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ABSTRACT

Deep learning has achieved very high and significant results in many interesting fields, the medical
imaging field is one of these active areas and it is advancing each day. In this work, we are mainly
interested in brain tumor segmentation. Glioma is one of the most common brain tumors, it is
divided according to its grade. MRI images are relevant and commonly used on a wide scale
by scientists in the diagnostic of LGG images this is what makes it recommended for efficient
results. Accurate brain tumor diagnosis and the ability to identify size, location, and shape are
very important to save patients’ lives.

In view of the impressive performance of U-Net architecture in brain tumor segmentation, as
revealed by several literature studies, we propose in this work a U-Net-based architecture for brain
tumor segmentation. In particular, we considered an ensemble learning scheme in which three
pre-trained networks are incorporated to achieve the final decision. These networks are MobileNet,
DeepLabV3+, ResNet, and DenseNet we use them as an encoder part with the U-Net architecture
then ensemble learning is applied in many ways to get the best result. However, our methodology
could be well generalized as well as could be investigated by so many other architectures and meth-
ods. Generally, our obtained results were promising for IOU, Dice-coeff, and accuracy we achieved
0.86, 0.92, and 0.99 respectively thus our followed method improves the importance of applying
deep learning in the brain tumor segmentation domain.

Keywords: Image segmentation, Brain tumor, Pre-trained models, U-Net, CNN.
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RESUME

L’apprentissage en profondeur a obtenu des résultats trés élevés dans de nombreux domaines intéressants
comme le domaine de l'imagerie médicale. Dans ce travail, nous intéressons d la segmentation des tumeurs
cérébrales exactementle Glioma. Les images IRM sont couramment utilisées d grande échelle par les scien-
tifiques dans le diagnostic des images LGG, c’est ce qui les rend recommandées pour des résultats efficaces.
Un diagnostic précis des tumeurs et la capacité d'identifier la taille, I'emplacement et la forme sont trés im-
portants pour sauver la vie des patients. Compte tenu des performances impressionnantes de I'architecture
U-Net dans la segmentation des tumeurs cérébrales, comme révélé par plusieurs études de la littérature, nous
proposons dans ce travail une architecture basée sur U-Net. En particulier, nous avons considéré un schéma
d’apprentissage d’ensemble dans lequel trois des réseaux préformés sont incorporés pour parvenir d la déci-
sion finale. Ces réseaux sont MobileNet, DeepLabV 3+, ResNet et DenseNet nous les utilisons comme partie
codeur avec 'architecture U-Net ensuite, I'apprentissage d’ensemble est appliqué de plusieurs maniéres pour
obtenir le meilleur résultat. En général, nos résultats obtenus étaient prometteurs pour IOU, Dice-coeff et
la précision que nous avons obtenue 0,86, 0,92 et 0,99 respectivement, ainsi notre méthode suivie améliore

l'importance d’appliquer apprentissage profond dans le domaine de la segmentation des tumeurs cérébrales.

Keywords: Segmentation d'image, Tumeur cérébrale, modéles Pré-entinés, U-Net, CNN.
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GENERAL INTRODUCTION
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1.1 Introduction

1.1.1 Background and Motivation

Brain tumors are a significant health concern, contributing to a high global death rate.
They are characterized by the growth of abnormal cells within the human brain. Among
the various types of brain tumors, gliomas are the most common malignant ones. Gliomas
can be further classified into high-grade gliomas (HGG) and low-grade gliomas (LGG)[137].
The World Health Organization (WHO) classifies brain tumors by cell origin and behav-
ior, from least to most aggressive type[72]. The HGGs are particularly threatening, often
limiting the life expectancy of patients to a maximum of two years. On the other hand,
LGGs provide a more favorable prognosis, potentially allowing sufferers to live for many

years [75].

1.1.2 Research Problem

Segmentation of brain tumors from neuroimaging modalities is a crucial step in enhanc-
ing disease diagnosis [37]. However, accurate segmentation of brain tumors poses signif-
icant challenges due to their diverse characteristics, including variable locations, varying
shapes and sizes, and poor contrast [7] this results in overlap with the intensity levels of
healthy brain tissues [38]. Therefore, it is not easy to distinguish healthy tissue from the
tumor. A common approach to address this challenge is to integrate information obtained
from various modalities of Magnetic Resonance Imaging (MRI) such as T1-weighted MRI
(T1), T1-weighted MRI with contrast (T1c), T2-weighted MRI (T2), Fluid-Attenuated In-
version Recovery (FLAIR) MRI [37]. MRI is typically preferred for structural brain analy-

sis as it offers images with high soft tissue contrast and spatial resolution, without posing
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any known health risks [3]. Additionally, MRI offers an in-depth scan that can ease to spot
brain tumors and other infections [7].

Brain tumor segmentation methods can be broadly categorized into three groups based
on the level of human interaction they require: manual, semi-automatic, and fully au-
tomatic segmentation [69], Manual segmentation of brain tumors requires the laborious
task of manually delineating the tumor boundaries and relevant structures, often accom-
plished through drawing or painting [38] making it a time-consuming and subject to rater
variability [37]. Therefore, during the past two decades, there have been hundreds of dif-
ferent algorithms developed for the reliable automatic and semi-automatic segmentation
of brain tumors[69]. However, automated segmentation of brain tumors from multimodal
MR images has become essential for the evaluation and control of the progression of the
disease. This is due to the persistent challenges in accurately segmenting tumors which
are primarily caused by the malignant and heterogeneous characteristics of gliomas. Fur-
thermore, the presence of ambiguous and fuzzy boundaries between cancerous tissue and

normal brain tissue adds to the complexity of the segmentation task [127].

1.1.3 Significance and Scope

In this context, Significant efforts have been dedicated to the development of classical
machine learning for the segmentation of normal (e.g. white matter and gray matter)
and abnormal brain tissues (e.g., brain tumors) in MRI [3]. Deep learning algorithms
excel at tasks such as semantic segmentation due to the ability to learn and extract rel-
evant features automatically, eliminating the need for hand-crafted feature engineering.
By training on large amounts of data, deep learning algorithms demonstrate impressive

results and generalizability [3] while traditional machine learning algorithms often strug-
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gle with generalization and it needs to creation relies on carefully engineered imaging
features and domain-specific expertise. To address these limitations, the medical imag-
ing research community has turned to a promising machine learning technique with deep
learning [65]. Various types of deep learning approaches have been developed for differ-
ent purposes, including object detection and segmentation in images, speech recognition,
and genotype/phenotype detection. In the context of image segmentation and disease
classification, convolutional neural networks (CNNs) are widely applied and recognized
for their effectiveness. In particular, U-Net has emerged as one of the top choices for seg-
mentation, especially in the context of brain tumor segmentation. Its widespread usage in
this domain serves as evidence of its effectiveness and success.

Comparing the performance of different brain tumor segmentation methods and im-
proving the development and evaluation of algorithms has proven challenging due to
variations in input data, types of brain tumors, and clinical stages [37]. As a result, A mul-
timodal Brain Tumor Image Segmentation Benchmark (BraTs) challenge in conjunction
with the International Conference on Medical Image Computing and Computer Assisted
Interventions (MICCAI) focused to assess the state-of-the-art in automated brain tumor
segmentation and compare the different proposed methods [77]. This initiative aimed to
establish a standardized dataset that facilitates fair comparisons among different segmen-

tation methods in the field of brain tumor segmentation.

1.1.4 Objectives and Aims

The aim of this thesis is to develop and implement a deep learning scheme for automatic
segmentation of brain tumors. The performance of different network architectures will

be evaluated through experiments. To achieve this, we will unravel and implement the



CHAPTER 1. GENERAL INTRODUCTION 5

fundamental building blocks of the U-Net structure, with the objective of enhancing ac-
curacy and efficiency in brain tumor segmentation within medical imaging. Additionally,
we aim to reduce the time complexity associated with the segmentation process.

Our contribution to the field of medical image segmentation, particularly in brain tu-
mor segmentation, lies in the exploration and extension of the successful U-Net approach.
Through our experiments, we have made significant advancements by employing ensem-
ble models. These models have yielded remarkable results, with an Intersection over
Union (IoU) of 0.8692, a Dice coefficient of 0.92027, and an accuracy of 0.99901 on the
test data. These findings emphasize the effectiveness of our approach in accurately delin-
eating brain tumors, thus contributing to improved diagnostic capabilities and treatment

planning in clinical settings.

1.2 Image Segmentation

Image segmentation[80] is a sub-domain of computer vision and the processing of dig-
ital images that seek to classify and group related regions or segments of an image[13].
Also, image segmentation is an active technique and it has received great attention from
researchers in several areas. Segmentation is defined as the split of an image (or view) into
areas that correspond to various surfaces. As a result, the segmentation’s borders will be
depth and very specified boundaries[81]. Humans and many other organisms adopt a
mechanism known as visual perception[114][64][94] to fast determine which areas of an
image require detailed processing and which may be disregarded[30]. This enables us to
deal with large amounts of visual information while also efficiently utilizing the capabil-

ities of our visual system. Trying to each computer to see and also understand what they
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are seeing has proven extremely difficult [33]. For computer vision, researchers have to
deal with exactly the same problems, so learning from the behavior of humans provides
a promising way to improve existing algorithms for image segmentation[56]. Image seg-
mentation tasks[48][138][76][52] are categorized into three types based on the amount and

type of information they provide.

(a) image

(c) instance segmentation (d) panoptic segmentation

Figure 1.1: The difference between semantic, instance, and panoptic segmentation[59]

1. Semantic Segmentation:
Semantic segmentation is the process of dividing a given image into numerous visu-
ally significant or interesting regions for further image analysis and visual understanding[84].
Then grouping together image elements that correspond to the same object class see

Figure 1.1.
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2. Instance Segmentation:
Instance segmentation has emerged as a rather significant, sophisticated, and diffi-
cult field in computer vision research. It localizes different classes of object instances
present in distinct images, with the goal of predicting the object class label and the
pixel-specific object instance mask. Instance segmentation is primarily designed to
help robots, autonomous driving, surveillance, and other similar applications[40].
Several instance segmentation frameworks have been proposed with the discovery
of deep learning, mainly convolutional neural networks such as[11][68], Mask R-

CNNJ[43]

3. Panoptic Segmentation:
Panoptic segmentation(PS) combines the traditionally separate tasks of semantic
segmentation (assigning a class label to each pixel) and instance segmentation (de-
tecting and segmenting each object instance)[59]. Panoptic segmentation is currently

being researched to enable get a more detailed understanding of visual situations[32].

1.3 Applications of image segmentation

Image segmentation has received great attention from researchers in several areas and
many interesting applications are using image segmentation[13]. Some of the most im-

portant applications are the following:

1.3.1 Medical imaging:

Medical imaging includes a variety of technologies used to observe the human body in

order to diagnose, monitor, or treat medical conditions[34]. In medical imaging, image
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segmentation is commonly used to recognize and separate certain anatomical features or

diseases see Figurel.2. And here we have some medical images :

—  p—

-

i\

Figure 1.2: An example of medical imaging segmentation

¢ X-Ray segmentation.

CT scan organ segmentation.

¢ Dental instance segmentation.

Digital pathology cell segmentation.

Surgical video annotation.

¢ Brain Tumor Segmentation: In the segmentation of brain tumors, labels are as-
signed to different tissues that share similar characteristics. The process involves
dividing the brain into tumor and non-tumor parts. Within the tumor tissues that
exhibit the same characteristics can be further divided into subcategories, with each

subcategory assigned its own label as illustrated in Figure 1.3.

These labels are assigned to each MRI slice and are used for training and evaluating
the network. It is crucial that these labels are accurately assigned in order to ob-

tain a reliable segmentation network. To ensure the quality of the labeling, multiple
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experts are often involved in the data labeling process. Their expertise helps min-
imize errors and inconsistencies, resulting in more accurate and reliable segmenta-

tion models[63].

Figure 1.3: An example of brain segmentation with Four Distinct Regions Labeled

1.3.2 Robotics

In robotics, image segmentation is used to recognize and detect objects in a scene. It
may be used to segment and monitor the human body[131] image segmentation enhances
machine perception and locomotion by highlighting objects in their direction of motion,

allowing them to change directions effectively and comprehend their surroundings.[13]

1.3.3 Self Driving Cars

Autonomous vehicles feature a number of sensor systems aboard to identify obstructions,
lanes, and available parking spaces, among other things[89][79]. Image segmentation,
which employs camera pictures to identify each pixel, is a commonly used approach in
this discipline. The expected visuals can be utilized to plan the behavior of the vehicle

and avoid collisions[17]. For more understanding see Figure 1.4
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Figure 1.4: An example self driving car[101]

1.3.4 Agriculture

The correct segmentation of crops and weeds in agronomic images has traditionally been
the focus of precision agriculture. Several approaches have been developed, but clean
and crisp segmentation of crops and weeds remains a difficult issue for images with a
significant weed presence[118]. This aids in the detection of weeds at an early stage,
their eradication, the exact use of herbicides, and their management. While removing
soils is a simple procedure, detecting and separating weeds from crops has always been

difficult[73].



CHAPTER 1. GENERAL INTRODUCTION 11

Semantic segmentation using U-Net
Original Image Segmented Image

Adl

Seperated plant & weed

Figure 1.5: An example image segmentation in Agriculture[118]

1.3.5 Smart Cities

One of the major and challenging study fields is the concept of Smart Cities[111]. Smart
Cities often have CCTV cameras for real-time monitoring of pedestrians, traffic, and crime.
With the use of image segmentation, this monitoring may be simply automated[13]. Also,
crimes can be reported more quickly with Al-based surveillance, traffic accidents can be
responded to with quick ambulances, and speeding vehicles can be simply detected and
penalized. That’s why the use of image segmentation monitoring flexibility and stability

enhances people’s lifestyles. Some of the most useful applications in smart cities are:
* Pedestrian detection
e Traffic analytics
¢ License plate detection

¢ Video Surveillance
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1.4 Brain tumor segmentation based on MR images

Medical image segmentation is important in clinical diagnosis, it is a challenging prob-
lem because medical images frequently have poor variations, multiple types of noise, and
missing or diffusive boundaries [24]. The brain’s structure can be scanned by Magnetic
Resonance Imaging (MRI) scan[20] [14][9]or Computed Tomography (CT) scan[4]. For di-
agnosis, an MRI scan is more satisfying than a CT scan because it does not use radiation.
it has no effect on the human body it is based on the magnetic field and radio waves [93].
MRI scans provide high-quality images that are particularly useful for brain tumor seg-
mentation. Brain tumor segmentation from MR images has the potential to significantly
impact diagnostics, growth rate prediction, and treatment planning.

A widely approved imaging protocol for brain tumor MRI acquisition includes the uti-
lization of these four modalities [5], namely T2, T1, T1c, and FLAIR see Figure 1.6, which
are distinct forms of MRI. T2 provides detailed images of brain tissue, T1 highlights the
anatomical structures, T1lc enhances the contrast between tumor and normal tissue after
the administration of contrast agent, and FLAIR suppresses the signal from cerebrospinal
fluid, enabling better visualization of abnormalities. These modalities have gained signif-

icant recognition and are particularly prevalent in the field of brain tumor segmentation.

1.5 Structure of thesis

The rest of this thesis is structured as follows:
In chapter 2, we will take a look at the state of the art in the image segmentation domain
and will review the most important algorithms for image segmentation based on U-Net.

In chapter 3, we will present our methodology, we will start by explaining the base
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(Cy (D)

Figure 1.6: MRI Images (A) T2 (B) T1 (C) T1c (D) FLAIR [12]

method in detail and mentioning its limitations, then we explain our methodology and
how each step works deeply.

In chapter 4, we will describe the experiment steps and environment also the used
evaluation metrics, then we discussed the obtained results.

In chapter 5, the General conclusion is where we draw the conclusion of the thesis, as
it illustrates the main outcome of it and what more can be achieved in future works and

research.



CHAPTER 2

AN OVERVIEW ON THE STATE OF THE ART

14
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To get more knowledge about the primary basics of medical image segmentation in
this chapter we are going to discuss the brain tumor segmentation techniques and steps.
In the first section, we will present brain medical images basically the MRI images. Next in
the second section, we will explain the most common brain tumor segmentation methods
and techniques. After that in the third section, we will explain and compare various U-Net

architectures and variants. Finally, the conclusion of this chapter.

2.1 Methods of Brain Tumor Segmentation

The principal purpose of image segmentation is to divide an image into similar areas
based on a predefined standard. When it comes to brain tumor segmentation, the tumor
is divided into segments by separating the various tumor tissues, such as edema, necrosis,
and active tumor from normal brain tissue such as cerebrospinal fluid (CSF), gray matter
(GM) and white matter (WM)[85].

For brain tumor segmentation, typical segmentation methods are applied to get the objec-
tive measure to define the homogeneity of each tissue. These methods can be divided into

several categories as shown in Figure 2.1

2.1.1 Hybrid techniques

The hybrid technique is one of the most known concepts, it is based on combining and
collecting two or more models in a way that their strengths are combined one to each
another to get better result performance [8]. In the segmentation domain, it is widely used
for getting better segmentation and for more productive and reliable results. As a special

case, the hybrid technique is used for MRI brain tumor segmentation and it achieves very
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Figure 2.1: General methods and techniques for the segmentation of brain tumor images. [85]

good results and still required technique till now [67].

2.1.2 Supervised techniques

Supervised learning is a well-known category of machine learning. It is based on the use
of labeled or named data in the training phase. there are a lot of commonly used su-
pervised methods in the literature such that artificial neural networks(ANN), K nearest
neighbors(kNN) [39], random forests(RF)[6], support vector machines(SVM)[27], and the
superpixel-based segmentation which is a functional method to eliminate small regions
by grouping similar pixels for a quick calculation. The simple linear iterative cluster-
ing (SLIC) method is used as a grouping mechanism. But it was not widely used with
CNNsJ[2]. The superpixel is computationally efficient according to the sampling of image

complexity and a large number of pixels combination. Researchers are working on brain
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tumor segmentation as a supervised segmentation problem they use labels to identify nor-
mal and abnormal tumors[85]. But there are some key limitations like pre-processing of

data and computation time are so big and others are shown in Table 2.1.

2.1.3 Unsupervised techniques

Unsupervised learning is used when the data is unlabeled. This mechanism is used to
solve many problems and cover the miss data identification problem. There are many

algorithms under unsupervised learning we will explore some of them.

1. Clustering-based segmentation : Image segmentation can be interpreted as a clus-
tering approach in which pixels that satisfy a characteristic are grouped into a cluster
while pixels that do not satisfy the set of criteria are placed in different groups[83].
The approach of grouping the data is generally termed clustering which is based on
collecting the pixels which have similar features. The clustering technique can be
divided into two main subcategories, Hard clustering, and soft clustering. Here we

will take some examples of interesting clustering algorithms.

* FCM clustering : Fuzzy C-Means is one of the most famous clustering tech-
niques. For The Brain tumor segmentation domain, it is considered as one of
the base models. Each pixel in the image is classified into all classes by assign-
ing a membership value for each one corresponding to each class center[88]
based on measuring the distance value between the classes center and the pixel
value, which means that each pixel unit can be assigned to one or more classes.
The suppleness of the FCM technique is another advantage when working with

data that has numerous cluster solutions[85]. Also, the FCM clustering algo-
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rithm has produced positive and encouraging results. Via the segmentation
of tumors into numerous tissue classes using various membership classes. It
provides comparatively better outcomes with overlapped pixels than k-means

clustering.

* k-Means clustering : The k-Means clustering algorithm is an unsupervised al-
gorithm for segmenting regions of interest from the background [86]. The the-
ory of K-Means is based on partitioning a data set into k clusters by computing
the distance between each point and the entire k centroid and later assigning
it to the cluster with the minimum length. Also, this is a very expensive calcu-
lation that can lead to inaccurate and poor results, mainly if the value of k is

selected inaccurately[29].

* Markov random field : The MRF also known as the Markov network or under-
acted graphical model is a group of random variables that is a useful method
for incorporating spatial information, context, intensity, texture, and spectral
qualities into the clustering process[85]. So The MRF algorithm is widely used
in image segmentation as a probabilistic approach to reduce the likely prob-
lem of overlapping and the noise effect on the clustering result [122]. The MRF
offers a straightforward and efficient method for representing spatial interde-
pendence in image pixels. It is used to simulate how adjacent pixels are related
to one another. The region is strongly characterized as either a brain tumor or
a non-tumor in the case of brain tumor segmentation, and then MRF assesses
whether the neighboring pixels have similar properties and belong to the same
region (tumor or non-tumor) [85]. Also, Conditional random fields(CRFs) have

been presented as a method to develop probabilistic models to segment and
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label sequence data [62]. The MRF and CRF algorithms can express complex
connections among data instances, providing high precision in the segmenta-
tion of brain tumors[66]. These methods are therefore increasingly being used

in a variety of segmentation tasks[85].

2. Active contour models/deformable models : is one of the most recently applied seg-
mentation techniques it is based on separating the pixel of interest in the image to
do further operations. This method achieves great success in extracting the bound-
aries of brain tumors from 2D MRI images. The majority of 3D image segmentation

methods use model-based segmentation approaches [19].

2.14 Conventional techniques

The conventional segmentation mechanism is based on thresholding, contour-based meth-
ods, and edge detection filters[31]. This technique is usually used for 2D image segmenta-
tion. For the tumor region’s boundaries, they might be drawn with more accuracy. It con-
sists of two common image-processing methods, mainly thresholding-based and region-
based techniques. The conventional technique always asks for enough processing time

and can not work well on 3D images.

1. Thresholding-based technique Its segmentation concept is based on intensity com-
parison it is a simple method to use an efficient way of segmenting data using one
or more intensity thresholds[85]. Using some functions it converts the image from
grayscale to a bi-level background and the object of interest. It is a very important
method in the image segmentation domain Also, it is divided into two main subcat-

egories and techniques global thresholding and local thresholding.
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* Global thresholding When the intensity distribution between foreground and
background objects is highly distinct, the global (single) thresholding approach
is applied. When the distinctions between these items are highly distinct, a sin-
gle threshold value can be used to separate them [8]. Consequently, in this type
of thresholding, the value of threshold T is exclusively determined by the pixel
attribute and the image’s grey level value[57]. The critical problem with the
threshold method is that it is based on the intensity rather than the relationship
between the pixels. As a result, it might not work when the intensity levels of

two or more tissue structures overlap [85].

¢ Local thresholding This method works a local segmentation for every region in
the image by generating a small window and applying a local value of thresh-
old that it means that it used multilevel thresholding. The full image multi-
target segmentation and local threshold selection may both be accomplished
using local threshold segmentation[36]. A single threshold cannot provide bet-
ter segmentation results for any chosen image. Local thresholding algorithms
can provide appropriate thresholds for local image areas including brightness,

contrast, and texture[133].

2. Region-based techniques In comparison to other approaches, region-based seg-
mentation is straightforward and noise-resistant. It separates an image into areas
according to predefined criteria, such as color, intensity, or object[58]. Region-based
segmentation methods are categorized as follows: region expanding, region split-
ting, and region merging[54]. One of the most interesting region-based techniques
is the watershed technique, also known as the watershed transform, which is a math-

ematical morphology-based picture segmentation strategy[124]. The watershed is a
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grayscale dedicated image[97].

2.1.5 Deep learning techniques

The importance of deep learning is increasing day by day and it is applied in many in-
teresting domains and many new ones. In the medical image domain, especially the
brain tumor segmentation widely using deep learning approaches and methods based on
CNNs. Many important CNN-based methods have recently been developed which aim
to develop accurate segmentation approaches that enhance the task of defining tumor
locations. In this part, we will discuss some important architectural CNN-based model

details.

1. Based on fully convolutional network approach : The fully convolutional network
(FCN) was presented by[71], it is an architecture used in semantic segmentation
where they shift the classifiers from basic CNNs to dense FCN layers by exchang-
ing fully connected layers (dense layers). FCN tries to learn representations based
on only local information, but it ignores the image’s overall semantic context which
produces segmentation quite unclear[85]. Consequently, the basic model VGG-16
[116] helped the FCN model to achieve effective results by skipping connections for
fusing the downsampling path used for feature extractions and an upsampling path

used for localization features[85].

2. Based on cascaded CNN approach : A cascaded architecture is one of the newest
deep learning methods for image segmentation, its idea is based on the collection
of some CNN s then the result of each model is combined with the other layers that

it self concatenate a new CNN on the output of the previous network [107]and to
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produce the final result. Cascaded architectures, also known, as are typically more
expensive computationally[55]. This method is proposed to get better results from

models and improve efficiency and accuracy.

3. Based on the top-down/bottom-up approach: In this approach, the base idea is the
uses of encoder-decoder architectures [125]. The main idea in this approach is that
for the segmentation process, we have two paths. The first path operates for fea-
ture extraction for the input image and where the image size will decrease through-
out successive pooling and convolutional layers [128] so the feature map size will
decrease. In the other part, the network will act the upsampling operations in an
opposite manner from the first path increasing the image’s dimensions using decon-
volution layers to produce the localization of the target class and segments. So far,
many essential architectures have been proposed for general medical segmentation
based on a top-down/bottom-up approach, such as the U-Net architecture [102].

This architecture we will talk about in detail in the next section.

2.2 U-Net Network

The U-Net architecture is a U-shaped encoder-decoder network, the abstract representa-
tion of the U-Net contains four encoder-decoder blocks connected by the bridge[102].In
the encoder part, the number of channels is increased and the spatial information will
be reduced. The opposite is in the other part where it reduces the number of filters and
increases the spatial dimensions of the feature maps, the idea is represented in Figure
2.2[121]. In the next section, we will explain well the different parts of the U-Net architec-

ture.
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Methods | Strengths | Limitations
Conventional-based segmentation methods
Thresholding | .. . . These techniques are ineffective for all types
Simple execution whit fast com- . . S .
(global and . of brain MRI images due to the high-intensity
putation time. . . . .
local) variance in image intensity.
Important for any type of seg-
mentation and useful for image | Limited applicability to improving different
linear. tumor regions, and lower performance in het-
Simple and capable of separat- | erogeneous regions.
ing the regions that have similar | Affected by noise and require user interven-
Region attributes and high performance | tion May produce over-segmentation or holes
growing Wa- | in the complicated regions. due to noise or difference in intensity, and re-
tershed The perfect technique for group- | quires a post-processing step.
ing similar pixels in an image | The problem with the watershed is its sensi-
based on their intensity tivity to intensity variations when the image
Divides multiple regions at the | is segmented into several large regions. Over-
same time. segmentation.
ML-based segmentation methods
ANN is highly dependent on
complex and multi-variate non-
. linear domains. Collecting training samples is difficult, and
Artificial . a1 e ;
neural  net- RF is flexible in a classification | the learning phases are generally slow. It re-
work  Ran- problem and uses a rule-based | quires more time for training and is compu-
technique. tationally intensive
dom forest : -
Helps to improve decision tree
accuracy by reducing overfit-
ting.
K-NN is easy to understand, Since all the work is done at rup—tlme, k-
. 7 NN can have poor performance with a large
very time-efficient, and easy to .
K-nearest . . dataset, and the computation would be very
. implement as the only thing that !
neighbor expensive.

needs to be calculated is the dis-
tance between different points.

Sensitive to noise, and the value k affects the
performance of the algorithm.

Support vec-
tor machine

It is more effective for training
generalizable non-linear classi-
fiers in high-dimensional spaces
SVM reduces the number of
misclassifications

Not suitable for large datasets because it
takes a long time to train.
Not suitable when the dataset has more noise

An efficient approach to mini-

The standard convolution operation used on

Iizseeciplxesle- _ | mize the number of image prim- | conventional grids is inefficient when ap-
. 5% | jtives subsequently required for | plied to superpixels.
mentation .
further processing.
Less complex technique.
Determines the degree of mem- . . L
. Not entirely appropriate for situations where
Fuzzy c- | bership of the data for each cat- . 0
regions do not have clearly specified bound-
means (FCM) | egory. :
. . aries.
clustering It can converge the boundaries

of tumors.

Relatively slow and sensitive to noise.

Markov ran-
dom fields

may describe complicated re-
lationships between data in-
stances.

More effective against noise.

It needs computationally expensive.
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Hybrid techniques
Hybrid techniques are aimed
at combining the benefits of
many models into a single ap-
proach. More adaptable and
flexible when dealing with high-
dimensional data.

It requires a high and sophisticated computa-
tional effort.

It depends on the combination of feature se-
lections from different methods.

Hybrid tech-
niques

Deep learning techniques
High performance for intra-
tumor segmentation.
In deep learning techniques,
problems are often solved on an
end-to-end basis, whereas tradi-
tional methods are not able to do
so.

Unreliable for real-time applications and of-
ten requires a post-processing step.

Data labeling can be an expensive and time-
consuming operation.

Deep learn-
ing tech-
niques

Table 2.1: Strengths and Limitations of Brain tumor segmentation methods[85].

1. Encoder path The encoder path is also known as the contracting path in this part the
network must produce the feature map by the application of successive convolutions[39]
each convolution is 3x3 in size, and it is followed by a ReLU activation function[102].
The output of the ReLU is called skip connection it is responsible for providing ad-
ditional information or location information to the corresponding decoder block to
obtain better results and improve the quality of the final segmentation[121]. In ad-
dition to the convolution, downsampling by 2x2 max-pooling is applied that’s what
makes the feature map dimensions reduced by half[102]. In general, this mechanism

reduces the number of trainable parameters[121].

2. Bridge This part is responsible for the connection of the encoder and the decoder
parts[120]. It consists of two 3x3 convolutions in addition to a ReLU activation func-

tion after each one [102].

3. Decoder path Also called the expanding path in this part the result obtained by the
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Figure 2.2: The U-Net architecture[102]

encoder part will be passed here to obtain the segmentation mask [102]. Starting
with 2x2 transpose then the obtained skip connection feature map will be concate-
nated with each layer of this block [130]. In the end, a 1x1 convolution is applied
to the output of the final layer, in addition to the sigmoid activation function which

provides the segmentation mask of the pixel-wise classification[121].

4. Skip Connections : The skip connection in the U-Net architecture is really impor-
tant, so it skips local information from the encoder part to the layers in the decoder
part in a manner that the information will not be lost. It means that it supports the
decoder part to achieve better results[130]. Moreover, the skip connections improve

the network performance to get better result representation and help in the conver-
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gence in a quick way[102].

U-Net has a contracting path to capture features and a symmetrical expanding path to
enable precise information localization[70]. The concept of skip connections is one benefit
of adopting U-Net versus traditional FCN[102]. where it directly concatenates the feature
maps between the two paths and passes feature maps from the contracting path to the
expanding path. The original image data through skip connections can help the layers in
the contracting path recover details [70]. Several research works have been proposed on

the U-Net architecture some of them will be discussed in the next section.

2.2.1 U-Net variants

What makes U-Net so valuable and mostly used for segmentation, is its ability to gen-
erate very detailed segmentation maps from extremely small trade samples. Because
of its context-based learning, U-Net is also faster to train than most other segmentation
models[113]. Given that the potential of U-Net keeps increasing, this section will look at

the many advances in U-Net architecture and we will explain privily some U-Net variants.

1. V-Net
The majority of medical data that is used in clinical practice is in 3D volumes such as
MRI volumes, but most techniques can only analyze 2D images[115]. The V-Net is
suggested to segment 3D images using a volumetric fully convolutional neural net-
work and it could be used for 2D ones also the main difference in this architecture is
that convolution layers are used instead of pooling layers. On their proposition[78],
they based on the idea that max pooling will enforce the model to lose information
so they change it to convolutions without padding to save more information. In this

section, we will explain the V-Net architecture as it is represented in Figure 2.3.
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Figure 2.3: The V-Net architecture [78]

. The left side:This part is divided into different levels each level is based

on the running of one to three convolution layers[115]. Those convolutions
used volumetric kernels of 5x5x5 voxel size [78]. Then from one level to
another, the resolution of the input image is reduced by half using a convo-

lution of 2x2x2 kernel with stride equal to two[18].

The right side: The network uses feature extraction and increases the spa-
tial support of the lower-resolution feature maps in order to gather and
put together the necessary information to output a two-channel volumetric
segmentation. The residual function is learned, similar to the left part of

the network[78]. A deconvolution operation is adopted in order to increase



CHAPTER 2. AN OVERVIEW ON THE STATE OF THE ART 28

the size of the inputs at each stage, including half the number of 5x5x5 ker-
nels used in the previous layer[115]. Finally, in the last convolutional layer,
the last two feature maps are calculated using a 1x1x1 filter to produce an
image of the same input image size and those feature maps will represent

the probabilistic segmentation using the softmax function.

2. Residual U-Net
The residual U-Net(ResU-Net) is a very interesting architecture so it is based on
the benefit from the performance of residual networks[45]. It was founded with
the goal of overcoming the challenges associated with training vastly deep neural
networks such as overfitting and vanishing gradient [46]. At each block in ResU-
Net, the input of each layer is connected to the output of the later layer using a skip
connection. By the application of residual skip connection before downsampling
and upsampling, the network will be allowed to better preserve feature maps in
deeper neural networks as well as improved performance[140]. Each residual unit is
represented by the following calculations let F be the function that represents layer i
to layer i + n. Denote the input for layer i by x first, The residual connection operates
identity mapping to x, then it accomplishes element-wise addition F(x) + x see Figure

24.

3. Attention U-Net

The attention mechanism was introduced by Bahdanau et al. (2014)[10]. It is look-
ing for solutions to two major questions: What to look for and where to look[119], to
improve the performance of the encoder-decoder model for machine translation[25].

In the context of image segmentation, attention is the way of highlighting only the
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Figure 2.4: (a) Plain neural unit used in U-Net and (b) residual unit with identity mapping used in the
proposed ResU-Net[140].

relevant activations during training or the network can pay attention to certain parts
of the image[119]. This is what makes the computational resources reduced and is
not wasted on such irrelevant activations, also it provides the network with bet-
ter generalization efficiency[126]. The attention mechanism comes in two variants,

hard[132] and soft[74] attention.

i. Hard attention: It bases on highlighting relevant regions by splitting the
image or by iterative region proposal. Hard attention is used as the prob-
ability of a region getting selected and it can only choose one region of an

image at a time[109].
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Figure 2.5: A block diagram of the Attention U-Net segmentation model[92].

ii. Soft Attention: For Soft attention, the attention score is used as a weight
in the weighted average context vector calculation[28]. It works by weigh-
ing different regions of the image. regions with high relevance are multi-
plied with a larger weight and regions of low relevance are multiplied with
smaller weights. More focus is given to the regions with higher weights as

the model is trained[61].

A desirable treatment in an image processing network is the capability to focus on
specific objects and areas with high importance while ignoring unnecessary areas.
The attention U-Net achieves this by making use of the attention gate [92]. The at-
tention gate has defined as a unit that learns to focus on target structures of varying
shapes and sizes and trim features that are not relevant to the ongoing task[108]. The
attention gate is associated with each layer in the expansive path through which the
extracted features from the contracting path must pass before they are concatenated

with the upsampled features in the expansive path as it is shown in Figure 2.5[82].
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This successive reputation of the use of an attention gate after each layer will im-
prove the segmentation performance significantly and without the model becoming
overly computationally complex[112]. The network learns to focus on the desired
region as training proceeds. The differentiable nature of the attention gate allows
it to be trained during backpropagation, which means the attention coefficients get
better at highlighting relevant regions[126]. The Attention U-Net has outperformed
a plain U-Net in the overall Dice Coefficient Score. While the Attention U-Net has
more parameters, the inference time is only marginally longer[92].
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Figure 2.6: Schematic of the proposed additive attention gate (AG)[92].

The way the attention gate operates[98] is as follows, see Figure 2.6 Vectors x and
g are the two inputs that the attention gate receives. The vector g, yields from the
next lowest layer of the network. Because it comes from deeper in the network, the

vector has smaller dimensions and better feature representation. In the example in
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Figure 2.6, The dimensions of vector x would be 64x64x64 (filters x height x width)
and vector g would be 32x32x32. The Vector x is convolved with striding so that its
dimensions become 64x32x32 and vector g goes through a 1x1 convolution such that
its dimensions become 64x32x32. The two vectors are summed element-wise, as a
result of this process, aligned weights get larger while unaligned weights become
relatively smaller. The resulting vector is subjected to a ReLU activation layer and a
1x1 convolution, which reduces the dimensions to 1x32x32. This vector is passed by
a sigmoid layer, which scales it between [0,1]. producing the attention coefficients
(weights), where coefficients closer to 1 indicate more relevant features. Using trilin-
ear interpolation, the attention coefficients are upsampled to the original dimensions
(64x64) of the x vector. The attention coefficients are multiplied element-wise to the
original x vector, scaling the vector based on relevance. This is then passed along

normally in the skip connection.

4. Dense U-Net
The idea behind this architecture is that the Dense U-Nets employ DenseNet blocks
instead of regular layers[112]. The most important characteristic of Dense U-Net is
its ability to reduce the number of parameters and it is more efficient in parame-
ter usage[51] also the vanishing-gradient problem[47] will be solved. Dense U-Net
increases feature propagation and encourages feature reuse, the feature maps of all
preceding layers are used as inputs and its own feature maps are used as inputs in all
subsequent layers. This connectivity pattern facilitates feature reuse, strengthens in-
formation flow, enhances the performance of the network, and enables the network

to learn discriminative features effectively as demonstrated by Figure 2.7.
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Figure 2.7: Illustration of dense connections in DenseNet [117]

5. Attention Gate Residual U-Net

At the deeper step of downsampling, the U-Net network has a better feature repre-
sentation capability as it learns more context information[102]. The process of con-
tinuously cascading output maps might cause lost spatial information and location
specifics. To solve this problem they use attention gates that enable them to pay at-
tention to small-scale regions and gather more information about them [92]. Thus
The upsampling procedure is helpful in restoring the location information of small-
scale regions. Additionally, to attention gates they add residual modules into U-
Net architecture to pursue more promising segmentation performance which, when

downsampled, may extract more precise dense feature information and when up-
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sampled can effectively recover spatial information and position features[90]. The
contracting path contains three residuals each one has two convolutional layers
[137], and the PReLU[44] as an activation function instead of the ReLU function
employed in the original U-Net architecture. The expanding path is made up of
three residual blocks and three attention-gate units to improve the salient feature

information.

I_..

Attention Gate

128=128%64
oot o )
128=128%64
128x128x64

ResBlock

Conv 3=3
F
A l o DownSampling

Skip Concatenation

O

ez

64x64x128

4x64x128
L-

=32
256
Nx=32
156
Nx32
x64x
G4

—
>

Gating Signal
16:16
=512

i
\
|

UpSampling
— Conv 1x1 + Softmax

Figure 2.8: The end-to-end network architecture of Attention Gate Residual U-Net [137].

6. MobileNet U-Net

MobileNet is one of the most famous CNN models that is widely used in a lot of
real-world applications. It was developed by Google scientists in 2017, they design
a simple and easy architecture that is suitable to work on mobile devices which have
a limited computation resource [106]. The idea of MobileNet is that it is based on an
architecture that uses depthwise separable convolutions to reduce the complexity

of computation while convolution operations and to build lightweight deep neural
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networks[49]. The difference is that the convolutions apply the kernel on the whole
image which produces a huge number of parameters while the depthwise separable
uses another optimistic method and it is considered a key building block for many
efficient neural network architectures[139]. The depthwise mechanism is a collec-
tion of two layers the depthwise convolution, and the pointwise convolution. As
with so many other architectures, MobileNet is also combined with U-Net to get an
effective network architecture[91] and computational power preserving. It works as
the feature extractor in the encoder part[105] then the U-Net completes the process

by upsampling to decode the feature maps.



CHAPTER 2. AN OVERVIEW ON THE STATE OF THE ART 36

As we see in this chapter the image segmentation domain is a really active one, espe-
cially in the applications of brain tumors. However, it is still an open problem due to the
complexity of brain images as well as the limitation of computational resources, which
provides valuable insights and guidelines for future progress, research, and studies. In
the next chapter, we will go into more detail about very interesting methods which will

be the base of our methodology.
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For the image segmentation domain, it exists many important applications which show
the importance of it in real life. For that, a lot of methods are used competitively. Thus,
it varies from one application to another. For that, we chose to present some of the most
useful pre-trained architectures such as MobileNet, ResNet, DeepLapV3+, and DenseNet.
In this chapter, we will present those architectures in detail. Then we will show some ad-
vantages of those architectures and how we can improve the U-Net model segmentation
based on them. Finally, we will introduce the ensemble models technique and how we

use it in our work.

3.1 Pretrained Architectures

A pre-trained model represents a model or a saved network that has been trained on a
big dataset and a group of learned weights to handle a similar problem[41]. Instead of
training a network from scratch, it can be used as a starting point. Training deep learning
models from scratch can be a time-consuming and computationally expensive process,
particularly for large and complex datasets. This is why we have chosen to focus on pre-

trained models.

3.1.1 Implementation details of the Dense U-Net

In The Dense U-Net architecture presented in Figure 3.1, we combine the DenseNet121
model as its backbone with an encoder section so the DenseNet blocks are used to gradu-
ally reduce the number of features by employing pooling layers within the dense blocks.
These dense blocks are where each layer within a block receives inputs from all preceding

layers refer to figure 2.7. In the decoder module, convolutional transpose layers (con-
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vTranspose) are applied to upsample the reduced input image note Figure 3.1. The de-
coder blocks also incorporate skip connections from the encoder module, which allow
the network to utilize low-level spatial information captured in the early stages of the
encoding process. By combining the upsampled features from the decoder with the skip

connections, the decoder module can reconstruct high-resolution feature maps.
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Figure 3.1: Schematic diagram of proposed Dense U-Net architecture.

Finally, a 1x1 convolutional layer is applied to the reconstructed image, which has the
same dimensions as the input, to perform the segmentation process. The 1x1 conv layer
reduces the number of channels to produce the final segmentation mask. The sigmoid
activation function is used in this layer to ensure that the output values are within the
range of 0 to 1, representing the probability of each pixel belonging to the target class.

Overall, the Dense U-Net architecture leverages the DenseNet121 model’s feature ex-

traction capabilities and incorporates skip connections to preserve spatial information,
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allowing for accurate segmentation of objects in the input image.

3.1.2 Implementation details of the Residual U-Net

We combined the U-Net with ResNet blocks by a pre-trained ResNet50 model is instan-
tiated with weights from the ImageNet dataset. The encoder Module of U-Net consists
of four residual blocks extracted from different layers of the ResNet50 model. Each fea-
ture map captures different levels of abstraction, allowing the model to learn hierarchical

representations of the input image as evident from Figure 3.2.

256x256x3

I— ( — )
I Conv block P 2D Transpose I Conv + softmax

I Downsample residual block I Input - - Skip connection

I Residual block

Figure 3.2: The Implemented Residual U-Net Architecture.

Following the encoding module, decoder modules are employed to up-sample the fea-
ture maps from the encoder section and concatenate them with the corresponding feature
maps from the previous layer This enables the recovery of spatial details that were lost

during the encoding process. Additionally, These decoder blocks incorporate a simple
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convolutional layer applied at each stage as demonstrated by Figure 3.2, helping to refine
the reconstructed image and capture fine-grained features. By combining upsampling,
skip connections, and convolutional layers, the model ensures that the reconstructed im-

age retains important spatial information and achieves better segmentation results.

3.1.3 Implementation details of the MobileNetU-Net :

The MobileNetU-Net architecture combines the lightweight MobileNet encoder with the
U-Net decoder to create an efficient and effective model for image segmentation tasks see
Figure 3.3. This architecture aims to provide accurate segmentation results while mini-

mizing the computational resources required. Our MobileNet encoder utilizes layers from
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Figure 3.3: The Implemented MobileNet U-Net Architecture

the MobileNetV2 pre-trained model, which employs depthwise separable convolutions.

These convolutions separate the spatial and channel-wise operations, leading to a reduc-
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tion in the number of parameters and computational cost [50]. As a result, the MobileNet
encoder is lightweight reducing the computational complexity and the number of param-
eters compared to traditional convolutional neural networks.

Depthwise convolution and pointwise convolution are the two layers that make up
depthwise Separable Convolution. The depthwise convolution work by applying lightweight
tiltering for each input channel separately whereas the pointwise convolution is to collect
or linearly combine the output of the depthwise for building new features that’s why
this methodology reduces the number of parameters[26]. In the depthwise convolutional
layer, a single filter is applied individually to each input channel, as illustrated in Fig-
ure 3.4. This enables the model to efficiently capture spatial information. Following the
depthwise convolution, a Pointwise convolutional layer then is applied to the depthwise
convolution output. This layer involves a simple 1 x 1 convolution [1]. Both the depth-
wise and pointwise convolutions in MobileNets utilize batch normalization and ReLU
nonlinearities [50] to enhance performance and introduce nonlinearities into the model as
apparent from the Figure 3.6. The purpose of the pointwise convolution is to perform a
linear combination [50] of the depthwise output channels which means convolving each
pixel of the input as demonstrated by Figure 3.5. This combination of operations signifi-

cantly improves the effectiveness and efficiency of the MobileNet architecture.

3.14 DeepLabV3+

DeepLabV3+ is an enhanced semantic segmentation architecture that extends DeepLabV3,
by incorporating an effective decoder module to recover the object boundaries[23]. It
combines the strengths of the encoder-decoder architecture and atrous convolution see

Figure 3.7 to capture rich contextual information and improve the segmentation perfor-
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Figure 3.5: Illustration of applying pixel-wise convolution to the output of the depthwise convolution. [1]

mance, especially along object boundaries. In the next section, we are going to explore the

DeepLabV3+ mechanism and concepts in detail.

1. What is Atrous Convolution
Atrous convolution is a powerful technique used in deep convolutional neural net-
works that enables explicit control over the resolution of computed features as in
Figure 3.8. It allows adjusting the receptive field without significantly increasing
the number of parameters or computational complexity. By introducing dilations or

gaps between the filter weights, Atrous convolution effectively captures multi-scale
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Figure 3.6: Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable
convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU. [49].

information and enhances the network’s ability to analyze images at different levels
of detail as Highlighted in Figure 3.8. This generalization of the standard convo-
lution operation enables CNNs such as DeepLabV3+ to better capture contextual
information and improve performance in tasks like semantic image segmentation.
for Two-dimensional spaces, For each position i on the output feature map y, a con-
volution filter w and Atrous convolution are applied to the input feature map x. The

process can be described as follows [23]:

V(i)=Y X(i+r-k) - W(k)

k

The sample stride at which we process the input signal is determined by the Atrous
rate, written as r. It's important to remember that conventional convolution is a par-
ticular case where rate r = 1. We can modify the filter’s field-of-view and adaptively

control the receptive field size of the convolution operation [23].
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Figure 3.7: DeepLabV3+ architecture. [22]

2. Encoder module

As depicted in Figure 3.7 the encoder module is responsible for extracting high-level
semantic features from the input image. It typically utilizes deep pre-trained mod-
els as the backbone, such as ResNet or Exception. These backbone networks are
pre-trained on large-scale classification tasks and have learned to recognize and ex-
tract meaningful features from images. The encoder incorporates the Atrous Spatial
Pyramid Pooling (ASPP) function [123], which utilizes Atrous (dilated) convolutions
to capture information at multiple scales without losing spatial resolution. By using
Atrous convolutions, the network can effectively expand the receptive field of each
convolutional filter, allowing it to capture a larger spatial context while maintaining
the original resolution. This multi-scale feature extraction capability is crucial for

accurately capturing targets of different sizes in the image.
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Figure 3.8: Illustration of Atrous/Dilated Convolution [42]

3. Atrous Spatial Pyramid Pooling

As shown in Figure 3.9 The Atrous spatial pyramid pooling scheme is designed
to utilize multiple Atrous convolutional layers. Each layer has a different sampling
rate. These layers collectively enable the network to extract features at various scales
and capture rich contextual information for accurate segmentation [21]. The output
feature maps from the different Atrous convolutions are then concatenated to cre-
ate a rich representation that incorporates contextual information at multiple scales.
This fused feature representation can provide a more comprehensive understanding

of the image and facilitate more accurate segmentation results.

4. Decoder module

In the decoder module, as is shown in Figure 3.7, the encoder features are initially
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Figure 3.9: Atrous Spatial Pyramid Pooling (ASPP)[21].

upsampled by a factor of 4 using bilinear interpolation. These upsampled features
are then concatenated with the corresponding low-level features obtained from the
network backbone, which have the same spatial resolution. To reduce the compu-
tational complexity and balance the importance of the low-level and rich encoder
features, a 1 x 1 convolution is applied to the low-level features, reducing the num-
ber of channels. This step helps prevent the low-level features, which often have a
large number of channels, from dominating the valuable encoder features and po-
tentially making the training harder. Following the concatenation, a series of 3 x 3
convolutions are applied to refine the combined features, enhancing the representa-
tion. Finally, the refined features are further upsampled by a factor of 4 using simple

bilinear interpolation [23].
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3.2 U-Net based on pre-trained Models

The U-Net framework has become widely used in computer vision for a variety of appli-
cations, including a significant contribution to image segmentation. As we see in the pre-
vious sections the U-Net model is composed of two principal parts encoder and decoder.
It learns local features by convolutions and learns local information by skip connections.
Our idea is to replace the encoder part with one of the previous pre-trained models” archi-
tectures means freezing the lower layers training of the model and continuing the training

just for the decoder part as represented in Figure3.10.

X10 Xi3

X2,0 X222 ,
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" X4 " Up-sampling
J ----» SKip connection
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Figure 3.10: Illustration of how the Pre-trained Models are in conjunction with U-Net Architecture.

We aim to extract accurate predictions of the input image for each pre-trained model.
To achieve this, we have conducted careful experimentation and made adjustments to
the pre-trained architecture of the connected layers, as illustrated in algorithm 1 in "get-
layer("model_layer").output”. These adjustments ensure that the number of filters and
spatial dimensions of the feature maps in the pre-trained model match the conditions
required by U-Net. In addition, within the decoder module, we established skip connec-

tions and upsampling of the layers through the use of the DECODER_BLOCK function, to
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Algorithm 1 Combination Algorithm

1: function COMBINATION-UNET(input)

2: pret < pretrained_model (input)

sl < pret.getlayer (" input_model_layer”).output
s2 < pret.getlayer(”model_layer_2").output

s3 < pret.getlayer(”model_layer_3").output

s4 < pret.getlayer(”model_layer_47).output

bl « pret.getlayer(”model_layer_3").output

dl < decoder_block(bl, s4,512)

d2 < decoder_block(d1, s3,256)

10 d3 < decoder_block(d2, s2,128)

11: d4 < decoder_block(d3, s1,64)

12: output < conv(1,1,” sigmoid”)(d4)

13: return M odel

14: end function

15: function DECODER _BLOCK(inputs, skip _features , num _filters)

79

16: x < convTranspose(num_filters, (2,2))(inputs)
17: x < concatinate(x, skip_features)

18: x < CONV_BLOCK (x,num_filters)

19: return x

20: end function
21: function CONV _BLOCK (x , num _filters )

22: x < conv(num_filters, 3)(x)
23: x < activation("relu” ) (x)
24: x < conv(num_filters,3)(x)
25: x < activation("relu”)(x)
26: return r

27: end function

enhance information flow. By aligning the architectures appropriately we can effectively
leverage the pre-trained models and their capabilities for accurate predictions within the
U-Net framework. It is worth noting that we have successfully trained each of ResNet,
DenseNet, and MobileNet using the same concept algorithm for the U-Net combination.
Algorithm 1 outlines the steps we followed to integrate these models. However, it is im-
portant to mention that DeepLabV3+ was not included in this combination as it utilizes a

different concept of implementation.
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3.3 Ensemble Models

Ensemble approaches can be considered the state-of-the reply to many machine learning
problems. By training many models and combining their predictions in different manners,
these methods increase the prediction accuracy of one model and obtain better general-
ization performance[104], the main idea is represented in Figure 3.11. Also, it is one of the
most important techniques and its uses are increasing each year as shown in Figure 3.12.
The primary concept is that evaluating and combining various individual viewpoints is
better than selecting one individual opinion[95]. Deep learning architectures are now out-
performing shallow or standard models in performance. They combine the advantages
of ensemble learning as well as the deep learning models in a manner that the final result
will be better[35]. There are many types of ensemble learning[129] such as bagging which
is based on separating the dataset into many subsets and each model is trained on a spe-
cific subset. Also, the boosting mechanism which is based on the concept of each model
will learn from the limitation of the other models in a sequential manner. Another method
we have is RF which is a combination of bagging and RF it is based on the concept that
each decision tree will learn from a specific subset, we have also stacking where the same
dataset is used for the models training, Ada boosting, gradient boosting, weighted Aver-

age, and voting which the mechanism that we used in addition the average mechanism.

3.4 The proposed scheme

In this part, we will explain our approach to improve the segmentation results of U-

Net through ensemble learning. After training each model separately, namely DenseNet,
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Figure 3.11: Example of combining decision boundaries [135].

ResNet, DeepLabV3+, and MobileNet, we utilize ensemble learning to obtain improved

results. Our ensemble model consists of these individual models. We collect the predic-

tions generated by each model and store them in a list, as outlined in the Algorithm 2.

To make a final decision based on the predictions of these models, we apply a FUSION

SCORE function. This function compares and aggregates the predictions from the indi-

vidual models. By considering the decisions made by each model, we can generate a more

robust and reliable segmentation result by employing ensemble learning with the chosen

models (Dense U-Net, ResU-Net, DeepLabV3+, and MobileNetU-Net) the flowchart of

our idea is presented in Figure 3.13, we leverage the strengths of each model and take
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Figure 3.12: Number of published papers per year, based on searching the terms "ensemble" together with
"machine learning" in the "web of science" database [104].

advantage of their diverse perspectives. This approach enhances the segmentation per-

formance of U-Net and leads to more accurate and reliable results.

3.4.1 Score-level fusion techniques

The fusion score is a technique used in ensemble learning to combine and evaluate the
predictions made by multiple models or classifiers and make a final decision. It helps us
to effectively integrate the predictions and generate a more reliable and accurate result. In

our approach, we have adopted several fusion techniques including:

1. voting : Each model’s prediction is treated as a vote, and the final decision is based
on the majority votes. For example, if three out of five models predict a certain class,

that class is selected as the final prediction. [96]

2. Averaging : The predictions of individual models are averaged to obtain the final

prediction. This can be done by taking the mean of the predictions.
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Figure 3.13: The Flowchart of our proposed method

3. Min/ Max: the minimum or maximum score among the predictions of the individ-
ual models is used as the final prediction. Depending on the characteristics of the
problem and the ensemble method being used the minimum score represents the
most conservative or cautious decision, and the maximum score represents the most
confident or optimistic decision. Overall, The aim is to leverage the diversity of the

individual models to obtain a more robust and accurate prediction.
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Algorithm 2 Ensemble learning Algorithm

1: Models < [dense_unet, Resnet_unet, Deeplabv3+, M obilenet_unet]
2: fori = 0 to len(testdata) do
3: img < read(testdata_imageli))

4: ensemble < |]

5: for model in Models do

6: pred < model.predict(img)

7: ensemble.add(pred)

8: end for

9: ensemble_prediction < ENSEMBLE_FUSION_SCORE(ensemble)
10 ground_truth < read(testdata_mask())
11: accuracy < Calculate_accuracy(ground_truth, ensemble_prediction)
12: ACCURACY .add(accuracy)
13: end for

14: Total_accuracy < mean(ACCURACY)

In this chapter, we presented the main method that we work on. In addition to that,
we explained our combination and training methodology in detail. In the coming chapter,
we will show all the experiments that we did and all the used materials, and the results

that we get.
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After presenting our methodology and its functioning in the previous chapter, this
chapter will focus on the experimental results we obtained, including the materials used,
the dataset employed, the evaluation metrics utilized, and a comprehensive analysis of
the results. We will delve into the details of our approach and the steps taken to obtain

these results.

4.1 The Experimental Dataset

The dataset that we used in our research is the LGG segmentation dataset which is avail-
able on Kaggle[15]. The images which are contained in the dataset are MR images each
one has three RGB channels and all images are represented in .tif format and they have
a size of 256x256. All the images are collected from The Cancer Imaging Archive (TCIA)
and they represent 110 patients registered in The Cancer Genome Atlas (TCGA). All pa-
tients are got from five different institutions Case Western St.Joseph’s with 34 patients,
Thomas Jefferson University with 16 patients, Case Western with 14 patients, UNC with 1
patient, and Henry Ford Hospital with 45 patients. Each patient has a number of images
between 20 and 88 and the total number of images is 3929 which are divided into 1373 im-
ages of tumors and 2556 images without tumors. The patients have divided according to
tumor grade categories 50 patients have grade I, 58 grade III, and 2 with unknown grade
all those characteristics are shown in Table 4.1. In addition, manual and generated fluid-
attenuated inversion recovery (FLAIR) segmentation masks are contained in the dataset

and were performed by[16].
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GradeIIN =50 | Grade III N =58 Unknown N =2
Tumor sub-types
Astrocytoma 8 26 -
Oligoastrocytoma 14 14 1
Oligodendroglioma | 28 18 -
Unknown - - 1
Gender
Male 23 30 1
Female 27 28 -
Unknown - - 1
Age Mean STD Range
46 14 20-75

Table 4.1: Lower-grade glioma tumor (LGG) and patient characteristics[87].

4.1.1 Data Preprocessing

In the context of the LGG Segmentation Dataset, we encounter a data imbalance issue,
characterized by a significant disparity in the number of samples between the healthy
brain tissue class and the tumor region class. Specifically, the dataset contains a larger
proportion of scans depicting healthy brain tissue compared to scans depicting tumor
regions As shown in Figure 4.1.

The presence of data imbalance poses challenges when training accurate segmenta-
tion models. When one class has a much larger number of samples than the other the
model tends to exhibit a bias towards the majority class during training. Consequently,
the model’s performance may suffer when it comes to identifying the minority class which
in this case corresponds to the tumor regions. This bias can result in inaccurate or incom-
plete segmentation results as the model may struggle to capture the unique features and
characteristics specific to the minority class.

Addressing data imbalance becomes crucial to ensure robust and accurate segmenta-
tion within the LGG Segmentation Dataset. One effective technique to mitigate the impact

of class imbalance And overfitting is data augmentation. By employing data augmen-
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Figure 4.1: Imbalanced Distribution of Classes in the LGG Segmentation Dataset.

tation we can alleviate the imbalance by generating synthetic samples through various

transformations and perturbations applied to the existing dataset.

4.1.2 Data Augmentation

The primary goal of data augmentation in the context of imbalanced datasets is to alleviate
the bias towards the majority class and enable the model to learn more effectively from the
minority class. By introducing variations in the existing samples we can create additional
instances of the minority class thus reducing the imbalance. This augmentation process
helps in capturing the variability associated with the tumor regions, enabling the model

to generalize better and make accurate predictions on unseen data [103].
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Figure 4.2: Augmented Images Generated for Addressing Class Imbalance in the LGG Segmentation
Dataset.

4.2 The Experimental BraTs Dataset

We have adopted the BraTS2020 dataset for our experiment, This dataset consists of MRI
images that are annotated with four distinct classes: necrotic, edema, enhancing tumor,
and the healthy part of the brain. These annotations play a crucial role in understand-
ing the spatial extent and characteristics of different tumor components, which is vital for
the diagnosis, treatment planning, and monitoring of brain tumors. We have developed
a DataGenerator class to facilitate the generation of training data for the BraTs dataset.

Instead of utilizing 3D volumes directly, we opted to work with individual 2D slices. In
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other words, tries to convert the 3d dataset to 2d. This decision enabled us to overcome the
difficulties we encountered when utilizing 3D volumes to work with individual slices in-
stead of 3D volumes was driven by computational resource limitations. The BraTs dataset
contains a large number of volumetric data, and processing the entire 3D volumes simulta-
neously would have required significant computational power and memory. By focusing
on individual slices, we were able to reduce the computational requirements and make the
training process more manageable within the available resources. This approach allowed
us to strike a balance between model performance and resource constraints, leading to
successful segmentation results while efficiently utilizing the computational resources at
hand. However, table 4.2 presents the quantitative results obtained from our experiments
on the BraTs dataset. These results highlight the performance of our approach using the
DataGenerator class and slice-based training with a traditional U-Net architecture. The
table provides metrics such as accuracy, precision, recall, and F1-score, which evaluate the
segmentation accuracy of our model. Furthermore, we have included figure 4.3 show-
casing the predictions made by our model on the Brats dataset. These figures depict the

segmentation outputs for different patients.

Accuracy Metrics
Accuracy Mean IoU Dice Coefficient
0.9902 0.7893 0.6095
Precision Sensitivity Specificity
0.9938 0.9674 0.9587

Dice Coefficients
Necrotic Edema Enhancing
0.4035 0.6204 0.5726

Table 4.2: Quantitative Results on BraTs Dataset.
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Figure 4.3: The predicted tumor segmentation showcases the different tumor components identified by the
model.

4.3 Implementation
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4.3.1 Software and libraries

1. TensorFlow

TensorFlow is a versatile and widely-used software library for machine learning and
artificial intelligence. With its extensive capabilities, it supports a broad spectrum of
tasks, placing special emphasis on the training and inference of deep neural net-
works. As a free and open-source library, TensorFlow empowers researchers, devel-
opers, and practitioners to explore and leverage the potential of machine learning

and Al effectively [134].

2. Keras

Keras is a high-level deep learning API designed to build and train neural networks.
It is designed to be user-friendly, modular, and efficient. Keras makes implement-
ing neural networks easier by providing a simple and intuitive interface to define,
compile, and train models. It is written in Python and supports several back-end
libraries for neural network computations, such as TensorFlow, Theano, and CNTK.
This allows users to select the back-end of their choice for neural network computa-

tions.

4.3.2 Tools

We have utilized the Kaggle platform, which offers cloud-based Jupyter notebooks and
provides additional resources such as GPU P100, Disk(73,1GB), Ram(13GB), and CPU.

These resources greatly aid us in performing the training process.
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4.4 Evaluation Metrics

The evaluation metric is a measure that we use to calculate or measure our model work
and performance. In the machine learning domain, there are several measurement tech-
niques each of which is specified to one or more applications like classification, detection,
and segmentation. Some of the most known metrics that we used in our work are the

following;:

44.1 Dice Coefficient

It is a famous statistical measure used in the image segmentation field and it is considered
the most used validation tool in the domain[110]. In general, it is used to calculate the
similarity between data more specifically is worked on to compare pixels of the ground
truth and the predicted segmentation. The dice value is calculated as follows, dividing
the intersection value of the predicted mask and the ground truth multiplied by two over
the summation of the two areas for more understanding see Figure4.4. The dice value is
between zero and one where one means that the prediction is excellent and zero means

that the prediction is very poor.

4.4.2 Intersection Over Union

As abbreviation IOU or the Jaccard index, it is a well-known measure used in image seg-
mentation and object detection problems[100]. It is a very simple concept since it cal-
culates the overlap ratio between the ground truth(GT) and the predicted segments. To
calculate this value the intersection is divided by the union as it is shown in Figure4.5,

the output value is always between zero and one, where the zero value means that the
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Intersection

Figure 4.4: Calculation of segmentation quality metrics Dice similarity coefficient [60].

Metric Purpose Calculation form Range
Dice image segmentation | 2 * Intersection / (Predi + GT ) 0-1
image  segmenta-
10U tion/Object detec- | Intersection / Union 0-1
tion
Overall correctness | correct predictions / Total num-
Accuracy - L 0-1
of predictions ber of predictions

Table 4.3: Summary of the main differences and purposes of our used evaluation metrics.

prediction is very bad and the one value means that the prediction is very good. And we

can put a threshold value that makes us decide whether the prediction is well or not.

4.4.3 Accuracy

In machine learning each task need to be evaluated, the accuracy metric is very useful

for many tasks such that classification, detection, and segmentation[53]. It is based on

calculating the correctness of affecting each data point to the right class so it is calculated

by dividing all the right and correct predictions over the total number of input samples.

In general, it gives good results where we have the classes balanced.
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Intersection

Figure 4.5: Calculation of segmentation quality metrics Intersection over Union [60].

44.4 Confusion Matrix

In the context of image segmentation, the confusion matrix is computed at the pixel level
to evaluate the performance of the segmentation model. Each pixel in the confusion ma-
trix represents a prediction for a specific class.

In the case of binary classification (such as tumor vs. non-tumor), the confusion matrix

has a 2x2 structure:

Actual/Predicted | Negative Positive

Negative TN FP

Positive FN TP

¢ True Positive (TP): The number of pixels correctly classified as the positive class

(e.g., tumor).

* True Negatives (TN): The number of pixels correctly classified as the negative class
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(e.g., non-tumor).

* False Positives (FP): The number of pixels incorrectly classified as the positive class

when they actually belong to the negative class.

¢ False Negatives (FN): The number of pixels incorrectly classified as the negative

class when they actually belong to the positive class.

4.4.5 Cross-validation

Cross-validation is a technique used in machine learning and statistical modeling to evalu-
ate the performance and the generalizability of a predictive model. It involves partitioning
the available dataset into multiple subsets or "folds" as visualized in figure 4.6. The model
is then trained on a subset of the data called the training set and evaluated on the remain-
ing data known as the validation set. This process is repeated multiple times [99], with
different subsets serving as the validation set each time. By averaging the performance
across these iterations, cross-validation provides a more reliable estimate of the model’s
performance and helps identify potential issues such as overfitting. At the same, describe

the generalization ability of the model.

4.5 Comparison and Discussion

The table 4.4 provides a comparison of different models used for segmentation tasks
on the test images, based on their accuracy metrics. The models evaluated include U-
Net, Dense U-Net, Residual U-Net, DeepLabV3+, MobileNet U-Net, Ensemble mean,

Ensemble-min, Ensemble-max, and Ensemble based on the most frequent vote.
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Figure 4.6: A visual representation of dividing the dataset into multiple subsets for cross-validation.

Among the individual models evaluated using our dataset, Residual U-Net demon-
strates the highest performance in terms of IOU. This can be attributed to several factors,
one of which is the utilization of residual connections in Residual U-Net. The main differ-
ence between Residual U-Net, which incorporates ResNet Blocks in the encoder module,
and Dense U-Net, which incorporates DenseNet blocks in the encoder module, lies in their
approach to utilizing preceding feature maps. ResNet uses a single preceding feature map
[136], while DenseNet incorporates features from all the preceding convolutional blocks
[61]. However, both Residual U-Net and Dense U-Net share a common philosophy of
connecting to the feature maps of all preceding convolutional blocks, allowing for better
information flow and improved gradient propagation throughout the network.

In Figure 4.7, it is evident that Residual U-Net consistently outperforms other mod-
els, showcasing its superiority in capturing meaningful features and achieving accurate

semantic segmentation.
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Model I0U Dice-coeff Accuracy Number of
Params

U-Net 0.78364 0.86560 0.99804 31,043,521
Dense U-Net 0.82803 0.87840 0.99867 16,352,961
Residual U-Net | 0.86768 0.91821 0.99888 20,642,113
DeepLabV3+ 0.85668 0.91341 0.99886 17,795,425
MobileNet 0.85774 0.91102 0.99887 11,725,617
U-Net
Ensemble 0.869282 0.914094 0.999058 -
Mean
Ensemble Min | 0.835959 0.889702 0.998853 -
Ensemble Max | 0.86676 0.92027 0.99901 -
Ensemble Freq | 0.86331 0.911681 0.99891 -

Table 4.4: Accuracy metrics comparison of different segmentation models on the test images.

Model IOU | Dice-coeff | Accuracy
Residual U-Net | 0.78852 | 0.85962 0.99828
MobileNet U-Net | 0.78018 | 0.85494 0.99813
Ensemble_Bagging | 0.80515 | 0.87498 0.99846

Table 4.5: Results of Bagging Ensemble Implementation.

In our evaluation, we found that Dense U-Net had a lower performance compared to

Residual U-Net. This could be attributed to the fact that Dense U-Net has a smaller num-

ber of parameters. The DenseNet architecture offers the option of feature reuse, allowing

the layers to generate fewer parameters while representing the same information as sim-

pler layers. However, this reduction in the number of parameters might have affected the

overall performance of Dense U-Net compared to Residual U-Net in our specific dataset.

We present the performance during training of the individual Dense U-Net models in the

following Figure 4.8.

On the other hand, DeepLabV3+ achieved an IOU score of 0.85668, indicating the accu-

racy of its segmentation results. Although this score is slightly lower than that of Residual

U-Net, DeepLabV3+ stands out due to its unique architecture and the concept of Atrous
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Figure 4.7: Residual U-Net performance.

convolution. The encoder-decoder architecture employed in DeepLabV3+ enables it to ef-
fectively capture and represent contextual information [23], leading to improved segmen-
tation performance. In general, DeepLabV3+ remains one of the top-performing models
As shown in Figure 4.9, leveraging its innovative design to achieve accurate and reliable
segmentation results in our work.

MobileNetU-Net offers an excellent balance between performance and efficiency with
its lower number of parameters. Residual U-Net achieves higher IOU and Dice coeffi-
cient scores but has more parameters. DeepLabV3+ performs well across metrics, simi-

lar to MobileNetU-Net but with a slightly larger number of parameters. The number of
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Figure 4.8: Dense U-Net performance.

parameters in the MobileNetU-Net model is 11,725,617, which is relatively lower com-
pared to other models in the table, This emphasizes the lightweight and efficient nature
of the MobileNetU-Net architecture. Overall, MobileNetU-Net showcases the benefits of
its efficient architecture by achieving impressive results with fewer parameters as it is
highlighted in Figure 4.10. It seems that the idea of depth separable convolution has a
significant benefit and leads to excellent results in our dataset compared to the traditional
convolution used in U-Net. The depth separable convolution, consisting of depthwise
convolutions and Pointwise convolutions, allows for more efficient and lightweight com-

putation while preserving important spatial information. This architectural choice in the
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Figure 4.9: DeepLabV3+ performance.

MobileNetU-Net model likely contributes to its superior performance in terms of accu-
racy, IOU, and Dice coefficient on our dataset.

To assess the feasibility and stability of the constructed model, we performed cross-
validation on the training data. A k-fold cross-validation scheme was employed, where k
represents the number of splits for training and validation data. This approach ensured
that the dataset for each class was randomly divided into k exclusive subsets, avoiding
data grouping.

Remarkably, each individual model exhibited outstanding performance across the en-

tire dataset, demonstrating proficiency in various aspects or segments of the data, as de-
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Figure 4.10: MobileNetU-Net performance.

picted in Figure 4.18. These results provide evidence for the successful creation of unbi-

ased and stable models. The exceptional performance of the chosen models distinguishes

them from other suggested models, confirming our decision to adopt them for our ap-

proach.

The Ensemble models, which combine the predictions of multiple models, show even

better performance. Among them, the Ensemble-max model stands out by selecting the

maximum score between the chosen models for each pixel. It achieves the highest Dice-

coeff score of 0.92027, and overall accuracy of 0.99901. we introduce diversity in the re-

sults "Min, Max, Frequency" to capture a wide range of predictions and select the best-

titting one for our study. This approach enhances the robustness and accuracy of the
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segmentation. The Ensemble-max model leverages the strengths of the individual models
and maximizes the segmentation quality by selecting the maximum score. Overall, the
Ensemble-max models demonstrate superior performance, showcasing the effectiveness
of ensemble modeling in segmentation tasks.

In contrast, ensemble bagging demonstrates excellent performance compared to indi-
vidual models refer to Table 4.5. However, due to the concept of using subsets of data
in the bagging ensemble, where the data is divided in half for both ResidualU-Net and
MobileNetU-Net models instead of utilizing the entire dataset, resulting the performance

is lower than that of our proposed ensemble models in our specific dataset.

¢ Predictions of individual models and ensemble learning.

After comparing the performance of different models on the test set, we provide visual
representations of the predictions made by the Dense U-Net, Residual U-Net, DeepLabV3+,
and MobileNetU-Net models see Figure 4.12, Figure 4.13 and Figure 4.14, as well as the
predictions of the ensemble models on the test images with different patients can be ob-
served in Figure 4.15, Figure 4.16 and Figure 4.17. These images allow for a comprehensive
evaluation of the segmentation capabilities of each model. By observing the predictions,
we can clearly see the effectiveness of the individual models in accurately delineating the
objects of interest in the test dataset. Additionally, the ensemble models further enhance
the segmentation results by combining the predictions of multiple models.

Furthermore, we have presented a confusion matrix of the mean ensemble model With
reference to Figure 4.11, which allows us to evaluate the performance of the ensemble
models at the pixel level. By analyzing the confusion matrix, we can assess how well the

ensemble models perform in accurately classifying each pixel. This evaluation provides
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insights into the effectiveness of the ensemble models in accurately delineating the objects
of interest in the test dataset, showcasing their performance, and highlighting their ability

to make precise pixel-level predictions.
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Figure 4.11: Confusion matrix of The mean Ensemble models.
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Figure 4.12: Predictions of individual models on Patient TCGA_DU_7300_19910814: Segmentation re-
sults showcasing the outputs generated by the U-Net, Dense U-Net, Residual U-Net, DeepLabV3+, and
MobileNetU-Net.
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Figure 4.13: Predictions of individual models on Patient TCGA_FG_6689_20020326: Segmentation re-
sults showcasing the outputs generated by the U-Net, Dense U-Net, Residual U-Net, DeepLabV3+, and
MobileNetU-Net.
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Figure 4.14: Predictions of individual models on Patient TCGA_DU_7010_19860307: Segmentation re-
sults showcasing the outputs generated by the U-Net, Dense U-Net, Residual U-Net, DeepLabV3+, and
MobileNetU-Net.
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Figure 4.15: Predictions of Ensemble Models on Patient TCGA_DU_8164_19970111 The image displays the
segmentation results generated by the ensemble models.
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Figure 4.16: Predictions of Ensemble Models on Patient TCGA_HT_7882_19970125 The image displays the
segmentation results generated by the ensemble models.
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Figure 4.17: Predictions of Ensemble Models on Patient TCGA_DU_6408_19860521 The image displays the
segmentation results generated by the ensemble models.
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Figure 4.18:

MobileNetU-Net, and DeepLabV3+ models.

Performance comparison through cross-validation of Residual U-Net, Dense U-Net,
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In This project, we focused basically on developing an approach for segmenting LGG
brain MRI images and getting better results compared to what is exist based on U-Net
architecture. According to our in-depth review of the literature and reading about many
existing methods in the domain we decided to work and explore the U-Net architecture.
Also, we reviewed many U-Net variants to take an overview of how researchers think
to work with U-Net. since the U-Net is an encoder-decoder architecture we started by
trying many architectures as encoder parts with U-Net such as VGG19, ResNet, DenseNet,
MobileNet, DeepLabV3+, and many others. Some of the architecture works well and
some give us less accurate results, based on that we select the best ones to apply in the
ensemble learning technique to get the final result. Also, we presented our methodology
step by step and explain all the work that we did and all the concepts that we work on.
We present the architectures that we worked on to get the ensemble learning results.

Next, we reviewed the obtained results and all the used materials starting with the
used dataset details and information also all the preprocessing steps that we did, and all
the tools that we used. Then we presented the evaluation metrics that we used to calculate
the accuracy of the obtained segment and to compare the final result of each experiment.

Finally, in the result chapter we present all our obtained results in detail for each archi-
tecture. The obtained results were promising thus, the proposed method gives us more
accurate segmentations as the ensemble methods using Mean achieve 0.869 IOU, and en-

semble methods using Max achieve(0.92 Dice-coeff.
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5.1 Perspectives

After all the experiments that we did and the obtained results that we get, we have noticed
that several ideas can be realized in order to increase the accuracy of segmentation in brain
images which consists of building our own model from scratch and trying to train it in a
specific context using our own dataset. Also, if we have a big computation station we will
try our work in other big datasets such as BraTs, and try many other new architectures
like transformers. Also, we can go furthermore and generalize our work to not just do a
binary segmentation but for many brain tumor types segmentation and apply it for many
applications. Those are some perspectives that may be involved in our future works and
research. Finally, we are preparing an interesting scientific paper to close our work with,

hoping that we can achieve our goal as soon as possible.
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