

 ALGERIAN DEMOCRATIC AND POPULAR

 REPUBLIC MINISTRY OF HIGHE REDUCATION AND SCIENTIFIC RESEARCH

 UNIVERSITY KASDI MERBAH OUARGLA

 FACULTY OF NEW INFORMATION AND COMMUNICATION TECHNOLOGIES

 DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

 MASTER THESIS

 Network Administration and Security

 BY: AMMOUR MOHMMED CHIKH & DEBBAKH FADIA

 THEME

 PERFORMANCE EVALUATION OF

 SOFTWARE DEFINED –NETWOEK (SDN)

 CONTROLLER

 Evaluation Date : 15/06/2023

 COMMITTEE MEMBERS:

Mr. KAHLESSENANE FARES SUPERVISOR UKM OUARGLA

 Mr. KHALDI AMINE COMMITTEE CHAIR UKM OUARGLA

Mr. MECHALIKH CHARAF EDDINE REVIEWER UKM OUARGLA

 ACADEMIC YEAR: 2022/2023

 Acknowledgment

 First and foremost, praises and thanks to the God, the Almighty, for His

showers of blessings throughout my research work to complete the research

successfully.

 we also thank our parents, who encouraged and motivated us to reach this

level of study, we would like to express our deep and sincere gratitude to our

research supervisor

 ' KahleleSennan Farse'

 Likewise, we extend our respectful thanks to the members of the jury, who

have done the honor to participate in this jury and to examine this work.

 A special thanks to our family members and friends for always standing by

us. Finally, we would like to thank all those who have helped us from near or far

during all our studies and in the preparation of this dissertation, our deep

gratitude and respect.

 Dedication

 I dedicate this research to all those who have inspired and supported me

throughout my academic journey.
 To my mother ' Mounira ', my father ' Slimane', my sister ' Hana ' , who have

been a source of love, support, and belief in my abilities. Your support has

ignited my enthusiasm to pursue this research.
 To my supervisor, ' KahleleSennan Farse' , thank you for your guidance,

expertise, and valuable advice throughout this research, and for motivating us.
 To my cousins 'Hanadi ', 'Abla', 'Asma'and 'Nerimane', thank you for the

great moments we shared together.
 To my friends and colleagues, thank you for your companionship and

unwavering support. Your presence has made this journey more enjoyable, and

your encouragement has lifted me during challenging times.
 Thank you all

 Debbakh Fadia.

 إهداء

 الرحيم الرحمن الله بسم

 التحديات تجاوزت بفضله،. الإنجاز هذا إلى للوصول والفرصة القدرة منحني الذي فيه طيبا مباركا كثيرا حمدا لله الحمد البداية
أهدافي وتحققت .

، العميق امتناني عن أعب ِّر أن أود تحقيق استطعت وتشجيعهما، حبهما بفضل. الرحلة هذه طوال بثمن يقدر لا دعمًا كانا فهما لوالدي
حياتي في المهمة اللحظة هذه إلى والوصول حلمي .

حياتي في والسعادة للحب رمزًا كانوا. المتواصل ودعمهم جانبي إلى وقوفهم على وأحبائي أسرتي أشكر .

، لأساتذتي امتناني عن أعرب أن أود أيضًا، بشكل وتطورت تعلمت بفضلهم،. والإرشاد المعرفة لي وقدموا ألهموني الذين ومعلميَّ
 كبير

عليهم الله رحمة القادر عبد مير بن و الناصر محمد باباحمو العزيزين أستادي على للترحم الفرصة أغتنم ان اريد كما

 . النجاح نحو طريقي في وألهمني وساندني شجعني من لكل شكرًا. مختلفة بطرق التعليمية رحلتي في ساهم من كل أشكر كما

لهدفا هذا تحقيق في والتفاني الإصرار على أشكرك. الصعاب وتجاوزت التحديات واجهت الذي أنا نفسي، إلى وأخيرًا،
 مليئة مستقبلية رحلة في أولى خطوة يجعلها أن الله أدعو. حقيقة المذكرة هذه أصبحت والمعلمين، والأحباب الأهل وبدعم الله بفضل

والإنجازات بالتحقيقات .

والامتنان، الشكر بكل
 عمور الشيخ محمد

 Abstract

 Traditional networks have relied on a distributed control plane, where decision-making and

forwarding functions are tightly coupled within individual networking devices. However, this

approach poses challenges in terms of network management, scalability, and fault tolerance .
 From this context , the concept of Software-Defined Networking (SDN) networks

emerged , which is that networking approach that separates the control and data planes to enable

centralized management of network traffic and configurations. This allows network

administrators to easily configure, manage and monitor network resources. One key protocol that

enables dynamic routing decisions in SDN is OpenFlow.

 Hence , this project proposes to evaluate the performance and fault tolerance capabilities of

SDN controllers using Mininet, HPE-VAN SDN Controller, ONOS, and Opendaylight. The

study will emulate SDN environments to test and evaluate SDN networks without disrupting

existing network infrastructure. The project will investigate the impact of various network

parameters, including topology, traffic patterns, and controller placement, on SDN performance.

The findings of this study will help network designers and operators identify optimal

configurations that maximize performance and fault tolerance in SDN networks. Overall, this

project will provide insights that can inform the deployment and management of SDN networks.

keywords: SDN , Openflow ,opendaylight, Mininet, HPE-VAN SDN controller

 ملخص

تكون الشبكات التقليدية اعتمدت على طراز التحكم الموزع، حيث

وظائف اتخاذ القرار وإعادة التوجيه مرتبطة بشكل وثيق داخل أجهزة

الشبكة الفردية. ومع ذلك، يواجه هذا النهج تحديات فيما يتعلق

 بإدارة الشبكة وقابلية التوسع وتحمل الأخطاء.

(، وهي SDNمن هذا السياق، ظهر مفهوم الشبكات المعرفة بالبرمجيات)

بقات التحكم والبيانات لتمكين الإدارة نهج الشبكات الذي يفصل ط

المركزية لحركة المرور وتكوينات الشبكة. يتيح ذلك لمسؤولي الشبكة

تكوين وإدارة ومراقبة موارد الشبكة بسهولة. أحد البروتوكولات

هو SDNالرئيسية التي تمكّن اتخاذ قرارات التوجيه الديناميكي في

OpenFlow.

روع تقييم أداء التسامح مع الخطأ وبالتالي، يقترح هذا المش

 HPE-VAN SDNو Mininetباستخدام (SDNلشبكات المعرفة بالبرمجيات)

Controller وOpendaylight سيحاكي الدراسة بيئات .SDN لاختبار وتقييم

دون التأثير على بنية الشبكة الحالية. سيستقصي المشروع SDNشبكات

تأثير مختلف المعلمات الشبكية، بما في ذلك الهيكل التوبولوجي،

. ستساعد نتائج هذه الدراسة SDNوأنماط حركة المرور، على أداء

مصممي الشبكات والمشغلين على تحديد التكوينات الأمثل التي تعزز

بشكل عام، سيوفر هذا .SDNن الأعطال في شبكات الأداء وقدرة التحمّل م

 . SDNالمشروع نظيرات مفيدة يمكن أن تساعد في تنفيذ وادراة شبكات

 HPE-VAN SDN Controller ،Opendaylight،مينينت ،الشبكات المعرفة بالبرمجيات :المفتاحية الكلمات

 Résumé:

Les réseaux traditionnels reposent sur un plan de contrôle distribué, où les fonctions de prise de

décision et de transfert de données sont étroitement couplées au sein des dispositifs individuels

du réseau. Cependant, cette approche présente des défis en termes de gestion du réseau, de

scalabilité et de tolérance aux erreurs .

Dans ce contexte, le concept de réseaux de Software-Defined Networking (SDN) est apparu, qui

est une approche de mise en réseau qui sépare les plans de contrôle et de données pour permettre

la gestion centralisée du trafic réseau et des configurations. Cela permet aux administrateurs

réseau de configurer, gérer et surveiller facilement les ressources réseau. Un protocole clé qui

permet des décisions de routage dynamique dans SDN est OpenFlow.

Par conséquent, ce projet propose d'évaluer les performances et les capacités de tolérance aux

pannes du contrôleur SDN en utilisant Mininet, HPE-VAN SDN Controller et Opendaylight.

L'étude émulera des environnements SDN pour tester et évaluer les réseaux SDN sans perturber

l'infrastructure réseau existante. Le projet examinera l'impact de divers paramètres réseau,

notamment la topologie, les schémas de trafic et le placement du contrôleur, sur les performances

du SDN. Les conclusions de cette étude aideront les concepteurs et les opérateurs de réseaux à

identifier les configurations optimales qui maximisent les performances et la tolérance aux pannes

dans les réseaux SDN. Dans l'ensemble, ce projet fournira des informations qui peuvent éclairer

le déploiement et la gestion des réseaux SDN.

Les mots clés: SDN , Openflow ,opendaylight, Mininet, HPE-VAN SDN controller

 LIST OF FIGURES

Figure1. 1:The benefits of sdn...4

Figure1. 2:SDN Architecture .[3]...5

Figure1. 3:OpenFlow protocol . [4] ...6

Figure1. 4 :OVSDB Architecture.[5]..9

Figure1. 5 : OpenFlow Activated on SDN device.[6] .. 10

Figure1. 6 :The flowchat detailing packet flow through an Openflow switch .[7] 12

Figure1. 7:The control flow in the openflow protocol.[8].. 14

Figure1. 8:Comparison of SDN networks and traditional network.[9] ... 16

Figure 2. 1 :The relationship betwenn fault ,Error ,and failure.[18] 24

Figure 2. 2 :Structure of a SDN network.[19] ... 25

Figure 2. 3 : SDN Control Plane Topologies.[19] ... 28

Figure 2. 4 :Mechanisms for distance recovery in networks.[22] .. 32

Figure 2. 5: The mechanism in which link failure is handled using proactive protection.[23] 33

Figure3. 1 : The mininet strated working ………………………………………………………………38

Figure3. 2 :Installed Ubuntu Server in VMware. ... 38

Figure3. 3 : Opendaylight Controller Launches. ... 39

Figure3. 4 :OpenDaylight Controller Launches. ... 39

Figure3. 5 : Connecting to the Web Interface of the Opendaylight. ... 39

Figure3. 6: Connecting to the web interface of onos controller. .. 40

Figure3. 7 :Installation Completed and HPE-VAN SDN Controoller service started. 40

Figure3. 8 :Web Interface representing the home page of the Hpe-Van sdn Controller 41

Figure3. 9 : Connecting to the Web Interface of the Hpe-Van sdn controller. .. 41

Figure3. 10 :Create a custom Topology in Mininet 44

Figure3. 11 :Running and ping Topology in Mininet 44

Figure3. 12: Topology Presentation Opendaylight. ... 45

Figure3. 13 : Topology presentation in ONOS. .. 45

Figure3. 14 : Flow table of Onos 46

Figure3. 15 : Topology presentation in Hpe-Van. ... 46

Figure3. 16 :Flow table of Hpe-Vane 46

Figure3. 17: Measuring the badwidth 47

Figure3. 18 : The results of the comparison betwenn controller response time. 48

 LIST OF TABLES

Table 3. 1 : commands one needs to know for utilizing Mininet. ... 43

Table 3. 2: The results of the comparison betwenn controller response time. ... 47

 CONTENTS

GENERAL INTRODUCTION ..1

1 Introduction……………………. ..3

1.1 SDN Definition………………. ..3

1.2 Objective of SDN……………………… ..3

1.2.1Some specific objectives of SDN include……………………… ...4

1.3 SDN Architecture …………………….. ...5

1.3.1 Application Layer……………………… ..5

1.3.2 Control Layer………………………..5

1.3.3 Southbound APIs……………………. ...6

1.3.4 Data Layer………………… ...9

1.3.5 Northbound APIs………………. .. 10

1.3.6 Network Services Layer…………………….. 10

1.4 SDN controller type ………………… ... 10

1.4.1The function of an Openflow controller…………………….. .. 12

1.4.2 Openflow switch components ……………………. .. 13

1.4.3 Flow entire ……………………… ... 14

1.4.4 Openflow message……………………. .. 14

1.5 Comparison of SDN networks and traditional network …………………… 15

1.6 Definition routing sdn……………………….. ... 16

1.6.1 The advantages of sdn routing over traditional approaches …………………........................ 16

1.7Sdn routing protocols …………………….. ... 17

1.7.1The different SDN routing protocols……………………… ... 18

1.8 The tools needed to setup an sdn test environment…………………….. 19

1.9 Bandwidth Control ………………………... 19

1.10 Protection ……………………. .. 20

1.11 Supported Architecture……………………... 20

1.12 Drivers…………………….. .. 20

1.13 Conclusion ……………………. ... 20

Chapter 2... 22

2 Introduction…………………….. ... 23

2.1 Dealing with error……………………... 23

2.2 Definition fault tolerance…………………… ... 24

2.3 The Importance of fault tolerance in sdn…………………… ... 24

2.4 Defintion fault tolerance in sdn…………………... 25

2.4.1 The Fault Tolerance Problem……………………. .. 25

2.5 Fault Tolerance in the Data Plane…………………….. ... 26

2.5.1 Reacting to topology changes…………………….. ... 26

2.5.2 Minimizing overhead……………………… ... 27

2.5.3 Fault tolerance controller…………………….. ... 28

2.6 Fault-Tolerance in the Control Plane………………… .. 29

2.6.1Control plane topology…………………………. ... 29

2.7 Causes of SDN Failure ……………………. ... 30

2.8 Fault tolerance mechanisms……………………. ... 31

2.9 Restoration of link failure using proactive approaches…………………… 32

2.10 Challenges and Limitations…………………… ... 33

2.11 Advantages of Fault Tolerance in SDN…………………… ... 34

2.12 Conclusion……………………... 34

Chapter 3 .. 35

3 Introduction …………………………………… ... 36

3.1 Emulation Environment…………………… ... 36

3.2 Proposed controllers ……………………… ... 37

3.3 Implementation…………………….. 37

3.3.1 Installing Mininet on VMware………………….. .. 37

3.3.2 Install opendaylight ……………………… ... 38

3.3.3 Install ONOS ……………………. .. 40

3.3.4 Install HPe –Van .sdn-Controller ………………………. .. 40

3.4 The fundamental command for Mininet ………………….. ... 42

3.5 Topology presentation…………………….. 43

3.5.1 Topology presentation in mininet………………………… ... 43

3.5.2 Topology presentation in OpenDayLight …………………… ... 45

3.5.3 Topology presentation in Onos …………………….. ... 45

3.5.4 Topology presentation in Hpe-Van ………………….. .. 46

3.6 The Test …………………….. ... 47

3.6.1 Iperf toll ……………………. .. 47

3.6.2 Time testing in sdn……………………. ... 47

3.7 Results are shown in a table……………………. ... 47

3.7.1Results were also represented in columns …………………….. .. 48

3.8 CONCLUSION…………………….. ... 49

GENERAL CONCLUSION ... 50

 List of keywords

OSPF : Open Shortest Path First .

RIP :Routing Information Protocol.

IGRP: Interior Gateway Routing Protocol.

BGP: Border Gateway protocol.

IS-IS: Intermediate System to Intermediate System.

LSAs : Link-State.

ONF: Open Networking Foundation.

OVSDB: OpenvSwitch Database.

SDN: Software Defined-Network .

ODL: Opendaylight

LISP: Locator / Identifier Separation.

ONOS: Open Network Operating System.

API : Application Programming Interface.

1

 GENERAL INTRODUCTION

 Software-Defined Networking (SDN) is an innovative approach to network architecture that

aims to enhance network control and management by separating the control plane from the data

plane. In traditional networks, the control plane, responsible for making decisions about how

data packets are forwarded, resides within individual networking devices such as switches and

routers. However, SDN centralizes the control plane in a software-based controller, allowing for

more flexibility, programmability, and agility in managing network resources.

 One of the key advantages of SDN is its ability to improve fault tolerance in network

environments. Fault tolerance refers to a system's ability to continue operating properly even in

the presence of component failures or network disruptions. By leveraging the centralized control

plane, SDN enables efficient fault detection, isolation, and recovery mechanisms.

 In an SDN architecture, the controller has a global view of the network, including information

about network topology, traffic patterns, and device statuses. This visibility allows the controller

to monitor the network continuously and detect faults or anomalies promptly. When a fault is

detected, such as a link failure or a device malfunction, the controller can take immediate action

to mitigate the impact and maintain network functionality.

 SDN provides several fault tolerance mechanisms to address various types of failures. For

instance, in the case of link failures, the controller can dynamically reroute traffic by updating the

forwarding rules in the network devices to avoid the affected links. This rerouting can be based

on pre-defined backup paths or computed in real-time by considering the current network

conditions.

 Moreover, SDN enables the implementation of proactive fault tolerance measures. The

controller can employ techniques like redundancy and load balancing to distribute network traffic

across multiple paths or devices. This redundancy ensures that if a failure occurs, alternative

paths or devices are available to handle the traffic, preventing a single point of failure and

maintaining uninterrupted connectivity.

 Additionally, SDN allows for efficient network reconfiguration and resource allocation. In the

event of a failure, the controller can dynamically reassign network resources, such as bandwidth

or computing power, to compensate for the loss and maintain optimal performance. This

adaptability and responsiveness contribute to the overall fault tolerance of the SDN

environment.

2

 Overall, SDN's centralized control plane and programmability enable effective fault tolerance

mechanisms, including fault detection, isolation, recovery, proactive measures, and dynamic

resource management. By leveraging these capabilities, SDN enhances network resilience,

minimizes downtime, and improves the overall reliability of modern networking infrastructures.

In this project , we will conduct a comparative study between different SDN controllers. To

accomplish this ,we have divided the into three chapter :

 The first chapter, mention the significance of SDN (Software-Defined Networking),

including its features and advantages, purpose, architectural design, and how to effectively

perform routing in SDN.

 Secondly, this chapter highlights the importance of fault tolerance in sdn .

 The final chapter of this project will focus on the technical side of our topology. It will cover

the design, implementation, and realization of our proposed topology.

Chapter 1 : software-Defined network

2

 Chapter 1

SDN NETWORk

Chapter 1 : software-Defined network

3

1 Introduction

SDN is a networking architecture that separates the control plane from the data plane.

The SDN architecture has been adopted by several large companies and universities namely ,

Google and Stanford. On the other hand , manufacturers such as Cisco ,HP and Juniper now

offer SDN solutions that make it possible to manage data centers. [1]

In SDN, the control plane is centralized and implemented as a software application running on a

separate server called the controller. Routing in SDN involves determining the best path for

network traffic based on topology and traffic load. The controller uses routing protocols, such as

OSPF and BGP, to exchange routing information with network devices and calculate the optimal

routes. The controller then programs the forwarding tables of network devices to ensure traffic is

forwarded along the chosen path, which can be dynamically adjusted in response to network

conditions.

1.1 SDN Definition

 The term SDN was originally coined to represent the ideas and work around OpenFlow at

Stanford university , Stanford ,CA,USA[2].

 Software-Defined Networking (SDN) is a network architecture approach that separates the

control plane, which makes decisions on how data should be transmitted, from the data plane,

Which physically transmits the data.

 The key idea behind SDN is to centralize the control of network devices and allow

administrators to manage and configure the network through software, rather than manual

configuration of individual devices.

 This enables greater network flexibility , programmability, and automation, making it easier to

implement new network services and change network behavior on the fly. Additionally, SDN can

also help to improve network visibility and security, as well as reduce operational costs.

1.2 Objective of SDN:

 Software-defined networking (SDN) is an approach to network management and control that

emphasizes the centralization of network intelligence and the separation of the data plane (where

data packets flow) from the control plane (where network policies are defined).

 The objective of SDN is to make network management more flexible, agile, and scalable by

enabling network administrators to programmatically control the behavior of the network using

software, rather than configuring each network device manually.

 This allows for more efficient network management, easier troubleshooting, and faster

deployment of new services.

Chapter 1 : software-Defined network

4

 Figure1. 1:The benefits of sdn.

1.2.1 Some specific objectives of SDN include:

a. Simplifying network management: SDN can make it easier to manage complex

networks by providing a single point of control for configuring and monitoring network

devices.

b. Improving network agility: By separating the control plane from the data plane, SDN

enables network administrators to quickly adapt to changing network conditions and

deploy new network services.

c. Increasing network scalability: SDN can help to scale networks more easily by

allowing administrators to define and enforce network policies in a centralized manner,

rather than configuring individual devices.

d. Enhancing network security: SDN can improve network security by enabling

administrators to centrally monitor and control network traffic, and by providing fine-

grained control over network policies.

 Overall, the objective of SDN is to create a more programmable, dynamic, and cost-effective

network architecture that can support the evolving needs of modern applications and services.

Chapter 1 : software-Defined network

5

1.3 SDN Architecture :

 Figure1. 2:SDN Architecture .[3]

Software-defined networking (SDN) is an architecture that separates the network control plane

from the data plane, allowing for centralized control of network infrastructure and automated

network management.

 The following is a detailed explanation of the components of an SDN architecture :

1.3.1 Application Layer:

The application layer provides a user interface for network administrators to manage the network

. It includes network management tools, monitoring and reporting tools, and other software

applications that control and monitor the network.

1.3.2 Control Layer:

The control layer is responsible for managing the network infrastructure , including switches,

routers, and other network devices. It uses a controller, which is a centralized software

component that communicates with the network devices and manages the flow of data through

the network. The controller receives information from the network devices and sends

instructions back to them, which allows for centralized control of the network .

Chapter 1 : software-Defined network

6

1.3.3 Southbound APIs:

The southbound APIs are the interfaces that connect the controller to the network devices.

These API sallow the controller to communicate with the devices, configure them, and collect

information a bout the network. There are several southbound APIs, including OpenFlow ,

NETCONF, and OVSDB.

a. Openflow protocol : The Open Flow protocol is a communication protocol used to

facilitate the management and Control of network traffic flows in a software- defined

networking (SDN) environment. It was developed by the Open Networking Foundation

(ONF) and is now widely used in many SDN deployments.

 The OpenFlow protocol is designed to separate the control plane from the data plane in

network switches and routers. The control plane is responsible for managing network traffic,

while the data plane is responsible for forwarding data packets. By separating these two planes,

the OpenFlow protocol enables network administrators to centrally manage and control the flow

of traffic in the network.

 OpenFlow uses a standardized set of instructions, called flow rules, to control how traffic is

forwarded through the network. Flow rules are defined by the network administrator and are

programmed in to the OpenFlow-enabled switches and routers. When a packet arrives at a switch

or router, it is matched against the defined flow rules, and the appropriate action is taken based

on the match.

 The OpenFlow protocol is typically implemented using a centralized controller, which

communicates with the OpenFlow-enabled switches and routers in the network. The controller

provides a unified view of the network, allowing administrators to manage traffic flow, enforce

policies, and respond to network events in a centralized and programmatic way:

 Figure1. 3:OpenFlow protocol . [4]

Chapter 1 : software-Defined network

7

OpenFlow is a protocol that allows packets to be forwarded based on multiple criteria, such as IP

address, MAC address, VLAN, and other addresses. It can be considered a reliable alternative to

IP routing. Since its initial release, the OpenFlow protocol has undergone rapid improvements

and updates, with numerous new versions introduced. Here are the versions of OpenFlow and

their definitions :

 OP V1.0: The initial version of OpenFlow, which provided basic packet forwarding and

modification capabilities.

 OP V1.1: Added support for Quality of Service (QoS) and Group Tables, which allowed

for more flexible packet forwarding and prioritization.

 OP V1.2: Added support for IPv6, MPLS, and multiple tables, which enabled more

advanced traffic engineering and management.

 OP V1.3: Introduced features such as flow statistics, packet-in packet-out messages, and

support for multiple controller connections.

 OP V1.4: Added support for hybrid switching, where OpenFlow and traditional

networking can coexist in the same network.

 OP V1.5 : Added support for advanced features such as multiple flows within a single

packet and improved support for wireless networks.

 OP V1.6 : A working draft that aims to provide even greater flexibility and

programmability, with features such as dynamic table resizing and support for more

complex actions and conditions.

b. Openflow devices: OpenFlow devices are network devices that support the OpenFlow

protocol. OpenFlow is a communication protocol that allows a centralized controller to

manage and configure network devices, such as switches and routers, In a software-

defined networking (SDN) environment.

 An OpenFlow device, such as an OpenFlow-enabled switch ,is capable of forwarding packets

based on instructions received from a controller. These instructions can include actions such as

forwarding packets to a particular port, dropping packets, or modifying packet headers. In an

SDN architecture, the controller has a global view of the network and can use this view to make

intelligent decisions about how to forward traffic.

 OpenFlow devices and the OpenFlow protocol enable network administrators to easily

configure and manage complex networks, and to implement dynamic and flexible network

policies. They are widely used in data centers, campus networks, and other large-scale networking

environments.

Chapter 1 : software-Defined network

8

c. OVSDB protocol : OpenvSwitch Database (OVSDB) protocol is a network

management protocol used in Software-Defined Networking (SDN) architecture to

manage and configure OpenvSwitch (OVS).SDN is a network architecture that separates

the control plane and data plane, providing amore flexible and programmable approach

to network management.

 OVS is a software-based virtual switch used in virtualized environments, which provides the

data Plane functionality in SDN. The OVSDB protocol provides a standard mechanism for

managing and configuring OVS, enabling better integration with other network management

tools and systems. The OVSDB protocol in SDN architecture operates on two main

components, the OVSDB server and the OVSDB client.

 OVSDB server: The OVSDB server manages the OVS data base and provides

configuration and management services to the OVSDB client. The OVSDB server

communicates with the OVS using the OpenFlow protocol, which provides a standardized

way of controlling the data plane.

 OVSDB client:

 The OVSDB client is responsible for communicating with the OVSDB server to manage the

OVS database. It sends queries to the OVSDB server to retrieve information from the database ,

and it sends configuration commands to modify the database's contents.

 The OVSDB protocol is based on the JSON-RPC protocol, which operates over a secure

transport raye such as SSL/TLS. It defines a set of operations that can be used by the client to

query, modify, and delete the OVSDB database contents. These operations include

"select,""insert," "update," and "delete."

 The OVSDB protocol's schema defines the data model used by the OVSDB server, including

information about the data types, tables, columns, and relationships between them.

 The OVSDB database includes tables such as "Bridge,""Port,""Interface," and "Controller,"

which store configuration and operational data for the OVS switch.

The OVSDB protocol in SDN architecture allows for the creation, modification, and deletion of

virtual switches, ports, and interfaces .It also allows for the creation of virtual networks ,which

are useful in creating isolated network topologies for specific applications or tenants. The

OVSDB protocol enables dynamic reconfiguration of the virtual network, making It possible to

make changes to the network without disrupting its operation.

 Overall, the OVSDB protocol is a critical component of SDN architecture ,providing a

standardized mechanism for managing and configuring virtual switches in a virtualized

environment. This enables network administrators to create, modify, and delete virtual switches

Chapter 1 : software-Defined network

9

and network configurations, making network management more efficient and flexible.

 +--------------------- -+
 | Control & |

| Management |

| Cluster |
+----------------------+

| OVSDB \
 \ OpenFlow

| Mgmt \
| \

 +===+
| +--------------+ +--------------+ |

| | | | | |

| | ovsdb-server |-------| ovs-vswitchd | |

| | | | | |

 +--------------+ +--------------+ |

| | |

| +--------------- |

| |Forwarding Path |

| +--------------- |

+===+

 Figure1. 4 :OVSDB Architecture.[5]

1.3.4 Data Layer:

The data layer is responsible for handling the actual data that flows through the network . It

includes the network devices, such as switches and routers, which forward packets of data to

their intended destinations. The data layer also includes the data plane, which is responsible for

processing and forwarding data packets.

 One way to implement the data layer in SDN is through the use of a table of flows. A table

flows is a data structure used by SDN controllers to manage network traffic flows. It consists of a

set of rules that define how network traffic should be processed by the switches in the network.

 When a new flow is detected in the network, it is sent to the SDN controller, which consults

the table flows to determine how the flow should be processed. The controller then adds a new

rule to the table of flows, specifying how the flow should be handled in the future.

 The table flows can be organized in different ways, depending on the needs of the network.

For example, it may be organized by the source and destination IP addresses ,the type of traffic,

or other network characteristics.

Chapter 1 : software-Defined network

10

 Figure1. 5 : OpenFlow Activated on SDN device.[6]

1.3.5 Northbound APIs:

The northbound APIs are the interfaces that connect the controller to the applications and

services that use the network. These APIs allow the applications to communicate with the

controller and access network information. The northbound APIs are typically RESTful APIs

that use standard web protocols, such as HTTP.

1.3.6 Network Services Layer:

The network services layer provides additional network services, such as firewalls, load balancers

, and intrusion detection systems. These services are integrated in to the SDN architecture and

can be easily configured and managed through the controller.

 In summary, an SDN architecture separates the control and data planes of the network ,

allowing for centralized control and automated management. The architecture includes the

application layer, control layer, southbound and northbound APIs, data layer, and network

services layer.

1.4 SDN controller type :

 There are several types of SDN(Software-Defined Networking) controllers available, each with

its own specific features and capabilities. Here are some of the most common types:

a. OpenFlow Controllers: These are the most widely used SDN controller sand are

designed to support the OpenFlow protocol. They manage network traffic by

Chapter 1 : software-Defined network

11

programming networks witches and routers to forward packets according to rules defined

in a central controller.

b. ONOS Controllers: The ONOS (Open Network Operating System) controller is an

open-source SDN controller that supports both OpenFlow and non-OpenFlow

protocols. It provides a scalable and high-performance platform for managing large-scale

networks.

c. Ryu Controllers: The Ryu controller is another open-source SDN controller that

supports OpenFlow. It provides a flexible framework for developing custom network

applications and can be used for a wide range of network management tasks.

d. OpenFlow Controllers: These are the most widely used SDN controller sand are

designed to support the OpenFlow protocol. They manage network traffic by

programming networks witches and routers to forward packets according to rules defined

in a central controller.

e. Floodlight Controllers: The Floodlight controller is an open-source SDN controller

that supports both OpenFlow and non-OpenFlow protocols. It is highly extensible and

can be customized to support a wide range of network applications.

f. NOX Controllers: The NOX controller is an open-source SDN controller that was one

of the earliest controllers developed for OpenFlow. While it is no longer actively

maintained, it is still used in some legacy SDN deployments.

g. POX Controllers: The POX controller is another open-source SDN controller that

supports OpenFlow. It is highly modular and can be used to develop custom network

applications.

 There are also many commercial SDN controllers available, such as the Cisco Application

Centric infrastructure (ACI) controller and the VMware NSX controller. These controllers are

typically designed to work with specific vendor hardware and software and may offer additional

features and functionality.

Chapter 1 : software-Defined network

12

1.4.1 The function of an Openflow controller

The OpenFlow controller serves as a fundamental component of the control layer in SDN

architecture. It is responsible for communicating with switches and can integrate the application

layer. The main function of the controller is to manage flow entries in switches, allowing it to

dynamically change the flow path by adding, deleting, or modifying flow entries. The controller

 Figure1. 6 :The flowchat detailing packet flow through an Openflow switch .[7]

In modern implementations, controllers often provide a Representational State Transfer

(RESTful) API, enabling easy access and interaction with the controller by the application layer.

Packet In, Packet Out, and Flow Mod are three major OpenFlow messages:

Chapter 1 : software-Defined network

13

1. Packet In: This message is sent from a switch to the controller. It occurs when the

switch receives a packet that does not match any existing flow entries in its flow table .

2. Packet Out: This message is sent from the controller to the switch. It is used to instruct

the switch to forward a specific packet or generate a packet for transmission .

3. Flow Mod: This message is used to add, modify, or delete flow entries in the flow table

of a switch. The controller sends Flow Mod messages to the switch to define or update

the flow rules that determine how the switch handles incoming packets.

1.4.2 Openflow switch components :

the flow tables in an OpenFlow switch are used to store flow entries and determine how packets

are processed and forwarded. Each flow table contains a set of flow entries, which consist of

matching fields, counters, and instructions.

When a packet arrives at the switch, it is initially processed by table 0. The flow entries in table 0

are checked sequentially based on their priority, and the packet is matched against the fields

specified in each entry. If a match is found, the instructions associated with the matching entry

are executed. These instructions can include actions such as forwarding the packet to a specific

port, dropping the packet, modifying packet headers, or sending the packet to another table for

further processing.

If a flow entry in table 0 specifies a directive to continue processing in another table, the packet is

redirected to the specified table. This allows for more complex processing and decision-making

based on the requirements of the network. The subsequent tables can have their own flow entries

and perform further matching and processing based on the redirected packet.

The use of multiple tables in an OpenFlow switch enables the implementation of various

network policies and forwarding behaviors. The flow tables can be populated and modified by

the SDN controller through the OpenFlow protocol, allowing for dynamic control and

management of packet flows within the network.

Chapter 1 : software-Defined network

14

 Figure1. 7:The control flow in the openflow protocol.[8]

1.4.3 Flow entire :

Of network traffic and routing, flow types can be classified as proactive and reactive. Here's an

explanation of proactive and reactive flow types:

1. Reactive : when the first packet of a flow is received, it triggers the controller to insert

flow entries into the switch's flow table. The switch efficiently utilizes its flow table, as

each flow only requires a small additional setup time. However, if there is a loss of

connection between the switch and the controller, the switch's utility becomes limited.

Nevertheless, the fault recovery process in such a scenario is relatively simple

2. Proactive : in this scenario, the flow tables in the switch are pre-populated by the

controller, eliminating the need for additional flow setup time. The controller inserts

aggregated or wildcard rules into the flow tables, which reduces the overhead associated

with individual flows. Additionally, with proactive flows, the processing load on the

controller is reduced as queries are not sent to the controller for every flow. In the event

of a connection loss between the switch and the controller, the traffic is not disrupted .

1.4.4 Openflow message

1. Asynchronous messages:Asynchronous messages are messages sent from the switch

to the controller without a specific request from the controller. These messages are used

to notify the controller about changes in the network or switch state, allowing the

controller to update its information accordingly. Examples of asynchronous messages

include Packet-in, Flow-removed, Port-status, and Role-status messages.

Chapter 1 : software-Defined network

15

2. Symmetric messages:Symmetric messages are messages that are exchanged in both

directions between the controller and the switch. These messages are used to establish

and maintain the communication between the controller and the switch, as well as to

detect and report any connection issues. Unlike asynchronous messages, symmetric

messages are sent without explicitly requesting them from the other party. Examples of

symmetric messages include Hello, Echo, and Error messages.

1.5 Comparison of SDN networks and traditional network :

Software-Defined Networking (SDN) and traditional networks differ in several key ways:

a. Centralized control: In an SDN network, the control plane is centralized and

decoupled from the forwarding plane, which enables programmatic control and

management of the network. In traditional networks, the control and forwarding planes

are integrated, making network management more complex and difficult to automate.

b. Flexibility: SDN networks are highly flexible and programmable, making it easier to

configure and manage the network, respond to changing network conditions, and deploy

new services. traditional networks are often inflexible and rely on manual configuration,

making it difficult to make changes quickly.

c. Visibility: SDN provides a centralized view of the network, enabling network

administrators to monitor network performance, diagnose problems, and make changes

quickly. In traditional networks, visibility is often limited, making it difficult to manage

the network effectively.

d. Security: SDN provides a centralized point of control for network security, enabling

administrators to easily configure security policies and apply them consistently across the

network. In traditional networks, security is often an afterthought, making it more

difficult to secure the network effectively.

Cost: SDN networks can be more expensive to implement and maintain compared to traditional

networks, but they can offer significant cost savings in the long run due to the benefits of

centralized control , flexibility ,and visibility.

Chapter 1 : software-Defined network

16

 Figure1. 8:Comparison of SDN networks and traditional network.[9]

1.6 Definition routing sdn:

 SDN routing , or Software-Defined Networking routing, is a network management approach

where the control plane, which determines how network traffic is directed, is separated from the

data plane, which handles the actual transmission of data packets. In SDN ,a centralized

controller manages and controls routing decisions, allowing for a more dynamic, programmable,

and flexible network.

 SDN routing enables network administrators to define and manage routing policies through the

controller, providing increased agility, scalability, and automation in network management.

 SDN routing protocols, such as OpenFlow, provide a standardized interface between the

controller and the network devices, allowing for interloperability and vendor-agnostic

implementations.

Overall, SDN routing offers a more dynamic, efficient ,and adaptable approach to routing in

modern networks.

1.6.1 The advantages of sdn routing over traditional approaches :

SDN routing offers several benefits over traditional approaches to network routing. Some of

the key benefits of SDN routing include:

a. Centralized control: SDN routing allows for a centralized controller to manage and

control routing decisions, providing a unified point of control for the entire network.

This enables network administrators to define and enforce routing policies from a single

location, simplifying network management and reducing configuration complexity.

Chapter 1 : software-Defined network

17

b. Flexibility and programmability: SDN routing provides a highly programmable and

dynamic network environment. With the ability to define and modify routing policies

through the controller, Network administrators can quickly adapt the network to

changing requirements and traffic patterns, making it highly flexible and adaptable.

c. Scalability: SDN routing enables network administrators to easily scale their networks by

adding or modifying routing policies through the controller. This allows for efficient

network growth and expansion without the need for complex and time-consuming

reconfigurations of individual network devices.

d. Automation: SDN routing allows for automation of network management tasks

,reducing the need for manual configuration of individual network devices. This can

result in reduced human error, faster network provisioning, and improved operational

efficiency.

e. Cost-effective: SDN routing can offer cost savings through reduced network complexit.

1.7 Sdn routing protocols :

There are several SDN routing protocols that are commonly used in Software-Defined

Networking environments. These protocols define the communication and interaction between

the central controller and the network devices, enabling the controller to manage routing

decisions. Some popular routing protocols include:

a. OpenFlow: OpenFlow is one of the most widely used SDN routing protocols. It

provides a standardized interface between the controller and the network devices,

allowing the controller to directly manage the flow of network traffic. OpenFlow allows

for fine-grained control over routing decisions and enables dynamic adaptation to

changing network conditions.

b. Border Gateway Protocol (BGP): BGP is a widely used exterior routing protocol that is

also used in SDN environments. In SDN, BGP can be used to establish peering

relationships between the controller and the network devices, allowing the controller to

manage routing decisions for external traffic.

c. Open Shortest Path First (OSPF): OSPF is a widely used interior gateway routing

protocol within traditional IP networks. In SDN, OSPF can be used as a routing protocol

to calculate the shortest path between switches and distribute routing information.

d. Intermediate System to Intermediate System (IS-IS): IS-IS is a link-state routing

protocol that is commonly used in large-scale networks, such as data center networks. In

SDN, IS-IS can be used to propagate routing information to the controller, enabling

centralized routing decisions.

Chapter 1 : software-Defined network

18

e. Routing Information Protocol (RIP): RIP is a distance-vector routing protocol that is

used in smaller networks. In SDN, RIP can be used to propagate routing in formation to

the controller, allowing for centralized routing decisions.

Open Shortest Path First (OSPF): OSPF is a popular link-state routing protocol that is widely

used in traditional networks. In SDN, OSPF can be used to propagate routing information to the

controller ,enabling centralized routing decisions.

1.7.1 The different SDN routing protocols:

There are several SDN routing protocols that are used to implement routing in an SDN

environment. Here are some of the most common ones:

a. OpenFlow: This is the most popular SDN routing protocol and is used to control the

flow of traffic in an SDN network. It enables the separation of the control plane and data

plane, allowing for centralized control of network traffic.

b. PCEP: [10] The Path Computation Element Protocol is used to compute the best path

for network traffic based on network topology, traffic requirements, and other factors. It

can be used in conjunction with other routing protocols to optimize network

performance.

c. BGP-LS: [10] The Border Gateway Protocol Link State (BGP-LS) is used to disseminate

topology information from the SDN controller to the network devices. It enables the

creation of a global network view, which is necessary for effective traffic engineering.

d. ODL-L2SW: This protocol is used to configure and manage Layer 2 switches in an SDN

environment. It provides a standard interface for controlling the forwarding behavior of

switches in the network.

e. ODL-L3: This protocol is used to configure and manage Layer 3 switches and routers in

an SDN environment. It provides a standard interface for configuring routing protocols

and forwarding behavior.

f. ONOS-Routing: This protocol is used to implement routing in the ONOS SDN

controller. It supports a range of routing protocols, including OSPF and BGP, and

provides advanced features such as traffic engineering and network slicing.

g. LISP: The Locator/Identifier Separation Protocol is used to separate the identity of a

device from its location in the network. This enables more efficient routing and mobility

management in an SDN environment.

It's important to note that different SDN solutions may use different routing protocols, and

some solutions may use a combination of different protocols. Understanding the different

Chapter 1 : software-Defined network

19

routing protocols and their capabilities is essential for implementing effective routing in an SDN

environment.

Software-Defined Networking (SDN) is a network architecture approach that separates the

control plane from the data plane. This allows for more flexibility and programmability in

network management and allows network administrators to centrally manage network resources.

In traditional networking, switches and routers use their own control plane to determine how to

forward packets in the network. However, in SDN, the control plane is moved to a centralized

software controller, which is responsible for managing network traffic and forwarding packets.

This controller communicates with the switches and routers in the data plane using a standard

protocol, such as OpenFlow, to program and manage the network.

1.8 The tools needed to setup an sdn test environment

Setting up an SDN (Software-Defined Networking) test environment requires several tools and

components to simulate and test different aspects of SDN networks. Here are some essential

tools that may be needed:

a. SDN Controller: A software-defined networking controller is a key component of an

SDN network. It provides the centralized control and management of the network, and

facilitates communication between the network devices and the applications or services

that run on top of the SDN network .The controller selected for this performance test

are : Ryu[11],ONOS[12] and OpenDayLight [13]

b. Virtualization Software: Virtualization software allows for the creation of virtual

networks and Virtual devices to simulate an SDN environment. Tools like Mininet, and

EVE-NG can be used to create virtual switches ,routers, and hosts that can be connected

to an SDN controller for testing and experimentation.

c. SDN-Compatible Network Devices: SDN-compatible switches ,routers, or access

points are needed to build an SDN test environment. These devices should support

protocols like OpenFlow, Which is the most common protocol used in SDN networks

for communication between the controller and the network devices. Popular SDN-

compatible devices include switches from vendors such as Cisco, HP, and Juniper[14].

1.9 Bandwidth Control :

 The orchestration and SDN control software is also in control of every media flow. [15]This

means that it can effectively allocate the required amount of bandwidth to each media flow,

based on its specific needs and priorities. Additionally, the software can anticipate future

bandwidth requirements for scheduled productions, allowing for efficient and proactive

Chapter 1 : software-Defined network

20

allocation of network resources. Overall, this results in a more streamlined and optimized

network infrastructure for managing media flows.

1.10 Protection :

 The orchestration and control software has a deep understanding of the network's structure and

how data flows through it. With this knowledge, the software can dynamically create and manage

multiple network paths, or path diversity, to protect against potential failures or disruptions in the

network. By distributing traffic across multiple paths, the software can effectively ensure that

media flows can continue uninterrupted, even in the event of a network outage or other issues.

Overall, this allows for a more resilient and reliable network infrastructure for managing media

flows.

1.11 Supported Architecture:

 SDN (Software-Defined Networking) can adapt to different network architectures with ease, as

long as the appropriate orchestration and control software is in place. Unlike traditional

automated routing, which may struggle to handle certain network topologies, SDN's flexibility

allows it to manage network structures such as star, dual-star (pseudo spine-leaf), or true leaf

spine without any compromises. This means that the SDN infrastructure can be tailored to the

specific needs of the network, without being limited by its underlying architecture. Overall, this

results in a more efficient and adaptable network infrastructure for managing media flows .

1.12 Drivers:

 In an SDN-controlled network, the need for drivers for every piece of equipment is eliminated

because the control is managed within the network. This allows for easy and cost-effective

integration of new equipment into the production set-up.

Traditionally, each piece of equipment would require a specific driver to be installed, which could

be time-consuming and costly. With SDN, equipment can be seamlessly integrated into the

network without the need for additional drivers, which simplifies the process of expanding or

updating the production set-up.

 Overall, this results in a more flexible and agile network infrastructure for managing media

flows, with reduced barriers to incorporating new equipment into the production environment .

1.13 Conclusion :

SDN is a network architecture that separates the control and data planes in devices,

allowing centralized management, automation of tasks, and improved performance and

security. It is becoming a crucial tool for modern networks, particularly in datacenters,

transforming the way they are designed, deployed, and managed. SDN provides flexibility

Chapter 1 : software-Defined network

21

and programmability, utilizing various routing protocols such as OpenFlow, BGP, IS-IS,

RIP, OSPF, making it easy to manage and automate tasks. The separation of the control

plane from the data plane enhances security and scalability, making SDN a preferred

option for modern networks. Its continued development and evolution offer vast

possibilities for network optimization and innovation.

Chapter 2 : Fault tolerance in software-Defined network

22

 Chapter 2

 Fault tolerance in
 SDN NETWORk

Chapter 2 : Fault tolerance in software-Defined network

23

2 Introduction

Eliminating complex control functions leads to improving the efficiency of routing, in

addition to enabling new strategies for network management.

 However, failures and disruptions can occur in SDN environments, impacting the

availability and reliability of network services. Fault tolerance is a crucial aspect of SDN

design that focuses on mitigating the impact of failures and ensuring uninterrupted

network operations.

 The primary objective of fault tolerance in SDN is to create a resilient network

infrastructure that can adapt to failures and continue providing reliable services. By

integrating fault tolerance mechanisms into the SDN architecture, organizations can

enhance network robustness, improve service availability, and reduce the time required to

recover from failures.

 In the following discussion, we will explore some key fault tolerance techniques

commonly employed in SDN environments, highlighting their significance and impact

on network reliability.

2.1 Dealing with error

 Systems inherently encounter a range of problems due to both flexible and rigid hardware defects

,which can which can lead to service interruptions.It is essential to differentiate among

three terms: "defect," "error," and "failure." These concepts are interrelated, as depicted

in the diagram.

A fault is an irregularity that occurs when the operational state of a network strays from

its anticipated or standard condition. It acts as the fundamental trigger for errors, such as

software defects or malfunctions, which can be linked to human activities or

disturbances in power provision. The propagation of errors leads to unique or multiple

failure scenarios within the system, resulting in service disruptions.[16][17]

Chapter 2 : Fault tolerance in software-Defined network

24

 Figure 2. 1 :The relationship betwenn fault ,Error ,and failure.[18]

2.2 Definition fault tolerance
 Fault tolerance is a widely used term in the fields of networking and computer science.

It describes a mechanism that enables systems to recover from failures and prevent

service interruptions when a system malfunction occurs. Essentially, it refers to the

system's capability to provide reliable services despite the presence of unreliable

components. One way to achieve fault tolerance is by implementing redundant backup

elements for each unreliable component. These backup elements are designed to take

over in the event of a failure, ensuring continuous and uninterrupted service delivery.

2.3 The Importance of fault tolerance in sdn

Fault tolerance is crucial in SDN because it helps ensure that the network remains

operational even in the face of failures. In traditional networking, failures can often cause

widespread outages that can be difficult and time-consuming to troubleshoot and fix.

With SDN, fault tolerance can be built in at the design level, making it easier to recover

from failures.

 Real-world examples of network failures abound, from natural disasters to cyber attacks.

Without fault tolerance, these types of events can have catastrophic consequences for

businesses and organizations. By implementing fault tolerance in SDN, you can help

protect your network from these types of events and ensure that your business

operations continue uninterrupted.

Chapter 2 : Fault tolerance in software-Defined network

25

2.4 Defintion fault tolerance in sdn

 Fault tolerance in Software-Defined Networking (SDN) refers to the ability of the

network infrastructure to withstand and recover from failures or disruptions without

significant impact on service availability and performance. It involves the implementation

of mechanisms and strategies that detect, isolate, and recover from faults, ensuring

uninterrupted network operations and maintaining reliability.

 Figure 2. 2 :Structure of a SDN network.[19]

2.4.1 The Fault Tolerance Problem

 The issue of fault tolerance is significant in networking as it ensures uninterrupted

operation of networks, even in the presence of link or device failures. The network

should be capable of swiftly and transparently handling faults, causing minimal service

disruption. Due to the separation of data and control planes, fault tolerance needs to be

addressed separately for each plane. In the context of Software-Defined Networking

(SDN), fault tolerance must be considered for both the data plane (switches and links)

and the control plane (controllers and controller-switch link)

 This paper primarily focuses on fault tolerance in the data plane, while providing an

overview of fault tolerance in the control plane.

Chapter 2 : Fault tolerance in software-Defined network

26

2.5 Fault Tolerance in the Data Plane

 The functionality of software-defined networks heavily relies on the proper operation

of the controller, which manages the control logic in the data plane. However, fault

tolerance can be implemented in software-defined networks at three different levels: the

data plane, control plane, and application plane.

 When it comes to fault tolerance in the data plane, it shares similarities with traditional

network architectures. However, the dynamic nature of software-defined networks has

necessitated the reimagining of fault detection and recovery methods for links to ensure

fault tolerance. The primary emphasis is on swiftly identifying faults.

 The introduction of the software-defined networking model has shifted the complexity

from network devices to control plane elements. Consequently, the computational load

on data plane network elements has been significantly reduced. This allows for more

flexible execution of applications in the data plane, resulting in improved Quality of

Service (QoS), Quality of Experience (QoE), and the ability to meet the requirements of

next-generation networks. For instance, the OpenFlow protocol offers rapid fault

detection mechanisms and simplified configuration of alternative paths on switches. In

this way , the failure recovery delay is reduced , the packet loss rate is minimized , and a

high effective transport rate is achieved in the network .[20]

2.5.1 Reacting to topology changes

when considering fault tolerance in SDN-based networks, it is important to weigh the

potential benefits of rerouting traffic to a better path against the overhead caused by

reconfiguring the network.

 In a dynamic SDN network, where links are constantly being added or removed, the

network's topology is continuously changing. It is desirable for traffic to take a near-

optimal path through the network, but there is always a possibility that the chosen path

may fail. In such cases, a failover algorithm is used to select the next best path for

restoring network function.

 Finding the optimal failover path can be computationally expensive and time-

consuming, especially for large networks. As a result, it may be acceptable to restore

network function by applying a suboptimal path initially, rather than waiting for the

calculation of the optimal path. The focus is on getting the network back to a functional

state quickly, and the suboptimal path can be optimized later when there is more time.

Chapter 2 : Fault tolerance in software-Defined network

27

 However, it is important to consider the overhead caused by traffic traversing a

suboptimal path. This overhead can include increased latency, reduced throughput, or

inefficient resource utilization. In some cases, rerouting the traffic to a lower-overhead

path may be beneficial in terms of reducing the costs associated with traversing the

network.

 Nevertheless, reconfiguring the network to implement a new path also introduces

overhead. This overhead includes the time and resources required to update the

network's forwarding rules and propagate the changes across the network. Therefore, any

approaches to fault tolerance should carefully evaluate whether the benefits of rerouting

traffic outweigh the overhead caused by network reconfiguration.

 In summary, fault tolerance in SDN-based networks should consider the trade-off

between rerouting traffic to optimize path selection and the overhead introduced by

reconfiguring the network. The decision to change existing paths should only be made if

the benefits of rerouting outweigh the costs associated with network reconfiguration.

2.5.2 Minimizing overhead
Paris et al. [21] propose an approach that addresses the balance between optimal paths

and the frequency of network reconfiguration in SDN-based networks. Their approach

consists of two sub-mechanisms: rapid handling of failures by rerouting to alternative

paths and a mechanism for path optimization.

 When a link or device failure occurs in the network, the first sub-mechanism focuses on

quickly restoring network functionality by calculating backup paths on demand. The

priority is to find an alternative path as quickly as possible, even if it is suboptimal. A

shortest-path algorithm is typically used to calculate these alternative paths. The primary

goal at this stage is to ensure the network is operational, and path optimization is

deferred to the second sub-mechanism.

 The second sub-mechanism, known as the Garbage Collection of network resources,

focuses on path optimization. It involves periodically analyzing and optimizing flow

allocations in the network. An iterative algorithm is employed to converge towards the

optimal solution. This optimization process takes into account the availability of new

links and the repair of failed links. If network changes open up shorter paths, the garbage

collection mechanism may reroute traffic accordingly. However, rerouting is only

performed if the optimization gained from the new path outweighs the overhead caused

by the necessary network reconfiguration.

Chapter 2 : Fault tolerance in software-Defined network

28

 In a static network, paths would naturally converge towards the optimal solution.

However, failed links and devices introduce suboptimal paths, leading to additional

overhead and deviating further from the optimal solution. The path optimization

mechanism helps counteract this deviation by periodically analyzing and optimizing the

flow allocations in the network.

 Paris et al.'s approach combines rapid restoration of network paths after failures with

periodic path optimization. By prioritizing quick recovery through suboptimal paths and

periodically optimizing paths using the Garbage Collection mechanism, they aim to strike

a balance between network functionality and the overhead caused by reconfiguration.

2.5.3 Fault tolerance controller

 Ensuring fault tolerance in the control plane is crucial because the availability of the

controller is not guaranteed at all times. Controller failures can occur, leaving the

network without proper guidance and rendering it in a headless state. In such situations,

the network is unable to handle events like incoming packets belonging to unknown

flows without the presence of a functioning controller. Therefore, implementing a fault-

tolerant control plane becomes essential.

 In the following section, we will explore different approaches to achieve a fault-

tolerant control plane.

(a) Centralized (b)Centralized

 Figure 2. 3 : SDN Control Plane Topologies.[19]

Chapter 2 : Fault tolerance in software-Defined network

29

2.6 Fault-Tolerance in the Control Plane

 Ensuring fault tolerance in the control plane is crucial because the data plane relies on

the controller for its operation. The control plane performs critical tasks such as handling

unknown flows and facilitating communication with the application layer. Thus, the

controller needs to be operational at all times to ensure proper network functioning .

 In SDN, the control plane is based on a centralized controller, which means that the

controller acts as a single point of failure. If the controller becomes unavailable, the

network may experience disruptions and loss of functionality. Therefore, introducing

redundancy in the control plane becomes necessary to enable fast failover in case of a

controller fault.

 In the following section, we will explore different approaches to achieving fault-

tolerant controllers, which aim to minimize the impact of controller failures and ensure

continuous network operation.

2.6.1 Control plane topology

There are two common types of control plane topologies in SDN: a single logically

centralized controller and a distributed topology.

 In the single logically centralized controller topology (Figure 2.3 a), the control plane is

managed by a single controller that has a global view of the network. This controller is

responsible for making decisions and controlling the behavior of the entire network. This

topology is typically used in smaller networks where the load on the controller can be

handled effectively.

 On the other hand, the distributed topology (Figure 2.3 b) is prevalent in larger

networks where a single controller may not be able to handle the scale and complexity of

the network. In this topology, multiple controllers are deployed, with each controller

managing a specific domain or subset of the network. These controllers can operate in

parallel, handling different parts of the network independently. This distributed approach

allows for better scalability and load balancing .

 One of the advantages of a distributed topology is its inherent fault tolerance. If one

controller fails, another controller can take over the responsibility for its domain,

ensuring continuity of network control. This redundancy and failover capability help

maintain network functionality even in the presence of controller failures.

 SDN control planes can be structured with a single logically centralized controller or a

distributed topology. The distributed topology, with multiple controllers handling

Chapter 2 : Fault tolerance in software-Defined network

30

different network domains, offers better scalability and fault tolerance by allowing

controllers to take over each other's responsibilities in case of failure.

2.7 Causes of SDN Failure :

There are a lot of reasons , let's focus on two specific reasons that can contribute to the

downfall or failure of a sdn:

1. Link Failure: A link failure refers to the loss of connectivity between two

network devices or switches. This can occur due to cable damage, hardware

malfunction, or environmental factors. When a link fails in an SDN, it can result

in disrupted communication, increased latency, or even complete network

partitions.

2. Switch Failure: A switch failure happens when a network switch malfunctions

or becomes unresponsive. This can occur due to hardware failures, power

outages, software bugs, or misconfigurations. A switch failure can impact the

forwarding of network traffic, leading to connectivity issues or degraded

network performance.

3. Controller failure : A controller failure occurs when the controller becomes

unresponsive or experiences a system crash. This can happen due to software

bugs , hardware malfunctions , or resource limitations. When a controller fails ,it

can result in the loss of network control .

4. Controller-switch communication failures: Communication failures between

the SDN controller and switches can occur due to network connectivity issues,

congestion, or controller overload. These failures can result in switches being

unable to receive instructions from the controller, leading to misconfiguration or

an inability to handle dynamic network changes.

5. Network application failures: Faults can occur within network applications

running on top of the SDN infrastructure. For example, a network application

may experience a software bug, resource exhaustion, or failure to handle

network events properly. Application failures can impact specific services or

functionality provided by the SDN environment.

6. Configuration errors: Faults can also arise from misconfigurations within the

SDN infrastructure. Human errors in setting up flow rules, controller policies, or

switch configurations can lead to unintended consequences, network congestion,

or incorrect routing decisions.

Chapter 2 : Fault tolerance in software-Defined network

31

7. Resource limitations: Resource limitations, such as insufficient bandwidth,

memory, or processing power, can cause performance degradation or failures in

an SDN environment. Overutilization of resources can result in network

congestion, packet drops, and deteriorated Quality of Service (QoS).

When analyzing fault tolerance in SDN, it's essential to consider these different fault

scenarios and develop mechanisms that can detect, recover, and mitigate the impact of

these faults to ensure the overall resilience and reliability of the SDN infrastructure

2.8 Fault tolerance mechanisms

 Recovery mechanisms in SDN can be categorized based on their scope, which can be

local or end-to-end path recovery. Local recovery involves bypassing the failed network

component, while end-to-end path recovery bypasses the entire affected path between

the source and destination. Two common approaches for recovery are protection and

restoration. Protection strategies use preconfigured alternate paths, while restoration

strategies establish alternative paths upon fault detection. Restoration introduces

additional delay in computing the alternative path.

 Protection strategies can be divided into 1:1 path protection and 1+1 path protection.

In 1+1 path protection, data is duplicated and sent to both the primary and backup

paths, with the duplicated packets ignored at the destination. This approach has a

negative impact on the useful transport rate. On the other hand, 1:1 path protection

transmits data through the primary path, and if the primary path fails, it is replaced by the

pre-established backup path.[22]

Chapter 2 : Fault tolerance in software-Defined network

32

 Figure 2. 4 :Mechanisms for distance recovery in networks.[22]

 The diverse models of software-defined networks provide a broad array of solutions to

tackle the challenges encountered by networks that are hard to overcome using

conventional approaches.

 The centralization of control plays a crucial role in enabling the technical viability of

these solutions. Fault tolerance stands out as a significant challenge across the data,

control, and application levels. The primary focus of this study is to address fault

tolerance specifically at the data level, as our research centers around exploring fault

tolerance mechanisms within this domain.

2.9 Restoration of link failure using proactive approaches

 There are two methods for handling link or switch failures: proactive protection and

reactive restoration. Proactive protection involves setting up backup paths in advance.

When a failure occurs, the affected traffic is promptly and locally rerouted to the

alternative path without requiring intervention from the controller. The process is

illustrated in Figure 2-3, which demonstrates how link failures are addressed using

proactive protection.

Chapter 2 : Fault tolerance in software-Defined network

33

Figure 2. 5: The mechanism in which link failure is handled using proactive
protection.[23]

 When a link failure occurs in path number 1, the switch already has the necessary

information for the alternative path stored in its flow rule table. This allows for seamless

redirection of packets to the specified alternative path. Proactive protection, in

comparison to reactive restoration, offers faster recovery time as it eliminates the need

for consulting the control plane and calculating the alternative path in real-time. The

objective is to achieve path recovery within a timeframe of less than 50 milliseconds,

which is the specified requirement for acceptable solutions in this domain. However,

configuring an alternative path for every primary path may exceed the storage capacity of

flow table entries on switches, leading to potential limitations. Additionally, it introduces

additional processing overhead for flow matching when dealing with a large number of

flow entries. The subsequent sections present and discuss proposed solutions for

proactive protection.

2.10 Challenges and Limitations

While fault tolerance is important in SDN, there are also challenges and limitations to

implementing it effectively. For one, building a fault-tolerant network can be complex

and expensive, requiring specialized hardware and software.

Chapter 2 : Fault tolerance in software-Defined network

34

Additionally, achieving fault tolerance in SDN can require trade-offs in terms of

performance and efficiency. For example, using redundant network paths can increase

latency and reduce bandwidth utilization. It's important to carefully consider these trade-

offs when designing a fault-tolerant SDN network.

2.11 Advantages of Fault Tolerance in SDN

 Fault tolerance in software-defined networking (SDN) has several advantages. Firstly,

it ensures that the network remains operational even when there are hardware or

software failures. This is crucial for businesses that rely on their networks to function

properly. Secondly, fault tolerance enables the network to adapt to changing conditions

and avoid potential faults. This helps to improve the overall reliability and performance

of the network.

 Another advantage of fault tolerance in SDN is that it allows for faster recovery times

in the event of a failure. With redundancy and failover mechanisms in place, the network

can quickly recover from any faults and continue providing uninterrupted service. This is

particularly important for mission-critical applications where downtime can have serious

consequences.

2.12 Conclusion

In conclusion, fault tolerance is of utmost importance in Software-Defined Networking

(SDN) for ensuring reliable and uninterrupted network operations. By implementing

fault tolerance mechanisms, such as redundant controllers, link redundancy, and load

balancing, SDN networks can enhance their resilience to failures and disruptions. Fault

tolerance enables service continuity, minimizes downtime, improves scalability. It allows

for efficient management and control of the network, even in the presence of failures.

Chapter 3 : Implementation of the solution

35

 Chapter 3

IMPLEMENTATON

 OF

 THE SOLUTION

Chapter 3 : Implementation of the solution

36

3 Introduction :

This chapter represents the technical aspect of fault tolerance in software-defined

network by showcasing the tools used and the steps involved ,while specifying the

protocol used .

3.1 Emulation Environment:

The software environment is made up of the following parts:

 VMware :
 VMware is a software company that specializes in virtualization and cloud

computing technologies. It was founded in 1998 and is headquartered in Palo Alto,

California. VMware's products include virtualization, networking, and security

management tools, as well as software-defined data center and storage software. Its

flagship product is VMware vSphere, which is a server virtualization platform used for

implementing and managing virtual machines on a large scale. VMware also offers

desktop software compatible with Linux, Microsoft Windows, and Mac OS X. The

company is a subsidiary of Dell Technologies.

 MiniNet

 MiniNet is network emulator, It supports Openflow protocol for integrqtion

with an SDN controller .this allows for the efficient execution of small-scale networks

with artificial traffic on computers that may not be powerful. The software is free to use

and has an open-source license. Creating a network with a large number of devices can

be difficult and expensive, which is why MiniNet uses a virtual mode strategy to create

prototypes and emulations of technological networks. The software emulates a complete

network using only a single system running a Linux kernel. Although the elements of the

network such as nodes, switches, routers, and links are created by software, they are

designed to behave like real elements. MiniNet's goal is to create virtual networks with

ease and speed, which can run nodes, network cores, and virtualized network devices

through a simple feature host, such as Linux. The software can emulate different types of

network elements, such as nodes, layer 2 switches, layer 3 routers, and links.

Chapter 3 : Implementation of the solution

37

3.2 Proposed controllers :

 OpenDayLight

ODL is an open-source software-defined networking (SDN) platform that provides a

framework for building SDN applications and a centralized point of control for

managing network traffic using software. It enables network programmability,

automation, and supports a wide range of networking protocols and technologies.

 HPE VAN Controller

 The HPE Virtual Application Networks (VAN) SDN Controller Software serves

as a centralized control point in a software-defined network (SDN) and streamlines tasks

such as network management, provisioning, and orchestration. It allows for the delivery

of new application-based network services and offers open APIs for developers to create

innovative solutions that dynamically link business needs to network infrastructure

through custom Java programs or RESTful control interfaces. The HPE VAN SDN

Controller is suitable for use in campus, data center, or service provider settings.

 ONOS

controller is an open-source SDN controller that supports both OpenFlow and non-

OpenFlow protocols. It provides a scalable and high-performance platform for managing

large-scale networks.

3.3 Implementation:

 In this part, we will present the different phases of the realization of our

project:

Installing technologies related to computer networking and virtualization :

In the first phrase of our project , we set up a virtual machine running Linux on VMware

and installed Mininet on it .

3.3.1 Installing Mininet on VMware:

1. We downloaded and installed the VMware software on our computer .

2. We downloaded the latest Mininet version 23.0.4 VM image from the

Mininet website. The VM image is a pre-configured virtual machine with

Mininet already installed.

Chapter 3 : Implementation of the solution

38

3. We imported the Mininet VM image into VMware. To do this, we opened

VMware and went to File > Open, then selected the Mininet VM image file.

This created a new virtual machine in VMware with Mininet pre-installed.

4. We started the Mininet VM in VMware. We selected the Mininet VM in the

VMware interface and clicked the "Start" button. This started the virtual

machine and launched Mininet.

5. When Mininet is launched ,It many prompt you to entre some commands

such as a password ,username … etc .

 Figure3. 1 : The mininet strated working .

6. We change the IP address because every time we connect to a new network

,the IP address changes .we change it to make it a static IP address.

After starting Mininet , we will install three controllers :

3.3.2 Install opendaylight :

1. First , we download the Ubuntu server version 16.04.2 that supports

Opendaylight .

2. We have installed Ubuntu server on VMware .

 Figure3. 2 :Installed Ubuntu Server in VMware.

3. After completing the installation of Ubuntu Server , we download and run

Opendaylight (odl) v on it .

Chapter 3 : Implementation of the solution

39

 Figure3. 3 : Opendaylight Controller Launches.

4. Now , use the URL 10.83.0.99:8443.sdn/ui/app/index#oftopology on any web browser
as show in Figurer:

 Figure3. 4 :OpenDaylight Controller Launches.

5. To access the Hpe-Van sdn controller ,we should use the default username and
password.

 Figure3. 5 : Connecting to the Web Interface of the Opendaylight.

Once Opendaylight is installed successfully on Ubuntu server ,we establish a connection

between Opendaylight and Mininet .

Chapter 3 : Implementation of the solution

40

3.3.3 Install ONOS :

1. After downloading Ubuntu 16.04.2 .

2. We have installed Onos controller version 1.13.1 on Ubuntu server .

 Figure3. 6: Connecting to the web interface of onos controller.

3.3.4 Install HPe –Van .sdn-Controller :

1. We downloaded the HPe –Van .SDN –Controller installation

package

2. We opened VMware software and created a new virtual machine ,

them downloaded and installed hpe-van sdn controller on it ,and

modifying some settings to run the controller .

3. Here ,the installation is complete and the HPe-Van sdn controller

service has started .

 Figure3. 7 :Installation Completed and HPE-VAN SDN Controoller service
started.

Chapter 3 : Implementation of the solution

41

4. Now , we used the URL 10.83.0.99:8443.sdn/ui/app/index#oftopology on

any web browser as show in Figurer:

 Figure3. 8 :Web Interface representing the home page of the Hpe-Van sdn
Controller .

5. To access the Hpe-Van sdn controller ,we should use the default username
and password.

 Figure3. 9 : Connecting to the Web Interface of the Hpe-Van sdn controller.

After installing hpe-van sdn controller on VMware ,we need to connect it to Mininet.

Chapter 3 : Implementation of the solution

42

3.4 The fundamental command for Mininet :

The fundamental commands for utilizing Mininet :

 Directive Explanation

 Sudo –S

The command is used to gain root privileges and does

not need to be used before every Mininet command.

 Sudo mn- h

The command is used to display the Mininet help

menu, providing information and options related to

Mininet commands and functionality.

 Sudo mn

The command is used to create a Mininet network

with the default topology, which is the minimal

topology.

 Sudo mn-c

The command is used to clear Mininet or undo the

effects of a previously executed command.

 Mininet>net

The command in the Mininet displays and lists the

links that have been formed in the network.

 Mininet>links

The command displays detailed information about all

the links associated with the nodes in the network.

 Mininet>nods

The command displays the available nodes for the

default minimal topology in the current Mininet

network.

 Mininet>pingall

The command in the Mininet CLI triggers a ping

operation from each network host to every other

network host.

Mininet>h1 ping h2 The command in Mininet, you can continuously check

the connectivity between Host h1 and h2.

Mininet> h1 ifconfig The command in Mininet will display the IP address,

broadcast address, and MAC address of Host h1,

providing comprehensive network interface

information for the host.

Mininet>h1 ip route The command in Mininet will show the IP routing

table of Host h1, providing information about the

network paths used by the host to reach various

Chapter 3 : Implementation of the solution

43

destinations.

Mininet>h1 ping –c1 h2 The command in Mininet tests the connection

between hosts h1 and h2 by sending a single packet.

This command verifies if a successful communication

can be established between the two hosts by

exchanging a single packet of data.

Mininet>Xterm The command allows you to connect to the terminal

of Host h2, providing you with an interactive session

where you can execute various commands and

perform operations on Host h2.

Mininet>exit The command allows you to terminate or exit from a

network that has been created in Mininet .

 Table 3. 1 : commands one needs to know for utilizing Mininet.

3.5 Topology presentation:

In the first phrase of our project ,we have successfully installed Mininet, hpe-van sdn

controller ,and Opendaylight on a Linux system running on VMware.

3.5.1 Topology presentation in mininet:

Second phrase : Create a custom topology in Mininet :

Chapter 3 : Implementation of the solution

44

 Figure3. 10 :Create a custom Topology in Mininet .

In this command running Mininet after topology creat and another command will cause triggers

a ping operation from each network host to every other network host .

 Figure3. 11 :Running and ping Topology in Mininet .

Chapter 3 : Implementation of the solution

45

3.5.2 Topology presentation in OpenDayLight :

Fourth phrase: The following result within the opendaylight :

 Figure3. 12: Topology Presentation Opendaylight.

3.5.3 Topology presentation in Onos :

This topology in ONOS :

 Figure3. 13 : Topology presentation in ONOS.

Flow table of Onos :

Chapter 3 : Implementation of the solution

46

 Figure3. 14 : Flow table of Onos .

3.5.4 Topology presentation in Hpe-Van :

 Figure3. 15 : Topology presentation in Hpe-Van.

Flow table of Hpe-Van :

 Figure3. 16 :Flow table of Hpe-Vane .

Chapter 3 : Implementation of the solution

47

3.6 The Test :

Performance evaluation of software-Defined networks controller:

3.6.1 Iperf toll :

Iperf is a widely used open-source tool that allows network administrators to measure

the bandwidth and assess the performance and quality of a network connection between

two hosts. It provides a simple yet powerful way to test network throughput and

diagnose potential issues.

3.6.2 Time testing in sdn

1. Measuring bandwidth and evaluating network performance between host 1 and
host4.

 Figure3. 17: Measuring the badwidth .

2. When measuring the network bandwidth and analyzing the flow table for each

controller, we obtained the following results.

𝑡𝑖𝑚𝑒 = Σ(𝑟𝑒𝑐𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒−𝑓𝑎𝑖𝑙 𝑡𝑖𝑚𝑒) / 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑓𝑓𝑒𝑐𝑐𝑡𝑒𝑑 𝑓𝑙𝑜𝑤𝑠.

3.7 Results are shown in a table:

 Table 3. 2: The results of the comparison betwenn controller response time.

Chapter 3 : Implementation of the solution

48

3.7.1 Results were also represented in columns :

1. Columns :

 Figure3. 18 : The results of the comparison betwenn controller response time.

Comparison :

In a comparative study between different SDN controllers, when a single link is cut in a

topology and a packet is sent, the ODL and ONOS controllers were not affected, but the

HPE-VAN controller was significantly affected. However, when multiple links are cut

and a packet is sent, both ODL(reactive) and HPE-VAN(reactive) are affected to a

greater extent compared to ONOS. It is observed that ONOS does not take much time

in selecting an alternate path for packet transmission because it has a routing table to

guide it, whereas ODL sends a message to the controller to provide an alternative path,

which takes more time.

In conclusion, we have noticed that ONOS (proactive) does not take much time to send

the packet and select an alternate path.

Chapter 3 : Implementation of the solution

49

3.8 CONCLUSION
In this chapter , we extensively discussed our working environment, explained the

structure of our proposed project, and provided a detailed overview of the stages we

went through to obtain the results of comparing the time between controllers.

General conclusion

50

 GENERAL CONCLUSION

 In our project, aimed explore the potential of Software-Defined Networking (SDN)

as a replacement for traditional network infrastructure. The rapid advancement of SDN

technology served as the driving force behind our study. The objective of this work is to

evaluate the performance of SDN controllers.

 To begin, we conducted a comparative analysis between SDN and traditional networks,

highlighting the advantages that SDN offers in the business environment. We introduced

OpenvSwitch as the main engine driving the functionalities available in SDN.

We then focused on the crucial aspect of fault tolerance in SDN. We explored various

techniques and mechanisms to ensure efficient fault tolerance in SDN environments.

 After studying , we chose Mininet, a widely-used open-source software that enables the

emulation of SDN networks. We employed controllers such as HPe-van, ODL, and

ONOS to evaluate their performance in the SDN context. These controllers provided

the necessary functionality to manage and control the SDN network.

 At last ,Through our experiments, simulations, and performance evaluations, we gained

valuable insights into the recovery time of each mentioned controller. This allowed us to

observe the differences between them and make informed comparisons.

These points can be considered as potential future work for this thesis :

 Conducting experiments with more complex scenarios would be a logical

progression for this research .

 Exploring the integration of the proposed mechanism with interesting machine

learning algorithms could lead to enhanced capabilities and improved

performance.

 Updating the proposed mechanism to reduce retrieval time is an important aspect

to consider.

It is worth noting that software-based knowledge networks still face several challenges.

These challenges could include ensuring accuracy and reliability of the knowledge base,

addressing scalability issues as the size of the knowledge network grows, and improving

fault tolerance to handle errors and failures effectively.

Bibliography

51

BIBLIOGRAPHY

[1] K. Greene, 'TR10: Software-Defined Networking', MIT Technology Review.

[online]. Disponible sur:

http://www2.technologyreview.com/news/412194/tr10-software-defined-

networking/. [Consulté le: 27-août-2019].

[2] D. B. Rawat et S. R. Reddy, " Software Defined Networking Architecture, Security

and Energy Efficiency: A Survey", IEEE Commun. Surv. Tutor., vol. 19, no 1, p. 325□346,

Firstquarter 2017.

[3] D. B. Hoang, " Software Defined Networking ? Shaping up for the next disruptive

step? ",Aust. J. Telecommun. Digit. Econ., vol. 3, no 4, nov. 2015

[4]' OpenFlow Switch Specification - PDF ».[online].

Disponiblesur:https://www.opennetworking.org/wpcontent/uploads/2014/

10/openflow-switch-v1.5.1.pdf.

[5] B. Pfaff et B. Davie, « The OpenvSwitch Database Management

Protocol ». [En ligne]. Disponible sur:

https://tools.ietf.org/html/rfc7047. [Consulté le: 27-août-2019].

[6] "Is PCEP/BGP-LS based SDN Approach Ideal Choice for Service Providers?"

https://www.keysight.com/blogs/tech/traf-gen/2022/06/28/is-pcepbgp-ls-based-sdn-

approach-ideal-choice-for-service-providers

[7] Arif Rubayet "Cross-layer design in Software Defined Networks(SDNs):issues and

possible solution" April 2021.

[8] Howard "Open Flow Switch : What Is It and How Does It Work|OpenFlow Switch

Components " Updated on Jun 1,2021

[9] "Ryu," [Online]. Available: https :// osrg. github.io/ryu /.

[10] "Open Network Operating System (ONOS)," [Online]. Available :

https :// wiki .onosproject.org/display/ONOS/Wiki+Home.

[11] Opendaylight,” [Online]. Available: https :// www.opendaylight.org

[12] Muhammad Anan,Husnain Bustam "Empowering networking research and

experimentation through Software-Defined Networking |Journal of network and

Computer Application,2016".

[13] "What Are SDN Controllers (or SDN Controller Platforms)?"January 14,2014.

http://www2.technologyreview.com/news/412194/tr10-software-defined-
https://www.opennetworking.org/wpcontent/uploads/2014/10/openflow-switch-v1.5.1.pdf.
https://www.opennetworking.org/wpcontent/uploads/2014/10/openflow-switch-v1.5.1.pdf.
https://www.keysight.com/blogs/tech/traf-gen/2022/06/28/is-pcepbgp-ls-based-sdn-approach-ideal-choice-for-service-providers
https://www.keysight.com/blogs/tech/traf-gen/2022/06/28/is-pcepbgp-ls-based-sdn-approach-ideal-choice-for-service-providers

Bibliography

52

https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-

software-defined-networking-sdn/what-is-sdn-controller/sdn-controllers/

[14] Miriam A.M.Capreetz "An approach for SDN traffic monitoring based on big data

technique |Jornal of Network and Computer Applications ,Volume 131,1 April

2019,Pages28-39".

https://www.sciencedirect.com/science/article/pii/S1084804519300244

[15]"SOFTWARE DEFINED NETWORK (SDN)

ROUTING".https://techex.co.uk/ipproduction/software-defined-network-sdn-routing.

[16] Van Steen, Maarten, and Andrew S. Tanenbaum. Distributed systems. Leiden, The

Netherlands: Maarten van Steen, 2017.

[17] Avizienis, Algirdas, et al. "Basic concepts and taxonomy of dependable and secure

computing." IEEE transactions on dependable and secure computing 1.1 (2004): 11-33.
[18] Hukerikar, Saurabh, and Christian Engelmann. "Resilience design patterns-a

structured approach to resilience at extreme scale (version 1.0)." arXiv preprint

arXiv:1611.02717 (2016).

[19] leander Seidlittw ,Cora Perner "Fault tolerance in SDN " chair of netzork

architecture and service ".

[20] Jaiswal, Rituka, Reggie Davidrajuh, and Chunming Rong. "Fog Computing for

Realizing Smart Neighborhoods in Smart Grids." Computers 9.3 (2020): 76.

[21] S. Paris, G. S. Paschos, and J. Leguay, “Dynamic control for failure recovery and

flow reconfiguration in SDN,” in 2016 12thInternational Conference on the Design of

Reliable CommunicationNetworks (DRCN). Paris: IEEE, Mar. 2016, pp. 152–159.

[Online].Available: http://ieeexplore.ieee.org/document/7470850/

[22] Thorat, Pankaj, Seil Jeon, and Hyunseung Choo. "Enhanced local detouring

mechanisms for rapid and lightweight failure recovery in OpenFlow networks." Computer

Communications 108 (2017): 78-93.

 [23] Ali, Jehad, et al. "Software-defined networking approaches for link failure recovery:

A survey." Sustainability 12.10 (2020): 4255.

https://techex.co.uk/ip-production/software-defined-network-sdn-routing
https://techex.co.uk/ip-production/software-defined-network-sdn-routing

	GENERAL INTRODUCTION
	1 Introduction
	1.1 SDN Definition
	1.2 Objective of SDN:
	1.2.1 Some specific objectives of SDN include:

	1.3 SDN Architecture :
	1.3.1 Application Layer:
	1.3.2 Control Layer:
	1.3.3 Southbound APIs:
	1.3.4 Data Layer:
	1.3.5 Northbound APIs:
	1.3.6 Network Services Layer:

	1.4 SDN controller type :
	1.4.1 The function of an Openflow controller
	1.4.2 Openflow switch components :
	1.4.3 Flow entire :
	1.4.4 Openflow message

	1.5 Comparison of SDN networks and traditional network :
	1.6 Definition routing sdn:
	1.6.1 The advantages of sdn routing over traditional approaches :

	1.7 Sdn routing protocols :
	1.7.1 The different SDN routing protocols:

	1.8 The tools needed to setup an sdn test environment
	1.9 Bandwidth Control :
	1.10 Protection :
	1.11 Supported Architecture:
	1.12 Drivers:
	1.13 Conclusion :
	Chapter 2

	2 Introduction
	2.1 Dealing with error
	2.2 Definition fault tolerance
	2.3 The Importance of fault tolerance in sdn
	2.4 Defintion fault tolerance in sdn
	2.4.1 The Fault Tolerance Problem

	2.5 Fault Tolerance in the Data Plane
	2.5.1 Reacting to topology changes
	2.5.2 Minimizing overhead
	2.5.3 Fault tolerance controller

	2.6 Fault-Tolerance in the Control Plane
	2.6.1 Control plane topology

	2.7 Causes of SDN Failure :
	2.8 Fault tolerance mechanisms
	2.9 Restoration of link failure using proactive approaches
	2.10 Challenges and Limitations
	2.11 Advantages of Fault Tolerance in SDN
	2.12 Conclusion

	3 Introduction :
	3.1 Emulation Environment:
	3.2 Proposed controllers :
	3.3 Implementation:
	3.3.1 Installing Mininet on VMware:
	3.3.2 Install opendaylight :
	3.3.3 Install ONOS :
	3.3.4 Install HPe –Van .sdn-Controller :

	3.4 The fundamental command for Mininet :
	3.5 Topology presentation:
	3.5.1 Topology presentation in mininet:
	3.5.2 Topology presentation in OpenDayLight :
	3.5.3 Topology presentation in Onos :
	3.5.4 Topology presentation in Hpe-Van :

	3.6 The Test :
	3.6.1 Iperf toll :
	3.6.2 Time testing in sdn

	3.7 Results are shown in a table:
	3.7.1 Results were also represented in columns :

	3.8 CONCLUSION
	GENERAL CONCLUSION

