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Notations and Conventions

Notations

0; = 2 : partial differentiation with respect to z;.
ox;

C™(Q)) : Space of m-times continuously differentiable functions on €2 , for m € R.

LP(Q)) : Space of the integrable functions on €2 with respect to the Lebesgue mesure

dx , for p € [1,+o0].

L>(§2) : Space of bounded functions on §2.

H™() : Sobolev Space of order m , for m € N.

H{(2) : Space of functions in H'(£2) vanishing on the boundary .

|l.llv : The norm in the space V' .

|.]y : Semi-norm (which may be a norm ) .

(n;) : 9Q — R3 : Unit outer normal vector along the boundary 92 of € .
70 . Bijection from on Q on to .

% (u’®) = (e5(u’%)) : Linearized strain tensor .

be

0% = (0%

ij) : Stress tensor.

— @ Strong convergence.



Notations and Conventions

e — : Weak convergence.

(i) Latin indices and exponents: i, j,...., take their values in the set {1,2,3}, unless

otherwise indicated, as when they are used for indexing sequences.
(ii) Greek indices and exponents: «, 3, ..., excepte, take their values in the set {1,2}.
(iii) The repeated index summation convention is systematically used in conjunction

with rules (i) and (ii).

Conventions

e Plate mid-surface limit displacements:

For every V belonging to Dy, V = (Vin, V3) = (V1, Vs, Vs) define the symmetric
matrix Ey (V) as
En(V) Ep(V) 0
Ex(V) =1 En(V) En(V) 0
0 0 0
Where
E.s(V) = eas(Vin) — 623h0* V302,015

e The warping displacements:

Set 1
W= {y’e H'(-1,1) | / VW (ys)dys = 0}
-1

For every v° € L?(w, W), define the symmetric matrix F,(v°) by

190}
0 0 3%

0

E,%=| o ¢ 192
2 y3

1 81)(1) 1 02;(1) (%g
2y3 2y3 Oys
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Notations and Conventions

e The microscopic displacements or the limit periodic cell displacements:

Set
Hper(y> = {925 S HI(Y) ’ ¢\y1:0 = ¢|y1:17 ¢\y2:0 = ¢\y2:1}

D={t €Hper(YV)| [ ©(yys)dy =0 forace. ys e (—1,1)}
Yl

where Y =Y’ x (—1,1). Introduce the symetric tensor

i n oWy | O
e11y (V) 12, (1) s ( 3 4 (;?f;)
SWI=1 eny(¥) eny(@)  3(28+52)
1 Oy 0y 1 Vs 0y 3_@3
2 < + 8y3> 2 ( T 33/3) Oy3

vii




Introduction

The theory of thin structures like plates, shallow shells, shells and junctions between
them, originated in the need on the part of engineers for tractable models to analyze
and predict the response of thin structures to various kinds of loading. The basic
idea is to exploit the thinness of the structure to represent the mechanics of the
actual thin three-dimensional body under consideration by a more tractable two-
dimensional theory associated with an interior surface. In this way, the relatively
complex three-dimensional continuum mechanics of the thin body is replaced by a
far more tractable two-dimensional theory. To ensure that the resulting model is
predictive, it is necessary to compensate for this ‘dimension reduction’ by assigning
additional kinematical and dynamical descriptors to the surface whose deformations
are modeled by the simpler two-dimensional theory. An efficient method for obtain-
ing dimension reduction in thin 3D structures is the asymptotic method developed

by Ciarlet and Destuynder.

For thin elastic plates, there are several models used to describe their behavior,
each with different assumptions and levels of complexity. Some of the most common

models are:
Kirchhoff-Love model, Reissner-Mindlin model, Donnell model, Viasov model.

Each of these models has its own advantages and limitations, and the choice of

model depends on the specific application and the level of accuracy required.

viil



Introduction

In our study, we are interested in the asymptotic behavior of a thin elastic plate
of variable thickness with a heterogeneous periodic structure, within the framework
of classical linear elasticity. In this case, the thickness depends on the microscopic
and macroscopic scales. Then the effective behavior of the plate is influenced by
the variations in thickness across the structure which can lead to non-uniform stress

and strain distributions throughout the plate.

For example, in a plate with a thicker region, the stiffness and strength of that re-
gion will be greater than those of a thinner region. This can lead to a concentration
of stress and strain in the thinner region, which may result in localized deformation
or failure. Moreover, the variations in thickness can also affect the natural frequen-
cies and modes of vibration of the plate. This can be particularly important in
applications where vibration control is critical, such as in aerospace or automotive

engineering.

Periodic plates with variable thickness have a wide range of potential applications
in various fields, including engineering, materials science, and physics. Here are a

few examples:

1. Aerospace engineering: In the design of lightweight and high-strength struc-
tures for aerospace applications, such as aircraft wings and fuselages. By varying
the thickness of the plate in a periodic manner, it is possible to achieve a favorable
balance between stiffness, strength, and weight, which is crucial for optimizing the

performance of aerospace structures.

2. Metamaterials: To design metamaterials with unique mechanical properties,
such as negative Poisson’s ratio, which have potential applications in areas such as

vibration damping, energy absorption, and acoustic insulation.

3. Biomechanics: The design of artificial bone implants. By varying the thickness
of the plate in a periodic manner, it is possible to mimic the natural structure of

bone, which has a complex hierarchical structure with variations in thickness and

X



Introduction

density.

4. Energy harvesting: To design energy harvesting devices, such as piezoelectric
plates. By varying the thickness of the plate in a periodic manner, it is possible to

optimize the energy harvesting properties of the plate and increase its efficiency.

Homogenization is a collection of methods to approximate a heteroge-

neous problem by homogeneous one.

Classicaly, the theory of homogenization studies the behavior of a model (typically,
a PDE or an energy functional) with heterogeneous coefficients that periodically

oscillate on a small scale, say ¢.

There are different methods of homogenization:

Two scale asymptotic expansions method for periodic media.
— H or G convergence method for general media.

— Stochastic homogenization.

Variational methods (I' - convergence).
— Two-scale convergence method.

— Unfoding method.

The homogenization of periodic structures has been a topic of interest in the field
of mechanics, as it allows us to study the effective behavior of materials composed
of a large number of small substructures. One challenge in homogenizing of peri-
odic plates with variable thickness is that the thickness variations can cause stress

concentrations, which can significantly affect the overall behavior of the structure.

The periodic unfolding method is a powerful technique for studying the homoge-
nization of periodic structures. The main idea is the introduction of an operator 7,
which maps a function ¢. defined on a finely structured periodic domain 2, C R"

to a function 7.(¢.) defined on a fixed domain 2 X Y even for varying e, where



Introduction

Y =]0,1[" is the periodicity cell. Thus, we may use standard convergence results

from functional analysis. For more details we refer to [3].

In this Master thesis, we investigate the homogenization of periodic plates with
variable thickness using the unfolding method. We consider a periodic plate with a
periodicity in two dimensions, and we assume that the thickness of the plate depends
on the local and global variables. Our goal is to derive the effective behavior of the

plate, which can be described by an equivalent homogeneous plate.

We begin by introducing the basic concepts of the unfolding method and its appli-
cation to the homogenization of periodic structures. We then derive the equations
governing the behavior of the periodic plate with variable thickness using the new
"decomposition for the plate displacements" proposed by Griso (see [3]), and at the
end we explain how to apply the unfolding method to homogenize the heterogeneous

plate where plate thickness and period size are of the same order of magnitude.

X1



Chapter 1

The Unfolding Method :




1.1.

THE UNFOLDING OPERATOR 7T

This chapter will tackle the new methods that gained the scientists’ interest for
study the asymptotic behavior and the homogenization of structures formed by large
numbers of rods, plates or shells, which is the Unfolding Method . It starts with
the cell Y C R™ which is defined from the set of macroscopic periods attached to
the considered problem. Next, we will define three operators intimately connected
to the €Y -tiling of the domain, are define for measurable functions and functions in
a Lebesgue space.

In the first section will tackle the first operator which is Unfolding Operator
7T-. By the following definition, the operator 7. associates to any function u € LP(£2),
a function 7:(u) € LP(Q2 x Y). An immediate property of 7: is that it enables to

transform any integral over €2 in an integral over €2 x Y. It is given as follows,

/ u(z)dz ~ 1 Tou(x,y)dxdy, Vu e L'(Q). (1.1)
Q |Y’ QxY

1.1 The Unfolding operator 7:

Let  an open set of R™ ;n > 2, and let Y =]0, b1[X....x]0, b, [ , where (b1, ..., b,) €
R", be a reference cell. Let € R" | we denote by [z],- the integer part of z with
respect to cell Y. This is the unique integer combination (ki,...,%,) such that
Z;.VZI k;b; belongs to Y. For all z € R", we define {z},, = 2 — [z]y, € Y, it is the
fractional part of z with respect to Y.

Then for each x € R", one has:

r=c <[gy + {g}y) a.e. for r € R™.



1.1. THE UNFOLDING OPERATOR 7:
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Figure 1.1: Definition of [z]y and {z},

For 2 a domain in R", consider a covering using the notations:
)

E.={{eZ" (£+Y)CQ},

~

¢ Q. = interior {gu_ e(¢ +7)} :
ECe

Ao = O\

The following figure will show these sets:

Figure 1.2: The domains @E and A,



1.1.

THE UNFOLDING OPERATOR 7T

The set €, is the largest subset of cells €Y contained in €2 , while A, is the subset
of Q containing the cells €Y which intersect the boundary of 2 (See Figure 1.2).
Such that if Q = RY and 99 is bounded , the subset A, is a null set and we can

write:

|Ae| = measure(A:) — 0.

Definition 1.1 (The Unfolding operator 7).

For ¢ Lebesgue —measurable on @s , the unfolding operator T; is defined as follows

gzﬁ(a E]y+6y> for ae. (z,y) € xY

0 for a.e. (z,y) €A xY,

Ted(z,y) = (1.3)

For this definition it is obvious that T. is a linear operator (See[l]). Moreover it

verifies a number of properties:

p

(1) Te(uwv) =To(w)Tz(v),  for w and v Lebesque-measurable

(i) T-(0) (2, {£},) = é(2),

(1it)  T(@) (z,y) = o(y), for all ¢ € LP(Y') Y-periodic on R™

\

Proposition 1.1.

For every ¢ € L*(Q.), ¢ € LX(Q), the operator T: is linear and continuous from

Lp(ﬁg) to LP(2 x Y') for all p € [1,400[, and satisfy the following properties:

(

(i) [fode = i foy T()dady| < [, |0lda,

e l
(@i1) || Tz(w)||raxy) < Y7 ||l o)

(iv) Vy(To(u)) =eT(Vou), for allu € WH(Q).

\




1.1.

THE UNFOLDING OPERATOR 7T

Proof. See (]3], p11). [ ]

Definition 1.2 (The mean value operator My ).
For p € [1,+00]|, the mean value operator My : LP(Q2 X Y) — LP(Q), is defined

for ¢ in LP(Q xY), as follows :
1
My (p)(z) = m/ o(x,y)dy for a.e. x €€, (1.4)
Y
which satisfy the following estimate:

_1
My (D)llzr@) < YT 7 [lloll r@x-

Proposition 1.2.

For f measurable on'Y , extended by Y —periodicity to the whole of RY, define the

sequence { f-}. by
fe(x)=f <g> for a.e z € RY.

Then

-~

fly) fora.e (x,y)€ Q. XY,
7; (fz—:\Q) (l’, y) =
0 for a.e. (z,y) €. xY.

If f belongs to LP(Y') , p € [1,+00[ , and if Q is bounded ,
T: (fan) — [ strongly in LP(Q x Y). (1.5)

Then

feo = My (f) weakly in L, (S2). (1.6)

loc

Furthermore, this convergence is strong if and only if f is constant.

Proof. of the convergence (1.5) and (1.6) , See (3], p.9, p.14) |



1.2. THE LOCAL AVERAGE OPERATOR

1.1.1 Unfolding operator and Limits convention:

Proposition 1.3 ([3]).

Let p € [1,+00]. Suppose that a sequence {u.}_ is bounded in LP(2) and v € LI(2),

1,1 _
wherez—)—l—a—l.

(i) If lim._,, fAE uzvdr = 0, then

/ we@o(@)de — — [ Te(u) @) Te0) (e y)dady — 0. (L7)
Q |Y| QOxY

(i) T-(u) — u strongly in LP(2).

(i1i)  If {u.} strongly convergence to u in LP(QQ), then
To(us) — u  strongly in LP(Q xY),

and the same for the weak convergence of this sequence.

(iv) If there exists a function u € LP(Q X Y'), such that :
To(u:) = u  weakly in LP(Q xY),

then

ue = My (u) weakly in LP(S2).

1.2 The local average operator

Definition 1.3 (The local average operator).

Let p € [1,+00] and p € LP(Q x Y'), we defined the local average operator



1.3. THE AVERAGING OPERATOR

M. LP(Q) — LP(Q), as follows:

%Y gfy—i—sz dz ifﬁl’eﬁsa
IVREIET L

0 if v € A,

where Q. and A, are defined in (1.2).

And we can show the connection between M, and the operator Tz, as follows:

T () y) = My o To(p).

It is easily seen that: M,oM.=M., and T.oM.,= M..
and satisfy:

IMe(@)llzr@) < llellre)- (1.8)

Proof. See (3], p-18) n

1.3 The averaging operator

The adjoint of 7; is the averaging operator A, defined as follows:

Definition 1.4 (The Averaging Operator).
For p € [1,400] the averaging operator A, : LP(2xY) — LP(Q2) s defined as

follows:

L fel(e 2], +ez,{L},) dz for a.e. z € Q.,
Ao = TP E b e Eh)

0 for a.e. x € A..

From this definition we can remark:

o(z)  for ae. x € Q.,
A (Te(0)) (x) =
0 for a.e. x € A..



1.4. UNFOLDING AND GRADIENTS

Then

) ~
+ Jy e (e [f} +ez,y)dz  forae (z,y) € XY,
To(A() ) =4 T

0 for a.e. (z,y) € A, x Y.

Let us recall some convergence properties of this operator.

Proposition 1.4.

Let p € [1, 400 and ¢ € LP(2 X Y'), one has
o Let {¢.}. be a sequence such that o, — ¢ weakly in LP(Q2 X Y'), then

4

(1) Ac(p) = My (p) = |71| [y ez, y)dy  weakly in LP(Q).
(17) Te 0o Ac(p:) — ¢ weakly in LP(Q2 x Y).

(ii1) Mz o A (p:) = My () weakly in LP(Q).

\

o If p € LP(Q) and does not depend upon y, then
A(p) = M(p),

and therefore

A.(p) = ¢ strongly in LP(Q).
Moreover, let {p.} be a sequence of LP(Q) and ¢ € LP(2 x Y'), one has

To(pe) = @ strongly in LP(QxY) <= ¢.—A(P) = 0 strongly in LP(2).

Proof. See(|3], p.21). u

1.4 Unfolding and gradients

In this section will tackle the properties of the unfolding operator to the space

Wie(Q).



1.4. UNFOLDING AND GRADIENTS

Firstly, we recall the definitions of Sobolev spaces on a domain  in RY where
p € [1,+00].

— Wh(Q) = {¢ € LP(Q) : Vi € LP(Q)" in the sense of distributions in Q},

— WyP(Q) = the closure of the space C>in W'?(Q),

— WLr(Y) = {¢ € W,P(R") | ¢ is Y-periodic },

- WperO {¢ € Wple;:') ) | MY(¢) - O} :

The second space plays a central role in the unfolding method for gradients, such
that for p = 2 these spaces will be denoted H! and H!

per per,0*

The next propositions states the relationship between 7. and gradients.

Proposition 1.5.

Suppose p € [1,+00|, the operator T. maps WP (Q) into L*(Q; WHP(Y)) and for all
ue Whr(Q),
Vy(Te(uw) = €T-(Vu) ae. inQxY.

Proof. See (3], p25) n

Theorem 1.1. Suppose p € [1,+00], let {u.}. be sequence in WHP(Q) and u €
LP(QY) such that :

u. — u weakly in W(Q),
then

Te(ue) = u weakly in LP(Q; WHP(Q)).

Furthermore, if

us — u  strongly in LP(Q),
then

To(ue) — u strongly in LP(S).

Particular case :

If {uc}, satisfy : |Juc||r) + €l|Vue| r) < C, then there exists a subsequence u

9



1.4. UNFOLDING AND GRADIENTS

in LP(Q; WP (Y), such that

per,0

eVu. — 0 weakly in LP(Q)",
Te(ue) = u+u weakly in LP(Q; WHP(Y)),
Te(eVu.) = V,(Te(ue)) = V,u weakly in LP(Q x V)V,

Proof. See (3], p. 26, 27)

Proposition 1.6.

Suppose p € [1, 400, let {u:}_ be a sequence in the space WP(Q) such that,
u. — u  strongly in Wr(Q).
Then
(1) To(Vu.) = Vu strongly in LP(2 x Y').
(i1) %(ﬁ(us) — M (u)) — Zjvzl yga‘%“j strongly in LP(Q; WHP(R2)),

where

ye=y—My(y) .

Proof. See (|3], p.29)

Remark 1.1. For the case Y = (0,1)Y we have

1 1

N
ou
= (Y1 — = YN — = d c— — y°.Vu.
yo=—gnyn —5) an jzlyjaxj y°.Vu

Proposition 1.7.

Suppose p € [1,+00], then for every 1 in WHP(L),

[ = M)l e,y < Cel VY llLr,

19 = T @ vy < CellVY o),

10



1.4. UNFOLDING AND GRADIENTS

with the constant C depending only on'Y . Moreover,
1
g(¢1§6 — M. (¢)) =0 weakly in LP(Q). (1.9)

Theorem 1.2.
Suppose p € [1,+00], let {u.}_ be a sequence in WP(Q), such that
u. —u  weakly in WHP(Q).

Then for subsequence, there exists some u in LP(€2; Wl)le’ﬁo(Y)) such that
(i) L(To(ue) — Mc(ue)) = y°.Vu+u weakly in LP(Q; WHP(Y)) .
(ii) T(Vu) = Vu+ V,u weakly in LP(Q x Y)V.

Moreover

Iy b <Ol -
|’uHLP(Q;WZ}éT(Y)) Cll_I}%SUP [uellwre),
Iy 1
IVu+ Yyl roxy) < Y7 liminf |[Vee||r ),

where the constant C' only depends on the Poincaré-Wirtinger constant of Y.

Proof. See (]3], p-30). |

Corollary 1.1.

Under the assumptions of theorem 1.2, one has

(i) %(%1@5 — M. (u:)) = 0 weakly in LP(),
as well as

(i) 1(To(ue) — 1) = y*Vu+u weakly in LP(Q; WHP(Y)).

These result is a complement to convergence (1.9).

Proof. See (|3], p-32) u

11



Chapter 2

Decomposition of the plate

displacements

12



2.1. THE TREE-DIMENSIONAL PROBLEM OF LINEARLY PLATE:

2.1 The tree-dimensional problem of linearly plate:

Let w be a bounded open subset of R? with a Lipschitz-continuous boundary ~, and

let vy and v, be two subsets of v such that:

meas(yp) >0, meas(y;) >0 with v =75 — 7.

Let us define the sets:
0o = wX] — 0he, 0he],
[ = yox] — 8h%, 0h7], Fﬁsf = w X {+dh°},

% = v x| — 8h%, 6h%], % = w x {—6h7},

where § is a parameter (0 < 0 < 1), and A® is a function defined in w.

We consider a three-dimensional linear heterogenous elastic thin plate with variable
. . . . =6 N : .
thickness. This plate is occupying the set €2 °, which is the reference configuration, with

a middle surface @ such that:

0 =@ x -6k, 1)

We denote the boundary of the set Q% by I'*¢, which is defined as follows:
[ =TyFur*ury,

where [ = vx] — 0h®, 6h¢] is the laterale face of the plate. This face be divided into two
portions, while the plate is clamped on the first portion I')®, and the remaining portion
% of this laterale face is free of all action, and I'f = w x {£6h*} the upper and lower
faces.

The plate is subjected to applied body forces, of density (f°) : 2% — R3 per unit

volume in its interior % and to applied surface forces acting on the upper and lower

13



2.1. THE TREE-DIMENSIONAL PROBLEM OF LINEARLY PLATE:

ff c L2(Q‘$€),
faces of density (g?) : % UT'% — R? per unit area, where:

¢! € LA UT).
Let (z1,72) = (24, 23) and 2° = (21, 75, 23) denote the generic points in the sets @ and

5 . .
Q| respectively, and let n® = (n’) denotes the unit outer normal vector along I'* (the

boundary of the set ().

Remark 2.1.

Since § is a dimensionless parameter, the thickness of the plate should be more appropri-
ately written as 20h®, where h® represents the variation in thickness, which depends on
microscopic and macroscopic variables. There are two variable parameters,

0 denotes the order of the variable thickness of the a plate,

€ denotes the order of magnitude of the period of a plate.
We suppose that the thickness of the plate satisfy:

he € W (w) , he(xy,29) = ho > 0.

ha(xl,xg) = h(!ﬂl,l’g; it ﬂ)

e’ €

We consider the classical linear elasticity problem posed on a periodic structure 2%¢:

(

L I R
ul® =0 on TYF
(P(Q))
s § s
o s g5 on I UTY,
01 =

0 on T'¢.

The unknown of this problem is the displacement vector field u% = (ul®) : 0"

— R3,
de

where, 0% = (07) is called the stress tensor which is related to 1%, such that:

0 __ b e/, O
05 = QijkiCri (u’)

14



2.1. THE TREE-DIMENSIONAL PROBLEM OF LINEARLY PLATE:

where

eh (u”) =

56) (8ku?€ -+ 8lui€) .

N | —

The tensor €% (u’) = (e (u’)) is the linearized strain tensor, and the constants
af;kl denote the components of the three-dimensional elasticity tensor in cartesian
coordinates.
Moreover, these heterogeneous elastic coefficients satisfy the following conditions:
e a5, € L>(Q) such that :
af (1, 2, 03) = @i (2, 2, %)
e Symetry :
a?sz = a??k;l = afﬁk = aifij
e Ellipticity :

de . o o=
Qs ThITij 2 CTigTig VTij = Tji

2.1.1 The variational formulation

After all the reminders in the first appendix, we can affirm that the displacement field

u% satisfies the following weak formulation :

Find u’ € V% = {v% € [Hl(Q‘Sf)}g : 0% =0 on ')} such that
Bo(u%,u%) = L°(v) Vv € V.

B 0) = [ afiueli )i’
LE(U) — f(svdxﬁ

Ode

2.1.2 The existence and unicity of the solution of problem

To proof the existence and unicity of u°¢ the unknown of the problem P(2%¢) | we assume
that f0 € [LQ(Q‘;E)}S and a5, (z) satisfy the hypotheses above, so we have o < af5, () <

M | with C, M, a are positive real numbers.
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2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

1. The continuity :
L)l =] [ fooda’]
Ode

< ||f6HL2(Q(Sa) UHLQ(Q(SE)

< C||U||H1(Q<Sa).

Using the Cauchy Schwarz’s inequality, so L°(.) is continuous, with C' = || f|| 12 (qse).

On the other hand, using the Cauchy Schwarz’s inequality, we get

B0l = | [ @@ @]

< Mle(u®)|| 22 sey | e(V)]| 2oy

< M|’ || g ooy 0| 1 254

So the bilinear form B%(.,.) is continuous .

2. Vo%_elliptic :

Using the ellipticity of the elastic coefficients, we get

B(v,0) = | af()eli(v)elf(v)da’ > M [|e* ()], here M is positive constant
v,v) = - a; (@) e (v)egs (v)dz® > e (V)| 2(qgse) » Where M is positive constant.

Using the Korn’s inequality with a boundary condition we find:

B’ (v,v) 2 [[vllf ey,

with v = M.C, 2 Then the bilinear form B’ is V%-elliptic. Consequently, via Lax-

Milgram Theorem the variational problem P(£°%) has one and only one solution u%.

2.2 A Decomposition for the plate displacements :

In order to simplify the notations, we omit the parameter ¢ (as it only concerns homog-
enization) in the rest of this chapter. In this section, we use the new decomposition of

the displacement with some properties such that every displacement u’ in [H 1(95)]3 is

16



2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

uniquely decomposed as the sum :

u’ =l 4 ud (2.1)

of an elementary displacement u$ and a residual displacement u? .

Definition 2.1 ( elementary displacements|3]).

Elementary displacements are elements uS of [Hl(Q‘S)}?’ satisfying for a.e. x = (', x3) €

Q% where 2’ € w:

ug, (z) = Uy (2') + 23Ry (2)

€,

Uea(w) = Uy (2) + 23R5 ()

€,

| ulae) = U,

where
U = (U, U, U3) € [H (W) and R° = (R3,RY) € [H ().

Elementary displacements are a generalization of the notion of Kirchhoff-Love and Reissner-
Mindlin displacements. The first part U°(z') of u? is mid-surface displacement at the point

7' € w, while z3R°(x') represents the small linearized rotation of the fiber {z'} x (—46,6) .

Definition 2.2 (Residual displacements|3]).

The residual displacements are elements of u’ = (uf’l,uf,Q,ufﬁ), which satisfy the condi-

tion:

5 5 5
/ Ug(l’/,l'g)dl’gz/ l‘gUi’l(I’,,fBg)dﬁg:/ zup o (7', x3)des =0 ae 2’ €w. (2.2)

= = =

Due to the properties of the residual part, the components U° and R° of ul are given

for a.e. ' € w, by

1 79
Uz = % u (2, x3)dxs
-5
3 0
RY(z)) = 553 waul (2, x3)drs, o = 1,2,
=

17



2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

Proof. you can see this proof in the second appendix. [ ]
The sum

U, = Uier +Uses

is the membrane displacement, while U represents the bending of the mid-surface. The
residual part u? is the warping; it stands for the deformation of the fibers {2’} x (=6, 6).
With the above notations, the explicit expressions of the components of the strain tensor

of u® are

° 611(u5) = B + xga—xl + O:Ui ,
o 622(’&5) = 5=

.612(u)_2(_8x2+8:171 + 3 8:172+8x1 + ax2+ax1 )

[ ou4? oul.. oud
o en(u’) = 4 ([ + Ry + [ G+ 5]

(9953
6y 1 -3_U§ 8“?3 8“?,2
o co3(u’) = 5 (_8332 TRa| T T | )
8“?-,3

1)
° 633(1}, ) = Das
Proof. See in the second appendix. [

Theorem 2.1 ([3]).

Let u® be a displacement in [1"-1'1(9‘5)]3 and (Z/l‘s,R‘s,uf) be its decomposition given by,

0 HeQﬁ(RJ)”LQ(a}) + Heaﬁ(ua)up(w) S 5% He<u6)HL2(95) ’
‘ ot ) (2.3)

Oz «

L2(w) < 5% ||€(u5)||L2(Q<S) )
||U£HL2(Q5) <00 He(ué)”p(m)’
”V“g“m(m) <C ||6(u6)||L2(Q5) :

The constant does not depend on 6.
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2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

Proof. One has :

3
2 2
”6(“5)”L2(95) - Z ||6ij(u6)HL2(m)

z'jl

= EE: leas ()2, + 2§E:||eas 0z + less() 2y

aﬁl

§:H%ﬁ Wiz

a,B=1

WV

Step 1: Proof of the first inequality (2.3),

leos@agey = [ leanu’) P
Q6

é
Sh ! 5h
= /eiﬁ(ua) (/ d:173> dx'+/eiﬁ(7€5) (/ l’%dl’g) dm'+/ el 5(ul)da
w —dh w —3h Qo
2 6 / 20° 3.2 0 / 2 g
= 25/h eos(U’)dx’ + ?/h eop(R)d —|—/Qé eopluy)dx
> 26hg ||eas(U°)

2
Hiz(w) + ghg(sg Heaﬁ(R(;)HiZ(w) + Heaﬂ(uf)Hiz(QS)

2138 ||eas(RY) |

> 26hg ||eas )| 122

HLQ(w) 3

and by a® + % > 1 (a + D)%, we get

V/2hd® 2
| €as(u’ ||Lz o) 2 {v25ho||eaa M2 w>+T§(5ho)lleaa(R5)I|Lz(w>

ho 9 lleas(U) || L2 @) + \/—Ileaﬁ( M 22w
and after that we get
> /0h ue oho RS
eas (@)l 20 > V/0ho | leas @)z + = lleas (RO 2 ¢ -

which gives:

0 ”eaﬁ(R&)HL?(w) + Heaﬂ(ué)HLQ(w) S NG ||e<u5)||L2(Q5) :

19



2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

with C' = min {\/h_o, \h/—%}

Step 2: Proof of the second inequality of (2.3):

Hea?’ ||L2(Qa) - |6a3(u5)|2dx

_ 1 0 (0 aug ’ /6h ! /2
- 4/w{72a(x)+axa} _deg dx’ + Qea{g(u

_ 0 4 au?? ’ / 2 1
= Q/Wh{RajL ﬁxa} dx —i—/m ess(uy)dx

> @6HR5+8L[§ 2 :
T el
Then we get
s > 1 [+ S5
which gives
5
s I R e

; -2
with C = T

Proposition 2.1.

6oy + 8 (Wl oy + 1Rallinc) <

o Q

le(u(@)l L2 (as)

Proof.

We use the displacement U, = Ue.o + 6U. 3 belongs to [Hl(Q)]g, one has

20
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2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

(

Ue71 (Z,, 23) = Z/{1<2/) + 235R1 (Z/)

Ue72(2’/, 23) = Z/{Q(Z/) + 2’357—\),2(2/)

Ues(?, z3) = Us(2)
\
which give

) - c
CllUcll e < lle*(Ue)llzee) < 51 le(u(d)) ]l 2(qs)

and via the definition of U, , One has

||Ue\|§{1(9) = HUeH%?(Q) + HVUEH%Q(Q)
= Ue.allz2i0y + 10Uesll720)
= [ta(2') + 250Ra(2) |72 + 16Us (2) |72
=2 HUOZ(’Z/)Hiz(w) + ;52 HRQ(’Z/)Hi?(w) + 267 Hus(zl)Hi?(w)

< CH@Z(Ue)H%%Q)'

from the previous results we deduce that

V2 1
V2 [Uall 120y + %5 IRall 20y + V26 1Usl L2y < 5T [e(w(O))l L2 (a0 -

Then

ol 2wy + 0 (IRall 2y + sl 2w)) < lle((d)]r2qs)-

T Q

The constant does not depend on §.
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2.3. TRANSFORMATION INTO A PROBLEM POSED OVER A
DOMAIN INDEPENDENT OF ¢H :

2.3 'Transformation into a problem posed over a domain

independent of éh :

2.3.1 The fixed domain

Firstly, recall that Q% = wx]|—dh, §h[, with thickness variable ko > 0, such that 0 < § < 1.
Since the displacement fields u? is defined on the set Q=5 x [—dh, 0h] which depends
on ¢ and h.

In this part we will transform the problem P(2%) into a problem on a fixed domain that

does not depend on §. Let us define the fixed domain:

Q=wx]—-1,1],
Lo =70 % [_171]7 F+:wx{1}7
Fl =7 X [—1,1], ' =wx {—1}

Let z = (21, 29, 23) denote a current point of Q, where z, = z, and 23 = 5. With each

. _-— . : =
point 2% € 0, we associate the point z € Q through the correspondance
— =5 .
2= (21, 2,23) € QU — 2° = (11,29, 23) €, with 23 = Shzs.

Such that for any function 1° : @’ = R we associate the corresponding function ¢ (9) :

Q — R. We have

R = 0zp(8) — 7230%h 5(0),
(2.5)

03U = 7 051(0).

And for any ° integrable over Q° and I’ U Fi, we have

61‘6 .’,U(S: zZ)az
[ vt =5 [ how)e

/F .. Y0 (a)dl = / R4 (8)(2)dT,

r_ury
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2.3. TRANSFORMATION INTO A PROBLEM POSED OVER A
DOMAIN INDEPENDENT OF ¢H :

N

where h* = {1+ 62[(92h)? + (95R)?]}2.

2.3.2 Assumptions on the Data and decomposition of the Un-

knowns.
In order to fined the displacement field u(0) = (u;(d)) : @ — R® which does not depend

on ¢, we use the new decomposition that was defined in section 2.2 as follows :

6 _ 0 9
u =1u, +u,

Under the hypothesis ¢ = (g1,92,93) = 0, f = (f1, f2, f3) € [L?(cu)]3 and t = (t1,t5) €

[Lz(w)]Q, we make the assumptions that the applied body forces f° are of the form:
Fo(x) = (0ful) + z3to(r))) eq + 6% fs(2)es  for ae. z € Q°

Now, by using the new displacement and the assumptions on the data and the rela-
tions(2.5), we can reformulation the variational problem P(£2°) to problem on a fixed

domain, which is denoted P(£2) in the following equivalent form:
uw(d) e V(Q) ={v=(v;) € H(Q);v=0o0n Iy},
5]9 h O'U<(S)HZJ(U)dZ = L(’U) for all v € V,

where

035(6) = Sy (2) Hia(u(8)) . L(v) = 6 / F(6) de,

and the expressions of the strain tensor H are defined as follows:

1. For the test-functions:

. Hgﬂ(v) = egﬂ(v) — %23 [%h d5v3 + %h 8§va] ,

o H)3(v) = 5 570500 + O%vs — 323050 Os-v3]

° §3(U) = %6?'?@3.
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2.3. TRANSFORMATION INTO A PROBLEM POSED OVER A
DOMAIN INDEPENDENT OF ¢H :

2. For the Unknown:

o Hop(u(8)) = ezg(u(6))—5 {[Rs(6)0zh + Ra(0)d5h] + [0k O5urp(d) + O5h Dura(0)] } .
o H3(u(0)) = 5 [0:Us(6) + 5;Ra(0)] + Hs(ur(9))
o Hiy(u(0)) = 5505ur3(9).

Proof.

By the relations (2.5) we find:

His(u(8)) = €s(u(d)) — -2 [02h Dus(6) + 03h Fua(5)],

2h
H(00)) = 5| 25050a(0) + Ous(9) — 2a05h Bius(d)]
H(u(6) = < 05us(0).
and for the decomposition of u(9), we have
Hij(u(d)) = Hij {U(0) + 23R (0) + ur(9)} (2.6)
= H(U(0)) + Hi;(23R(5)) + Hyj(ur(9)) (2.7)

Now, we can proof these expressions for 1 < 7,5 < 3,

HU(0) = e35U(0)) + 5 [0:h G5Us(6) + O5h iUa(0)] |
His(z4R() = eip(zR(9)) + o [0:h 05(24R(0)) + F5h 05 (24Ra())]
= zels(R(9)) + 5 [Rs(0) O3h+ Ral6) 3]
His(u,(8)) = eis(ur(8)) + 57 [03h 05ur5(0) + 95h D al6)]

Then

Hap(u(0)) = e35(u(6))+ 57 {[Ral6) i+ Ra(0) O5h] + [03h D5uura(6) + D3 O5ura(8)]}
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2.3. TRANSFORMATION INTO A PROBLEM POSED OVER A
DOMAIN INDEPENDENT OF ¢H :

S D 2:.
9 1 z 1 z z 1 z
H,(U()) = 5 02U5(9) — E@,aah U5 (6) + %831/{&(5)
1
= 532713(5),
170 1 1
Hl4(23R(5)) = 3 95 (23R(0))3 — Ez;»,c‘?ih 03(z3R(0))3 + %&i(zﬂza(é))}
L
= g5 %)
17 1
Hi3(uT(5)) =5 DZur3(0)) — Ez;:,(?éh O3u,3(0) + 8§una(6)} )
Then
1 1
HES(0(0)) = 5 [0524(6) + 5, Ral0)] + His(u0)
S D B

Because U(§) and R(5) do not depend of z3, the terms HZ,(U(5)) and H;(z3R(6)) are

null, then
1
Hiy(u(6)) = Hs(u,(9)) = 57, 03ura(0)
]
Proposition 2.2.
On a domain fized, the strain tensor satisfy the following inequality:
125 (RO 22y + 1 HopgU(8)) 1200y < CIIH (w(9))]| 220y (2.8)
1hOZUs(0) + Ra(0)ll12() < CIH (w(9))] r2(0)- (2.9)

The constant does not depend on §.
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2.3. TRANSFORMATION INTO A PROBLEM POSED OVER A
DOMAIN INDEPENDENT OF ¢H :

Proof.

72 )y = D2 IO 2

2
2O oy + 2D 1 H2 () |20y + | (w02

a,f=1 a=1
: 2
||H25(U(5))HL2(Q)
Step 1: Proof of (2.8),
12 (@)% / (D 5 (u(8))d

:/{Hiﬁ(U(é))}2d2+/ {23H§B(R(5))}2dz+/{Hgﬁ(ur(é))}zdz
Q Q Q

_/{Hiﬁ(u(é))}2 (/_11 dzg) dz’+/w{H§5(R(5))}2 </_11 ngzg> 5

+ || Ho 5 )”i?(Q)

— 2 [ {5 )Y 0+ 3 [ (RO 0+ |06

= 2| H,UO)||;

2
o+ 3 [ Ho(RO),

2o

+ [ Hos (ur( )HiQ(Q)

2
> 2 Ho(U(0) I3 + 5 | Has(RIO) 32,
Using the inequality
a®+ b > 3 (a+0b)°

we get

1Ho 5 (w(d)) 7o) = %{\/§HH2£3(U(5))HL2(@+%|IH26(R(5))”L2(0J)}

> {0 + RO |

then we have

2SO ) > { IHES U] gy + = 1Hon (RO
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2.3. TRANSFORMATION INTO A PROBLEM POSED OVER A
DOMAIN INDEPENDENT OF ¢H :

which gives:

12 5RO 20) + 1Hos U ()| 220y < IIH (u(6))l| 2o

Step 2: Proof of (2.9):

225D [y = | 1HEsCu(o)) P
/£<1f23<u6<6>>> dz~+l/£<f¥23<ur<a>>>2dz
=1ﬁ&www@+/u&%R@W@+Lwawww

Q

:/Q{%(8§M3(5))}2dz+/ﬂ{%(Ra(é))}2d2+A(Hgg(ur(5)))6dzi

>§L{§%@+%%@ﬁﬂz+4w&mwm%z

- ? z 0 U 2 z
>Mmm%u/”z )+ hOEUs(8)) d +/ua44®»d
> C* | Ra(0) + hdzUs(0) 720y + |25 (e (0))][ 20

Then one has

[ H25(u(9)) > O [Ra(0) + hdiUs(0) || L2 (o)

2
Which gives

[Ra6) + hUs(6) | 2y < C [ ()] (2.10)

Lemma 2.1.

The maps : v €V — || H(v)lo0

is a norm equivalent to ||.||v , such that V = H*(2).
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Chapter 3

Homogenization of The Plate
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3.1. UNFOLDING THE RESCALED PLATE

In this chapter, we gives the asymptotic behavior of the rescaled strain tensor in fixed
domain €2 Then in the subset of 2. Next, we presents the unfoldes and rescaled limit

elasticity problem. finally, gives the homogenized limit.

From the last chapter we deduce that:
lu(@)llrr1 () < C* || Hiy (u(8)) || 20y < C-

So Hy(u(d)) is bounded and There exist an subsequence, such that :
o H}y(u(5)) — Hy(u(8)) strongly in L(Q) .

o HY(us(8)) — Hjy(u(8)) weakly in H(R) .

3.1 Unfolding the rescaled plate

From now on, we will use the usual unfolding operator in w, as well as in 2. The subset
of w included in the e-cells intersecting its boundary dw is A.. At some point we may
identify € x Y/ with w x Y, where

Y'=(0,1)?% Y=Y x(-1,1).
For ' € R?, one has

o =[]+ {2}, []ez? {F}eY

3.2 Asymptotic behavior of the tensor

We are now in position to give the limits of the rescaled and unfolded strain tensor, for

that in the following proposition we show that

%(H%us(a))) ~ En(U) + Eu(«) weakly in [L3()]°
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3.2. ASYMPTOTIC BEHAVIOR OF THE TENSOR

Hence

T(H(u(4))) — Ep(U) + Ey(u®) weakly in [L*(Q2 x Y)]°

where 0
U = Ur + Y32aCa,

under the same hypotheses with the notation of (proposition 11.12, See [3]) and by the
same way, we obtain these convergence (See [3], p 373). The difference is in the symetric

tensor E)j(U) such that

822/[3 61/{3
_ _ - B _ous 2p 20 1
U= Un,Us),  EopU) = €25(Un) 5Z3h82a8z5 + 5Z3aah82,3 (3.1)

Furthermore, there exist

[/J\a, R, € L?(w; H!

per,0

(Y")) and Z, € L*(wxY'),
with MYI(Z\Q) = 0 a.e. in w, such that

S(VU(S)) — VU, + Vy/ﬁa weakly in [L*(w X Y’)}2 ,

Cﬁ SO

(VRE((S)) - —D2L{3 + Vy/é weakly in [LQ(W X Y/)}2X2’

TAREVU(S) + R(8)) — Z + Z  weakly in [L*(w x Y’)}Q.

ST

Proposition 3.1 below completes the results of Proposition 11.12 (See [3], p372).

Proposition 3.1. Under the hypotheses and with the notations of Proposition 11.12,

%ﬁ(H(ua(&)) — Ex(U) + Ey(u’) + £,(Q) weakly in [L*(w X Y)}g, (3.2)
Such that
(. y) = U0y +usR,y) + @ (y),  Ge Lw;D), (3.3)

Proof. of Proposition 3.1 it is enough to the limits of the following two terms :

T(Hi(u?(9)))  <Te(His(u(9))),

1
5

ST
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3.2. ASYMPTOTIC BEHAVIOR OF THE TENSOR

Since the limit of all the terms of the forms ;7.(Has(u?(6))) are obtained in the same
way as the former , and the limit of $7:(Has(u®(6))) is obtained in the same way as the

latter. The limit of $7:(Hzs(u®(0))) was already obtained in proposition 11.12 (See [3])

1 ) 1, (U (5) L (OREG)\ 1 [0, (6)
— To(z301h°) To(R1(9)) + Te(2307h*) T (05,1 (0))

U (8)  OUL(5) OR, OR,\ 04, 0 Us(6) i1 (6)
— + + z3h -+ + : ﬁzh — Gzh .
0z oy b 0z oy Oy . 0z . 0y3

and with the help of the field u (See (3.3)),

Tz (0Fus 5(0)) — T (2307 h°) T (505 5(0))

C>)I+—‘

1 ) 1 (1 (aUE() 1 .
sttt o) = 3 {57 (4 Sri0) +

1 1
+ ﬁﬁ <E8§uil<5)> }

1 1~ 8@ 3(5) aur 3(5) 1 8@ 1(5) 8iL\T 1
{2 47+ G - (Hn )L
2{ +h * oy 5% ys +h Jys * ys
Where
= 3U3 8u‘f 8UT 1
Zi=—"24R d — =17 ’
YT M By T T g,
So we get the convergence (3.2). n

Corollary 3.1. For the rescaled and unfolded stress tensor, one has the convergence

%7;(05(5)) — Y weakly in L*(w xY),

e, for 1 <i,5,k, 1 <3,

1 N
57;(0%(“5(5))) — Y = i B (U) + Gije Briw (0°) + @i, (4).
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3.3. THE UNFOLDING LIMIT PROBLEMS

3.3 The Unfolding Limit Problems

Theorem 3.1. Let u®(§) be the solution of the elasticity problem P(Q°).The following

convergence holds:
T(H(u5(6))) = Ex(U) + Eu(u®) + &,(@) strongly in [L*(w x Y)]”, (3.4)

and u = (U,u°, @) belonging to V?° is the solution of the rescaled and unfolded problem :

( 1 R
3 / aiji(Erpt(U) + Epw(u®) + Epiy (1))
wXxY
X (Eijs (V) + Eijo(0°) + Eijy (0))da' dy (3.5)
B 1 oV , B 0 ~ 5
\ _/w(f,v 3ga8:va>dI7 Vo= V,v",v)eV

Proof. Due to hypotheses of previous section and lemma 11.18 (See [3], p384), the lax-
Milgram theorem applies to Problem 3.5 which, has a unique solution. This uniqueness
implies it is enough to prove convergence (3.4) for a subsequence, as is done now. [ ]

Introduce the set
V ={v=V,0"0) € Vayy x L*(w, W) x L*(w, D)},
To every V9, we associate the symmetric tensor.

Ey(V) + E,(0°) + &,(0)
and the norm

[vll = | Ex (V) + Ew(v°) + E,(0)]-
With V = (V,,, V3) € Viy and (v°,0) in VO x V! where

per?

VO={UeClwx[-1,1])* | ¥(.,23) =0 on dwVz3 € [-1,1]}.

Vier = {¥ € CY(w x Y)? | ¥Y'-periodic and ¥(.,y) =0 on dw Yy € Y }.

Consider the following test displacement:



3.4. HOMOGENIZATION

v(0)(2) = Vu(2') — z;;%’j(z’) + 0200 (2, 23) | €a + [V3(2) 4+ 6208(2/, 23)] €3,
v (0)(x) = 00(2', {5}, 28).

A straightforward computation gives

%(H‘S(va(é))) — Ey(V + E,(0°)  strongly in [LQ(Q)}Q.

Hence,
T(H(v°(6))) = En(V + Ey(1°) strongly in [L*(w x Y)]".

Also the function v is defined in [3],

It is easily seen that

%7;(]_]5(“5(5))) — Em(0)  strongly in [L*(w X Y)}g.

then we get,

TA(H (1 (3))) = En(V) + Ey(0°) + &,(B)  strongly in [L*(w x Y)]".

ST

Taking v°(d) as test displacement in 2.1, unfolding the equality with 7, dividing by 263,
and passing to the limit, give 3.5 with v as the test function. The density of the product

space VO X V., in L?(w; W) x L*(w; D) give 3.5 for every v € V.

3.4 Homogenization
With the choice V = 0, Problem 3.5 becomes

1

3 / @i (Bt (U) + Epg o (W°) + Eiy (@) (B (v°) + Eijy (0))da'dy = 0.
wXxY
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3.4. HOMOGENIZATION

Define the space
—{v0+ 8 v ew den}.
For every function 1; in VW, associate the symmetric tensor
E,($) = Eu(4°) + &,().
Due to the properties of the functions in D, one has

mmmanﬂwwmmm+wfmw)

1, 0Yg s 31/13
3 H 12(

“HLz 1yt g e + 1€ DIPres

Set
100 010 00 0
M=l oo0oo0| M*=1 100 M*=]01 0
00 0 00 0 00 0

One introduces the correctors:

X3P e wp, x* ewb, X2 eWwWD, (a,8) € {(1,1),(1,2),(2,2)},

defined respectively by

/%MMMﬁ+MM%%MEw(
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Il
\‘O

aiji(y) (YsMyy + By (X7 () Eizy () (y)dy = 0,

J
g o (3.6)
J

i (y) (ysMyy + By (X87) (y))Eijy (9) (y)dy = 0

Y
Vi) € WD.
As a consequence ,i can be written in the form
ﬂ(') y) = UO(., y3) + a(a y)
0’Us U (3.7)
— o7 Xaﬁ Xaﬁ zh_3)(-aﬁ f . Y
€as(Un) X (y) + 020025 " (v) + % 0z (y) forae ye
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3.4. HOMOGENIZATION

3.4.1 The limit problems in the mid surface

Theorem 3.2. The limit displacement
U = Un,Us) belongs to Vi = [H&O(w)]z x H2 (w).

It is the solution of the homogenized problem :

( om z z z 82]}3 z 822/{3
/wagﬁa,ﬂ, {eaﬁ(um)eaﬂ(li ) + baﬂa I <€aﬁ(um)az 82’ + eaﬁ(vm)azaazﬁ)

0*U. Vs 0%V U
hom z 3 Zh z 3 2 3
T Caparsy ([eaﬁ(um) - 8za3z5} Oult 825 [ €ap(Vm) + Qzaazﬁ] 0 h625>
2 OU3 OV vom  OPUs 0%V } g

(9za 8z apo’f! 024,023 020,023

1 0
/ rvir =3 [ g a"?’dx’, WV = (Vs Vi) € Vi,

+ dZ%Z, P (0Zh)?

(3.8)
Where: -
hom L[ MP L H, (XA M d
aaﬁa’,@’ 2 Yaljkl(y)[ kl + kl,y( m )] iJ Y,
om 1 /_\07 ’ar
Vi = 5 | aona0) a D + By (M
Y
om 1
it = 5 [ a0 1M + B (X )My, (3.9)
1 — ,
iy =5 | )M + By (X))o Dy,
Y
1 — ,
khm g = 5/ ija(y) [z MY + Hyg (X025 M3 dy,
Y

Proof. In problem 3.5, choose as test displacement V = (V,,, V3) in V; and v° = 0,9 = 0.

Replacing @ by is expression (3.7), yields

(87 7 « o z au
[ ) [ (M5 + B (X5 + 5 oM+ By ()| + 05052
wXxY

020,0% 0z

/ 82V3 aV3
M ey (Vi Wh=— | dz’
X { 5 (Vm) + 23 N + 230, h(‘?zB/] dz'dy

—2/fvcl’—2 gv?’d’

(3.10)
We can obtained the homogenized coefficients of problem 3.9 by a simple computation.
(see [3] ,p 390).

Taking into account the variational problems 3.6 satisfied by the corectors, it is easily
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3.4. HOMOGENIZATION

seen that the homogenized coefficients are also given by the following expressions:

1 o —~
ahom, = 2 /Y o () M2+ o (X07)][(25ME 4 Hy ()] dy,

om 1 yaf a v
Vi = 5 [ oM + By ()] oM + B (B

2 Jy
Cofors = % /Y%kz( )M+ i (7)) 25M3” + iy (R0)]dy, (3.11)
dﬁ%@ﬂ/ %/ya”kl( )[23Mkl +Hkly(;/>][z3Maﬂ + Hy;, y(};)]dy,
ki = 5 [ )M+ B () oM+ Bl ()

Remark 3.1. This part in our study was similar to [3] , but the difference lies in our
use of the tensor H, which added another term in the expression of the strees tensor (See

3.1), and the same test function in [7].
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Appendix 1

In this appendix, we will present some basics preliminaries including spaces definitions

and theories, we need to get weak formulation of studied problem.

Preliminaries

Let © be a domain in R3, H™ () and H"(Q2) denote the usual Sobolev spaces, in particular

form =1,

H'(Q) ={veLl*(Q); owe L*(Q) 1<i<3},

Hy() ={veH'(Q); v=00nT},
and for m =0,

HY(Q) = L*(Q).

And there norms are defined as follows:

3
||'U||%2(Q) = Z“UiHQLQ(Q) for all v = (v;) € L*(€),
=1

3
||U||?{1(Q) = Z“UiH?ﬂ(Q) for all v = (v;) € H'(),
i=1

Theorem 3.3 (Young’s Inequality|!]).

Let a and b be two positive real numbers. For p,q €]1,400] such that % + % =1, then

ab? b
ab< —+ —.
p q

Theorem 3.4 (Hélder Inequality).
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Appendix I

Suppose p,q €|1,+oo[ with ]lj - % = 1. Let Q be a domain in RN and f € LP(Q) and
g € LYQ), then fg € L'Y(Q) and

1fgllr@) < 1 Fllzr@)llgllzo).

Remark 3.2.

Cauchy Schwarz’s Inequality is particular case of Holder Inequality for p =2 and q = 2.

Proof. See(|], p706). n

Theorem 3.5 ((Poincaré- Wirtinger’s inequality)|!]).
Let Q be a connected open set of class C' and 1 < p < oo. Then there exists a constant

C such that

B _ 1
o=y < C IVl Vi € W), where = e | w

Theorem 3.6 (Poincaré’s Inequality).

Let Q be a bounded open set in RY. Then there exists a constant C, (depending on Q and

p € [1, 400 ), such that for all v € WyP(Q),

[][zr0) < Gl VlLr(e)-

Proof. See (|!], p.220) n

Theorem 3.7 (Korn’s Inequality With a Boundary Condition).

Let Q be a domain in R and Ty be a mesurable subset of the boundary I' such that
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meas(Ty) > 0|. Given a vector field v = (v;)?_, € H'(Q). Not that

1
eij(v) = 5(33%' + 0v;) € L*(Q),

)Z2) = Z leij ()220

i,0=1
Therefore, there exists a constant Cy such that

vl @) < Cille(®)|r2), Vo € H(Q)vanishing on T.

Proof. See (|2], p-11). u

Theorem 3.8 (Trace Theorem).

Let € be a bounded open set in R™. We define the trace map,
Y0 : CH(Q) — L%(09)
v — Y(v) = vjsn
This map is linear and continuous on L*(0R)), then there exists a positive constant C,

such that

7o) z200) < Crllv|lar@) for allv e HY(Q).

Proof. See (|1], p.272). |

Theorem 3.9 (Green’s Formulation).
Let Q be a bounded open in R® and dI' be a sufficiently smooth boundary I', Let v,w €

C1(2), one has the Green’s Integration by parts formula:

/v Oyudr = — / u O;vdx —|—/uv n;dl’
Q Q r

where n=(n;) is the outer normal on T.
Proof. See (|1], p.712). u
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Proposition 3.2.

Let E be a Hilbert space and (z,)n>0 be a sequence converges weakly to x* in E. Then

(Tp)n=0 s bounded and satisfy
l2"]|p < lim inf|lz.|[e
n—oo
and this sequence converges strongly to x* in E if

lim [z, |z = [lz|| 2
n—oQ

Proof. See ([0], p.124). u

Theorem 3.10.

Let E be a Reflexive Banach space and let (x,) be a bounded sequence in E. Then There

exists a subsequence (x,,) converges weakly to x*

Proof. See (|5], p.496). n

Theorem 3.11 (Laxz-Milgram Theorem [l]).

Let V¢ be a Hilbert space and suppose that:

(i) The symetric bilinear form B° : V% x V% — R is continuous,

AM < +oo, V() €V x Ve |B(u¥,v)| < M[u®|lvse|v]lyse;

(ii) The bilinear form B° is V¢ -elliptic,

Iy >0, YveVe, B°(v,v) > v ||v||%/56;

(i4i) The linear form L° : V°¢ — R is continuous,

30 < +oo, Yo eV, L) < Cfuys.

Then the variational problem P(Q°°) has one and only one solution.
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Appendix 11

In the second appendix, we will mention some of the proofs tackled in the second chapter.

Proof. One has after (2.1):

5 5 5
/ uldzs :/ uildxg +/ Ui’ldl'g
-5 -5 -5

) )
— / {U) () + 23Ry (') } das + / u) drs
—5 -0

5 5
—/ Z/lf(w’)dxg—l—/ 23R (2')ds

0 -4

=Ul(z") ( / Z dx;:,) + RE(2) ( /_ i xgdasg)

6 (. 253 S( .1
:2&/{1(%')—1-?7-\),1(1’)

5 5 5
/ udrs :/ uideg +/ uf,deg
-5 -5 -5

) )
— / {U(2) + 23 RY(2') } das + / u) odzs
—0 —0

5 5
—/ Z/lg(w’)dxg—l—/ 23Ry (2')ds
-5 -5

= U(z") ( / Z dx;:,) + R5(2) ( /_ i xgdasg)

6 (. 253 (0
:2(57/{2(%')—1-?7—\),2(1’).

The strain tensor (e;;); j<3 defined for u® € [H*(Q°)]® as follows :
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and by the decomposition (2.1), one has:

oul U’ ORS  Oul
sy dur _ o 1 r,1
enfw’) = Ooxry  Ory R 0x; + Ox;
oul U ORS  Oud
5y _ Uy _ Ol 2 r,2
622(“ ) - (9.1'2 81'2 + &3 8:)52 + 81'2 ’
1 /oud  Ouf
ez(’) =5 (a_ a_>
i (fow | ory ou] o oS
2 0xs 3 0xs 0xs 0xq s 0xq
_ L (o cous] [ORY L ORG) | Oups
2 | Ozy Oy 3 0o 0xq 0xq
1 /0ud Oud
ei3(u’) = 5 (8_:1:; 87‘?)
1 —Rg oy, ous  Ouy
2 ! 8563 8131 8171
_ 1 _8_1/{;3? LR aug,l aui,:’,
2 _8x1 ! 81’1 8$1 '
1 [0uS Oul
623<u ) 5 (3_5(73 + 6_$2>
1 'Ré oul, ] oud  oul,
2 2 81‘3 8x2 8$2
_ 1 O_L{zif RS Ouy 8uf73
2 _81'2 2 axQ axQ ‘
5 8U§ aug,:s
e3(0) = 52y = By
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Conclusion

The work presented in this Master’s thesis concerns the homogenization, using the
periodic unfolding method, of heterogeneous elastic plates with a periodic structure
and variable thickness. We consider the case where the orders of magnitude of thickness
and period size are identical. Using the displacement decomposition method proposed by
Griso, and applying the unfolding techniques, we obtain the homogenized two-dimensional

plate model.

Perspectives

This work can be extended to cases:

e The orders of magnitude of thickness and period size are different: ( lim ( lim P%),
6—0 e—0

. . 66
€h£>10(6h£>10P ))
e Linear elastic shallow shell

e Linear elastic thin shell

e Micro-fissured plates and shells
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Abstract

In our work, we study the homogenization of a periodic heterogeneous elastic thin plate with
variable thickness in the case when the order of magnitude of the period and the thickness are
the same. Starting from the equations governing the equilibrium of a three dimensional linear
elastic heterogeneous body formed the thin periodic plate.then we use the decomposition of the
displacements cite above in the fixed domain, we get the limit (homogenization) problem by using
the periodic unfolding method.

.Key words: Asymptotic analysis, homogenization, linear elasticity, thin plate, unfolding method.

V4

Résumé

Dans notre travail, nous étudions I'homogénéisation d'une plaque mince élastique
hétérogene périodique d'épaisseur variable dans le cas ol I'ordre de grandeur de la période et
les épaisseurs sont les mémes. Partant des équations régissant I'équilibrium d'un corps
hétérogene élastique linéaire tridimensionnel formé le mince périodique plate puis on utilise la
décomposition des déplacements cités plus haut dans le domaine fixe, on obtient le probléme
limite (homogénisation) en utilisant la méthode d'éclatement.

Mots clés: Analyse asymptotique, homogénéisation, élasticité linéaire, plague mince, méthode
d'éclatement.
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