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Abstract

Deep learning has demonstrated remarkable capabilities in the field of medical imaging, one
of the significant advantages of deep learning in medical imaging is its ability to automate
and enhance various processes. For example, deep learning models can automatically detect
abnormalities in medical images, and assist in tumor segmentation. However, the availability
of medical imaging data can be a significant challenge in developing deep learning models. Col-
lecting large amounts of high-quality annotated medical imaging data can be time-consuming,
expensive, and sometimes limited due to privacy concerns and data-sharing regulations.

By utilizing few-shot learning, researchers and medical professionals can work with smaller
datasets. The objective of this thesis is to advance the field of few-shot learning by focusing on
the data perspective. In order to achieve this goal, we developed a novel architecture based on
delta autoencoder, Our proposed architecture focuses on learning the transformation between
different classes, enabling the generation of data that exhibits characteristics of multiple classes.

To evaluate the effectiveness of the proposed architecture, the OASIS 1 dataset was uti-
lized as a benchmark. The experiments conducted on this dataset demonstrated significant
improvements in few-shot learning performance compared to existing methods. Specifically,
the achieved result of 82% accuracy showcases the remarkable capabilities of the developed
architecture in enhancing the learning process.

The findings showcase the potential of the proposed method in improving generalization and
adaptability when faced with limited labeled data. These results encourage further exploration
and development of innovative approaches to enhance machine learning algorithms in few-shot
learning scenarios.

Keywords: deep learning, medical imaging,few-shot learning, autoencoder, OASIS1
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Chapter 1

General introduction

1.1 Introduction

Machine learning (ML) is a subfield of artificial intelligence (AI) that plays a crucial role in the
development of algorithms and models capable of learning from data and making predictions
or decisions based on that learning. Traditional machine learning approaches involve training
algorithms to identify patterns and relationships within the data. These algorithms heavily
rely on a process called feature engineering, where domain experts manually select and extract
relevant features from the data to be used as inputs for the models.

However, in recent years, deep learning (DL), a subset of machine learning, has gained
significant popularity. DL utilizes artificial neural networks with multiple layers to learn and
represent patterns and relationships within the data. Unlike traditional machine learning tech-
niques, deep learning models can automatically learn features and representations directly from
raw data, eliminating the need for manual feature engineering.

Deep learning has experienced remarkable advancements, driven by the availability of large
datasets, powerful hardware, and innovative algorithmic techniques. These advancements have
led to the emergence and widespread use of various deep learning architectures. Some of the
most widely used deep learning architectures include convolutional neural networks (CNNs)[37]
for image and video analysis, recurrent neural networks (RNNs)[46] for natural language pro-
cessing and time-series analysis, and generative adversarial networks (GANs)[23] for creating
synthetic data and generating realistic images.

The success of deep learning techniques has often surpassed human-level performance in
many tasks. However, one limitation of deep learning models is their reliance on large amounts
of data to learn new categories. In contrast, humans can learn from just a few or even one
example. To address this challenge, researchers have developed few-shot learning algorithms
that enable models to learn from only a small number of examples. Few-shot learning becomes
particularly valuable when obtaining extensive labeled data is difficult or expensive.

In this thesis, we focus our attention on developing a deep learning-based few-shot learning
framework. We will also examine the practical applications of few-shot learning (FSL) in various
task. Finally, we will discuss the future directions and challenges in the field of few-shot learning
and provide recommendations for future research.

1.2 Problematic

Despite the recent advancements in deep learning, the requirement for a large amount of labeled
data remains a significant problem for many real-world applications. Few-shot learning is a
promising approach to address the limitation of traditional deep learning. However, there are
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still several challenges and limitations that need to be addressed. In cases where available data
are limited or expensive to obtain, we resort to augmenting the data set.

Traditional data augmentation techniques have been widely used in machine learning to
artificially expand training datasets and improve model performance[16]. These techniques
involve applying various transformations to the existing data, such as rotations, translations
and flips, to create new training examples. While these methods have shown effectiveness
in certain scenarios, they also have inherent limitations and can fail to achieve the desired
improvements in model generalization.

manually designing traditional augmentation strategies can have adverse effects on model
performance. The reason is that manually designing augmentation techniques requires domain
expertise and prior knowledge about the dataset and the specific problem being addressed.
However, it is challenging to determine the optimal set of transformations and their parameters
that will enhance generalization and improve model performance[16].

1.3 Overview on the related works

Few-shot learning is a challenging machine learning problem that involves training a model
to recognize new classes using only a few training examples[51]. Traditional machine learn-
ing algorithms frequently struggle with this task because learning meaningful representations
requires large amounts of data. However, several approaches to few-shot learning have been
proposed, which involve leveraging prior knowledge from related tasks to learn generalizable
patterns that can be applied to new tasks with limited data, let us provide an overview of these
methods :

1.3.1 Methods based on data

These strategies extend the dataset and enhance the number of samples by utilizing prior
information. The enriched data may then be used with standard machine-learning models and
methods. Manual data augmentation, such as flipping, shearing, scaling, reflection, cropping,
and rotation, is commonly employed as pre-processing [41][52], but it cannot entirely solve the
few-shot learning (FSL) problem, from these methods augment data from the same data, This
method adds to the data collection by changing one sample into many samples with variances
for e.g in this paper [35] the model learns a set of geometric transformations from a similar class
by iteratively aligning each sample with the other samples, in[40] The learned transformation
from different intraclass (xi, yi) to form a large data set, which can then be learned by standard
machine learning methods and generate new samples by adding the learned variations to xi

to yi. and there’s the method of augmenting data from a Weakly Labeled or Unlabeled data
set For example, in photos taken by a surveillance camera, there are people, cars, and roads
but none of them are labeled. This method augments the data set by labeling the similar and
unlabeled big data set like there are people, cars, and roads but none of them are labeled, and
also there is augmented data from similar data. for e.g in [19] generative adversarial network has
two generators designed to generate indistinguishable synthetic x˜ aggregated from a data set
of many samples. This strategy expands the data set by collecting and modifying input-output
pairs from similar and larger data sets[51].

1.3.2 Methods based on model

These strategies improve accuracy by using prior knowledge and Narrowing and constraining
the hypotheses space to approximate the ground-truth hypothesis that presents the best model,
then minimizing the risk of overfitting is reduced by prior knowledge is used [40][17][19].
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Of these strategies, there is multi-task learning, we can assume there are many related
tasks T1, ..., TC , and for each task, there is corresponding data and some of them have very
few samples while some have a larger number of samples. Among these tasks, we regard the
few-shot tasks as target tasks, and the rest as source tasks, As these tasks are jointly learned,
the parameter learned for task Tc is constrained by the other tasks, we can with this strategy
solve the few-shot problem with multi-task learning.[25, 33]

1.3.3 Methods based on algorithms

The algorithm is a method for searching in the hypotheses space for the optimal hypothesis’
hyper-parameter θ ; the approach attempts to obtain better parameters. When there is a lot
of supervised data, there are enough training samples to update θ and determine a suitable
step-size using cross-validation. This approach influences how θ is produced by either supplying
a well-initialized parameter θ or directly learning an optimizer to output search steps.

For example, for the popular stochastic gradient descent (SGD) that is the optimization
function :

θt = θt−1 − αt ∗ ∇θt−1 (1.1)

where αt is the stepsize, with θ initialized at θ0.
Rich supervised datasets have enough to update θ and cross-validate to determine the

suitable stepsize αt. The offered few-shot supervised dataset is not big enough for few-shot
learning, though. The techniques in this section make use of prior knowledge to alter how is
obtained, either by giving a good initialization for the parameter θ0 or by directly training an
optimizer to produce search steps.

1.4 motivation

Handly data augmentation, in general, can be particularly advantageous for machine learning
models since it increases the diversity and variability of the training data, which can improve
the model’s accuracy and robustness. However, in other circumstances, data augmentation
manually may hurt the performance of the model or you should be an expert to know how to
augment the data [16].

Data Augmentation refers to a collection of approaches for increasing the amount and quality
of training datasets so that stronger Deep Learning models may be generated using them like
the paper [40] that our approach is based on it, which uses data augmentation to address a
few-shot problem, and we aim to improve the approach based on this paper despite some of its
drawbacks. the images were converted to vectors using vgg16, but since vgg16 was created for
classification, the feature vector extracted from it belonging to the same class would be similar.
The work was done with a basic autoencoder. Despite the fact that the images are different
and there is a problem with reconstructing images that we cannot use in this situation, we are
still compelled to work exclusively with feature vectors throughout.

Additionally, since its architecture lacks a skip connection, we are unable to delve further
into it without risking a vanishing gradient[27]. This makes it challenging to reconstruct the
desired results, particularly when dealing with medical data that demands accuracy. We can
then classify dementia using a convolution neural network (CNN) and compare the results to
some papers like[14].
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1.5 Overview on proposed method

From what we said earlier we made some changes:

• dealing with the images themselves instead of the feature vectors, and of course, in this
situation, we should replace the basic autoencoder with a convolution autoencoder, be-
cause the results in the basic autoencoder are less effective in capturing the visual patterns
and dependencies crucial in image analysis, On the other hand, convolution captures the
spatial relationships and -patterns in images more effectively, making them the preferred
choice for image classification, object detection, and other image-related tasks[27]. Also,
his architecture consists of 3 inputs as feature vectors, two inputs belong to the same
class, and the last input belongs to another class and enters directly into decoding, in
that case since we are working on images directly, we suggested working with 2 encoders
and 1 decoder.

• And because medical images need accuracy, it was better to add a skip connection, In
particular, skip connections can help with many limitations of sample autoencoder, such
as Better feature extraction, especially with complex medical images[28], It also allows
us to add layers and create deeper architecture[27], And of course, it has an effect on
Improved accuracy, with add skip connection between the corresponding encoder and
decoder layers, our architecture changed from convolutional autoencoder to convolution
Unet.

• And the architecture was applied to the brain Cross-sectional MRI Data in Young, Middle
Aged, Nondemented and Demented older Adults(oasis-1), for detect dementia we augment
the dataset and create special classification architecture (CNN) with 2 inputs (images and
features vector ), where the images are inserted into the convolutions layers and features
vectors are concatenated after the convolutions, and the accuracy was increased to 82%,
as the most prominent results reach 75.6% in [14].

1.6 Conclusion

Few-shot learning is a promising approach to address labeled data limitations in deep learning,
it uses prior knowledge from related tasks to learn generalizable patterns for limited data,
using data-based, model-based, and algorithm-based methods. In our work, we focus on data-
based. however, challenges remain. Traditional data augmentation techniques, like rotations
and translations, can have inherent limitations and may not achieve desired improvements in
generalization.

In this thesis we improved an approach based on a few-shot problem using a convolution
neural network to classify dementia, we replaced basic autoencoders with convolution autoen-
coders for image analysis, as we capture spatial relationships more effectively. The architecture
consists of 3 inputs, 2 encoders, and 1 decoder. A skip connection was added for better feature
extraction and deeper architecture. The architecture was applied to brain MRI data to detect
dementia, increasing accuracy to 82%.
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Chapter 2

Work background

2.1 Introduction

AI is the replication of human intelligence in machines that are programmed to do activities
that normally require human intellect, such as perception, reasoning, learning, decision-making,
and natural language processing. AI technologies are intended to analyze large volumes of data,
identify patterns, and then make predictions or suggestions based on that analysis.

Natural language processing, picture and audio recognition, robotics, self-driving cars, and
virtual assistants are just a few of the many uses of AI. AI has the ability to transform indus-
tries such as healthcare, banking, transportation, and manufacturing by increasing efficiency,
lowering costs, and offering customers individualized experiences.

AI is classified into numerous categories, including rule-based AI, machine learning, deep
learning, and neural networks. Machine learning methods enable systems to learn from data
and improve over time, whereas rule-based AI systems use a set of established rules and deci-
sion trees. Deep learning simulates the human brain with neural networks and can recognize
complicated patterns in data.

Overall, AI is an exciting field that has the potential to transform the way we live and
work. As AI technologies continue to evolve, it is critical to understand their capabilities and
limitations to harness their full potential while addressing ethical and societal issues.

Figure 2.1: the difference between AI, ML, and DL.
[5]

2.2 Machine learning

Machine learning is a rapidly growing field of artificial intelligence that has seen significant
advancements in recent years, It involves the development of algorithms and statistical models
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that enable computers to analyze and make predictions from data, without being explicitly pro-
grammed. There are three main types of machine learning: supervised learning, unsupervised
learning, and reinforcement[36].

2.2.1 Supervised machine learning

Supervised learning is a sort of machine learning that involves training an algorithm on a
labeled dataset. The dataset is made up of input data and output labels, which are used to
train the algorithm to produce predictions or classifications. The goal of supervised learning is
to build a mapping function that can predict output labels reliably for new unknown input data.
This is accomplished by the algorithm examining the patterns in the input-output pairings and
modifying its internal parameters to minimize the discrepancy between predicted and actual
outputs. Supervised learning can be further divided into two main types: regression and
classification.[10]

2.2.1.1 Regression

The output variable in the regression is continuous, and the algorithm is taught to predict
a numerical value. In a housing price prediction task, for example, the input variables could
include the size of the house, the number of bedrooms, and the location, and the output variable
would be the price. Based on the input features, the algorithm would learn to forecast the price
of a new house.[10]

2.2.1.2 Classification

The output variable in classification is categorical, and the algorithm is taught to predict a
label or category. In a spam email detection task, for example, the input variables might be
the email content, sender information, and subject line, while the output variable might be
whether or not the email is spam. Based on the input features, the algorithm would learn to
categorize fresh emails as spam or not spam.[10]

2.2.1.3 Algorithms

Here are some commonly used algorithms in supervised machine learning:

1. k-Nearest Neighbors (k-NN) : K-NN is a machine learning technique for classification
and regression tasks, determining k nearest neighbors based on distance measures, with
sensitivity to metric and k value.[10]

2. Decision Trees: A decision tree is a classification model using recursive data splitting
and output values.[10]

3. Random Forests: Random forests improve ensemble learning by combining multiple
decision trees, reducing overfitting, and averaging individual tree predictions.[10]

4. Support vector machines (SVMs): Superlevel classification algorithm finds super
levels for class separation, reduces mean squared error, and uses kernel function for data
transformation.[10]

5. Linear Regression: Linear regression is a type of supervised learning algorithm that is
used for regression tasks. The algorithm finds the line (or hyperplane in higher dimen-
sions) that best fits the training data in the least squares sense. [10]
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6. Logistic Regression: A form of supervised learning method used for binary classification
tasks is logistic regression. The procedure determines the line (or hyperplane in higher
dimensions) that best separates the two classes, transforming the output if necessary with
a logistic function.[10]

2.2.2 Unsupervised machine learning

Unsupervised learning is a sort of machine learning in which the model is trained on unlabeled
data, i.e. data with no target variables or labels. Instead, the idea is to find the underlying
structure or patterns in the data without knowing what those structures or patterns are, There
are several types of unsupervised learning techniques, including:

2.2.2.1 Clustering

This involves grouping similar data points together into clusters, where the similarity is mea-
sured based on some distance metric. Clustering algorithms, such as k-means and hierarchical
clustering, can be used to discover natural groupings in the data. [34].

2.2.2.2 Dimensionality Reduction

This entails reducing the data’s dimensionality by translating it into a lower-dimensional space
while maintaining as much of the original information as possible. This can be used to visualize
the data, compress it, or prepare it for further investigation. Dimensionality reduction tech-
niques such as Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) are routinely utilized.[44].

2.2.2.3 Algorithms

1. K-Means :K-Means is a powerful clustering algorithm for image segmentation, text
mining, and bioinformatics, dividing large datasets into K clusters based on similarity..[10]

2. Gaussian Mixture Model (GMM): The Gaussian Mixture Model (GMM) is a prob-
abilistic model used in image processing, natural language processing, and speech recog-
nition for clustering and density estimation.[10]

3. Singular Value Decomposition (SVD): (SVD) divides a matrix into orthogonal U,
and V matrices, reducing dimensionality, compressing data, and approximating singu-
lar values. It is widely used in image processing, data analysis, and recommendation
systems.[10]

4. Principal Component Analysis (PCA): PCA is a dimensionality reduction tech-
nique that converts high-dimensional data into lower-dimensional representations while
retaining critical information, used in image, pattern, and signal processing .[10]

2.2.3 limitations of traditional machine learning

Despite its potential, traditional machine learning has its limitations. One significant limitation
is the need for feature engineering, which involves hand-crafting features to be used in the
learning algorithm[12], Feature engineering can be time-consuming, and the quality of the
features is critical to the success of the learning algorithm. Additionally, traditional machine
learning algorithms may struggle with complex patterns and relationships in the data, requiring
more advanced techniques such as deep learning.
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2.3 Deep learning

Deep learning is a subset of machine learning that utilizes artificial neural networks with mul-
tiple layers to model and solve complex problems. It is important in artificial intelligence and
machine learning because it has revolutionized many applications in various fields, such as
computer vision, natural language processing, speech recognition, and robotics. It has enabled
its ability to automatically extract features from raw data and surpass human-level accuracy
in many tasks. Deep learning has also enabled the development of intelligent systems that can
learn from their environment and adapt to changing conditions, allowing for more efficient and
personalized systems such as recommendation engines, virtual assistants, and self-driving cars.
As a result, deep learning has become a crucial component in the Development of Artificial
Intelligence and Machine Learning, paving the way for many exciting new applications and
innovations.

Deep learning has a long history dating back to the 1940s, but it wasn’t until the early 2000s
that significant progress was made. Key milestones include the development of deep belief
networks in 2006 and the success of deep learning in image recognition competitions in 2012.
Breakthroughs in recent years have led to advancements in natural language processing, speech
recognition, and robotics. Today, deep learning is a fundamental tool in artificial intelligence
and machine learning.

Deep learning is a rapidly growing field in artificial intelligence and machine learning, and
there is a high demand for professionals with deep learning skills. Studying deep learning can
lead to career opportunities in research, development, and implementation of deep learning
systems, as well as the tools and knowledge necessary to tackle complex problems and create
innovative solutions. It is an interdisciplinary field that draws on mathematics, statistics,
computer science, and neuroscience, and can provide a broad range of knowledge and skills
that can be applied to many different fields and industries.[22]

2.3.1 Basic deep learning concepts

Deep learning is a subset of machine learning that uses artificial neural networks to model
and solve complex problems. Deep learning has achieved remarkable success in various fields,
including computer vision, natural language processing, and robotics. In this report, we will
discuss the basic building blocks of deep learning, including artificial neural networks, activation
functions, backpropagation, and optimization algorithms.

2.3.1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are machine learning algorithms that are designed to mimic
the structure and function of the human brain. ANNs are made up of linked neurons that
are grouped into layers. The input layer takes input data, while the output layer generates
output predictions. The intermediate layers, known as hidden layers, convert the input data
into a usable representation for the output layer. Weighted connections connect each neuron to
the neurons in the subsequent layers, and the strength of these connections is modified during
training to increase the network’s accuracy.[22]

The simplest form of a neuron is a perceptron, and for ANN each neuron is considered a
perception that takes a vector of input values X and produces an output Y using a weighted
sum and an activation function: Y = f(w·X + b).[22]

ANNs have several limitations, such as requiring a large amount of labeled data to learn and
generalize effectively, overfitting the training set, and being computationally costly. They can
also overfit the training data, memorize training examples, and use regularization techniques
such as dropout and weight decay to prevent overfitting. Additionally, they are often referred to
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as black box models, making it difficult to detect and resolve problems that may develop during
training or testing, and they lack explainability, which can be difficult in certain contexts.[22]

2.3.1.2 Activation functions

Activation functions are mathematical functions that are applied to the output of each neuron
in a neural network, The purpose of activation functions is to introduce non-linearity into
the network. There are several types of activation functions that are commonly used in deep
learning, including :

1. Sigmoid: The sigmoid function is a commonly used activation function in artificial neural
networks. It is a mathematical function that maps any input value to a value between 0
and 1, The sigmoid function is defined as:

f(x) =
1

1 + e−x
(2.1)

However, the sigmoid function also has some limitations. For example, when the input
values are too large or too small, the output values become saturated, meaning that they
are close to 0 or 1. This can lead to the problem of vanishing gradients [49], which makes
it difficult to train deep neural networks.

2. The tanh function : The tanh function is similar to the sigmoid function, but outputs
values between -1 and 1. The tanh function is defined as:

f(x) =
ex − e−x

ex + e−x
(2.2)

The tanh function is commonly used in the hidden layers of neural networks.

3. ReLU: The rectified linear unit (ReLU) is one of the most widely used activation func-
tions. the rectified linear unit (ReLU) activation function operates by thresholding values
at zero[9]. It can be defined as f(x) = max(0, x) where x represents the input to the
function. In simple terms, ReLU outputs 0 when the input is negative x < 0, effectively
”turning off” the neuron, and outputs a linear function when the input is non-negative
x ≥ 0. The derivative of ReLU is defined as follows:

f ′(x) =

{
0, if x < 0

1, if x ≥ 0
(2.3)

Figure 2.2: Relu and its derivative Graph.
[3]
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2.3.1.3 Backpropagation

The fundamental goal of backpropagation is to adjust the weights of the network by propagat-
ing the error back through the layers of the network and using this information to update the
weights in a way that reduces the error. The basic equation for backpropagation can be written
as follows [39]:

1. Compute the output of the neural network denoted as y-out, given the input vector x and
the current weights W:

yout = f(Wx) (2.4)

where f is the activation function.

2. Calculate the error between the predicted output and the target output y:

E =
1

2

n∑
i=1

(yi − yout,i)
2 (2.5)

where n is the number of output neurons.

3. Compute the gradient of the error with respect to the weights using the chain rule of
differentiation:

∂E

∂wi,j

= (yout,j − yj)f
′(hj)yi (2.6)

where wi,j is the weight between neuron i and neuron j, yout,j is the output of neuron j,
yj is the target output for neuron j, f ′(hj) is the derivative of the activation function f
evaluated at the input to neuron j, and yi is the input to neuron i.

4. Update the weights using an optimization algorithm:

wi,j = wi,j − α
∂E

∂wi,j

. (2.7)

2.3.1.4 Optimization algorithms

Deep learning relies on optimization algorithms to update the weights of artificial neural net-
works during training and minimize the loss function. There are various optimization algorithms
for training neural networks, each with unique advantages and disadvantages. The choice of
optimization algorithm depends on the characteristics of the dataset, the architecture of the
neural network, and the available computational resources.[22]

1. Stochastic Gradient Descent (SGD): The weights in this optimization approach are
adjusted after each individual training example. The SGD update rule has the following
formula:

Wi = W − α ∗∆L(Wi−1) (2.8)

where:

• Wi is the new weight matrix.

• Wi−1 is the old weight matrix.

• α is the learning rate.

• L(W ) is the loss function.
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• ∆L(W ) is the gradient of the loss function with respect to the weights.

SGD has several advantages, including the following: it is simple and easy to implement,
it requires less memory and processing resources than other optimization techniques, and
it works well with small datasets. However, it has some drawbacks: It can be sluggish to
converge and get stuck in local minima. It may also require a low learning rate, which
might slow down convergence.[22]

2. Momentum: Momentum is a modification of SGD that adds a momentum term to
the weight update. The momentum term helps the weights to keep moving in the same
direction when the gradient changes direction, which can help the algorithm converge
faster. The formula for the momentum update rule is :

Vi = β ∗ Vi−1 + (1− β) ∗∆L(Wi−1) (2.9)

Wi = Wi−1 − α ∗ Vi (2.10)

where:

• β is the momentum coefficient.

• V is the velocity of the weight update.

• ∆L(W ) is the gradient of the loss function with respect to the weights.

The momentum benefits include accelerating convergence and preventing local minima,
dampening oscillations in weight updates, and supporting noisy or sparse gradients. Ad-
ditionally, if the momentum coefficient is too high, it may overshoot the ideal weights,
and if the learning rate is too low, it may converge slowly.[22]

3. Adagrad : Adagrad is an adaptive learning rate optimization algorithm that modifies
the learning rate according to the historical gradients of each weight. The goal is to
enhance the learning rate for slowly changing weights while decreasing the learning rate
for quickly changing weights. The Adagrad update rule is calculated as follows:

Gi = Gi−1 + (∆L(Wi−1))
2 (2.11)

Wi = Wi−1 − (
α√

Gi + ϵ
) ∗∆L(Wi−1) (2.12)

where:

• G is the sum of the squared gradients for each weight.

• ϵ is a small value to prevent division by zero.

The benefits of Adagrad adjust the learning rate for each weight based on its past gra-
dients, which can be effective for problems with many parameters and sparse or noisy
gradients. and its Drawbacks Can eventually bring the learning rate to zero and slow
convergence by accumulating the squared gradients over time. May not be effective for
problems involving non-stationary or non-convex objective functions.[22]

4. RMSprop: RMSprop is a modification of Adagrad that addresses the problem of the
learning rate decreasing over time. It does this by using a moving average of the squared
gradients to adjust the learning rate. The formula for the RMSprop update rule is:

Gi = β ∗Gi−1 + (1− β)(∆L(Wi−1))
2 (2.13)
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Wi = Wi−1 − (
α√

Gi + ϵ
) ∗∆L(Wi−1) (2.14)

where:

• G is the moving average of the squared gradients.

• β is the moving average coefficient.

RMSprop has the advantages of being able to adaptively change the learning rate for each
weight based on its history gradients and working well for non-convex or non-stationary
objective functions. Its drawbacks include the possibility of slow convergence if the learn-
ing rate is too low and the potential need for careful adjustment of the moving average
coefficient and learning rate[22].

5. Adam: Adam is a combination of momentum and RMSprop, which has become one of
the most popular optimization algorithms in deep learning. The formula for the Adam
update rule is:

mi = β1 ∗mi−1 + (1− β1)(∆L(Wi−1)) (2.15)

Vi = β2 ∗ Vi−1 + (1− β2)(∆L(Wi−1))
2 (2.16)

Wi = Wi−1 − (
α√
Vi + ϵ

) ∗mi (2.17)

where :

• β1 and β2 are the exponential decay rates for the moving averages.

• m is the moving average of the gradient.

• V is the moving average of the squared gradient.

Adam’s advantages include combining the advantages of momentum and RMSprop, has
the ability to adaptively change the learning rate for each weight based on its previous
gradients and momentum, and is effective for a variety of applications and datasets.
Additionally, for some problems or datasets, it may be necessary to carefully tune the
decay rates and learning rates, and it can converge slowly.[22]

2.3.1.5 Performance enhancers

1. Dropout: A portion of the neurons in a layer are randomly removed during training using
the common regularization approach known as ”dropout.” By requiring the network to
acquire more robust and generalizable characteristics, this can help prevent the network
from overfitting. When many neural networks with various subsets of neurons are trained
concurrently and their outputs are averaged at test time, this process is known as dropout
and can be compared to ensemble learning. The dropout rate is a hyperparameter that
regulates the fraction of neurons that are dropped out, and it is commonly applied after
a layer’s activation function. The dropout rate is typically set at 0.5, but this can be
altered depending on the issue and dataset.[22]

2. L1/L2 regularization: A penalty term is added to the loss function using the L1
and L2 regularization techniques, which promotes the network to have smaller weight
values. L1 regularization, also referred to as Lasso regularization, increases the loss
function’s absolute weights total, whereas L2 regularization, also referred to as Ridge
regularization, increases the loss function’s squared weights total. The trade-off between
limiting the training loss and minimizing the magnitude of the weights is controlled by
the regularization strength hyperparameter λ. While L2 regularization tends to produce
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weight vectors with small non-zero values, L1 regularization tends to produce sparse
weight vectors with many weights that are exactly zero.[22]

3. Batch normalization: The activations of each layer in the network are normalized using
the batch normalization technique. By doing so, the training process can be stabilized
and local minima can be avoided by the network. Batch normalization involves taking
the mean of the activations in each mini-batch and dividing it by the standard deviation.
The network can then learn to scale and shift parameters γ and β for each layer, allowing
it to modify the normalized activations as necessary. Typically, batch normalization is
used after a layer’s linear transformation but before the activation function.[22]

4. Skip connections : Skip connections can be thought of as a deep learning performance
booster.” By using skip connections to link the input of one layer to the output of an-
other, the network is able to learn a residual mapping rather than attempting to directly
fit the desired output. Adding skip connections to the network yields many advantages:
alleviating the vanishing-gradient problem, strengthening feature propagation, encour-
aging feature reuse, reducing parameters substantially [26], and allowing for the deeper
exploration of the network [24]. So, skip connections can be considered a performance
enhancer because they can help to improve the accuracy and efficiency of deep neural.
skip connections, also known as residual connections, have shown their powerful technique
in deep learning.

2.3.2 Types of neural networks

There are several types of neural networks, each with its own unique architecture and purpose.
Some of the most common types of neural networks are:

1. Convolutional Neural Networks (CNNs): Convolutional neural networks (CNNs)
are a type of deep learning algorithm that has been widely used for image recognition,
object detection, and segmentation tasks in computer vision applications[30]. CNNs are
inspired by the visual cortex of the human brain, where neurons respond to specific visual
stimuli and are arranged in a hierarchical manner. One of the key components of CNNs is
the convolutional layer, which applies a set of filters to the input image to extract features
such as edges, corners, and textures. The filters are learned during the training process
using backpropagation [30], The convolutional layer is followed by a pooling layer, which
reduces the dimensionality of the feature maps and increases the robustness of the network
to small variations in the input image. In recent years, The versatility and effectiveness
of CNNs have made them one of the most popular and powerful tools in deep learning.

2. The concept of convolution : In a CNN, the input image is processed by convolu-
tional layers, which apply a set of filters to extract local features. Each filter performs
convolution on a small region of the input image, sliding over the entire image and pro-
ducing a feature map. The filters are learned through backpropagation during training
[22].

Convolutional layers are characterized by three key hyperparameters: the number of
filters, the size of the filters, and the stride. The number of filters determines the number
of feature maps produced by the layer, while the size of the filters determines the receptive
field of the layer (i.e., the size of the region over which each filter operates). The stride
determines the distance between adjacent filter applications, allowing for downsampling
and controlling the size of the output feature maps [29].
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3. Convolutional Neural Network Architecture: The architecture of a typical CNN
consists of several layers, each of which performs a specific type of computation on the
input data [22], The first layer in a CNN is typically a convolutional layer, which applies a
set of learnable filters to the input image, producing a set of feature maps that highlight
different aspects of the image, After the convolutional layers, there are usually one or
more pooling layers, which downsample the feature maps to reduce their size and make
the network more efficient.The final layers of a CNN are usually fully connected layers,
which take the flattened output of the preceding layers and produce the final classification
output [22].

4. the process of training a convolutional neural network: Training a CNN involves
iteratively adjusting the weights of the network to minimize the difference between the
predicted output and the actual output. This is done by optimizing a cost function using
an algorithm ( such as stochastic gradient descent ), The first step in training a CNN
is to initialize the weights of the network. This can be done randomly or using a pre-
trained network, next, the network is trained on a labeled dataset by feeding the input
data through the network and comparing the predicted output to the actual output.
This process is repeated for many iterations, with the weights being updated after each
iteration to improve the performance of the network [22].

5. the applications of convolutional neural networks (CNNs): Convolutional neural
networks (CNNs) have found a wide range of applications, particularly in computer vision
tasks such as image classification, object detection, and face recognition. They have
also been used for medical image analysis, natural language processing, and autonomous
driving applications. CNNs have achieved state-of-the-art performance in many of these
tasks, and their success can be attributed to their ability to automatically learn features
from input data through convolutional layers.[29]

2.3.2.1 Auto encoder

Autoencoders are a type of neural network that has become increasingly popular in recent
years for their ability to learn efficient representations of data, Autoencoders can be used for
a variety of tasks, including dimensionality reduction, feature extraction, and noise removal.
autoencoder consists of two parts: an encoder and a decoder. The encoder takes in the input
data and compresses it into a lower-dimensional representation. The decoder then takes this
lower-dimensional representation and reconstructs the original input data. The goal of the
autoencoder is to learn a representation of the data that is as efficient as possible, while still
being able to reconstruct the original input data with high accuracy, Autoencoder can be used
in many tasks :

1. Denoising autoencoders : This kind of autoencoder is made to learn a clean represen-
tation of noisy data, it is trained to predict the original, given a corrupted data point as
input [22], and it is useful for removing noise from images and other data.

2. Convolutional autoencoder this type is commonly used for image denoising, compres-
sion, and generation. Unlike standard autoencoders, CAEs utilize convolutional layers in
their encoder and decoder networks, allowing them to better handle spatial information
in images, the encoder learns to capture important features of the image by applying
convolutional operations, while the decoder reconstructs the image from the encoded
representation [21].
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2.3.2.2 Popular convolutional neural network

1. ResNet : ResNet stands for Residual Network, a deep convolutional neural network for
image recognition. ResNet uses skip connections to add the output of a previous layer to
the output of a residual block [24].

Figure 2.3: ResNet architecture.
[7]

2. DenseNet : In DenseNets, each layer is connected to every subsequent layer through
concatenation or summation [26].

Figure 2.4: DenseNet architecture.
[26]

3. U-Net : Convolutional neural network UNet uses skip connections to combine low-level
and high-level features from the network’s encoder and decoder parts. UNet is used for
semantic segmentation. This enhances the segmentation output’s localization and context
information [38].

The U-Net architecture has been extensively In several medical image segmentation tasks,
including the segmentation of organs, tumors, and cells in multiple imaging modalities.
It has also been modified and used in other fields, such as industrial inspection, natural
scene segmentation, and satellite photography.
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Figure 2.5: U Net architecture.
[38]

4. Visual Geometry Group (VGG): Because of the VGG architecture’s famed simplicity,
it is widely used and simple to comprehend. The number of weight layers was the main
factor that the authors looked at when examining how network depth affected CNN
performance. They put forth a number of VGG network variations with various depths,
ranging from 11 to 19 weight layers. VGG’s consistent use of 3x3 convolutional filters
throughout the network, which permits the use of multiple stacked layers while keeping
the number of parameters manageable, is one distinguishing feature. Max-pooling layers
with a 2x2 filter and a stride of 2 are also used in VGG networks. The experiments
conducted by the authors demonstrated that performance was significantly enhanced by
increasing network depth[42].

Figure 2.6: example of VGG architecture.
[1]

2.3.3 The Impact of Hyperparameters on Deep Learning Perfor-
mance

The performance of deep learning models is highly dependent on the choice of hyperparameters,
which are parameters that are not learned during training but rather set by the user prior to
training, Hyperparameters include the learning rate, batch size, number of layers, number of
neurons per layer, activation functions, regularization methods, and many others. A careful
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selection of hyperparameters can significantly improve the performance of deep learning models,
while a poor choice can lead to poor performance, slow convergence, or even model instability.
Various approaches have been suggested for hyperparameter optimization, such as grid search,
random search [13], and Bayesian optimization [43].

2.4 Deep learning and medical images

Medical image analysis is essential to modern medicine, helping with disease diagnosis, planning
treatments, and keeping track of patient outcomes, the integration of deep learning in medical
image analysis has led to breakthroughs in various tasks, including image classification, segmen-
tation, reconstruction, and predictive modeling. Deep learning models, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), have demonstrated superior
performance in detecting diseases, segmenting anatomical structures, and predicting patient
outcomes [31].

2.4.1 Types of Medical Imaging

The term ”medical imaging” refers to a number of methods used to produce images of the
internal organs and bodily processes for the purpose of clinical diagnosis and treatment. For
healthcare professionals to diagnose and treat a variety of medical conditions, medical imaging
is a crucial tool. The use of medical imaging has transformed medical diagnosis and treatment.

2.4.1.1 X-ray imaging

The most popular imaging method for diagnosing conditions like bone fractures, dental issues,
and conditions of the chest is X-ray imaging. X-ray imaging creates images of the internal body
structures by using X-rays, an electromagnetic radiation that can pass through soft tissue. X-
ray imaging is an excellent tool for the diagnosis of a variety of medical conditions because it
is straightforward, quick, and non-invasive [45].

Figure 2.7: example of X-ray.
[4]

2.4.1.2 Computed Tomography (CT)

CT imaging uses computer technology and X-rays to produce in-depth images of the body’s
internal structures. For the diagnosis of diseases like cancer, heart disease, and internal bleeding,
CT imaging is especially helpful. CT imaging is a great tool for the diagnosis of complex medical
conditions because it gives a more accurate and detailed picture of the body’s internal structures
than X-ray imaging does[45].
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Figure 2.8: Example of Computed Tomography.

2.4.1.3 Magnetic Resonance Imaging (MRI)

MRI imaging uses a magnetic field and radio waves to create detailed images of the body’s
internal structures. For the diagnosis of diseases like brain tumors, spinal cord injuries, and
multiple sclerosis, MRI imaging is particularly helpful. MRI imaging is an excellent tool for
the diagnosis of complex medical conditions because it produces an extremely accurate and
detailed image of the body’s internal structures [45].

(a) MRI scan[2]. (b) the difference between MRI,CT,and x-ray
[8].

Figure 2.9: Details for medical images.

2.4.1.4 Ultrasound Imaging

High-frequency sound waves are used in ultrasound imaging to produce images of the body’s
internal organs, Ultrasound imaging is commonly used to diagnose conditions such as pregnancy,
liver disease, and heart disease[45].

The main equipment of ultrasound imaging includes a handheld device called a transducer,
a pulser and receiver, and a display system.
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Figure 2.10: Ultrasound Imaging equipment.
[6]

2.4.2 Alzheimer’s dementia (AD) diagnosis

The term ”dementia” is used in general to refer to a premature decline in cognitive function
that goes beyond biological aging. The most prevalent type of dementia, accounting for 70%
of cases, is Alzheimer’s disease (AD). It gradually interferes with daily tasks and functions by
altering memory, thinking, and behavior. Early identification of any accompanying cognitive
impairment enables the administration of preventive drugs to slow the development of the
illness [48]. Observing people with mild cognitive impairment (MCI) and evaluating cognitive
changes over time are the traditional methods for diagnosing AD.

However, AD is caused by the gradual loss (degeneration) of brain cells, which can be seen
in brain scans even before or with very mild symptoms[47]. The structures of the brain can be
seen using structural imaging techniques like magnetic resonance imaging (MRI), which can also
show damage to particular areas of the brain and the atrophy of neurons and their connections.
For the diagnosis and assessment of dementia, MRI-based diagnostics have become a crucial
component of clinical practice[18, 32].

2.5 Based works

2.5.1 Delta Auto Encoder

This approach focuses on teaching a neural network to generate samples from distributions of
new visual categories, using only a limited number of observed examples. it aims to learn and
leverage transferable intra-class deformations, referred to as ”deltas,” between pairs of training
examples belonging to the same class. By capturing these deltas, our model can effectively
apply them to a limited set of examples from a novel class, unseen during training, to efficiently
synthesize additional samples[40].
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Figure 2.11: Delta autoencoder.
[40]

2.5.2 Convolution Neural Networks and Self-Attention Learners

This work aimed to enhance the automatic detection of dementia in MRI brain data by em-
ploying computer-aided diagnosis (CAD). The study explored three deep convolutional mod-
els (ResNet, DenseNet, and EfficientNet) and two transformer-based architectures (MAE and
DeiT) for mapping input images to clinical diagnosis. Two publicly available datasets (ADNI
and OASIS) were used for fair comparison through various benchmarks. Results indicated that
the deeper ResNet and DenseNet models outperformed the shallower versions, and transformer
architectures, particularly DeiT, demonstrated superior classification accuracy and robustness
to added noise. Compared to existing methods, this approach achieved a significant improve-
ment in accuracy (up to 7%), opening up possibilities for CAD implementation in real-world
applications[14]. They trained the models using different numbers of slices per subject, specifi-
cally 4, 8, and 16 slices. By training the models on varying slice configurations, the researchers
aimed to assess the models’ performance under different levels of input data granularity.

2.6 Conclusion

AI replicates human intelligence in machines, enabling tasks like perception, reasoning, learning,
and decision-making. It can transform industries like healthcare, banking, transportation, and
manufacturing by increasing efficiency, lowering costs, and offering personalized experiences.

Medical image analysis is crucial for disease diagnosis, treatment planning, and patient
outcomes tracking. Deep learning models, like CNNs and RNNs, excel in image classification,
segmentation, reconstruction, and predictive modeling.

Alzheimer’s disease is prevalent dementia causing cognitive decline beyond biological aging.
Early identification and early detection enable preventive drugs, in our work we attempted to
automate the diagnosis of AD, and we constructed two new architectures, the first one is for
data augmentation which is inspired by Deltaencoder[40], and the second one for classification
which is based on CNNs and Self-Attention Learners[14].
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Chapter 3

Proposed methods

3.1 Inroduction

Few-shot learning (FSL) is an important area of research in deep learning. however, the ability
to learn new concepts with limited data is a key challenge in these fields, and several approaches
have been proposed to address this problem.

One of the key approaches to FSL performance is through the data perspective, which uses
prior knowledge to augment the supervised experience. This perspective involves generating ad-
ditional training data and applying this augment method to improve the dementia classification
task.

In our work, we focus on the data perspective of FSL and propose a new approach to improve
few-shot learning by generating new data with an enhanced autoencoder-based architecture.
We apply the proposed approach to the task of dementia identification and ordinary task.

3.2 The proposed augmentation method

The proposed solution involves training a network consisting of two encoders and a decoder.
The first encoder learns transferable deformations between pairs of examples of the same class
(A), while the second encoder extracts features from the class (B). Our suggested method
uses a combination of U-net, CAE, and ResNet, where the decoder applies the transferable
deformations to the example from the second encoder to generate a transferred sample of class
(B). 3.1 present the general flowchart of the proposed method :

Figure 3.1: Training phase.
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The network parameters are updated accordingly to minimize the difference between the
generated image and the original pair image of class (B). Hereafter, we provide more details on
the components of the proposed approaches.

3.2.1 Architecture’s Layers

3.2.1.1 Concatenation layers

In our proposed method, we utilized a concatenation layer as a key component in the architec-
ture. we employed concatenation layers in three specific cases to enhance the information flow
and capture richer features :

1. 3.2.1.2 Concatenate input images: We utilized a concatenation layer to combine two
input images. By concatenating the pixel values along a specific dimension, we effectively
merged the information from both images into a single input tensor. This allowed the
subsequent layers to leverage the combined information from multiple sources, enabling
the model to extract more comprehensive features.

2. Concatenate output of encoders: We utilized concatenation layers to merge the
outputs from two separate encoders. After passing the inputs through two distinct encoder
pathways, we concatenated their respective output feature maps. This merging operation
facilitated the fusion of features learned at different levels of abstraction.

3. Concatenation layers in the skip connections: Skip connections are commonly used
to improve gradient flow and facilitate the propagation of information across different
layers. In our architecture, we incorporated concatenation layers in the skip connections,
allowing the direct concatenation of feature maps from encoder layers with decoder layers.

Convolution layers

In our proposed method, we incorporated convolutional layers with a 3x3 filter size and ”same”
padding. The convolutional operation is a fundamental building block in convolutional neural
networks (CNNs) and plays a crucial role in feature extraction.

By using a 3x3 filter size, we aimed to capture local patterns and spatial dependencies
within the input data. This filter size is commonly chosen due to its effectiveness in detecting
meaningful features.

we employed ”same” padding in the convolutional layers. The same padding ensures that
the output feature maps have the same spatial dimensions as the input. It achieves this by
padding the input with zeros before performing the convolution operation.

3.2.1.3 Pooling layers

In our proposed method, we incorporated max pooling layers after every 2 or 3 convolutional
layers. Max pooling is a common technique used in convolutional neural networks (CNNs) for
downsampling feature maps and capturing the most salient features.

We used a pooling size of 2 by 2, which means that within each pooling region, the maximum
value was selected. This downsampling operation reduced the spatial dimensions of the feature
maps while retaining the most significant information. By downsampling, the model becomes
more computationally efficient and gains a degree of transnational invariance.

Furthermore, we applied ”same” padding in the max pooling layers. The same padding
helps to compensate for any overlaps that occur when the input size and kernel size do not
perfectly align.
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3.2.1.4 Dense layers

We design two architectures using our suggested techniques, one of them contains the dense
layers; the output of the first and second encoders are flattened, concatenated, and connected
by a dense layer with 2000neurons, this is done after the convolution and max pooling layers;
finally, another dense layer is added. Its dimensions match those of one of the outputs from
the encoder after it has been flattened, this is done so that it can be reshaped, fed into the
decoder, and then used to reconstruct a new image.

3.3 The used hyperparameters

3.3.1 ”ReLU” activation function

Artificial neural networks need an activation function because it introduces non-linearity to
the network’s output, Choosing the right activation function is crucial as it directly impacts
the network’s ability to model complex relationships and effectively learn from data.in our
architecture, we used the Relu activation function in whole networks. ReLU, or Rectified
Linear Unit, is a popular activation function used in artificial neural networks The main reason
that we use ReLU is its Computational Simplicity. it uses simple thresholding operations,
so it is computationally efficient. When compared to activation functions that require more
complicated computations, this efficiency enables quicker training and inference, Moreover, it
does not cause the vanishing gradient problem when increasing layers like sigmoid or tanh[20].

3.3.2 Loss function

The loss function is a key element in many deep learning algorithms and is important for both
training and optimizing models.in our method, we used (MAE).

3.3.2.1 Mean Absolute Error (MAE)

From a mathematical perspective, MAE is calculated by summing the absolute differences
between predicted values (ŷ) and actual values (y), and then dividing by the total number of
samples (n):

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.1)

3.3.2.2 Mean Square Error (MSE)

Mean Square Error (MSE) is a widely used statistical metric to evaluate the quality of predic-
tions or estimations by measuring the average squared difference between predicted values and
actual values[15].

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.2)

We used this activation function in our classification model.
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3.3.3 ADAM optimizer

In our architecture, we used ADAM as an optimization algorithm.ADAM is a widely used
optimization algorithm that combines the advantages of both adaptive learning rate methods
and momentum-based methods.

3.4 The proposed approach for the task of dementia

identification

In this part, we will show the ability of our method in the context of generating new data and
learning the transformations. The purpose of the first experience is to learn the transformation
from a longitudinal section to a cross-section of MRI images, which contains we traditional
skip connection from the encoder to the decoder as a traditional procedure for increasing the
performance of generating approach, which in turn helps us in the classification of dementia.

3.4.1 Augmentation model

To solve the few data problem in cross-section MRI images we proposed this architecture that
allows us to augment our dataset by longitudinal section as prior knowledge. The model consists
of two encoders and a decoder, and the two images from subject ’A’ are placed into one of the
encoders, one of these images is a longitudinal section MRI and the second is a cross-section
MRI. The first encoder has five blocks in total. Four of the blocks have three convolutions and
a max-pool, while the fifth block only has two convolutions. The second encoder, which has
4 blocks and 3 convolutions, and 1 max-pool in each, includes the picture of the longitudinal
images that belong to subject B. After that, the output from them is reshaped and inserted
after being flattened, concatenated, and connected successively to 2 Dense layers. A new cross-
section image with five blocks, four of which include three convolutions and summation, and
one block with only two convolutions is created with the decoder. It is noteworthy that the
initial encoder and the decoder, such as UNET, are connected via a skip connection, we can
see more details and understand the architecture from figure 3.2:

Figure 3.2: Our proposed augmentation architecture.
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By using the skip connection the network is able to learn some information that helps in
the correct construction of the output image rather than attempting to directly fit the desired
output, encouraging feature reuse, and also allowing for a deeper exploration of the network.

and the table from figure 3.3 shows the summary of the augmentation model:
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Figure 3.3: the summary table of our proposed augmentation method.
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3.4.2 classification model

Our classification model has two inputs: a cross-section MRI of the brain and a corresponding
feature vector. The image is traversed through a total of five blocks. the first four of the blocks
have three convolutions and a max-pool, while the fifth block only has two convolutions, and all
of its convolutions contain the ”relu” activation function. The output from the previous layer
is then flattened, reformed, and connected consecutively to two dense layers, each of which
contains 1000 neurons . then connected it to the two dense layers with dropout regularization
are then linked. the first one, which had 500 neurons concatenated with the second input (a
feature vector), and the second one had 100 neurons, to create the output, which had just
one neuron. With the ”sigmoid” activation function, all of that, From here, we can see more
specifics and grasp the architecture from the figure 3.4:

Figure 3.4: Our proposed classification architecture.

the table 3.1 represent the summary of the augmentation model::
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Table 3.1: summary table of our proposed classification method

3.5 The proposed approach for the task of generating

images based on artistic transformation

In the second experiment, we aim to learn two transformations , the transformation from face
to cartoon face , and the transformation from anime to sketch art. Our aim was to address the
generation performance of the models, and we explored adjustments to the skip connections
within the architecture. We added skip connections from the input to each final block of
the model. These skip connections allowed the model to directly access the original image
information at multiple scales throughout the network. By concatenating the feature maps of
the final blocks with the original images and applying max pooling, we aimed to preserve the
spatial information while incorporating learned features. As a result of these modifications, we
observed significant improvements in generating performance.

As previously mentioned, a key modification we made to the skip connections involved
passing the original images through both the encoder and decoder pathways of the model.
Before concatenation with the end of each block, we applied max pooling to the original images
to ensure they had the same size as the target layers. Additionally, we reduced the number of
convolution blocks in our modified architecture, resulting in a reduction in the total number of
parameters as shown in 3.2 3.3 tables. The figure below show the architecture of our model 3.5
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Figure 3.5: Our second proposed augmentation method.
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Table 3.2: First part of our second proposed augmentation method’s summary.
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Table 3.3: Second part of our second proposed augmentation method’s summary.
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3.6 Conclusion

Our experiment focused on developing an architecture for dementia identification using data
augmentation and classification techniques. We constructed two architectures: one for data
augmentation and the other for classification. The data augmentation architecture employed
two encoders and decoders to learn transferable deformations and generate augmented samples.
This approach aimed to enhance the dataset for dementia identification. For classification, we
utilized a convolutional neural network (CNN). The CNN model was designed to classify images
into dementia and non-dementia categories.

To evaluate the effectiveness of our data augmentation architecture in different tasks, we
applied it to artistic transformation as an additional experiment, we introduced skip connections
from the original images into the network to preserve the artistic qualities.
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Chapter 4

EXPERIMENTAL RESULTS

4.1 The dataset

.

4.1.1 The first datasets (OASIS-1)

Cross-sectional MRI Data in Young, Middle-Aged, Nondemented, and Demented Older Adults
dataset (Oasis-1) consists of 416 people ranging in age from 18 to 96, and it comprises a
collection of brain MRI scans with multiple sectionals. However, for our study, we only use the
longitudinal section and Cross-section. Three or four distinct T1-weighted MRI scans performed
in a single scan session are presented for each subject. Men and women, both right-handed,
are represented among the subjects. Over the age of 60, 100 of the patients who were involved
in the study received a clinical diagnosis of very mild to moderate Alzheimer’s disease (AD). A
trustworthy data set with 20 non-demented participants that were photographed 90 days after
their initial session is also included in the dataset link https://www.oasis-brains.org/

But when checking the CSV file accompanying the dataset, we noticed that 220 subjects
are unlabeled and there is a lot of missing information, and the rest 216 subjects are complete.
Therefore, we decided to use the missing subjects to augmentation approach and consider it as
prior knowledge. As for dementia classification, we only worked with 216 completed subjects.

4.1.1.1 Prepossessing of the dataset for augmentation task

Since we said previously that almost half of the dataset is unlabeled, we had to work on only
216 subjects and divided it into 75%: 25%, which means about 55 subjects for testing, of
which 23 subjects had dementia and 32 didn’t have, and 161 for training in the classification
task, of which 60 subjects had dementia and 101 didn’t have, where we did the cross-validation
technique in training the classification approach with k-fold for 75% of the training dataset.
As for the task of augmentation of the dataset, we add 220 to the training data. subjects
that we said earlier that it does not contain sufficient information because we don’t need the
information of this part in the augmentation approach.

In the step of augmentation of the dataset, we had to form triplets of images as inputs and
one image as output, where the triplets are formed from two images of subject A, one image
of a longitudinal MRI section, and one image of an MRI cross-section, while the third image
belongs to another random subject B, but from a longitudinal MRI section, while the MRI
cross-section of element B is considered As outputs, we can thus form many triads to train our
model, given that each element contains two cross-section images and four or five longitudinal
images, it is worth mentioning that we did not normalize the images between 0 and 1, but left
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them between 0 and 255 because the images have many details and it is difficult to reconstruct
images with many details in a semi-accurate manner and their range is between 0 and 1, and
also because the images between 0 and 255 take At least half of the space in RAM for images
between 0 and 1. Where the dataset is as follows shown in figure 4.1:

Figure 4.1: An example dataset

4.1.1.2 Preprocessing of the dataset for classification task

In the training of augmentation task, we randomly form the data from the subjects, and only
make sure of the conditions that we said previously, but to implement the classification task, we
make sure that subject ”B”, whose data we are increasing, belongs to 161 who have complete
information.

In the classification task, we also rely on the information in the CSV file, as it contains
a set of features, which are: Gender, Dominant Hand, Age, Education Level(Educ), Socioe-
conomic Status(ses), Mini-Mental State Examination(MMSE), Estimated Total Intracranial
Volume(eTIV), Normalize Whole Brain Volume(nWBV), Atlas Scaling Factor(ASF), and Clin-
ical Dementia Rating(CDR) is the output. we delete Dominant Hand features because there is
one value and normalize the features between 0 and 1, Thus we are able to enter it as one of the
inputs in the classification task. The outputs contain four values (0, 0.5, 1, 2) that represent the
degree of dementia, but due to the lack of a dataset, we decided to do a binary classification,
and we converted the values 0.5, 2 to 1, which means that the subject is sick, while the value
0 means that The subject is not sick, then in the classification task, we enter the images with
the feature vector corresponding.
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4.1.1.3 Preprocessing the dataset with Hand-Crafted augmentation for classifica-
tion task

Hand-crafted augmentations were employed to facilitate a comprehensive comparison with our
model. These augmentations included flipping and rotation operations at angles of 20 and -20
degrees, as well as shifting the images horizontally and vertically. By applying these techniques,
we aimed to enhance the diversity and variability of our dataset, enabling a more thorough
evaluation of our model’s performance.

4.1.2 The second dataset (artistic transformation)

We have two different datasets, the dataset of face2cartoon (A) and anime2scetch (B), both
are paired datasets, which means each image has its transformation, the purpose is to learn the
transformation features and generate new images based on this transformation, we collected
1000 images from the dataset (A) and 975 from (B), then we allocated 10 images from each
class as test datasets. The image below shows an instance of the dataset 4.2.

Figure 4.2: An instance of the dataset.

4.1.2.1 Prepossessing of data

In our prepossessing pipeline, we handled a dataset composed of two distinct datasets, denoted
as A and B. Each dataset contained paired images, represented as A = a1i, a2i and B = b1i,
b2i. To ensure a fair evaluation of our model, we allocated 5 images from each class for testing,
leaving us with 995 images from class A and 970 images from class B for training.

To create our training dataset, we followed the following steps:

1. We sampled paired images from class A, resulting in (a11, a21). We then randomly
selected another sample from class A, denoted as a12, and concatenated it with the (a1i,
a2i), while the second image,a22, was set as the Y train label.

2. Similarly, we sampled paired images from class B.

3. We repeated steps 1 and 2 to further expand our training dataset, ensuring a balanced
representation of both classes.
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As a result, our X train dataset consisted of threes a11, a21, a12 and b11, b21, b12 , while the
Y train dataset contained the corresponding labels, either a22 or b22. The figure below show
an example of the training dataset 4.3.

Figure 4.3: An example of two rows of the dataset.

Due to resource constraints, including limited GPU and RAM availability, we resized the
images to a resolution of 125 by 125 pixels. This reduction in resolution allowed us to manage
the computational requirements while still preserving essential visual features for the task at
hand.

By following this prepossessing approach, we ensured a balanced training dataset, paired
images from both classes, and appropriately formatted input and output data for our model.
The downsampling of the images to 125 by 125 pixels enabled efficient processing.

4.2 Our Framework

We developed our model using Python and Keras. it was trained using the GPU T4 and 12.7
GB of RAM provided by Colab, enabling efficient training.

4.3 Performance metrics

Performance metrics are numerical measurements that are used to assess the efficacy and stan-
dard of machine learning models and algorithms. These metrics give information on a model’s
performance, the precision of its predictions, and whether it achieves the goals of a particular
task, like :

4.3.1 Confusion matrix

A performance evaluation tool for classification and machine learning applications is the confu-
sion matrix. By summarizing the outcomes of the predictions made on a set of test data, it aids
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in our understanding of the performance of a classification model. The matrix, which shows
the actual and anticipated classes or labels, is commonly a square matrix. figure 4.4 represents
the confusion matrix for binary classification.

Figure 4.4: Results evaluation using The Confusion matrix.

The four cells of a confusion matrix indicate various combinations of real and anticipated
labels:

• True Positive (TP): The model correctly predicted the positive class.

• True Negative (TN): The model correctly predicted the negative class.

• False Positive (FP): The model incorrectly predicted the positive class when the actual
class was negative.

• False Negative (FN): The model incorrectly predicted the negative class when the actual
class was positive.

We can compute a number of performance metrics, including accuracy, precision, recall
(sensitivity), specificity, and F1 score, using the confusion matrix:

1. Accuracy : A classification model’s accuracy is determined by dividing the number of
examples that were properly classified by the total number of instances in the dataset.
Accuracy offers a broad evaluation of the model’s performance, but when the dataset is
unbalanced, it might be deceptive, it is given by the formula:

Accuracy =
TP + TN

TP + TN + FP + FN

(4.1)

2. Precision : Precision measures a classification model’s capacity to accurately identify
positive occurrences. It focuses on reducing false positives when the cost of false positives
is high, such as in spam detection or medical diagnosis, it is calculated as:

Precision =
TP

TP + FP
(4.2)
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3. Recall (Sensitivity):Recall measures the ability of a classification model to correctly
identify positive instances out of all actual positive instances. It is important in situations
where identifying all positive instances is crucial, such as disease detection, where missing
a positive case can have severe consequences, it is computed using the formula:

Recall =
TP

TP + FN
(4.3)

4. Specificity :Specificity measures the ability of a classification model to correctly identify
negative instances, especially in fraud detection and quality control, where false positives
need to be minimized, It is given by:

Recall =
TN

TN + FP
(4.4)

5. F1-Score : The F1 score, which provides a balanced assessment of a model’s performance,
is a harmonic mean of precision and recall. Both false positives and false negatives are
taken into account. The F1 score has a range of 0 to 1, with 1 denoting flawless recall
and precision and 0 denoting the worst performance, It is calculated using the formula:

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(4.5)

4.3.2 Receiver operating characteristic curve (ROC)

The ROC curve is created by plotting the true positive rate (TPR) against the false positive
rate (FPR) at various classification thresholds. The thresholds can be adjusted to control the
balance between true positives and false positives. By plotting these values on a graph, we can
visualize the model’s performance across different thresholds. Figure 4.5 gives an example for
roc curve.

Figure 4.5: example of the ROC curve .

1. True Positive Rate (TPR) : The True Positive Rate (TPR), also known as sensitivity
or recall, we have mentioned before.

2. False Positive Rate (FPR): It represents the proportion of actual negative cases incor-
rectly classified as positive by the model. It is calculated as the number of false positives
divided by the sum of false positives and true negatives:

FPR =
FP

FP + TN
(4.6)
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4.4 Experiment 1

4.4.1 Result of our proposed augmentation method

The cross-section and longitudinal MRI images are present in 1125 original images. To train
our model, we generated 19k different triads at random. A total of 65M parameters made up
our model. 100 epochs of training were performed on the model with a 128-batch size. To
assess the model’s performance, we set aside 15% of the data for validation purposes. and the
loss function used is ”mean absolute error”, and we note that the images are between 0 and
255. The difference between training and validation, as well as the very small loss, allowed the
model to produce excellent results, as we observe in this figure 4.6 :

Figure 4.6: diagram of first proposed augmentation method loss
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We can note the quality of the images when compared to the original images. To illustrate
this, see the figure 4.7 :

Figure 4.7: Some examples of proposed augmentation outputs.

As we said earlier that to carry out the classification task, we make sure that subject B,
whose data we are increasing, belongs to the 161 subjects who have complete information. So
we tested with these 161 subjects and the loss was by the amount of 5.2737

4.4.2 Result of our proposed classification method

Our model had 20.2M parameters altogether. We use K-fold cross-validation with k=5 and 25
epochs for each k with a 128-batch size for training and validation data, where we calculated
the mean of k-fold results in accuracy, loss, and training evolution. We trained 3 models: one
of them without augmentation and the second with handcrafted augmentation and the last
one with the proposed augmentation method From here, we can see more specifics of loss and
accuracy:
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4.4.2.1 classification without augmentation

In order to train the classification model with 320 original images of cross-section MRI, we can
see the evolution of the results of loss and accuracy in figure 4.8 :

(a) Diagram of accuracy. (b) Diagram of loss.

Figure 4.8: Loss and accuracy updating of classification without augmentation.

We can observe training accuracy improvement with each passing epoch. However, valida-
tion is wobbly and unstable, although the loss of training and validation is steadily decreasing,
that is not enough.

4.4.2.1 Classification with handcrafted augmentation

In order to train the second classification model, we augmented our data from 320 images to
9630 images with flipping, rotation, and shifting. Figure ?? shows how the outcomes of loss
and accuracy have changed over time.

(a) Diagram of accuracy. (b) Diagram of loss.

Figure 4.9: Loss and accuracy updating of classification with handcrafted augmentation.

With each succeeding epoch, the training and validation accuracy grew consistent and
improved, and the validation accuracy eventually reached 78%. This is an example of the
impact of the augmentation strategy.
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4.4.2.3 Classification with our proposed augmentation method

We augmented the dataset we used for the augmentation challenge from 320 to 8370 photos in
order to train the classification model.Figure 4.10 shows the results for loss and accuracy

(a) Diagram of accuracy. (b) Diagram of loss.

Figure 4.10: Loss and accuracy updating of classification with first proposed augmentation.

And we evaluated the three models with the same data and compared them, and the results
were summarized in this table with the best results from the paper [14], paper [11], and the
paper [50], as the best results based on transformer architectures, its name Data-efficient image
Transformers (DeiT) used many slides from MRI images. The table represents these results :

Methods Accuracy

without augmentation 60.19%

with handcrafted augmentation 76.85%

with proposed augmentation 82.41%

DeiT (8 slides) [14] 75.6%

VGG16-v1 (8 slices) [50] 66.0%

VGG16-v2 (8 slices) [50] 66.1%

ResNet-18 (8 slices) [50] 68.8%

VGG16 (10 slices) [11] 71.6%

Table 4.1: Table of comparison between many methods.

We can analyze the results of our proposed method further by seeing the confusion ma-
trix (figure 4.11(b)), receiver operating characteristic (ROC) curve (figure 4.11(a)), and the
classification report (table 4.2) below:
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Precision Recall F1-score Support

Class 0 (negative) 0.77 1.00 0.87 64

Class 1 (positive) 1.00 0.57 0.72 44

Accuracy 0.82 108

Table 4.2: Table of classification report of proposed classification method.

(a) Model evaluation with ROC. (b) Model evaluation with confusion matrix .

Figure 4.11: ROC and confusion matrix of classification.

Although the obtained results seem to be very promising, it must be taken into account
that we are working on a medical task, where we pay attention in this task that the recovery
value of category 1 or positive category is relatively high because it represents the percentage
of accuracy in detecting disease cases, as it is dangerous to make a mistake specifically in this
category.

In These cases can sacrifice a little accuracy in exchange for an increase in recall accuracy,
by changing the default threshold in the prediction and classification process, where we changed
the threshold from 0.5 to 0.34, and the results can be considered better despite the decrease
in accuracy to 81%, The results can be clearly seen in the classification report table 4.3 and
confusion matrix in figure 4.12 after the changing:

Precision Recall F1-score Support

Class 0 (negative) 0.88 0.78 0.83 64

Class 1 (positive) 0.73 0.84 0.78 44

Accuracy 0.81 108

Table 4.3: Table of classification report of proposed classification method.
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Figure 4.12: Confusion matrix of classification after changing threshold .

4.5 Result of the proposed approach for the task of gen-

erating images based on artistic transformation

In this section, we present the results generating performance of our model, which focused on
training an architecture capable of generating images based on learned transformations. The
model was trained for 25 epochs using a dataset of 5,000 threes images. Our findings indicate
that the model successfully learned transformations despite the relatively small amount of data
and a limited number of parameters, as we mentioned before, with just approximately 600,000
parameters.

4.5.1 Transformations result of class A

in this example 4.13, we tested the model with a cartoon image (class A), we selected random
pairs of images from class A to evaluate the first transformation and pairs of images from class
B to evaluate the second transformation, the figure below illustrates the results of applying
transformation 1 (corresponding to the pairs from class A) and transformation 2 (corresponding
to the pairs from class B).
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Figure 4.13: Result of an image from class A.

4.5.2 Transformations result of class A

Additionally, we performed a similar evaluation for class B (real faces) 4.14.

Figure 4.14: Result of an image from class B.

To assess the training progress and the performance of our modified model, we monitored
the training and validation losses throughout the training process. It’s worth noting that the
images range between 0 and 255.
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4.5.3 Model evaluation

The loss and validation loss curves of our model 4.15 exhibit an interesting pattern during
training. The training loss consistently decreases over the epochs, indicating that the model
is learning from the paired images and improving its performance. However, the validation
loss shows a more fluctuating behavior. Initially, it decreases slightly, but then it experiences
temporary spikes followed by subsequent drops and increases. Despite these fluctuations, the
validation loss eventually stabilizes and continues to decrease consistently after epoch 20.

Figure 4.15: Training and validation losses.

4.6 Discussion

In our first experiment, we observed a noticeable enhancement in the results after applying aug-
mentation using our method. This outcome suggests that our model exhibits strong generating
capabilities, effectively learning the transformations between different aspects of the images.

While our approach yielded promising results, it is important to acknowledge the potential
advantages of hand augmentation in certain cases. Hand augmentation, when performed by
individuals with prior knowledge and expertise in the dataset, may yield even better outcomes.
The human intervention allows for a nuanced understanding of the dataset characteristics and
the ability to tailor the augmentation process accordingly.

However, one of the notable advantages of our method is its ability to extract transforma-
tions without requiring human intervention. This is particularly valuable in scenarios where
extensive domain knowledge or expertise might not be readily available. By automating the
transformation extraction process, our method provides a practical and efficient solution for
generating augmented images.

In the second experiment, the effectiveness of skip connections in improving the generation
performance was evident in our experiments. Despite the relatively few training steps, which
took approximately 30 minutes, and the small number of parameters in the model, it was
able to generate acceptable images, indicating successful learning of the transformation. It
is worth noting that the datasets used for training and testing, Dataset 1 and Dataset 2,
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respectively, were significantly different. Dataset 1 consisted of PNG images with a white
background, while Dataset 2 was composed of JPG images. This discrepancy in image format
and background color had an impact on the performance of the model. Additionally, due to
material limitations, we had to decrease the resolution of the images, which may have affected
the overall performance. One significant drawback of this modified method is the substantial
consumption of RAM during the training and inference stages. This is primarily attributed to
the concatenation of the original images with other layers throughout the architecture. As the
image resolution increases, the RAM requirements also escalate, leading to potential memory
constraints, especially when dealing with high-resolution images. The need to store and process
the concatenated feature maps, along with the original images, imposes significant demands on
the available system resources. This high RAM consumption can pose challenges, particularly
when working with limited computational resources or large-scale datasets. Mitigating this issue
may require careful memory management techniques, such as reducing batch sizes, optimizing
data loading strategies, or considering alternative architectures that can handle larger images
more efficiently.

Nevertheless, the model demonstrated its ability to adapt and generate reasonable results
within these constraints.

4.7 General Conclusion

The ability to improve generalization is of paramount importance, as it allows deep learning
models to perform well on unseen data, ensuring robust performance in real-world settings. By
addressing the challenge of limited data, our proposed method offers a practical solution for
scenarios where obtaining large labeled datasets is challenging or costly.

Furthermore, the method’s adaptability is a key advantage, enabling its utilization in a
range of applications beyond the medical domain. Through strategic architectural adaptations,
the method can be tailored to different tasks, accommodating the specific requirements and
characteristics of various problem domains. This flexibility enhances the method’s potential for
broader impact and opens up possibilities for innovative applications across various industries.
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