
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

UNIVERSITY OF KASDI MERBAH

OUARGLA

Faculty of Mathematics and Sciences of matter

DEPARTMENT OF MATHEMATICS

END OF STUDY MASTER THESIS

Speciality : Mathematics

Option : Modeling and Numerical Analysis

Prepared by : Imane Bendaoud

Theme

Approximation Theory via Deep Neural Networks

and some applications

Publicly supported on: 27/06/2023

Before the jury:

Mr.Chacha A.Djamal Prof. University of Kasdi Merbah-Ouargla Chairman

Mr.Merabet Ismail Prof University of Kasdi Merbah-Ouargla Examiner

Mr.Bensayah Abdallah M.C.A University of Kasdi Merbah-Ouargla Supervisor

Promotion : 2022/2023

Dedication

In the name of Allah, the most gracious, most merciful, all the praise is due to him

alone, the sustainer of the entire world.

This work is sincerely dedicated

to my parents,

to the soul of my dear uncle and grandfather

to all my family

1

Acknowledgments

My deepest and most sincere thanks go to the Almighty Allah for giving me the

opportunity to carry out my studies, the strength and capacity to complete this work..

I would like to address my most sincere thanks to my supervisor, Mr.Bensayah

Abdallah, this work would not have been accomplished without his vivacious guidance,

constant support, and invaluable advices.

I would like to thank my bestfriend Sabrine Khelifa for her help, her encouragement

when i was very disappointed and stressed.

All thanks and appreciation go to the members of the jury who devoted their precious

time to read and evaluate this work.

2

Notations

In the n-dimensional unit cube [0, 1]n

C(In) The space of continuous functions on In

Γ Gamma function

σ activation function

θ The ANN parameter: wieghts and biases

Lθ Loss function

T Training points set

Td d-dimensional torus

3

Abbreviations

ANN Artificial Neural Network

FNN Feed Forward Neural Network

MLP Multi-Layer Perceptron

SGD Stochastic Gradient Descent

ReLU Rectified Linear Units

PINN Pysics Informed Neural Network

L-BFGS The Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm

Adam Adaptive Moment Estimation

MSE Mean ‘Square Error

lr learning rate

4

Contents

Dedication 1

Acknowledgments 2

Symbols 3

Abbreviations 4

Introduction 6

1 Preliminairies 8

1.1 Fractional calculus . 8

1.1.1 Some spacial functions . 8

1.1.2 Fractional Integrals . 10

1.1.3 Fractional Derivatives . 10

1.1.4 Fractional integrals and fractional derivatives of a function with

respect to another function . 11

1.2 Fractal-Fractional Calculus . 12

1.2.1 Fractal-Fractional Derivative . 12

1.2.2 Fractal-Fractional Integral . 13

1.3 Some useful theorems . 13

2 Introduction to Artificial Neural Network 15

2.1 Artificial Neural Network . 15

5

CONTENTS

2.1.1 The Perceptron . 16

2.1.2 Feed-Forward Neural Network (FNNs) 16

2.1.3 Activation Function . 17

2.1.4 Backprobagation (Training phase) 19

2.2 Universal Approximation Property of ANN 20

2.2.1 Some relevant density theorems . 22

2.3 Error estimation results . 24

2.4 PINNs and deepxde library . 27

2.4.1 Physics Informed Neural Network 27

2.4.2 Trainig the PINN . 28

2.4.3 Application Library: DeepXde . 31

3 Applications of Artificial Neural Network in Approximation 33

3.1 Heat Equation . 33

3.2 Second Order ODE . 34

3.3 Volterra Integration Differential Equation 35

3.4 Diffusion equation with hard initial and boundary conditions 36

3.5 Fractional Boundary Value Problem of nonlinear functional equation . . . 37

3.5.1 Approximation of the solution via artificial neural networks 38

3.6 Fractional integro-differential value problem 40

3.6.1 Approximation of solution via ANN 41

3.7 Fractal-fractional order mathematical model on the spread of Coronavirus

(COVID-19) . 42

3.7.1 Approximation of the solution via artificial neural networks 43

Conclusion 45

6

Introduction

The field of Approximation Theory has long been a central focus in mathematics, aiming to

find effective methods for representing complex functions with simpler, more manageable

models. This theory has numerous applications in science, engineering and other fields.

In recent years, the emergence of Artificial Neural Networks (ANNs) has revolution-

ized the landscape of Approximation Theory, offering a powerful and versatile tool for

accurately approximating functions with unprecedented precision due to their ability to

learn from data.

This thesis explores the utilization of ANNs within the context of approximation

theory, delving into their capabilities, methodologies, and applications.

The motivation behind this research lies in the potential of ANNs to overcome the lim-

itations of traditional approximation techniques when dealing with highly nonlinear and

intricate functions. The key behind ANNs is their ability to approximate any continuos

functions that were previously deemed challenging or computationally demanding. This

property has been extensively studied in the literature, and several seminal works have

contributed to our understanding of the approximation capabilities of neural networks.

In 1989, Cybenko demonstrated in his paper ”Approximation by superpositions of a

sigmoidal function [?] that a single hidden layer feedforward neural network with sigmoid

activation functions can approximate any continuous function to arbitrary precision. This

result is known as the Universal Approximation Theorem and has been a cornerstone of

neural network research ever since. Later, Hornik extended Cybenkos result by show-

ing in his 1991 paper Approximation capabilities of multilayer feedforward networks [?]

that a neural network with multiple hidden layers can also approximate any continuous

7

CONTENTS

function to arbitrary accuracy given a sufficient number of neurons. This result was fur-

ther strengthened by Leshno et al. in their 1993 paper Multilayer feedforward networks

with a nonpolynomial activation function can approximate any function [?], where they

demonstrated that a neural network with a nonpolynomial activation function can also

approximate any function to arbitrary precision.

In the decades that followed, researchers have continued to investigate the approxima-

tion capabilities of neural networks, exploring the role of network architecture, activation

functions, and regularization techniques in determining their expressive power. More re-

cent works like Kratsioss 2020 paper The Universal Approximation Property provides a

comprehensive review of the approximation capabilities of various neural network archi-

tectures, while Lu et al.s 2017 paper The expressive power of neural networks: A view

from the width [?] investigates the relationship between network width and approximation

power. Hanin and Sellkes 2019 paper Approximating continuous functions by ReLU nets

of minimal width [?] and Kidger and Lyonss 2020 paper Universal Approximation with

Deep Narrow Networks [?] both focus on the approximation capabilities of deep narrow

neural networks with ReLU activation functions.

This thesis is split into three main chapters as follows: The first chapter is devoted

to recalling some notions and basic concepts in fractional calculus, and citing theorems

that are used in the following chapters.

The second chapter is intended to explore the underlying principles of Approximation

Theory via Artificial Neural Networks, discuss the different types of ANNs that exist and

their respective architectures, the next section covers the main result of density in ANN,

known as the universal approximation property, discuss its implications for approximation

theory, review some error estimation results and finishing with exploring the application

library DeepXde.

And in the third chapter, we provide numerical simulations using PINNs and Deep-

Xde on ODE, IDE, PDE equations, some frational value problems and fractal-fractional

equations system.

8

Chapter 1

Preliminairies

1.1 Fractional calculus

In this section, we present some definition and some primitive notions of fractional calcu-

lus.

1.1.1 Some spacial functions

Special function play an important role in the theory of differentiation of arbitrary order

and in the theory of fractional differential equations.

Gamma Function

Gamma function is a commonly used extension of the factorial function to complex num-

bers. It is defined for all complex numbers except non-positive integers.

For complex numbers with a positive real part, the gamma function is defined via a

convergent improper integral.

Definition 1.1 [?] The Gamma function Γ(z) is defined by the integrals

Γ(z) =

∫ ∞

0

tz−1e−tdt, (Re(z) > 0) (1.1)

where tz−1 = e(z−1)log(t)

9

CHAPTER 1. PRELIMINAIRIES

One of the basic properties of the gamma function is that it satisfies the following

functiorial equation:

Γ(z + 1) = zΓ(z) (1.2)

The Gamma function is extended to the half-plane Re(z) ≤ 0 by:

Γ(z) =
Γ(z + n)

(z)n
, (Re(z) > −n; n ∈ N /∈ Z−

0 = {0,−1,−2, ...}). (1.3)

Here (z)n is the Pochhammer symbol, defined for complex z ∈ C and non-negative integer

n ∈ N0 by

(z)0 = 1 and (z)n = z(z + 1)...(z + n− 1) (n ∈ N) (1.4)

Equations 1.2 and 1.4 yield

Γ(n+ 1) = (1)n = n! (n ∈ N) (1.5)

Beta Funcion

Definition 1.2 [?] The Beta function is usually defined by

B(z, w) =

∫ 1

0

τ z−1(1− τ)w−1dτ, (Re(z) > 0, Re(w) > 0) (1.6)

The relationship between the Gamma function and the Beta function

The Beta function is connected with the Gamma functions by the relation

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
(z, w /∈ Z−

0) (1.7)

10

CHAPTER 1. PRELIMINAIRIES

1.1.2 Fractional Integrals

Riemann-Liouville fractional integrals

Definition 1.3 [?] The Riemann-Liouville fractional integrals Iαa+f and Iαa−f of order α ∈

C(Re(α) > 0) are defined by

(Iαa−f)(x) =
1

Γ(α)

∫ x

a

f(t)dt

(x− t)1−α
(x > α; Re(α) > 0) (1.8)

and

(Iαa+f)(x) =
1

Γ(α)

∫ b

x

f(t)dt

(t− x)1−α
(x < b; Re(α) > 0) (1.9)

respectively. Here Γ(α) is the Gamma function 1.1.

These integrals are called the left-sided and the right-sided fractional integrals.

1.1.3 Fractional Derivatives

Riemann-Liouville fractional derivatives

Definition 1.4 [?] The Riemann-Liouville fractional derivatives Dα
a+y and Dα

b−y of order

α ∈ C(Re(α) ≧ 0) are defined by

(Dα
a+y)(x) =

1

Γ(n− α)
(
d

dx
)n

∫ x

a

y(t)dt

(x− t)α−n+1
(n = [Re(α)] + 1; x > a) (1.10)

and

(Dα
b−y)(x) =

1

Γ(n− α)
(− d

dx
)n

∫ b

x

y(t)dt

(t− x)α−n+1
(n = [Re(α)] + 1; x < b) (1.11)

respectively, where [Re(α)] means the integral part of Re(α)).

11

CHAPTER 1. PRELIMINAIRIES

In particular, when α = n ∈ N0, then

(D0
a+y)(x) = (D0

b−y)(x) = y(x) (1.12)

and

(Dn
a+y)(x) = y(n)(x); (Dn

b−y)(x) = (−1)ny(n)(x) (n ∈ N) (1.13)

where y(n)(x) is the usual derivative of y(x) of order n.

Caputo fractional derivative

Definition 1.5 [?] Let t ∈ [a, b] be a finite interval of the real line R, and let (Re(α) ≧ 0).

If y(x) ∈ ACn[a, b], then the Caputo fractional derivative (cDα
a+y)(x) and (cDα

b−y)(x) exist

almost everywhere on [a, b] .

If α /∈ N0, (cDα
a+y)(x) and (cDα

b−y)(x) are represented by

(cDα
a+y)(x) =

1

Γ(n− α)

∫ x

a

y(n)(t)dt

(x− t)α−n+1
=: (In−αa+ Dny)(x) (1.14)

and

(cDα
b−y)(x) =

(−1)n

Γ(n− α)

∫ b

x

y(n)(t)dt

(t− x)α−n+1
=: (−1)n(In−αb− Dny)(x) (1.15)

respectively, where D = d/x and n = [Re(α)] + 1

1.1.4 Fractional integrals and fractional derivatives of a function with re-

spect to another function

In this section we present the definitions and some properties of the fractional integrals

and fractional derivatives of a function f with respect to another function g.

Definition 1.6 [?] Let (a, b)(−∞ ≦ a < b ≦ ∞) be a finite interval of the real line R

and Re(α) > 0. Also, let g(x) be an increasing and positive monotone function on (a, b],

having a continuous derivative g′(x) on (a, b). The left- and right-sided fractional integrals

12

CHAPTER 1. PRELIMINAIRIES

of a function f with respect to another function g on [a, b] are defined by

(Iαa+;gf)(x) :=
1

Γ(α)

∫ x

a

g′(t)f(t)dt

[g(x)− g(t)1−α]
(x > 0;Re(α) > 0) (1.16)

and

(Iαb−;gf)(x) :=
1

Γ(α)

∫ b

x

g′(t)f(t)dt

[g(t)− g(x)1−α]
(x < b;Re(α) > 0), (1.17)

respectively.

Definition 1.7 [?] Let g′(x) ̸= 0(−∞ ≦ a < x < b ≦ ∞) and Re(α ̸= 0). Also let

n = [Re(α)+1] andD = d/dx. The Riemann-Liouvillle fractional derivatives of a function

y with respect to g of order α (Re(α) ≧ 0;α ̸= 0), corresponding to the Riemann-Liouville

integrals in 1.16 and 1.17 are defined by

(Dα
a+;gy)(x) :=

(1

g′(x)

d

dt

)n
(In−αa+;gy)(x) =

1

Γ(n− α)

(1

g′(x)

d

dt

)n ∫ x

a

g′(t)y(t)dt

[g(x)− g(t)]α−n+1
(x > b)

(1.18)

and

(Dα
b−;gy)(x) :=

(
− 1

g′(x)

d

dt

)n
(In−αb−;g y)(x) =

1

Γ(n− α)

(
− 1

g′(x)

d

dt

)n ∫ b

x

g′(t)y(t)dt

[g(t)− g(x)]α−n+1
(x < b)

(1.19)

1.2 Fractal-Fractional Calculus

1.2.1 Fractal-Fractional Derivative

Definition 1.8 [?] Suppose that y is continuous on an open interval (a, b) with order ν.

Then the fractal-fractional derivative of the function y with order ϱ via the power law

type kernel in the Riemann-Liouville sense is given by

FFPDϱ,ν
a,t y(t) =

1

Γ(n− ϱ)

d

dtν

∫ t

a

(t− x)n−ϱ−1y(x)dx, (n− 1 < ϱ, ν ≤ n ∈ N) (1.20)

13

CHAPTER 1. PRELIMINAIRIES

where the fractal derivative is expressed as

dy(t)

dtν
= lim

t→x

y(t)− y(x)

xν − tϱ

1.2.2 Fractal-Fractional Integral

Definition 1.9 [?] Suppose that y is continuous function on the interval (a, b). Then the

fractal-fractional integral of y with fractional order ϱ and fractal order ν via the power

law type kernel is defined by

FFPIϱ,νa,t y(t) =
ν

Γ(ϱ)

∫ t

a

xν−1(t− x)ϱ−1y(x)dx. (1.21)

1.3 Some useful theorems

Definition 1.10 (discriminatory function)[?] We say that a function σ is discriminatory if

given a measure µ ∈M(In) such that

∫
In
σ(wTx+ b)dµ(x) = 0 ,∀w ∈ Rn, b ∈ R (1.22)

implies that µ = 0

Definition 1.11 [?] We say that u is sigmoidal if

σ(t) →

1 t→ +∞

0 t→ −∞
(1.23)

Lemma 1.1 [?] Any bounded, measurable sigmoidal function is discriminatory. In partic-

ular, any continuous sigmoidal function is discriminatory.

Theorem 1.1 (Hahn Banach Theorem) Let V be a normed vector space, U ⊂ V a subspace

of V . Let L ∈ U∗.Then there exists L′ ∈ V ∗ that extends L to V and satisfies ||L′ ||∗V =

||L||∗U

14

CHAPTER 1. PRELIMINAIRIES

Corollary 1.1 Let V be a normed vector space, U ⊂ V a subspace of V . Let x0 ∈ V such

that d(x0, U) = γ > 0.

Then there exists L ∈ V
′ such that

• ||L||′V = 1

• L(x0) = γ

• L(U) = 0

Theorem 1.2 (Riesz-Representation Theorem) Let L be a bounded linear funtional on

C(In).Then there exists a unique µ ∈M(In) such that

L(h) =

∫
In

h(x)dµ(x)∀h ∈ C(In)

15

Chapter 2

Introduction to Artificial Neural Network

2.1 Artificial Neural Network

Artificial Neural Networks (ANNs) are a type of machine learning model inspired by the

structure and function of biological neurons found on the human brain. The basic idea

is to create a network of simple processing elements, called artificial neurons or nodes,

that can receive input data, process it, and produce output data. ANNs are a subset

of deep learning models, which are neural networks with multiple layers. The history

of ANNs dates back to the 1940s, when Warren McCulloch and Walter Pitts proposed

a mathematical model of a biological neuron. Their model consisted of a simple binary

threshold unit that received input signals and produced an output signal based on whether

the sum of the inputs exceeded a certain threshold.

Figure 2.1: biological neuron

In the following decades, researchers developed various types of artificial neurons and

16

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

architectures for neural networks,such as the perceptron, feedforward networks, and re-

current networks.

To understand the concept of a neuron working, we start with the simplest form of a

neural network: Perceptron

2.1.1 The Perceptron

The perceptron is a type of artificial neural network and one of the earliest and simplest

forms of neural network models. It was proposed by Frank Rosenblatt in the late 1950s

as a binary classifier capable of learning from training data. The perceptron consists of a

single layer of artificial neurons, also known as perceptron units or nodes.

The mathematical model of an artificial neuron is typically based on the concept of a

weighted sum of inputs, followed by a nonlinear activation function.

Definition 2.1 [?] Let d ∈ N. An artificial neuron f : Rd → R with weight w ∈ Rd, bias

b ∈ R and an activation function σ : R→ R is needed as the map

f(x) = σ(w.x+ b) for x ∈ Rd (2.1)

Figure 2.2: Model of an artificial neuron taking an input feature of dimension d = 3.

2.1.2 Feed-Forward Neural Network (FNNs)

Also known as Multi-Layer Perceptron (MLPs), The neurons are typically organized into

multiple layers, an input layer, one or more hidden layers and an output layer.

Definition 2.2 [?] Let L, d, n1, ..., nL ∈ N and n0 := d. A L-layer feedforward neural

network û : Rn0 → RnL with affine linear maps Al : Rnl−1 → Rnl , x 7→ Al(x) = Wlx + bl

with Wl ∈ Rnl×nl−1 , bl ∈ Rnl and activation function σl : R→ R, l = 1, ..., L is defined as

Input layer: û(0)(x) = x ∈ Rd

Hidden layer: û(l)(x) = σl(Wlû
(l−1)(x) + bl) ∈ Rnl for 1 ≤ l ≤ L− 1

17

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

Outout layer: û(x) = Wlû
(L−1)(x) + bL ∈ RnL

where the activation functions are used component-wise. Here, d is the dimension

of the input layer, L denotes the number of layers also called depth of û, n1, ..., nL−1

denote the number of neurons for each of the L− 1 hidden layers, also called width of the

respective layer. If n1 = ... = nL−1 then, ni is called width of û for i ∈ {1, ..., L− 1}. nL

is the dimension of the output layer. The matrices Wl contain the network’s weights and

the vector bl is the biases.

Figure 2.3: Multi-layer Neural Network

Figure 2.3 represent the general ANN architecture, which has 2 neurons in the input

layer, 2 hidden layers each contains 4 neurons and an output layer.

2.1.3 Activation Function

Each neuron typically applies an activation function to the weighted sum of its inputs to

produce an output.The activation function is usually a nonlinear function that introduces

nonlinearity into the network, allowing it to model complex relationships between inputs

and outputs and there are several activation functions of which we note the the common

useful ones:

• The sigmoid function: (also known as Logistic function or Soft step). This is a very

commonly used function that gives only values between 0 and 1, usually indicated

18

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

by

σ(z) = f(z) =
1

1 + exp(−z)

• The hyperbolic tangent function: Tanh has characteristics similar to sigmoid: it is

nonlinear in nature, so we can stack layers. It is also bound to the range [−1, 1].

f(z) =
exp(x)− exp(−x)
exp(x) + exp(−x)

=
exp(2x)− 1

exp(2x) + 1

• The rectified linear unit function: The rectifier is an activation function defined as

the positive part of its argument:

f(z) = max{0, z}

.

Commonly used activation functions are pictured in Figure(2.4)

Function.png Function.bb

Figure 2.4: Common used Activation Function

All hidden layers usually use the same activation function. However, the output

layer will typically use a different activation function from the hidden layers. The choice

depends on the goal or type of prediction made by the model. In a neural network,

the output of one layer of neurons is typically fed as input to the next layer of neurons,

forming a hierarchical structure of processing.

19

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

2.1.4 Backprobagation (Training phase)

The weights and biases of the network are learned through a process called Back-probagation,

which involves adjusting the parameters of the network to minimize a loss function that

measures the difference between the network’s predicted output and the true output. A

loss function indicates how well an algorithm performs on a given data set, by minimizing

this function, we can expect better predictions.

There are several loss functions that are used for machine learning applications accord-

ing to which task they have to solve. Since we have a regression task the mean squared

error (MSE) loss is a proper loss function.

Definition 2.3 [?](MSE Loss)

Let ûθ : Rd → RnL with d, nL ∈ N be a FNN as defined in Definition (2.2). Further,

let Ω ⊂ Rd be a bounded domain and u : Ω → RnL be the desired truth function the FNN

aims to approximate. Then, for a given set of training points T ⊂ Ω the mean squared

error loss is defined as:

LT (θ) =
1

|T |
∑
x∈T

|ûθ(x)− u(x)|2.

The training process of the network under the MSE loss can then be formulated as the

optimization problem:

min
θ

L(θ) (2.2)

with loss function L as defined in definition (2.3) and θ representing the network’s pa-

rameters.

To minimize the loss function, an optimization algorithm is needed in the hopes of

improving the overall performance of the network on unseen data. The minimization is

done using a gradient based optimisation algorithm, such as stochastic gradient descent

(SGD), variants of SGD include Adaptive learning rate methods like Adam and RMSprop.

Starting from randomly initialized parameters θ(w, b),at each iteration i in general the

parameters are updated as:

20

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

θi+1 = θi − lr ×∇θiL (2.3)

where θi is the parameter value after the i-th training iteration, lr is an adaptive learning

rate set automatically by the chosen optimizer,it controls the speed of the parameter

update process and the learning speed of the model, thus the parameters are adjusted

according to the results of each training iteration.

After the training phase is complete, the weights of the neural network are solidified

and no longer change during the testing phase. The purpose of the testing phase is to

evaluate how accurate the model is. This is accomplished by providing new data to the

model, so the testing samples must be kept separate from the training data set. Again,

the networks predictions will be compared to the expected output. But this is done only

with the goal of evaluating the models accuracy, rather than as part of the process for

improving the model itself.

In the next section, we will discuss the universal approximation property of ANNs,

which is a fundamental theoretical result that underlies their success in many applications.

2.2 Universal Approximation Property of ANN

The Universal Approximation Property of artificial neural networks (ANNs) refers to

their ability to approximate any continuous function to arbitrary accuracy, given enough

neurons and appropriate activation functions. It is a key property that highlights the

expressive power of ANNs.

Specifically, the Universal Approximation theorem states that a feedforward neural

network with a single hidden layer can approximate any continuous function on a compact

subset of Euclidean space.

It was first proved by George Cybenko in 1989 and later refined by several other

researchers. It has since become a cornerstone result in the theory and practice of neural

networks, contributing to their widespread adoption and exploration in various fields.

21

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

Theorem 2.1 [?] (Cybenko) Let σ be any continuous discriminatory function. Then finite

sums of the form:

G(x) =
N∑
j=1

αjσ(w
T
j x+ bj) (2.4)

where wj ∈ Rn, αj, bj ∈ R are dense in C(In). In other words, given any ϵ > 0and

f ∈ C(In), there is a sum G(x) of the above form such that

|G(x)− f(x)| < ϵ, ∀x ∈ In (2.5)

Proof: Let S ⊂ C(In) be the set of functions of the form (2.4), we want to prove that

R := S̄ = C(In).

Clearly S is a linear subspace of C(In). Suppose that R ⊊ C(In), that is ∃f ∈ C(In) such

that d(f,R) > 0.

By the corollary of Hanh-Banach, ∃L bounded linear functional on C(In) such that L ̸= 0,

but L(R) = L(S) = 0. By the Riesz Representation theorem ∃!µ ∈M(In) such that

L(h) =

∫
In

h(x)dµ(x),∀h ∈ C(In) (2.6)

Since L(R) = 0 and since σ(wTx+ b) ∈ R, ∀w, b, then

0 = L(σ(wTx+ b)) =

∫
In

σ(wTx+ b)dµ(x),∀w, b (2.7)

Since σ is discriminatory, (2.7) implies µ = 0, which in turn implies L = 0, and this is

contradiction.

Then, he specialized this result to sigmoidal function, using lemma (1.1). A straight-

forward combination of theorem (2.1) and lemma (1.1) shows that networks with one

internal layer and an arbitrary continuous sigmoidal function can approximate contin-

uous functions wtih arbitrary precision providing that no constraints are placed on the

number of nodes or the size of the weights.

The neural network, used to demonstrate the Cybenkos theorem , has the following

22

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

structure (n-dimensional inputs):

Figure 2.5: n-dimensional neural network

2.2.1 Some relevant density theorems

Hornik showed in his 1991 paper "Approximation capabilities of multilayer feedforward

networks" [?], that it is not the specific choice of the activation function but rather the

multilayer feed-forward architecture itself that gives neural networks the potential of be-

ing universal approximators. This result was further strengthened by Leshno et al. in

their 1993 paper "Multilayer feedforward networks with a nonpolynomial activation func-

tion can approximate any function" [?], where they demonstrated that a neural network

with a non-polynomial activation function can also approximate any function to arbitrary

precision.

In the decades that followed, researchers have continued to investigate the approxima-

tion capabilities of neural networks, exploring the role of network architecture, activation

23

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

functions, and regularization techniques in determining their expressive power. More

recent works have also investigated the role of network width and depth, showing that in-

creasing the number of layers and/or neurons can improve the approximation capabilities

of neural networks.

For example, Zhou Lu et al.s 2017 paper "The expressive power of neural networks: A

view from the width" investigates the relationship between network width and approxi-

mation power, they showed that one can find a neural network that can approximate any

Lebesgue-integrable function on n-dimensional input space with respect to L1 distance if

network depth is allowed to grow.

Theorem 2.2 [?] (Universal approximation theorem for width-bounded ReLU networks)

For any Lebesgue-integrable function f : Rn −→ R, any ϵ > 0, there exists a fully-

connected ReLU network A with width dm ≤ n+4, such that the function FA represented

by this network satisfies:

∫
Rn

|f(x)− FA(x)|dx < ϵ

Hanin and Sellkes 2018 paper "Approximating continuous functions by ReLU nets of

minimal width" [?] and Kidger and Lyonss 2020 paper "Universal Approximation with

Deep Narrow Networks"[?] both focus on the approximation capabilities of deep narrow

neural network, where the first one has shown that deep narrow networks with ReLU

activation function are dense in C(K;Rm) for K ⊆ Rn compact, and require only width

n + m. While the central result of the second one work yields the following universal

approximation theorem for networks with bounded width.

Theorem 2.3 [?] Let ρ : R −→ R be any nonaffine continuous function which is con-

tinuously differentiable at at least one point, with nonzero derivative at that point. Let

K ⊆ Rnbe compact. Then NN ρ
n,m,n+m+2 is dense in C(K,Rm) with respect to the uniform

norm.

This theorem result covers every activation function possible to use in practice, and

24

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

also includes polynomial activation functions, which is unlike the classical version of the

theorem.

The following refinement, specifies the optimal minimum width for which such an

approximation is possible and is due to Sujin Park et al.

Theorem 2.4 [?] For any Bochner-Lebesgue p-integrable function f : Rn −→ Rm and any

ϵ > 0, there exists a fully-connected ReLU network F of width exactly dm = max{n +

1,m}, satisfying ∫
Rn

||f(x)− F (x)||pdx < ϵ

Moreover, there exists a function f ∈ Lp(Rn,Rm) and some ϵ > 0, for which there is no

fully-connected ReLU network of width less than dm = max{n + 1,m} satisfying the

above approximation bound.

2.3 Error estimation results

Error estimation is a key measure in the process of model validation and verification for

neural network. As Artificial neural networks are universal function approximators, it is

also natural to use them as ansatz spaces for the solutions of partial differential equations

(PDEs). In fact, the literature on the use of deep learning for numerical approximation

of PDEs and error estimation has witnessed exponential growth in the last 2-3 years.

Recently,Tim.De Rick, A. D. Jagtap and S.Mishra in their 2022 article [?], have dis-

cussed the error esimation on the case of Navier-Stokes equation, they followed an ap-

proach where they proposed three theoritical questions, the first question about the small-

ness of the PDE residual in the class of neural networks, the second question is about

Here we have the Navier-Stokes equation :

ut + u.∇u+∇p = ν∆u, (x, t) in D × [0, T],

div(u) = 0, (x, t) in D × [0, T],

u(t = 0) = u0, x in D.

(2.8)

25

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

with the residuals:

RPDE[(uθ, q)](x, t) = (∂tuθ + uθ.∇uθ +∇qθ − ν∆uθ)(x, t),

Rdiv[uθ](x, t) = div(uθ)(x, t),

Rt[uθ](x) = uθ(x = 0)− φ(x),

(2.9)

for x ∈ D, t ∈ O = [0, T], where φ : D −→ Rd is the initial condition.

Note that for the exact solution to the Navier-Stokes equations (2.8) it holds that

RPDE[(u, p)] = Rdiv[u] = Rt[u] = 0. Hence, within the ANNs algorithm, one seeks to

find a neural network (uθ, pθ),for which all residuals are simultaneously minimized, e.g.

by minimizing the quantity,

E2
G(θ) =

∫
D×O

|RPDE[(uθ, pθ)](x, t)|2dxdt+
∫
D×O

|Rdiv[uθ](x, t)|2dxdt+
∫
D

|Rt[uθ](x)|2dx.

(2.10)

This quantity refer to the genealisation error of the neural network. However, the quantity

(2.10) involves integrals and can therefore not be directly minimized in practice. Instead,

the integrals are approximated by numerical quadrature, the so-called training loss or

training error θ 7−→ ET (θ,S), resulting in,

ET (θ,S)2 = EPDET (θ,Sint)2 + EdivT (θ,Ss)2 + E tT (θ,St)2

=

Nint∑
n=1

wnint|RPDE[(uθ, pθ)](t
n
int, x

n
int)|2 +

Nint∑
n=1

wnint|Rdiv[uθ](t
n
int, x

n
int)|2

+
Nt∑
n=1

wnt |Rt[uθ](x
n
t)|2 (2.11)

where the training data set S = (Sint,Ss,St) is chosen as quadrature points with respect

to the relevant domain (resp. D × [0, T]and D) and where the wn∗ are corresponding

quadrature weights.

26

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

The authors have shown that there is for sufficiently smooth (Sobolev regular) initial

data, there exists neural networks, with the tanh activation function and with two hidden

layers, such that the resulting PDE residuals can be arbitrarily small

Theorem 2.5 [?] For every N ∈ N, d > 0 and every f ∈ W s,∞([0, 1]d), there exists a tanh

neural network f̂ with 2 hidden layers of width Nd such that for every 0 ≤ k ≤ s it holds

that ,

||f − f̂ ||Wk,∞ ≤ C(ln(cN))kN−s+k

where c, C > 0 are independent of N and explicitly known.

Proof: See [page 740, [?]]

As consequence, they obtained the following result:

Theorem 2.6 Let d, r, k ∈ N, with k ≥ 3, u0 ∈ Hr with r >
d

r
+ 2k and div(u0) = 0. For

every N ∈ N there exists a tanh neural network (uθ, pθ) with 2 hidden layers of width

Nd+1 such that

||RPDE[(uθ, pθ)]||L2 + ||Rdiv[uθ]||L2 + ||Rt[uθ]||L2 ≤ C(ln(cN))2N−k+2

Proof: See [page 9, [?]]

Then, they had shown that neural networks for which the residuals are small, will provide

a good L2 -approximation of the true solution of the Navier-Stokes equation.

Theorem 2.7 Let d ∈ N, D = Td and u in C1(D × [0, T]) be the classical solution of the

Navier-Stokes equation 2.8. Let uθ be a NN with parameters θ, then the resulting L2-error

is bounded as follows

||u− uθ||2L2 ≤ C
(
||Rdiv||L2 + ||RPDE||2L2 + ||Rs||L2

)

Proof: See [page 12, [?]]

Combined by Theorem(2.7), they bound the total error in terms of the training error and

27

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

size of the trainig set S, obtained using accuracy of quadrature rules.

Theorem 2.8 Let T > 0, d ∈ N, let (u, p) ∈ C4(Td × [0, T]) be the classical solution of

the Navier-Stokes equation 2.8 and let (uθ, pθ) be a NN with parameters θ. Then the

following error bound holds,

||u− uθ||2L2 ≤ C
(
ET (S) +M

− 2
d

t +M
− 1

d+1

int +M
− 1

d
s

)
where M is the number of quadrature points.

Proof: See [page 15, [?]]

2.4 PINNs and deepxde library

2.4.1 Physics Informed Neural Network

Physics-Informed Neural Networks (PINNs), were first proposed in the 1990s as a machine

learning framework for approximating solutions of differential equations. However, they

were resurrected recently as a practical and computationally efficient paradigm for solving

both forward and inverse problems for PDEs. Since then, there has been an explosive

growth in designing and applying PINNs for a variety of applications involving PDEs.They

were introduced in a 2018 paper by Raissi et al.

The idea behind PINNs is to incorporate physical laws and boundary conditions into

the network architecture. PINNs have been applied to a wide range of problems, includ-

ing science and engineering, including fluid dynamics, materials science, and biomedical

engineering.

28

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

2.4.2 Trainig the PINN

Consider a physical system defined over a domain Ω ⊂ Rd, and governed by a PDE of the

form

F [u(x, t)] = 0, x ∈ ∂Ω, t ∈ [0, T]

B[u(x, t)] = 0, x ∈ ∂Ω, t ∈ [0, T]

I[u(x, 0)] = 0, x ∈ Ω

(2.12)

F is the PDE residual which contains several differential operators, B are the boundary

conditions, and I is the initial condition.

In the framework of physics-informed neural networks, the solution of this forward

problem is represented by a surrogate model uθ(x, t) in the form of a fully-connected

neural network that takes (x, t) as input and returns an approximation for u at this

(x, t) as output. The parameter θ denotes the set of trainable parameters of the network

(w, b) which propagates the input data through its l layers according to the sequence of

operations

z0 = (x, t),

zk = σ(wkzk−1 + bk), 1 ≤ k ≤ l − 1,

zl = wlzl−1 + bl (2.13)

Each layer outputs a vector zk ∈ Rqk , where qk is the number of neurons, and is defined

by a weigt matrix wk ∈ Rqk×qk−1 , a bias vector bk ∈ Rqk , and a nonlinear activation func-

tion σ(.). Finally, the output of the last layer is used to represent the predicted solution

zl = uθ(x, t).

The parameters of the neural network θ =
{
wk, b

}l
k=1

are randomly initialized and

iteratively updated by minimizing the loss function that enforces the PDE. The most

common loss function is the mean squared error (MSE). The PINNs loss function consists

29

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

of three error components, for the prediction of the neural network taking the form

L(θ) = wfLf (θ) + wbLb(θ) + wiLi(θ) (2.14)

where

Lf (θ) =
1

Nf

Nf∑
i=1

|F [ûθ(x, y)]|2 (2.15)

Lb(θ) =
1

Nb

Nb∑
i=1

|B[ûθ(x, y)]|2 (2.16)

Li(θ) =
1

Ni

Ni∑
i=1

|I[ûθ(x, y)]|2 (2.17)

Here Lf (θ), Lb(θ) and Li(θ) penalize the residuals of governing equations, the boundary

conditions and the initial conditions, respectively with weights wf , wb, wi and Nf , Nf and

Nf are the numbers of data points for different terms.

In fact, when looking at the PINN loss, the term wfLf (θ) acts as regularization with

regularization parameter wf in order to penalize those parameters θ which would lead to

solutions not satisfying the PDE.

One advantage of PINNs by choosing neural networks as the surrogate of u is that we

can take the derivatives of û with respect to its input x by applying the chain rule for

differentiating compositions of functions using the automatic differentiation (AD), which

is conveniently integrated in machine learning packages, such as TensorFlow and PyTorch

A critical underpinning of PINNs is the use of automatic differentiation (AD) to com-

pute the loss (2.14). By using the chain rule to compose the derivatives of successive

algebric operations, AD calculates the exact derivatives of the network output uθ(x, t)

with respect to its inputs x and t. Thus, the various loss components in (2.14) can be

computed exactly without inheriting the truncation error incurred by standard numerical

discretization schemes. Another advantage of computing derivatives with AD is that the

residual points {xi, ti}Nr
i=1 can be chosen arbitrarily, conferring PINNs their convenient

mesh-free nature.

30

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

Now, we can find an optimum set of values θ∗ that minimizes (2.14), by using gradient-

based optimization, and the gradients of the loss function with respect to the weights are

computed using backpropagation. The weights are then updated using the computed

gradients (2.3) and a learning rate parameter that determines the step size of the update.

Tracking the behavior of the loss function L(θ) allows the NN to adjust its internal pa-

rameters towards the values that lead to a smaller loss and thus to the best approximation

of the PDE output by the NN.

(5).png (5).bb

Figure 2.6: Neural network architecture diagrams of PINNs for investigating PDE solution

Here, we have an outline of an algorithm for training an ANN for PDE approximation

using physics-informed neural networks (PINNs):

Taining an NN for PDE approxipmation Algorithm

1. Choose a suitable ANN architecture, including the number of layers, number of

nodes per layer, and activation functions.

2. Formulate the PDE and its boundary conditions as a loss function, which measures

31

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

the difference between the predicted solution of the PDE and the true solution at

the given input points.

3. Choose a suitable optimization algorithm, such as Adam or SGD.

4. Divide the available data into a training set and a testing set.

5. Iterate the following steps until convergence or a stopping criterion is met:

(a) Sample input points from the domain of the PDE and its boundary conditions,

as well as from the training data (if available).

(b) Feed the input points into the network.

(c) Compute the gradients of the loss function with respect to the weights using

automatic differentiation.

(d) Update the weights using the computed gradients and the chosen optimization

algorithm.

6. Evaluate the performance of the trained network using a testing set or by solving

the PDE at new input points.

2.4.3 Application Library: DeepXde

DeepXDE (Deep eXtreme Diffirential Equation) is a deep learning library specifically

designed for solving partial differential equations (PDEs) using neural networks. It is

an open-source Python library that provides a high-level interface for training neural

networks to approximate solutions to PDEs.

DeepXDE makes the code stay compact and nice, resembling closely the mathemat-

ical formulation. Solving differential equations in DeepXDE is no more than specifying

the problem using the build-in modules, including computational domain (geometry and

time), PDE equations, boundary/initial conditions, constraints, training data, neural net-

work architecture, and training hyperparameters. The workflow is shown in the following

Procedure [?]:

32

CHAPTER 2. INTRODUCTION TO ARTIFICIAL NEURAL
NETWORK

1. Specify the computational domain using the geometry module.

2. Specify the PDE using the grammar of TensorFlow.

3. Specify the boundary and initial conditions.

4. Combine geometry, PDE and BCs/ICs together into data.PDE or data.TimePDE

for time-independent or time-dependent problems, respectively. Specify the training

data by either set the specific point locations or only set the number of points.

5. Construct a NN using the maps module.

6. Define a Model by combining the PDE problem in 4 and the NN in 5.

7. Call Model.compile to set the optimization hyperparameters such as optimizer and

learning rate. The weights wf , wb can be set here by loss-weights.

8. Call Model.train to train the network from random initialization or a pretrained

model using the argument model-restore-path. It is extremely flexible to monitor

and modify the training behavior using callbacks.

9. Call model.predict to predict the PDE solution at diferent locations.

33

Chapter 3

Applications of Artificial Neural Network in

Approximation

In this chapter we’re going to apply the artificial neural network on some equations, prob-

lems and systems to see the performance of the method on solution approximation.

To illustrate the use of PINNs and deepxde, we provide some examples of numerical

simulations of PDEs.

3.1 Heat Equation

Consider the one-dimensional heat equation:

∂u

∂t
= α

∂2u

∂x2
x ∈ [−1, 1], t ∈ [0, 1]

u(0, t) = u(1, t) = 0

u(x, 0) = sin(πx)

(3.1)

where u(x, t) is the temperature at position x and time t, α is the thermal diffusivity,

where α = 0.4

The exact solution is: e−π20.4t sin(πx)

34

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

To solve this equation with PINNs and deepxde, we first define a neural network

that takes as input (x, t) and outputs the temperature u(x, t). We then train the neural

network to minimize the loss function:

L =
1

N

N∑
i=1

|u(xi, ti)− ui|2 +
1

M

M∑
j=1

|gi(xj, tj)|2,

where N is the number of data points, M is the number of boundary conditions, ui is

the temperature at (xi, ti) from the training data, gj(xj, tj) are the boundary conditions.

The network is constructed of 2 inputs, 3 hidden layers, each one contains 20 neurons and

an output u. The optimizer used in this structure is Adam with learning rate (lr = 1e−3)

After we continue to train the network using L-BFGS optimizer to achieve a smaller loss.

Here are the results:

(a) The loss history (b) The predicted solution

3.2 Second Order ODE

We have the following ODE system:
y′′(t)− 10y′(t) + 9y(t) = 5t, t ∈ [0, 0.25]

y(0) = −1, y′(t) = 2

with the exact solution: y(t) =
50

81
+ 59t+

31

81
e9t2et.

We define a fully connected feedforward neural network with 3 hidden layers of 50

neurons each, using the hyperbolic tangent activation function and Glorot uniform weight

35

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

initialization. We compile the model using the Adam optimizer with a learning rate of

0.001, we also compute the L2 relative error as a metric during training.

Here are the results:

loss.png loss.bb

(a) The loss history

sol.png sol.bb

(b) The predicted solution

3.3 Volterra Integration Differential Equation

Cosnider the following Volterra IDE:

dy

dx
+ y(x) =

∫ x

0

et−xy(t)dt (3.2)

with the initial condition y(0) = 1

Our neural network is constructed of 3 hidden layers with 20 neurons each with tangent

hyperbolic activation function and Glorot uniform weight initialization. We compile the

model using Adam optimizer.

Here are the result of the model:

36

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

10000.png 10000.bb

Figure 3.3: The predicted solution and The exact solution

3.4 Diffusion equation with hard initial and boundary condi-

tions

∂y

∂t
=
∂2y

∂x2
− e−t(sin(πx)− π2sin(πx)), x ∈ [−1, 1], t ∈ [0, 1] (3.3)

and the Dirichlet boundary condition y(1, t) = y(1, t) = 0

Here, we use a fully connected tangent hyperbolic neural network of depth 4 (i.e., 3

hidden layers) and width 32. We compile the model using Adam optimizer with learning

rate of 0.001. We then train the model for 10000 iterations. Here are the predicted

solution of (3.3)compared to the exact solution.

(a) The loss history (b) The predicted solution

37

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

3.5 Fractional Boundary Value Problem of nonlinear functional

equation

Consider the following problem

Dσ1,ψ

0+ (Dσ2,ψ
0+ u)(t) = h(t, u(t)), t ∈ [0, 1],

u(0) = 0, u(1) = λIσ3,ψ0+ g(ξ, u(ξ)),

(3.4)

where 0 < σ1, σ2, ξ < 1, σ1+σ2 > 1 and h, g : [0, 1]×R→ R, are two continuous functions,

Dσ,ψ
0+ is the ψ-Riemann-Liouville fractional derivative of order σ ∈ {σ1, σ2} which is defined

on chapter 1, which depends on an increasing function ψ, Iσ3,ψ0+ is the ψ-Riemann-Liouville

integral of order σ3 > 0 and λ > 0.

Proposition 3.1 [?] Let 0 > σ1, σ2, ξ < 1, σ1 + σ2, λ, σ3 > 0, and h, g : [0, 1]× R→ R are

two continuous functions. Then the fractional boundary valus problem (3.4) is equivalent

to the following integral equation

u(t) =
1

Γ(σ1 + σ2)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))σ1+σ2−1h(s, u(s))ds

− [η(t)]σ1+σ2−1
[1

Γ(σ1 + σ2)

∫ 1

0

ψ′(s)(ψ(1)− ψ(s))σ1+σ2−1g(s, u(s))ds

− λ

Γ(σ3)

∫ ξ

0

ψ′(s)(ψ(ξ)− ψ(s))σ3−1g(s, u(s))ds
]

(3.5)

where η(t) =
(ψ(t)− ψ(0)

ψ(1)− ψ(0)

)σ1+σ2−1

.

Proof: See [page 4, [?]]

Existence and uniquness result

Theorem 3.1 [?] Assume that the following assertions holds

(AS1) There exists a real constant Λ > 0 such that

|h(t, u)− h(t, v)| ≤ Λ|u− v|, t ∈ [0, 1], u, v ∈ R.

38

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

(AS2) There existes an ψ −RL integrable function Θ : [0, 1] → R+ such that

|g(t, u)− g(t, v)| ≤ Θ(t)|u− v|, t ∈ [0, 1], u, v ∈ R.

(AS3) The real constant k satisfies

0 < k =
2Λ(ψ(1)− ψ(0))σ1+σ2

Γ(σ1 + σ2 + 1)
+ λIσ3,ψ0+ Θ(ξ) < 1

Then, the FBVP (3.4) admits a unique solution.

Proof: See[page 6, [?]

3.5.1 Approximation of the solution via artificial neural networks

For our numerical application, we have the following FDP:

D

1
2
,t2

0+ (D
3
4
,t2

0+ u)(t) =
1

4
u(t) +

Γ(2.5)

Γ(1.25)
t
1
2 − 1

4
t3, t ∈ [0, 1],

u(0) = 0, u(1) =
256

3π + 256

∫ 1
2

0

s(
1

4
− s2)

−1
2 (2 + u(s))ds,

(3.6)

In this structure we have:

ψ(t) = t2, =
1

2
, σ1 =

1

2
, σ2 =

3

4
, σ3 =

1

2
, λ =

128
√
π

3π + 256
,

h(t, u(t)) =
1

4
u(t) +

Γ(2.5)

Γ(1.25)
t
1
2 − 1

4
t3 and

g(t, u(t)) = 2 + u(t)

Applying the density result of Theorem (2.3) to the solution u of the integral equation

(3.5) and its compact fixed point formulation Fu(t) = u(t) where F : Y → Y with

Y = C([0, 1],R) equipped with the norm ||u|| = maxt∈[0,1]|u(t)|, is defined by (3.5), states

that for all ϵ > 0, there exists a function uh ∈ NN ρ
1,1,4 such that ||Fuh−uh||∞ < ϵ which

h depends on weights and biases.

39

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

Figure 3.5: The correponding architecture of an artifcial neural networks of functions of
the set NN ρ

1,1,4 with three hidden layers

.

Here are the yielded results:

Figure 3.6: The exact soution compared to its approximate solution. Loss function=
MSE, optimiser = Adam, learning rate = 0.01, number of epochs = 1000

40

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

3.6 Fractional integro-differential value problem

Consider the following IVP:

cDα
0+ϕ(x) +

∑m
i=0 λiϕ

(i)(x) + µh(ϕ(x), ϕ′(x), ..., ϕm(x))

+
∫ b
a
K(x, t)ϕ(t)dt = ξ(x), x ∈ [0, 1], ϕ(0) = d0,

ϕ(0) = d0, ϕ
′(0) = d1, ..., ϕ

(m)(0) = dm,

(3.7)

where m ≤ 1, m < α < m + 1, a, b, µ, λi, di(i = 0, 1, ...,m) are known constant real

numbers, h : Rn+1 −→ R is a continuous function and cDl
0+ stands the Caputo fractional

derivative of order l and K(x, t) is a separable kernel which can be expressed as follows:

K(x, t) = V(x)ϕ(t)

We consider the Banach space B = C2([0, 1],R) (the space of all functions of class

C2 in [0, 1] with values in R endowed with the norm |ϕ| = max
x∈[0,1]

|ϕ(x)|, the operator

G : B → B by:

Gϕ(x) =
2∑

k=0

dk
k!
xk + Iα0+ξ(x)−

λ0
Γ(α)

∫ x

0

(x− s)α−1ϕ(s)ds−
2∑

k=0

λk
Γ(α− k)

∫ x

0

(x− s)α−k−1
(
ϕ(s)

−
1∑
0

dj
j!
sj
)
ds− µ

Γ(α)

∫ x

0

(x− s)α−1h(ϕ(s), ϕ′(s), ϕ′′(s))ds

− 1

Γ(α)

∫ x

0

(x− s)α−1v(s)ds

∫ b

a

ϕ(t)ϕ(t)dt. (3.8)

is equivalent to (3.7).

41

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

3.6.1 Approximation of solution via ANN

Here, we are interested in the following IVP:

cC

5
2
0+ϕ(x) + ϕ′′(x) +

√
|ϕ′(x)|+ 63

√
1 + ϕ(x) + sin

(ϕ′′(x)

6

)
+ ex

∫ 1

0
tϕ(t)dt = ξ(x),

ϕ(0) = −1, ϕ′(0) = 0, ϕ′′(0) = 0.

(3.9)

where ξ(x) =
6

Γ(1.5)

√
x+ (12 +

√
3)x+ sinx− 3

10
ex

Using the density property in the space C2([0, 1],R) of the set of mappings constructed

by (ANN) and the continuity of the operator G and its fixed point equation Gϕ(x) = ϕ(x)

where G is defined by (3.8), one affirms that for any ϵ > 0, there exists a function

ϕh ∈ NN 1,1,4 satisfies

||Gϕh − ϕh||2 < ϵ

which h depends on weights and biases.

Here are the yeilded result:

Figure 3.7: The exact solution compared to its (ANN) approximate solution

42

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

3.7 Fractal-fractional order mathematical model on the spread

of Coronavirus (COVID-19)

Consider the following fractal-fractional order mathematical model on the spread of the

Coronavirus (COVID-19):

FPPDϱ,ν
0,t S(t) = µN(t)− βS(t)I(t)

1 + αI(t)
− µS(t),

FPPDϱ,ν
0,t I(t) =

βS(t)I(t)

1 + αI(t)
− (γ + µ)I(t),

FPPDϱ,ν
0,tR(t) = γI(t)− µR(t),

(3.10)

endowded with the initial conditions

S(0) = S0, I(0) = I0, R(0) = R0

where FPPDϱ,ν
0,t is the fractal-fractional derivative with the fractional order ϱ ∈ (0, 1] and

the fractal order ν ∈ (0, 1] via the power law type kernel. Note that all parameters used

in the model 3.10 are non-negative and the models state functions are defined by

N(t) = S(t) + I(t) +R(t),

where N(t) is the total population at the time t ∈ O := [0, T], (T > 0), βI and 1
1+αI

represent respectively the infection force of the disease and the crowding effect. Moreover,

the parameters µ, γ and β denote respectively, the death rate, the recovery rate and the

transmission coefficient.

The fractal-fractional equations system (3.10) is equivalent to the following integral

equations system:

43

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

S(t) = S0 +
ν

Γ(ϱ)

∫ t
0
vν−1(t− v)ϱ−1Z1(v, S(v), I(v), R(v))dv,

I(t) = I0 +
ν

Γ(ϱ)

∫ t
0
vν−1(t− v)ϱ−1Z2(v, S(v), I(v), R(v))dv,

R(t) = R0 +
ν

Γ(ϱ)

∫ t
0
vν−1(t− v)ϱ−1Z3(v, S(v), I(v), R(v))dv,

(3.11)

where Z1,Z2,Z3 are the second members of the system (3.10).

Existence Result

Theorem 3.2 Let Z ∈ C(O×X,X). Suppose that

(HY1) There exist φ ∈ L1(O, [0,+∞)) and an increasing function B ∈ C([0,+∞), (0,+∞))

such that

∀t ∈ O, and k ∈ X, |B(t, k(t)| ≤ φ(t)B(|k(t)|;

(HY2) There exists α > 0 so that

α > k0 +
ϱT v+ν−1Γ(ϱ

Γ(ϱ+ ν)
φ∗
0B(α),

Then the given fractal fractional model of (COVID-19) (3.10) admits a solution on O.

Uniquness Result

Theorem 3.3 Let the functions S, I, R ∈ C(O,R) and assume that ||S|| ≤ λ1, ||I|| ≤

λ2, ||R|| ≤ λ3, for some constants λ1, λ2, λ3 > 0. Then the given fractal-fractional model

of (COVID-19) (3.10) has a solution if

ϱT ϱ+ν−1Γ(ϱ)

Γ(ϱ+ ν)
li < 1, i ∈ {1, 2, 3}

3.7.1 Approximation of the solution via artificial neural networks

Using the numerical solutions obtained by Adams-Bashforth, we simulate and discuss the

behavior of our mathematical model based on different values of the parameters µ = 0.15,

β = 0.55, α = 0.45, γ = 0.25 and T = 50, with the following initial condition values for

state functions S(0) = 80, I(0) = 40, R(0) = 20.

44

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

Applying the density result of Theorem (2.3) to the solution k of the system of integral

equations (3.11) and its compact fixed point formulation Gk(t) = k(t) where G : X → X ,

X = K×K×K, with K = C(O,R) is defined by

Gk(t) = k(0) +
ν

Γ(ϱ)

∫ t

0

vν−1(t− v)ϱ−1Z(v, k(v))dv (3.12)

where k(0) = k0 = (S(0), I(0), R(0)) and k(t) = (S(t), I(t), R(t))

||k||X = ||(S, I, R)||X = max{|S(t)|+ |I(t)|+ |R(t)| : t ∈ O}

and Z = (Z1,Z2,Z3), it states that for all ϵ > 0, there exists a function kh ∈ NN ρ
1,3,6

such that ||Gkh − kh||2 < ϵ where h depends on weights and biases.

Here are the yielded result:

Figure 3.8: Numerical simulation for fractal-fractional dimension-order ϱ = ν = 0.80 via
two approximation methods. For ANN method, we used: learning rate=0.001, Optimizer
= Adams, Number of epochs = 30000

45

Conclusion and percpective

In this master thesis, we have introduced the concept of Approximation Theory with

Artificial Neural Networks (ANNs), including the universal approximation property of

ANNs, review some error estimation results and providing numerical simulations with

Physics-Informed Neural Networks (PINNs) using the deepxde library on several appli-

cations. Our results show that ANNs are a powerful tool for approximation theory, so it

can be used to approximate functions and solutions of partial differential equations with

high accuracy and efficiency. The use of PINNs and deepxde allows for the incorporation

of physical constraints into the training process, which leads to more robust and accurate

solutions. The study could be extended to use the ANN methods to solve more complex

fractional boundary problems and variational inequalities problems.

46

CHAPTER 3. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK
IN APPROXIMATION

47

	Dedication
	Acknowledgments
	Symbols
	Abbreviations
	Introduction
	Preliminairies
	Fractional calculus
	Some spacial functions
	Fractional Integrals
	Fractional Derivatives
	Fractional integrals and fractional derivatives of a function with respect to another function

	Fractal-Fractional Calculus
	Fractal-Fractional Derivative
	Fractal-Fractional Integral

	Some useful theorems

	Introduction to Artificial Neural Network
	Artificial Neural Network
	The Perceptron
	Feed-Forward Neural Network (FNNs)
	Activation Function
	Backprobagation (Training phase)

	Universal Approximation Property of ANN
	Some relevant density theorems

	Error estimation results
	PINNs and deepxde library
	Physics Informed Neural Network
	Trainig the PINN
	Application Library: DeepXde

	Applications of Artificial Neural Network in Approximation
	Heat Equation
	Second Order ODE
	Volterra Integration Differential Equation
	Diffusion equation with hard initial and boundary conditions
	Fractional Boundary Value Problem of nonlinear functional equation
	Approximation of the solution via artificial neural networks

	Fractional integro-differential value problem
	Approximation of solution via ANN

	Fractal-fractional order mathematical model on the spread of Coronavirus (COVID-19)
	Approximation of the solution via artificial neural networks

	Conclusion

