forced, natural) of the gaseous species to the
vicinity of the substrate.

2-  Gas phase reactions during transfer.

3-  Adsorption (dissociative or not) of the precursor gas on the surface of the solid.

4-  Diffusion of molecules adsorbed on the surface to the growth sites.

5-  Possible chemical reactions at the surface: incorporation of the atoms of the
deposit (nucleation -growth).

6-  Desorption of reaction products.

7-  Transfer of material from the reaction products from the deposition zone to the
outlet of the reactor; possible diffusion of atoms from the deposit to the substrate
(and vice versa) [25].

The variants of the process are:
S LPCVD (Low Pressure Chemical VVapor Deposition), it is the case of hot wall reactor

that it is heated directly.
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S PECVD (Plasma Enhanced Chemical Vapor Deposition) or PACVD (Plasma
Assisted Chemical Vapor Deposition).
< MOCVD: Metal-Organic Chimical Vapor Deposition.
The vapor deposition (CVD) scheme represented in Figure 11.5:

Pressure sensor

Heating zone

* -

Exhaust
Film Deposition

r
‘N

Gas precursor inlet

Figure 11.5. Shematic diagram of a chemical vapor deposition (CVD) systeme [26].
11.3.3. Spray pyrolysis technique

Spray pyrolysis is a low-cost and simple technique for the fabrication of high-quality
transparent and conducting oxide thin films for different optoelectronic applications. The first
introduction of the spray pyrolysis technique by Chamberlin and Skarman [27] in 1966 was
for the growth of CdS thin films for solar cell applications.Since then, the process has been
investigated with various materials, such as Indium Tim Oxide (ITO) [28], ZnO [29], ZrO>
[30] and others [31].

The principle of spray pyrolysis is which a solution of two or more reactive compounds
is vaporized and then sprayed with an atomizer on a heated substrate. The temperature of the
substrate permits the chemical reaction between the reactive chemicals and the substrate to be
thermally activated. The experiment can be performed either in air or in a controlled

atmosphere [32].

The general simplified scheme for spray pyrolysis deposition is shown in Figure I1.6,

where is displayed the three processing steps for spray pyrolysis deposition are :
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1-  Atomization of the precursor solution.

2-  Aerosol transport of the droplet.

3-  Droplet evaporation, spreading on the substrate, and drying and decomposition of
the precursor salt to initiate film growth.

Atomizer
Atomizer
control

Droplet transport |mechanism

Spray nozzle

Spray solution

Substrate

Temperature
controller

Figure 11.6. General schematic of a spray pyrolysis deposition process [33].
11.3.4. Sol-Gel method
11.3.4.1. Historical

The first “sol-gel” synthesis of a silicon glass was described by a French chemist JJ
EBELMEN in 1945. According to his observations, “under the action of a humid atmosphere,
a silicic ether gradually transforms into a mass. transparent solid which is none other than
silica comparable to the most limpid rock crystal “the* solgel ”process was born, Mendeleyev
[34] proposed the intervention of multiple condensation phenomena to form polysiloxanes of
strong masses, but the real beginning of sol-gel materials did not take place until the 1930s.
Coinciding with the recognition of the covalent model of polymers, making it possible to
establish the fundamental bases in the understanding of the mechanisms of hydrolysis and
condensation. But it was not until nearly a century that this idea was taken up by the glass
industry. The first “solgel” patent was filed in 1939 in Germany by Schott Glaswerke for the
production of mirrors. These mirrors, marketed in 1959, were followed by many other
products, in particular anti-reflective coatings which improve the optical properties of

building glazing.
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11.3.4.2. What is the Sol-Gel method ?

Sol gel is a method for producing solid materials from small molecules. The method is
used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium
(Ti).In addition, sol gel technique is a process for the development of materials allowing the
synthesis of glasses, ceramics and organo-mineral hybrid compounds, from precursors in
solution. It makes it possible to produce thin layers made up of stacks of metal oxide

nanoparticles.

The sol-gel method allows the production of a wide variety of oxides in different
configurations (monoliths, thin films, fibers, powders). This great diversity, both in materials
and in shaping, has made this process very attractive in technological fields such as optics
[35] electronics [36], biomaterials [37]. It also has the advantage of using a soft chemistry and
being able to lead to very pure and stoichiometric materials [38]. The basic principle of the
sol-gel process (corresponding to the abbreviation of "solution-gelation” is as follows: a
solution based on precursors in the liquid phase is transformed into a solid by a set of

chemical reactions of the polymerization type at ambient temperature (See Figure 11.7).

- (e
Gelation M
|
0
=
2 -
S Sol(solution) Polymeric gels
Sol-gel
oue |2 Hypercritcal
3‘2 — Aerogel
@0 drying
= Lc
939
ot :
28 Gelation Ageing
Sol (suspension Particulate
Solution of metal pariicles) gels
alkoxides Drying Xerogel
(precursors)
Inorganic Hydrolysis
~1 route : am_i —
Hydrolysed gelation
reagents mixture

Figure 11.7. Schematic diagram of sol-gel process [39].

38



Chapter 11 : Deposition thechniques study on titanium dioxide

The principle of the Sol-Gel route is to obtain inorganic materials in the form of films of
high optical quality from an organic solution. Obtaining a Sol-Gel film is carried out in three
stages as shown in the (Figure 11.8) [34]:

1- The first is the development of a metal alkoxide solution.

2- The second is the deposition of the solution, in the form of a thin layer, on a
substrate

3- The last step is the heat treatment of the gelled layer in order to remove organic
compounds and densify the film

Dense Film

Metal
Alkoxide:

Salutien

|

Hydrolysis
Polymerisation

Dense Ceramic|

Coating

Gelling
Extraction
of Salvent
Precipitating
wexg @
c C O P2
Spinning
Furnace

Figure 11.8. Different stages and routes of sol-gel synthesis [40].

11.3.4.3. The precursors

The precursors constituting “the soil” can be of two types. They are either colloidal
particles dispersed in a liquid, or organometallic precursors in solution in a solvent. What ever
its nature, the precursor is dissolved before being hydrolyzed. It is the polymerization of these
precursors that results in a solid three-dimensional network that is interconnected and stable

through the formation of M-O-M bonds. The system is then in the frozen state [41].

11.3.4.3.1. Inorganic or colloidal precursors

The aqueous solution of an inorganic salt is used. In this solution, the M ** cations are

picked up by polar H,O molecules. An (M — OH) @V * bond is formed when an electron from
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a saturated o orbital is transferred to a lower energy orbital and unsaturated. This in fact

resultsin the two partial reactions that follow:

M?* + (OH)" < (M—OH) @D+ (11.1)
(M—=OH) @&V* s (M=0) @2+ + H* (11.2)

According to the aforementioned reactions that in an acidic medium, by increasing the

pH of the solution, one of the following two types of ligands can be formed:

e Hydroxo ligand : (M- (OH)) @D+,
e AnOxo ligand : (M = Q) @2+,

Condensation reactions involving hydroxo (M- (OH))#%* ligands lead to the formation
of (M — OH — M) or (M — O — M) bonds. Note, however, that colloidal solutions and stable
gels can be obtained by keeping the pH constant. This route is mainly used in industrial
powder manufacturing processes [41].

11.3.4.3.2. Organic or polymeric precursor

The most widely used organic precursors are metal alkoxides of generic formula
M(OR); where M denotes a metal of valence Z and R a radical of an alkyl chain— (Cn Han +1).
Metal alkoxides must be of high purity and exhibit high solubility in a wide variety of
solvents. This condition of high solubility can generally only be achieved in organic solvents.
The main advantage of using organic precursors is that they allow a homogeneous and
intimate molecular mixture of different precursors in order to produce glasses and ceramics
with several components [41].

11.3.4.4. Reaction mechanisms

Metal alkoxides are first diluted in an organic solvent (usually alcohol). Their sol-gel
transformation (solidification) occurs through an inorganic polymerization mechanism
[42,43].

The chemical mechanism of transformation breaks down into two reactions:

¢ hydrolysis
% condensation of alkoxides.
11.3.4.4.1. Hydrolysis

In order for the alkoxides to condense at room temperature, hydrolysis of the —OR
groups must initiate the reaction process. This step is necessary to give rise to hydroxyl

groups —OH:
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M (OR) » + H20 — HO — M (OR) n.1 + ROH (11.3)

Figure (11.9) shows the hydrolysis steps for a metal alkoxide; a nucleophilic substitution
(step 1) on the metal atom with proton transfer (step 2) and departure of the leaving group
(step 3). Hydrolysis is a nucleophilic substitution of a ligand — OH for a ligand — OR. It is
accompanied by the intake of water as well as the ejection of alcohol. During this step, the

functionality of the precursor is created with respect to what is called polycondensation.
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Figure 11.9. Mechanism of hydrolysis of metal alkoxides M (OR)n [44].

11.3.4.4.2. The condensation

The condensation reaction, otherwise known as polymerization, is a complex
mechanism because four mechanisms (alkoxolation, oxolation, alcoholation, and isolation)
can compete for polymerization and formation of a MOM bridge. The relative importance of

each of the mechanisms depends on the experimental conditions.
a. Alkoxolation

The reaction occurs between two metal alkoxides, One of them is only partially

hydrolyzed. Its method of action is similar to that of hydrolysis. (Figure 11.10).

(RO)nx M(OH)x + M(OR)n —» (RO)nx(OH)x1M-O-M(OR)s1 + ROH (11.4)
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Figure 11.10. Mechanism of alkoxolation of metal alkoxide M(OR)n [44].
b. Oxolation

Between two partly hydrolyzed alkoxides, this mechanism occurs:

(RO)nx M(OH)x+(RO)n-y M(OH)y — (RO)nx(OH)x.1 M-O-M (OH)y-1(OR)n.y + H20 (11.5)
H
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Figure 11.11. Mechanism of oxolation of metal alkoxide M(OR)n [44].

C. Alcohol

This reaction does not depend on hydrolysis. Some terminal OR ligands (linked to a

single metal center) can act as a bridge between metal centers as shown by the following

reaction:
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2M (OR)n —» (RO)nM-OR-M (OR) 11 (11.6)
It is alcoholation that induces the molecular complexity of species during polymerization by
formation of oligomers before the addition of water. Before the hydrolysis step begins, it is

generally difficult to form molecules of large masses, this reaction being highly sensitive to
the steric hindrance of the system.
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Figure 11.12. Mechanism of alcohol of metal alkoxide M(OR)n [44].

d. Isolation

Unlike alcoholation, isolation requires prior hydrolysis of a metal alkoxide. It follows
the same mechanism as alcoholation except that the bridge formed is a hydroxyl bridge as

shown by the following reaction:

M- (OR) » + (OH) X-M (OR) nx — (OR) n M- (OH) - M- (OR) nx + (OH) x1 (I11.7)

H
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Figure 11.13. Mechanism of isolation of metal alkoxide M(OR)n [44].

11.3.4.4. The sol-gel transition

The pattern generally adopted for gelation is that of growing polymer chains which
agglomerate by polycondensation thus forming clusters [45]. At, as the hydrolysis and
condensation reactions progress, polymer clusters are created. When one of these clusters
reaches an infinite dimension, the viscosity also becomes infinite: this is the Sol-Gel transition

point [45]. The gel is generated when all of the linkages have been utilised. The solid cluster
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thus formed is actually an interweaving of macromolecular chains, forming an amorphous
solid structure. This structure still contains trapped liquid masses [46], their removal will
therefore require a light heat treatment. The morphologies of the polymer chains indicate:

0,

% That an acidic medium promotes hydrolysis, and the gel adopts a chain configuration
(reptal model).

% That a basic medium accelerates the condensation, and the gel adopts a configuration
in balls (spherical model).

The catalyst therefore acts directly on the microstructure of the material produced. This
factor will also play an important role in the porosity of the oxide, which will partially

condition the physical properties and therefore the usability of the material in the form of a
thin film.

On a macroscopic level, the transition can be followed by the mechanical behavior of
the solution. The solution's viscosity then rises as a result of this [47]. The evolution of the
viscosity of a sol, and that of its elastic constant are presented schematically in (Figure 11.14).
Where we notice that with the complete formation of the gel, the viscosity becomes infinite,
whereas the elastic constant approaches a finite value G Max. Like any chemical reaction, the
Sol-Gel transition is sensitive to its environment such as: temperature and humidity, which

can thus modify the kinetics of the reactions challenges.
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Figure 11.14. Evolution of the sol viscosity and the elastic constant of the gel, tg being the

time corresponding to the Sol-Gel transition [45].
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11.3.4.5. The different methods of thin film deposition by sol-gel
The sol-gel deposition can be carried out in two different ways.
11.3.4.5.1. Spin coating method

Spin coating is a procedure used to deposit uniform thin films onto flat substrates. This
method consists in depositing by centrifugation a solution deposited in excess on a substrate.
This technique has the advantage of being simple to implemented, for moderate investments.
It gives excellent results on flat substrates with dimensions of the order of cm? [48]. This
deposition method can be broken down into four phases shown schematically in (Figure
11.15).

1-  Deposition: during this step, the deposition of the solution on the substrate.

2-  Spin-up: is the start of rotation, this step causes the liquid to flow out of the

substrate.

3-  Spin-off : the constant speed rotation allows the ejection of the excess liquid in

the form of droplets and the reduction of the film thickness evenly.

4-  Evaporation: during this step, the evaporation of the most volatile solvents

accentuates the reduction in the thickness of the deposited film [41].
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Figure 11.15. Stages of spin-coating method : (1) Deposition, (1) Spin-up,

(1) Spin-off and (1) Evaporation [49].
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a. Advantages to the technique of spin coating

There is less loss of materials than with vapor-phase deposition.
It is a relatively inexpensive technique.
Aa spinning plate is far cheaper than a vacuum deposition system.

The spin-coating means we can quickly and easily deposit thin layers.

b. Disadvantages to the technique of spin coating:

possibility of the presence of contaminants (traces of solvent, oxygen, humidity,
etc.).

difficulty of accurately controlling the deposition (homogeneity, rugosity, etc.).

11.3.4.5.2. Dip-coating method

This method involves immersing the substrate in the solution and removing it at a

constant speed to obtain a film of uniform thickness. In addition, dip coating technique is

being easy to implement and it has the particularity of allowing layered deposits under a

magnetic field, which makes it possible to orient the magnetic nanoparticles within the matrix

thus formed.

The dip-coating process can be separated into five stages [50], (see Figure 11.16).

1-

2-

Immersion: The substrate is immersed in the solution of the coating material at a
constant speed (preferably jitter-free).

Start-up: The substrate has remained inside the solution for a while and is starting
to be pulled up.

Deposition: The thin layer deposits itself on the substrate while it is pulled up.
The withdrawing is carried out at a constant speed to avoid any jitters. The speed
determines the thickness of the coating (faster withdrawal gives thicker coating
material).

Drainage: Excess liquid will drain from the surface.

Evaporation: The solvent evaporates from the liquid, forming the thin layer. For
volatile solvents, such as alcohols, evaporation starts already during the deposition

and drainage steps.
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Figure 11.16. The different stages of the dip-coating technique [51].

11.3.4.6. What are advantages and disadvantages of the Sol-Gel method ?

a.

The advantage

Versatile: better control of the structure, including porosity and particle size,
possibility of incorporating nanoparticles and organic materials into sol-gel-
derived oxides.

Better homogeneity: due to mixing at the molecular level, high purity.

Simplicity of equipment and ease of use of the material where no need for special
or expensive equipment.

Films are easily anchored on the substrate bearing the complicated shapes and
large surfce area

Suitable for deposition on other substrates like stainless steel plate, aluminium
plates, silica glass rashing rings, glass wool.

Ability to generate thin layers of inorganic oxides on heat-sensitive surfaces at
low temperatures.

Less energy consumption: since the network structure may be formed at relatively
low temperatures near Tg, there is no need to attain the melting temperature.
Ability to optimize the morphology of films based on applications that have been
explored.

Easy to perform in the laboratory [52].
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b. The disadvantage

High cost of alkoxide precursors.
Delicate control of the process and long process times.

Handling a large amount of solvents [53].

11.3.4.7. Applications of sol-gel method

The materials resulting from sol-gel technology are found in four main industrial activities,

namely:

v

Chemical applications: which include the synthesis of powders, catalysts,
membranes, gas barrier, and repellent film.

Optical and photonic applications: which include fluorescence solar collector,
solar cell, laser element, light guide, optical switching, light amplification,
antiereflecting coatings, and non-linear optical effect (second generation).
Biochemical applications: which include the formulation of drugs, the
development of new treatments, cosmetic formulations, artificial bone tissues,
dentistry ... These applications, although few in number on the market, are
promised significant development. However, they will require the most severe
production constraints (GMP in the pharmaceutical sector).

Structural applications: for the manufacture of glass, ceramics, insulation,
refractory or composite materials, fibers, abrasives and coatings. Among these
materials, it is also necessary to include electronic applications for the synthesis of
dielectric, ferromagnetic and electro-chromic materials.

Thermal application : which include the refractory ceramics, fibers wood,
aerogels, and low expansion ceramics.

Mechanical application : which include the protection with hard coat, and strong
ceramics abrasive.

Electronique application (ferrolectricity electronic and ionic conduction) :
which include the capacitor, piezoelectric transfer, non-volatile memory,
transparent semiconductors, and solide electrolute (battery,fuel cell).

Biomedical application : which include the entrapment of enzyme, cell, coated

implant, and medical test [54].
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11.3.5. What is the difference between PVD and CVD?

Table (11.1) presents a comparison between some characteristics specific to the two

methods PVD and CVD.

Table 11.1. The difference between PVD and CVD method [55].

Process PVD CVvD
o PVD is physical vapour CVD is chemical vapour
Definition . -
deposition deposition
Coating Material Solide form Caseous form

Method

Atoms are moving and

depositing on the substrate

The gaseous molecules
will react with the

substrate

Deposition temperature

Deposits at a relatively low
temperature (around 250 °C-
450 °C)

Deposits at relatively high
temperatures in the range
of 450 °C to 1050 °C

Applications

o Suitable for coating tools
that are used in
applications that demand
a tough cutting edge

e TiN, TiAIN, TiCN and
CrN coating for cutting
tools;

e AlSn coating on engine
bearings, diamond like
coating for valve trains;

o Coating for forming tools;

e Anti-stick wear resistant
coating for injection
molds;

o Decorative coatings of
sanitary and door

hardware.

e Maily used for
depositing compound
protective coating

o Integrated circuits;

o Optoelectrical devices;

e Micromachines;

o Fine powders;

« Protective coatings;

o Solar cells; Refractory
coating for jet engine

turbine blades
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I1.4. Characterization techniques

In order to analyze and study the characterization titanium oxide (TiO2) thin films,
several characterization techniques are used such as structural, optical, electrical and surface
morphological characterization techniques. The nature of crystal structure and crystalline
quality of TiO2 thin films are studied using X-ray diffraction (XRD), Scanning electron
microscopy (SEM) is used to investigate the surface morphology as well as the optical quality
of thin film surfaces. In addition that, the optical characteristics have been studied from the
transmittance and absorbance using a UV-Visible spectrophotometer and fourier transform
infrared (FTIR). The Four point probe technique is carried out to study the measure electrical
resistivity and conductivity of the films. We now discuss the different techniques used to

characterized titanium oxide thin films.

11.4.1. X-ray diffraction (XRD)

X-ray diffraction (XRD) is an analytical technique based on the study of crystal
structure by diffraction of waves: X-rays or electrons. Diffraction depends on the structure
studied as well as the wavelength of the radiation used. Indeed, at optical wavelengths the
superposition of waves elastically scattered by the atoms of the crystal studied produces
classical optical refraction. When this is comparable to the parameters of the crystal lattice,

we observe several beams scattered in directions different from that of the incident beam [56].

. Principle of operation

In a crystal lattice, the arrangement of atoms is regular and periodic, the distance
between the atomic planes of a family of planes (hkl) is called the interreticular distance
(Figure 111.5). When a rigorously monochromatic x-ray beam (a single wavelength 1) interacts
with a solid, there is only diffraction if the atoms of that solid are ordered as a crystal lattice.
Part of the incident beam is diffracted by atoms at the same wavelength. If the scattered
radiation is in phase, the intensity of the re-emitted X-radiation will be observable and will
form a diffracted beam [57].
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Incident X-rays Diffracted X-rays

o ® ® L ® ® ® L

Figure 11.17. The principle of Bragg's law [57].

The directions in which the interferences are constructive, called "diffraction peaks”,

can be determined very simply by the following formula, known as Bragg's law [58]:
n A = 2dnk sin@ (11.8)

Where: n is the order of diffraction (whole number) , A is the wavelength of the x-rays, dh is
the spacing between consecutive parallel planes and 0 is the angle between the incident or

diffracted X-rays and the reticular plane.

For the structural characterization of our different thin layers we used the BRUKER-
AXS type D8 diffractometer, operating in Bragg - Brentano geometry, according to the

following conditions:

v' The X-ray source is produced by a copper anticathode, supplied by a voltage
generator - current of 40 kV — 40 mA.

v The X radiation used is copper Ka (ACua = 1.54056 A) obtained by a
monocrystalline germanium monochromator.

v' The sample is placed on a goniometric head.

v" The XRD spectra of the samples are recorded for 26 between 20 ° and 80 ° with a
step of 0.02 °.
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The identification of the phases and crystal structures of the sample can be done by
simply comparing the recorded spectra with the databases of the ASTM files.

11.4.1.1. Determination of the crystallite size (D)

The crystallite size (D) of the film is calculated using Scherrer’s formula [59]:

0.9A
- B.cos O (11.9)

Where: X is the wavelength of the x-ray, B is the full width at half maximum intensity in
radians (FWHM), and 6 is the Bragg angle.

100 A
;é
< g
z E
% 50 :
E =

Half maximum

Angle, 26 / degree

Figure 11.18. The definition of FWHM from the X-ray diffraction curve [60].

11.4.1.2. Determination of the lattice parameters (a,c)

The d-spacing and the lattice constants "a "and "c "of anatase TiO; films was calculated
from the given relation [61,62]:

ni
Anit = 3500 (11.10)
1 hZ+k? 12
- a2 + 2 (1.12)

Where: d is the lattice spacing of the crystal planes (h k I).
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11.4.1.3. Determination of the strain (€)

The strain (¢) was determined by using the relation [63] :

. =@ (11.12)

Where: B is the full width at half maximum (FWHM) of the peak and 0 is the Bragg’s angle.
11.4.1.4. Determination of the dislocation density (8)

The term "dislocation” refers to a crystallographic defect in materials science. It has an

inverse relation with crystallite size and is calculated by using the relation [64]:

5 = é (11.13)

11.4.1.5. Determination of the stress (o)

The residual stress in the plane of the film can be calculated quantitatively using
following expression [65]:

a=§ E (11.14)

Where : € is the strain, E represents Young’s modulus of TiO2 which is taken as 282.76
GPa [66.67].

11.4.1.6. Determination of the Specific Surface Area (SSA)

The surface states will play an important role in the nanoparticles, due to their large
surface to volume ratio with a decrease in particle size [68]. SSA is a material property. It is a
derived scientific value that can be used to determine the type and properties of a material. It
has a particular importance in case of adsorption, heterogeneous catalysis and reactions on
surfaces. SSA is the Surface Area (SA) per mass. Zhang et al. report, the specific surface area
and surface to volume ratio increase dramatically as the size of materials decreases. The high
surface area of TiO2 nanoparticles facilitates the reaction / interaction between TiO. based
devices and the interacting media, which mainly occurs on the surface or at the interface and
strongly depends on the surface area of the material [69]. Mathematically, SSA can be

calculated using formula [70]:
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3
SSA =22 (11.15)
D.p

Where : SSA are the specific surface area, D is the crystallite size, and p is the density of
TiO2(4.23 g.cm™®).
11.4.1.7. Determination of the volume of the unit cell (V)
The volume of the unit cell is evaluated by the relation [71]:
V=0.866.a.c (11.16)
Where : ‘a’ and ‘c’ is the lattice constant.
11.4.1.8. Determination of the X-ray density
X-ray density was assessed by using relation [72]:
X-ray density = 8M / N,.a® (11.17)

Where : M is the molecular weight, Na is the Avogadro number and ‘a’ is the lattice constant.

11.4.1.9. Determination of the degree of crystallinity (Xc)
The degree of crystallinity can be calculated using formula [72]:
Xc = (0.24/ B)? (11.18)
Where : B is the full with of half maximum of preferred orientation which is (101) in this case.

11.4.2. Scanning Electron Microscope (SEM)
11.4.2.1. What is a SEM ?

SEM stands for scanning electron microscope. The SEM is a microscope that uses
electrons instead of light to form an image. Since their development in the early 1950's,
scanning electron microscopes have developed new areas of study in the medical and physical
science communities. The SEM has allowed researchers to examine a much bigger variety of
specimens.SEM is widely used to investigate the microstructure and chemistry of a range of

materials.

The SEM has a large depth of field, which allows a large amount of the sample to be in
focus at one time. The SEM also produces images of high resolution, which means that
closely spaced features can be examined at a high magnification. Preparation of the samples is

relatively easy since most SEMs ony require the sample to be conductive. The combination of
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higher magnification, larger depth of focus, greater resolution, and ease of sample observation

makes the SEM one of the most heavily used instruments in research areas today [73].
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Figure 11.19. Schematic diagram of the core components of an SEM microscope [74].

11.4.2.2. How does a SEM work ?

The main components of the SEM include a source of electrons, electromagnetic lenses
to focus electrons, electron detectors, sample chambers, computers, and displays to view the
images. Electrons, produced at the top of the column, are accelerated downwards where they
passed through a combination of lenses and apertures to produce a fine beam of electrons
which hits the surface of the sample. The sample is mounted on a stage in the chamber area
and, unless the microscope is designed to operate at low vacuums, both the column and the
chamber are evacuated by a combination of pumps. The level of the vacuum will depend on
the design of the microscope. The electron beam hits the surface of the sample mounted on a
movable stage under vacuum. The sample surface is scanned by moving the electron-beam
coils. This beam scanning enables information about a defined area of the sample. The
interaction of the electron beam with the sample generates a number of signals, which can

then be detected by appropriate detectors [75].
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Figure 11.20. Schematic of a Scanning Electron Microscope [75].
11.4.2.3. What are advantages and disadvantages of the Scanning Electron Microscope ?

The advantages of SEM include the detailed three-dimensional (3D) topographical
imaging and the versatile information obtained from different detectors. The microscope is
easy to operate and associated software is user-friendly. The SEM is also widely used to
identify phases based on qualitative chemical analysis and/or crystalline structure. Precise
measurement of very small features and objects down to 50 nm in size is also accomplished
using the SEM. Backescattered electron images (BSE) can be used for rapid discrimination of
phases in multiphase samples. SEMs equipped with diffracted backscattered electron
detectors (EBSD) can be used to examine microfabric and crystallographic orientation in

many materials [73].

The disadvantages of SEM are its size and cost. SEM is expensive to operate. The
preparation of samples can result in artifacts. A critical disadvantage is that SEM is limited to
solid, inorganic samples small enough to fit inside a vacuum chamber that can handle

moderate vacuum pressure [73].
11.4.3. Fourier Transform Infrared Spectroscopy (FTIR)

11.43.1. Whatisa FTIR ?

Fourier transform infrared spectroscopy (FTIR) uses the mathematical process (Fourier

transform) to translate the raw data (interferogram) into the actual spectrum. FTIR analysis is
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used for the identification of organic, inorganic, and polymeric materials utilizing infrared
light for scanning the samples. Alterations in the characteristic pattern of absorption bands
clearly indicate a change in the material composition. FTIR is useful in identifying and
characterizing unknown materials, detecting contaminants in a material, finding additives, and

identifying decomposition and oxidation [76].
11.4.3.2. How does of Fourier transform infrared spectroscopy works ?

A typical FTIR spectrometer includes a source, sample cell, detector, amplifier, A/D
convertor, and a computer. Radiation from the sources reach the detector after it passes
through the interferometer. The signal is amplified and converted to a digital signal by the
A/D convertor and amplifier, after which the signal is transferred to the computer where the
Fourier transform is carried out. (Figure I1.21), shows the schematic diagram of FTIR

spectrometer.

Infrared radiation of about 10,000-100 cm™ is sent through the sample with part of the
radiation absorbed and some passing through. The radiation that is absorbed is converted by
the sample to vibrational or rotational energy. The resultant signal obtained at the detector is a
spectrum generally from 4000 to 400 cm, which represents the samples’ molecular
fingerprint. Every molecule has a unique fingerprint, which makes FTIR an invaluable tool

for chemical identification [77].
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Figure 11.21. Schematic diagram of FTIR [77].
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11.4.4. Ultraviolet - Visible Spectroscopy

UV-Visible spectroscopy is a method of non-destructive optical analysis that relies on
the transition from a ground state to an excited state of an electron, an atom or a molecule by

excitation by an electromagnetic wave.

The Principle of UV-Visible Spectroscopy is based on the absorption of ultraviolet light
or visible light by chemical compounds, which results in the production of distinct spectra.
Spectroscopy is based on the interaction between light and matter. When the matter absorbs

the light, it undergoes excitation and de-excitation, resulting in the production of a spectrum.

When matter absorbs ultraviolet radiation, the electrons present in it undergo excitation.
This causes them to jump from a ground state (an energy state with a relatively small amount
of energy associated with it) to an excited state (an energy state with a relatively large amount
of energy associated with it). It is important to note that the difference in the energies of the
ground state and the excited state of the electron is always equal to the amount of ultraviolet

radiation or visible radiation absorbed by it [78].
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Figure 11.22. The principle of operation of UV-visible Spectrophotometer [78].

11.4.4.1. Determination of Films’ thickness (d) (Swanepoel method)

On based the pattern of transmittance in the transparent region, we used the optical
interference fringes method to evaluate the thickness d of the TiO. films according to the

following relationship [79,80]:
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A2,

= —2(Kln2_lzn1) (11.19)
1
12
ng, = [(N1,2 + (Nf, —ngn2) 2] (11.20)
_ 2ngng(Ty—Ty) |, (n§+n?)
Nig= —7 1 — +— (11.21)

Where Tm and Twm are the minimum and maximum transmission for the same
wavelength, M is the number of oscillations between the two extreme; A1, n1 and A2, n, are the
corresponding wavelengths and indices of refraction, ns is the refractive index of the glass
substrate and no = 1 is the refractive index of the air.

11.4.4.2. Determination of absorption coefficients (a)

In the spectral domain where the light is absorbed, and knowing the thickness of the
layer, The absorption coefficient for each value of the transmittance T in (%) can be calculated
using the following expression [81]:

a=—1In (=) (11.22)

where T(%) is the transmittance, and can be directly measured by [81] :
T:£X1OO (11.23)

11.4.4.3. Determination of optical gap (EQ)
The optical gap is calculated using the Tauc model proposed, in which Eg is related to
the absorption coefficient a by [82]:

(ahv)"= A (hv-Ey) (11.24)

Where: hv is the photon energy, Eg is optical gap n and A are constants, n characterizes
the optical type of transition and takes the values 2, 1/2 (2 for allowed direct transitions or 1/2

for allowed indirect transitions).

Thus, if we plot (ahv)? as a function of the energy of a photon E = hv [ knowing that

hv (ev) = he / X (A) = 12400 / 1 (A)] and that I' we extrapolate the linear part of (ahv)? to the
x-axis (i.e. for (ahv)? = 0), we obtain the value of Eg [83], (Figure 11.23).
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Figure 11.23. Determination of optical gap (Eg) [83].

11.4.4.4. Determination of urbach energy (Eu)

The parameter which characterizes the disorder of the material is the tail energy of

Urbach (Eu). According to Urbach's law, the expression of the absorption coefficient is of the

form [84]:

o = 0. exp (:—:) and E, = (dd[;::;])_l (11.25)

where : ag is a constant and Eu is Urbach energy.

We can determine Eu value as the reciprocal of the linear part slope by plotting In (a)

versus hv (Figure 11.24):
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Figure 11.24. Determination of urbach energy (Eoo) [84].

11.4.5. Four point prob method with electrical caracterisation

The four-point technique can be used either for a thick material or for a thin layer

deposited on an insulating substrate or isolated by a junction.Apply the four points in a
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straight line to the film that has been deposited on the insulating substrate (glass). In the
configuration of the four aligned tips, the two external tips serve to bring the current | while
the two internal tips allow the measurement of the potential difference U. These electrodes are
arranged equidistantly and have a distance "d " (Figure 11.25).

When the distance a between the terminals is significantly more than the thin film's
thickness, i.e. e << d (the thickness is negligible compared to the other dimensions), the
lateral dimensions can be considered as infinite. In this case, a two-dimensional conduction

model is used "a cylindrical propagation of field lines in the thin film™ and gives [85].

=K

- (11.26)

(U S

Where : p is the resistivity of the layer, e is the thickness, and k is coefficient (K = %).

The E ratio characterizing the layer is denoted Rs and is expressed in Q.

With a coefficient K ready, Rs is the ratio between the voltage U and the current I. From
the previous considerations, using the following relationship, we can calculate the resistivity

of the four point measurement knowing the thickness:

p = (L:;l).e =Rs.e (1.27)

So, the conductivity is given by the following expression:

1
o=" (11.28)

¥

BRSO

O,

)

e

Figure 11.25. Schematic representation of a four-point probe in contact with a conductive plate [86].
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Chapter 111 : Effect of the number of layers and the mixed solvent on structural, optical
and electrical properties of spin-coated TiO; thin films

I11.1. Effect of the number of layers

111.1.1. Introduction

The aim of this work is to develop titanium oxide (TiO2) thin films, deposited by the
sol-gel method (spin-caoting) on substrates of glass using titanium (1V) isopropoxide as a
precursor. Analysis and discussion of the results concern the influence of the number of

layers, on the structural, optical and electrical properties of the layers produced.

111.1.2. Experimental details
111.1.2.1. Apparatus used (Spin coater)

The deposition of thin layers of TiO2 by the Sol-gel route is carried out using a
spin coater device designed and produced at the level of the thin film laboratory. The
substrate is placed and held by vacuum on a turntable at a constant speed in order to spread
the deposited material (in gel form) uniformly by centrifugal force. The machine used for this

operation are shown in Figure 111.1:

Figure 111.1. Holmarc spin coater.

111.1.3. Preparation of the substrate
111.1.3.1. Choice of substrate

The substrates are industrial glass slides; with a refractive index of 1.52 and a square area of

2.5 x 2.5 cm diamond tip.

e Glass is the most often selected substrate.
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e Itallows films’ a good optical characterization.
e After deposition, the sample (substrate + layer) will undergo cooling to room
temperature which causes compressibility of the two materials constituting the sample.

e Financial cost.
111.1.3.2. Cleaning of the substrate

The quality of the sample deposition depends on the cleanliness and surface condition
of the substrate. The cleaning of the substrates is a very important step which is carried out in
a clean place, because this step determines the qualities of adhesion and homogeneity of the
deposited layers. The process used for cleaning glass substrates is described by the following
steps:

e The substrates are cut using a pen with diamond point.

e Cleaning with soap solution.

¢ Rinsing with the distilled water and then with acetone during 5 min.
e Rinsing with distilled water.

e Rising with methanol during 5 min at ambient temperature.

e Cleaning in distilled water bath.

e Drying using a drier.

I11.1.4. Materials and TiO: thin film preparation

Titanium oxide (TiO2) thin films were deposited by using sol-gel spin coating process.
Sol-gel method considered as a facile process for the fabrication high quality thin films of
metal oxide materials which is easy to synthesize of thin films in bulk with different layers
with sufficiently demonstrate physical and chemical properties. It was prepared a starting
solution with a concentration of 0.2 (mol/l) and a pH = 6 was prepared by dissolving 0.605 ml
of titanium tetra and distilled iso-prop-oxide (TTIP) as the solutein 10 ml of ethanol which
was used as a solvent and 0.210 ml of acetyl acetone as a catalyst. The prepared mixture
solution was maintained under agitation at a temperature of 50 °C for 3 hours. This solution is
transparent yellowish color and slightly viscous. Soda-lime glass plates (2.5%2.5x 0.15 cm®)
are used as the substrates, which it was cleaned with ethanol, acetone water during 5 min into
each process and subsequently dried in air. The precursor solution was deposited on clean
substrates using a spin coating system, and then the prepared solution were injected onto the

center of the glass substrate, and it was rotated at a spinning speed of 4000 rpm for 30 s. After
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30 s, the deposited films were dried at 250 °C for 10 min in a furnace to evaporate the organic
solvent. This step was repeated for (3-5-7-11-13-15 times) in order to obtain a multilayer
film. Finally, TiO2 films were calcined for 2 h at 500 °C in the furnace. The schematic
diagram of the process used in the preparation of the TiOz thin films is illustrated in Figure
1.2

Deposited Solution
| U
Starting Solution
> f__/JL TiO: thin films

Glass
Pre-heating
(250°C for 10 min)

Substrate
J Using spin coater

Repeating 3,5,7, 9,11, 13
and 15 times

11t
LS

Annealing the films at
500°C for 2h

Figure 111.2. Schematic diagram of the preparation steps of TiO thin film procedure at

different number of spin-coated layers.

I11.1.5. Characterization methods

The synthesized structural, optical and electrical properties of TiO. films were
characterized using various techniques. Firstly, the structure of the prepared films was
acquired by X-ray diffractometer (XRD) spectra (Model: Bruker D8) using Cu Ko (A =1.5418
A) radiation within the 26 range of 10° — 90°, with the steps of 0.02°. Besides, Perkin Elmer
Lambda 950 UV/VIS spectrometer using a blank substrate as the reference position examined
the optical properties of deposited thin film (film thickness, transmittance, gap energy,
Urbach energy, refractive index) ranging from 300 to 1100 nm. Furthermore, the FT-IR
spectra were obtained with a Fourier transform infrared spectrometer (Perkin Elmer UATR

Two). The scanning wavelength of infrared was 400 — 4000 cm™. Finally, four-point method,
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using“KEYSIGHT B1500A Semiconductor Device Analyzer” and “CPS PROBE STATION”
apparatus at room temperature was performed to estimate the electrical resistivity.

111.1.6. Results and discussion
111.1.6.1. Adhesion test

Bibliographic research on adhesion tests for thin layers shows that there are a great
many works on adhesion verification, which is justified by the growing interest in this field of
activity. Adhesion, although not directly part of the desired properties, is an important
parameter in the reliability of the deposited layer. Adhesion characterizes the behavior of a set
of two materials united by adhesion, which represents the surface bond of one material to
another.

Two main families of tests can be distinguished; the test that damages the sample
“destructive methods”, and that which keeps the sample intact “non-destructive methods”,
But as long as we do not have this type of expensive material at our disposal. The adhesive
strength between the films and the substrates was tested using the Scotch tape test on the
deposited films before any characterization on the as prepared and heat treated films.
Adhesion strength is generally deemed "excellent” if the film sticks to the substrate and does
not rip away from it. In our search. In our research, we found that our layer adhered well to

the substrate in all films.

111.1.6.2. Thin Film Thickness

Based on the pattern of transmittance in the transparent region, we used the optical
interference fringes method to evaluate the thickness d of the TiO; films according to the
relationship (11.15).

The film thickness verses number of layers of TiO> thin films are shown in Figure I11.3
As expected from the Figure 111.3, the films thickness increases with number of layers, from
about 243.72 nm for 3 layers to around 1543.83 nm for 15 layers. This increase in film
thickness is reasonable due to the increase in the quantity of the deposited material. Similar
results behaviour have been reported by other works [1,2]. Indeed, it is well argued in thin
film growth mechanism that the film formation passes through three steps : (i) nucleation (ii)
cross linking and finally vertical growth .The two first steps are controlled by the substrate

temperature, while the vertical growth increases with the deposition time, i.e film thickness.
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The vertical growth is also called columnar growth, hence the top of the film surface is
composed by aggregation formed by the column, this is at the origin of agglomeration and

clusters on the top surface and surface roughness.

|—m— Thickness (hnm)|

1600
1400—-
1200—-
1000—-

800 +

Thickness (nm)

600
400 +

200

2 4 6 8 10 12 14 16

Number of TiO, layers

Figure 111.3. The thickness of the TiO; thin film as a function of the number
of spin-coated layers.

111.1.6.3. Structural properties

The XRD patterns of TiO2 films grown at various number of layers are illustrated in
Figure I11.4. Generally, titanium dioxide can crystallizes in three different phases: rutile,
anatase and brookite [3]. Rutile is the most stable one, while the other two phases are
metastable which can transform into rutile when heated [4,5]. As shown from Figure 111.4, the
XRD results indicated that the films have a single anatase phase (JCPDS card No. 21-1272)
[6], where as no other phases are revealed (rutile or brookite). Similar structure phase was
observed by other literature [7,8]. From XRD results, it is noteworthy that at up to 9 layers
one peak located at 26 = 25.35° assigned to (101) diffraction plane. While, over 11 layers
three peaks have obtained at 26 values equal to 25.35°, 37.93°and 48.11° with (101), (004)
and (200) planes of reflections, respectively. Furthermore, as shown in Figure 111.4, all
samples have only preferred orientation growth along the (101) plane, which can be attributed
to the minimal value of the free surface energy for this plane [9]. That gives the atoms
sufficient mobility to move to positions of less energy leading to the highest atomic density
achieved along the (101) direction [10,11]. In addition, as the number of layers increase, the

intensity of (101) peak is enhanced, indicating improved the crystallinity of the TiO: thin
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films with increasing number of layers. However, at large number of layers, the diffraction
angle (101) of TiO: thin films has shifted of 0.04° to 0.15°, this may originate from the
occurrence of residual stresses in the films, reflected to change in d-spacing of a typical (101)

plane.

1800 = _ _ A: Anatase
1600 < = g
| < < 15 Layers
1400
— ]
‘:E:. 1200
\; 1 13 Layers
.'l: 1000 =
U) g
S 800 A 11 Layers
H -
c
600 1 h 9 Layers
400 h 7 Layers
200 h 5 Layers
] 3 Layers
0 1 *nmww

T T T T T T T T T T T T T T T T T

10 20 30 40 50 60 70 80 90

26 (°)

Figure 111.4. XRD patterns of TiO; thin film with different number of spin-coated layers.

Can be estimated that the crystallite size using the well known debye-scherrer equation
(11.9). In addition, the dislocation density (8) and lattice strain (&) have also been estimated for
all the films by applying relations (I11.13) and (11.12).

The variation of crystallite size, dislocation density and the strain with number of layers
of TiO2 films are represented in Table I11.1 and Figure 111.5. As can be seen from these values,
the crystallite sizes increases when the number of layers increase, while, the strain decreases.
Lin et al. [12] also reported the same increases of crystallite size for ZnO films with different
thicknesses. This may be due to the collectively fusion of small crystallite into the bigger
crystallites, as the result, the density of nucleation centers in films decrease which in turn

generates of internal strain [13,14].
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Figure 111.5. Crystallite size and strain of TiO, thin film as a function of the number of

spin-coated layers.

Table 111.1: Crystallite sizes, dislocation density and strain values of TiO; thin films extracted from
XRD analysis at different number of spin-coated layers.

Number of Peak 20° FWHM D (nm) & x10" (Lines /m?) £x107°

Layers (hkl) (B°)
3 (101) 25.40 0.53 15.31 4.26 6.03
5 (101) 25.38 0.51 15.78 4.01 5.84
7 (101) 25.20 0.50 16.04 3.88 5.77
9 (101) 25.35 0.48 16.55 3.65 5.64
11 (101) 25.32 0.47 16.74 3.56 5.51
13 (101) 25.42 0.46 17.64 3.21 5.25
15 (101) 25.43 0.45 18.03 3.07 5.12

The d-spacing and the lattice constants a and ¢ of anatase TiO; films was calculated
from the given relation (I11.11) and the residual stress in the plane of the film can be calculated
quantitatively using expression (11.14). The obtained structural parameters for the deposition
of TiOzare provided in Table 111.2.

The values of residual stress of TiOz thin films deposited at various number of layers

are illustrated at Figure I11.6. We can deduce from Figure I11.6 that the residual stress of the
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films prepared at number of layers 3, 5, 9, 11, 13 and 15 have a compressive stress. In
contrast, the films deposited at number of layers 7 were found to have a tensile stress. These
obtained results are in good agreement with those published in other works [15,16]. This
variation in residual stress can be related to lattice mismatch, and the different thermal
expansion coefficients between the films and the substrates [17,18].

1,0
0,8 ]

0,6 4

04 1 Tensile

02 T /\ Number of layer
0,0 : : : —
10 12

14 16

4

024

-0,4

Compressive

-0,6

Residual Stress (GPa)

-0,8

-1,0 2

Figure 111.6. The residual stress of TiO- thin film as a function of the number of

spin-coated layers.

Table 111.2. Structural parameters information of prepared TiO- thin films for different number of

spin-coated layers.

Number hkl 20 Calculated parameters Reference  Stress

of planes (degree) d-spacing Lattice Lattice parameter  (Gpa)
Layers (A) constant constant (JCPDS card
a(A) c(A) No 21-1272)

3 (101) 25.40 3.5027 3.7681 9.5006 -0.852

5 (101) 25.38 3.5062 3.7760 9.4860 -0.825

7 (101) 25.20 3.5301 3.8017 9.5105 a =3.7852 A 0.815

9 (101) 25.35 3.5099 3.7785 9.4790 Co=9.5135A -0.797

11 (101) 25.32 3.5134 3.7834 9.4716 do=3521A -0.779

13 (101) 25.42 3.5010 3.7676 9.4757 20=25.28° -0.742

15 (101) 25.43 3.4993 3.7649 9.4848 -0.723
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111.1.6.4. Optical properties

The effect of number of layers on the optical transmittance spectra of TiO> thin films in
the wavelength range of 300 — 1100 nm for the all samples are presented in Figure 111.7. As it
is shown transmittance spectrum can be divided in to two prominent regions: first region have
a high absorption (A< 385 nm), this is caused by the fundamental absorption of the light in
thin films of TiO2; which is meant to the electronic transition between valence and conduction
band of TiO> [19]. Furthermore, it should be mentioned that the absorption edge shifts
towards longer wavelength (i.e. red shift) with increasing numbers of layers (see the insert
image in Figure I11.7), which suggesting to narrowing the band gap energy of our films.
Second region of strong transmittance, it is higher than 70% in the visible region (400 — 800
nm) for all films. Since the excellent optical transmittance, these films can be useful for
optical coating applications like: anti-reflective, wavelength-selective films and UV-protected
films for optoelectronic devices [20]. Also, all the deposited films have interference fringes in
the visible region owing to the difference of the refractive index value between air-film and
film-substrate interfaces [21]. Additionally, the transmittance of the films decreases with

increasing the number of layers caused by the increased in the films thickness.
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Figure 111.7. Optical transmittance of TiO; thin film at various number of spin-coated

layers.
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The optical band gap energy of 3, 5, 7, 9, 11, 13 and 15 layers of TiO> thin films is
deduced d by plotting a curve between (chv)? and (hv) as shown in Figure I11.8. The Tauc’s
equation was used to determine the band gap energy, according to the following relation
(11.20).

The Urbach energy (band tail width), (Eu) is the disorder in film network. It is
determined using the expressions (11.21).

The calculated optical band gap energy and the Urbach energy for 3, 5, 7, 9, 11, 13 and
15 layers of TiOz thin films are summarized in Table I11.3. These results indicate that the band
gap energy (Eg) decreases from 3.67 to 3.52 eV as the number of layers increases. In contrast,
the Urbach energy increases from 0.288 to 0.315 eV with increasing the number of layers.
These obtained values are in good agreement with the previously reported values [22,23]. The
gradual decrease in the band gap energy is related to the quantum confinement effect caused
by the crystallite sizes enlargement [24,25], which is correlated to low band gap energy. In
other side, the increase of the band tail width (Eu) can be attributed to the increase of the

density of oxygen vacancy atoms into the TiO2 film [26,27].
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Figure 111.8. The