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Notations and Conventions

Notations

• ∂i =
∂
∂xi

: partial differentiation with respect to xi.

• Cm(Ω) : Space of m-times continuously differentiable functions on Ω , for m ∈ R.

• Lp(Ω) : Space of the integrable functions on Ω with respect to the Lebesgue mesure

dx , for p ∈ [1,+∞[.

• L∞(Ω) : Space of bounded functions on Ω.

• Hm(Ω) : Sobolev Space of order m , for m ∈ N.

• H1
0 (Ω) : Space of functions in H1(Ω) vanishing on the boundary .

• ∥.∥V : The norm in the space V .

• |.|V : Semi-norm (which may be a norm ) .

• (ni) : ∂Ω → R3 : Unit outer normal vector along the boundary ∂Ω of Ω .

• πδ : Bijection from on Ω on to Ω
δε
.

• eδε(uδε) = (eδεij (u
δε)) : Linearized strain tensor .

• σδε = (σδε
ij ) : Stress tensor.

• → : Strong convergence.
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Notations and Conventions

• ⇀ : Weak convergence.

(i) Latin indices and exponents: i, j, ...., take their values in the set {1, 2, 3}, unless

otherwise indicated, as when they are used for indexing sequences.

(ii) Greek indices and exponents: α, β, ..., exceptε, take their values in the set {1, 2}.

(iii) The repeated index summation convention is systematically used in conjunction

with rules (i) and (ii).

Conventions

• Plate mid-surface limit displacements:

For every V belonging to DM , V = (Vm,V3) = (V1,V2,V3) define the symmetric

matrix EM(V) as

EM(V) =


E11(V) E12(V) 0

E11(V) E12(V) 0

0 0 0


Where

Eαβ(V) = eαβ(Vm)− δz3h∂
2V3∂xα∂xβ

• The warping displacements:

Set
W = {ψ0 ∈ H1(−1, 1)3 |

∫ 1

−1

ψ0(y3)dy3 = 0}

For every v0 ∈ L2(w,W), define the symmetric matrix Ew(v
0) by

Ew(v
0) =



0 0 1
2

∂v01
y3

0 0 1
2

∂v02
y3

1
2

∂v01
y3

1
2

∂v01
y3

∂v03
∂y3
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Notations and Conventions

• The microscopic displacements or the limit periodic cell displacements:

Set
Hper(Y ) =

{
ϕ ∈ H1(Y ) | ϕ|y1=0 = ϕ|y1=1, ϕ|y2=0 = ϕ|y2=1

}
D = {ψ̂ ∈ Hper(Y ) |

∫
Y ′
ψ̂(y′y3)dy

′ = 0 for a.e. y3 ∈ (−1, 1)}

where Y = Y ′ × (−1, 1). Introduce the symetric tensor

Ey(ψ̂) =


e11,y′(ψ̂) e12,y′(ψ̂)

1
2

(
∂Ψ̂3

y1
+ ∂ψ̂1

∂y3

)
e12,y′(ψ̂) e22,y′(ψ̂)

1
2

(
∂Ψ̂3

y2
+ ∂ψ̂2

∂y3

)
1
2

(
∂Ψ̂3

y2
+ ∂ψ̂2

∂y3

)
1
2

(
∂Ψ̂3

y2
+ ∂ψ̂2

∂y3

)
∂Ψ̂3

∂y3
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Introduction

The theory of thin structures like plates, shallow shells, shells and junctions between

them, originated in the need on the part of engineers for tractable models to analyze

and predict the response of thin structures to various kinds of loading. The basic

idea is to exploit the thinness of the structure to represent the mechanics of the

actual thin three-dimensional body under consideration by a more tractable two-

dimensional theory associated with an interior surface. In this way, the relatively

complex three-dimensional continuum mechanics of the thin body is replaced by a

far more tractable two-dimensional theory. To ensure that the resulting model is

predictive, it is necessary to compensate for this ‘dimension reduction’ by assigning

additional kinematical and dynamical descriptors to the surface whose deformations

are modeled by the simpler two-dimensional theory. An efficient method for obtain-

ing dimension reduction in thin 3D structures is the asymptotic method developed

by Ciarlet and Destuynder.

For thin elastic plates, there are several models used to describe their behavior,

each with different assumptions and levels of complexity. Some of the most common

models are:

Kirchhoff-Love model, Reissner-Mindlin model, Donnell model, Vlasov model.

Each of these models has its own advantages and limitations, and the choice of

model depends on the specific application and the level of accuracy required.
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Introduction

In our study, we are interested in the asymptotic behavior of a thin elastic plate

of variable thickness with a heterogeneous periodic structure, within the framework

of classical linear elasticity. In this case, the thickness depends on the microscopic

and macroscopic scales. Then the effective behavior of the plate is influenced by

the variations in thickness across the structure which can lead to non-uniform stress

and strain distributions throughout the plate.

For example, in a plate with a thicker region, the stiffness and strength of that re-

gion will be greater than those of a thinner region. This can lead to a concentration

of stress and strain in the thinner region, which may result in localized deformation

or failure. Moreover, the variations in thickness can also affect the natural frequen-

cies and modes of vibration of the plate. This can be particularly important in

applications where vibration control is critical, such as in aerospace or automotive

engineering.

Periodic plates with variable thickness have a wide range of potential applications

in various fields, including engineering, materials science, and physics. Here are a

few examples:

1. Aerospace engineering: In the design of lightweight and high-strength struc-

tures for aerospace applications, such as aircraft wings and fuselages. By varying

the thickness of the plate in a periodic manner, it is possible to achieve a favorable

balance between stiffness, strength, and weight, which is crucial for optimizing the

performance of aerospace structures.

2. Metamaterials: To design metamaterials with unique mechanical properties,

such as negative Poisson’s ratio, which have potential applications in areas such as

vibration damping, energy absorption, and acoustic insulation.

3. Biomechanics: The design of artificial bone implants. By varying the thickness

of the plate in a periodic manner, it is possible to mimic the natural structure of

bone, which has a complex hierarchical structure with variations in thickness and
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Introduction

density.

4. Energy harvesting: To design energy harvesting devices, such as piezoelectric

plates. By varying the thickness of the plate in a periodic manner, it is possible to

optimize the energy harvesting properties of the plate and increase its efficiency.

Homogenization is a collection of methods to approximate a heteroge-

neous problem by homogeneous one.

Classicaly, the theory of homogenization studies the behavior of a model (typically,

a PDE or an energy functional) with heterogeneous coefficients that periodically

oscillate on a small scale, say ε.

There are different methods of homogenization:

– Two scale asymptotic expansions method for periodic media.

– H or G convergence method for general media.

– Stochastic homogenization.

– Variational methods (Γ - convergence).

– Two-scale convergence method.

– Unfoding method.

The homogenization of periodic structures has been a topic of interest in the field

of mechanics, as it allows us to study the effective behavior of materials composed

of a large number of small substructures. One challenge in homogenizing of peri-

odic plates with variable thickness is that the thickness variations can cause stress

concentrations, which can significantly affect the overall behavior of the structure.

The periodic unfolding method is a powerful technique for studying the homoge-

nization of periodic structures. The main idea is the introduction of an operator Tε,

which maps a function ϕε defined on a finely structured periodic domain Ωε ⊂ Rn

to a function Tε(ϕε) defined on a fixed domain Ω × Y even for varying ε, where

x



Introduction

Y =]0, 1[n is the periodicity cell. Thus, we may use standard convergence results

from functional analysis. For more details we refer to [3].

In this Master thesis, we investigate the homogenization of periodic plates with

variable thickness using the unfolding method. We consider a periodic plate with a

periodicity in two dimensions, and we assume that the thickness of the plate depends

on the local and global variables. Our goal is to derive the effective behavior of the

plate, which can be described by an equivalent homogeneous plate.

We begin by introducing the basic concepts of the unfolding method and its appli-

cation to the homogenization of periodic structures. We then derive the equations

governing the behavior of the periodic plate with variable thickness using the new

"decomposition for the plate displacements" proposed by Griso (see [3]), and at the

end we explain how to apply the unfolding method to homogenize the heterogeneous

plate where plate thickness and period size are of the same order of magnitude.
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Chapter 1

The Unfolding Method :
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1.1. THE UNFOLDING OPERATOR Tε

This chapter will tackle the new methods that gained the scientists’ interest for

study the asymptotic behavior and the homogenization of structures formed by large

numbers of rods, plates or shells, which is the Unfolding Method . It starts with

the cell Y ⊂ Rn which is defined from the set of macroscopic periods attached to

the considered problem. Next, we will define three operators intimately connected

to the εY -tiling of the domain, are define for measurable functions and functions in

a Lebesgue space.

In the first section will tackle the first operator which is Unfolding Operator

Tε. By the following definition, the operator Tε associates to any function u ∈ Lp(Ω),

a function Tε(u) ∈ Lp(Ω × Y ). An immediate property of Tε is that it enables to

transform any integral over Ω in an integral over Ω× Y . It is given as follows,

∫
Ω

u(x)dx ∼ 1

|Y |

∫
Ω×Y

Tεu(x, y)dxdy, ∀u ∈ L1(Ω). (1.1)

1.1 The Unfolding operator Tε

Let Ω an open set of Rn , n ⩾ 2 , and let Y =]0, b1[×....×]0, bn[ , where (b1, ..., bn) ∈

Rn, be a reference cell. Let x ∈ Rn , we denote by [z]Y the integer part of z with

respect to cell Y . This is the unique integer combination (k1, ..., kn) such that∑N
j=1 kjbj belongs to Y . For all z ∈ Rn, we define {z}Y = z − [z]Y ∈ Y , it is the

fractional part of z with respect to Y .

Then for each x ∈ Rn, one has:

x = ε
([x
ε

]
Y
+
{x
ε

}
Y

)
a.e. for x ∈ Rn.

2



1.1. THE UNFOLDING OPERATOR Tε

Figure 1.1: Definition of [z]Y and {z}Y

For Ω a domain in Rn, consider a covering using the notations:


Ξε = {ξ ∈ Zn, ε(ξ + Y ) ⊂ Ω} ,

Ω̂ε = interior
{

∪
ξ∈Ξε

ε(ξ + Y )

}
,

Λε = Ω\Ω̂ε.

(1.2)

The following figure will show these sets:

Figure 1.2: The domains Ω̂ε and Λε

3



1.1. THE UNFOLDING OPERATOR Tε

The set Ω̂ε is the largest subset of cells εY contained in Ω , while Λε is the subset

of Ω containing the cells εY which intersect the boundary of Ω (See Figure 1.2).

Such that if Ω = RN and ∂Ω is bounded , the subset Λε is a null set and we can

write:

|Λε| = measure(Λε) → 0.

Definition 1.1 (The Unfolding operator Tε).

For ϕ Lebesgue−measurable on Ω̂ε , the unfolding operator Tε is defined as follows

:

Tεϕ(x, y) =


ϕ
(
ε
[x
ε

]
Y
+ εY

)
for a.e. (x, y) ∈ Ω̂ε × Y

0 for a.e. (x, y) ∈ Λε × Y,
(1.3)

For this definition it is obvious that Tε is a linear operator (See[1]) . Moreover it

verifies a number of properties:



(i) Tε(uv) = Tε(u)Tε(v), for u and v Lebesgue-measurable

(ii) Tε(ϕ)
(
x,
{

x
ε

}
Y

)
= ϕ(x),

(iii) Tε(ϕ) (x, y) = ϕ(y), for all ϕ ∈ Lp(Y ) Y-periodic on Rn

Proposition 1.1.

For every ϕ ∈ L1(Ω̂ε), ψ ∈ L1(Ω), the operator Tε is linear and continuous from

Lp(Ω̂ε) to Lp(Ω× Y ) for all p ∈ [1,+∞[, and satisfy the following properties:



(i) 1
|Y |

∫
Ω×Y

Tε(ϕ)(x, y)dxdy =
∫
Ω̂ε
ϕ(x)dx,

(ii)
∣∣∣∫Ω ψdx− 1

|Y |

∫
Ω×Y

Tε(ψ)dxdy
∣∣∣ ⩽ ∫Λε

|ψ|dx,

(iii) ∥Tε(u)∥Lp(Ω×Y ) ⩽ |Y |
1
p∥u∥Lp(Ω),

(iv) ∇y(Tε(u)) = εTε(∇xu), for all u ∈ W 1,p(Ω).

4



1.1. THE UNFOLDING OPERATOR Tε

Proof. See ([3], p11).

Definition 1.2 (The mean value operator MY ).

For p ∈ [1,+∞], the mean value operator MY : Lp(Ω× Y ) −→ Lp(Ω), is defined

for φ in Lp(Ω× Y ), as follows :

MY (φ)(x) =
1

|Y |

∫
Y

φ(x, y)dy for a.e. x ∈ Ω, (1.4)

which satisfy the following estimate:

∥MY (φ)∥Lp(Ω) ⩽ |Y |−
1
p |∥φ∥Lp(Ω×Y ).

Proposition 1.2.

For f measurable on Y , extended by Y−periodicity to the whole of RN , define the

sequence {fε}ε by

fε(x) = f
(x
ε

)
for a.e x ∈ RN .

Then

Tε

(
fε|Ω
)
(x, y) =


f(y) for a.e. (x, y) ∈ Ω̂ε × Y,

0 for a.e. (x, y) ∈ε ×Y.

If f belongs to Lp(Y ) , p ∈ [1,+∞[ , and if Ω is bounded ,

Tε

(
fε|Ω
)
−→ f strongly in Lp(Ω× Y ). (1.5)

Then

fε|Ω ⇀MY (f) weakly in Lp
loc(Ω). (1.6)

Furthermore, this convergence is strong if and only if f is constant.

Proof. of the convergence (1.5) and (1.6) , See ([3], p.9, p.14)

5



1.2. THE LOCAL AVERAGE OPERATOR

1.1.1 Unfolding operator and Limits convention:

Proposition 1.3 ([3]).

Let p ∈ [1,+∞]. Suppose that a sequence {uε}ε is bounded in Lp(Ω) and v ∈ Lq(Ω),

where 1
p
+ 1

q
= 1.

(i) If limε−→0

∫
Λε
uεvdx = 0, then

∫
Ω

uε(x)v(x)dx−
1

|Y |

∫
Ω×Y

Tε(uε)(x, y)Tε(v)(x, y)dxdy −→ 0. (1.7)

(ii) Tε(u) −→ u strongly in Lp(Ω).

(iii) If {uε} strongly convergence to u in Lp(Ω), then

Tε(uε) −→ u strongly in Lp(Ω× Y ),

and the same for the weak convergence of this sequence.

(iv) If there exists a function û ∈ Lp(Ω× Y ), such that :

Tε(uε)⇀ û weakly in Lp(Ω× Y ),

then

uε ⇀MY (û) weakly in Lp(Ω).

1.2 The local average operator

Definition 1.3 (The local average operator).

Let p ∈ [1,+∞] and φ ∈ Lp(Ω× Y ), we defined the local average operator

6



1.3. THE AVERAGING OPERATOR

Mε : L
p(Ω) → Lp(Ω), as follows:

Mε(φ)(x) =


1
|Y |

∫
Y
φ
(
ε
[
x
ε

]
Y
+ εz

)
dz if x ∈ Ω̂ε,

0 if x ∈ Λε,

where Ω̂ε and Λε are defined in (1.2).

And we can show the connection between Mε and the operator Tε, as follows:

Mε(φ) =
1

|Y |
Tε(φ)(., y) = MY ◦ Tε(φ).

It is easily seen that: Mε ◦Mε = Mε and Tε ◦Mε = Mε.

and satisfy:

∥Mε(φ)∥Lp(Ω) ⩽ ∥φ∥Lp(Ω). (1.8)

Proof. See ([3], p.18)

1.3 The averaging operator

The adjoint of Tε is the averaging operator Aε defined as follows:

Definition 1.4 (The Averaging Operator).

For p ∈ [1,+∞] the averaging operator Aε : L
p(Ω × Y ) → Lp(Ω) is defined as

follows:

Aε(φ)(x) =


1
|Y |

∫
Y
φ
(
ε
[
x
ε

]
Y
+ εz,

{
x
ε

}
Y

)
dz for a.e. x ∈ Ω̂ε,

0 for a.e. x ∈ Λε.

From this definition we can remark:

Aε (Tε(φ)) (x) =


φ(x) for a.e. x ∈ Ω̂ε,

0 for a.e. x ∈ Λε.

7



1.4. UNFOLDING AND GRADIENTS

Then

Tε (Aε(φ)) (x, y) =


1
|Y |

∫
Y
φ
(
ε
[
x
ε

]
Y
+ εz, y

)
dz for a.e. (x, y) ∈ Ω̂ε × Y,

0 for a.e. (x, y) ∈ Λε × Y.

Let us recall some convergence properties of this operator.

Proposition 1.4.

Let p ∈ [1,+∞[ and φ ∈ Lp(Ω× Y ), one has

• Let {φε}ε be a sequence such that φε ⇀ φ weakly in Lp(Ω× Y ), then

(i) Aε(φ)⇀MY (φ) =
1
|Y |

∫
Y
φ(x, y)dy weakly in Lp(Ω).

(ii) Tε ◦ Aε(φε)⇀ φ weakly in Lp(Ω× Y ).

(iii) Mε ◦ Aε(φε)⇀MY (φ) weakly in Lp(Ω).

• If φ ∈ Lp(Ω) and does not depend upon y, then

Aε(φ) = Mε(φ),

and therefore

Aε(φ) → φ strongly in Lp(Ω).

Moreover, let {φε} be a sequence of Lp(Ω) and φ̂ ∈ Lp(Ω× Y ), one has

Tε(φε) → φ̂ strongly in Lp(Ω×Y ) ⇐⇒ φε−Aε(φ̂) → 0 strongly in Lp(Ω).

Proof. See([3], p.21).

1.4 Unfolding and gradients

In this section will tackle the properties of the unfolding operator to the space

W 1,p(Ω).

8



1.4. UNFOLDING AND GRADIENTS

Firstly, we recall the definitions of Sobolev spaces on a domain Ω in RN where

p ∈ [1,+∞].

– W 1,p(Ω) =
{
ψ ∈ Lp(Ω) : ∇ψ ∈ Lp(Ω)N in the sense of distributions in Ω

}
,

– W 1,p
0 (Ω) = the closure of the space C∞

c in W 1,p(Ω),

– W 1,p
per(Y ) =

{
ψ ∈ W 1,p

loc (RN) | ψ is Y-periodic
}
,

– W 1,p
per,0(Y ) =

{
ψ ∈ W 1,p

per(Y ) | MY (ψ) = 0
}
.

The second space plays a central role in the unfolding method for gradients, such

that for p = 2 these spaces will be denoted H1
per and H1

per,0.

The next propositions states the relationship between Tε and gradients.

Proposition 1.5.

Suppose p ∈ [1,+∞], the operator Tε maps W 1,p(Ω) into L2(Ω;W 1,p(Y )) and for all

u ∈ W 1,p(Ω),

∇y(Tε(u)) = εTε(∇u) a.e. in Ω× Y .

Proof. See ([3], p25)

Theorem 1.1. Suppose p ∈ [1,+∞], let {uε}ε be sequence in W 1,p(Ω) and u ∈

Lp(Ω) such that :

uε ⇀ u weakly in W 1,p(Ω),

then

Tε(uε)⇀ u weakly in Lp(Ω;W 1,p(Ω)).

Furthermore, if

uε → u strongly in Lp(Ω),

then

Tε(uε) → u strongly in Lp(Ω).

Particular case :

If {uε}ε satisfy : ∥uε∥Lp(Ω) + ε∥∇uε∥Lp(Ω) ⩽ C, then there exists a subsequence û

9



1.4. UNFOLDING AND GRADIENTS

in Lp(Ω;W 1,p
per,0(Y )), such that

ε∇uε ⇀ 0 weakly in Lp(Ω)N ,

Tε(uε)⇀ u+ û weakly in Lp(Ω;W 1,p(Y )),

Tε(ε∇uε) = ∇y(Tε(uε))⇀ ∇yû weakly in Lp(Ω× Y )N .

Proof. See ([3], p. 26, 27)

Proposition 1.6.

Suppose p ∈ [1,+∞], let {uε}ε be a sequence in the space W 1,p(Ω) such that,

uε → u strongly in W 1,p(Ω).

Then

(i) Tε(∇uε) → ∇u strongly in Lp(Ω× Y ).

(ii) 1
ε
(Tε(uε)−Mε(uε)) →

∑N
j=1 y

c
j
∂u
∂xj

strongly in Lp(Ω;W 1,p(Ω)),

where

yc = y −MY (y) .

Proof. See ([3], p.29)

Remark 1.1. For the case Y = (0, 1)N we have

yc = (y1 −
1

2
, ...., yN − 1

2
) and

N∑
j=1

ycj
∂u

∂xj
= yc.∇u.

Proposition 1.7.

Suppose p ∈ [1,+∞], then for every ψ in W 1,p(Ω),

∥ψ −Mε(ψ)∥Lp(Ω̂ε)
⩽ Cε∥∇ψ∥Lp(Ω),

∥ψ − Tε(ψ)∥Lp(Ω̂ε×Y ) ⩽ Cε∥∇ψ∥Lp(Ω),

10



1.4. UNFOLDING AND GRADIENTS

with the constant C depending only on Y . Moreover,

1

ε
(ψ1Ω̂ε

−Mε(ϕ))⇀ 0 weakly in Lp(Ω). (1.9)

Theorem 1.2.

Suppose p ∈ [1,+∞], let {uε}ε be a sequence in W 1,p(Ω), such that

uε ⇀ u weakly in W 1,p(Ω).

Then for subsequence, there exists some û in Lp(Ω;W 1,p
per,0(Y )) such that

(i) 1
ε
(Tε(uε)−Mε(uε))⇀ yc.∇u+ û weakly in Lp(Ω;W 1,p(Y )) .

(ii) Tε(∇uε)⇀ ∇u+∇yû weakly in Lp(Ω× Y )N .

Moreover

∥û∥Lp(Ω;W 1,p
per(Y )) ⩽ C lim

ε→0
sup ∥uε∥W 1,p(Ω),

∥∇u+∇yû∥Lp(Ω×Y ) ⩽ |Y |
1
p lim
ε→0

inf ∥∇uε∥Lp(Ω),

where the constant C only depends on the Poincaré-Wirtinger constant of Y .

Proof. See ([3], p.30).

Corollary 1.1.

Under the assumptions of theorem 1.2, one has

(i) 1
ε
(uε1Ω̂ε

−Mε(uε))⇀ 0 weakly in Lp(Ω),

as well as

(ii) 1
ε
(Tε(uε)− 1Ω̂ε

)⇀ yc.∇u+ û weakly in Lp(Ω;W 1,p(Y )).

These result is a complement to convergence (1.9).

Proof. See ([3], p.32)
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Chapter 2

Decomposition of the plate

displacements
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2.1. THE TREE-DIMENSIONAL PROBLEM OF LINEARLY PLATE:

2.1 The tree-dimensional problem of linearly plate:

Let ω be a bounded open subset of R2 with a Lipschitz-continuous boundary γ, and

let γ0 and γ1 be two subsets of γ such that:

meas(γ0) > 0, meas(γ1) > 0 with γ1 = γ − γ0.

Let us define the sets:

Ωδε = ω×]− δhε, δhε[,
Γδε
0 = γ0×]− δhε, δhε[,

Γδε
1 = γ1×]− δhε, δhε[,


Γδε
+ = ω × {+δhε},

Γδε
− = ω × {−δhε},

where δ is a parameter (0 < δ ≤ 1), and hε is a function defined in ω.

We consider a three-dimensional linear heterogenous elastic thin plate with variable

thickness. This plate is occupying the set Ω
δε, which is the reference configuration, with

a middle surface ω such that:

Ω
δε
= ω × [−δhε, δhδ].

We denote the boundary of the set Ωδε by Γδε, which is defined as follows:

Γδε = Γδε
L ∪ Γδε

− ∪ Γδε
+ ,

where Γδε
L = γ×]− δhε, δhε[ is the laterale face of the plate. This face be divided into two

portions, while the plate is clamped on the first portion Γδε
0 , and the remaining portion

Γδε
1 of this laterale face is free of all action, and Γδε

± = ω × {±δhε} the upper and lower

faces.

The plate is subjected to applied body forces, of density (f δ
i ) : Ω

δε −→ R3 per unit

volume in its interior Ωδε and to applied surface forces acting on the upper and lower

13



2.1. THE TREE-DIMENSIONAL PROBLEM OF LINEARLY PLATE:

faces of density (gδi ) : Γ
δε
+ ∪ Γδε

− −→ R3 per unit area, where:


f δ
i ∈ L2(Ωδε),

gδi ∈ L2(Γδε
+ ∪ Γδε

− ).

Let (x1, x2) = (xδ1, x
δ
2) and xδ = (x1, x2, x

δ
3) denote the generic points in the sets ω and

Ω
δε, respectively, and let nδ = (nδ

i ) denotes the unit outer normal vector along Γδε (the

boundary of the set Ωδε).

Remark 2.1.

Since δ is a dimensionless parameter, the thickness of the plate should be more appropri-

ately written as 2δhε, where hε represents the variation in thickness, which depends on

microscopic and macroscopic variables. There are two variable parameters,
δ denotes the order of the variable thickness of the a plate,

ε denotes the order of magnitude of the period of a plate.

We suppose that the thickness of the plate satisfy:

 hε ∈ W 2,∞(ω) , hε(x1, x2) ⩾ h0 > 0.

hε(x1, x2) = h(x1, x2;
x1

ε
, x2

ε
).

We consider the classical linear elasticity problem posed on a periodic structure Ωδε:

(P (Ωδε))



−∂δjσδε
ij = f δ

i in Ωδε

uδεi = 0 on Γδε
0

σδε
ij η

δ
j =


gδi on Γδε

− ∪ Γδε
+ ,

0 on Γδε
1 .

The unknown of this problem is the displacement vector field uδε = (uδεi ) : Ω
δε −→ R3,

where, σδε = (σδε
ij ) is called the stress tensor which is related to uδε, such that:

σδε
ij = aδεijkle

δε
kl(u

δε)

14



2.1. THE TREE-DIMENSIONAL PROBLEM OF LINEARLY PLATE:

where

eδεkl(u
δε) =

1

2

(
∂ku

δε
l + ∂lu

δε
k

)
.

The tensor eδε(uδε) = (eδεkl(u
δε)) is the linearized strain tensor, and the constants

aδεijkl denote the components of the three-dimensional elasticity tensor in cartesian

coordinates.

Moreover, these heterogeneous elastic coefficients satisfy the following conditions:

• aδεijkl ∈ L∞(Ωδε) such that :

aδεijkl(x1, x2, x3) = aijkl(
x1

ε
, x2

ε
, x3

δ
)

• Symetry :

aδεijkl = aδεjikl = aδεijlk = aδεklij

• Ellipticity :

aδεijklτklτij ≥ cτijτij, ∀τij = τji.

2.1.1 The variational formulation

After all the reminders in the first appendix, we can affirm that the displacement field

uδε satisfies the following weak formulation :

(Pv(Ω
δε))

 Find uδε ∈ V δε = {vδε ∈
[
H1(Ωδε)

]3
: vδε = 0 on Γδε

0 } such that

Bδ(uδε, uδε) = Lδ(v) ∀v ∈ V δε.
,

where 
Bδ(uδε, v) =

∫
Ωδε

aδεijkle
δε
kl(u

δε)eδεkl(v)dx
δ

Lδ(v) =

∫
Ωδε

f δvdxδ

2.1.2 The existence and unicity of the solution of problem

To proof the existence and unicity of uδε the unknown of the problem P (Ωδε) , we assume

that f δ ∈
[
L2(Ωδε)

]3 and aδεijkl(x) satisfy the hypotheses above, so we have α ⩽ aδεijkl(x) ⩽

M , with C,M,α are positive real numbers.
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2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

1. The continuity :

|Lδ(v)| = |
∫
Ωδε

f δvdxδ|

⩽ ∥f δ∥L2(Ωδε)∥v∥L2(Ωδε)

⩽ C∥v∥H1(Ωδε).

Using the Cauchy Schwarz’s inequality, so Lδ(.) is continuous, with C = ∥f δ∥L2(Ωδε).

On the other hand, using the Cauchy Schwarz’s inequality, we get

|Bδ(uδε, v)| = |
∫
Ωδε

aδεijkl(x)e
δε
kl(u

δε)eδεij (v)dx
δ|

⩽M∥e(uδε)∥L2(Ωδε)∥e(v)∥L2(Ωδε)

⩽M∥uδε∥H1(Ωδε)∥v∥H1(Ωδε).

So the bilinear form Bδε(., .) is continuous .

2. V δε-elliptic :

Using the ellipticity of the elastic coefficients, we get

Bδ(v, v) =

∫
Ωδε

aδεijkl(x)e
δε
kl(v)e

δε
ij (v)dx

δ ⩾M
∥∥eδε(v)∥∥2

L2(Ωδε)
, where M is positive constant.

Using the Korn’s inequality with a boundary condition we find:

Bδ(v, v) ⩾ γ∥v∥2H1(Ωδε),

with γ = M.C−2
k , Then the bilinear form Bδε is V δε-elliptic. Consequently, via Lax-

Milgram Theorem the variational problem P (Ωδε) has one and only one solution uδε.

2.2 A Decomposition for the plate displacements :

In order to simplify the notations, we omit the parameter ε (as it only concerns homog-

enization) in the rest of this chapter. In this section, we use the new decomposition of

the displacement with some properties such that every displacement uδ in
[
H1(Ωδ)

]3 is

16



2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

uniquely decomposed as the sum :

uδ = uδe + uδr (2.1)

of an elementary displacement uδe and a residual displacement uδr .

Definition 2.1 ( elementary displacements[3]).

Elementary displacements are elements uδe of
[
H1(Ωδ)

]3 satisfying for a.e. x = (x′, x3) ∈

Ωδ, where x′ ∈ ω: 
uδe,1(x) = U δ

1 (x
′) + x3Rδ

1(x
′)

uδe,2(x) = U δ
2 (x

′) + x3Rδ
2(x

′)

uδe,3(x) = U δ
3 (x

′).

,

where

U δ =
(
U δ
1 ,U δ

2 ,U δ
3

)
∈ [H1(ω)]

3 and Rδ =
(
Rδ

1,Rδ
2

)
∈ [H1(ω)]

2
.

Elementary displacements are a generalization of the notion of Kirchhoff-Love and Reissner-

Mindlin displacements. The first part U δ(x′) of uδe is mid-surface displacement at the point

x′ ∈ ω, while x3Rδ(x′) represents the small linearized rotation of the fiber {x′} × (−δ, δ) .

Definition 2.2 (Residual displacements[3]).

The residual displacements are elements of uδr = (uδr,1, u
δ
r,2, u

δ
r,3), which satisfy the condi-

tion:

∫ δ

−δ

uδr(x
′, x3)dx3 =

∫ δ

−δ

x3u
δ
r,1(x

′, x3)dx3 =

∫ δ

−δ

x3u
δ
r,2(x

′, x3)dx3 = 0 a.e. x′ ∈ ω. (2.2)

Due to the properties of the residual part, the components U δ and Rδ of uδe are given

for a.e. x′ ∈ ω, by

U δ(x′) =
1

2δ

∫ δ

−δ

uδ(x′, x3)dx3

Rδ
α(x

′) =
3

2δ3

∫ δ

−δ

x3u
δ
α(x

′, x3)dx3, α = 1, 2.
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2.2. A DECOMPOSITION FOR THE PLATE DISPLACEMENTS :

Proof. you can see this proof in the second appendix.

The sum

U δ
m = U δ

1e1 + U δ
2e2

is the membrane displacement, while U δ
3 represents the bending of the mid-surface. The

residual part uδr is the warping; it stands for the deformation of the fibers {x′} × (−δ, δ).

With the above notations, the explicit expressions of the components of the strain tensor

of uδ are

• e11(uδ) =
∂Uδ

1

∂x1
+ x3

∂Rδ
1

∂x1
+

∂uδr,1
∂x1

,

• e22(u
δ) = ∂Uδ

2

∂x2
+ x3

∂Rδ
2

∂x2
+

∂uδr,2
∂x2

,

• e12(u
δ) = 1

2

([
∂Uδ

1

∂x2
+ ∂Uδ

2

∂x1

]
+ x3

[
∂Rδ

1

∂x2
+ ∂Rδ

2

∂x1

]
+
[
∂uδr,1
∂x2

+
∂uδr,2
∂x1

])
,

• e13(u
δ) = 1

2

([
∂Uδ

3

∂x1
+R1

]
+
[
∂uδr,3
∂x1

+
∂uδr,1
∂x3

])
,

• e23(u
δ) = 1

2

([
∂Uδ

3

∂x2
+R2

]
+
[
∂uδr,3
∂x2

+
∂uδr,2
∂x3

])
,

• e33(u
δ) =

∂uδr,3
∂x3

.

Proof. See in the second appendix.

Theorem 2.1 ([3]).

Let uδ be a displacement in
[
H1(Ωδ)

]3 and
(
U δ,Rδ, uδr

)
be its decomposition given by,

δ
∥∥eαβ(Rδ)

∥∥
L2(ω)

+
∥∥eαβ(U δ)

∥∥
L2(ω)

⩽ C

δ
1
2

∥∥e(uδ)∥∥
L2(Ωδ)

,∥∥∥∂Uδ
3

∂xα
+Rδ

α

∥∥∥
L2(ω)

⩽ C

δ
1
2

∥∥e(uδ)∥∥
L2(Ωδ)

,
(2.3)

∥∥uδr∥∥L2(Ωδ)
⩽ Cδ

∥∥e(uδ)∥∥
L2(Ωδ)

,∥∥∇uδr∥∥L2(Ωδ)
⩽ C

∥∥e(uδ)∥∥
L2(Ωδ)

.

The constant does not depend on δ.
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Proof. One has :

∥∥e(uδ)∥∥2
L2(Ωδ)

=
3∑

i,j=1

∥∥eij(uδ)∥∥2L2(Ωδ)

=
2∑

α,β=1

∥∥eαβ(uδ)∥∥2L2(Ωδ)
+ 2

2∑
α=1

∥∥eα3(uδ)∥∥2L2(Ωδ)
+
∥∥e33(uδ)∥∥2L2(Ωδ)

⩾
2∑

α,β=1

∥∥eαβ(uδ)∥∥2L2(Ωδ)
.

Step 1: Proof of the first inequality (2.3),

∥∥eαβ(uδ)∥∥2L2(Ωδ)
=

∫
Ωδ

|eαβ(uδ)|2dx

=

∫
Ωδ

e2αβ(U δ)dx+

∫
Ωδ

{
x3eαβ(Rδ)

}2
dx+

∫
Ωδ

e2αβ(u
δ
r)dx

=

∫
ω

e2αβ(U δ)

(∫ δh

−δh

dx3

)
dx′ +

∫
ω

e2αβ(Rδ)

(∫ δh

−δh

x23dx3

)
dx′ +

∫
Ωδ

e2αβ(u
δ
r)dx

= 2δ

∫
ω

h e2αβ(U δ)dx′ +
2δ3

3

∫
ω

h3e2αβ(Rδ)dx′ +

∫
Ωδ

e2αβ(u
δ
r)dx

⩾ 2δh0
∥∥eαβ(U δ)

∥∥2
L2(ω)

+
2

3
h30δ

3
∥∥eαβ(Rδ)

∥∥2
L2(ω)

+
∥∥eαβ(uδr)∥∥2L2(Ωδ)

⩾ 2δh0
∥∥eαβ(U δ)

∥∥2
L2(ω)

+
2

3
h30δ

3
∥∥eαβ(Rδ)

∥∥2
L2(ω)

and by a2 + b2 ⩾ 1
2
(a+ b)2, we get

∥∥eαβ(uδ)∥∥2L2(Ωδ)
⩾

1

2

{√
2δh0∥eαβ(U δ)∥L2(ω) +

√
2h0δ3√
3

(δh0)∥eαβ(Rδ)∥L2(ω)

}2

δh0

{
∥eαβ(U δ)∥L2(ω) +

δh0√
3
∥eαβ(Rδ)∥L2(ω)

}2

and after that we get

∥∥eαβ(uδ)∥∥L2(Ωδ)
⩾
√
δh0

{
∥eαβ(U δ)∥L2(ω) +

δh0√
3
∥eαβ(Rδ)∥L2(ω)

}
,

which gives:

δ
∥∥eαβ(Rδ)

∥∥
L2(ω)

+
∥∥eαβ(U δ)

∥∥
L2(ω)

⩽
C√
δ

∥∥e(uδ)∥∥
L2(Ωδ)

.
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with C = min
{√

h0,
h0√
3

}
.

Step 2: Proof of the second inequality of (2.3):

∥∥eα3(uδ)∥∥2L2(Ωδ)
=

∫
Ωδ

|eα3(uδ)|2dx

=

∫
Ωδ

e2α3(u
δ
e)dx+

∫
Ωδ

e2α3(u
δ
r)dx+ 2

∫
Ωδ

eα3(u
δ
e)eα3(u

δ
r)dx

=

∫
Ωδ

{
1

2

(
∂uδe,α
∂x3

+
∂uδe,3
∂xα

)}2

dx+

∫
Ωδ

e2α3(u
δ
r)dx

=

∫
Ωδ

{
1

2

(
Rδ

α(x
′) +

∂U δ
3

∂xα

)}2

dx+

∫
Ωδ

e2α3(u
δ
r)dx

=
1

4

∫
ω

{
Rδ

α(x
′) +

∂U δ
3

∂xα

}2(∫ δh

−δh

dx3

)
dx′ +

∫
Ω

e2α3(u
δ
r)dx

=
δ

2

∫
ω

h

{
Rδ

α +
∂U δ

3

∂xα

}2

dx′ +

∫
Ωδ

e2α3(u
δ
r)dx

⩾
h0
2
δ

∥∥∥∥Rδ
α +

∂U δ
3

∂xα

∥∥∥∥2
L2(ω)

.

Then we get ∥∥eα3(uδ)∥∥L2(Ωδ)
⩾

√
h0δ

2

∥∥∥∥Rδ
α(x

′) +
∂U δ

3

∂xα

∥∥∥∥2
L2(ω)

,

which gives ∥∥∥∥Rδ
α +

∂U δ
3

∂xδ

∥∥∥∥
L2(ω)

⩽
C√
δ

∥∥e(uδ)∥∥
L2(Ωδ)

,

with C = 2√
h0
.

Proposition 2.1.

∥Uα∥H1(ω) + δ
(
∥U3∥H1(ω) + ∥Rα∥H1(ω)

)
⩽

C

δ
1
2

∥e(u(δ))∥L2(Ωδ) (2.4)

Proof.

We use the displacement Ũe = Ue,α + δUe,3 belongs to [H1(Ω)]
3, one has
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Ue,1(z
′, z3) = U1(z

′) + z3δR1(z
′)

Ue,2(z
′, z3) = U2(z

′) + z3δR2(z
′)

Ue,3(z
′, z3) = U3(z

′)

which give

C∥Ũe∥H1(Ω) ⩽ ∥ez(Ũe)∥L2(Ω) ⩽
C

δ
1
2

∥e(u(δ))∥L2(Ωδ)

and via the definition of Ũe , One has

∥Ũe∥2H1(Ω) = ∥Ũe∥2L2(Ω) + ∥∇Ũe∥2L2(Ω)

= ∥Ue,α∥2L2(Ω) + ∥δUe,3∥2L2(Ω)

= ∥Uα(z
′) + z3δRα(z

′)∥2L2(Ω) + ∥δU3(z
′)∥2L2(Ω)

= 2 ∥Uα(z
′)∥2L2(ω) +

2

3
δ2 ∥Rα(z

′)∥2L2(ω) + 2δ2 ∥U3(z
′)∥2L2(ω)

⩽ C∥ez(Ũe)∥2L2(Ω).

from the previous results we deduce that

√
2 ∥Uα∥L2(ω) +

√
2√
3
δ ∥Rα∥L2(ω) +

√
2δ ∥U3∥L2(ω) ⩽

1

δ
1
2

∥e(u(δ))∥L2(Ωδ) ,

Then

∥Uα∥L2(ω) + δ
(
∥Rα∥L2(ω) + ∥U3∥L2(ω)

)
⩽

C

δ
1
2

∥e(u(δ))∥L2(Ωδ).

The constant does not depend on δ.
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DOMAIN INDEPENDENT OF δH :

2.3 Transformation into a problem posed over a domain

independent of δh :

2.3.1 The fixed domain

Firstly, recall that Ωδ = ω×]−δh, δh[ , with thickness variable h0 > 0, such that 0 < δ ⩽ 1.

Since the displacement fields uδ is defined on the set Ω
δ
= ω × [−δh, δh] which depends

on δ and h.

In this part we will transform the problem P (Ωδε) into a problem on a fixed domain that

does not depend on δ. Let us define the fixed domain:

Ω = ω×]− 1, 1[ ,
Γ0 = γ0 × [−1, 1],

Γ1 = γ1 × [−1, 1],


Γ+ = ω × {1} ,

Γ− = ω × {−1} .

Let z = (z1, z2, z3) denote a current point of Ω, where zα = xα and z3 = x3

δh
. With each

point xδ ∈ Ω
δ
, we associate the point z ∈ Ω through the correspondance

z = (z1, z2, z3) ∈ Ω −→ xδ = (x1, x2, x
δ
3) ∈ Ω

δ
, with xδ3 = δhz3.

Such that for any function ψδ : Ω
δ → R we associate the corresponding function ψ(δ) :

Ω → R. We have 
∂δαψ

δ = ∂zαψ(δ)− 1
h
z3∂

z
αh ∂

z
3ψ(δ),

∂δ3ψ
δ = 1

δh
∂z3ψ(δ).

(2.5)

And for any ψδ integrable over Ωδ and Γδ
− ∪ Γδ

+, we have

∫
Ωδ

ψδ(xδ)dxδ = δ

∫
Ω

h ψ(δ)(z)dz

∫
Γδ
−∪Γδ

+

ψδ(xδ)dΓδ =

∫
Γ−∪Γ+

h∗ψ(δ)(z)dΓ,
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where h∗ = {1 + δ2[(∂z1h)
2 + (∂z2h)

2]}
1
2 .

2.3.2 Assumptions on the Data and decomposition of the Un-

knowns.

In order to fined the displacement field u(δ) = (ui(δ)) : Ω → R3 which does not depend

on δ, we use the new decomposition that was defined in section 2.2 as follows :

uδ = uδe + uδr

Under the hypothesis g = (g1, g2, g3) = 0, f = (f1, f2, f3) ∈ [L2(ω)]
3 and t = (t1, t2) ∈

[L2(ω)]
2, we make the assumptions that the applied body forces f δ are of the form:

f δ(x) = (δfα(x
′) + x3tα(x

′)) eα + δ2f3(x
′)e3 for a.e. x ∈ Ωδ

Now, by using the new displacement and the assumptions on the data and the rela-

tions(2.5), we can reformulation the variational problem P (Ωδ) to problem on a fixed

domain, which is denoted P (Ω) in the following equivalent form:
u(δ) ∈ V (Ω) = {v = (vi) ∈ H1(Ω); v = 0 on Γ0} ,

δ
∫
Ω
h σij(δ)Hij(v)dz = L(v) for all v ∈ V,

where

σij(δ) = aδijkl(z)Hkl(u(δ)) , L(v) = δ

∫
Ω

f(δ)v dz,

and the expressions of the strain tensor H are defined as follows:

1. For the test-functions:

• Hδ
αβ(v) = ezαβ(v)− 1

2hz3
[
∂zαh ∂

z
3vβ + ∂zβh ∂

z
3vα
]
,

• Hδ
α3(v) =

1
2

[
1
δh∂

z
3vα + ∂zαv3 − 1

hz3∂
z
αh ∂3zv3

]
,

• Hδ
33(v) =

1
δh∂

z
3v3.
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2. For the Unknown:

• Hδ
αβ(u(δ)) = ezαβ(u(δ))− z3

2h

{[
Rβ(δ)∂

z
αh +Rα(δ)∂

z
βh
]
+
[
∂zαh ∂

z
3ur,β(δ) + ∂zβh ∂

z
3ur,α(δ)

]}
.

• Hδ
α3(u(δ)) =

1
2

[
∂zαU3(δ) +

1
δh
Rα(δ)

]
+Hδ

α3(ur(δ))

• Hδ
33(u(δ)) =

1
δh
∂z3ur,3(δ).

Proof.

By the relations (2.5) we find:

Hδ
αβ(u(δ)) = ezαβ(u(δ))−

z3
2h

[
∂zαh ∂

z
3uβ(δ) + ∂zβh ∂

z
3uα(δ)

]
,

Hδ
α3(u(δ)) =

1

2

[
1

δh
∂z3uα(δ) + ∂zαu3(δ)−

1

h
z3∂

z
αh ∂

z
3u3(δ)

]
,

Hδ
33(u(δ)) =

1

δh
∂z3u3(δ).

and for the decomposition of u(δ), we have

Hij(u(δ)) = Hij {U(δ) + z3R(δ) + ur(δ)} (2.6)

= Hδ
ij(U(δ)) +Hδ

ij(z3R(δ)) +Hδ
ij(ur(δ)) (2.7)

Now, we can proof these expressions for 1 ⩽ i, j ⩽ 3,

Step 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hδ
αβ(U(δ)) = ezαβ(U(δ)) +

x3
2h

[
∂zαh ∂

z
3Uβ(δ) + ∂zβh ∂

z
3Uα(δ)

]
,

Hδ
αβ(z3R(δ)) = ezαβ(z3R(δ)) +

z3
2h

[
∂zαh ∂

z
3(z3R(δ)) + ∂zβh ∂

z
3(z3Rα(δ))

]
= z3e

z
αβ(R(δ)) +

z3
2h

[
Rβ(δ) ∂

z
αh+Rα(δ) ∂

z
βh
]
,

Hδ
αβ(ur(δ)) = ezαβ(ur(δ)) +

z3
2h

[
∂zαh ∂

z
3ur,β(δ) + ∂zβh ∂

z
3ur,α(δ)

]
.

Then

Hαβ(u(δ)) = ezαβ(u(δ))+
z3
2h

{[
Rβ(δ) ∂

z
αh+Rα(δ) ∂

z
βh
]
+
[
∂zαh ∂

z
3ur,β(δ) + ∂zβh ∂

z
3ur,α(δ)

]}
,
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Step 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hδ
α3(U(δ)) =

1

2

[
∂zαU3(δ)−

1

h
z3∂

z
αh ∂

z
3U3(δ) +

1

δh
∂z3Uα(δ)

]
=

1

2
∂zαU3(δ),

Hδ
α3(z3R(δ)) =

1

2

[
∂zα(z3R(δ))3 −

1

h
z3∂

z
αh ∂

z
3(z3R(δ))3 +

1

δh
∂z3(z3Rα(δ))

]
=

1

2δh
Rα(δ),

Hδ
α3(ur(δ)) =

1

2

[
∂zαur,3(δ))−

1

h
z3∂

z
αh ∂

z
3ur,3(δ) + ∂z3ur,α(δ)

]
.

Then

Hδ
αβ(u(δ)) =

1

2

[
∂zαU3(δ) +

1

δh
Rα(δ)

]
+Hδ

α3(ur(δ)),

Step 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Because U(δ) and R(δ) do not depend of z3, the terms Hδ
33(U(δ)) and Hδ

33(x3R(δ)) are

null, then

Hδ
33(u(δ)) = Hδ

33(ur(δ)) =
1

δh
∂z3ur,3(δ)

Proposition 2.2.

On a domain fixed, the strain tensor satisfy the following inequality:

∥Hδ
αβ(R(δ))∥L2(ω) + ∥Hδ

αβ(U(δ))∥L2(ω) ⩽ C∥Hδ(u(δ))∥L2(Ω), (2.8)

∥h∂zαU3(δ) +Rα(δ)∥L2(ω) ⩽ C∥Hδ(u(δ))∥L2(Ω). (2.9)

The constant does not depend on δ.
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Proof.

∥∥Hδ(u(δ))
∥∥2
L2(Ω)

=
3∑

i,j=1

∥∥Hδ
ij(u(δ))

∥∥2
L2(Ω)

=
2∑

α,β=1

∥∥Hδ
αβ(u(δ))

∥∥2
L2(Ω)

+ 2
2∑

α=1

∥∥Hδ
α3(u(δ))

∥∥2
L2(Ω)

+
∥∥Hδ

33(u(δ))
∥∥2
L2(Ω)

⩾
2∑

α,β=1

∥∥Hδ
αβ(u(δ))

∥∥2
L2(Ω)

.

Step 1: Proof of (2.8),

∥∥Hδ
αβ(u(δ))

∥∥2
L2(Ω)

=

∫
Ω

|Hδ
αβ(u(δ))|2dz

=

∫
Ω

{
Hδ

αβ(U(δ))
}2
dz +

∫
Ω

{
z3H

δ
αβ(R(δ))

}2
dz +

∫
Ω

{
Hδ

αβ(ur(δ))
}2
dz

=

∫
ω

{
Hδ

αβ(U(δ))
}2(∫ 1

−1

dz3

)
dz′ +

∫
ω

{
Hδ

αβ(R(δ))
}2(∫ 1

−1

z23dz3

)
dz′

+
∥∥Hδ

αβ(ur(δ))
∥∥2
L2(Ω)

= 2

∫
ω

{
Hδ

αβ(U(δ))
}2
dz′ +

2

3

∫
ω

{
Hδ

αβ(R(δ))
}2
dz′ +

∥∥Hδ
αβ(ur(δ))

∥∥2
L2(Ω)

= 2
∥∥Hδ

αβ(U(δ))
∥∥2
L2(ω)

+
2

3

∥∥Hδ
αβ(R(δ))

∥∥2
L2(ω)

+
∥∥Hδ

αβ(ur(δ))
∥∥2
L2(Ω)

⩾ 2 ∥Hαβ(U(δ))∥2L2(ω) +
2

3
∥Hαβ(R(δ))∥2L2(ω) .

Using the inequality

a2 + b2 ⩾ 1
2
(a+ b)2

we get

∥Hδ
αβ(u(δ))∥2L2(Ω) ⩾

1

2

{
√
2∥Hδ

αβ(U(δ))∥L2(ω) +

√
2√
3
∥Hδ

αβ(R(δ))∥L2(ω)

}2

⩾

{
∥Hδ

αβ(U(δ))∥L2(ω) +
1√
3
∥Hδ

αβ(R(δ))∥L2(ω)

}2

,

then we have

∥∥Hδ
αβ(u(δ))

∥∥
L2(Ω)

⩾

{∥∥Hδ
αβ(U(δ))

∥∥
L2(ω)

+
1√
3
∥Hαβ(R(δ))∥L2(ω)

}
,
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which gives:

∥Hδ
αβ(R(δ))∥L2(ω) + ∥Hδ

αβ(U(δ))∥L2(ω) ⩽ ∥Hδ(u(δ))∥L2(Ω).

Step 2: Proof of (2.9):

∥∥Hδ
α3(u(δ))

∥∥2
L2(Ω)

=

∫
Ω

|Hδ
α3(u(δ))|2dz

=

∫
Ω

(Hδ
α3(ue(δ)))

2dz +

∫
Ω

(Hδ
α3(ur(δ)))

2dz

=

∫
Ω

(Hδ
α3(U(δ)))2dz +

∫
Ω

(Hδ
α3(z3R(δ)))2dz +

∫
Ω

(Hδ
α3(ur(δ)))

2dz

=

∫
Ω

{
1

2
(∂zαU3(δ))

}2

dz +

∫
Ω

{
1

2h
(Rα(δ))

}2

dz +

∫
Ω

(Hδ
α3(ur(δ)))

δdz

⩾
1

8

∫
ω

{
1

h
Rα(δ) + ∂zαU3(δ)

}2

dz′ +

∫
Ω

(Hδ
α3(ur(δ)))

2dz

⩾
1

4∥h∥2L∞(ω)

∫
ω

{Rα(δ) + h∂zαU3(δ)}2 dz′ +
∫
Ω

(Hδ
α3(ur(δ)))

2dz

⩾ C∗ ∥Rα(δ) + h∂zαU3(δ)∥2L2(ω) +
∥∥Hδ

α3(ur(δ))
∥∥2
L2(Ω)

.

Then one has ∥∥Hδ
α3(u(δ))

∥∥
L2(Ω)

⩾ C∗ ∥Rα(δ) + h∂zαU3(δ)∥L2(ω) .

Which gives ∥∥Rα(δ) + h∂δαU3(δ)
∥∥
L2(ω)

⩽ C
∥∥Hδ(u(δ))

∥∥
L2(Ω)

(2.10)

Lemma 2.1.

The maps : v ∈ V → ∥H(v)∥0,Ω

is a norm equivalent to ∥.∥V , such that V = H1(Ω).
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Chapter 3

Homogenization of The Plate
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3.1. UNFOLDING THE RESCALED PLATE

In this chapter, we gives the asymptotic behavior of the rescaled strain tensor in fixed

domain Ω Then in the subset of Ω. Next, we presents the unfoldes and rescaled limit

elasticity problem. finally, gives the homogenized limit.

From the last chapter we deduce that:

∥u(δ)∥H1(Ω) ⩽ C∗∥Hδ
kl(u(δ))∥L2(Ω) ⩽ C.

So Hkl(u(δ)) is bounded and There exist an subsequence, such that :

• Hδ
kl(u

ε(δ)) → H∗
kl(u(δ)) strongly in L2(Ω) ,

• Hδ
kl(u

ε(δ))⇀ H∗
kl(u(δ)) weakly in H1(Ω) .

3.1 Unfolding the rescaled plate

From now on, we will use the usual unfolding operator in ω, as well as in Ω. The subset

of ω included in the ε-cells intersecting its boundary ∂ω is Λ̃ε. At some point we may

identify Ω× Y ′ with ω × Y , where

Y ′ = (0, 1)2, Y = Y ′ × (−1, 1).

For x′ ∈ R2, one has

x′ = [x′] + {x′} , [x′] ∈ Z2, {x′} ∈ Y ′.

3.2 Asymptotic behavior of the tensor

We are now in position to give the limits of the rescaled and unfolded strain tensor, for

that in the following proposition we show that

1

δ
(Hδ(uε(δ)))⇀ EM(U) + Ew(u

0) weakly in
[
L2(Ω)

]9
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3.2. ASYMPTOTIC BEHAVIOR OF THE TENSOR

Hence
1

δ
Tε(H

δ(uε(δ)))⇀ EM(U) + Ew(u
0) weakly in

[
L2(Ω× Y )

]9
where

u0 = ur + y3zαeα,

under the same hypotheses with the notation of (proposition 11.12, See [3]) and by the

same way, we obtain these convergence (See [3], p 373). The difference is in the symetric

tensor EM(U) such that

U = (Um,U3), Eαβ(U) = ezαβ(Um)− δz3h
∂2U3

∂zα∂zβ
+ δz3∂

z
αh
∂U3

∂zβ
(3.1)

Furthermore, there exist

Ûα, R̂α ∈ L2(ω;H1
per,0(Y

′)) and Ẑα ∈ L2(ω × Y ′),

with MY ′(Ẑα) = 0 a.e. in ω, such that

1

δ
Tε(∇U ε

α(δ))⇀ ∇Uα +∇y′Ûα weakly in
[
L2(ω × Y ′)

]2
,

Tε(∇Rε(δ))⇀ −D2U3 +∇y′R̂ weakly in
[
L2(ω × Y ′)

]2×2
,

1

δ
Tε(h

ε∇U ε
3(δ) +Rε(δ))⇀ Z + Ẑ weakly in

[
L2(ω × Y ′)

]2
.

Proposition 3.1 below completes the results of Proposition 11.12 (See [3], p372).

Proposition 3.1. Under the hypotheses and with the notations of Proposition 11.12,

1

δ
Tε(H(uε(δ)))⇀ EM(U) + Ew(u

0) + Ey(û) weakly in
[
L2(ω × Y )

]9
, (3.2)

Such that

û(., y) = Û(., y′) + y3R̂(., y
′) + ûr(., y), û ∈ L2(ω;D). (3.3)

Proof. of Proposition 3.1 it is enough to the limits of the following two terms :

1

δ
Tε(H11(u

ε(δ)))
1

δ
Tε(H13(u

ε(δ))),
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3.2. ASYMPTOTIC BEHAVIOR OF THE TENSOR

Since the limit of all the terms of the forms 1
δ
Tε(Hαβ(u

ε(δ))) are obtained in the same

way as the former , and the limit of 1
δ
Tε(H23(u

ε(δ))) is obtained in the same way as the

latter. The limit of 1
δ
Tε(H33(u

ε(δ))) was already obtained in proposition 11.12 (See [3])

1

δ
Tε(H11(u

ε(δ))) =
1

δ
Tε

(
∂U ε

1(δ)

∂z1

)
+ Tε(z3h

ε)Tε

(
∂Rε

1(δ)

∂z1

)
+

1

δ
Tε

(
∂uεr,1(δ)

∂z1

)
− Tε(z3∂

ε
1h

ε)Tε(Rε
1(δ)) + Tε(z3∂

z
1h

ε)Tε(∂
z
3u

ε
r,1(δ))

⇀
∂U1(δ)

∂z1
+
∂Û1(δ)

∂y1
+ z3h

(
∂R1

∂z1
+
∂R̂1

∂y1

)
+
∂ûr,1(δ)

∂y1
+ z3∂

z
1h

U3(δ)

∂z1
− z3∂

z
1h
∂ur,1(δ)

∂y3
.

and with the help of the field û (See (3.3)),

1

δ
Tε(H13(u

ε(δ))) =
1

2

{
1

δ
Tε

(
∂U ε

3(δ)

∂z1
+

1

δhε
Rε

1(δ)

)
+

1

δ
Tε

(
∂z1u

ε
r,3(δ)

)
− Tε(z3∂

ε
1h

ε)Tε(∂
z
3u

ε
r,3(δ))

+
1

δ2
Tε

(
1

hε
∂z3u

ε
r,1(δ)

)}
⇀

1

2
{Z +

1

h
Ẑ +

∂ûr,3(δ)

∂y1
+ z3∂

z
1h
∂ur,3(δ)

∂y3
+

1

h

(
∂ûr,1(δ)

∂y3
+
∂ûr,1
∂y3

)}
.

Where

Ẑ1 =
∂Û3

∂y1
+ R̂1 and

∂u01
∂y3

= Z1 +
∂ur,1
∂y3

So we get the convergence (3.2).

Corollary 3.1. For the rescaled and unfolded stress tensor, one has the convergence

1

δ
Tε(σ

ε(δ))⇀ Σ weakly in L2(ω × Y ),

i.e, for 1 ⩽ i, j, k, l ⩽ 3,

1

δ
Tε(σ

ε
ij(u

ε(δ)))⇀ Σij = aijklEkl,M(U) + aijklEkl,w(u
0) + aijklEkl,y(û).
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3.3. THE UNFOLDING LIMIT PROBLEMS

3.3 The Unfolding Limit Problems

Theorem 3.1. Let uε(δ) be the solution of the elasticity problem P (Ωδ).The following

convergence holds:

1

δ
Tε(H

δ(uε(δ))) → EM(U) + Ew(u
0) + Ey(û) strongly in

[
L2(ω × Y )

]9
, (3.4)

and u = (U , u0, û) belonging to V δ is the solution of the rescaled and unfolded problem :



1

2

∫
ω×Y

aijkl(Ekl,M(U) + Ekl,w(u
0) + Ekl,y(û))

× (Eij,M(V) + Eij,w(v
0) + Eij,y(v̂))dx′dy

=

∫
ω

(
f.V − 1

3
gα
∂V
∂xα

)
dx′, ∀v = (V , v0, v̂) ∈ V δ

(3.5)

Proof. Due to hypotheses of previous section and lemma 11.18 (See [3], p384), the lax-

Milgram theorem applies to Problem 3.5 which, has a unique solution. This uniqueness

implies it is enough to prove convergence (3.4) for a subsequence, as is done now.

Introduce the set

V = {v = (V , v0, v̂) ∈ VM × L2(w,W)× L2(w,D)},

To every V δ, we associate the symmetric tensor.

EM(V) + Ew(v
0) + Ey(v̂)

and the norm

∥v∥ = ∥EM(V) + Ew(v
0) + Ey(v̂)∥.

With V = (Vm,V3) ∈ VM and (v0, v̂) in V 0 × V ′
per, where

V 0 = {Ψ ∈ C1(ω × [−1, 1])3 | Ψ(., z3) = 0 on ∂ω∀z3 ∈ [−1, 1]}.

Vper = {Ψ ∈ C1(ω × Y )3 | ΨY ′-periodic and Ψ(., y) = 0 on ∂ω ∀y ∈ Y }.

Consider the following test displacement:

wε(δ) = v(δ) + vε(δ),
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3.4. HOMOGENIZATION

v(δ)(z) = δVα(z
′)− z3

∂V3

∂zα
(z′) + δ2v0α(z

′, z3)
]
eα + [V3(z

′) + δ2v03(z
′, z3)] e3,

vε(δ)(x) = δv̂(z′, { z′

δ
}, z3).

A straightforward computation gives

1

δ
(Hδ(vε(δ))) → EM(V + Ew(v

0) strongly in
[
L2(Ω)

]9
.

Hence,
1

δ
Tε(H

δ(vε(δ))) → EM(V + Ew(v
0) strongly in

[
L2(ω × Y )

]9
.

Also the function v̂ is defined in [3],

It is easily seen that

1

δ
Tε(H

δ(uε(δ))) → EM(v̂) strongly in
[
L2(ω × Y )

]9
.

then we get,

1

δ
Tε(H

δ(uε(δ))) → EM(V) + Ew(v
0) + Ey(v̂) strongly in

[
L2(ω × Y )

]9
.

Taking vε(δ) as test displacement in 2.1, unfolding the equality with Tε, dividing by 2δ3,

and passing to the limit, give 3.5 with v as the test function. The density of the product

space V 0 × Vper in L2(ω;W)× L2(ω;D) give 3.5 for every v ∈ V.

3.4 Homogenization

With the choice V = 0, Problem 3.5 becomes

1

2

∫
ω×Y

aijkl(Ekl,M(U) + Ekl,w(u
0) + Ekl,y(û))(Ew(v

0) + Eij,y(v̂))dx′dy = 0.
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3.4. HOMOGENIZATION

Define the space

WD =
{
ψ0 + ψ̂ | ψ0 ∈ W , ψ̂ ∈ D

}
.

For every function ψ̃ in W ,associate the symmetric tensor

Ey(ψ̃) = Ew(ψ
0) + Ey(ψ̂).

Due to the properties of the functions in D, one has

∥Ey(ψ̃)∥2L2(Y ) = ∥Ew(ψ
0)∥2L2(Y ) + ∥Ey(ψ̂)∥2L2(Y )

=
1

4
∥∂ψ

0
α

∂y3
∥2L2(−1,1) + ∥∂ψ

0
3

∂y3
∥2L2(−1,1) + ∥Ey(ψ̂)∥2L2(Y ).

Set

M11 =


1 0 0

0 0 0

0 0 0

 M12 =


0 1 0

1 0 0

0 0 0

 M22 =


0 0 0

0 1 0

0 0 0


One introduces the correctors:

X̃ αβ
m ∈ WD, X̃ αβ

b ∈ WD, X̃ αβ
c ∈ WD, (α, β) ∈ {(1, 1), (1, 2), (2, 2)} ,

defined respectively by

∫
Y

aijkl(y)(M
αβ
kl + Ekl,y(X̃ αβ

m )(y))Eij,y(ψ̃)(y)dy = 0,∫
Y

aijkl(y)(y3M
αβ
kl + Ekl,y(X̃ αβ

b )(y))Eij,y(ψ̃)(y)dy = 0,∫
Y

aijkl(y)(y3M
αβ
kl + Ekl,y(X̃ αβ

c )(y))Eij,y(ψ̃)(y)dy = 0

∀ψ̃ ∈ WD.

(3.6)

As a consequence ,ũ can be written in the form

ũ(., y) = u0(., y3) + û(., y)

= ezαβ(Um)X̃ αβ
m (y) +

∂2U3

∂zα∂zβ
X̃ αβ

b (y) + ∂zαh
∂U3

∂zβ
X̃ αβ

c (y) for a.e. y ∈ Y.
(3.7)
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3.4. HOMOGENIZATION

3.4.1 The limit problems in the mid surface

Theorem 3.2. The limit displacement

U = (Um,U3) belongs to VM =
[
H1

γ0
(ω)
]2 ×H2

γ0
(ω).

It is the solution of the homogenized problem :



∫
ω

ahomαβα′β′

{
ezαβ(Um)e

z
αβ(Vm) + bhomαβα′α′

(
ezαβ(Um)

∂2V3

∂zα∂zβ
+ ezαβ(Vm)

∂2U3

∂zα∂zβ

)
+ chomαβα′β′

([
ezαβ(Um) +

∂2U3

∂zα∂zβ

]
∂zαh

∂V3

∂zβ
+

[
ezαβ(Vm) +

∂2V3

∂zα∂zβ

]
∂z1h

∂U3

∂zβ

)
+ dhomαβα′β′(∂zαh)

2∂U3

∂zα

∂V3

∂zβ
+ khomαβα′β′

∂2U3

∂zα∂zβ

∂2V3

∂zα∂zβ

]
dx′

=

∫
ω

f.Vdx′ − 1

3

∫
ω

gα
∂V3

∂xα
dx′, ∀V = (Vm,V3) ∈ VM ,

(3.8)

Where:
ahomαβα′β′ =

1

2

∫
Y

aijkl(y)[M
αβ
kl +Hkl,y(X̃ αβ

m )]Mα′β′

ij dy,

bhomαβα′β′ =
1

2

∫
Y

aijkl(y)[z3M
αβ
kl +Hkl,y(X̃ αβ

b )]Mα′β′

ij dy,

chomαβα′β′ =
1

2

∫
Y

aijkl(y)[z3M
αβ
kl +Hkl,y(X̃ αβ

c )]z3M
α′β′

ij dy,

dhomαβα′β′ =
1

2

∫
Y

aijkl(y)[z3M
αβ
kl +Hkl,y(X̃ αβ

c )]z3M
α′β′

ij dy,

khomαβα′β′ =
1

2

∫
Y

aijkl(y)[z3M
αβ
kl +Hkl,y(X̃ αβ

b )]z3M
α′β′

ij dy,

(3.9)

Proof. In problem 3.5, choose as test displacement V = (Vm,V3) in VM and v0 = 0, v̂ = 0.

Replacing ũ by is expression (3.7), yields

∫
ω×Y

aijkl(y)
[
ezαβ(Um) (M

αβ
kl + Ekl,y(X̃ αβ

m )) +
∂2U3

∂zα∂zβ
(z3M

αβ
kl + Ekl,y(X̃ αβ

b ))

]
+ ∂zαh

∂U3

∂zβ

× Mα′β′

ij

[
ezα′β′(Vm) + z3

∂2V3

∂zα′∂zβ′
+ z3∂αh

∂V3

∂zβ′

]
dx′dy

= 2

∫
ω

f.Vdx′ − 2

3

∫
ω

gα
∂V3

∂xα
dx′.

(3.10)

We can obtained the homogenized coefficients of problem 3.9 by a simple computation.

(see [3] ,p 390).

Taking into account the variational problems 3.6 satisfied by the corectors, it is easily
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3.4. HOMOGENIZATION

seen that the homogenized coefficients are also given by the following expressions:

ahomαβα′β′ =
1

2

∫
Y

aijkl(y)[M
αβ
kl +Hkl,y(X̃ αβ

b )][z3M
α′β′

ij +Hij,y(X̃m)]dy,

bhomαβα′β′ =
1

2

∫
Y

aijkl(y)[M
αβ
kl +Hkl,y(X̃ αβ

b )][z3M
α′β′

ij +Hij,y(X̃b)]dy

chomαβα′β′ =
1

2

∫
Y

aijkl(y)[z3M
αβ
kl +Hkl,y(X̃ αβ

b )][z3M
α′β′

ij +Hij,y(X̃c)]dy,

dhomαβα′β′ =
1

2

∫
Y

aijkl(y)[z3M
αβ
kl +Hkl,y(X̃ αβ

b )][z3M
α′β′

ij +Hij,y(X̃c)]dy,

khomαβα′β′ =
1

2

∫
Y

aijkl(y)[y3M
αβ
kl +Hkl,y(X̃ αβ

b )][z3M
α′β′

ij +Hij,y(X̃b)]dy,

(3.11)

Remark 3.1. This part in our study was similar to [3] , but the difference lies in our

use of the tensor H, which added another term in the expression of the strees tensor (See

3.1), and the same test function in [3].
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Appendix I

In this appendix, we will present some basics preliminaries including spaces definitions

and theories, we need to get weak formulation of studied problem.

Preliminaries

Let Ω be a domain in R3, Hm(Ω) andHm
0 (Ω) denote the usual Sobolev spaces, in particular

for m = 1,

H1(Ω) =
{
v ∈ L2(Ω) ; ∂iv ∈ L2(Ω) 1 ⩽ i ⩽ 3

}
,

H1
0 (Ω) =

{
v ∈ H1(Ω) ; v = 0 on Γ

}
,

and for m = 0,

H0(Ω) = L2(Ω).

And there norms are defined as follows:

∥v∥2L2(Ω) =
3∑

i=1

∥vi∥2L2(Ω) for all v = (vi) ∈ L2(Ω),

∥v∥2H1(Ω) =
3∑

i=1

∥vi∥2H1(Ω) for all v = (vi) ∈ H1(Ω),

Theorem 3.3 (Young’s Inequality [1]).

Let a and b be two positive real numbers. For p, q ∈]1,+∞[ such that 1
p
+ 1

q
= 1, then

ab ⩽
ap

p
+
bq

q
.

Theorem 3.4 (Hôlder Inequality).
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Suppose p, q ∈]1,+∞[ with 1
p
+ 1

q
= 1. Let Ω be a domain in RN and f ∈ Lp(Ω) and

g ∈ Lq(Ω), then fg ∈ L1(Ω) and

∥fg∥L1(Ω) ⩽ ∥f∥Lp(Ω)∥g∥Lq(Ω).

Remark 3.2.

Cauchy Schwarz’s Inequality is particular case of Holder Inequality for p = 2 and q = 2.

Proof. See([4], p706).

Theorem 3.5 ((Poincaré-Wirtinger’s inequality)[1]).

Let Ω be a connected open set of class C1 and 1 ⩽ p ⩽ ∞. Then there exists a constant

C such that

∥u− u∥Lp(Ω) ⩽ C ∥∇u∥Lp(Ω) ∀u ∈ W 1,p(Ω), where u =
1

meas(Ω)

∫
Ω

u.

Theorem 3.6 (Poincaré’s Inequality).

Let Ω be a bounded open set in RN . Then there exists a constant Cp (depending on Ω and

p ∈ [1,+∞[ ), such that for all v ∈ W 1,p
0 (Ω),

∥v∥Lp(Ω) ⩽ Cp∥∇v∥Lp(Ω).

Proof. See ([1], p.220)

Theorem 3.7 (Korn’s Inequality With a Boundary Condition).

Let Ω be a domain in R3 and Γ0 be a mesurable subset of the boundary Γ such that
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meas(Γ0) > 0 . Given a vector field v = (vi)
3
i=1 ∈ H1(Ω). Not that

ei,j(v) =
1

2
(∂jvi + ∂ivj) ∈ L2(Ω),

∥e(v)∥2L2(Ω) =
3∑

i,j=1

∥ei,j(v)∥2L2(Ω)

Therefore, there exists a constant Ck such that

∥v∥H1(Ω) ⩽ Ck∥e(v)∥L2(Ω), ∀v ∈ H1(Ω)vanishing on Γ0.

Proof. See ([2], p.11).

Theorem 3.8 (Trace Theorem).

Let Ω be a bounded open set in Rn. We define the trace map,

γ0 : C
1(Ω) −→ L2(∂Ω)

v 7−→ γ0(v) = v|∂Ω

This map is linear and continuous on L2(∂Ω), then there exists a positive constant Cr

such that

∥γ0(v)∥L2(∂Ω) ⩽ Cr∥v∥H1(Ω) for all v ∈ H1(Ω).

Proof. See ([4], p.272).

Theorem 3.9 (Green’s Formulation).

Let Ω be a bounded open in R3 and dΓ be a sufficiently smooth boundary Γ, Let v, w ∈

C1(Ω), one has the Green’s Integration by parts formula:

∫
Ω

v ∂iudx = −
∫
Ω

u ∂ivdx+

∫
Γ

uv nidΓ

where n=(ni) is the outer normal on Γ.

Proof. See ([4], p.712).
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Proposition 3.2.

Let E be a Hilbert space and (xn)n⩾0 be a sequence converges weakly to x∗ in E. Then

(xn)n⩾0 is bounded and satisfy

∥x∗∥E ⩽ lim
n→∞

inf∥xn∥E

and this sequence converges strongly to x∗ in E if

lim
n→∞

∥xn∥E = ∥x∥E

Proof. See ([6], p.124).

Theorem 3.10.

Let E be a Reflexive Banach space and let (xn) be a bounded sequence in E. Then There

exists a subsequence (xnk
) converges weakly to x∗

Proof. See ([5], p.496).

Theorem 3.11 (Lax-Milgram Theorem [1]).

Let V δε be a Hilbert space and suppose that:

(i) The symetric bilinear form Bδ : V δε × V δε → R is continuous,

∃M < +∞, ∀(uδε, v) ∈ V δε × V δε, |Bδ(uδε, v)| ⩽M∥uδε∥V δε∥v∥V δε ;

(ii) The bilinear form Bδ is V δε-elliptic,

∃γ > 0, ∀v ∈ V δε, Bδ(v, v) ⩾ γ ∥v∥2
V δε ;

(iii) The linear form Lδ : V δε → R is continuous,

∃C < +∞, ∀v ∈ V δε, |Lδ(v)| ⩽ C∥v∥V δε .

Then the variational problem P (Ωδε) has one and only one solution.
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In the second appendix, we will mention some of the proofs tackled in the second chapter.

Proof. One has after (2.1):∫ δ

−δ

uδ1dx3 =

∫ δ

−δ

uδe,1dx3 +

∫ δ

−δ

uδr,1dx3

=

∫ δ

−δ

{
U δ
1 (x

′) + x3Rδ
1(x

′)
}
dx3 +

∫ δ

−δ

uδr,1dx3

=

∫ δ

−δ

U δ
1 (x

′)dx3 +

∫ δ

−δ

x3Rδ
1(x

′)dx3

= U δ
1 (x

′)

(∫ δ

−δ

dx3

)
+Rδ

1(x
′)

(∫ δ

−δ

x3dx3

)
= 2δU δ

1 (x
′) +

2δ3

3
Rδ

1(x
′)

∫ δ

−δ

uδ2dx3 =

∫ δ

−δ

uδe,2dx3 +

∫ δ

−δ

uδr,2dx3

=

∫ δ

−δ

{
U δ
2 (x

′) + x3Rδ
2(x

′)
}
dx3 +

∫ δ

−δ

uδr,2dx3

=

∫ δ

−δ

U δ
2 (x

′)dx3 +

∫ δ

−δ

x3Rδ
2(x

′)dx3

= U δ
2 (x

′)

(∫ δ

−δ

dx3

)
+Rδ

2(x
′)

(∫ δ

−δ

x3dx3

)
= 2δU δ

2 (x
′) +

2δ3

3
Rδ

2(x
′).

The strain tensor (eij)i,j⩽3 defined for uδ ∈ [H1(Ωδ)]3 as follows :

ei,j(u
δ) =

1

2

(
∂uδj
∂xi

+
∂uδi
∂xj

)
,
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and by the decomposition (2.1), one has:

e11(u
δ) =

∂uδ1
∂x1

=
∂U δ

1

∂x1
+ x3

∂Rδ
1

∂x1
+
∂uδr,1
∂x1

.

e22(u
δ) =

∂uδ2
∂x2

=
∂U δ

2

∂x2
+ x3

∂Rδ
2

∂x2
+
∂uδr,2
∂x2

.

e12(u
δ) =

1

2

(
∂uδ1
∂x2

+
∂uδ2
∂x1

)
=

1

2

([
∂U δ

1

∂x2
+ x3

∂Rδ
1

∂x2
+
∂uδr,1
∂x2

]
+

[
∂U δ

2

∂x1
+ x3

∂Rδ
2

∂x1
+
∂uδr,2
∂x1

])

=
1

2

([
∂U δ

1

∂x2
+
∂U δ

2

∂x1

]
+ x3

[
∂Rδ

1

∂x2
+
∂Rδ

2

∂x1

]
+

[
∂uδr,2
∂x1

+
∂uδr,1
∂x2

])
.

e13(u
δ) =

1

2

(
∂uδ1
∂x3

+
∂uδ3
∂x1

)
=

1

2

([
Rδ

1 +
∂uδr,1
∂x3

]
+
∂U δ

3

∂x1
+
∂uδr,3
∂x1

)

=
1

2

([
∂U δ

3

∂x1
+Rδ

1

]
+

[
∂uδr,1
∂x1

+
∂uδr,3
∂x1

])
.

e23(u
δ) =

1

2

(
∂uδ2
∂x3

+
∂uδ3
∂x2

)
=

1

2

([
Rδ

2 +
∂uδr,2
∂x3

]
+
∂U δ

3

∂x2
+
∂uδr,3
∂x2

)

=
1

2

([
∂U δ

3

∂x2
+Rδ

2

]
+

[
∂uδr,2
∂x2

+
∂uδr,3
∂x2

])
.

e33(u
δ) =

∂uδ3
∂x3

=
∂uδr,3
∂x3

.

42



Conclusion

The work presented in this Master’s thesis concerns the homogenization, using the

periodic unfolding method, of heterogeneous elastic plates with a periodic structure

and variable thickness. We consider the case where the orders of magnitude of thickness

and period size are identical. Using the displacement decomposition method proposed by

Griso, and applying the unfolding techniques, we obtain the homogenized two-dimensional

plate model.

Perspectives

This work can be extended to cases:

• The orders of magnitude of thickness and period size are different: ( lim
δ−→0

( lim
ε−→0

P δε),

lim
ε−→0

( lim
δ−→0

P δε)).

• Linear elastic shallow shell

• Linear elastic thin shell

• Micro-fissured plates and shells
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Abstract 

 
         In our work, we study the homogenization of a periodic heterogeneous elastic thin plate with 
variable thickness in the case when the order of magnitude of the period and the thickness are 
the same. Starting from the equations governing the equilibrium of a three dimensional linear 
elastic heterogeneous body formed the thin periodic plate.then we use the decomposition of the 
displacements cite above in the fixed domain, we get the limit (homogenization) problem by using 
the periodic unfolding method. 
 

.: Asymptotic analysis, homogenization, linear elasticity, thin plate, unfolding methodKey words. 

 

 

Résumé 

 
           Dans notre travail, nous étudions l'homogénéisation d'une plaque mince élastique 
hétérogène périodique d'épaisseur variable dans le cas où l'ordre de grandeur de la période  et 
les épaisseurs  sont les mémes. Partant des équations régissant l'équilibrium d'un corps 
hétérogène élastique linéaire tridimensionnel formé le mince périodique plate puis on utilise la 
décomposition des déplacements cités plus haut dans le domaine fixe, on obtient le problème 
limite (homogénisation) en utilisant la méthode d'éclatement. 
 

Analyse asymptotique, homogénéisation, élasticité linéaire, plaque mince, méthode  :Mots clés
d'éclatement. 

 

  

 ملخص
 

ا التي يكون فيه ملنا هذا،  ندرس تجانس صفيحة رقيقة مرنة غير متجانسة دورية ذات سمك متغير في الحالةفي ع          
بدءا من المعادلات التي تحكم توازن جسم غير متجانس خطي مرن ثلاثي الابعاد شكلت متماثلين، والسمك  ترتيب حجم الدور

ام لة التجانس باستخداللوحة الدورية الرقيقة، ثم استخدمنا تحلل الازاحة المذكورة أعلاه في المجال الثابت، نحصل على مسأ
 طريقة الفك الدوري.

 

 .ة الفك الدوريالصفيحة الرقيقة، طريق الخطية،التحليل المقارب، التجانس، المرونة  :الكلمات المفتاحية
 

 

 



Bibliography

[1] H. Brezis, Functional Analysis, Sobolev and Partial Differential Equations, Uni-

versitext series, (2011).

[2] P. G. Ciarlet, Mathematical Elasticity, Vol 02 : Theory of Plates, North Holland,

(1997).

[3] D. Cioranescu, A. Damlamian and G. Griso, The periodic Unfolding Method,

Theory and Applications to Partial Differential Equations, Springer (2018).

[4] L. C. Evans , Partial Differential Equations, American Mathematical Society,

2nd ed., (2010).

[5] V. Kadets, A Course in Functional Analysis and Measure Theory, Springer,

(2018).

[6] K. Yosida, Functional Analysis, Springer-Verlag, 6th ed., (1980).

45


	Dedication
	Thanks
	Tble of Contents
	Notations and Conventions
	Introduction
	The Unfolding Method :
	The Unfolding operator  T  
	Unfolding operator and Limits convention:

	The local average operator
	The averaging operator
	Unfolding and gradients

	Decomposition of the plate displacements
	The tree-dimensional problem of linearly plate:
	The variational formulation
	The existence and unicity of the solution of problem

	A Decomposition for the plate displacements :
	Transformation into a problem posed over a domain independent of  h :
	The fixed domain
	Assumptions on the Data and decomposition of the Unknowns.


	Homogenization of The Plate
	Unfolding the rescaled plate 
	Asymptotic behavior of the tensor
	The Unfolding Limit Problems
	Homogenization
	The limit problems in the mid surface


	Appendix I
	Appendix II
	Conclusion
	Abstract
	Reference

