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ABSTRACT: 

The prediction of gas flow rates through wellhead chokes in condensate reservoirs involves 

considering various factors, including the properties of the hydrocarbon gas mixture, the choke 

design and specifications, reservoir conditions, and the interaction between the gas and natural gas 

liquids. These complex interactions influence the flow regime, pressure drop, and overall system 

behavior, making prediction a challenging task, the Researchers and engineers have developed 

various mathematical models, empirical correlations to predict gas flow rates through wellhead 

chokes in condensate reservoirs. These models often consider fundamental fluid mechanics 

principles, such as conservation of mass and energy, combined with empirical data from field 

measurements. The proposed models usually require a feasible parameter extraction of the 

unknown coefficients. This identification process could be achieved by means of an optimization 

method. Differential Evolution (DE) is one of the effective evolutionary algorithms used to solve 

global optimization problems in different domain. The basic concept of DE algorithms is built by 

three strategies: Mutation, Crossover and Selection. This study shows the importance and strength 

of this meta-heuristic technique. By using real datasets from two different wells and two different 

models, the findings by using DE algorithm have been compared with the results reached by means 

of ACO algorithm and others from a recently published paper. 

 ملخص:

يتضمم التنتؤ ممعللا  ممفق للممف ملتنلامماخلنممال ممس لت تؤافمما لناتلتن كممال ممنل  تيمما لتن    مما لتنؤ ممال ممنل  تنممم ل

تنلاممماخلتنرومممفني،الا ينمليل ممم وتلين تنممم ا لتق تؤممما،ملي ممماي لتنخممم ت مللخلييي  نختل مممبمللا مممال مممنل نممم ل  ممما  ل

ي مماالتنتممف ممليتيخ مماطلتنضمملا مليتنت ا مم للامموالتنلامماخليامم ت  لتنلامماخلتنر و ممنلللممعتاللممقدلتنت مما س لتن   ممف ل لمم ل

يامممل للتنؤ ممماالتن لمممنملن ممماليه ممم لتنتؤ مممعلنر مممبلنممم  بمليفمممفلذممم نلتن ممماف   ليتن رؤفاممم  لي ممما  لنيا ممموبلنختل مممبمل

النممالل  ممقل يتنل اذمما للهاي وممبلنلتؤ ممعللا  ممفق للممف ملتنلامماخلنممال ممس لت تؤافمما لناتلتن كممال ممنل  تيمما لتن    مما لل ان مم 

ال نمم ل ؤمم لنمم للممقدلتنؤ مما  ل ممنلتق ت ممانلن ممل ادئلنو ايومم لتنامم ت  لتيااامموبملن مم لتن  مما ل لمم لتن تلممبليتنرافممبمل ؤ مم 

تن وايمما لتنتهاي وممبلنممالتن واامما لتن وفتيوممبلل مماد لنمماللترلمم لتنؤ مما  لتن  تافممبلتاممتخات لن ممانس ل وممالن اي ممبلليي  ممال

فممفلتنخ تنخنومما لتنتر نيممبللمم لا (DE) ل  ومممل  لوممبللممقدل ممالذايممملااممل ملتنت امموالتين مم للتنترمم نلتنت ا مملن

نممال DE تن  انممبلتن اممتخفنبلن مم لنلمما، لتنت امموالتن ان وممبل ممنلنهمماق لنختل ممبلللممتللاؤممازلتن  رمم التياااممنلنخ تنخنومما 

لااامممتخفتالللليتق تومممانلللر رممماللمممقدلتنفنتامممبلال ومممبليفممم  للمممقدلتنت ؤومممبلنت ممماذ  مممس لتمممسالتامممتاتلوهوا :لتنر ممما ليت

 DE كممايالنختل ممواليي مم   والنختل ممواملل ممللن انيممبلتنؤتمما رللاااممتخفتال  تنخنوممبنه   مما للاوايمما لف و وممبلنمماللا

 يل والالنالينفبللا  وبليلا لنع اتلل ACOل لاانؤتا رلتنتنللتلتنت ن ل نورال الذايمل  تنخنوب
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GENERAL INTRODUCTION: 

The prediction of gas flow rates from condensate reservoirs through a wellhead choke is a 

crucial aspect in the field of petroleum engineering. Accurate estimation of gas flow rates plays a 

pivotal role in optimizing production processes and ensuring efficient reservoir management. In 

this context, the selection of an appropriate model is of high importance. Meanwhile, accurate 

models consider much more variables and hence further unknown parameters which should be well 

extracted. For this reason, the utilization of meta-heuristic algorithms has gained considerable 

attention due to their ability to tackle complex optimization problems. Among these algorithms, 

the differential evolution (DE) metaheuristic algorithm has proven to be effective in various 

applications. 

The DE algorithm is a population-based optimization technique inspired by natural evolution 

processes. It utilizes a set of candidate solutions and iteratively evolves them through mutation, 

crossover, and selection operations to search for the optimal solution. By incorporating DE into the 

prediction of gas flow rates, significant improvements can be achieved in terms of accuracy and 

efficiency. 

The primary objective of this study is to leverage the power of the DE metaheuristic algorithm 

for predicting gas flow rates through a wellhead choke from condensate reservoirs. The algorithm’s 

versatility allows it to explore the parameter space effectively and identify the most suitable settings 

for optimizing gas flow predictions. This is by considering several variants which depend on the 

optimal model selection. 

Through rigorous experimentation and analysis, this study aims to validate the effectiveness of 

the DE metaheuristic algorithm in predicting gas flow rates from condensate reservoirs through a 

wellhead choke. The obtained results will be compared with existing prediction models and 

empirical data to evaluate the accuracy and reliability of the proposed approach. Ultimately, the 

successful implementation of the DE algorithm in this context would contribute to enhanced 

decision-making processes, improved production planning, and increased operational efficiency in 

the petroleum industry. 
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CHAPTER I: GAS FLOW THROUGH WELLHEAD CHOKES MODELING 

I.1 Introduction: 

Operating production wells and understanding multi-phase flow through wellhead chokes are 

crucial aspects of the oil and gas industry. Production wells are drilled to extract hydrocarbon 

resources from underground reservoirs. The efficient and effective operation of these wells is 

essential for maximizing oil and gas production. In order to control, organize and anticipate 

production we need understanding Multi-phase flow through wellhead chokes refers to the flow of 

multiple phases, such as gas, oil, and water, through constriction devices known as chokes located 

at the wellhead. This flow presents unique challenges due to the complex interactions between 

different phases and their impact on production. So that’s Wellhead equipment which is a crucial 

component of the production process in the oil and gas industry. It refers to the collection of 

equipment installed at the top of a wellbore to control and facilitate the extraction of hydrocarbon 

resources from underground reservoirs. Wellhead equipment serves several essential functions, 

including providing a safe and controlled environment for production operations. 

In order to efficiently predicting and understanding the fluid mixtures behavior during oil and 

gas production, an adequate modeling is of crucial importance. Several models could be considered 

for these purposes, which will be described in this chapter. 

I.2 Gas condensate reservoirs: 

Gas condensate reservoirs typically contain a mixture of hydrocarbons, including natural gas, 

condensate, and sometimes oil. The composition of the gas and condensate varies depending on 

the specific reservoir and can include a range of hydrocarbons such as methane, ethane, propane, 

butane, and pentane, as well as heavier components like hexane and heptane. Gas condensate 

reservoir is a particular kind of reservoir which has a behavior mediating between that of gas and 

volatile oil reservoirs. It contains low density liquid hydrocarbons which present as gaseous 

components in the raw natural gas and condense out of gas when the pressure is lowered below the 

dew point pressure of hydrocarbons. Due to changes in temperature and pressure, these types of 

reservoir are bound to instability of flow regime, fluctuation and phase change which may lead to 

liquid holdup and phase separation. Therefore, multiphase flow is common in gas condensate 

reservoirs [1].



CHAPTER I  GAS FLOW THROUGH WELLHEAD CHOKES MODELING 

3 
 

 

The flow rate of well is the most significant parameter for characterization of a reservoir and 

estimation of its behavior. Wellhead chokes (a configuration which an elbow is installed exactly 

upstream of chokes) normally are used in wells as controlling agents to adjust the flow rate and 

sustain adequate back pressure to avoid sand issues and water/gas coning. Therefore, estimation of 

choke performance by implementation and optimization of a relation between size of chokes and 

wellhead flow rates is only possible through a precise modeling and selection of an optimum choke 

size. Based on flow regime, the fluid flow through the choke can be characterized as either critical 

or sub-critical (sonic or subsonic, respectively).When Mach number is equal or more than unity 

(When the flow velocity is equal or greater than sonic velocity), any pressure disturbance wave 

from downstream cannot spread through upstream and mass flow rate reaches a maximum amount 

which only depends upon upstream conditions. This kind of flow is known as critical flow. 

Accordingly, to avoid any perturbation of this is essentially what is occurring in the reservoir of a 

gas condensate system but under isothermal conditions. As we pass through the dew point pressure, 

the heaviest hydrocarbon components in the system begin to drop out and form a second, liquid 

hydrocarbon phase in the two-phase region of the phase envelope inside the reservoir. 

We were to follow the isothermal Path A-A’-A’’, then we would go below through the dew-

point pressure, increase the volume percentage of the liquid hydrocarbon phase until it reached a 

maximum at Point A’ with further reductions in pressure resulting in a lower volume percentage 

of the liquid hydrocarbon phase. We could also continue the isothermal pressure reduction, reenter 

the single-phase gas region, and stop at Point A’’. The analogy for our multi-component system is 

that if we start at the point of maximum liquid volume (Point A’ in Figure (I.1) and reduced the 

pressure isothermally, then we would get the conventional behavior for a pure system along Path 

A’-A’’. Conversely, if we were to start at Point A’ and increased the pressure isothermally to Point 

A in the single-phase gas region, then we would get the behavior opposite of that for a pure system 

along Path A’-A. This behavior, opposite to a pure system, is referred to as retrograde behavior. 

This behavior occurs in the green shaded region in Figure (I.1). This region, formed by connecting 

all of the points of maximum temperature on the quality lines, is referred to as the retrograde region 

of the fluid. 
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I.3 Flow Regime and well head: 

The flow through chokes is classified as subcritical or critical(choked) flow. Critical flow 

occurs when the flow velocity for the fluid reaches its sonic velocity. Pressure waves, caused by 

the change in pressure, propagate through the flow with the speed of sound. But if the fluid flows 

faster than the waves can travel, the waves are unable to move upstream, or have any effect on the 

flow upstream the restriction.  

 

Figure(I.1): Gas condensate reservoires. 

 

Once this border is reached, the flow is independent of downstream pressure, and the flow is 

critical. Any further reduction in the down-stream pressure will not increase the flow rate [2]. 

Critical flow is often desired across a wellhead choke because the well will not be influenced 

by the conditions in the downstream production pipeline (e.g., pressure fluctuations). This will 

reduce the risk of damaging the well and reservoir for an incompressible fluid, the sonic velocity 

is infinite, and critical flow cannot occur in practice. Many liquids are almost in compressible, or 

treated as that in modelling, and therefore critical flow in liquid-only flow is rare. However, if the 

downstream pressure is reduced below the bubble point; the liquid will start to vaporize, and critical 

flow is possible(Munson et al., 1998) [3]. 
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A petroleum engineer’s primary responsibility is to increase production lifetime by preventing 

extra production, controlling production through chokes, and increasing production or reservoir 

lifetime by selecting an appropriate choke on production wells. A wellhead choke is a tool that is 

installed through an inflow pipe path to resist pressure, limit and control production, prevent water 

and gas coning, and control pressure in order to keep the wellhead equipment in good working 

order [4]. The flow rate through the choke is determined by the wellhead pressure, choke diameter, 

before choke temperature, and water production rate, which includes free water, sediment water, 

emulsion, and gas oil ratio (Eq I.1).   

 
𝑃𝑑

𝑃𝑢𝑝
= (

2

𝐾+1
)

𝑘

𝑘−1
 (Eq I.1).   

The passing flow rate is primarily two-phase, and it can produce two types of flow when it passes 

through flow chokes: critical or sonic flow and sub-critical or sub-sonic flow.  

 

Figure(I.2): Diagram determining critical and subcritical flow in wellhead choke[6]. 

Figure (I.2) shows that if the pressure rate after the choke (P2) to before the choke (P1) is less 

than 0.588, the flow is critical; otherwise, it is subcritical [5]. The flow in Iran oil wells of southern 

crude oil fields is critical, while some condensate gas wells are subcritical. Wellhead chokes which 

are installed through wells flow, are divided into two main groups that are: 

o Positive or fixed choke. 

o Adjustable or variable choke. 

a) Positive or fixed chokes: 

They are used when the production rate is constant for a long time and the production sand or 

fluid is corrosive Figure(I.3). This choke has the following properties: 
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 • Constant bore diameter. 

 • Choke is Ceramic, Tangestan carbide or iron type. 

• Choke length can be from 2 to 6 inches. 

 

Figure(I.3): Image of fixed or positive wellhead chokes with 32/64 in or ½ in apertures [7]. 

b) An adjustable or variable choke: 

It is installed to adjust the flow rate on the wall, and by rotating it, it varies the entry pulley. In 

wells which have sand production problem, gate valve is not used to decrease or increase the flow, 

because in addition to sever erosion and corrosion, sand causes blocking of some part of well 

column and as a result, it results in a wellhead flow pressure drop and also wellhead equipment 

erosion. This kind of choke is classified into two groups: Type 1, is similar to a needle valve and 

has a handle, by which turning the flow can be decreased or increased. The valve handle has 

gradation and it shows the equipment diameter Figure (I.4). Type 2 has two disks, each with two 

pores, one of which is constant while the other two rotate to adjust the appropriate flow rate Figure 

(I.5) adapted from [8]. 

 

Figure(I.4): An illustration of the type 1 chokes and An illustration of the type 2 chokes. 
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Figure(I.5): The optimized offshore well test process included calculating bottom hole pressure in 

real time for better predicting reservoir and well behavior. 

  

I.4 Theory of two-phase fluid flow through wellhead chokes: 

I.4.1 The principles of two-phase fluid flow are as follows: 

(A) When a fluid flows through a flow pipeline, the fluid pressure is initially above the bubble 

point, i.e., the gas remains dissolved in the liquid. 

(B) When the fluid is at the bubble point, gas bubbles begin to emerge from the liquid and it 

becomes a two- phase fluid. 

(C) When the fluid pressure drops below the bubble point pressure, the fluid moves in a pipeline 

as two-phase flow. 

Key reasons for involving wellhead chokes in a production flow stream are: 

(1) to create a pressure drop in the flow stream to prevent damage to well equipment; 

(2) to facilitate separation of gas from oil in separators; 

(3) to create a back pressure on the reservoir to assist in maintaining reservoir pressure. 

Although biphasic flow-meters were developed decades ago, their high-cost and ongoing calibration 

requirements to accurately calculate of two-phase fluid flow have limited their uptake. Calculating the exact 
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GLR value inside the well reducer itself, while a well is online, is costly and requires the installation of 

accurate sensors. In practice, estimated GLR data are typically used to calculate fluid flow rates through 

wellhead chokes [9]. 

 

Figure(I.6): Image of fixed or positive wellhead chokes with 32/64 in or ½ in apertures.  

I.5 Multi-phase flow through wellhead chokes Modeling: 

I.5.1 Literature review: 

Multi-phase flow models have been extensively studied and developed over the years to 

understand the complex behavior of fluids through wellhead chokes. The early contributions 

include the seminal work of Gilbert in 1954 [10], followed by significant advancements by authors 

such as Dukler et al. (1964), Hagedorn and Brown (1965) [11], Beggs and Brill (1973) [12]. In the 

following years, Taitel and Duckler (1976)[13], Ishii and Zuber (1979),and Chen and Golan (1979), 

Orkiszewski (1983), Yen and Dukler (1986), Zhang et al. (1998) [14], and Abdul-Majeed and 

Sarica (2004) [15]presented their respective models, contributing to the evolving understanding of 

multi-phase flow phenomena. Notable models in subsequent years include those by Oliemans et 

al. (2008)[16], Other influential models were developed by and Hidrobo et al. (2012)[17], and 

Guo,B (2013), Leal model (2013) [22] , Oliemans et al. Model (2017) [18], Aider A. Jumaah (2019) 

[23], These models have provided valuable insights into the dynamics of multi-phase flow through 

wellhead chokes, facilitating more accurate predictions and improved optimization strategies in the 

oil and gas industry. 
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I.5.2 Models: 

a) Gilbert model: 

The first investigation on gas-liquid two-phase flow through restrictions was performed by 

Tangren. He presented an analysis of the behavior of an expanding gas-liquid system (1954). He 

showed that when gas bubbles are added to an incompressible fluid, above a critical flow velocity, 

the medium becomes incapable of transmitting pressure change upstream against the flow. Several 

empirical choke flow models have been developed in the past half-century. They generally take the 

following form for sonic flow [24]: 

 Pup =
aGLRbQ

Dc
 (Eq I.2)   

a, b and c are empirical unknown parameters. related to fluid properties.  

On the basis of the production data from Ten Section Field in California, Gilbert found the 

values for a, b and c to be 435, 0.546 and 1.89,respectively .Other values for the constants were 

proposed different researchers including Baxendell, Ros, and Achong, more than 20 models were 

developed on the basis of this model [25]. 

b) Seidi and Sayahi: 

The authors have considered that the passing flow rate through wellhead chokes is a function of 

wellhead pressure, choke diameter, before choke temperature, and water production rate. A new 

model for the estimation of the oil rate passing through wellhead chokes has been proposed (2015). 

In this study, 180 tested data for 5 wells from a heavy crude oil field were used to develop a new 

model for estimating oil rate passing through wellhead chokes [1]. By considering the Gilbert 

equation, a New Model is formed as equation (Eq.I.3): 

 

 Qg =  aLGRbScΔPd   (Eq I.3) 

a, b, c and d: Empirical unknown parameters.  

The obtained general formula is as follows: 

 Qg =
0.015S1.27×ΔP0.56

LGR0.4
 (Eq I.4) 



CHAPTER I  GAS FLOW THROUGH WELLHEAD CHOKES MODELING 

10 
 

The optimum solutions (the best empirical unknown parameters.) achieved for the proposed 

model and a comparison between measured and predicted gas flow rates of all data pointes The 

obtained solutions were : 0.0164, 0.3931, 1.2624, and 0.556 for a, b, c, and d, respectively and 

the new equation turns into the following form: 

 

 Qg =
0.0164S1.2624×ΔP0.556

LGR0.3931
  (Eq I.5) 

 

Table(I.1): Different parameter ranges of south Iranian field data. 

Parameters 
S 

(1/64inch) 

LGR 

(bbl/MMscf) 

Qg 

(MMscf/D) 
Pu (psia) Pd (psia ) 

DP 

(psia) 
T (F) 

Minimum 40 0.688 11.3 1131 824.84 14.5 109 

Maximum 192 32.215 113 4452 3045.82 1407 211 

  

Table(I.2): The sub-critical data gathered from South Iranian gas-condensate wells [1]. 

Number Pu(psia) Pd(psia) Qg (MMscf/D) S(1/64inch) LGR(bbl/MMscf) 

1 1501.978 824.83258 11.3008 40 12.4624466 

2 1518.076 1484.13896 12.7134 40 9.56457596 

3 2422 1740 13.1 40 16.1 

4 2103 1726 15.1 40 16.1 

5 1827 1638 15.641 40 4.81 

6 1406.5 1319.5 19.811715 128 19.5209967 

7 1450 1334 23.696365 128 32.214988 

8 2741 1798 26.84 40 13.536 

9 1827.57 1653.534 27.73 64 5.556 

10 2059 2044.5 28.1637125 160 6.14448308 

11 1319.5 1290.5 28.711095 144 4.4527821 

12 1334 1290.5 28.852355 144 4.80900467 

13 1305 1290.5 28.852355 144 4.63089339 

14 2016.216 1900.45559 31.7832001 64 5.428 

15 1636.156 1195.5025 32.4894934 64 27.491349 

16 1493.5 1435.5 33.019525 128 14.9969701 

17 3901.499 2944.301 38.72 40 4.374 

18 1957.5 1885 38.881815 160 7.35599604 

19 1232.5 1218 39.5528 192 2.38847232 
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20 2102.5 2030 44.14375 160 6.23656662 

21 1247 1232.5 44.4969 192 1.2200623 

22 1972 1899.5 45.238515 144 7.00867903 

23 2073.5 2001 45.521035 160 6.43498259 

24 1783.5 1566 45.55635 128 14.8936656 

25 1160 1131 45.9095 192 2.13021096 

26 1605.094 902.85872 46.5564 40 1.53710038 

27 1914 1827 47.67525 144 5.58200765 

28 2044.5 2001 50.041355 160 5.70811044 

29 1290.5 1276 52.2662 192 1.54066261 

30 1131 1102 52.9725 192 1.97632281 

31 1145.5 1131 54.3851 192 2.44012459 

32 1957.5 1870.5 56.398055 160 7.32749823 

33 1885 1566 56.85715 128 13.2710718 

34 1986.5 1899.5 56.963095 160 5.64505904 

35 2451 1769 57.1043 64 8.193 

36 2393 1682 57.5674 64 8.193 

37 2393.314 1726.41031 58.2692001 64 8.19319639 

38 2480.337 1755.41786 58.2692001 64 8.19319639 

39 2407.818 1697.40276 58.2692001 64 8.19319639 

40 1624 1551.5 58.5769905 176 5.55555556 

41 1348.5 1290.5 60.0355 128 1.92003964 

42 1870.5 1537 63.567 128 14.6211553 

43 1334 1290.5 63.743575 192 2.12842985 

44 1392 1348.5 63.743575 128 1.24677899 

45 1174.5 1145.5 64.62645 192 1.92360187 

46 1841.5 1667.5 66.74535 128 5.04233045 

47 1841.5 1667.5 67.063185 128 5.44308084 

48 3785.475 2987.81 77.5 64 4.374 

49 1682 1595 82.531155 192 5.18481948 

50 1624 1508 83.738928 176 5.58659218 

51 1798 1624 83.873125 192 8.50659493 

52 3350.385 2016.109 84.4 64 6.3 

53 4452.613 3045.822 86.76 64 4.374 

54 1783.5 1653 87.5970918 192 6.31938836 

55 1740 1595 88.57002 176 5.12052131 

56 1595 1508 89.91199 192 4.23904856 

57 1595 1566 90.2474825 192 0.688222 

58 1493.5 1406.5 95.27987 192 3.41973666 

59 1566 1464.5 96.2863475 176 3.87570154 

60 1653 1479 101.389365 144 3.96155118 
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61 1653 1479 101.654228 192 5.03894634 

62 1537 1435.5 102.06035 176 3.52660343 

63 1653 1493.5 103.8261 176 4.19808297 

64 1653 1522.5 104.841406 192 5.68174997 

65 1972 1696.5 109.702516 144 5.56669008 

66 2175 1899.5 111.295223 144 5.41315815 

67 1653 1435.5 113.008 160 5.71381 

 

c) Kargapour Model: 

Mohammad Ali Karagpur in his work, by using basic concepts of fluid mechanics, it is shown 

that the rate of two-phase flow through a choke generally depends on the pressure drop across the 

choke besides other factors by deriving a global choke formula (2019). Based on this finding, a 

general Gilbert-type choke formula is derived which includes differential pressure across the 

choke. This new choke formula is validated using a field data bank including 399 data points this 

module Semi analytical [21].In this module for two cases: 

Subsonic single‑phase gas flow by adopting the concept of gas mass flow from basic concepts 

of fluid mechanics (Streeter 1962; White 2011) and, employing the average values for some gas 

specifications and the concept of discharge coefficient from orifice flow metering, the following 

formula is derived for subsonic single-phase gas flow. 

qscfd = 65554 × D
2Pup√(

Pd

Pup
)
1.5625

[1 − (
Pd

Pup
)
0.21875

]  (Eq I.6) 

Choke for two‑phase (gas and liquid) it is assumed that part of area of choke is occupied by 

gas stream and liquid flows in the rest. In mathematical form At = Ag + Al , it is written: where ‘At 

’, ‘Ag’, and ‘Al’ are total cross-sectional area of choke, assumed area available for gas flow, and 

assumed area available for liquid flow, respectively. By utilizing Bernoulli’s equation for liquid 

flow and Eq(4) [22]. 

(One phase) for gas flow and substituting them in Eq. (two phase), the following equation is 

generated as a general form of choke formula for estimating the liquid flow rate in two-phase fluid 

flow: 
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        QBPD = PupD
2 ×

{
 
 

 
 

√Pup

552×
√
(1−

Pd
Pup

)

SpGr

+
GOR

65554×√(
Pd
Pup

)
1.5625

[1−(
Pd
Pup

)
0.21875

]

}
 
 

 
 
−1

 (Eq I.7) 

d) The Leal model: 

The equation expresses the gas flow rate from the wellhead choke in terms of choke diameter, 

gas specific gravity, flowing fluid temperature, upstream pressure and downstream pressure(2013). 

The Leal equation is used as the objective function for analysis is presented here as equation: 

Qg = β1D
β2 (

Pup

14.7
)√(

1

γgT
) β3 [(

Pd

Pup
)
β4

− (
Pd

Pup
)
β5

] (Eq I.8) 

to  are unknown parameters. 

Where, Leal presented values ideal of constants as follows [22]:  

 = 0.00149228  = 2.118654173  = 1.586085251  = 0.739034 = 1.369516866 

e) Aider A. Jumaah: 

Gilbert correlation has been modified to determine the performance of multiphase fluid-flow 

through the wellhead and choke. The modification present two sets of new correlations based on 

statistical analysis of 33 production tests data from 12 wells produce from Tertiary Reservoir in 

Khabaz oil field, first correlation is modified of Gilbert equation to predict liquid flow rates as a 

function of wellhead flowing pressure, gas-liquid ratio and choke size, the second correlation takes 

the effect of water cut and sediment (BS & W) as an effective parameter to minimize error.                  

A comparison between the results of each correlation with measured date has been made to select 

the best correlation to predict flow rate in newly drilled wells (2019). The oil flow rates predicted 

by the new correlations show excellent agreement with the measured rates and the second modified 

Gilbert correlation are found to be closest to all ranges of flow rate variables with an average error 

of 10 % and R2=0.9493 [23]. 

Area of study: 

The Khabaz oil field is multi-pay zones Carbonate oil fields like most of the carbonate oil fields 

in the north of Iraqi. It is located in North West of Kirkuk city and far about 12 km from Kirkuk 

city center as shown in Figure (I.7).  
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Figure(I.7): Khabaz oil filed location [23]. 

 

The Khabaz oil field consists of three main hydrocarbon reservoirs.  

1. Tertiary Reservoir. 

2. Cretaceous Upper Qamchuqa (Mauddud) Reservoir. 

3. Cretaceous Lower Qamchuqa (Shuaiba) Reservoir. 

 

Table(I.3): Production Test Data [21]. 

No DATE 
Chock size 

in 

Pressure 

psi 
Q bbl/d 

GOR 

scf/bbl 
WT % flow path 

1 15/07/2000 0.438 446.5 1000 1112 1 Tubing 

2 05/05/2002 0.375 445 850 873 0.5 Tubing 

3 22/07/2000 0.375 1102 1300 913 1.3 Tubing 

4 01/05/2002 0.375 1233 1150 1290 2.3 Tubing 

5 03/09/2000 0.250 1711 400 2595 0 Tubing 

6 16/10/2001 0.313 1377.5 450 1976 0 Tubing 

7 17/08/2002 0.250 1850 400 2500 0 Tubing 

10 15/10/2001 0.375 1116.5 1600 927 4.5 Tubing 

11 04/05/2002 0.375 1130 1250 949 4.7 Tubing 

12 18/07/2000 0.375 1203.5 1200 1174 0.2 Tubing 

13 21/07/2000 0.313 1232.5 850 1221 0.3 Tubing 

14 05/09/2001 0.313 1261.5 1100 1078 0.9 Tubing 

15 20/10/2001 0.250 1305 750 989 0.8 Tubing 

16 10/10/2001 0.563 1102 2600 1027 1.2 Tub. 

17 07/07/2000 0.250 1450 500 1780 0 Tubing 

18 10/05/2002 0.250 1855 450 1976 0 Tubing 
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19 16/07/2000 0.500 1160 2250 1121 0 Tubing 

20 20/07/2000 0.438 1189 1700 1047 0 Tubing 

22 21/05/2002 0.438 1090 1700 1134 0 Tubing 

23 04/08/2002 0.500 1190 2200 1079 0 Tubing 

24 27/10/2001 0.375 1276 1100 1483 0 Tubing 

25 08/05/2002 0.375 1275 1000 1483 0 Tubing 

26 29/06/2000 0.656 783 2900 921 0 Tubing 

27 01/07/2000 0.563 899 2150 966 0 Tubing 

28 03/07/2000 0.500 928 1550 957 0 Tubing 

29 23/10/2001 0.250 1363 650 1369 0 Tubing 

30 24/08/2002 0.250 1025 700 847 0 Tubing 

31 23/07/2000 0.297 1232.5 950 1249 0.8 Tubing 

32 17/09/2001 0.297 1322 1250 1068 0 Tubing 

33 22/10/2001 0.266 1421 850 1134 0 Tubing 

 

The first correlation for Khabaz field is Gilbert modified equation based on regression analysis 

of equation (Eq.I.9) as flowing:  

 

 Q = PWF
Da

c∗GORb
 (Eq I.9) 

a, b and c : Empirical unknown parameters. 

 

The second correlation has been developed considering a parameter which has not been covered 

in the previous correlations; water cut (Wct) measured volume percentage of the production stream, 

in addition to other parameters which had been added to the correlation, in order to reduce error in 

the field condition to a minimum, as represented in the following form. 

 

 Q = PWF
Da

c∗GORb
∗ (1 −

Wct

100
) d (Eq I.10) 

When they use 33 test data of production are gathered from 12 wells in Table (I.1): 

- The first correlation: 

 a = 1.7634, b = 0.9058, c = 0.000275  

- The second correlation: 

 a = 1.733, b = 1.159, c =0.0000486 and d= 1.3936 
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I.6 Conclusion: 

In this chapter, the Multi-phase flow through wellhead chokes modeling has been discussed. It 

plays a crucial role in accurately predicting and understanding the behavior of fluid mixtures during 

oil and gas production. These models consider factors such as fluid properties, flow rates, choke 

geometry, and environmental conditions to simulate flow patterns and pressure drops. By utilizing 

advanced mathematical and computational techniques, these models enable optimized well 

production, improved safety measures, and informed decision-making for production operations. 

However, the need for an appropriate parameter estimation of the models’ coefficients is of high 

necessary. Therefore, the selection of an accurate optimizer will enhance much more the modeling 

process. The next chapter will discuss the optimization techniques which could be exploited to 

extract efficiently the model unknown parameters.
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CHAPTER II: OPTIMIZATION METHOD 

II.1 Introduction: 

Differential Evolution (DE) is a simple and effective evolutionary algorithm used to solve global 

optimization problems in a continuous domain [26]. It was proposed by Price and Storn in 1995 in 

a series of papers [27] and since then, it has attracted the interest of researchers and practitioners. 

The important average increase in interest in DE is noticeable from 2004. In the last few years, the 

number of citations stabilized at a level of over 1000 papers a year, which shows the importance 

of this meta-heuristic technique. In order to identify the unknown parameters of the selected choke 

rate flow rate model, DE algorithm will be described and its several variants will be illustrated . 

II.2 Basic concept of DE algorithms: 

The algorithmic framework of the basic DE consists of four phases, namely, initialization, 

mutation, crossover and selection, as shown in Fig.II.4 Initialization is a one-time process, while 

the remaining three mechanisms are repeated in the search process of DE in a D-dimensional 

solution space until the termination criteria are satisfied. 

a) Initialization : 

Initialization is the first process that occurs in DE to search for a global optimum solution located 

in a D-dimensional of real parameter space. The initial solutions for a given multidimensional 

optimization problem consist of NP real-valued parameter vectors, where NP represents the 

population size of DE. During the t-th iteration, each i-th individual solution of DE can be 

represented as a D-dimensional vector as (Eq.II.1)  

xi
t = (xi,1 , xi,1  , xi,1 , xi,1 , …………… . . xi,D ) (Eq.II.1)  

where i = 1,2,...,NP.  is the position of the i-th element in iteration t. The initial population 

condition starts at t (iteration) = 0. The initial candidate solutions can be generated during the 

initialization stage on the basis of the lower and upper limit boundaries of the solution search space 

represented by (Eq.II.2) and (Eq.II.3), respectively, as follows
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    xmin = (xmin,1 , xmin,2  , xmin,3 , xmin,4 , …………… . . xmin,D ) (Eq.II.2) 

               𝑥𝑚𝑎𝑥 = (𝑥𝑚𝑎𝑥,1 , 𝑥𝑚𝑎𝑥,2  , 𝑥𝑚𝑎𝑥,3 , 𝑥𝑚𝑎𝑥,4 , …………… . . 𝑥𝑚𝑎𝑥,𝐷 )     (Eq.II.3) 

For each i-th DE solution, the j-th dimensional component can be initialized by randomly 

generating a value in between the upper limit of and lower limit of  as shown in 

(Eq.II.4): 

     𝑋ⅈ⋅𝑗
(0) = 𝑋𝑚ⅈ𝑛⋅𝑗 +  𝑟𝑎𝑛𝑑 (𝑋𝑚𝑎𝑥⋅𝑗 − 𝑋𝑚ⅈ𝑛⋅𝑗) (Eq.II.4) 

while,  is a uniform distribution that can generate any real value between 0 and 1. 

b) Mutation : 

In biological terms, mutation is defined as an instant change of characteristic observed from a 

chromosome gene. In the context of evolutionary computation, mutation is a random perturbation 

process performed on selected decision variables. In DE philosophy, a mutant or donor vector 

denoted as  is constructed from a mutation process on the basis of a given target vector of . 

Generally, the DE mutation strategy can be represented as the format ‘DE/*/n’ where n refers to 

the number of difference vectors involved and * represents the target vector considered during the 

mutation process. The search mechanisms of five commonly used mutation strategies in DE are 

represented as follows: 

Strategy1 : 

     𝑌ⅈ 
𝑡 = 𝑋𝑟1

𝑡 + 𝐹(𝑋𝑟2
𝑡 − 𝑋𝑟3

𝑡 )        (Eq.II.5) 

Strategy2 : 

     𝑌ⅈ 
𝑡 = 𝑋𝑟1

𝑡 + 𝐹(𝑋𝑟2
𝑡 − 𝑋𝑟3

𝑡 ) + 𝐹(𝑋𝑟4
𝑡 − 𝑋𝑟5

𝑡 )           (Eq.II.6) 

Strategy3 : 

     𝑌ⅈ 
𝑡 = 𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝐹(𝑋𝑟1
𝑡 − 𝑋𝑟2

𝑡 )          (Eq.II.7) 

Strategy4 : 

    𝑌ⅈ 
𝑡 = 𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝐹(𝑋𝑟1
𝑡 − 𝑋𝑟2

𝑡 )+𝐹(𝑋𝑟5
𝑡 − 𝑋𝑟4

𝑡 )            (Eq.II.8) 
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Strategy5 : 

    𝑌ⅈ 
𝑡 = 𝑋ⅈ

𝑡 + 𝐹(𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋ⅈ

𝑡)+ 𝐹(𝑋𝑟1
𝑡 − 𝑋𝑟2

𝑡 )             (Eq.II.9) 

 

Figure(II.1): Mutation scheme of DE algorithm. 

  

while,  is the population index of the DE solution selected as the base vector, , ,  and  are 

the population indices of DE solutions randomly selected to construct the mutant vector. , , 

, ,  [1, NP] and       imply that the best individual solution in the 

DE population is selected as the target vector. F is a scaling factor used to control the mutation 

process and has a value in the range between [0, 1]. 

Choosing the appropriate value for F is crucial to achieve proper balancing of exploration and 

exploitation searches of the algorithm to prevent undesirable drawbacks such as premature 

convergence or slow convergence speed, when the Figure (II.1) shows the mechanism of mutation 

vector. 

c) Crossover : 

In this phase, both the mutant and target vectors cross their components together in a 

probabilistic manner to produce a trial vector (offspring). This crossover process allows the target 

solution to inherit the attributes of the donor solution or mutant. Two commonly used crossover 

operators are known as uniform crossover and exponential crossover. The uniform crossover 

scheme is controlled  by a crossover rate (CR) that has a value between [0,1]. The trial solution 

generated by uniform crossover can be defined in (10) as follows: 
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   𝑍ⅈ 
𝑡  = {

𝑋ⅈ⋅𝑗
𝑡    if   𝑟𝑎𝑛𝑑 ⅈ⋅𝑗[0,1]   ≤  𝐶𝑅  𝑜𝑟 𝑗 = 𝑘

𝑋ⅈ⋅𝑗
𝑡               Otherwise

     (Eq.II.10) 

where,  is a random number lies in the range [0, 1] and k } is randomly 

selected dimension index to ensure at least one dimensional component of trial solution  is 

inherited from the donor vector .  

For exponential crossover, an integer n } is randomly chosen as the starting point 

of the dimension index for a target vector to perform crossover with the mutant or donor vector. 

Another integer L }denotes the number of dimensional components to be inherited 

from the donor or mutant vector to form the trial solution. Referring to the values of n and L, the 

trial solution ( ) can be obtained from (Eq.II.11) as follows: 

                        𝑍ⅈ 
𝑡    = {

𝑦ⅈ⋅𝑗
𝑡  i𝑓𝑗 = ⟨𝑛⟩𝐷 , ⟨ 𝑛 + 1⟩𝐷 , . . . . . . . . , ⟨𝑛 + 𝐿 − 1 ⟩𝐷

𝑋ⅈ⋅𝑗
𝑡                                               Otherwise

  (Eq.II.11) 

while :  indicates a modulus function of D. Exponential crossover reportedly performs better 

on certain types of optimization problems such as those with the presence of linkages between 

neighboring decision variables. Figure (II.2) illustrates the mechanism of crossover: 

 

Figure(II.2): Crossover scheme of DE algorithm. 

  

d) Selection : 

The selection process enables DE to determine the survival of a target (parent) or a trial 

(offspring) solution in the next iteration ( ) of the search process while retaining the population 
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size of DE in every generation. Once the new population is formed in the next generation, the 

iterative processes of mutation, crossover and selection are performed continuously until the 

termination criteria are satisfied. Two types of selection exist, namely, local and global . The 

selection process of DE is mathematically described as follows and in Fig.II.3: 

  𝑋ⅈ 
𝑡+1  = {

𝑍ⅈ⋅
𝑡  i𝑓  𝑓(𝑍ⅈ 

𝑡) ≤ 𝑓(𝑋ⅈ
𝑡 )

𝑋ⅈ⋅𝑗
𝑡          Otherwise

                                  (Eq.II.12)                     

while f(.) is an operator used to determine the objective function or fitness value of an individual 

solution. If the latest trial vector of  produces a better objective function value, then the current 

target vector  will be replaced by  in the next iteration. The selection process of DE can be 

implemented through synchronous and asynchronous modes. The DE population can be updated 

simultaneously during the synchronous mode, whereas the asynchronous mode can be used to 

update the DE population individually. 

 

 

Figure(II.3): Selection scheme of DE algorithm. 
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Figure(II.4): Flowchart of DE algorithm. 

Pseudo-code of DE algorithm 

Step 1: Set the control parameters: scale factor F, crossover rate Cr, the population size NP 

and problem dimension D 

Step 2: Randomly initialize a population of NP. The population at generation G is 𝒑𝑮 =

{𝑿𝟏,𝑮 , 𝑿𝟏,𝑮, . . . . . , 𝑿𝑵𝑷,𝑮}  

and individual, vector  𝑿𝒊,𝑮 = {𝑿𝟏,𝒊.𝑮 , 𝑿𝟐,𝒊.𝑮, . . . . . , 𝑿𝑫.𝒊,𝑮}; 

Each individual is in range [𝑿𝒎𝒊𝒏 , 𝑿𝒎𝒂𝒙 ] with i=[1, 2, 3,…, Np]; 

Step 3: For each generation G do 

For i= 1 to NP do 

Step 3.1: Mutation Step 

𝒗𝒊,𝑮 = 𝑿𝒊,𝑮
𝒓𝟏  + 𝑭 (𝑿𝒊,𝑮

𝒓𝟐  −  𝑿𝒊,𝑮
𝒓𝟑  ); 

Step 3.2: Crossover Step 

Generate a trial vector 

𝑼𝒊,𝑮 = {𝒖𝟏,𝒊.𝑮 , 𝒖𝟐,𝒊.𝑮, . . . . . , 𝒖𝑫.𝒊,𝑮}; 
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𝒖𝒋,𝒊.𝑮 = 𝒗𝒋,𝒊.𝑮 if (𝒓𝒂𝒏𝒅 𝒊.𝒋[𝟎. 𝟏]  ≤  𝑪𝒓 or j=𝒋𝒓𝒂𝒏𝒅); 

Where, 𝒋𝒓𝒂𝒏𝒅 = 𝒓𝒂𝒏𝒅 𝒊.𝒋[𝟎,𝑫 − 𝟏]; 

Step 3.3: Fitness evaluation Step 

𝒇𝑼𝒊=f(𝑼𝒊,𝑮 ); 

𝒇𝒙𝒊=f(𝑿𝒊,𝑮 ); 

Step 3.4: Selection Step 

If 𝒇𝑼𝒊 ≤ 𝒇𝒙𝒊 𝒕𝒉𝒆𝒏 𝑿𝒊.𝑮+𝟏 = 𝑼𝒊.𝑮; 

Else 𝑿𝒊.𝑮+𝟏 = 𝒙𝒊.𝑮; 

End for 

End for 

Step 4: If stopping criterion is not satisfied go to Step 3. 

 

Performance assessment: 

According to ‘‘No free lunch theorem for optimization’’, all algorithms that search for an 

extremum of a cost function perform exactly the same when averaged over all possible cost 

functions. So, for any search/optimization algorithm, any elevated performance over one class of 

problems is exactly paid for in performance over another class. Consequently, to prove the 

efficiency of a meta-heuristic algorithm over the other, many experiments are to be performed to 

reach a conclusion. Several performance metrics are available in the literature that can be used for 

evaluating the performance of a meta-heuristic algorithm like that of DE. 

Benchmark function: 

Problems: The first and foremost step to evaluate the performance of an optimization algorithm 

is to have an extensive set of test functions and benchmark problems based on properties like 

modality, scalability etc. Some standard benchmark problems include Ackley, Rosenbrock, 

Rastrigin, Sphere and many more. Selected benchmark functions along with their properties are 

provided in Appendix. 

 



CHAPTER II   OPTIMIZATION METHOD 

24 
 

Stopping criteria: 

Stopping criteria or quantifying ‘‘how and when’’ to stop the algorithm is another measure of 

evaluating the performance of an algorithm. Basically, stopping criteria provides an idea about the 

rate of convergence of an algorithm. Commonly used stopping criteria include (a) Number of runs, 

(b) Number of function evaluation (NFE) (c) Terminating the algorithm before it reaches maximum 

function evaluation if the error in the function value is less than an absolute function error value 

Fitness function 

It is a numerical value used to rank solutions. Since the meta-heuristic algorithms are stochastic 

in nature, the values are observed in the form of mean, median, best, worst, Root Mean Square 

Error (RMSE), Mean Square Error (MSE) and standard deviation of the fitness values. 

II.3 Differential Evolution variants: 

A large number of modifications to the original DE algorithm have been proposed so far. These 

include:  

1. Modification of the differential mutation operator, e.g. by choosing the individuals based on 

their mutual distances [28] or fitness values [29]; 

2. Modification of the differential Crossover operator and mechanism; 

3. Modification of the differential Selection operator mechanism; 

4. Enhancing DE with new mechanisms such as population archive [30], genotypic topology [31], 

opposition-based initialization [32],ect..  

5. Hybridization of DE  

1) Modification in mutation operator and strategy: 

a) Modifications in mutation scheme: 

Mutation is the most important step of DE as it produces a new individual in the population. A 

lot many researchers have worked towards this direction and have proposed modifications in 

mutation strategies. 
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Cui et al. (2016)[33] developed a DE algorithm named as MPADE in which the population is 

divided into three parts based on the fitness values and three mutation strategies are applied on 

that for exploitation or exploration and further an adaptive technique is designed for parameter 

adjustment. MPADE was tested on 55 benchmark problems and 15 real life problems.  

In Sun and Cai (2017) [34], a novel DE algorithm with neighborhood-dependent mutation 

operator is proposed called neighborhood-dependent DE (NDE) in which a pool of population 

topologies is used to define multiple neighborhood relationships for each individual and then the 

neighborhood relationships are adaptively selected for the functions being solved during the 

evolutionary process and applied on the benchmark functions from CEC2013. Choudhary et al. 

(2017) [35], proposed a mutation operator with stochastic mutation factor inspired by levy flight 

random walk. Yu et al. (2018) [36] proposed a mutation operator for constrained multi-objective 

problems. They showed that the proposed mechanism can produce well-distributed Pareto optimal 

front while satisfying the concerning constraints. 

b) Modifications in mutation strategy: 

Wang et al. [37] proposed a self-adaptive mutation DE algorithm based on PSO (DEPSO) to 

address the slow convergence and high tendency of premature convergence exhibited by the 

original DE. An improved DE/rand/1 mutation scheme was introduced based on elite archive 

strategy to promote the global exploration search of DEPSO. Meanwhile, the convergence speed 

of DEPSO was enhanced by incorporating another PSO-based mutation scheme. The performance 

of DEPSO was evaluated using a set of benchmark functions with different dimensional sizes (i.e. 

30 and 100) and a real-world optimization problem known as arrival flight scheduling. DEPSO 

successfully improved its convergence speed in solving simple optimization problems without 

sacrificing the population diversity. The robustness of their self-adaptive mutation strategy with a 

relatively simple structure in dealing with more complicated optimization problems remains 

questionable. Xiao et al presented a multi-strategy different dimensional mutation DE (MDMDE) 

to address the slow convergence speed and premature convergence of the conventional algorithm. 

A different dimensional mutation strategy was firstly proposed to enhance population diversity, 

where each dimensional component of the mutant vector is contributed by the base vector and 

difference vector from different dimensions, as described (Eq.II 13) 

                              𝑣ⅈ.𝑗
𝑔+1

= 𝑥𝑟3,𝑛
𝑔

+ 𝐹(𝑥𝑟1,𝑛
𝑔

 −  𝑥𝑟2,𝑛
𝑔
)                                          (Eq.II.13) 
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while, i≠ 𝑟1 ≠ 𝑟2 ≠ 𝑟3, j≠ n ≠ m, 𝑣ⅈ.𝑗
𝑔+1

  is the mutation vector,  𝑥𝑟3,𝑛
𝑔

is the base vector and a 

different vector 𝑥𝑟1,𝑛
𝑔

 −  𝑥𝑟2,𝑛
𝑔

 from distinct dimensions. A multi-strategy mutation scheme was 

also designed to enhance the convergence speed of MDMDE by dividing the overall optimization 

process into four generation units. The first- and third-generation units of MDMDE adopted a 

conventional mutation strategy of ‘DE/ best/10 that promoted exploitation search, whereas the new 

dimensional mutation strategy was utilized in the second and fourth-generation units under the 

presence of dynamic mutation factor to prevent the stagnation of population in local optima 

regions. A new crossover rate scheme varied based on the cosine function was also introduced to 

further enhance the robustness of MDMDE towards premature convergence. The proposed 

MDMDE was applied to solve eight simple test functions, and it outperformed its peer algorithms 

in terms of solution accuracy and convergence speed. Nevertheless, the performance evaluation of 

the current study might not be sufficient to fully explore the full potential of MDMDE due to the 

small number of test functions and peer algorithms used. Furthermore, the idea of different 

dimensional mutation strategy proposed in this study might not be applicable for most real-world 

optimization problems because the decision variables encoded in different dimensions tend to have 

different search ranges. 

Deng et al. [38] proposed a DE with two dynamic speciation-based mutation strategies (DSM-

DE) to solve single-objective optimization problems more effectively. Dynamic speciation 

technique was firstly performed in DSMDE to partition the population dynamically into multiple 

numbers of species with each species seed considered as centers. The best vector of each species 

was also considered base vectors of two proposed mutation vectors, i.e. ‘DE/seeds-to seeds’ and 

‘DE/seeds-to-rand’, with greater explorative and exploitative strengths, respectively. ‘DE/seeds-

to-seeds’ considered another two species seeds randomly chosen from other species to construct 

the difference vector, while two random individuals were randomly selected by ‘DE/seeds-to-rand’ 

to determine the difference vector as in (Eq.II.14) and (Eq.II.15). 

 𝑣⋅𝑖𝐽.𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   =   𝑋𝑖,𝑗⋅𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   +  𝐹ⅈ.𝑗.𝑔 (𝑋𝑖−𝑠𝑒𝑒𝑑𝑟1,𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  𝑋𝑖−𝑠𝑒𝑒𝑑𝑟2,𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                                          (Eq.II.14)   

 𝑣⋅𝑖𝐽.𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   =   𝑋𝑖,𝑠𝑒𝑒𝑑.𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   +  𝐹ⅈ.𝑗.𝑔 (𝑋𝑖−𝑟1,𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  −  𝑋𝑖.𝑟2,𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                                                  (Eq.II.15) 

while, 𝑋𝑖,𝑠𝑒𝑒𝑑.𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the seed of the target vector; 𝐹ⅈ.𝑗.𝑔is the mutation factor for each generation; 

seedr1, seedr2 are the indices of two randomly selected species seeds; and r1 and r2 are the indices 
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of two randomly chosen solutions from the DE population. The performance of DSMDE was 

compared with that of its peer algorithms by using CEC 2014, CEC 2015 and Lennard-Jones 

potential problems. Table.II.1 depicts the different enhancement in the mutation factor. 

Table(II.1): Summary of research on enhanced DE mutation scheme. 

Author Technique 

introduced 

Dimensional 

sizes 

Results Merits Limitations 

[39] An  adaptive 

DE  algorithm 

with  novel 

mutation  and 

crossover 

strategies 

30,  50  and 

100 

The proposed method 

is able to solve various 

large-scale 

optimization problems 

with improved search 

performance. 

More explorative mutation 

strategy was proposed to 

preserve population diversity. 

Biased parent selection 

strategy was incorporated 

into crossover operation to 

promote more exploitative 

behavior. These strategies 

reduced the probability of 

algorithm to suffer with the 

premature convergence in 

dealing with largescale 

optimization problem. 

The performance 

evaluations only 

focused on the 

constant group size 

over generations. 

[29] DE with 

ranking based 

mutation 

operators 

30, 50, 100 

and 200 

The performance of 

classical and advanced 

variants of DE algorithms 

was improved with the 

adoption of rankingbased 

mutation operators. 

Enhanced exploitative 

behavior through ranking-

based mutation operators. 

Simplicity in implementation 

without increasing the 

complexity of algorithm 

significantly. 

The proposed 

ranking-based 

mutation operators 

might not effective 

in improving the 

performance of DE 

variants in solving 

certain types of 

problems due to the 

excessive level of 

exploitation search 

introduced. 

[40] Self-adaptive 

DE with 

discrete 

mutation 

control 

parameters 

(DMPSADE) 

30, 50 and 

100 

The average optimization 

performance of the 

proposed DMPSADE 

algorithm was better than 

other DE variants in 

solving problems with 50 

and 100- dimensional 

sizes. 

The proposed method 

allowed each optimized 

variable to have different 

mutation control parameters 

and adaptive adjustment of 

mutation strategy via 

competition, leading to better 

preservation of population 

diversity. 

The proposed 

algorithm did not 

show significant 

performance gains 

over other DE 

variants in solving 

benchmark 

problems with 30-

dimensional size. 

Encoding strategy 

of the proposed 

method increased 

the complexity of 

algorithm, leading 

to longer execution 

time. 
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[41] Multipopulation 

DE with 

balanced 

ensemble of 

mutation 

strategies 

(mDE-bES) 

50, 100, 200, 

500 and 

1000 

The proposed method has 

an excellent performance 

in solving persistent 

global problems 

efficiently 

Multi-population strategy 

promoted exploitative 

strategy, whereas information 

sharing scheme among 

different subpopulations was 

adopted to reduce the drastic 

loss of population diversity 

over the generations. 

Different mutation strategies 

and control parameters were 

also assigned to each 

subpopulation to maximize 

the coverage of all individual 

solutions in search space. 

The performance of 

proposed algorithm 

was not thoroughly 

verified with the 

adaptive adjustment 

of control 

parameters. 

[42] Constraint 

consensus 

mutation DE 

10 and 30 The proposed algorithm 

was reported to have 

promising performance in 

solving constrained 

optimization problems in 

terms of fitness value and 

computational time. The 

computational time of 

proposed algorithm in 

solving 10 and 30 

dimensional problems 

were 33.7% and 10.6% 

faster than those of 

conventional DE, 

respectively. 

Faster computational time as 

compared to conventional DE 

in solving the constrained 

optimization problems. 

High tendency of 

the proposed 

algorithm to suffer 

with rapid loss of 

population diversity 

during the 

initialization stage, 

leading to the 

inferior 

performance when 

dealing with 

multimodal 

constrained 

problems. 

 

2) Modification in crossover operator and mechanism: 

a) Modified crossover operator : 

As we already know, the crossover operator constructs a new trial vector with the help of a 

mutant vector. Initially, exponential crossover was proposed in the original work of Storn (1996) 

[43] but later on it was mostly binomial variant that gained popularity among researchers (Storn 

and Price, 1997) [44]. An efficient comparative study of binomial and exponential crossover is 

given by Zaharie (2007) [45]. Zhao and Suganthan (2013)[46] showed the success of exponential 

crossover in the high dimensional optimization problem; Gong et al. (2014) [47] proposed a 

crossover rate repair technique for adaptive DE algorithms. In their scheme, the crossover rate in 

DE is repaired by its corresponding binary string, i.e. by using the average number of components 

taken from the mutant vector..Fister et al. (2016) [48] gave Epistatic arithmetic crossover based 

on the Cartesian graph product.. Fan and Zhang (2016) [49] proposed self-adaptive differential 

evolution with adaptive crossover strategies.. Guo and Yang (2015) proposed an eigenvector 
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based crossover operator and showed that this concept can be applied to any crossover strategy. 

Zou and Gao (2012) [50] modified crossover rate by using a linear increasing strategy.  

b) Modification in crossover mechanism: 

Hui et al. [51] proposed an ensemble and arithmetic recombination-based speciation DE 

(EARSDE) to solve the multimodal optimization problems. In contrast to the conventional 

approach, the arithmetic recombination-based neighborhood speciation technique incorporated 

into EARSDE can enhance exploration without having to suffer from any radius parameterization 

issues. The proposed EARSDE was reported to outperform 11 peer algorithms in terms of 

efficiency and robustness when evaluated using 29 multimodal benchmark functions. The 

proposed speciation technique adopted by EARSDE was proven to be more generalizable in 

practical situations for being able to identify the peaks and troughs of highly irregular fitness 

landscape regions. 

Fan et al. [52] presented a crossover adaptation strategy in self-adaptive differential evolution 

(CSA-SADE) to improve the performance of DE. Each CSA-SADE individual was envisioned to 

have a unique crossover strategy, mutation strategy and control parameters that can be changed 

adaptively by referring to its latest search progress. The proposed CASSADE was compared with 

eight advanced EAs, and it was proven competitive in solving the CEC 2005 benchmark functions 

and kinetic parameter estimation problem of mercury oxidation due to its enhanced exploitation 

capability. 

Deng et al. [53] proposed a new DE variant that consists of rotating crossover operator (RCO) 

with multi-angle searching strategy, aiming to reduce the likelihood of generating inferior 

offspring solutions by expending the search space tactically. Unlike conventional binomial 

crossover scheme, the trial vector of RCO can be generated diversely within the circle regions 

around the donor and target vectors by referring to the self-adaptive crossover parameter and 

rotation control vectors that followed the Levy distribution. A comparison analysis was conducted 

between JADE-RCO with other five enhanced DE variants on a group of test functions in CEC 

2013. Simulation results showed that DE-RCO outperformed the compared DE variants in terms 

of search accuracy and convergence rate, with performance gains in the range of 57% to 96%. 

DERCO implies the feasibility of developing different variants of multi-angle search strategy with 

an efficient parameter selection scheme to enhance the search performance of other DE variants. 

Table (II.2) illustrates the different enhancement in crossover factor. 
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Table(II.2): Summary of research on enhanced DE crossover scheme. 

Author Technique 

introduced 

Dimensional 

sizes 

Results Merits Limitations 

[54] Enhancing DE 

Utilising 

Eigenvector- 

Based 

Crossover 

Operator 

30 and 50 Significant 

performance 

improvement was 

observed from 

proposed algorithm in 

dealing with the 

unimodal functions. 

The proposed crossover 

operations allowed the 

offspring to be properly 

distributed corresponding 

to the fitness landscape, 

and to be directed 

towards the global 

optimum without 

affecting the search 

capabilities. 

Lacking of clear 

explanations 

between the effect 

of dimensionality 

with population 

size of proposed 

algorithm. 

[55] 

 

 

Hybrid 

linkage 

crossover for 

DE (HLX-

DE) 

10, 30, 50, 

100 and 200 

High performance of 

HLX for the DE 

algorithms in terms of 

convergence speed as 

compared to four DE 

variants, original DE 

algorithm and advanced 

DE variants. 

A group-wise binomial 

crossover and a group- 

wise orthogonal 

crossover were designed 

to guide the crossover 

process of DE more 

effectively, enabling the 

better balancing of 

exploration and 

exploitation strengths 

and the enhanced 

convergence rate of 

proposed algorithm. 

Slightly 

performance 

degradations were 

observed when the 

hybrid linkage 

crossover 

mechanism was 

used by different 

DE variants to 

solve the hybrid 

composite 

functions. 

[51] Ensemble and 

arithmetic 

recombination 

based 

speciation DE 

(EARSDE) 

1, 2, 3 and 

10 

. 

EARSDE outperformed 

the compared 

optimisation 

algorithms, in term of 

efficiency and 

robustness, in solving 

multimodal functions. 

Speciation was 

performed with the 

arithmetic recombination 

and ensemble strategy to 

improve the exploitative 

and explorative search 

behaviors of algorithm, 

respectively. 

 

The performance 

of proposed 

algorithm to solve 

real-world 

optimization 

problems are 

unknown. 

[56] DE based 

superior- 

inferior (SI) 

and superior- 

superior (SS) 

crossover 

strategy 

30, 50 and 

100 

The adoption of self- 

adaptive SI mechanism 

in DE variants can 

improve their 

optimisation 

performances in 

solving the unimodal, 

basic and expanded 

multimodal functions at 

30-dimensional size. 

Enhanced exploration 

and exploitation 

strengths of proposed 

algorithm by the SI 

crossover and SS 

crossover operators, 

respectively. 

Performance 

degradation of the 

proposed algorithm 

can be observed 

when solving the 

hybrid composition 

functions. The 

ability of SI 

method to enhance 

performance of DE 

variants in solving 

large-scale and 

complex problems 

are questionable. 
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[52] Crossover 

strategies 

adaptation 

with self- 

adaptive DE 

(CSA-SADE) 

30 and 50 The proposed algorithm 

was reported to 

outperform five well- 

established DE variants 

and three non-DE 

algorithms, in terms of 

search accuracy. 

The proposed self- 

adaptive mechanism can 

improve population 

diversity by allowing 

each individual to have 

the unique combination 

of crossover strategy, 

mutation strategy and 

control parameters. 

The scalability of 

proposed method 

was not thoroughly 

analysed with 

different set of test 

functions at higher 

dimensions. 

 

3) Modification in selection operator parameter and mechanism : 

a) Parameters Modification: 

DE has a unique selection mechanism that separates it out from the contemporary algorithms. 

Though modifications suggested in the selection scheme are limited to only a few papers, 

researchers have shown that suitable changes in it can further help in improving the performance 

of the algorithm. Yi et al. (2016) [57] proposed a fitness function value based p best selection 

mechanism. If the offspring is having better fitness value it means the p-best of that particular 

offspring is suitable for exploitation. By doing so, the population is not gathered near p-best, 

which results in the diversification of the population. Pan et al. (Gämperle et al., 2002) [58] 

proposed each target vector to be associated with a different strategy list (SL), a scaling factor F 

list (FL) and a crossover rate R list (CRL). When a trial vector is generated F and CR are selected 

from strategy lists and if an obtained trial vector is better than target vector then F and CR will 

enter into the winning strategy list (wSL), a winning F (wFL) and winning crossover (wCRL) 

respectively. After certain number of iterations, F and CR values are updated by selecting 

elements from wFL, wCRL and wSL. 

b) Modification in mechanism : 

Guo et al. [59] observed that the conventional one-to-one selection scheme tends to deteriorate 

the convergence speed of DE by unfairly rejecting the trial vectors with better fitness than most 

other current population members, especially if the corresponding target vector was even better. 

A novel subsetto-subset (STS) selection operator was proposed to enhance the convergence speed 

of DE by randomly partitioning the target and trial populations into several subsets of populations. 

For each subset, the best individual solutions among the subset of target and trial populations are 

identified by referring to their fitness values. Under the presence of the STS selection operator, 
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the trial vectors with better fitness values were expected to have higher chances to survive in the 

next generation. Extensive simulation studies were conducted to compare the STS selection 

operator with four other survival selection schemes, and the proposed approach emerged as a more 

reliable selection scheme. Furthermore, the proposed STS selection improved the search accuracy 

and convergence speed of all DE variants significantly when it was incorporated into these 

algorithms. 

Rakshit [60] proposed a DE integrated with noise handling policies (NDE) to enhance its 

optimization robustness in dealing with solution search spaces consisting of stochastic noise. A 

stochastic learning automata (SLA) was firstly incorporated into NDE to identify an appropriate 

sample size of solutions in largely noise-affected areas to achieve accurate fitness estimation 

without incurring additional computation complexity. A new fitness estimation strategy was also 

proposed by considering the weighted average of all fitness samples to reduce the influences of 

noisy minority fitness samples. An adaptive mutation rate was designed to select the solutions 

from relatively less noisy regions for the mutation process. Finally, a niching strategy was 

incorporated to address the deceptive effect of noise signal in the fitness landscape during the 

selection phase of NDE, hence ensuring proper trade-off between population diversity and quality. 

Two sets of benchmark functions, i.e. CEC 2013 functions contaminated with noise signals and 

CEC 2010 noisy benchmark functions, were used for performance evaluation, and NDE was 

reported to have better robustness and convergence speed against its competitors. Despite its 

promising performance, more effective strategies of state quantization and selection of reward 

functions were needed for NDE to provide more accurate sampling from noisy regions for fitness 

estimation. On the basis of the aforementioned reviews, Table.II.4 summarizes the research 

related to enhanced selection schemes. Table(II.3) gives the different enhancement in selection 

operator. 

Table(II.3): Summary of research on enhanced DE selection scheme. 

Author Technique 

introduced 

Dimensional 

sizes 

Results Merits Limitations 

[61] Landscapedbased 

adaptive 

operator 

selection DE 

(LSAOSDE) 

10, 30 and 

50 

LSAOS-DE 

outperformed others 

DE variants in solving 

majority benchmark 

functions from CEC 

2014 and CEC 2015. 

Fast convergence 

speed 

and good search 

accuracy 

Optimal parameter 

settings of proposed 

algorithm were 

determined 

manually. 
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[62] Improved 

individualbased 

parameter setting 

selection strategy 

(IDEI) 

30 Competitive search 

performance in 

majority of complex 

optimisation 

problems. 

Diversity-based 

selection strategy was 

designed as a 

secondary guidance of 

searching process by 

enabling the 

individuals with 

temporary inferior 

fitness values to be 

selected for survival 

in the next iteration. 

The proposed 

diversitybased 

selection strategy is 

computationally 

expensive and has 

high tendency to 

promote excessive 

explorative search 

behavior that can 

lead to significant 

reduction of the 

convergence rate. 

[59] STS selection 

operator 

30 STS emerged as a 

more reliable 

selection scheme 

compared to other 4 

competitive selection 

schemes. 

The proposed subset-

tosubset selection is 

proven effective to 

improve the 

convergence rate of 

DE algorithm. 

The scalability of 

the proposed 

method was not 

thoroughly 

investigated with 

different 

dimensional sizes. 

[63] Adopted 

multiobjective 

DE (MODE) 

Not stated The proposed 

algorithm generated 

good performance on 

the DEED problem 

Provides better power 

emission value as 

compared to the other 

optimisation 

algorithm. 

The computational 

times incurred by 

proposed method 

might be infeasible 

for 

[60] Improved DE for 

noisy 

optimisation 

10, 20, 30, 

40 and 50 

NDE outperformed all 

its contesters in term 

of search capability in 

different dimensions 

and noise cancelation. 

The proposed method 

can improve the 

convergence rate and 

search accuracy of 

DE. 

Less efficient in 

solving the 

optimisation 

problems with 

complex fitness 

landscapes. 

 

4) Initialization Modification techniques: 

In population-based search algorithms, population is initialized through computer generated 

random numbers which usually follow a uniform distribution. Though, this is a simple method for 

initializing the population, researchers observed that customizing the initialization process may 

help in improving the performance of the algorithm. Consequently, a variety of initialization 

methods have been proposed in literature. Mostly these modifications are based on either 

contracting the search space in the beginning itself to encourage faster convergence or are based 

on dividing the population into smaller subgroups of populations that can perform in parallel or 

tries to adaptively tune the population. Some interesting initialization methods are discussed in the 

following paragraph. 

Sun (2017) [64] proposed a novel symbiosis co-evolutionary model based on the population 

topology of DE, namely SCoPTDE, in which the population is divided into small species using 

specific topologies. Wang et al. (2016)[65] introduced Cooperative Differential Evolution (CDE) 



CHAPTER II   OPTIMIZATION METHOD 

34 
 

for multi-objective function using multi-population strategy. Di Carlo et al. (2015) [66] also used 

the multi-population technique. Aalto and Lampinen (2015) [67] proposed an adaptive mechanism 

population-based DE called cumu-DE in which a probability mass function mechanism is used for 

automatically adapting the population size. Awad et al. (2017b) [68] used niching based population 

reduction in a DE variant named sinusoidal differential evolution. Table(II.4) shows the different 

enhancement in the initialization procedure. 

Table(II.4): the different enhancement in the initialization procedure. 

Author Technique 

introduced 

Dimensiona

l sizes 

Results Merits Limitations 

[69] Opposition-

based 

initialization

  

method 

2,3,4,5,6,10, 

20,30. 

And 100 

The  convergence  

rate  of the  DE  

algorithm  with 

opposition-based 

initialization  was 

enhanced  by  10%  as 

compared  with  the  

DE algorithm  with  

random population  

initialization 

The proposed 

initialization method 

improved diversity level 

of initial population, 

hence increasing 

convergence rate of 

algorithm. 

Significant performance 

degradation of 

acceleration rate can be 

observed in higher 

dimensional problems, 

i.e., for D > 10 

[70] Chaotically 

Initialized 

DE 

(CIDE) 

2, 5 and 10 The presence of 

complex and yet 

dynamic initialization 

methods can improve 

the quality of 

solutions in solving 

optimization 

problems. 

Reduced probability of 

premature convergence 

due to improvement of 

global search capability. 

Only two out of seven 

chaotic maps can increase 

the solution quality in 

solving benchmark 

functions. The capability 

of other chaotic maps in 

generating solution with 

better quality to solve 

real-world applications 

were not investigated. 

[71] Smart 

Sampling 

DE (SSDE) 

10, 20, 30, 

40 

and 60 

Success rate and 

success performance 

of SSDE were proven 

to outperform original 

DE by 16% and 76%, 

respectively. 

SSDE has better 

efficacy to find initial 

populations of superior 

quality when compared 

to three other DE 

variants with 

oppositional learning. 

High computational cost 

was incurred due to the 

utilization of machine 

learning techniques to 

perform the smart 

sampling approach. 

[72] Adaptive 

population 

tuning 

scheme 

(APTS) 

30, 100 The proposed JADE- 

APTS achieved a 

good performance in 

30 dimensional 

problems and best 

performance in 100 

dimensional 

problems. 

Simplicity in 

implementation. 

Population size can be 

adaptively adjusted to 

increase the probability 

of locating global 

optimum. 

Effect of control 

parameters were not 

carefully studied. High 

tendency of status 

monitor to discard the 

candidate solutions that 

have temporary inferior 

performance but can be 

potentially useful in long 

terms. 

[73] Cluster-

Based 

10, 30, 50, The proposed 

algorithm is efficient 

and able to improve 

The presence of intra- 

cluster and inter-cluster 

mutation strategies can 

Additional computational 

cost can be incurred by 

clustering process. In 
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population 

initialization 

(CBPI) 

100 and 

1000 

the performance of 

DE framework 

consistently. 

improve explorative 

behavior of algorithm. 

addition, the results were 

not explicitly exploited. 

5) Hybridization of DE : 

Algorithm Hybridization is another popular approach used to enhance the search performance 

of DE by leveraging the strengths of search operators obtained from other computational 

intelligence algorithms. In this section, we focus on the growing trends in the past six years (i.e. 

2016–2021) in research that hybridized DE with other computational intelligence algorithms. 

Some popular computational intelligence algorithms considered to hybridize with DE are artificial 

neural network (ANN), PSO, fuzzy logic (FL), WOA, FA, ACO and GA 

a) DE with ANN : 

Jiang et al. [74] proposed a simpler way to train the feedforward ANN by using the collective 

intelligence-based DE to optimize its network structure and parameters. With its ability to 

generate more diverse solution vectors by considering multiple best individuals from the current 

population via linear combination model, CIDE has better performance in training ANN. Majhi 

et al. [75] presented an evapotranspiration prediction model by hybridizing the DE with a radial 

basis function ANN, and it was then applied to predict the climate changes of a moist humid area 

in east– central India. Saporetti et al. [76] developed a hybrid surrogate model of DE and ANN to 

classify the petro-physical data automatically to improve the procedures of reservoir 

characterization in the oil industry. The optimal architecture and parameter settings of ANN (e.g. 

types of regularization, activation function and optimizer) were determined by DE to produce a 

robust classifier. 

b) DE with WOA : 

Xiong et al. [77] proposed a hybrid WOA and DE to solve the parameter estimation problem 

for solar model application. The performance of the proposed hybrid algorithm in this modeling 

problem was compared with that of the original WOA and DE algorithm under different 

environmental conditions such as weather, temperatures and irradiances. Dhabal et al. [78] 

presented a hybrid WOA and DE for image enhancement by improving the pixel intensity. It is 

realized using a cost function with global and local information. 
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c) DE with FA : 

Anuradha et al. [79] hybridized FA with DE in developing a computationally efficient 

clustering technique for multi-agent systems. Rosic´ et al. [80] proposed an adaptive hybrid FA 

and DE to solve passive target localization with proper balancing local exploitation and global 

exploration searches during optimization problems 

d) DE with ACO : 

Zhang et al. [81] presented a hybrid algorithm of DE and ACO to learn the optimal structure 

of Bayesian network to enhance its convergence speed and learning accuracy. Xie et al. [82] 

proposed a hybrid algorithm of ACO and DE to address popular issues encountered in the cloud 

computing resource scheduling problem such as long processing time and uneven distribution of 

computing resources. 

e) DE with GA : 

Trivedi et al. [83] hybridized GA with DE as hGADE to solve the unit commitment scheduling 

problem. A heuristic was incorporated into the population initialization scheme to further enhance 

the performance of hGADE. Thakshaayene et al. [84] presented another hybrid algorithm of GA 

and DE to solve unit commitment problems, and the obtained solutions were compared with those 

of the conventional dynamic programming method. Li et al. [85] proposed a multi-objective 

optimization algorithm by hybridizing GA and DE to solve cloud computing applications. 

Table.II. 5 presents a list of hybridized methods derived from the DE algorithm, and this trend 

analysis shows that the hybridization of DE with ANN, PSO and FL remains popular in the 

research community. Other computational intelligence algorithms such as WOA, FA, ACO and 

GA were observed as less favorable candidates to be hybridized with DE. Table II.5 summarizes 

the distributions of proposed hybrid DE variants according to year and the computational 

intelligence algorithms selected for hybridization. Accordingly, ANN, PSO, FL and FA are the 

most famous computational intelligence algorithms selected to be hybridized with DE, as 

indicated by recent works published in 2020 and 2021. In contrast, ACO and GA are less popular 

choices of candidates used for hybridization because no related works were published in 2020 or 

2021. Table(II.5)  indicates the different Hybridization forms of DE. 
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Table(II.5): Hybridization of DE algorithm with other AI algorithms. 

Method hybridized Years Authors 

DE with ANN 

2018 

2018 

2019 

2020 

[86] 

[87] 

[88] 

[89] 

DE with WOA 
2018 

2020 

[77] 

[78] 

DE with FA 

2017 

2018 

2020 

2021 

[90] 

[91] 

[79] 

[80] 

DE with ACO 

2017 

2018 

2019 

[92] 

[81] 

[82] 

DE with GA 

2016 

2017 

2018 

[83] 

[84] 

[85] 

 

II.4 Applications of DE algorithm : 

The applications of the DE algorithm to solve different real-world engineering problems. Fifty-

five articles related to the applications of original DE and its enhanced variants are covered [93]. 

Some of the published works will be summarized in another section for further performance 

analyses, whereas the remaining applications that do not fall in the scope of the study will be listed 

in this section only. 

1) Prediction models: 

Onan et al. [94] proposed a multi-objective weighted voting ensemble classifier to solve text 

sentiment classification problems, where DE was applied to determine the appropriate weight 
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values of each individual classifier on the basis of their predictive performance. The machine 

learning models included in their proposed ensemble method were support vector machine, logistic 

regression, linear discriminant analysis, naı¨ve Bayes and Bayesian logistic regression. Hu et al. 

[95] applied DE to optimize the parameters and weights of least-square support vector machine. A 

multi-level regression model was then developed to predict the carbon efficiency to minimize the 

energy consumption incurred during the iron ore sintering process. 

Peng et al. [96] presented a long short-term memory (LSTM) model optimized by DE to address 

the electricity price prediction task that can be formulated as time series and nonlinear regression 

problems. The LSTM optimized by DE can produce higher prediction accuracy. Al-Sudani et al. 

[97] proposed the application of DE to optimize the design of a multivariate adaptive regression 

spline developed using least square support vector regression. This prediction model was used to 

achieve more accurate forecasting of a streamflow pattern that plays crucial roles in effective 

planning and management of water resources. Both studies show the effectiveness of DE in 

optimizing the parameters of the machine learning model to develop useful prediction models in 

different areas of applications. 

2) Industrial control : 

Wang et al. [98] developed a new strategy to design a coaxial magnetic gear by referring to the 

theory related to magnet magneto-motive force. DE was applied to search for optimal combinations 

of key parameters that have a significant impact on the modulation effects of magnetic gears, i.e. 

the thickness of permanent magnet, ratio between magnet arc to permanent magnet pole pitch and 

ratio between air slot opening to pole pitch. Nadimi-Shahraki et al. [99] proposed three trial vector 

producers (TVPs), namely, the global best history based TVP, local random-based TVP and 

representative-based TVP, into their multi-trial vector-based DE (MTDE) to solve different 

numerical benchmark functions and four engineering design problems. Both the winner-based 

distribution policy and life-time archive were employed by MTDE to determine the most 

appropriate TVP for each subpopulation. 

3) Computational systems: 

By leveraging the benefits of cloud computing technologies, LaTorre et al. [100] applied DE in 

computational neuroscience model calibration. A simplified triggering technique with fixed 
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diameter axon was used to increase the computation processes. The finding showed that the 

proposed model managed to address the complex framework of nerve damages. Houssein et al. 

[101] proposed to apply an adaptive guided DE (AGDE) in searching for the optimal quantum 

cloning circuit parameters through the minimization of cloning difference error value to improve 

the cloning fidelity. A new mutation operator was proposed to improve the convergence speed of 

AGDE by fully utilizing information brought by population members with good, average and poor 

fitness. A self-adaptive scheme was also introduced to adjust the crossover rate of AGDE to ensure 

the balancing of exploration and exploitation searches. 

4) Electrical and power systems: 

Biswas et al. [102] applied the linear population size reduction technique of success history-

based adaptive DE (L-SHADE) presented to solve the parameter estimation problems of solar cells 

constructed from single-diode and double-diode models with minimum current–voltage errors. 

Ozyon et al. [103] produced the optimal solutions by using DE to solve the short-term operations 

of an electrical power system that consists of pumped-storage power generation units. 

5) Feature selection : 

Zhang et al. [104] proposed a self-learning multi-objective FS with binary DE (MOFS-BDE) to 

address the FS problems with the aim of maximizing classification accuracy and minimizing the 

number of selected features simultaneously. A novel binary mutation scheme based on probability 

difference was incorporated into MOFS-BDE to guide the solution members in locating the 

promising solution regions rapidly, and the self-learning capability of elite individuals in near-

optimal solution regions was enhanced with a one-bit purifying search operator. The computational 

complexity of the selection process in MOFS-BDE was further reduced by using an efficient non-

dominating sorting strategy based on crowding distance. Rivera-Lopez et al. [105] proposed a per-

mutational-based DE algorithm to tackle feature subset selection problems without a fixed subset 

size to be defined in advance. The per-mutational-based mutation operator was designed to create 

new feasible solutions, and a repair-based recombination operator was proposed to maintain the 

population diversity during the evolution process. 
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6) Image processing: 

Kaur et al. [106] applied a memetic DE to optimize the parameters of an intertwining logistic 

map to develop an image encryption technique with higher efficiency and security. The optimized 

intertwining map was able to produce encrypted images by generating appropriate secret keys used 

for encrypting the shuffled channels of color images. Sui et al. [107] developed a parallel 

computation of DE (pcDE) to solve the image threshold segmentation problem with better 

performance and stability even in the presence of different noise signals. Two communication 

schemes, namely, the optimal elite strategy and mean elite strategy, were incorporated into pcDE 

to promote information exchange between different subpopulations by replacing the local optimal 

solution with the global optimal solution and the mean value of the local optimal solution in all 

subpopulations, respectively. 

7) Data clustering : 

Mustafa et al. [108] designed an adaptive memetic DE to improve the quality of data clustering 

by optimizing the intra-cluster distance similarity measure. A neighborhoods selection heuristic 

and an adaptive DE mutation operator were integrated with a memetic algorithm to ensure that 

population diversity was maintained throughout the optimization process and to guarantee the 

consistency of clustering results. Wu et al. [109] presented a clustering DE method assembled with 

crowding factors to promote the populations to eliminate the local optima. A novel clustering 

method, namely, k-means special based DE, was proposed, which enhances the diversity of the 

populations in the earlier stage, whereas the solution accuracy was gradually improved in the later 

stage. 

8) Health care: 

Wang et al. [110] proposed a complex harmonic regularization with DE (CHR-DE) to address 

the biomarker selection problems that are crucial in combating cancer and genetic diseases. DE 

was used to optimize the hyper-parameters of CHR, enabling the latter method to have a strong 

ability to select relevant biomarkers from gene expression data. Kaur et al. [111] designed an e-

health data prediction method by applying a multi-objective DE to fine-tune the parameters of 

random forest technique for different medical applications, such as the diagnosis of lung cancer, 

skin cancer, blood cancer, breast cancer, diabetes, brain tumour and Ebola. 
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9) Path planning : 

Jain et al. [112] studied recent modifications made in DE to solve robotic path planning 

problems subjected to various constraints. Pan et al. [113] proposed a hybrid DE called CIJADE 

by combining the modified CIPDE (MCIPDE) and modified JADE (MJADE) to solve the path 

planning problem related to unmanned combat aerial vehicles. The main population of CIJADE 

was partitioned into inferior and superior subpopulations on the basis of fitness values and evolved 

independently using MJADE and MCIPDE, respectively. An external archive was incorporated 

into the mutation operator of MCIPDE to enhance its exploration capability, where a new crossover 

operator and dynamic strategy of determining elite size was designed in MJADE to achieve a better 

balancing of exploration and exploitation searches. 

10) Differential equations resolution: 

Fateh et al. [114] introduced a differential evolution-based solver to produce optimal solutions 

for elliptic PDEs. Second-order elliptic equations with homogeneous and nonhomogeneous forms 

were considered and formulated as the minimization problems. The proposed DE-based solver was 

effective in solving elliptic PDEs benchmark problems with linear and nonlinear characteristics. 

The proposed method has a high convergence speed, producing the best fitness value for each 

problem in approximately 500 generations, and was also reported to solve PDEs with low 

computational cost, as indicated by its low processing time. 

In [115] a novel mesh-free approach was introduced to solve ODEs by combining the improved 

Fourier periodic expansion function with the weighted least square method to reduce the 

approximation errors. A weighted residual method was firstly applied to formulate the ODEs 

problems as an optimization problem. Then, an adaptive DE algorithm was used to minimize the 

ODEs’ residuals and the boundary condition errors. The proposed method was implemented with 

five optimization algorithms to solve 20 types of ODEs with initial value problems and boundary 

value problems. The SHADE algorithm achieved the best accuracy in producing the optimal 

solutions for the majority of ODEs with average processing times. 

12) Summary of applications: 

Fig.II.5 summarizes the distributions of these studies according to their Percentage usage of DE 

with  each  application domains. Eleven applications are listed in this survey, namely, the 
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prediction, industrial control, computational systems, electrical power systems, feature selection, 

image processing, clustering, health care, path planning, wireless sensor and differential equations. 

Feature selection is identified as the most popular application of DE, with nine research papers 

having been published in this research domain. Other applications also received notable attention 

among researchers, with works related to these research domains having been published in recent 

years 

 

Figure(II.5): Percentage usage of DE in different reviewed applications areas. 

 

II.5 Conclusion: 

Differential Evolution (DE) is a powerful and widely used optimization algorithm that has 

proven to be effective in solving various real-world problems. DE belongs to the class of 

evolutionary algorithms and is particularly well-suited for continuous optimization tasks. DE 

operates on a population of candidate solutions, often referred to as individuals or agents, and 

iteratively improves them by applying a combination of mutation, crossover, and selection 

operations. The core idea behind DE is to maintain a diverse set of candidate solutions while 

exploring the search space efficiently.
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CHAPTER III: PARAMETERS ESTIMATION AND RESULTS 

III.1 Introduction: 

The primary objective is to extract the unknown parameters of the choke gas flow rate models 

using a strong identification technique. For these purposes, Differential Evolution (DE) algorithm 

has been adopted to validate the parameter estimation. 

In this chapter several tests have been  carried out to select the adequate DE variant for this 

considered problem. Therefore, a comprehensive examination of DE algorithm through rigorous 

testing and comparative analysis will be accomplished. To do these evaluations two models have 

been explored, the first one is developed by Leal et al. (2013) [22] and the second one has been 

proposed by S.Seidi et al. (2015) [1]. The tests have been carried out by means of available datasets 

from two regions GTFT field and Fars province of Iran.  

To fully exploit the potential of the DE algorithm and unleash its power in real-world 

applications, it is crucial to determine the most effective configuration of its settings parameters. 

These parameters include the population size (NP), number of iterations (N_it), Crossover 

Probability (Cr) and Scaling Factor (F). Their values significantly impact the algorithm’s 

convergence speed, solution quality, and ability to handle various problem characteristics. 

 

III.2 Subject description: 

1) GTFT reservoir: 

Tin Fouye Tabankort (TFT) upstream field is located in Illizi, Algeria. The upstream field is 

owned by Sonatrach SpA (51%); TotalEnergies SE (49%). It is operated by Groupement TFT. The 

project started its operations in 1969.
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Figure(III.1): TFT conventional oil field ownership structure [116]. 

Tin Fouye Tabankort (TFT) Upstream Field profile includes core details such as name, resource 

type, asset status, stage, owner and equity stakes, operator, product specs (gravity, CO2, sulphur), 

location, as well as key operational data including production, start and end years, reserves and 

capital and operating costs. We also provide proprietary forecasts of production, capital and 

operating costs, and other key economic parameters, along-with relevant news, deals and contracts 

details [116]. 

2) GEOGRAPHICAL SITUATION:  

The GTFT field is located in the north-west part of the Illizi basin, more precisely 300 km north-

west of In-Aménas and 500 km south-east of HassiMassoud. It covers an area of 4000 km2       

Figure(III.2). The TFT region is bounded by the following UTM coordinates: X1 = 310,000.                       

X2 = 400,000. Y1 = 3,110,000. Y2 = 3,190,000 [117]. 
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Figure(III.2): GTFT field geographical situation [117]. 

3) Production from Tin FouyeTabankort (TFT):    

The Tin Fouye Tabankort (TFT) conventional oil field recovered 89.63% of its total recoverable 

reserves, with peak production in 1976. The peak production was approximately 122.05 thousand 

bpd of crude oil and condensate. Based on economic assumptions, production will continue until 

the field reaches its economic limit in 2041. The field currently accounts for approximately 2% of 

the country’s daily output. 

4) Remaining recoverable reserves 

The field is expected to recover 150.00 Mmboe, comprised of 150.00 Mmbbl of crude oil & 

condensate. Tin FouyeTabankort (TFT) conventional oil field reserves accounts 0.03% of total 

remaining reserves of producing conventional oil fields globally.[116] 



CHAPTER III   PARAMETERS ESTIMATION AND RESULTS 

46 
 

 

Figure(III.3): TFT total production [116]. 

III.3 Descriptive Statistical summary of data sets: 

The first database used in this study consists of 72 data points from wellhead choke tests related 

to the GTFT gas - condensate field in the Illizi Region, South East Algeria. The individual well test 

data is listed in Table (III.1). The second database used consist of 39 data points gathered from 

gas-condensate wells of Fars province of Iran [1]. The individual well test data is listed in              

Table (III.2). 

 

Table(III.1) :Statistical analysis for GTFT field dataset. 

Statistical 

Property 

Temperature 

(C°) 

Qg 

(nmillm3 /D) 

D (1/64 in2 ) 
downstream 

pressure (PSI) 

upstream 

pressure 

(PSI) 

Mean 119.4028 19.9452 46.7778 701.7917 1846.4 

Minimum 80 0.2700 16 80 284 

Maximum 163 52.3800 64 2595 6115 
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Table(III.2) :Statistical analysis for Fars province of Iran field dataset. 

Statistical 

Property 
LGR Qg S PUP PDOWN 

Mean 8.0083 37.8419 54.7692 2285.8 1818.7 

Minimum 5.2741 10.2166 32 1929.2 1639.1 

Maximum 12.3618 54.6212 72 2480.3 2001.7 

 

III.4 Differential Evolution parameter setting selection: 

In this study the selected algorithm was standard DE which its strategy is: 

 Initialization: The algorithm begins by initializing a population of candidate solutions (also 

known as individuals) randomly within the defined search space. Each candidate solution is 

represented as a vector of real numbers (Eq.II.4). Mutation: DE uses a mutation operator to perturb 

the candidate solutions and create new trial solutions. For each candidate solution, three other 

random solutions, called the "base vector" and two "difference vectors," are selected from the 

population. The mutation operation is typically performed by adding the scaled difference vectors 

to the base vector (Eq.II.5). Crossover: After the mutation step, crossover is applied to combine 

the trial solutions with the original candidate solutions. The crossover probability determines the 

likelihood of a component from the trial solution being selected over the corresponding component 

from the original candidate solution (Eq.II.10). Selection: The trial solutions are compared with 

their respective original candidates based on a fitness evaluation function. If a trial solution has 

better fitness than its original candidate, it replaces the candidate in the population. This step 

ensures that only the better solutions survive and progress to the next generation (Eq.II.12). 

Termination: The algorithm continues to iterate through the mutation, crossover, and selection 

steps for a fixed number of generations or until a termination criterion is met. The termination 

criterion is typically based on reaching a maximum number of iterations or achieving a satisfactory 

solution. 

The selection of the system settings of an algorithm is an important factor in determining its 

performance. To ensure that the algorithm setting parameter (CR, F and NP) are feasible for the 
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considered optimization problem, a series of experiments have been conducted. By analyzing the 

results, the adequate setting parameters could be determined to achieve the best performances using 

the adopted optimization algorithm. The results from these experiments are presented in Table 

(III.3) for 15 tests (max_s = 15), while the number of iterations (N_it) is 700. The equation of the 

error calculated as follow: 

                                       OF=
1

𝑁
√∑ (𝑄ⅈ𝑔.𝑒𝑠𝑡 − 𝑄ⅈ𝑔.𝑒𝑥𝑝)2

𝑁
ⅈ=1   (Eq.III.1) 

where: 

Qig.est: the real gas flow rate measured in the wellhead tests. 

Qig.exp: the calculated gas flow rate. 

N: the number of data samples. 

The objective function (OF) presented in (Eq.III.1) is based on Root Mean Square Error 

(RMSE). 

Table(III.3): DE parameter setting selection results. 

Case Parameters 
Reached iteration to get the 

best value 
Time (sec) OF Mean  

1 [118] 

F=0.5 

Cr=0.9 

NP=50 

WORST: > 700 

BEST: 63 with 0.5247 sec. 

WORST: 6.1431 

BEST: 5.8305 

MEAN: 5.9259 

0.3092 

NP=100 

WORST: > 700 

BEST: 73 , (1.1225 sec) 

WORST: 10.7637 

BEST:  10.5844 

MEAN: 10.6488 

0.2884 

NP=150 

WORST: 105 , (2.4918 sec) 

BEST: 66 , (1.5660 sec) 

MEAN: 86 , (2.0222 sec) 

WORST: 16.7101 

BEST: 15.9626 

MEAN: 16.4599 

0.2875 

2 [119] 
F=0.7  

Cr=0.5 
NP=30 

WORST: > 700 

BEST: 227 , (1.2029 sec) 

WORST: 3.8419 

BEST: 3.6988 

MEAN: 3.7665 

0.3655 
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NP=50 

WORST: > 700 

BEST: 247 (2.0827 sec) 

WORST: 7.1138 

BEST: 5.7818 

MEAN: 6.0221 

0.3269 

NP=100 

WORST: > 700 

BEST: 268 (4.2771 sec) 

WORST: 11.8100 

BEST: 10.9034 

MEAN: 11.4819 

0.2994 

3 [120] 
F=0.4 

Cr=0.75 

NP=100 

WORST: > 700 

BEST: 91 , (1.4045 sec) 

WORST: 10.9131 

BEST: 10.7884 

MEAN: 10.8264 

0.2913 

NP=150 

WORST: > 700 

BEST: 98 , (2.1888 sec) 

WORST: 16.7027 

MIN: 15.4325 

MEAN: 15.6956 

0.2890 

NP=50 

WORST: > 700 

BEST: 71 , (0.5761 sec) 

WORST: 5.7783 

BEST: 5.5661 

MEAN: 5.6493 

0.4457 

4 [121] 
F=0.9 

Cr=0.8 

NP=256 

WORST: 237 (9.2774 sec) 

BEST: 148 (5.7736 sec) 

MEAN: 193 

WORST: 27.4018 

BEST: 26.2996 

MEAN: 27.0273 

0.2875 

NP=150 

WORST: > 700 

BEST: 130 , (2.8835 sec) 

WORST: 15.8563 

BEST: 15.3584 

MEAN: 15.5419 

0.3414 

NP=100 

WORST: > 700 

BEST: 138 , (2.0723 sec) 

WORST: 10.7214 

BEST: 10.3466 

MEAN: 10.5078 

0.3412 

5 [122] NP=50 WORST: > 700 WORST:  5.8669 0.2903 
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F=0.7 

Cr=0.9 

BEST: 75 (0.6101 sec) BEST: 5.6946 

MEAN:  5.7504 

NP=100 

WORST: > 700 

BEST: 91 , (1.3466 sec) 

WORST: 11.4461 

BEST: 10.3225 

MEAN: 10.5218 

0.3148 

NP=150 

WORST: > 700 

BEST: 89 , (1.9456 sec) 

WORST: 16.9124 

BEST: 15.1664 

MEAN: 15.3264 

0.3142 

 

The best results according to the previous tests are presented in Table (III.4). 

 

Table(III.4): The best DE parameter setting. 

Parameters Iteration Time (sec) OF Mean 

F=0.5 

Cr=0.9 

NP=150 

WORST: 105 , (2.4918 sec) 

BEST: 66 , (1.5660 sec) 

MEAN: 86 , (2.0222 sec) 

WORST: 16.7101 

BEST: 15.9626 

MEAN: 16.4599 

0.2875 

 

III.5 Results description and discussion: 

The performances of DE algorithm have been tested and compared with Ant Colony 

Optimization (ACO) algorithm ones [25]. Where, an investigation on the effect of changing the 

maximum number of iterations and the population number of both algorithms (DE and ACO) has 

been carried out. While, the computer performances are : Inter(R) Core(TM) i3-101110U CPU @ 

2.10 2.59 GHz and 8.00 GB of RAM, using MATLAB 2013 environment.  

Four statistical metrics measuring performance have been used in terms of uncertainty error and 

correlation are used here to assess the performance of the DE algorithm in identifying optimal 

values. These statistical metrics are:  

                                   𝑀𝐴𝐸 =
1

𝑁
∑ 𝑎𝑏𝑠(𝑂𝐹 −𝑁
ⅈ=1 𝑂𝐹𝑏𝑒𝑠𝑡)  (Eq.III.2) 

                                   𝑆𝑇𝐷 = √
1

𝑁−1
∑ (𝑂𝐹 − 𝑂𝐹𝑚𝑒𝑎𝑛)2
𝑁
ⅈ=1   (Eq.III.3) 
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                                    𝑅𝐸 =
1

𝑂𝐹𝑏𝑒𝑠𝑡
∑ (𝑁
ⅈ=1 𝑂𝐹 − 𝑂𝐹𝑏𝑒𝑠𝑡)  (Eq.III.4) 

                                    𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑂𝐹 − 𝑂𝐹𝑏𝑒𝑠𝑡)2
𝑁
ⅈ=1   (Eq.III.5) 

 

The results of the comparison are listed in the tables (III.5-III.9) where the setting parameters 

of DE are similar for all the presented results: Cr = 0.9, F = 0.5 and max_s = 30.                                

Table (III.5) depicts the comparison performance results for both algorithms under using a 

maximum NFE (Number of function evaluations) of 24200 (NP = 150 & N_it = 160). From this 

Table, It could be noticed that the RMSE value goes to 3.6811e-06 using DE algorithm; meanwhile, 

it is clearly high (0.0493) using ACO. Which means that, the selected setting parameter are suitable 

for DE algorithm. However, the CPU run times, for both algorithms, is this case are almost similar. 

 

Table(III.5): Performance test using a maximum NFE of 24200 (NP = 150 & N_it = 160). 

Parameters DE ACO 

RMSE 3.6811e-06 0.0493 

RE 7.9051e-05 4.01092 

STD 3.6023e-06 0.02750 

MAE 7.5764e-07 0.040 

Best OF 0.28752 0.30655 

Mean OF 0.28752 0.34754 

Worst OF 0.28757 0.42201 

Best Run Time 4.3783 5.3004 

Mean Run Time 4.7568 5.3836 

Worst Run Time 5.1294 6.0676 

Run Time STD 0.2433 0.1336 

 

Table (III.6) depicts the comparison performance results for both algorithms under using a 

maximum NFE of 24200 (NP = 75 & N_it = 320). 
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Table(III.6): Performance test using a maximum NFE of 24200 (NP = 75 & N_it = 320). 

Parameters DE ACO 

RMSE 0.0164 0.0263 

RE 0.4469 1.6108 

STD 0.0158 0.0210 

MAE 0.0042840 0.0158320 

Best OF 0.28752 0.29485 

Mean OF 0.29180 0.31068 

Worst OF 0.3730 0.36498 

Best Run Time 4.6190 5.2025 

Mean Run Time 4.9187 5.3788 

Worst Run Time 5.4226 5.5051 

Run Time STD 0.3048 0.0719 

 

Table (III.7) depicts the comparison performance results for both algorithms under using a 

maximum NFE of 24200 (NP = 40 & N_it = 600). 

 

Table(III.7): Performance test using a maximum NFE of 24200 (NP = 40 & N_it = 600). 

Parameters DE ACO 

RMSE 0.05481 0.0098 

RE 2.2169 0.8841 

STD 0.0505 0.0050 

MAE 0.0212475 0.0085040 

Best OF 0.28752 0.28853 

Mean OF 0.30877 0.29704 

Worst OF 0.54954 0.31166 
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Best Run Time 5.0334 4.9229 

Mean Run Time 5.6931 5.2465 

Worst Run Time 6.1582 5.6262 

Run Time STD 0.4049 0.1698 

 

Table (III.8) depicts the comparison performance results for both algorithms under using a 

maximum NFE of 50000 (NP = 40 & N_it = 1250). From this Table, It could be observed that the 

RMSE value goes to 0.0067 using ACO algorithm; meanwhile, it is relatively higher 0.1069 by 

means of DE. Which means that, the selected setting parameter are suitable for ACO algorithm. 

However, the CPU run time goes to approximately 10 sec for both algorithms. Which is not suitable 

for online applications. 

 

Table(III.8): Performance test using a maximum NFE of 50000 (NP = 40 & N_it = 1250). 

Parameters DE ACO 

RMSE 0.1069 0.0067 

RE 5.0270 0.6375 

STD 0.0955 0.0028 

MAE 0.0481805 0.00611349 

Best OF 0.28752 0.28766 

Mean OF 0.33570 0.29378 

Worst OF 0.68579 0.30291 

Best Run Time 9.7508 10.1757 

Mean Run Time 11.4809 11.0449 

Worst Run Time 13.0707 11.5779 

Run Time STD 1.0506 0.37842 
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Table (III.9) depicts the comparison performance results for both algorithms under using a 

maximum NFE of 24200 (NP = 200 & N_it = 120). 

 

Table(III.9): Performance test using a maximum NFE of 24200 (NP = 200 & N_it = 120). 

Parameters DE ACO 

RMSE 7.36119622947345e-05 0.0631 

RE 0.00257 5.15402 

STD 6.93512010379310e-05 0.03386 

MAE 2.468059e-05 0.0533 

Best OF 0.28752 0.31038 

Mean OF 0.28754 0.36371 

Worst OF 0.28788 0.43410 

Best Run Time 4.1770 5.4145 

Mean Run Time 4.6239 5.5449 

Worst Run Time 5.0591 6.0203 

Run Time STD 0.2686 0.1098 

 

The results show that increasing NP allows DE to give the best performances. Conversely, when 

NP is decreased, ACO yields better results. Otherwise, DE can reach a satisfactory solution within 

a smaller number of iterations or NFE. It can explore the search space more efficiently and exploit 

potential solutions more effectively, leading to faster optimization. 
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Figure(III.4): Measured and calculated gas flow rates presentation using DE and ACO 

algorithms. 

 

In order to verify and assess the performances of Differential Evolution (DE) algorithm in 

comparison to Ant Colony Optimization (ACO) algorithm, the Absolute Error of gas flow rates 

has been computed and provided in Table (III.10). 

Table(III.10): Absolute Error of (DE&ACO) algorithms. 

Qg  

GTFT 
Qg (DE) Qg(ACO) 

Absolute Error 

 Qg (DE) 

Absolute Error  

Qg (ACO) 

23.07 20.74075 21.0895991 2.329254996 1.980400894 

25.19 25.14991 24.9153203 0.040090592 0.274679725 

30.9 29.54607 28.6647653 1.353929314 2.235234677 

28.431 29.65255 28.9749332 1.221547777 0.543933159 

32.498 34.80622 33.439393 2.308223025 0.941393024 

41.28 39.17901 36.8330615 2.100990049 4.446938537 

17.56 15.40256 15.8772125 2.15744067 1.682787521 

18.44 17.72715 17.8092098 0.712849723 0.630790192 

6.24 5.76879 6.58146583 0.471210081 0.341465834 

8.369 9.335869 10.0352579 0.966869229 1.666257864 
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9.986 11.2382 11.7558693 1.252202845 1.769869293 

1.307 3.296382 3.0859957 1.989382063 1.778995697 

0.52 1.531498 1.38111383 1.011497712 0.861113832 

0.27 0.605388 0.61968815 0.335388274 0.349688146 

11.38 12.478 13.5223473 1.098000825 2.142347283 

13.12 14.69512 18.7457585 1.575124161 5.625758489 

22.26 25.18652 28.9948111 2.926515851 6.734811065 

43.25 51.29029 50.9184816 8.040293246 7.668481581 

17.25 15.60966 17.0208597 1.640338206 0.229140308 

23.76 22.92695 23.6010742 0.833045831 0.158925755 

37.85 37.09721 33.0968225 0.752788602 4.753177504 

18.659 15.90781 17.1952427 2.751189369 1.463757315 

32.6 31.83672 31.2594987 0.763277361 1.340501346 

24.21 22.41472 22.0287798 1.79528352 2.181220151 

16.246 9.583223 10.3324461 6.66277718 5.913553869 

22.824 17.16936 16.8798042 5.654640246 5.944195805 

7.109 7.368456 7.75906958 0.259456084 0.650069575 

9.192 9.632501 9.89440558 0.440500711 0.702405582 

11.301 11.90355 12.0831164 0.602550968 0.782116382 

2.42 2.385001 2.56036954 0.034998859 0.140369538 

3.8 3.416804 3.4736558 0.383196491 0.326344202 

4.89 4.047909 3.86753128 0.842090948 1.022468724 

2.67 2.488708 2.66670739 0.181291514 0.003292611 

3.97 3.697054 3.72097608 0.272946347 0.249023919 

5.29 5.068569 4.86618 0.221430823 0.423820005 

3.58 2.404957 2.59464716 1.175042894 0.985352843 

4.9 3.48129 3.56100357 1.418709697 1.338996431 

7.25 4.037325 3.81044064 3.212675133 3.439559359 

9.375 6.364182 7.06914438 3.010817783 2.305855623 

13.786 10.78014 11.2683564 3.005863691 2.517643597 

21.605 16.31933 16.2781762 5.285673393 5.326823834 

8.78 6.420929 7.17317152 2.359071227 1.606828476 

13.23 10.49389 11.0435505 2.736106427 2.18644945 

19.83 15.54935 15.7813648 4.280646834 4.048635192 

14.04 9.586693 8.90586086 4.453306789 5.134139136 

20.178 20.71475 20.356119 0.536748972 0.178118961 

21.66 23.16068 21.6765198 1.500679669 0.016519785 

19.836 16.83651 16.9016357 2.999492242 2.934364324 

23.959 23.735 23.0507818 0.223999562 0.908218241 

19.558 17.38525 17.6370523 2.172746614 1.920947716 

25.137 26.49683 26.0375573 1.35982777 0.900557261 

25.02 25.56404 25.0741512 0.544041009 0.054151242 

27.278 25.16484 25.932167 2.113159005 1.345832971 
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38.667 35.31019 34.6375953 3.356806403 4.029404678 

25.982 25.54106 26.331659 0.440940663 0.349658975 

44.559 47.06739 44.4086721 2.508391169 0.150327947 

34.767 36.59432 35.968662 1.827321228 1.201661987 

34.18 37.24224 36.6148707 3.062243248 2.434870652 

52.38 48.70316 45.7590259 3.676836652 6.620974057 

32.53 35.17075 34.5263839 2.640747229 1.996383937 

17.93 18.2923 19.9110353 0.36229812 1.981035345 

27.44 27.27507 28.0901506 0.164929487 0.650150642 

35.02 37.87923 37.2333834 2.859230876 2.213383354 

15.65 17.66829 19.265898 2.018293178 3.615897952 

26.83 26.12256 26.9230138 0.70744236 0.093013758 

35.68 35.46913 34.8382617 0.210873103 0.841738308 

46.23 45.43449 42.8677519 0.795513056 3.362248075 

0.753 3.695515 4.03235064 2.942515266 3.279350639 

34.73 36.10296 35.4342213 1.372959266 0.704221333 

33.724 35.57344 34.9378045 1.849440286 1.213804538 

8.78 6.420929 7.17317152 2.359071227 1.606828476 

13.106 10.12223 9.97657415 2.983774536 3.129425846 

Sum = 134.5108496 144.5827043 

 

It is clear in Table (III.10) that the sum of absolute error (AE) by using  DE is lower than the 

AE sum by means of ACO.  

Table (III.11) compares the values of five statistical parameters for the β1 to β5 constants 

derived applying DE and ACO. 

The limits chosen for these parameters are:  Xmin.j=1e-7, Xmax.j=5 

Table(III.11): Optimal Correlations by (this study &Thesis ACO) of GTFT field dataset. 

Optimal 

coefficient 

value 

β1  β2 β3 β4 β5 OF 

ACO 0.001 2.2643 0.4358 0.4738 3 0.3042 

DE 2.1926 2.2434 1.0e-07 5 0.5514 0.2875 

 

The used model to obtain correlations in Table(III.11) is the model of Leal et al (2013) presented 

in (Eq I.8), where five parameters have to be identified. 
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Figure(III.5): OF evolution by DE of GTFT field data. 

 

 

Figure(III.6): OF evolution by ACO of GTFT field data. 
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Table (III.12) compares the values of four constants derived applying DE, ACO and those 

derived from S.Seidi (2015). 

Table(III.12): Optimal Correlations by (this study & Thesis ACO & S.Seidi) of Fars province of 

Iran data. 

Optimal 

coefficient 

value 

a b c d OF 

S.Seidi [1] 0.0164 0.3931 1.2624 0.556 0.9700 

ACO 0.0116 0.2040 1.6040 0.3371 0.4660 

DE 0.0043 0.1343 1.7582 0.3722 0.4595 

 

The used model to obtain correlations in Table (III.12) is the model of S.Seidi (2015) presented 

in (Eq I.3), while four parameters should be extracted.   

 

 

Figure(III.7): OF evolution by DE of Fars province of Iran data. 
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Figure(III.8): OF evolution by ACO of Fars province of Iran data. 

 

Figure(III.9): Comparison of measured and estimated flow rates of gas applying Optimal 

Correlations by (this study & S.Seidi) of Fars province of Iran data. 

 

The curve illustrated in Figure(III.9) represents the prediction of gas flow rates using optimal 

correlations suggested by Seidi and those found in this study, the correlations using DE algorithm 

give better performances and appropriate fitting. 
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Data sets presentation:  

Table(III.13): GTFT field dataset (detailed). 

Number Qg T PUP PDOWN G D 

1 23.07 589.67 2009 680 0.6754 48 

2 25.19 585.67 2007 670 0.6563 52 

3 30.9 591.67 2000 680 0.658 56 

4 28.431 559.67 1893 700 0.6456 56 

5 32.498 559.67 1878 750 0.6525 60 

6 41.28 559.67 1847 710 0.6533 64 

7 17.56 576.67 1490 670 0.789 48 

8 18.44 576.67 1420 670 0.79 52 

9 6.24 541.67 1317 410 0.634 32 

10 8.369 539.67 1262 425 0.6326 40 

11 9.986 539.67 1221 420 0.6336 44 

12 1.307 591.67 1094 140 0.7554 32 

13 0.52 583.67 1082 92 0.7619 24 

14 0.27 577.67 1052 90 0.7577 16 

15 11.38 565.67 1920 710 0.82 40 

16 13.12 585.67 6115 2595 0.6251 24 

17 22.26 601.67 5910 1989 0.628 32 

18 43.25 622.67 5160 1452 0.626 48 

19 17.25 599.67 2207 978 0.7108 40 

20 23.76 603.67 2115 1005 0.7008 48 

21 37.85 608.67 1762 1218 0.6895 64 

22 18.659 569.67 2181 780 0.6357 40 

23 32.6 563.67 2073 840 0.6971 56 

24 24.21 583.67 1431 600 0.6575 56 

25 16.246 575.67 1353 470 0.6573 40 

26 22.824 578.67 1073 480 0.6539 56 

27 7.109 611.67 3005 509 0.7072 28 

28 9.192 617.67 2877 520 0.7087 32 

29 11.301 620.67 2646 530 0.7011 36 

30 2.42 565.67 311 175 0.6931 40 

31 3.8 566.67 297 165 0.695 48 

32 4.89 567.67 284 85 0.6892 56 

33 2.67 547.67 319 182 0.6933 40 

34 3.97 548.67 314 187 0.6917 48 

35 5.29 551.67 306 182 0.6941 56 

36 3.58 565.67 315 170 0.6931 40 

37 4.9 567.67 305 160 0.695 48 



CHAPTER III   PARAMETERS ESTIMATION AND RESULTS 

62 
 

38 7.25 569.67 290 80 0.6892 56 

39 9.375 603.67 1666 435 0.6809 32 

40 13.786 575.67 1645 450 0.6771 40 

41 21.605 576.67 1636 475 0.6825 48 

42 8.78 579.67 1648 445 0.6941 32 

43 13.23 579.67 1611 460 0.6964 40 

44 19.83 576.67 1534 510 0.7098 48 

45 14.04 575.67 1693 270 0.6754 40 

46 20.178 568.67 1325 553 0.676 56 

47 21.66 563.67 1046 551 0.677 64 

48 19.836 577.67 1646 500 0.6637 48 

49 23.959 577.67 1592 547 0.6653 56 

50 19.558 583.67 1670 553 0.6635 48 

51 25.137 584.67 1650 688 0.6229 56 

52 25.02 587.67 1680 663 0.6726 56 

53 27.278 591.67 2264 1038 0.6705 48 

54 38.667 594.67 2227 1078 0.6687 56 

55 25.982 593.67 2306 1004 0.6584 48 

56 44.559 593.67 2215 997 0.6597 64 

57 34.767 584.67 2306 1050 0.6629 56 

58 34.18 567.67 2330 1040 0.6674 56 

59 52.38 589.67 2252 1130 0.6683 64 

60 32.53 595.67 2217 1055 0.6626 56 

61 17.93 569.67 2490 998 0.6627 40 

62 27.44 570.67 2455 1005 0.662 48 

63 35.02 571.67 2393 1013 0.6602 56 

64 15.65 576.67 2401 1046 0.6778 40 

65 26.83 581.67 2372 1002 0.6706 48 

66 35.68 585.67 2319 950 0.6799 56 

67 46.23 590.67 2216 946 0.696 64 

68 0.753 569.67 2201 1998 0.7162 24 

69 34.73 579.67 2258 1080 0.6716 56 

70 33.724 592.67 2235 1050 0.6583 56 

71 8.78 579.67 1648 445 0.6941 32 

72 13.106 568.67 1651 335 0.6657 40 
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Table(III.14): Fars province of Iran dataset (detailed) [1]. 

Number 
Qg 

(MMscf/D) 

PUP 

(psia) 

PDOWN 

(psia) 

LGR 

(bbl/MMscf) 

S 

(1/64inch) 

1 13.15733 2103.238 1885.682 8.15525182 32 

2 17.65733 2335.299 1769.652 8.15525182 32 

3 10.5944 2074.231 1827.667 9.81629046 32 

4 10.21658 1929.193 1726.14 10.1642977 32 

5 17.75733 2175.757 1842.17 8.1591533 40 

6 15.81957 2161.254 1842.17 8.12246389 40 

7 28.25173 2306.291 1668.125 9.58317309 48 

8 26.486 2335.299 1813.163 9.19353791 48 

9 33.31467 2277.284 1784.155 12.3618401 48 

10 27.95173 2219.269 1682.629 10.6397664 48 

11 24.92027 2248.276 1813.163 8.19165919 48 

12 28.25173 2233.772 1682.629 9.59713855 48 

13 28.886 2248.276 1813.163 8.52957077 48 

14 32.31467 2262.78 1769.652 9.83619523 48 

15 28.25173 2233.772 1682.629 10.1493755 48 

16 38.84613 2422.321 1958.201 6.45991707 56 

17 45.90907 2378.81 1755.148 6.01406257 56 

18 49.44053 2364.306 1639.118 6.17104993 56 

19 38.84613 2451.329 1871.178 8.46016682 56 

20 42.3776 2349.803 1827.667 6.32590077 56 

21 43.10907 2335.299 1784.155 7.25589071 56 

22 44.14333 2422.321 1871.178 6.937611 56 

23 42.92445 2480.337 1755.148 7.37425227 56 

24 43.43704 2451.329 1784.155 7.37425227 56 

25 52.972 2335.299 1784.155 8.03917264 64 

26 54.6212 2393.314 1932.704 8.03917264 64 

27 42.90907 2364.306 1900.186 8.20099442 64 

28 52.44053 2335.299 1648.976 7.84653346 64 

29 51.972 2378.81 1972.704 7.6842555 64 

30 45.90907 2277.284 1929.193 6.64752115 64 

31 49.44053 2407.818 2001.712 8.30026472 64 

32 51.772 2349.803 1842.17 7.62098402 64 

33 49.44053 2306.291 1900.186 6.95830082 64 

34 53.00627 2262.78 1856.674 6.27312956 68 

35 47.20627 2306.291 1885.682 7.85792725 68 

36 48.72508 2248.276 1871.178 6.64273911 68 

37 51.20627 2219.269 1842.17 8.19235665 68 

38 43.6748 2088.735 1885.682 5.27413503 72 

39 47.6748 2074.231 1827.667 5.71836411 72 
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III.6 Conclusion: 

In this chapter, the parameter extraction of gas flow rate model problem has been discussed. The 

illustrated results indicate that the performance of the optimization algorithms, DE (Differential 

Evolution) and ACO (Ant Colony Optimization) is meanly influenced by the NP (Population Size) 

parameter. It has been observed that, increasing NP for DE application leads to the best 

performances, while decreasing NP favors ACO in terms of results. However, DE demonstrates its 

strength in reaching satisfactory solutions with fewer iterations or NFE (Number of Function 

Evaluations) which means less computational time.  
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General conclusion: 

In conclusion, the gas flow rates from condensate reservoirs through wellhead choke has been 

successfully predicted by this study using differential evolution (DE) where satisfactory results 

were extracted. 

In this study we have seen many models of gas flow rates prediction but only two of them have 

been selected Leal et al (2013) and S.Seidi et al (2015)  according to the available data’s which are 

the 72 dataset from GTFT (Ilizi) and 39 dataset from several wells (province of Iran), where both 

of models have been extracted from the first model Gilbert (1954). 

A lot of optimization strategies have been explored as well while the selected one was standard 

(DE), the reason behind selecting it is its rapidity in reaching the optimal result which means saving 

more time. The algorithm parameter setting were chosen after experiments where five proposal 

parameter setting by several studies have been tested and the best results were Cr=0.9, F=0.5 and 

NP=150. 

DE algorithm efficiently explores the search space and effectively exploits potential solutions, 

ultimately resulting in faster optimization. These findings highlight the importance of selecting the 

appropriate algorithm and parameter values based on the specific optimization problem at hand, 

considering the trade-off between exploration and exploitation. After experiments by using (DE) 

in this study, we reached good results represented in the performance of the algorithm (choosing 

the best parameter setting) and finding the best constants values for both models (Leal and Seidi) 

using for each model  (GTFT and Fars province of Iran) data’s, respectively. A noticed 

improvement in the results of the values obtained comparing by the values proposed in the previous 

studies, which indicates the success of this study. 

The obtained results which represented in extracting the unknown parameters (β1 to β5) for Leal 

model and (a,b,c and d) for Seidi model, gave a better performance in predicting the gas flow rates 

where the error (OF) has minimized from 0.3042 to 0.2875 for Leal model comparing by the ACO study 

and from 0.9700 to 0.4595 for Seidi model comparing by Seidi and ACO studies. 
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