
People’s Democratic Republic of Algeria
ةيبعشلاةيطارقميدلاةيرئازجلاةيروهمجلا

Ministry of Higher Education and Scientific Research
يملعلاثحبلاويلاعلاميلعتلاةرازو

ةلقروحابرميدصاقةعماج

Kasdi Merbah University of Ouargla

Academic Master Thesis
to obtain a master’s degree in Computer Science

Major : Fundamental Computing

BHJO : A novel hybrid
metaheuristic optimiser using

Beluga Whale Optimisation, Honey
Badger Algorithm and Artificial

Jellyfish Search Optimiser for
Optimisation Problems

Realized by :
Fatima Zohra Khechiba
Khadidja Kharchouche

Supervised by :
Dr. Farouq Zitouni
(UKMO)

Presented in 18 June 2023, in front of the jury composed of :
Dr.Abdelhakim Cheriet : UKMO - President
Dr.Meriem Khelifa : UKMO - Examiner

Promotion : 2022/2023

Dedicace

“
قداصلايريدقتنعربعا�لقوشلالكبهجوتا�،قيمعنانتماوميظعحرفب

.يتايحيفءازعا�لاصاخشا�للقيمعلايركشو

ام�دقينعفديناكنمىلا�،هلاما�هلققحا�ىتحكلمياملكينبهويذلاىلا�

ىلا�،رخفلكبهمسالمحبرختفا�يذلاصخشلاىلا�،قوفتلاوحاجنلاوحن

،ماسجتايحضتبيميلعتىلعرهسيذلا

زيزعلايبا�

ىنعمدسجينمىلا�،فطعلاوبحلازمرىلا�،يتايحيفكلما�امىلغا�ىلا�

يلققحياهؤاعدنمىلا�،يدوجورسويتماستبارسىلا�،ةيحضتلاوةمحرلا

ةبيبحىلغا�ىلا�،يحورجيوادتاهتمحروحاجنلا

،ةيلاغلايما�

تابقعلانمديدعلايطختيفريبكلارثا�لامهلناكنيذلاءازعا�لايتوخا�ىلا�

نيسابدمحموةيؤر،ديمحلادبع،ءالو،ةزمح،لالد،باعصلاو

امهرمعيفهللالاطا�،امهتاوعدبام�ئادينتقفارنيتللانيتزيزعلانيتدجلاىلا�

نيدجلاحاورا�هللامحرو

نعربعا�نا�دوا�،نيديعبوا�نيبيرقاوناكءاوس،ةميركلايتلئاعدارفا�عيمجىلا�

.مهلقيمعلايريدقتوينانتما

"ةجيدخ"،لمعلااذهمامتا�يفماعلااذهلاوطانبناجىلا�اوناكنيذلاكئلوا�ل

هحئاصنىلع"يحلادبعةشيعوب"انليمزلةصاخةيحتو،"سودرف"و"ةلهس"�

نمثبردقيالزنكاع�يمجمتنا�.انلهتدعاسمو

لاوطيندعاسوينمعدنملكلينانتماصلاخنعبرعا�نا�دوا�،ار�يخا�

I

مكتانسحنازيميفهلعجينا�هللالا�سا�وركشلاليزجمكركشا�.يتلحر

يملاعلابرهللدمحلااناوعدرخا�و

”
- Fatima.z Khechiba

II

Dedicace

“
� ةناسنا�لا،ايندلايفيتنجوةايحلايفيكالمىلا�"يجرخت"يدهجةرمثيدها�

يتليمجحورىلا�.اذهكموييفيتيؤربحرفتنا�تينمتاملاطليتلاةميظعلا

...هللااهمحر،ءامسلاىلا�تقترايتلا

هرمعيفهللالاطا�،يلاغلايدلاوىلا�

،يدنسمويدنسناك،حاجنلاوحنينعجشويندناسيذلاصخشلاىلا�

.يجوز...هنودبيحارفا�لمكا�نا�يننكمياليذلالوا�لامعادلا

.يرخفويتايحةرمثمتنا�لاتيرودئار،مينر،مثيه،نيجل،ءازعا�لايئانبا�ىلا�

يتليمزىلا�اض�يا�و.ةريغصلايتلئاعويتوخا�ىلا�و"يناما�"ةيلاغلايئانبا�ما�ىلا�

عضاوتملالمعلااذهيفمهاسنملكو"ءارهزلاةمطاف"ةركذملاهذهيف

مكتانسحنازيميفهلعجينا�هللالا�سا�وركشلاليزجمكركشا�

نيملاعلابرهللدمحلااناوعدرخا�و

”
- Khadidja Kherchouche

III

Acknowledgment

First and foremost, we express our sincere gratitude to God Almighty for guiding us
and granting us the strength and patience to navigate our academic journey and complete
this work. We wholeheartedly acknowledge that this milestone has been achieved through
his blessings and grace.

We would like to extend our heartfelt thanks to our parents, whose unwavering sup-
port, encouragement, and motivation have played a crucial role in our educational pur-
suits. Their boundless love and unwavering belief in our abilities have served as a constant
source of inspiration and motivation. We are eternally grateful for their selflessness and
dedication in shaping our lives and enabling us to reach this remarkable level of study.

We would like to express our sincere gratitude to our supervisor, Dr. Farouq
Zitouni, for his unwavering support, guidance, and motivation throughout our research
journey. are truly grateful for his continuous encouragement and belief in our abilities.

Likewise, we extend our respectful thanks to the members of the jury. The president
Dr.Cheriet Abdelhakim and the examiner Dr.Meriem Khelifa, who have done the
honor to participate in this jury and to examine this work.

We would like to take this opportunity to sincerely express our appreciation to all the
professors in the Information Technology Department at the University of Kasdi Merbah
Ouargla for their invaluable guidance throughout the past five years. Their dedication
to teaching and commitment to fostering academic growth have played a pivotal role in
shaping our knowledge and skills in the field.

Furthermore, we would like to extend you deepest gratitude and utmost respect to
all our family members and friends who have supported us, both near and far, during
our studies and in the preparation of this letter. Their contributions, whether through
providing academic advice, engaging in research collaborations, or offering unwavering
moral support, have been invaluable to our success.

IV

Abstract

Metaheuristic optimization algorithms often have limitations in terms of their explo-
ration or exploitation capabilities. Therefore, relying on hybrid optimization algorithms
has become essential to provide high-quality solutions. In this work, we propose a new
hybrid optimization algorithm inspired by three recently developed algorithms, namely:
Beluga Whale Optimization (BWO), Honey Badger Algorithm (HBA), and Artificial Jel-
lyfish Search Optimizer (JS). The HBA and BWO algorithms have demonstrated promis-
ing exploitation capabilities and stable exploration phases, while JS has exhibited global
exploration capacity but lacks sufficient exploitation during the exploitation phase. By
leveraging these characteristics, we have combined the three algorithms in the exploration
phase and integrate HBA and BWO in the exploitation phase. Therefore, we introduce
a novel approach to achieve a balance between exploration and exploitation. To en-
hance population diversity and effectively guide the search process, we employ Compound
Opposition-Based Learning (COBL) technology.We thoroughly investigate and analyze
the performance of the proposed BHJO algorithm by comparing it to the base algorithms
HBA, BWO, JS, and four other modern algorithms. Our evaluation includes 20 standard
benchmark problems, 20 hybrid test suites, and composite problems for unconstrained
optimization from IEEE CEC2017, CEC2020, and CEC2021. The performance and be-
havior analysis are evaluated using the Friedman test, followed by the Dunn’s test to
compare all the possible pairs of groups and identify the differences. The results demon-
strate that BHJO outperforms other algorithms in terms of balancing exploration and
exploitation. The computational complexity is also evaluated.

Keywords : Optimisation , Metaheuristic algorithms, Hybrid optimization algo-
rithm, inspired nature, unconstrained optimization, Benchmark (CEC2017, CEC2020,

and CEC2021) , Friedman and Dunn teste .

V

Résumé

Les algorithmes d’optimisation métaheuristique présentent souvent des limitations en
termes de leurs capacités d’exploration ou d’exploitation. Par conséquent, il est devenu
essentiel de s’appuyer sur des algorithmes d’optimisation hybrides pour fournir des solu-
tions de haute qualité. Dans ce travail, nous proposons un nouvel algorithme d’optimisa-
tion hybride inspiré de trois algorithmes récemment développés, à savoir : Beluga Whale
Optimization (BWO), Honey Badger Algorithm (HBA) et Artificial Jellyfish Search Op-
timizer (JS). Les algorithmes HBA et BWO ont démontré des capacités d’exploitation
prometteuses et des phases d’exploration stables, tandis que JS a montré une capacité
d’exploration globale mais manque d’exploitation suffisante pendant la phase d’exploita-
tion. En exploitant ces caractéristiques, nous avons combiné les trois algorithmes dans
la phase d’exploration et intégré HBA et BWO dans la phase d’exploitation. Ainsi, nous
introduisons une nouvelle approche pour atteindre un équilibre entre l’exploration et l’ex-
ploitation. Pour améliorer la diversité de la population et guider efficacement le processus
de recherche, nous utilisons la technologie de l’apprentissage basé sur l’opposition com-
posée (COBL). Nous étudions et analysons en détail les performances de l’algorithme
BHJO proposé en le comparant aux algorithmes de base HBA, BWO, JS et quatre autres
algorithmes modernes. Notre évaluation comprend 20 problèmes de référence standard,
20 ensembles de tests hybrides et des problèmes composites d’optimisation sans contrainte
issus de IEEE CEC2017, CEC2020 et CEC2021. Les performances et le comportement
sont évalués à l’aide du test de Friedman, suivi du test de Dunn pour comparer toutes
les paires possibles de groupes et identifier les différences. Les résultats démontrent que
BHJO surpasse les autres algorithmes en termes d’équilibre entre l’exploration et l’ex-
ploitation. La complexité de calcul est également évaluée.

mot clé : Optimisation, Algorithmes métaheuristiques, Algorithme d’optimisation
hybride, nature inspirée, optimisation sans contrainte, Benchmark (CEC2017, CEC2020

et CEC2021), Friedman et Dunn teste.

VI

صخلم

،اذل.لولحلالالغتساوا�فاشكتسالاتاردقبقلعتياميفدويقنماب�لاغكيتسيرويهاتيمنيسحتلاتايمزراوخيناعت

ةيمزراوخحرتقن،لمعلااذهيف.ةدوجلاةيلاعلولحريفوتلاي�رورضار�ما�ةنيجهلانيسحتلاتايمزراوخىلعدامتعالاحبصا�

(BWO)ضيبا�لاتوحلاةيمزراوخ:يهو،ار�خؤماهريوطتمتتايمزراوخةثالثنمةاحوتسمةنيجهلانيسحتللةديدج

BWOوHBAتايمزراوخترهظا�دقل.(JS)ةيرحبلاليدانقلليعانطصالاثحبلاةيمزراوخو(HBA)لسعلاريرغ

لالغتساىلا�رقتفتاهنكلوةيملاعفاشكتساةردقJSترهظا�امنيب،ةرقتسمفاشكتسالحارموةدعاولالغتساتاردق

ةلحرميفثالثلاتايمزراوخلاجمدبانمق،صئاصخلاهذهنمةدافتسالالالخنم.لالغتسالاةلحرملالخف�اك

فاشكتسالانيبنزاوتقيقحتلاد�يدجاج�هنمدقن،يلاتلاب.لالغتسالاةلحرميفBWOوHBAجمدوفاشكتسالا

ةبكرملاضارتعالاىلعمئاقلاملعتلاةينقتمدختسن،لاعفلكشبةيثحبلاةيلمعلاهيجوتوناكسلاعونتزيزعتل.لالغتسالاو

(COBL).ةيمزراوخءادا�ليلحتوةساردبموقنBHJOساسا�لاتايمزراوخعماهتنراقمقيرطنعةقدبةحرتقملاHBA

رابتخاةعومجم20و،ةرياعمللةيسايقةلكشم20انيدلمييقتلالمشت.ىرخا�ةثيدحتايمزراوخعبرا�وJSوBWOو

مييقتمتي.CEC2021وCEC2020وIEEECEC2017نمديقملاريغنيسحتللةبكرمتالكشمو،ةنيجه

ديدحتوتاعومجملانمةنكمملاجاوزا�لاعيمجةنراقملنادرابتخاهالت،نامديرفرابتخامادختسابكولسلاليلحتوءادا�

.لالغتسالاوفاشكتسالانيبنزاوتقيقحتيفىرخا�لاتايمزراوخلاقوفتBHJOةيمزراوخنا�جئاتنلارهظت.تافالتخالا

.يباسحلاديقعتلامييقتاض�يا�متي

يسحتلا,:ةيحاتفمتاملك
,
يتسيرويهتايمزراوخلان

,
نيجهلانيسحتلاتايمزراوخك

,
نمةاحوتسملاتابمزراوخة

ديقملاريغنيسحتلالكاشمةعيبطلا
,
,CEC2017)فئاظو�نادونامديرفرابتخاة CEC2020, CEC2021)

VII

Contents

Dedicace . I

Dedicace . III

Acknowledgment . IV

Abstract . V

Résumé . VI

VII...................................صخلم

General Introduction . 1

1 Introduction Optimization . 3
1.1 Introduction . 4
1.2 Optimization problem . 4
1.3 Classification of optimization problems . 5

1.3.1 Single objective and Multiobjective optimization 6
1.3.2 Continuous variables and Discrete variables 6
1.3.3 Linear Optimization and Nonlinear Optimization 7

1.4 Unconstrained optimization . 7
1.5 Constrained optimization . 7

1.5.1 Penalty method . 9
1.5.2 Equality with tolerance . 9
1.5.3 Multi-objective approach to constraints 10

1.6 Local search and Global search . 10
1.6.1 Local search . 10
1.6.2 Globl search . 11

1.7 Complexity classes . 12
1.7.1 P class . 12
1.7.2 N P class . 12

1.8 Optimization methods . 13
1.8.1 Exact optimization methods . 13
1.8.2 Approximate optimization methods 14

1.9 Conclusion . 17

2 Metaheuristics . 18
2.1 Introduction . 19

VIII

Contents

2.2 Initialization methods . 20
2.2.1 No Previous knowledge . 20
2.2.2 With Domain-Specific knowledge 21

2.3 Search strategy . 21
2.3.1 Exploration . 21
2.3.2 Exploitation . 22

2.4 Tuning and Controlling of parameters . 22
2.4.1 Tuning parameters . 22
2.4.2 Controlling of parameters . 23

2.5 Random Walks . 23
2.5.1 Gaussian Walk . 23
2.5.2 Lévy Walk . 24
2.5.3 Brownian Walk . 24

2.6 Classification of meta-heuristic algorithms 25
2.6.1 Single solution-based . 25
2.6.2 Population solution-based . 26

2.7 Hybridization method . 30
2.8 No-Free-Lunch Theorem . 30
2.9 Conclusion . 31

3 BHJO:A novel hybrid metaheuristic algorithm for global optimization 32
3.1 Introduction . 33
3.2 Proposed hybrid algorithm . 34

3.2.1 Source of inspiration . 34
3.2.2 Mathematical model of the proposed BHJO 41
3.2.3 Pseudocode and time complexity of the proposed BHJO 44

3.3 Experimental results and discussion . 44
3.4 Conclusion . 56

Conclusion et perspectives . 61

IX

List of Figures

1.1 modeling problem . 6
1.2 Constraint problem optimization . 8
1.3 Local-Global optimum methods . 11
1.4 optimization methods . 15

2.1 Function of Gaussian Distribution . 24
2.2 Brownian walk versus Lévy Flight walk adopted from[9] 25

3.1 Behavior of beluga whales, (a) swimming (exploration phase), (b) foraging
(exploitation phase), (c) whale fall (local optimum avoidance) [131]. 35

3.2 The black circle indicates the position of the prey, and the blue curve
represents the smell intensity [57]. 37

3.3 The Inverse Square Law [57]. 38
3.4 The behaviour of jellyfish in the ocean [26]. 39
3.5 The graphical representation of the used time control mechanism. 41
3.6 The curve of balancing between exploration and exploitation phases. . . . 43
3.7 Scalability analysis (F1 − F12) of the BHJO algorithm (1/2) 50
3.8 Scalability analysis (F13 − F20) of the BHJO algorithm (2/2). 54
3.9 Related-samples Friedman’s two-way analysis of variance by ranks (pair-

wise comparisons). 59

X

List of Tables

3.1 The description of unimodal functions. 46
3.2 The description of multimodal functions. 46
3.3 The description of fixed-multimodal functions. 47
3.4 The description of hybrid functions. 47
3.5 The description of composition functions. 48
3.6 Parameters’ values of the algorithms used for the comparative study. . . . 49
3.7 Statistical results obtained for the unimodal and multimodal functions with

D = 30. 49
3.8 Statistical results obtained for the unimodal and multimodal functions with

D = 50. 51
3.9 Statistical results obtained for the unimodal and multimodal functions with

D = 100. 52
3.10 Statistical results obtained for the unimodal and multimodal functions with

D = 1000. 53
3.11 Statistical results obtained for the fixed-dimension multimodal functions

over different dimensions. 53
3.12 Statistical results obtained for the fixed-dimension multimodal functions

over different dimensions. 54
3.13 Statistical results obtained for the hybrid functions (CEC’17, CEC’2020,

and CEC’2022). 55
3.14 Statistical results obtained for the composition functions (CEC’17, CEC’2020,

and CEC’2022). 55
3.15 Related-samples Friedman’s two-way analysis of variance by ranks for the

unimodal and multimodal functions with D = 30 (pairwise comparisons). . 57
3.16 Related-samples Friedman’s two-way analysis of variance by ranks for the

unimodal and multimodal functions with D = 50 (pairwise comparisons). . 57
3.17 Related-samples Friedman’s two-way analysis of variance by ranks for the

unimodal and multimodal functions with D = 100 (pairwise comparisons). 57
3.18 Related-samples Friedman’s two-way analysis of variance by ranks for the

unimodal and multimodal functions with D = 1000 (pairwise comparisons). 58
3.19 Related-samples Friedman’s two-way analysis of variance by ranks for the

hybrid functions (CEC’17, CEC’2020, and CEC’2022) (pairwise compar-
isons). 58

3.20 Related-samples Friedman’s two-way analysis of variance by ranks for com-
position functions (CEC’17, CEC’2020, and CEC’2022) (pairwise compar-
isons). 58

XI

Liste of algorithmes

1 The pseudo-code of the BHJO algorithm. 45

XII

List of Abbreviations

SOO Single Objective Optimization

MOO Multiobjective Optimization

P Polynomial Time

NP Nondeterministic Polynomial Time

BHJO hybrid metaheuristic optimiser using Beluga Whale Optimisation, Honey
Badger Algorithm and Artificial Jellyfish Search Optimiser

BWO Beluga Whale Optimisation

HBA Honey Badger Algorithm

JS Artificial Jellyfish Search Optimiser

COBL Combined Opposition-Based Learning

PSO Particle Swarm Algorithm

WOA whale optimization algorithm

MFO Moth-flame optimization algorithm

HHO Harris hawks optimization

XIII

General Introduction

Context and problematic

On a daily basis, humanity confronts a multitude of intricate problems that necessitate
effective solutions. To address these challenges, a systematic approach is employed to
identify the problem and determine the most appropriate methodology for making de-
cisions that optimize their interests. This process entails the application of methods
aimed at enhancing the selected criteria, as improvement occupies a significant role in
the research and engineering endeavors. To fully understand the problem of optimiza-
tion, researchers and engineers follow a systematic process that involves first identifying
the different objective functions that need improvement, along with the search space and
variables associated with the problem.

To solve these problems, three primary research approaches are used in optimization:
iterative, exact , and heuristic. The iterative approach involves mathematical calculations
based on derivatives, Jacobians, and Gauss-Seidel to determine optimal solutions. These
methods aim to converge towards an optimal solution by iteratively improving the initial
solution.

On the other hand, the exact approach often refers to mathematical programming
methods such as linear programming, integer programming, or nonlinear programming.
It focuses on systematically exploring the search space using mathematical techniques to
guarantee finding the optimal solution. In contrast, the heuristic approach, also known as
exploratory search, follows guided random paths to find approximate solutions. Instead of
exhaustively exploring all possibilities, heuristics use intelligent strategies or fundamental
rules to quickly converge towards acceptable solutions. Researchers choose the most
suitable approach based on the characteristics of the problem, available computational
resources, and desired trade-off between solution quality and computational efficiency.

Optimization is a rapidly evolving field driven by advancements in technology, al-
gorithms, and problem-solving techniques. Legacy algorithms may not be sufficient in
today’s landscape due to the availability of more efficient methods. Researchers con-
tinuously strive to improve optimization techniques to address complex problems across
various domains. There is a high demand for innovative solutions as new challenges arise
and existing problems evolve. This field offers opportunities for researchers to contribute
by developing new approaches and enhancing algorithms to achieve better optimization
outcomes.

1

Introduction

Contribution

Our thesis aims to make a valuable contribution by introducing a fresh hybrid metaheuris-
tic optimizer called the Beluga Whale Optimisation, Artificial Jellyfish Search Optimizer,
and Honey Badger Algorithm (BHJO). Initially, we focus on the design and implemen-
tation of this innovative algorithm and conduct tests using various benchmark problems.
Subsequently, we compare the performance of our algorithm with that of established meta-
heuristic algorithms. The results demonstrate that our proposal is highly competitive and
can effectively compete against the selected algorithms.

Structure

This dissertation is organized into three chapters as follows:
In the first chapter“Introduction Optimization”, we provide an overview of the

field of optimization. We begin by defining optimization problems and discussing their
classification and characteristics. We explore the distinction between constrained and
unconstrained optimization problems and delve into various complexity classes associated
with optimization. we present a comprehensive classification of the methods commonly
employed to solve optimization problems. For each category, we provide illustrative ex-
amples of algorithms.

In the second chapter“Introduction to Metaheuristics”, we cover technique used
to generate initial solutions, and Search strategy, and Tuning and controlling of parame-
ters, and Randomization techniques, and Classification of metaheuristic algorithms, and
Hybridization methods, finally the “ no-free lunch theory”.

The third chapter “BHJO:A novel hybrid metaheuristic algorithm for global
optimization”, represents the practical part of our thesis, we talk about the source
biological inspiration for the algorithms used in our crossbreeding.Next, we introduce our
mathematical implementation and pseudo code. Finally, we deliver the results of the
algorithm and its comparison with the latest algorithms in metaheuristics.

2

Chapter 1

Introduction Optimization

3

Chapter 1. Introduction Optimization

1.1 Introduction

The desire to improve and optimize is a fundamental aspect of human nature that drives
us to seek better solutions in various areas of life. Optimization, as a scientific and
mathematical approach, provides a systematic framework for identifying and achieving
these improvements. It involves finding the best possible solution to a problem[54], with
the objective of maximizing or minimizing a specific measure or objective function.The
applications of optimization are wide-ranging and diverse. It finds application in fields
such as mathematics, engineering, economics, computer science, and many others. For
example[97], in mathematics, optimization focuses on finding the maximum or minimum
value of a function within certain constraints. This is done using various techniques and
algorithms, such as gradient descent, Newton’s method, or linear programming.

When it comes to optimization, there are two main categories: local optimization
and global optimization. Local optimization aims to find the best solution within a
specific region or neighborhood. It focuses on finding local minima or maxima, which are
points where the objective function reaches the smallest or largest value in the immediate
vicinity. Local optimization methods are often efficient in finding these local solutions.On
the other hand, global optimization seeks to find the absolute best solution across the
entire search space, considering all possible solutions. Unlike local optimization, which
can easily find local minima or maxima, finding the global minimum or maximum is a
more challenging task. It often requires more advanced algorithms and techniques, as well
as careful consideration of the problem’s constraints and properties[82].

This chapter is an introduction to the subject. It is organized as follows, starting by
defining optimization problems and their taxonomy in section 1.2, after we will present
classification of optimization problems in1.3 ,then the difference between constrained prob-
lems and unconstrained ones and how to deal with constraints in 1.4,1.5 then local search
and global search is a hot topic, which is provided in section1.6 , moving to complexity
classes and sub-classes in section1.7,then we present an overview of the deferent optimiza-
tion methods in 1.8.

1.2 Optimization problem

In their daily activities, researchers, clients, companies, and government agencies often
encounter various planning and optimization challenges. These challenges require making
decisions from a range of options available. However, the selection of a particular option
has implications for the user or organization. Evaluating the impact of different options
is essential, and this evaluation is typically done using specific criteria.

To address these challenges, it becomes necessary to identify optimal or near-optimal
solutions that align with the specific goals of the optimization problem. Mathematical
equations and symbols can be employed to formulate optimization problems, taking into
account the objective function, decision variables, and constraints. The formulation pro-
cess is tailored to the particular problem and its unique requirements[61].

Optimization problems can be formulated using mathematical equations and symbols

4

Chapter 1. Introduction Optimization

to represent the objective function, decision variables, and constraints. The formula-
tion depends on the specific problem and its requirements. A general framework can
be followed for formulating optimization problems, which encompasses the following key
elements ,As show figure1.1: 1.1, 1.2, and 1.3 .

min
fx∈Rd

fm(x) ,m = {1, 2, . . . ,M} (1.1)

under the constraints :
hj(x) = 0 , j = {1, 2, . . . , J} (1.2)

gk(x) ≤ 0 , k = {1, 2, . . . , K} (1.3)

Or fm(x), hj(x), and gk(x) are functions of the vector

x = (x1, x2, . . . , xd)
T (1.4)

Where
fm : < → < The objective function to be minimized over the n-variable vector x .
gk(x) : Inequality constraints.
hj(x) : Equality constraints .

1. Define the Decision Variables: Identify the variables that can be adjusted or opti-
mized to achieve the desired objective. Assign symbols to represent these variables,
such as x1, x2, . . . , xn.

2. Define the Objective Function: Specify the function that needs to be optimized. It
can be a maximization or minimization objective. Represent the objective function
using mathematical symbols and the decision variables, such as: f(x1, x2, . . . xn).

3. Identify Constraints: Determine any constraints or limitations that need to be satis-
fied in the problem. Constraints can be inequalities(≤,≥)or equalities (=). Express
the constraints mathematically using the decision variables, such as 1.2, and1.3.

4. Specify the Feasible Region: Define the feasible region, which represents the set of
values that satisfy all the constraints. The feasible region is the region in which the
decision variables can take values.

5. Formulate the Optimization Problem: Combine the decision variables, objective
function, and constraints to formulate the optimization problem. The goal is to
find the values of the decision variables that optimize the objective function while
satisfying all the constraints.

1.3 Classification of optimization problems

Optimization problems can be classified into different categories based on their character-
istics and mathematical properties. Here are some common classifications of optimization
problems such as:

5

Chapter 1. Introduction Optimization

H

Figure 1.1: modeling problem

1.3.1 Single objective and Multiobjective optimization

In single objective optimization(SOO), there is a single objective function that needs to be
optimized. The objective function represents a single measure of performance or a specific
goal that the optimization seeks to achieve[124]. The task is to find the optimal values
for the decision variables that maximize or minimize this objective function. Examples
of (SOO) include maximizing profits, minimizing costs, or maximizing the efficiency of a
system.

multiobjective optimization(MOO), the optimization problem involves multiple con-
flicting objectives that need to be simultaneously considered. Instead of a single objective
function, there are multiple objective functions that represent different measures of per-
formance or goals. These objectives may have competing interests, making it impossible
to optimize they all simultaneously. The aim is to find a set of solutions that achieve a
balance among these objectives, known as Pareto optimal solutions. A solution is Pareto
optimal if there is no other feasible solution that improves one objective without sacrific-
ing performance in another objective. (MOO) optimization is often used when decision-
making involves trade-offs between different objectives, such as maximizing profit while
minimizing environmental impact or maximizing customer satisfaction while minimizing
production costs[39].

1.3.2 Continuous variables and Discrete variables

In continuous optimization, the variables can take on any real value within a defined
range or domain. These variables are typically represented by real numbers and can
be optimized using mathematical functions. Continuous optimization is well-suited for
problems where variables can take on a wide range of values. Examples of continuous
optimization problems include finding the optimal values of parameters in mathematical
models or optimizing the dimensions of a physical system.

6

Chapter 1. Introduction Optimization

In discrete optimization, the variables can only take on a finite or countable set of
values. These values are typically restricted to integers or specific discrete values. Discrete
optimization problems involve finding the best solution from this restricted set of values.
Examples of discrete optimization problems include combinatorial optimization, such as
finding the optimal assignment of tasks to workers or selecting the best routing strategy
in a network[76].

1.3.3 Linear Optimization and Nonlinear Optimization

Linear Optimization: In linear optimization, both the objective function and constraints
are linear. This means the objective function is a linear combination of the decision
variables, and the constraints can be expressed as linear equations or inequalities. Lin-
ear programming techniques, such as the simplex method, are commonly used to solve
these problems efficiently. Linear optimization is used in resource allocation, production
planning, and transportation logistics, among other areas.

Nonlinear optimization deals with problems that involve nonlinear objective functions
or constraints. In this case, the objective function or constraints contain nonlinear terms
like products, powers, or trigonometric functions of the decision variables. Nonlinear
optimization problems are generally more challenging to solve because they lack the nice
mathematical properties of linearity. Advanced optimization algorithms, such as gradient-
based methods or metaheuristic techniques, are often used to find optimal or near-optimal
solutions. Nonlinear optimization is applied in engineering design, financial modeling, and
data fitting, among other domains[53].

1.4 Unconstrained optimization

Unconstrained optimization refers to a category of optimization problems where the ob-
jective function is to be optimized without any constraints on the decision variables.
In contrast to constrained optimization problems, there are no limitations or conditions
imposed on the values that the decision variables can take[33]. The main objective in
unconstrained optimization is to determine the optimal values for the decision variables
that result in either the maximum or minimum value of the objective function. These
decision variables can be either continuous or discrete, depending on the specific problem.
To solve unconstrained optimization problems, it is typically necessary to identify the
critical points of the objective function, such as local minimum or maximum points.

1.5 Constrained optimization

Constrained optimization refers to a class of optimization problems in which feasible
solutions are subject to a set of constraints. These constraints impose restrictions or
conditions on the decision variables that must be satisfied while optimizing the objective
function.

7

Chapter 1. Introduction Optimization

h

Figure 1.2: Constraint problem optimization
https://www.datacamp.com/tutorial/linear-programming-with-spreadsheets

In a constrained optimization problem, the objective is to find values for the decision
variables that optimize the objective function while simultaneously satisfying all specified
constraints. Constraints can be categorized into two types:

Equality constraints, where the constraint equation must be exactly satisfied.
Inequality constraints, where the constraint equation must be satisfied within a

certain range. The general formulation of a constrained optimization problem represented
Equation1.6

min
fx∈Rd

fm(x) ,m = {1, 2, . . . ,M} (1.5)

under the constraints
hj(x) = 0 , j = {1, 2, . . . , J}
gk(x) ≤ 0 , k = {1, 2, . . . , K} (1.6)

Where
fm : < → < The objective function to be minimized over the n-variable vector x .
gk(x) : Inequality constraints.
hj(x) : Equality constraints .

To solve constrained optimization problems, specialized techniques are required to
simultaneously handle objective function optimization and constraint satisfaction. Com-
monly used methods include linear programming, nonlinear programming, and constrained
evolutionary algorithms.

The main objective in constrained optimization is to find optimal or near-optimal solu-
tions that achieve the best possible objective value while satisfying all specified constraints.
To address this, various techniques have been developed to combine the objective function
and constraints into a unified equation. There are traditional and recent methods for han-

8

https://www.datacamp.com/tutorial/linear-programming-with-spreadsheets

Chapter 1. Introduction Optimization

dling constraints in optimization problems. Traditional methods include penalty methods,
transformation methods, special representation techniques, and separation of objectives
and constraints. Penalty methods introduce penalty terms into the objective function
to incorporate constraints and transform constrained problems into unconstrained ones.
Transformation methods use mathematical transformations to convert constrained prob-
lems into equivalent unconstrained problems. Special representation techniques explicitly
represent constraints within the decision variables or problem structure. Separation of
objectives and constraints involves treating objectives and constraints separately [40].

1.5.1 Penalty method

The penalty function is a technique used in constrained optimization problems to incorpo-
rate the constraints into the objective function. It achieves this by introducing a penalty
term that quantifies the extent of constraint violation. The penalty term is added to the
objective function, resulting in a modified objective function that penalizes solutions that
do not satisfy the constraints[27]. By minimizing the modified objective function, the op-
timization algorithm seeks solutions that simultaneously optimize the objective function
and satisfy the imposed constraints. The penalty function approach allows for the con-
sideration of constraints during the optimization process and helps find feasible solutions
within the given constraints.

minF (x) = f(x) + P (x) (1.8)

where P (x) denotes the penalty term as given by 1.9.

P (x) =
J∑

j=1

νj max(0, hj(x))
2 +

K∑
i=1

µk|gk(x)| (1.9)

Where νj > 0, µm > 0 : Penalty coefficients.

1.5.2 Equality with tolerance

Equality with tolerance is a fundamental concept in optimization that addresses con-
straints involving strict equality. In real-world scenarios, achieving exact equality be-
tween variables and constants may not be practical due to factors such as measurement
errors or uncertainties. To account for this, a tolerance value is introduced, allowing for
a small deviation from the exact equality[119].In optimization problems, constraints of
the form"variable = constant" are relaxed by introducing tolerance ranges. Instead of
requiring an exact equality, the constraint is modified to allow for a difference between
the variable and the constant within a specified tolerance. This relaxation means that
the variable can deviate from the constant by an amount within the tolerance range,
either as "variable − constant ≤ tolerance" or "constant − variable ≤ tolerance". This
means that the difference between the variable and the constant should fall within the
specified tolerance range. The tolerance represents an acceptable range within which the
constraint is considered satisfied. The specific choice of tolerance depends on the nature
of the problem and the desired level of precision.

9

Chapter 1. Introduction Optimization

One common representation of an equality constraint with tolerance in optimization
is:

|h(x)| − ε ≤ 0

Where
h(x) : Represents the constraint function.
ε : The tolerance value.

1.5.3 Multi-objective approach to constraints

The multi-objective approach to handling constraints takes a different direction com-
pared to weighted sum methods, which convert multi-objective optimization problems
into single-objective ones. While this approach may initially raise questions about its
effectiveness, studies have shown that it can be remarkably competitive.Instead of simpli-
fying the problem into a single objective, the multi-objective approach considers conflict-
ing objectives simultaneously while ensuring constraint satisfaction. Its goal is to find a
set of solutions that optimizes multiple objectives, striking a balance between them and
adhering to the constraints[81].

Although it may seem counterintuitive, the multi-objective approach to constraint
handling has demonstrated its effectiveness in producing competitive solutions. It allows
for a more comprehensive exploration of the trade-offs between conflicting objectives,
providing decision-makers with a range of feasible options to consider.

1.6 Local search and Global search

1.6.1 Local search

Local search or local optimization is a method used to find optimal or near-optimal solu-
tions within a limited neighborhood of the search space. Unlike global optimization, which
aims to find the absolute best solution across the entire search space, local optimization
focuses on improving the solution within a specific region[1].

In local optimization, an initial solution is chosen, and then iterative steps are taken
to explore neighboring solutions and improve the objective function value[12]. The search
is typically guided by a specific heuristic or algorithm that determines which neighboring
solutions to explore and how to move towards better solutions[29].

The key characteristic of local optimization is that it operates based on local informa-
tion, considering only the immediate neighborhood of the current solution. It does not
guarantee finding the globally optimal solution, but rather seeks to improve the solution
locally. Local optimization is often used when the search space is large and complex, mak-
ing it computationally infeasible to explore the entire space[100]. Local optimization can
be effective for solving problems where the objective function has multiple local optima,
and finding the global optimum is not necessary or feasible. However, it may be limited
by getting stuck in local optima and failing to find the best possible solution in the global
sense[8].

10

Chapter 1. Introduction Optimization

Figure 1.3: Local-Global optimum methods
https://www.allaboutlean.com/polca-pros-and-cons/local-global-optimum/

1.6.2 Globl search

Global search or global optimization, a method employed to discover the optimal solution
across the complete range of potential solutions. Unlike local optimization, which focuses
on improving solutions within a limited neighborhood[12], global optimization aims to find
the globally optimal solution, considering all possible solutions and their corresponding
objective function values[1].

In global optimization, the objective is to find the values of the decision variables that
yield the optimal or near-optimal value of the objective function, regardless of where the
optimal solution is located within the search space. This involves exploring the entire
search space, which can be a challenging task, especially when the search space is large or
complex[129].Due to the computational complexity involved in searching the entire space,
global optimization methods often employ various techniques to efficiently explore the
search space and improve the search process[29].

Global optimization methods strive to avoid getting trapped in local optima and aim to
find the best possible solution in the entire search space. However, due to the complexity
of the search, it is not always guaranteed to find the absolute global optimum, particularly
in high-dimensional or non-convex problems.Despite their limitations, these methods can
greatly enhance the search procedure and yield solutions that are very close to the optimal
for a diverse array of optimization problems.

11

https://www.allaboutlean.com/polca-pros-and-cons/local-global-optimum/

Chapter 1. Introduction Optimization

1.7 Complexity classes

A complexity class refers to a collection of functions that can be computed within a
specified input[13]. While traditional complexity theory primarily focuses on decision
problems solvable by Turing machines rather than optimization problems, it categorizes
classes based on their resource requirements, such as time or memory. In the following,
we will introduce the different complexity classes[82].

1.7.1 P class

The complexity class P, known as the ”Polynomial Time” class, refers to the set of
selection issues that may be solved with the aid of using a deterministic Turing gadget
in polynomial time[95]. In other words, a problem belongs to class P if there exists an
algorithm that can solve it with a time complexity bound by a polynomial function of the
input size[54].

Being in class P means that there is an efficient algorithm that can find a solution
to the problem within a reasonable amount of time, even for large inputs. Polynomial
time complexity is generally considered manageable and desirable for problem-solving.
Many fundamental problems in various domains, such as sorting, searching, and graph
traversal, fall into the class of P problems. Algorithms like quicksort, binary search, and
breadth-first search are examples of efficient algorithms that can solve these problems
within class P.

The class P encompasses problems that can be solved in polynomial time using de-
terministic algorithms, making it an important and widely studied complexity class in
theoretical computer science.

1.7.2 N P class

The complexity class N P , known as the ”Nondeterministic Polynomial Time” (N P)
class, a set of decision problems is referred to as being in the class of N P if a solution to
a given problem can be verified in polynomial time by a deterministic Turing machine. In
other words, if a solution is proposed for an N P problem, it can be efficiently checked
for correctness [54].

While the term ”Nondeterministic” may be misleading, N P does not imply that
solutions can be found in polynomial time. Instead, it indicates that if a solution is given,
its correctness can be efficiently verified. The term ”Polynomial Time” refers to the fact
that the verification process can be performed in polynomial time.

Problems in N P are often characterized by the search for a solution among a large
number of possibilities. This makes it challenging to find an optimal solution within
a reasonable timeframe. Examples of N P problems include the traveling salesman
problem, the knapsack problem, and the Boolean satisfiability problem. It is important
to highlight that the issue of whether P = N P or P 6= N P remains one of the
most significant unresolved problems in the field of computer science. If P = N P, it
would imply that problems that can be verified in polynomial time could also be solved

12

Chapter 1. Introduction Optimization

in polynomial time. However, if P 6= N P, it suggests that there are problems for which
finding solutions is inherently more difficult than verifying them[60].

The class N P plays a fundamental role in complexity theory and has significant
implications in various areas of computer science, including optimization, cryptography,
and algorithm design.

1.8 Optimization methods

Optimization methods are developed with the goal of finding the best possible solution,
or a solution that is very close to the optimal solution, while minimizing the computa-
tional effort needed. These methods involve searching through a set of potential solutions
based on a given objective function and any constraints that are imposed. There are
two main types of optimization methods: exact optimization methods and approximate
optimization methods[44].

1.8.1 Exact optimization methods

Exact methods are optimization algorithms used to find at least one optimal solution to
a problem [66], particularly when the problem size is small enough to be solved within
a reasonable amount of time. These methods are capable of solving problems that fall
into the category of P, which refers to problems that can be solved in polynomial time.
However, for larger or more complex problems, the computational cost and time required
can become prohibitively high, as the search space grows exponentially with the problem
size.

Despite the computational challenges, exact methods are valuable in scenarios where
finding the absolute best solution is crucial and when the problem size allows for a man-
ageable computation. They are widely used in various fields, including operations re-
search, logistics, scheduling, and resource allocation. By exhaustively searching the so-
lution space, exact methods provide rigorous and reliable solutions that can be used as
benchmarks for evaluating the performance of approximate methods or as guarantees for
achieving optimal solutions in specific problem instances.

Branch and Bound

Branch and Bound is an algorithmic technique used in optimization problems to system-
atically explore the search space and find the optimal solution efficiently[21]. It involves
dividing the problem into smaller subproblems represented by nodes in a search tree.
The algorithm applies two main strategies: branching and bounding. Branching involves
partitioning the current subproblem into smaller subproblems by making decisions, while
bounding estimates upper and lower bounds for the objective function value associated
with each subproblem. These bounds guide the search by pruning unpromising branches.
The algorithm terminates when all branches have been explored or when it determines
that no better solution can be found. Branch and Bound is commonly used for combina-

13

Chapter 1. Introduction Optimization

torial optimization problems and has applications in various domains.

Dynamic programming

Dynamic programming is based on the principle of Bellman [Wolsey 1998]:
”If C is a point that belongs to the optimal path between A and B, then the portion

of the same path from B to C is the optimal subpath between B and C.”
This approach involves constructing optimal subpaths and recursively building the

optimal path for the entire problem. In the following figure, the green path between A
and B is optimal. This path passes through point C. The green subpath [C,B] is therefore
optimal, and the gray subpath [C,B] cannot exist because it is shorter than the green
subpath. In other words, if the gray subpath exists, the optimal solution becomes the
sequence formed by the green subpath [A,C] and the gray subpath [C,B] instead of the
green path [A,B].

Dynamic programming relies on the principle of Bellman and involves extending the
problem being studied to a more general problem with integer parameters. It typically
requires determining recurrence relations that solve the problem of a given order based
on its solutions for lower orders[67].

1.8.2 Approximate optimization methods

Approximate methode are optimization algorithms that aim to provide near-optimal so-
lutions for computationally difficult problems[51]. These problems are often classified as
N P-hard, This implies that finding an exact optimal solution is either not feasible or
demands a considerable amount of computational resources.

The objective of approximate methode is to find solutions that guarantee a certain
level of closeness to the optimal solution. This closeness is measured by the approxi-
mation ratio, which quantifies the quality of the approximate solution in relation to the
optimal solution. Generally, a smaller approximation ratio indicates a higher quality
approximation[114].

Approximate methode are typically divided into three categories: approximation al-
gorithms , heuristics ,metaheuristic .

Approximation algorithm

An approximation algorithm is a specialized algorithm developed to discover solutions
that are within a specified factor of the optimal solution. This factor, known as the
approximation ratio, determines how close the approximate solution is to the optimal
one. The smaller the approximation ratio, the better the quality of the approximation.
Approximation algorithms are commonly used for N P-hard problems where finding an
exact optimal solution is impractical.

14

Chapter 1. Introduction Optimization

h

Figure 1.4: optimization methods

15

Chapter 1. Introduction Optimization

Heuristics algorithm

Heuristics Are problem-solving techniques that rely on intuitive rules, strategies, or ap-
proximations to guide the search for solutions. In heuristic optimization, these heuristics
are applied iteratively to explore the solution space, gradually improving the quality of the
solutions. The key characteristic of heuristic optimization is its ability to trade off solu-
tion quality for computational efficiency. Heuristic algorithms may not guarantee finding
the best solution, but they are designed to quickly find reasonably good solutions that
satisfy the problem requirements[96].Heuristics can be classified into two categories[7]:

1. Constructive methods generate solutions starting from an initial solution and grad-
ually adding elements until a complete solution is obtained.

2. Local search methods begin with an initially complete (potentially less desirable)
solution and repetitively try to improve it by exploring its neighborhood.

Metaheuristics algorithm

Metaheuristics are powerful optimization algorithms that efficiently explore large search
spaces to find good solutions within a reasonable time frame. They provide a gen-
eral framework for solving optimization problems by combining heuristics, local search
methods, and problem-specific knowledge. Unlike traditional optimization methods[114],
metaheuristics operate at a higher level of abstraction and are not tied to specific prob-
lem domains. They employ randomized or stochastic elements to balance exploration
and exploitation, enabling them to overcome local optima and search for better solu-
tions. Through iterative processes, solutions are refined and modified based on evaluation
criteria or objective functions.In the upcoming chapter, you will discover more in-depth
insights into various metaheuristics.

Hyper-heuristic algorithm

Is a type of metaheuristic optimization that focuses on finding or generating effective
heuristics for solving optimization problems. It operates at a higher level of abstraction
by designing algorithms or frameworks that automatically generate or select heuristics,
rather than directly optimizing the problem itself. the goal is to develop algorithms or
techniques that can efficiently explore the solution space and adaptively select or generate
heuristics to solve specific optimization problems. These heuristics can be considered as
”meta-heuristics” that guide the search process,it involves two key components: a set of
low-level heuristics and a high-level framework or algorithm. The low-level heuristics rep-
resent different strategies or methods for exploring the solution space, while the high-level
framework guides the selection or generation of these heuristics based on problem charac-
teristics or performance feedback[36].The main advantage of hyper-heuristic optimization
is its ability to adaptively search for and select suitable heuristics for different problem
instances, without requiring explicit knowledge or customization for each problem. This
makes hyper-heuristic approaches more flexible, scalable, and applicable to a wide range
of optimization problems.

16

Chapter 1. Introduction Optimization

Hyper-heuristic optimization algorithms can be implemented using various techniques,
such as genetic programming, machine learning, reinforcement learning, or evolutionary
computation. These techniques allow the algorithm to learn and evolve over time, im-
proving its ability to generate effective heuristics for different optimization problems[22].

1.9 Conclusion

In conclusion, the field of optimization is a powerful and versatile discipline that aims to
find optimal solutions to complex problems. It utilizes various techniques, algorithms, and
approaches to explore search spaces, improve efficiency, and achieve desired objectives.
Throughout this chapter, we have discussed different types of optimization, including
constraint and unconstrained optimization. We have also explored various methods and
algorithms used in optimization, such as exact methods, approximate methods, heuristic
methods, and metaheuristics.

The choice of the optimization method depends on factors such as problem complexity,
available computational resources, time constraints, and the desired trade-off between so-
lution quality and computational effort. Exact optimization methods are preferred when
finding the absolute best solution is crucial, while approximate optimization methods
offer efficient solutions that are acceptable in practice. By employing suitable optimiza-
tion methods, researchers and practitioners can effectively tackle various optimization
problems, finding optimal or near-optimal solutions with the least computational effort
possible.

Finally, optimization is a dynamic and evolving field that continues to advance and
contribute to various domains. By harnessing the power of optimization techniques, re-
searchers, engineers, and decision-makers can find innovative solutions, make informed
decisions, and effectively address complex challenges.

17

Chapter 2

Metaheuristics

18

Chapter 2. Metaheuristics

2.1 Introduction

With the advancement of information technology, various fields such as engineering, bioin-
formatics, operations research, geophysics, etc…, and others have encountered numerous
optimization problems Many of these problems are categorized asN P-hard problems,
which implies that finding an efficient solution for them in polynomial time is only pos-
sible ifN P is equal to P [2]. As a result, finding exact solutions for larger instances
of these problems becomes challenging. Consequently, engineers and researchers dealing
with optimization problems must consider several factors when selecting an appropriate
optimization algorithm [20].

When choosing an optimization algorithm, two common objectives are to reduce ex-
ecution time and obtain an acceptable solution. To achieve these goals, Metaheuristic
algorithms have become increasingly popular in the field of optimization. They belong
to a class of algorithms specifically designed to tackle complex and challenging prob-
lems by finding good solutions [16]. They employ random operators, such as random
initialization and perturbations, to explore the solution space and identify promising can-
didate solutions. Additionally, many metaheuristics incorporate local search algorithms
to make incremental improvements to existing solutions. However, determining the op-
timal parameter settings for a specific problem significantly impacts the efficiency and
effectiveness of the search process [108]. Despite not guaranteeing an optimal solution,
metaheuristics have demonstrated strong performance across various problem domains.
These algorithms are often inspired by natural phenomena, human intelligence, or animal
behavior. Furthermore, metaheuristics are typically easy to implement and can be utilized
by non-experts. Many software libraries and tools have been developed to provide prac-
titioners with readily available metaheuristic implementations, minimizing the need for
in-depth knowledge of underlying algorithms. Consequently, metaheuristics have become
accessible to a broader audience, facilitating their adoption in diverse applications[108].
Many metaheuristics have been developed into software libraries and tools that can be
readily used by practitioners without requiring extensive knowledge of the underlying
algorithms. This makes metaheuristics accessible to a wider audience and enables their
adoption in a variety of applications.

While heuristics are domain-specific and rely on experience and intuition to find solu-
tions, metaheuristics offer a more generalized and systematic problem-solving approach.
They are designed to tackle a wide range of optimization problems and often combine de-
terministic and stochastic elements. A concise quote highlighting the distinction between
heuristics and metaheuristics is[34], ”A heuristic is a pretty good rule. A metaheuris-
tic is a pretty good rule for finding pretty good rules.” This quote emphasizes the role
of metaheuristics in developing and optimizing heuristics to efficiently explore solution
spaces and identify near-optimal solutions.

This chapter will explore several crucial factors that contribute to the effectiveness of
metaheuristics. These factors include techniques for generating initial solutions, search
strategies, tuning and controlling of parameters, randomization techniques, classification
of metaheuristic algorithms, hybridization methods, and the concept of the ”no-free lunch”
theory.

19

Chapter 2. Metaheuristics

2.2 Initialization methods

The initialization step in metaheuristics is a crucial component that sets the starting
point for the search process. It involves generating an initial solution or a population of
solutions for the optimization problem at hand. The quality and diversity of the initial
solutions can significantly impact the performance and effectiveness of the metaheuristic
algorithm. A well-designed initialization strategy in metaheuristics aims to generate an
initial solution or population of solutions that can serve as a good starting point for
the search process. The goal is to find an initial solution that is closer to the optimal
solution, thereby reducing the time and effort required to converge towards the best
possible solution[58].

There are various approaches to initialize solutions in metaheuristics, depending on
the specific algorithm and problem domain. Theoretically, In theory, the available initial-
ization methods can be broadly classified into two categories:

2.2.1 No Previous knowledge

In situations where there is little to no previous knowledge about the problem being
solved, metaheuristic algorithms can overcome this limitation through simple initialization
techniques[77]. We will examine two type of such techniques:

Random initialization

Random initialization refers to the process of generating initial solutions or starting points
for an optimization or search algorithm using random values[102]. It is commonly used
when there is no prior knowledge or information about the optimal solution or the search
space, is particularly useful in population-based metaheuristics, such as genetic algo-
rithms, particle swarm optimization, and ant colony optimization. These algorithms
maintain a population of solutions and iteratively improve them over time. To start the
process, a population of random solutions is generated, and the optimization algorithm
iteratively refines these solutions to find better ones.

A typical approach to generate the random population is to use a uniform distribution
as in Equation2.1:

Xi = lb + rand(0, 1)(ub − lb) (2.1)

Where
lb and ub : the lower and upper bounds .
rand : is a random number drawn from the range [0, 1].

Chaotic initialization

Initialization with chaotic maps is a commonly employed technique in optimization al-
gorithms, particularly in the field of metaheuristics. Chaotic maps are deterministic
dynamic systems that exhibit chaotic behavior, characterized by sensitivity to initial con-
ditions and a highly complex trajectory [102]. Various types of chaotic maps have been

20

Chapter 2. Metaheuristics

utilized, including logistic maps, pocket maps, and others. These maps have been specif-
ically chosen to harness their chaotic properties for generating diverse initial solutions
that are pseudo-random in nature. This approach aims to facilitate an extensive explo-
ration of the solution space and improve the likelihood of discovering favorable solutions.
In the literature[38], a generic formula has been proposed to represent this approach, as
exemplified by the following Equation2.2:

Xk
i,j = f (Xk

i,j) (2.2)

Where
j : corresponds to the jthvariable of the ith individual of the population.
f : epresents a chaotic mapping function.
k = 1 : is the iteration number, we are interested only in the first iteration.

2.2.2 With Domain-Specific knowledge

some cases, domain-specific knowledge about the problem can be utilized to guide the
initialization process. This knowledge can be incorporated into the initialization strategy
to bias the initial solutions towards known or expected good regions in the search space.
By incorporating problem-specific information, the algorithm can potentially converge
faster towards optimal solutions[77].

When such domain-specific knowledge is available, it can be utilized to guide the
initialization process in metaheuristic algorithms. The goal is to bias the generation of
initial solutions towards regions in the search space that are known or expected to contain
good solutions.

2.3 Search strategy

metaheuristics uses different techniques working together to converge toward an optimum,
there is often a trade-off between different components, such as exploration and exploita-
tion. achieving the best of both exploration and exploitation simultaneously in a single
algorithm is a complex task. Researchers have indeed explored various approaches to
address this trade-off, and the choice of methods depends on the problem at hand and
the characteristics of the algorithm being used.

2.3.1 Exploration

In the exploration phase, the algorithm actively explores the entire solution space to
uncover new and unexplored regions while moving away from existing solutions. This
results in the generation of a diverse set of solutions. Global search strategies like random
search or genetic algorithms are commonly employed to facilitate this exploration. These
strategies generate candidate solutions across a wide range of the search space. The
primary objective is to prevent the algorithm from becoming trapped in local optima.
Diversification is typically achieved by promoting diversity among the members of the

21

Chapter 2. Metaheuristics

swarm. For instance, certain metaheuristic algorithms introduce randomness into the
search process by incorporating random perturbations in parameter values or randomly
selecting search directions. These techniques allow for the exploration of different areas
of the solution space[63].

2.3.2 Exploitation

Exploitation can be described as the ability of an algorithm to use the current infor-
mation available to it in order to search for a better position in the surrounding area
of given candidates in the search space. Unlike the exploration technique, exploitation
moves in smaller steps, generating outputs that are similar to its inputs but potentially
better ones[28]. Exploitation is often viewed as an intensification phase rather than di-
versification because it focuses on improving the best solutions found so far, rather than
generating new, diverse solutions. This stage typically employs local search strategies
that fine-tune existing solutions to improve their quality.

Achieving a good balance between exploration and exploitation is indeed crucial for
a metaheuristic to exhibit good performance, If a metaheuristic algorithm focuses exces-
sively on exploitation and neglects exploration, it may converge quickly to a local optimum
but at the risk of missing the global optimum. This means that the algorithm may settle
for suboptimal solutions without sufficiently exploring other regions of the solution space.
And if a metaheuristic algorithm emphasizes excessive exploration and underemphasizes
exploitation, it may converge very slowly and require a significant computational effort.
The algorithm might spend a considerable amount of time exploring unpromising regions
of the solution space without effectively exploiting the known good solutions.

2.4 Tuning and Controlling of parameters

Achieving optimal performance in an algorithm often relies on the selection of appro-
priate algorithm-dependent parameters. Fine-tuning these parameters to their optimal
values can significantly enhance the algorithm’s effectiveness. The ideal scenario is for
the algorithm to find the optimal solution with minimal iterations while maintaining high
accuracy. However, parameter tuning poses a challenging optimization problem and can
be considered a form of hyper-optimization, where the goal is to optimize the optimization
process itself. Despite ongoing research efforts, determining the best parameter settings
for an algorithm remains an open problem [122].

2.4.1 Tuning parameters

Parameter tuning is an important aspect of optimizing algorithm performance. Various
tools and approaches exist for parameter tuning [118], but there is no universally estab-
lished method that applies to all algorithms. One commonly used approach for parameter
tuning is grid search, where a predefined set of parameter values is specified, and the al-
gorithm’s performance is evaluated for each combination of these values. This approach
is straightforward but can be computationally expensive, especially when dealing with

22

Chapter 2. Metaheuristics

a large parameter space. Another popular approach is random search, where parameter
values are randomly sampled from a predefined range or distribution. This method can be
more efficient than grid search as it allows for exploration of a wider range of parameter
value.

2.4.2 Controlling of parameters

that parameter control is another important aspect of optimization that should not be
overlooked. While parameter tuning involves finding the optimal values of algorithm
parameters [121], parameter control involves adjusting the values of these parameters
over the course of the optimization process in order to improve the convergence rate and
overall performance of the algorithm.the purpose of parameter control is to adaptively
adjust the algorithm parameters based on the behavior of the optimization process. This
can help to improve convergence rates, reduce the likelihood of getting stuck in local
optima, and promote exploration of the search space. The goal of parameter control is to
find a good balance between exploration and exploitation.

2.5 Random Walks

Randomization techniques, such as random walks, have become an essential component
in the search process of stochastic algorithms. However, achieving effective randomiza-
tion remains an ongoing challenge. To introduce randomization, pseudo-random numbers
are commonly used, which are generated using deterministic algorithms that produce
a sequence of numbers that exhibit properties similar to randomness. The distribution
of these pseudo-random numbers depends on the specific algorithm and its parameters.
Moreover, different probability density distributions, including uniform, Gaussian, Brow-
nian, and Lévy distributions, can be employed to model random variables [121].

A random walk is a stochastic process that involves taking a sequence of consecutive
random steps. Mathematically, we can represent a random walk by denoting the sum of
each consecutive random step as SN , where each step is represented by Xi. In this way,
SN forms a random walk defined by Equation 2.3

SN =
N∑
i=1

Xi = X1 + . . .+XN (2.3)

Where Xi is a random step drawn from a random distribution. This relationship can also
be written as a recursive formula.

SN =
N∑
i=1

Xi +XN = SN−1 +XN (2.4)

2.5.1 Gaussian Walk

A Gaussian walk, also referred to as a random walk with normally distributed steps,
is a stochastic process in which a particle or system moves in discrete steps following

23

Chapter 2. Metaheuristics

a Gaussian or normal distribution. In other words, during each step of the random
walk, the particle’s displacement is determined by a random value drawn from a normal
distribution[20]. This distribution is characterized by a mean of zero and a specified
standard deviation, often denoted as σ, while µ represents the mean. The displacement
at each step is independent of previous displacements as show in figure2.1 .

f(x) =
1

σ
√
2π

e−
(X − µ)2

2σ2
(2.5)

Figure 2.1: Function of Gaussian Distribution
hyperphysics.phy-astr.gsu.edu/hbase/Math/gaufcn.html

2.5.2 Lévy Walk

Lévy flights have been observed in various animal behaviors, including hunting and forag-
ing. This is because Lévy flights enable animals to effectively explore their environment
in unpredictable situations where food resources may be scattered or scarce[94].

To incorporate Lévy flights into an algorithm, two essential characteristics need to be
defined: the step length of the walk, which follows the Lévy distribution, and the direction
in which the walk should move towards the target position. The step length of the walk can
be determined by generating random numbers from the Lévy distribution, which exhibits
a heavy-tailed shape that allows for occasional large steps. The direction of the walk can
be determined by generating random numbers from a uniform distribution. The variance
of the uniform distribution is typically larger than that of a Gaussian distribution, making
it more practical and efficient for simulating a wide range of scenarios[23].

2.5.3 Brownian Walk

Brownian motion, named after the botanist Robert Brown who observed the erratic mo-
tion of pollen particles in water, refers to the random movement of particles suspended in
a fluid medium. It is a fundamental concept in physics and probability theory[64].

24

http://hyperphysics.phy-astr.gsu.edu/hbase/Math/gaufcn.html

Chapter 2. Metaheuristics

In a Brownian walk or Brownian motion, the random walker moves in a continuous
manner, taking small and rapid steps in random directions[85]. The steps are typically
assumed to be independent and identically distributed, following a Gaussian (normal)
distribution. The cumulative effect of these small, random steps results in a trajectory
that appears as a continuous, erratic, and unpredictable motion.

Figure 2.2: Brownian walk versus Lévy Flight walk adopted from[9]

2.6 Classification of meta-heuristic algorithms

Different methods have been proposed to classify metaheuristics based on selected charac-
teristics. This section provides a brief summary of the most important categories, includ-
ing nature-inspired versus non-nature-inspired, population-based versus single solution-
based search, dynamic versus static objective function, single neighborhood versus various
neighborhood structures, and memory usage versus memory-less methods. In our work,
we focused on the category of population-based versus single solution-based search, ex-
amining the details within this classification:

2.6.1 Single solution-based

Single-solution algorithms, also referred to as local search algorithms, are designed to
improve a single solution by exploring its immediate neighborhood. These algorithms
begin with an initial solution and iteratively examine neighboring solutions until an im-
proved solution is found or a termination condition is met. In the local search process of
single-solution algorithms, the objective function of the current solution is evaluated, and
small modifications are made to generate neighboring solutions. These modifications can
involve altering a single element, swapping elements, or flipping bits within the solution.
The algorithm then assesses the objective function of each neighboring solution and se-
lects the best one as the new current solution. Here are some examples of single-solution
algorithms:

25

Chapter 2. Metaheuristics

Simulated Annealing (SA)

Simulated annealing[18] is a metaheuristic that belongs to the family of local search
methods. It is based on the analogy of the annealing process in metallurgy, where the
metal is heated and then slowly cooled to achieve the desired microstructure. Simulated
annealing works by randomly transitioning from the current solution to a new solution
and evaluating the change in the objective function value. If the change is negative (i.e.,
the new solution is better), it is accepted. However, if the change is positive (i.e., the
new solution is worse), it is accepted with a probability that depends on the temperature
and the magnitude of the change. This probabilistic acceptance of worse solutions allows
the algorithm to explore the solution space more extensively and avoid getting trapped
in local optima. One of the main advantages of simulated annealing is its simplicity and
ease of implementation.

Tabu Search(TS)

Tabu Search (TS)[50] is a metaheuristic optimization algorithm designed to efficiently
explore solution spaces and produce high-quality solutions. It is based on the idea that
intelligent problem-solving requires two key components: adaptive memory and responsive
exploration. The adaptive memory in TS is known as a ”tabu list,” which keeps track
of previously visited solutions or actions that are deemed ”taboo” or forbidden for a
certain period. By avoiding reconsideration of these forbidden solutions, TS promotes
diversification in the search process and helps escape from local optima.

Hill Climbing

The Hill Climbing algorithm[101] is a locally optimized method that uses feedback infor-
mation to generate solutions. The algorithm simulates the process of climbing a mountain,
moving in a higher direction at each step until it reaches the mountain’s peak. Starting
from the current node, the algorithm compares it with the values of neighboring nodes[83].
If the current node is the best, it is considered the maximum value (the highest point of
the mountain). Otherwise, the highest neighbor node is selected to replace the current
node, aiming to ascend the mountain. This iteration continues until the highest point is
reached.

2.6.2 Population solution-based

Descriptive algorithms based on inference is a class one of the ways in which the popu-
lation is updated Candidate solutions replace the existing population with a new, better
one, and usually preserve the population. The community size is constant for each repli-
cate Thus, the parallel exploration of many optima It can happen all at once, instead of
the sequential exploration that the traditional one does Methods, whose point-to-point
research is usually unable to overcome local ailments. Therefore, the possibility of be-
ing trapped in a bad locality is greatly diminished. Most (if not all) population-based
methods are based on processes that occur in nature. thus, unlike the traditional meth-

26

Chapter 2. Metaheuristics

ods, they use probability instead of determinism Transition rules, and the application
of stochastic factors to the processes that direct the search, without Which means that
the search performed is random. meta-heuristics algorithms can be categorized based on
their inspiration[98]. There are four main categories of fanatical algorithms based on their
inspiration Universe-based algorithms, Human-based algorithms, Evolutionary-based al-
gorithms, Swarm-intelligence-based algorithms :

Universe-based algorithms

Universe-based algorithms are a class of metaheuristic optimization algorithms that draw
inspiration from the principles of the universe, such as gravity and motion. These algo-
rithms simulate the interactions between celestial bodies or particles to optimize a given
objective function.Water cycle algorithm(WCA)[41], The proposed method is rooted in
the fundamental concepts and ideas inspired by nature, specifically the observation of
the water cycle process and the flow of rivers and streams towards the sea. Sine Cosine
Algorithm (SCA)[88],which takes inspiration from sine and cosine functions and simulates
their behavior to generate and iteratively update candidate solutions based on their fitness
values. By simulating the properties of these mathematical functions. The Archimedes
optimization algorithm(AOA)[55], is a metaheuristic optimization algorithm inspired by
the principles and methods used by the ancient Greek mathematician Archimedes. The
algorithm incorporates various mathematical and physical concepts to solve optimization
problems. The atomic orbital search(AOS)[15],is an optimization algorithm inspired by
the behavior of electrons in atomic orbitals. It draws analogies from quantum mechanics
and utilizes the principles of wave functions and energy levels to solve optimization prob-
lems. Weighted mean of vectors (INFO)[6], INFO is a modified weighted average method
that uses the weighted average concept to construct a fixed structure and update the posi-
tion of vectors using three basic techniques: update rule, vector merging, and local search.
The rule update phase uses the law based on averaging and convergence acceleration to
generate new vectors. The vector combining step combines the resulting vectors with an
update rule to produce a promising solution. The presented algorithm is inspired by the
orbital dynamics observed in the solar system, including the motions of celestial bodies
such as the sun, planets, moons, stars, and black holes. It adopts these orbital behav-
iors to address optimization problems.Solar system algorithm(SSA)[133], The presented
algorithm is inspired by the orbital dynamics observed in the solar system, including the
motions of celestial bodies such as the sun, planets, moons, stars, and black holes. It
adopts these orbital behaviors to address optimization problems. Henry gas solubility
optimization (HGSO)[56], is inspired by the Henry’s law in chemistry, which describes
the solubility of a gas in a liquid. The algorithm mimics the process of gas molecules
dissolving in a liquid and aims to find the optimal solution .

Human-based algorithms

Human-based algorithms, also known as human-in-the-loop or human-guided optimiza-
tion, involve incorporating human input or intervention into the optimization process.
These algorithms aim to harness the strengths of human intuition and creativity to en-

27

Chapter 2. Metaheuristics

hance the optimization process, particularly in situations where traditional methods may
struggle to find optimal solutions. Let’s comment on a few algorithms and mention
others. Human mental search(HMS)[92], The poor and rich optimization (PRO)[91], in-
spired by the dynamics of two distinct groups: the poor and the rich, striving to improve
their economic conditions and achieve wealth, applies the concept of poverty and wealth
metaphorically to problems of gentrification. Poor individuals represent the initial so-
lutions or search points with lower fitness values, while rich individuals correspond to
solutions with higher fitness values. the Doctor and Patient Optimization (DPO)[31],
Inspired by the doctor-patient relationship, the algorithm aims to simulate the diagnosis
and treatment process in order to find optimal solutions for complex problems. Where
the optimization problem is dealt with as a patient, the algorithm acts as a doctor trying
to diagnose and provide the best treatment.Harmony Search(HS)[49], is a metaheuristic
search algorithm inspired by the process of musicians improvising to find pleasing har-
monies. In recent years, the HS algorithm has gained a lot of attention due to its many
advantages. They are known for their ease of implementation and rapid convergence of
optimal solutions. The Ebola Optimization Search Algorithm (EOSA)[93], The inspira-
tion behind the Ebola Optimization Algorithm (EOSA) is derived from the Ebola virus
and the way it spreads within a population. The algorithm takes inspiration from the
random movement of individuals among different sub-populations, such as susceptible,
infected, quarantined, hospitalized, recovered, and deceased individuals during an Ebola
outbreak. By simulating the propagation of the disease, the algorithm aims to optimize
solutions in a population-based manner. Bonobo Optimizer (BO)[52] ,is proposed It mim-
ics several interesting reproductive strategies and social behaviour of Bonobos. Bonobos
live in a fission-fusion type of social organization, where they form several groups (fission)
of different sizes and compositions within the society and move throughout the territory.
Afterward, they merge (fusion) again with their society members for conducting specific
activities. Queuing search algorithm(QS)[127], inspired by human activities in queuing.
It draws upon the principles and strategies observed in queuing systems to develop an
efficient search algorithm.

Evolutionary-based algorithms

Evolutionary algorithms (EAs) are stochastic search methods that mimic the natural
biological evolution and/or the social behavior of species. Such algorithms have been
developed to arrive at near-optimum solutions to large-scale optimization problems, for
which traditional mathematical techniques may fail[37]. The most popular evolutionary
techniques are Genetic Algorithm (GA)[37] this algorithm based on theory of Darwin for
evolution. GAs have some operators to evaluate its initial population generated randomly
which are crossover, mutation and selection. the I Ching algorithm (ICA)[24], for opti-
mization problem-solving. The algorithm incorporates unique operators inspired by the
principles of the I Ching, an ancient Chinese cultural system. In addition, the algorithm
utilizes transformation methods such as the penalty method and the multiplier method.
The red deer algorithm(RDA)[43], takes inspiration from the behavior of male red deer
during the mating season. Male red deer engage in competition to secure a large harem
of females for mating purposes.The quantum-inspired evolutionary algorithm(QE)[109]
is designed to handle continuous optimization problems while preserving the concept of

28

Chapter 2. Metaheuristics

superposition states. To achieve this, the algorithm incorporates a recursive sampling
technique that progressively tightens the search space. By iteratively refining the search
space .

Swarm-intelligence-based algorithms

Swarm intelligence algorithms are nature-inspired algorithms developed based on organ-
isms such as flocks of birds, ants, and fish[11]. These functions help algorithms in fitness
functions in combination and numerical optimization problems from covering a wide range
of search space, The Pity Beetle Algorithm (PBA)[69], developed by Kallioras is inspired
by the gathering behavior and foraging strategies of Pityogenes chalcographus beetles,
which have the ability to congregate on host trees and efficiently search for optimal nest
sites and food sources using specific behaviors and communication patterns.The Sailfish
Optimizer(SFO)[103], The algorithm you are referring to, which is inspired by a group
of hunting sailfish, utilizes two types of populations: a sailfish population for intensifi-
cation and a sardines population for diversification. is inspired by the behavior of sooty
terns, a species of seabirds known for their remarkable navigation and foraging abili-
ties.Sooty Tern Optimization Algorithm (STOA)[104],The algorithm mimics the foraging
behavior of these birds to solve optimization problems.Chimp Optimization Algorithm
(COA)khishe2020chimp a metaheuristic optimization algorithm inspired by the behav-
ior and social structure of chimpanzees, one of the closest relatives of humans. The
Archerfish Hunting Optimizer(AHO)[134], takes inspiration from the archerfish’s ability
to accurately target and shoot down insects by spitting water from its mouth. Dandelion
Optimizer(DO)[130],is inspired by the characteristics and behavior of dandelion plants.
Dandelions are known for their resilience, adaptability, and efficient dispersal of seeds. The
DO algorithm aims to mimic these qualities in the optimization process. Mountain Gazelle
Optimizer(MGO)[4], is inspired by the behavior and characteristics of mountain gazelles.
Mountain gazelles are known for their agility, speed, and efficient navigation through
complex terrains.Golden eagle optimizer(GEO)[90], is a nature-inspired metaheuristic al-
gorithm inspired by the hunting and foraging behavior of golden eagles. Golden eagles are
known for their powerful flight, keen vision, and efficient hunting strategies. Beluga whale
optimization(BWO)[131] ,is a inspired by the social behavior and foraging strategies of
beluga whales. Beluga whales are known for their cooperative hunting. The Coati Opti-
mization algorithm (COA)[32], is a nature-inspired metaheuristic algorithm that mimics
the foraging behavior and social interaction of coatis. Coatis, also known as coatimundis,
are small mammals found in the Americas and are known for their efficient foraging
strategies and group coordination.Water strider algorithm(WSA)[71], is a metaheuristic
optimization algorithm inspired by the behavior of water striders, a type of insect that
can walk on the surface of water. The algorithm mimics the movement and foraging
strategies of water striders to solve optimization problems. Mouth Brooding Fish (MBF)
[65], is a nature-inspired optimization algorithm that draws inspiration from the behavior
of mouth brooding fish species. Mouth brooding fish, also known as parental fish, exhibit
a unique reproductive strategy where the female fish carries and incubates the fertilized
eggs in her mouth until they hatch. is takes inspiration from the foraging behavior of
nutcracker birds. Nutcracker optimizer(NOA)[3], Nutcracker birds are known for their
unique feeding strategy, where they gather and store food for future consumption.

29

Chapter 2. Metaheuristics

2.7 Hybridization method

The concept of hybrid metaheuristics has gained acceptance in recent years, although the
idea of combining different metaheuristic strategies and algorithms has been around since
the 1980s [68].Hybrid solutions in metaheuristic algorithms involve combining two or more
different algorithms or techniques to generate new and potentially better solutions. The
objective of hybridization is to leverage the strengths of each algorithm while mitigating
their weaknesses. There are various approaches to generating hybrid solutions[98].

One approach is the sequential method, where one algorithm is used to generate a set of
candidate solutions, which are then refined using another algorithm. Another approach is
the parallel method, where multiple algorithms work simultaneously to generate solutions,
which are then combined to create new hybrid solutions. The choice of algorithms or
techniques to combine depends on the specific problem being solved and the characteristics
of the search space. It is important to carefully evaluate the performance of the hybrid
algorithm and compare it to the performance of each individual algorithm or technique.

There are five important classes of hybrid metaheuristics[19]: constraint programming,
tree search methods, problem relaxation, and dynamic programming. Hybridization with
metaheuristics involves combining metaheuristics with other heuristics or optimization
techniques, such as greedy algorithms, local search methods, or exact algorithms, to im-
prove their performance. For example, a hybrid algorithm can combine a genetic algorithm
with a local search method to efficiently explore the search space.Several articles have fo-
cused on the development of hybrid algorithms. Some examples include the hybridization
of Grey Wolf Optimization and Particle Swarm Optimization (GWO-PSO)[106], a new
hybrid GA/SA algorithm[126], an efficient hybrid DE-WOA algorithm[132], and improved
hybrid AO and HHO algorithms[113].

Overall, hybrid algorithms provide a powerful approach to solve complex optimization
problems by combining different optimization techniques to improve the performance of
the algorithm. In this work, we propose A novel hybrid metaheuristic optimiser using
Beluga Whale Optimisation, Artificial Jellyfish Search Optimiser, and Honey Badger
Algorithm.

2.8 No-Free-Lunch Theorem

The ”No-Free-Lunch Theorem” states that if an algorithm performs well on a particular set
of optimization problems, it may not perform well on another set of problems. This means
that there is no universally superior algorithm that can outperform all other algorithms
across all optimization problems[48]. However, this does not imply that all algorithms are
equally effective for a given problem. Some algorithms may perform better than others
for certain types of problems, and the choice of algorithm can have a significant impact
on the quality of the solution obtained. Therefore, it is important to carefully consider
the problem being solved and select an algorithm that is well-suited to that particular
problem. This may involve comparing the performance of different algorithms on a set of
benchmark problems or developing a new algorithm specifically tailored to the problem
at hand.

30

Chapter 2. Metaheuristics

2.9 Conclusion

In conclusion, scientists and researchers anticipate significant advancements in the field of
metaheuristics in the future, given its wide range of applications across various domains.

The effectiveness of metaheuristics lies in its unique approach to generating solutions,
which enables incremental convergence in search behavior. Achieving optimization relies
heavily on finding the right balance between exploration and exploitation. Additionally,
parameter tuning and control are critical aspects of metaheuristics, as these adjustable
parameters have a significant impact on algorithm behavior and performance. Fine-tuning
and controlling these parameters are essential for optimizing convergence speed, solution
quality, and making informed decisions in random walks. Metaheuristic algorithms are
classified into different categories based on their underlying principles and behaviors.

In this study, our exploration of the field of metaheuristics continues, and in the next
chapter, we propose a novel hybrid metaheuristic optimizer that combines the strengths of
the Beluga Whale Optimization, Honey Badger Algorithm, and Artificial Jellyfish Search
Optimizer.

31

Chapter 3

BHJO:A novel hybrid metaheuristic
algorithm for global optimization

32

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

3.1 Introduction

Optimization is a fundamental problem-solving approach that aims to find the best pos-
sible solution from a set of feasible alternatives. It plays a crucial role in various do-
mains, including engineering[120], economics [62], logistics[10], and data analysis [111].
The complexity of real-world optimization problems often arises from large search spaces,
non-linear relationships, and multiple conflicting objectives.

To tackle such challenging optimization problems, researchers have developed a di-
verse range of techniques, including metaheuristic algorithms. Metaheuristics are high-
level problem-solving strategies that guide the search process by iteratively exploring
and exploiting the search space to find optimal or near-optimal solutions. Unlike ex-
act optimization methods that guarantee optimal solutions but are limited to small-scale
problems, metaheuristics are capable of handling large-scale and complex optimization
problems [128].

Metaheuristic algorithms draw inspiration from natural phenomena, social behaviors,
and physical processes to create intelligent search strategies. These algorithms itera-
tively improve a population of candidate solutions by iteratively applying exploration
and exploitation techniques. Exploration involves searching new regions of the search
space to discover potential solutions, while exploitation focuses on refining and exploiting
promising solutions to improve their quality. A good balance between exploration and
exploitation is essential for the success of metaheuristic algorithms in solving optimiza-
tion problems. Exploration allows the algorithm to search widely across the search space,
uncovering diverse regions and potentially finding better solutions. It helps prevent the
algorithm from getting stuck in local optima and promotes global exploration. On the
other hand, exploitation focuses on intensively exploiting the promising regions of the
search space, refining and improving the solutions to converge towards the optimal or
near-optimal solutions. Balancing these two aspects ensures that the algorithm maintains
a healthy exploration to discover new regions while exploiting the discovered promising
solutions effectively. A well-balanced approach enables the algorithm to avoid premature
convergence and thoroughly explore the search space to find high-quality solutions [78,
5].

Metaheuristic algorithms can be broadly categorized into two groups based on their
search strategy: population-based algorithms and individual-based algorithms. Population-
based algorithms maintain a population of candidate solutions and explore the search
space collectively, exchanging information between individuals to guide the search pro-
cess. Examples of population-based algorithms include Genetic Algorithms (GA) [75]
and Particle Swarm Optimization (PSO) [112]. On the other hand, individual-based al-
gorithms, also known as trajectory-based algorithms, focus on improving a single solution
or trajectory by iteratively modifying it through exploration and exploitation. Examples
of individual-based algorithms include Simulated Annealing (SA) [18] and Tabu Search
(TS) [50]. These algorithms often rely on a memory mechanism to keep track of previously
visited regions and avoid getting trapped in local optima.

Metaheuristic algorithms have demonstrated their effectiveness and versatility in solv-
ing a wide range of optimization problems in various fields. They have been successfully

33

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

applied in areas such as engineering design [30], scheduling [17], resource allocation [99],
data mining [79], and image processing[14] . The ability of metaheuristic algorithms to
handle complex, non-linear, and multi-objective optimization problems makes them par-
ticularly useful in real-world applications where traditional optimization techniques may
fail to provide satisfactory results.

In this paper, we focus on the combination of three well-known metaheuristic algo-
rithms, Beluga Whale Optimization (BWO), Honey Badger Algorithm (HBA), and Artifi-
cial Jellyfish Search Optimizer (JS), to develop a hybrid metaheuristic algorithm. We aim
to leverage the strengths of these individual algorithms and propose a novel approach that
improves optimization performance by incorporating combined opposition-based learning
and a new balancing mechanism. The algorithm is evaluated on a set of 40 test functions
to assess its effectiveness and robustness.

3.2 Proposed hybrid algorithm

3.2.1 Source of inspiration

To show the working principle of the proposed hybrid algorithm, we explain the three
metaheuristics used for its conception, which are the Beluga Whale Optimization (BWO)
[131], the Honey Badger algorithm (HBA) [57], and the Jellyfish Search Optimizer (JS)
[26]. In the following sections, we present an overview of each one.

Beluga Whale Optimization

The beluga whales (Delphinapterus leucas) [115] are members of whales living in the sea.
They are medium-sized whales that live in the Arctic and subarctic oceans. Beluga whales
are known for their social nature, sharp sense, and unique behavior, such as swimming
with raised pectoral fins, diving and surfacing in a synchronized manner, and releasing
bubbles from their blowholes. They are omnivorous and feed on a variety of prey, including
fish and invertebrates, and can coordinate in groups to attack and feed on fish. However,
they are also under threat from predators such as orcas and polar bears, as well as from
humans. In addition, beluga whales die and fall to the ocean floor, providing a source of
food for other deep-sea creatures. This phenomena is called whale fall. The mathematical
formulation of exploration, exploitation, and whale fall (i.e., local optimum avoidance)
concepts related to BWO are show in Figure 3.1 and are explained in the following sections.

A- Exploration phase The locations of search agents are determined by the pair
swimming behavior, where two beluga whales swim together in a synchronized or mir-
rored manner[131]. This approach allows search agents to explore the search space more
efficiently and effectively, and leads to discover new and possibly better solutions to the
optimization problem being handled. The positions of the different agents are updated
using Equation 3.1.

34

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Figure 3.1: Behavior of beluga whales, (a) swimming (exploration phase), (b) foraging
(exploitation phase), (c) whale fall (local optimum avoidance) [131].

{
X t+1

i,j = X t
i,pj

+ (X t
r,p1
−X t

i,pj
)(1 + r1) sin(2πr2) , j = 2k

X t+1
i,j = X t

i,pj
+ (X t

r,p1
−X t

i,pj
)(1 + r1) cos(2πr2) , j = 2k + 1

(3.1)

Where
t : The current iteration.
X t+1

i,j : The new value of agent i on axis j.
pj : A random number drawn from the range {1, 2, . . . , d}.
X t

i,pj
: The position of agent i on axis pj.

r : A random number drawn from the range {1, 2, . . . , N}.
N : The population size.
r1 and r2 : Random numbers drawn from the range [0, 1].
sin(2πr2) and cos(2πr2) : Designate the mirrored swimming behaviour.

B- Exploitation phase The search agents share information about their current posi-
tions and consider the best solution as well as other nearby solutions when updating their
locations. This mechanism helps the agents to efficiently move towards promising regions
of the search space. The exploitation phase also includes the Lévy flight [84], which is a
type of random walk characterized by long jumps in random directions interspersed with
short local movements. This strategy helps enhancing search agents’ convergence towards
the global solution of the search space. The positions of the different agents are updated
using Equations 3.2, 3.3, and 3.4.

X t+1
i = r3X

t
best − r4X

t
i + 2r4

1− t

Tmax
LF (X

t
r −X t

i) (3.2)

LF = 0.05
υ×σ

|ν|
1
β

(3.3)

σ =

(
Γ(1 + β)× sin(π×β

2
)

Γ
((1+β)

2

)
×β×2

(β−1)
2

) 1
β

(3.4)

35

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Where
X t

best : The best solution in the current population.
r3 and r4 : Random numbers drawn from the range [0, 1].
Tmax : The maximum number of iterations.
LF : The lévy flight [84].
υ and ν : Normally distributed random numbers.
β : A constant number that equals 1.5.
Γ : The Gamma function.

C- Balance between exploration and exploitation During the search process, the
balance between exploration and exploitation phases is granted based on a balance factor,
named Bf , which is calculated using Equation 3.5. In addition to that, if the value of Bf

is greater than or equals a specific threshold (e.g. 0.5), then the search space is explored
using Equation 3.1; otherwise, if the value of Bf is less than the same threshold, then the
search space is exploited using Equation 3.2.

Bf = B0

(
1− t

2Tmax

)
(3.5)

D- Whale fall The whale fall phase represents the fact that a beluga whale may die
and become a food source for other creatures. In the BWO algorithm, the whale fall
phase is used as a random operator to introduce diversity and prevent the search process
from being trapped in local optima. The mathematical model of this step is expressed
using Equations 3.6, 3.7, and 3.8.

X t+1
i = r5X

t
i − r6X

t
r + r7Xstep (3.6)

Xstep = (ub − lb) exp(−(2Wf×n)
t

Tmax
) (3.7)

Wf = 0.1− 0.05
t

Tmax

(3.8)

Where
Xr : A random solution taken form the current population.
r5, r6, and r7 : Random numbers drawn from the range [0, 1].
Xstep : Represents the step size by which a dying whale falls.
wf : The probability of whale fall.
ub and lb : Upper and lower bounds of the search space.

Honey Badger Algorithm

Honey badgers are charming mammals known for their bold and stubborn nature. They
are found in semi-deserts and rainforests of Africa, Southwest Asia, and Indian subcon-
tinent. Honey badgers have distinctive fluffy black and white fur. Normally, they have

36

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Figure 3.2: The black circle indicates the position of the prey, and the blue curve represents
the smell intensity [57].

a body length of 60 to 77 centimeters and a body weight of 7 to 13 kilograms. Honey
badgers rely on two modes for surviving: the digging mode and the honey mode [57]. In
the digging mode, honey badgers use scent to locate prey, dig out and catch the prey.
In the honey mode, honey badgers rely birds to locate beehives and get honey. The
mathematical formulation and concepts related to HBA are explained in the following
sections.

A- Initialization phase A population of initial candidate solutions is randomly gen-
erated between the lower and upper bounds lb and ub for the considered problem using
Equation 3.9.

Xi = lb + r1(ub − lb) (3.9)

where r1 is a random number drawn from the range [0, 1].

B- Exploration phase In nature, honey badgers dig a like-cardioid shape to surround
and catch prey [86]. Figure 3.2 shows the form of a two-dimensional plane figure that has
a heart-shaped curve. The exploration phase of HBA is formulated using Equation 3.10.

X t+1
i = Xbest + F×β×I×Xbest + F×r3×αXdi× | cos(2πr4)×[1− cos(2πr5)] | (3.10)

F =

{
−1 if r6 ≤ 0.5

1 else

Where
X t+1

i : The new position of agent i at iteration t+ 1.
Xbest : The position of the best solution in the current population.
I : The smell intensity, computed using Equation 3.12.
β : Represents the ability of a honey badger to get food (β > 1).
α : The density factor, computed using Equation 3.13.
di : The distance between prey and agent i.
F : A term used to modify the search direction and avoid local optima.
r3, r4, r5, and r6 : Random number drawn from the range [0,1].

C- Exploitation phase The exploitation phase is depicted by honey badgers’ be-
haviours as they approach beehives, when following honey guide birds. It it is math-
ematically represented by Equation 3.11.

37

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Figure 3.3: The Inverse Square Law [57].

X t+1
i = Xbest + F×r7×α×di (3.11)

where the different terms of Equation 3.11 are the same as Equation 3.10, and r7 is a
random number drawn from the range [0, 1].

D- Smell intensity The smell intensity Ii relies on two factors: the prey energy and
the distance between a honey badger and prey. If the smell concentration is strong, the
motion of the honey badger will be fast and vice versa. This concept is modeled using
the Inverse Square Law [70] and is shown in Figure 3.3. Finally, Equation 3.12 is utilized
to compute the smell intensity used in the exploration phase.

Ii = r2
(X t

i −X t+1
i)2

4πd2i
(3.12)

where r2 is a random number drawn from the range [0, 1], and di is the distance between
prey and agent i.

E- Density factor The density factor α controls the balancing between exploration and
exploitation phases. It ensures the smooth transition form exploration to exploitation.
Equation 3.13 is used for this purpose.

α = C× exp
(
−t
Tmax

)
(3.13)

where C is a constant normally greater than or equals 1, and Tmax is the maximum number
of iterations.

Artificial Jellyfish Search Optimizer

Jellyfish, also known as medusae, are amazing sea creatures that live in different depths
and temperatures of water around the world. They come in a wide variety of shapes, sizes,
and colours. They are made from a soft, translucent, and gelatinous substance. They
usually have a bell-shaped body that gives them a distinctive appearance. The size and
shape of the bell can vary greatly among different jellyfish species. Besides, they have a
wide range of adaptation mechanisms to their oceanic environment. These mechanisms
include specialized structures for hunting prey, such as long tentacles armed with stinging
cells called nematocysts[26]. Jellyfish have two hunting strategies: passive swarming and

38

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Figure 3.4: The behaviour of jellyfish in the ocean [26].

active swarming. In the former, a specific jellyfish follows the individuals of the school.
In the later, a given jellyfish hunts alone. When jellyfish are not hunting, they are led by
the oceanic current. The behaviour of jellyfish is shown in Figure 3.4. The mathematical
formulation of exploration and exploitation concepts related to JS are explained in the
following sections.

A- Initialization phase The initial population in the majority of metaheuristic algo-
rithms is generally initialized in a random way. This method has two major drawbacks:
slow convergence and tendency to get trapped in local optima due to reduced population
diversity. In order to increase diversity from the initial population, the JS optimizer tested
several chaotic maps [116, 25, 72], and concluded that the logistic map [47] gives a more
diverse initial population compared to random initialization and reduces the premature
convergence problem [25, 74]. Equation 3.14 is used to initialize the first population.

Xi+1 = ηXi(1−Xi) , 0 ≤ X0 ≤ 1 (3.14)

Where
Xi : The logistic chaotic value of the ith jellyfish’s location.
X0 : Used to generate the initial population of jellyfish:

X0 ∈ [0, 1] and X0 6∈ {0, 0.25, 0.5, 0.75, 1}.
η : Set to 4.0.

B- Exploration phase Jellyfish follow the ocean currents to conserve energy and move
quickly. In the JS optimizer, this refers to exploring the search space and generating new
random candidate solutions. Hence, jellyfish updated their positions using Equations 3.15
and 3.16.

X t+1
i = X t

i + rand(0, 1)×
−−−→
trend (3.15)

−−−→
trend = X∗ − β×rand(0, 1)×µ (3.16)

39

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Where
X t+1

i and Xi : Locations of agent i at iterations t+ 1 and t.
X∗ : The location of the current best solution in the swarm.
β : A distribution coefficient .
µ : The mean location of all jellyfish

C- Exploitation phase Jellyfish move inside the swarm to search for food. In the JS
algorithm, this refers to exploiting the search space. There are two behaviours: either
a jellyfish moves towards the best solution found so far, or it moves randomly looking
for food on its own. These mechanisms are called passive motion and active motion,
respectively [45, 125].

1. Passive motion: The different agents in a specific population update their loca-
tions using Equation 3.17.

X t+1
i = X t

i + γ×rand(0, 1)×(ub − lb) (3.17)

where lb and ub are the lower and upper bounds of the search space, and γ > 0

is a motion coefficient which is related to the length of motion around jellyfish’s
locations.

2. Active motion: To simulate this kind of movement, we randomly select two loca-
tions i and j. If the solution at the location i is better than j, then j moves towards
i and vice versa. Hence, the different agents in a specific population update their
locations using Equation 3.18, and Equation 3.19. This exploitation mechanism has
proven to be very efficient, according to the work reported in [46].

X t+1
i = X t

i + rand(0, 1)×
−→
D (3.18)

−→
D =

{
X t

i −X t
j , if f(X t

i) < f(X t
j)

X t
j −X t

i , if f(X t
i) ≥ f(X t

j)
(3.19)

where the variable
−→
D is used to determine the direction of jellyfish and f(.) is the

objective function to be optimized.

D- Time control mechanism A time control model is used in the JS algorithm to
switch between exploration and exploitation, as well as between passive to active motions.
The time control mechanism is represented by Equation 3.21 and depicted by Figure 3.5.

c(t) =

∣∣∣∣(1− t

Tmax
×(2×rand(0, 1)− 1

)∣∣∣∣ (3.20)

40

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Figure 3.5: The graphical representation of the used time control mechanism.

3.2.2 Mathematical model of the proposed BHJO

By combining the previous algorithms, we aim at designing a more robust and efficient
hybrid metaheuristic algorithm that can take the advantages and strengths of each one.
Hybrid nature-inspired approaches involve combining different optimization algorithms
in order to improve their performance. There are two manners of hybridization, namely
high-level and low-level [107]. In the first type, the algorithms to be hybridized are put
one after another; whereas, in the second type, the similar steps of each algorithm are
merged.

It is worth mentioning out that the exploration and exploitation abilities of the above-
mentioned algorithms – i.e., Beluga Whale Optimization (BWO) [131], the Honey Badger
algorithm (HBA) [57], and the Jellyfish Search Optimizer (JS) [26] – are well balanced.
However, according to the results reported in [131], [57], [26], it was observed that: i) the
exploitation of BWO is better than its exploration; ii) the exploitation of HBA is better
than its exploration; and the exploration of JS is better than its exploitation.

In our algorithm, we have adopted a low-level hybridization to design the BHJO. That
is to say, on the one side, the exploration phases of BWO, HBA, and JS are combined
to design the exploration of BHJO; and one the other side, the exploitation phases of
BWO and HBA are used to design the exploitation of BHJO. The key to success is often
in finding the right combination to create an algorithm that can effectively balance the
trade-off between exploration and exploitation. The exploration consists in generating new
solutions and discovering promising regions, and exploitation aims at improving existing
solutions and avoiding local optima [105].

Initialization phase

To improve the diversity of the population, the logistic map has been used to generate
chaotic sequences [80]. This can enhance the global search ability of BHJO by allowing
it to explore the search space more effectively. Equation 3.14 is used to create the first
population of our algorithm.

41

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Exploration phase

The exploration phase of our hybrid algorithm is composed of two strategies, namely first
strategy and second strategy. In the first strategy, we combined the exploration of HBA
and JS. In the second strategy, we used the exploration of BWO. To switch between the
first and second strategies, we use the following technique. First, we assume a uniform
random number drawn from the range [0, 1]. Next, if the generated number is less than
0.5, we apply the first strategy; otherwise, we apply the second strategy.

First strategy To perform the first strategy of exploration, we used Equations 3.10
and 3.16 to propose Equation 3.21.

X t+1
i = Xbest×r2 + F×I×

−−−→
trend×di×Bf× | (cos(2×π×r4)×(1− cos(2×π×r5))) | (3.21)

Second strategy To perform the second strategy of exploration, we used Equation 3.1.

Exploitation phase

Similarly, the exploitation phase of our hybrid algorithm is composed of two strategies,
namely first strategy and second strategy. In the first strategy, we used the exploitation
of BWO. In the second strategy, we used the exploitation of HBA. To switch between the
first and second strategies, we use the following technique. First, we assume a uniform
random number drawn from the range [0, 1]. Next, if the generated number is less than
1−Bf , we apply the first strategy; otherwise, we apply the second strategy, where Bf is
computed using Equation 3.22.

First strategy To perform the first strategy of exploitation, we used Equation 3.11.

Second strategy To perform the second strategy of exploitation, we used Equation
3.2.

Balance between exploration and exploitation

In most metaheuristic algorithms, the optimizers explore and then exploit the search
space. This trend has many disadvantages. For instance, during the exploration phase, the
algorithm searches a wide range of solutions to identify promising areas in the search space,
and it might not find optimal or near-optimal solutions. Consequently, the exploitation
phase, as it focuses on intensifying the search in selected regions, can cause the algorithm
to prematurely converge to a suboptimal solution, without exploring other regions of the
search space that may contain better solutions. Therefore, we propose a mathematical
technique that allows exploration in a wide range of solutions to identify promising areas
in the field of research and intensify research in promising areas at the same time to ensure
an effective balance between exploration and exploitation and finding optimal solutions.

42

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Figure 3.6: The curve of balancing between exploration and exploitation phases.

Figure 3.6 depicts the curve of balancing between exploration and exploitation, which is
defined by Equation 3.22.

Bf =| ((C×r1 − 1)×(1 +m×cos(2×π×f×(
t

tmax

))×cos(2×π×f×
√
t))) | (3.22)

where C, f , and m are constant numbers set to 2, 5, and -3, respectively, and r1 is a
uniform random number.

Local optimum avoidance

To avoid getting stuck in local optimum we used Equation 3.6.

Combined Opposition-Based Learning

The Combined Opposition-Based Learning (COBL) [117] is a novel research strategy
that integrates two enhanced variants of opposition-based learning, namely the Lens
Opposition-Based Learning [42] and Random Opposition-Based Learning [110]. The
COBL is known for its ability to increase the convergence speed of metaheuristics [117].
It achieves this by utilizing the concept of lens opposition, which involves creating an
opposite solution based on the lens formed between the current solution and the global
best solution. By incorporating COBL in our hybrid algorithm, this would help escaping
local optima and avoiding the premature convergence problem because the COBL focuses
on promoting the population diversity. The COBL is given by Equation 3.23. It is worth
emphasizing that Equation 3.23 is applied each time a candidate solution is created or
updated.

¯XCOBL =

{
lbi + ubi − rand×Xi , if q < 0.5
lbi+ubi

2
+ lbi+ubi

2k
− Xi

k
, otherwise

(3.23)

43

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

3.2.3 Pseudocode and time complexity of the proposed BHJO

Algorithm 1 describes the different steps of the proposed hybrid algorithm. Theoreti-
cally, the computational complexity of BHJO is an important metric to assess its perfor-
mance. It includes three processes: fitness evaluation, initialization of the first popula-
tion, and updating of search agents. First, the time complexity of the fitness evaluation is
O(D) v O(n). Second, the time complexity of the initialisation of the first population is
O(max{Npop, NpopD}) v O(n2). Finally, the time complexity of the swarming behaviour
is O(TmaxNpopD) v O(n3). Form the previous time complexities, we conclude that the
time complexity of BHJO is O(n3).

3.3 Experimental results and discussion

The proposed BHJO algorithm is implemented using MATLAB version R2016a. The lap-
top’s configuration is Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz, 2601MHz processor
and 8.0 GB of RAM. The laptop’s OS is Microsoft Windows 10 Enterprise 64–bit. The
numerical efficiency of BHJO is evaluated on 40 challenging benchmark test functions of
different complexity. To validate the performance of BHJO, the obtained results are com-
pared to seven state-of-the-art optimization algorithms; namely, BWO [131], HBA [57],
JS [26], WOA [89], MFO [87], PSO [73], and HHO [59]. These algorithms are relatively
new, but they have shown outstanding performance when compared to many optimizers.
The population size for all the optimizers is set to 30. In addition, each algorithm was run
30 times to minimize the variance, and each run was iterated 1000 iterations to ensure the
validity of the law of large numbers. we discuss the performance of BHJO on the selected
benchmark test functions.

To evaluate the effectiveness of BHJO, a collection of 40 well-established benchmark
test functions from the existing literature is selected [35, 123]. This set covers four func-
tions’ types: unimodal, multimodal, hybrid, and composition functions. Tables 3.1, 3.2,
3.3, 3.4, and 3.5 give an overview on the details of each function: mathematical expression,
dimension, optimum, etc. On the one hand, unimodal functions ({F1, . . . , F7}) have only
one global optimum, and they are used to assess the exploitation ability of optimization
methods; while, on the other hand, multimodal functions {F8, . . . , F20}) possess several
local optimums, and they are employed to evaluate the exploration ability of optimization
methods, i.e., the avoidance of local optimums and the prevention of the premature con-
vergence. Finally, the hybrid and composition functions ({F21, . . . , F40}) are know to be
very challenging and hard functions. They have a large number of local optimums, and
they are used to evaluate the well-balance between the exploration and the exploitation
in metaheuristic algorithms.

In this paragraph, we present the parameter settings employed in our hybrid algo-
rithm, as well as the parameter settings used for the comparative study involving other
algorithms. Regarding the comparative study, we considered seven state-of-the-art meta-
heuristic algorithms: BWO [131], HBA [57], JS [26], WOA [89], MFO [87], PSO [73], and
HHO [59]. In the comparative study, the parameter settings for the algorithms utilized
were obtained from their respective papers. These settings were chosen based on the

44

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Algorithm 1: The pseudo-code of the BHJO algorithm.
Input: Initialize the different parameters of BHJO.
Input: Define the objective function to be minimized f(X).

1 Initialize the pseudo-time t← 0

/* Initialization of the first population */
2 Initialize the first population Xt

i where i ∈ {1, 2, . . . , Npop} using Equation 3.14
3 for i← 1to Npop do
4 Compute X̄t

i the opposite of Xt
i using Equation 3.23

5 Xt
i takes the location that minimizes f(X) among the locations X̄t

i and Xt
i

6 Check the boundaries of the solution Xt
i

7 end
/* Swarming behaviour of BHJO */

8 t← t+ 1

9 while (t ≤ Tmax) do
10 Compute the factor Bf using Equation 3.22
11 for i← 1 to Npop do

/* Exploration of the search space */
12 if (Bf ≥ 0.5) then

/* First strategy */
13 if (rand < 0.5) then
14 Compute the position Xt

i using Equation 3.21
15 end

/* Second strategy */
16 else
17 Compute the position Xt

i using Equation 3.1
18 end
19 end

/* Exploitation of the search space */
20 else

/* First strategy */
21 if Rand(0, 1) > (1−Bf) then
22 Compute the position Xt

i using Equation 3.2
23 end

/* Second strategy */
24 else
25 Compute the position Xt

i using Equation 3.11
26 end
27 end
28 Compute X̄t

i the opposite of Xt
i using Equation 3.23

29 Compute ¯Xt−1
i the opposite of Xt−1

i using Equation 3.23
30 Xt

i takes the location that minimizes f(X) among the locations X̄t
i , Xt

i ,
¯Xt−1
i and

Xt−1
i

31 Check the boundaries of the solution Xt
i

32 end
/* Local optimums avoidance */

33 Compute the parameter Wf using Equation 3.8
34 for i← 1to Npop do
35 if Bf ≤Wf then
36 Compute the position Xt

i using Equation 3.6
37 Compute X̄t

i the opposite of Xt
i using Equation 3.23

38 Xt
i takes the location that minimizes f(X) among the locations X̄t

i and Xt
i

39 Check the boundaries of the solution Xt
i

40 end
41 end
42 t← t+ 1

43 end
44 Output the best solution

45

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.1: The description of unimodal functions.

ID Mathematical Expression Dimension Range Global Optimum
F1 f(x) =

∑D
i=1 x

2
i {30, 50, 100, 1000} [−100, 100] 0

F2 f(x) = (
∑D

i=1 x
2
i)

2 {30, 50, 100, 1000} [−100, 100] 0

F3 f(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| {30, 50, 100, 1000} [−100, 100] 0

F4 f(x) = maxi{|xi|, 1 < i < n} {30, 50, 100, 1000} [−100, 100] 0

F5 f(x) =
∑D

i=1 ix
2
i {30, 50, 100, 1000} [−100, 100] 0

F6

f(x) =
∑D−4

j=1 [(xi−1 − 10xi)
2

+5(xi+1 − xi+2)
2

+(xi − xi+ 1)4

+10(xi−1 − xi+2)
4]

{30, 50, 100, 1000} [−4, 5] 0

F7 f(x) =
∑D

i=1 x
10
i {30, 50, 100, 1000} [−100, 100] 0

Table 3.2: The description of multimodal functions.

ID Mathematical Expression Dimension Range Global Optimum
F8 f(x) = 0.5 +

sin2(x2
1−x2

2)−0.5

[1+0.001(x2
1+x2

2)]
2 {30, 50, 100, 1000} [−500, 500] 0

F9 f(x) = 10D +
∑D

i=1[x
2
i − 10 cos(2πxi)] {30, 50, 100, 1000} [−5.12, 5.12] 0

F10
f(x) = −20 exp(−0.2

√
1
D

∑D
i=1 x

2
i)

− exp(1
D

∑D
i=1 cos(2πxi)) + 20 + exp(1)

{30, 50, 100, 1000} [−32, 32] 0

F11 f(x) = 1 +
∑D

i=1
x2
i

4000
−

∏
cos(xi√

i
) {30, 50, 100, 1000} [−600, 600] 0

F12 f(x) = x2
1 + 106

∑D
i=2 x

2
i {30, 50, 100, 1000} [−10, 10] 0

F13

f(x) = 0.1(sin(3πx1) +
∑n

i=1(xi − 1)2

[1 + sin(3πxi+1)] + (xn − 1)2[1 + sin(2πxi)])+∑D
i=1 u(xi, 5, 100, 4)

{30, 50, 100, 1000} [−50, 50] 0

u(xi, a, k,m) =

k(xi − a)m , ifxi > a

0 , if − a ≤ xi ≤ a

k(−xi − a)m , xi < −a

46

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.3: The description of fixed-multimodal functions.

ID Mathematical Expression Dimension Range Global Optimum
F14 f(x) = 0.26(x2

1 + x2
2)− 0.48x1x2 2 [−10, 10] 0

F15 f(x) = −
∑m

j=1(
∑4

i=1(xj − Cji)
2 + βi)

−1 4 [0, 10] 0

F16

f(x) = − 0.001
[0.0012+(x1−0.4x2−0.1)2]

− 0.001
[0.0012+(2x1+x2−1.5)2]

2 [−500, 500] −2000

F17 f(x) = (2x3
1x2 − x3

2)
2 + (6x1 − x2

2 + x2) 2 [−500, 500] 0

F18 f(X) =
∑11

i=1[αi
x1(β2

i +βix2)

β2
i

+ βix3 + x4]
2 4 [−5, 5] 3

F19

f(x) = 100(x1 − x2
2)

2 + (1− x1)
2

+90(x4 − x2
3)

2 + (1− x3)
2

+10.1(x2 − 1)2 + (x4 − 1)2

+19.8(x2 − 1)(x4 − 1)

4 [−10, 10] 0

F20 f(x) = 0.5x2
1 + 0.5[1− cos 2x1] + x2

2 2 [−500, 500] 0

m = 10

β = 1
10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T

C =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

Table 3.4: The description of hybrid functions.

ID ID in CEC Dimension Range Global Optimum
F21 Hybrid Function F17 (N=4) (CEC2017) 10 [−100, 100] 1700

F22 Hybrid Function F14 (N=4) (CEC2017) 10 [−100, 100] 1400

F23 Hybrid Function F20 (N=6) (CEC2017) 10 [−100, 100] 2000

F24 Hybrid Function F11 (N=3) (CEC2017) 10 [−100, 100] 1100

F25 Hybrid Function F6 (N = 3) (CEC 2020) 10 [−100, 100] 1700

F26 Hybrid Function F8 (N = 5) (CEC2021) 10 [−100, 100] 2100

F27 Hybrid Function F5 (N = 5) (CEC2021) 10 [−100, 100] 2100

F28 Hybrid Function F6 (N = 5) (CEC2021) 10 [−100, 100] 2200

F29 Hybrid Function F7 (N = 4) (CEC2020) 10 [−100, 100] 1600

F30 Hybrid Function F19 (N = 6) (CEC2017) 10 [−100, 100] 1900

47

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.5: The description of composition functions.

ID ID in CEC Dimension Range Global Optimum
F31 Composition Function F20 (N=3) (CEC 2017) 10 [−100, 100] 2100

F32 Composition Function F28 (N=3) (CEC 2017) 10 [−100, 100] 2900

F33 Composition Function F23 (N=4) (CEC 2017) 10 [−100, 100] 2200

F34 Composition Function F24 (N=4) (CEC 2017) 10 [−100, 100] 2300

F35 Composition Function F8 (N = 3) (CEC 2020) 10 [−100, 100] 2300

F36 Composition Function F9 (N = 4) (CEC 2020) 10 [−100, 100] 2200

F37 Composition Function F10 (N = 5) (CEC 2020) 10 [−100, 100] 2500

F38 Composition Function F12 (N = 6) (CEC 2021) 10 [−100, 100] 2700

F39 Composition Function F11 (N = 5) (CEC 2021) 10 [−100, 100] 2600

F40 Composition Function F12 (N = 6) (CEC 2021) 10 [−100, 100] 2700

authors’ recommendations and empirical evaluations, ensuring consistency and compara-
bility with the existing literature. By adopting the parameter settings from the original
papers, we aimed to establish a reliable basis for evaluating and comparing the perfor-
mance of our algorithm against the established state-of-the-art methods. The values used
in the BHJO algorithm are taken from the three algorithms utilized for its conception.
By employing these specific parameter settings, we aim to ensure fair and comprehensive
comparisons among the algorithms in our study, ultimately providing valuable insights
into their performance and effectiveness. Table 3.6 provides a detailed overview of these
parameters and their respective values. It is worth mentioning out that all the optimiza-
tion algorithms share a population size of 30, and the number of iterations is set to 1000;
moreover, each algorithm is run 30 times to ensure reliable and consistent results.

Tables 3.7, 3.8, 3.9, 3.10, 3.12, 3.13, and 3.14 present the statistical results of our com-
parative study, providing essential insights into the performance of the algorithms under
evaluation. These tables encompass various statistical measures, including the average
and standard deviation. The average values offer a representative measure of the algo-
rithm’s overall performance, while the standard deviation provides an indication of the
degree of variability in the results. By reporting these comprehensive statistical measures,
we aim to offer a comprehensive and informative evaluation of the comparative study, fa-
cilitating a deeper understanding of the algorithms’ performance and enabling meaningful
comparisons between the methods. Schemes are shown in Figure 3.8 Preliminary note Is
that the BHJO algorithm can reveal great results compared to the other seven algorithms.

We perform the Friedman’s test to analyze repeated measures data. If the Friedman’s
test reveals a significant difference among the groups, then post hoc tests can be per-
formed to determine which groups differ from each other. One commonly used post hoc
test for the Friedman’s test is the Dunn’s test. The Dunn’s test is a pairwise comparison
test that compares all possible pairs of groups and identifies significant differences be-

48

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.6: Parameters’ values of the algorithms used for the comparative study.

Algorithm Parameter Vaule

BHJO

Probability of whale fall decreased at interval Wf [0.1, 0.05]

m m = −3
f f = 5

C C = 2

β β = 3

BWO Probability of whale fall decreased at interval Wf [0.1, 0.05]

HBA β (the ability of a honey badger to get food) β = 6

C C = 2

JS β (Spatial distribution) β = 3

PSO Inertia weight linearly decreased at interval [0.9, 0.2]

Cognitive and social constant c1 = 2, c2 = 2

HHO Probability thresholds of escaping, escaping energy 0.5, 0.5

WOA Probability of encircling mechanism, spiral factor 0.5, 1

MFO Convergence constant a = [−2,−1]
Spiral factor b = 1

Table 3.7: Statistical results obtained for the unimodal and multimodal functions with
D = 30.

ID BHJO BWO HBA JS PSO WOA HHO MFO

F1
AVG 0.00E+00 0.00E+00 1.48E-277 2.64E-39 2.47E-01 1.64E-150 3.05E-183 1.00E+03
STD 0.00E+00 0.00E+00 0.00E+00 6.46E-39 1.52E-01 6.92E-150 0.00E+00 3.051E+03

F2
AVG 0.00E+00 0.00E+00 0.00E+00 9.26E-78 1.23E-01 4.45E-299 0.00E+00 1.66E+07
STD 0.00E+00 0.00E+00 0.00E+00 5.56E-78 2.60E-01 0.00E+00 0.00E+00 3.79E+07

F3
AVG 0.00E+00 3.94E-260 4.68E-145 1.67E-19 4.90E+00 1.90E-101 7.06E-91 4.40E+02
STD 0.00E+00 0.00E+00 1.99E-144 3.00E-19 2.64E+01 1.00E-100 3.87E-90 2.35E+02

F4
AVG 0.00E+00 1.77E-252 1.83E-117 1.032E-15 1.49E+00 4.06E+01 1.00E-90 6.72E+01
STD 0.00E+00 0.00E+00 6.94E-117 7.82E-16 2.74E-01 3.05E+01 2.31E-90 6.87E+00

F5
AVG 0.00E+00 0.00E+00 9.28E-274 2.91E-38 2.64E+00 6.50E-151 3.05E-185 6.866E+04
STD 0.00E+00 0.00E+00 0.00E+00 8.14E-38 1.22E+00 3.01E-150 0.00E+00 8.19E+04

F6
AVG 2.36E-223 0.00E+00 4.61E-174 1.06E-06 7.17E+01 4.57E-07 8.34E-187 1.057E+03
STD 0.00E+00 0.00E+00 0.00E+00 2.62E-06 4.12E+01 1.64E-06 0.00E+00 1.38E+03

F7
AVG 0.00E+00 0.00E+00 0.00E+00 1.43E-163 2.56E+00 0.00E+00 0.00E+00 2.372E+04
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.75E+00 0.00E+00 0.00E+00 6.44E+04

F8
AVG 0.00E+00 0.00E+00 0.00E+00 1.12E+01 1.10E+01 6.48E-01 0.00E+00 6.896E+00
STD 0.00E+00 0.00E+00 0.00E+00 6.40E-01 6.56E-01 1.63E+00 0.00E+00 1.40E+00

F9
AVG 0.00E+00 0.00E+00 0.00E+00 1.37E+01 1.08E+02 0.00E+00 0.00E+00 1.57E+02
STD 0.00E+00 0.00E+00 0.00E+00 6.57E+00 2.98E+01 0.00E+00 0.00E+00 3.90E+01

F10
AVG 4.44E-16 4.44E-16 1.99E+00 5.06E-15 1.03E+00 4.11E-15 4.44E-16 1.630E+02
STD 0.00E+00 0.00E+00 6.07E+00 1.65E-15 5.65E-01 2.18E-15 0.00E+00 5.83E+00

F11
AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.64E-02 2.06E-03 0.00E+00 1.50E+02
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.53E-02 1.13E-02 0.00E+00 4.14E+01

F12
AVG 0.00E+00 0.00E+00 3.80E-279 1.75E-40 3.75E-01 2.02E-151 1.71E-180 1.66E+02
STD 0.00E+00 0.00E+00 0.00E+00 2.31E-40 2.42E-01 1.10E-150 0.00E+00 1.60E+02

F13
AVG 2.28E-08 8.98E-25 1.18E-01 9.57E-03 1.05E-01 1.52E-01 2.02E-05 2.73E+07
STD 2.68E-08 2.72E-24 1.66E-01 1.27E-02 6.74E-02 1.18E-01 2.88E-05 1.04E+08

49

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

(a) Test function F1. (b) Test function F2. (c) Test function F3.

(d) Test function F4. (e) Test function F5 (f) Test function F6

(g) Test function F7 (h) Test function F8 (i) Test function F9

(j) Test function F10 (k) Test function F11

images/58.png

(l) Test function F12

Figure 3.7: Scalability analysis (F1 − F12) of the BHJO algorithm (1/2) .

50

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.8: Statistical results obtained for the unimodal and multimodal functions with
D = 50.

ID BHJO BWO HBA JS PSO WOA HHO MFO

F1
AVG 0.00E+00 0.00E+00 2.25E-263 2.43E-36 7.83E+00 2.46E-148 2.80E-189 4.03E+03
STD 0.00E+00 0.00E+00 0.00E+00 4.19E-36 2.71E+00 8.84E-148 0.00E+00 5.61E+03

F2
AVG 0.00E+00 0.00E+00 0.00E+00 2.551E-71 5.43E+01 1.65E-297 0.00E+00 1.09E+08
STD 0.00E+00 0.00E+00 0.00E+00 1.17E-70 3.15E+01 0.00E+00 0.00E+00 1.90E+08

F3
AVG 0.00E+00 8.52E-259 1.55E-137 3.32E-18 2.24E+02 9.69E-98 3.71E-94 6.61E+02
STD 0.00E+00 0.00E+00 5.49E-137 2.23E-18 1.61E+02 5.30E-97 1.82E-93 2.85E+02

F4
AVG 0.00E+00 1.22E-245 4.31E-105 7.48E-15 3.16E+00 5.50E+01 1.09E-93 8.34E+01
STD 0.00E+00 0.00E+00 6.94E-117 4.87E-15 3.67E-01 3.32E+01 5.29E-93 4.63E+00

F5
AVG 0.00E+00 0.00E+00 4.64E-259 2.74E-35 1.49E+02 8.35E-149 6.46E-179 2.49E+05
STD 0.00E+00 0.00E+00 0.00E+00 2.93E-35 5.62E+01 3.78E-148 0.00E+00 1.82E+05

F6
AVG 2.98E-261 0.00E+00 4.61E-174 3.81E-10 6.73E+02 2.76E-10 3.11E-179 4.23E+03
STD 0.00E+00 0.00E+00 0.00E+00 1.82E-09 1.38E+02 1.51E-09 0.00E+00 2.71E+03

F7
AVG 0.00E+00 0.00E+00 0.00E+00 2.84E-153 6.03E+03 0.00E+00 0.00E+00 2.39E+14
STD 0.00E+00 0.00E+00 0.00E+00 8.00E-153 8.91E+03 0.00E+00 0.00E+00 6.26E+14

F8
AVG 0.00E+00 0.00E+00 0.00E+00 2.03E+01 1.94E+01 4.62E-01 0.00E+00 1.30E+01
STD 0.00E+00 0.00E+00 0.00E+00 7.16E-01 9.36E-01 1.86E+00 0.00E+00 2.04E+00

F9
AVG 0.00E+00 0.00E+00 0.00E+00 1.16E+01 3.10E+02 3.78E-15 0.00E+00 3.187E+02
STD 0.00E+00 0.00E+00 0.00E+00 1.58E+01 5.98E+01 2.07E-14 0.00E+00 4.58E+01

F10
AVG 4.44E-16 4.44E-16 3.07E+00 6.48E-15 1.03E+00 2.69E-15 4.44E-16 1.90E+01
STD 0.00E+00 0.00E+00 6.07E+00 1.65E-15 3.34E-01 2.37E-15 0.00E+00 1.33E+00

F11
AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.73E-01 8.19E-03 0.00E+00 8.806E+01
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.03E-02 2.54E-02 0.00E+00 7.64E+01

F12
AVG 0.00E+00 0.00E+00 3.74E-264 2.72E-37 8.58E+00 8.13E-149 1.86E-175 1.890E+02
STD 0.00E+00 0.00E+00 0.00E+00 5.65E-37 3.88E+00 2.60E-148 0.00E+00 2.85E+02

F13
AVG 1.72E-07 7.02E-25 1.29E+00 1.62E-02 2.09E+00 6.74E-01 2.17E-05 9.56E+07
STD 7.25E-07 2.78E-24 5.86E-01 1.88E-02 7.50E-01 3.44E-01 2.505E-05 3.35E+08

51

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.9: Statistical results obtained for the unimodal and multimodal functions with
D = 100.

ID BHJO BWO HBA JS PSO WOA HHO MFO

F1
AVG 0.00E+00 0.00E+00 2.68E-251 6.64E-34 1.03E+02 5.91E-143 2.80E-189 2.89E+04
STD 0.00E+00 0.00E+00 0.00E+00 8.56E-34 1.61E+01 3.23E-142 0.00E+00 1.20E+04

F2
AVG 0.00E+00 0.00E+00 0.00E+00 4.18E-67 1.03E+03 1.24E-292 0.00E+00 1.551E+09
STD 0.00E+00 0.00E+00 0.00E+00 1.05E-66 4.91E+03 0.00E+00 0.00E+00 1.41E+09

F3
AVG 0.00E+00 3.96E-258 2.27E-132 5.61E-17 3.74E+32 1.90E-99 5.49E-94 2.37E+03
STD 0.00E+00 0.00E+00 4.89E-132 3.33E-17 2.05E+33 8.50E-99 2.94E-93 4.42E+02

F4
AVG 0.00E+00 2.85E-245 4.68E-82 5.00E-14 9.54E+00 7.37E+01 1.28E-92 9.35E+01
STD 0.00E+00 0.00E+00 2.41E-81 2.67E-14 1.06E+00 2.43E+01 4.86E-92 2.05E+00

F5
AVG 0.00E+00 0.00E+00 9.84E-247 2.66E-32 5.08E+03 2.86E-147 6.46E-179 1.70E+06
STD 0.00E+00 0.00E+00 0.00E+00 3.16E-32 1.37E+03 1.21E-146 0.00E+00 8.16E+05

F6
AVG 3.63E-274 0.00E+00 1.31E-237 5.60E-14 1.10E+04 1.65E-28 3.11E-179 1.04E+04
STD 0.00E+00 0.00E+00 0.00E+00 3.07E-13 3.37E+03 8.50E-28 0.00E+00 5.64E+03

F7
AVG 0.00E+00 0.00E+00 0.00E+00 8.31E-143 1.08E+07 0.00E+00 0.00E+00 8.40E+19
STD 0.00E+00 0.00E+00 0.00E+00 4.33E-142 5.91E+06 0.00E+00 0.00E+00 2.54E+19

F8
AVG 0.00E+00 0.00E+00 0.00E+00 4.37E+01 4.19E+01 1.04E-01 0.00E+00 3.27E+01
STD 0.00E+00 0.00E+00 0.00E+00 8.29E-01 1.07E-01 5.73E-01 0.00E+00 1.47E+00

F9
AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.06E+03 0.00E+00 0.00E+00 7.66E+02
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.35E+02 0.00E+00 0.00E+00 7.02E+01

F10
AVG 4.44E-16 4.44E-16 6.62E-01 6.48E-15 5.38E+00 2.69E-15 4.44E-16 1.98E+01
STD 0.00E+00 0.00E+00 3.63E+00 1.6559E-15 3.338E-01 2.3756E-15 0.00E+00 2.134E-01

F11
AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.20E-01 0.00E+00 0.00E+00 2.606E+02
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.11E-02 0.00E+00 0.00E+00 1.01E+02

F12
AVG 0.00E+00 0.00E+00 9.70E-252 4.04E-35 1.06E+02 5.39E-148 1.86E-175 1.65E+03
STD 0.00E+00 0.00E+00 0.00E+00 4.82E-35 1.93E+01 2.66E-147 0.00E+00 6.74E+02

F13
AVG 3.07E-07 4.30E-26 7.41E+00 1.86E-01 1.03E+02 1.59E+00 2.84E-05 3.70E+08
STD 9.73E-07 1.46E-25 6.56E-01 7.84E-02 3.29E+01 8.06E-01 4.52E-05 3.45E+08

52

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.10: Statistical results obtained for the unimodal and multimodal functions with
D = 1000.

ID BHJO BWO HBA JS PSO WOA HHO MFO

F1
AVG 0.00E+00 0.00E+00 2.26E-229 1.83E-30 4.43E+04 5.77E-143 2.96E-182 2.62E+06
STD 0.00E+00 0.00E+00 0.00E+00 2.75E-30 1.68E+03 3.06E-142 0.00E+00 8.99E+04

F2
AVG 0.00E+00 0.00E+00 0.00E+00 5.17E-60 1.97E+09 1.51E-279 0.00E+00 2.66E+04
STD 0.00E+00 0.00E+00 0.00E+00 1.17E-59 1.82E+09 0.00E+00 0.00E+00 8.72E+04

F3
AVG 2.89E-256 7.16E-236 INF INF 1.00E+300 6.27E-04 1.34E-90 INF
STD 0.00E+00 0.00E+00 NaN NaN 1.00E+300 3.57E-04 7.026E-90 NaN

F4
AVG 0.00E+00 0.00E+00 9.60E-228 3.01E-28 8.18E+06 4.51E-145 2.46E-177 5.01E+08
STD 0.00E+00 0.00E+00 0.00E+00 3.05E-28 2.44E+06 2.18E-143 0.00E+00 1.34E+07

F5
AVG 0.00E+00 0.00E+00 1.39E-222 5.94E-28 2.16E+07 6.88E-137 2.80E-171 1.17E+09
STD 0.00E+00 0.00E+00 0.00E+00 1.16E-27 1.09E+06 3.76E-136 0.00E+00 2.87E+07

F6
AVG 0.00E+00 0.00E+00 1.52E-228 6.31E-32 1.53E+06 3.79E-106 3.32E-184 6.70E+05
STD 0.00E+00 0.00E+00 0.00E+00 1.052E-31 1.84E+05 2.08E-105 0.00E+00 5.10E+04

F7
AVG 0.00E+00 0.00E+00 0.00E+00 6.05E-124 8.88E+14 0.00E+00 0.00E+00 5.29E+21
STD 0.00E+00 0.00E+00 0.00E+00 3.19E-123 1.76E+15 0.00E+00 0.00E+00 2.77E+20

F8
AVG 0.00E+00 0.00E+00 0.00E+00 3.20E+02 4.60E+02 9.44E-01 0.00E+00 4.67E+02
STD 0.00E+00 0.00E+00 0.00E+00 1.11E+02 3.97E+04 5.17E+00 0.00E+00 3.42E+00

F9
AVG 0.00E+00 0.00E+00 0.00E+00 3.20E+02 1.62E+04 6.06E-14 0.00E+00 1.47E+04
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.33E+02 3.32E-13 0.00E+00 1.89E+02

F10
AVG 4.44E-16 4.44E-16 2.65E+00 7.54E-15 1.61E+01 4.20E-15 4.44E-16 2.01E+01
STD 0.00E+00 0.00E+00 6.88E+00 0.00E+00 3.51E+02 2.45E-15 0.00E+00 1.96E-01

F11
AVG 0.00E+00 0.00E+00 0.00E+00 5.55E-17 3.044E+01 0.00E+00 0.00E+00 2.22E+04
STD 0.00E+00 0.00E+00 0.00E+00 5.64E-17 1.93E+00 0.00E+00 0.00E+00 5.33E+02

F12
AVG 0.00E+00 0.00E+00 1.60E-232 4.92E-32 2.38E+04 6.15E-146 1.25E-182 3.37E+04
STD 0.00E+00 0.00E+00 0.00E+00 8.51E-32 1.58E+03 3.21E-145 0.00E+00 5.29E+03

F13
AVG 5.51E-04 7.97E-26 9.91E+01 6.66E+00 1.52E+08 2.09E+01 1.27E-04 4.94E+10
STD 9.75E-04 2.18E-25 2.42E-01 1.97E+00 1.60E+07 5.10E+00 1.21E-04 1.52E+09

Table 3.11: Statistical results obtained for the fixed-dimension multimodal functions over
different dimensions.

ID BHJO BWO HBA JS PSO WOA HHO MFO

F14
AVG 0.00E+00 0.00E+00 0.00E+00 3.36E-165 3.53E-31 0.00E+00 0.00E+00 1.14E-48
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.35E-30 0.00E+00 0.00E+00 6.23E-48

F15
AVG -1.05E+01 -1.05E+01 -8.72E+00 -9.68E+00 -1.05E+01 -8.13E+00 -5.09E+00 -6.36E+00
STD 5.12E-03 2.08E-06 3.07E+00 2.21E+00 1.14E-05 2.95E+00 1.96E-01 3.54E+00

F16
AVG -1.83E+03 -1.55E+03 -1.00E+03 -9.98E+02 -1.00E+03 -1.99E+03 -1.99E+03 -1.00E+03
STD 2.33E+02 2.84E+02 1.15E-13 3.29E+00 3.58E-13 1.90E+01 1.07E-01 0.00E+00

F17
AVG 0.00E+00 5.83E-33 5.55E-15 2.51E-12 1.50E-10 6.44E-06 5.71E-11 5.93E-07
STD 0.00E+00 3.08E-32 1.16E-14 4.92E-12 5.09E-10 1.23E-05 3.00E-10 2.11E-06

F18
AVG 8.44E-04 3.37E-04 5.41E-03 3.15E-04 9.59E-04 7.17E-04 3.26E-04 1.65E-03
STD 3.5079E-04 4.40E-05 9.11E-03 4.17E-05 2.14E-04 4.01E-04 1.85E-05 3.56E-03

F19
AVG 3.24E-06 1.26E-03 1.23E-08 2.02E-06 4.03E-02 1.20E+00 8.67E-05 1.12E+00
STD 9.44E-06 1.081E-03 3.54E-08 3.97E-06 4.07E-02 1.66E+00 1.17E-04 1.54E+00

F20
AVG 0.00E+00 0.00E+00 0.00E+00 5.13E-244 1.49E-38 1.58E-215 4.13E-215 8.58E-212
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.20E-38 0.00E+00 0.00E+00 0.00E+00

53

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.12: Statistical results obtained for the fixed-dimension multimodal functions over
different dimensions.

ID BHJO BWO HBA JS PSO WOA HHO MFO
F14 STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.35E-30 0.00E+00 0.00E+00 6.23E-48
F15 STD 5.12E-03 2.08E-06 3.07E+00 2.21E+00 1.14E-05 2.95E+00 1.96E-01 3.54E+00
F16 STD 2.33E+02 2.84E+02 1.15E-13 3.29E+00 3.58E-13 1.90E+01 1.07E-01 0.00E+00
F17 STD 0.00E+00 3.08E-32 1.16E-14 4.92E-12 5.09E-10 1.23E-05 3.00E-10 2.11E-06
F18 STD 3.5079E-04 4.40E-05 9.11E-03 4.17E-05 2.14E-04 4.01E-04 1.85E-05 3.56E-03
F19 STD 9.44E-06 1.081E-03 3.54E-08 3.97E-06 4.07E-02 1.66E+00 1.17E-04 1.54E+00
F20 STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.20E-38 0.00E+00 0.00E+00 0.00E+00

(a) Test function F13. (b) Test function F14. (c) Test function F15.

(d) Test function F16. (e) Test function F17. (f) Test function F18

(g) Test function F19. (h) Test function F20.

Figure 3.8: Scalability analysis (F13 − F20) of the BHJO algorithm (2/2).

54

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.13: Statistical results obtained for the hybrid functions (CEC’17, CEC’2020, and
CEC’2022).

ID BHJO BWO HBA JS PSO WOA HHO MFO

F21
AVG 1.77E+03 1.80E+03 1.74E+03 1.72E+03 1.77E+03 1.81E+03 1.77E+03 1.79E+03
STD 7.70E+00 2.02E+01 2.61E+01 1.20E+01 4.74E+01 5.05E+01 3.48E+01 5.90E+01

F22
AVG 1.54E+03 1.64E+03 2.49E+03 1.45E+03 1.82E+03 2.38E+03 1.78E+03 5.60E+03
STD 3.92E+01 6.49E+01 4.99E+03 2.65+01 7.76E+02 1.27E+03 5.89E+02 5.80E+03

F23
AVG 2.18E+03 2.20E+03 2.08E+03 2.02E+03 2.09E+03 2.16E+03 2.18E+03 2.08E+03
STD 4.15E+01 4.72E+01 8.01E+01 1.05E+01 6.22E+01 7.01E+01 6.94E+01 7.51E+02

F24
AVG 1.19E+03 1.78E+03 1.11E+03 1.11E+03 1.13E+03 1.20E+03 1.15E+03 1.26E+03
STD 4.79E+01 3.21E+02 1.18E+01 6.73E+00 2.54E+01 8.11E+01 3.44E+01 3.46E+02

F25
AVG 4.61E+01 5.35E+01 1.08E+02 1.13E+01 5.76E+01 1.36E+02 5.35E+01 1.28E+02
STD 5.40E+00 8.89E+00 1.23E+02 9.60E+00 7.77E+01 1.08E+02 6.06E+01 1.47E+02

F26
AVG 2.230E+03 2.23E+03 2.22E+03 2.82E+03 2.21E+03 2.22E+03 2.23E+03 2.22E+03
STD 1.59E+00 3.33E+00 2.82E+01 9.58E+00 1.68E+01 1.28E+01 1.76E+01 1.00E+01

F27
AVG 2.04E+03 2.09E+03 2.02E+03 2.02E+03 2.04E+03 2.05E+03 2.07E+03 2.04E+03
STD 8.40E+00 1.90E+01 8.01E+00 6.43E+00 3.27E+01 2.33E+01 3.60E+01 2.51E+01

F28
AVG 2.04E+03 2.09E+03 2.02E+03 2.01E+03 2.04E+03 2.05E+03 2.11E+03 2.04E+03
STD 6.82E+00 1.94E+01 1.09E+01 7.14E+00 3.21E+01 2.13E+01 5.68E+01 2.55E+01

F29
AVG 5.39E+03 1.13E+04 7.60E+02 1.26E+03 4.54E+03 2.98E+04 6.21E+03 5.71E+04
STD 3.07E+03 7.81E+03 3.17E+02 1.29E+03 4.98E+03 8.53E+04 5.26E+03 2.58E+04

F30
AVG 5.43E+03 1.02E+04 3.02E+03 1.93E+03 3.16E+03 3.69E+04 8.83E+03 1.61E+04
STD 3.91E+03 2.73E+03 5.67E+03 2.74E+01 1.80E+03 6.73E+03 6.72E+03 2.16E+04

Table 3.14: Statistical results obtained for the composition functions (CEC’17, CEC’2020,
and CEC’2022).

ID BHJO BWO HBA JS PSO WOA HHO MFO

F31
AVG 2.20E+03 2.25E+03 2.29E+03 2.25E+03 2.32E+03 2.32E+03 2.30E+03 2.32E+03
STD 3.04E+00 1.63E+01 5.03E+01 5.36E+01 5.49E+01 5.11E+01 7.19E+01 4.29E+01

F32
AVG 3.27E+03 3.54E+03 3.39E+03 3.16E+03 3.17E+03 3.42E+03 3.36E+03 3.34E+03
STD 3.36E+01 9.72E+01 2.24E+02 1.06E+02 5.40E+01 1.59E+02 1.11E+02 1.02E+03

F33
AVG 2.32E+03 2.56E+03 2.30E+03 2.29E+03 2.38E+03 2.35E+03 2.51E+03 2.31E+03
STD 6.47E+00 1.98E+02 1.19E+00 1.59E+01 2.86E+02 2.29E+02 4.71E+02 2.08E+02

F34
AVG 2.53E+03 2.69E+03 2.75E+03 2.66E+03 2.78E+03 2.77E+03 2.82E+03 2.76E+03
STD 1.12E+01 7.76E+01 2.67E+01 1.10E+02 9.60E+01 5.01E+01 4.39E+01 5.03E+01

F35
AVG 1.50E+02 1.50E+02 1.50E+02 1.20E+02 1.37E+02 1.50E+02 1.50E+02 1.24E+02
STD 5.32E-09 5.88E-09 3.03E-14 5.55E+01 3.13E+01 7.91E-10 3.26E-08 4.82E+01

F36
AVG 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
STD 2.89E-14 2.89E-14 2.89E-14 4.25E-14 2.82E-12 3.98E-14 2.89E-14 1.58E-14

F37
AVG 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 02.50E+03 2.50E+03
STD 2.04E-14 0.00E+00 0.00E+00 0.00E+00 2.79E-13 2.89E-14 2.30E-14 1.49E-14

F38
AVG 2.70E+03 2.701E+03 2.70E+03 2.70E+03 2.70E+03 2.70E+03 2.70E+03 2.70E+03
STD 6.35E-01 3.18E+01 5.46E-01 6.02E-00 6.22E-01 7.73E-01 7.12E-01 8.52E+00

F39
AVG 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03
STD 9.49E-05 9.49E-05 2.85E-04 2.30E-04 2.34E-04 1.45E-04 1.14E-04 2.02E-04

F40
AVG 1.78E+03 1.81E+03 1.74E+03 1.72E+03 1.75E+03 1.79E+03 1.78E+03 1.76E+03
STD 1.07E+01 1.85E+01 3.21E+01 1.070E+01 3.30E+01 4.87E+01 3.84E+01 3.65E+02

55

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

tween them. By applying the Dunn’s test after the Friedman’s test, we can gain a deeper
understanding of the specific group differences that contribute to the overall significant
result. This approach helps to identify and highlight the particular groups that are driv-
ing the observed effects in the data, providing valuable insights for further analysis and
interpretation.

We run the Friedman’s test on the standard deviations values reported in Tables 3.7,
3.8, 3.9, 3.10, 3.12, 3.13, and 3.14. The obtained p-values are: 3.5107E−12, 1.2533E−12,
2.6161E − 12, 7.2087E − 13, 0.279761, 5.0485E − 7, and 0.000354, respectively. It is
worth pointing out that if the p-value is greater than 5%, then it is concluded that
there is no difference in performance among all the optimizers; which is the case for the
fixed-dimension multimodal functions over different dimensions. For the rest of cases, we
report the results of Dunn’s test in Tables 3.15, 3.16, 3.17, 3.18, 3.19, and 3.15. The
tables are read as follow: A cell found at the intersection of a row i and a column j

might be empty, contain a normal typeface numerical value, or a bold typeface numerical
value. An empty cell means that there now relationship between the optimizers found
at the row i and the column j, respectively. A normal typeface numerical value means
that the optimizers found at the row i and the column j have the same performance. A
bold typeface numerical value means that the optimizer found at the row i has better
performance when compared to the optimizer found at the column j.

In Tables 3.15, 3.16, 3.17, and 3.18, we observe that the performance of the BHJO
algorithm is better than that of PSO and MFO optimizers; and it is the same as that
of BWO, HBA, JS, WOA, and HHO optimizers. In Figures 3.9 (a)–(d), we notice that
the BHJO optimizer has the second or third rank in term of performance. In Table 3.19,
we observe that the performance of the BHJO algorithm is better than that of PSO,
WOA, HHO, and MFO optimizers; and it is the same as that of BWO, HBA, and JS
optimizers. In Figure 3.9 (e), we notice that the BHJO optimizer has the second rank
in term of performance. Finally, in Table 3.20, we observe that the performance of the
BHJO algorithm is better than that of PSO, WOA, HHO, and MFO optimizers; and it is
the same as that of BWO, HBA, and JS optimizers. In Figure 3.9 (f), we notice that the
BHJO optimizer has the first rank in term of performance. In conclusion, we can say that
the proposed hybrid algorithm has greatly enhanced the ability of solving composition
functions and this is due to the proposed balancing mechanism given by Equation 3.22.

3.4 Conclusion

This paper presents a novel hybrid metaheuristic algorithm that combines the strengths
of three individual algorithms: Beluga Whale Optimization (BWO), Honey Badger Algo-
rithm (HBA), and Artificial Jellyfish Search Optimizer (JS). The proposed hybrid algo-
rithm is designed to overcome the limitations of each individual algorithm and leverage
their complementary characteristics to enhance optimization performance. The algo-
rithm’s effectiveness and robustness were thoroughly evaluated through extensive experi-
mentation on a diverse set of 40 test functions. To further enhance the algorithm’s explo-
ration and exploitation capabilities, the Combined Opposition-Based Learning (COBL)
strategy was employed. COBL leverages the principles of opposition-based learning to

56

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.15: Related-samples Friedman’s two-way analysis of variance by ranks for the
unimodal and multimodal functions with D = 30 (pairwise comparisons).

BHJO BWO HBA JS PSO WOA HHO MFO
BHJO - - 4.23E-1 3.78E-1 2.31E-4 1.28E-1 9.36E-1 7E-7
BWO 9.36E-1 - 3.78E-1 3.37E-1 1.68E-4 1.09E-1 8.73E-1 5E-7
HBA - - - 9.36E-1 3.95E-3 4.71E-1 - 3.14E-5
JS - - - - 5.07E-3 5.22E-1 - 4.44E-5
PSO - - - - - - - 2E-1
WOA - - - - 3.06E-2 - - 5.76E-4
HHO - - 4.71E-1 4.23E-1 3.15E-4 1.5E-1 - 1E-6
MFO - - - - - - - -

Table 3.16: Related-samples Friedman’s two-way analysis of variance by ranks for the
unimodal and multimodal functions with D = 50 (pairwise comparisons).

BHJO BWO HBA JS PSO WOA HHO MFO
BHJO - - 4.71E-1 3.57E-1 7.4E-5 1.01E-1 9.36E-1 8E-7
BWO 9.36E-1 - 4.23E-1 3.17E-1 5.27E-5 8.52E-2 8.73E-1 6E-7
HBA - - - 8.41E-1 1.18E-3 3.57E-1 - 2.63E-5
JS - - - - 2.35E-3 4.71E-1 - 6.25E-5
PSO - - - - - - - 3.37E-1
WOA - - - - 2.02E-2 - - 1.03E-3
HHO - - 5.22E-1 4.01E-1 1.03E-4 1.18E-1 - 1.3E-6
MFO - - - - - - - -

Table 3.17: Related-samples Friedman’s two-way analysis of variance by ranks for the
unimodal and multimodal functions with D = 100 (pairwise comparisons).

BHJO BWO HBA JS PSO WOA HHO MFO
BHJO - - 5.22E-1 3.37E-1 8.74E-5 2.98E-1 9.36E-1 3.4E-6
BWO 9.36E-1 - 4.71E-1 2.98E-1 6.25E-5 2.62E-1 8.73E-1 2.3E-6
HBA - - - 7.49E-1 1.03E-3 6.89E-1 - 6.25E-5
JS - - - - 3.05E-3 9.36E-1 - 2.31E-4
PSO - - - - - - - 4.71E-1
WOA - - - - 3.95E-3 - - 3.15E-4
HHO - - 5.75E-1 3.78E-1 1.21E-4 3.37E-1 - 5E-6
MFO - - - - - - - -

57

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

Table 3.18: Related-samples Friedman’s two-way analysis of variance by ranks for the
unimodal and multimodal functions with D = 1000 (pairwise comparisons).

BHJO BWO HBA JS PSO WOA HHO MFO
BHJO - - 4.71E-1 4.01E-1 8.8E-6 3.57E-1 - 2.63E-5
BWO 8.73E-1 - 3.78E-1 3.17E-1 4.2E-6 2.8E-1 9.36E-1 1.28E-5
HBA - - - 9.04E-1 1.97E-4 8.41E-1 - 4.96E-4
JS - - - - 3.15E-4 9.36E-1 - 7.72E-4
PSO - - - - - - - -
WOA - - - - 4.27E-4 - - 1.03E-3
HHO 9.36E-1 - 4.23E-1 3.57E-1 6.1E-6 3.17E-1 - 1.84E-5
MFO - - - - 8.1E-1 - - -

Table 3.19: Related-samples Friedman’s two-way analysis of variance by ranks for the
hybrid functions (CEC’17, CEC’2020, and CEC’2022) (pairwise comparisons).

BHJO BWO HBA JS PSO WOA HHO MFO
BHJO - 2.01E-1 5.52E-2 - 1.37E-2 3.71E-4 1.91E-3 1.18E-5
BWO - - 5.23E-1 - 2.35E-1 2.25E-2 6.79E-2 1.91E-3
HBA - - - - 5.84E-1 1E-1 2.35E-1 1.37E-2
JS 5.23E-1 5.52E-2 1.06E-2 - 1.91E-3 2.68E-5 1.82E-4 5E-7
PSO - - - - - 2.73E-1 5.23E-1 5.52E-2
WOA - - - - - - - 4.11E-1
HHO - - - - - 6.48E-1 - 2.01E-1
MFO - - - - - - - -

Table 3.20: Related-samples Friedman’s two-way analysis of variance by ranks for com-
position functions (CEC’17, CEC’2020, and CEC’2022) (pairwise comparisons).

BHJO BWO HBA JS PSO WOA HHO MFO
BHJO - 2.35E-1 6.16E-1 2.54E-1 9.28E-3 4.86E-5 7.08E-3 5.37E-3
BWO - - - - 1.57E-1 4.03E-3 1.32E-1 1.1E-1
HBA - 4.94E-1 - 5.23E-1 3.58E-2 3.71E-4 2.85E-2 2.25E-2
JS - 9.64E-1 - - 1.44E-1 3.49E-3 1.21E-1 1E-1
PSO - - - - - 1.44E-1 9.27E-1 8.55E-1
WOA - - - - - - - -
HHO - - - - - 1.71E-1 - 9.27E-1
MFO - - - - - 2.01E-1 - -

58

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

(a) Unimodal and multimodal functions with
D = 30.

(b) Unimodal and multimodal functions with
D = 50.

(c) Unimodal and multimodal functions with
D = 100.

(d) Unimodal and multimodal functions with
D = 1000.

(e) Hybrid functions (CEC’17, CEC’2020, and
CEC’2022).

(f) Composition functions (CEC’17, CEC’2020,
and CEC’2022).

Figure 3.9: Related-samples Friedman’s two-way analysis of variance by ranks (pairwise
comparisons).

59

Chapter 3. BHJO:A novel hybrid metaheuristic algorithm for global
optimization

enhance the search process by considering both the original solutions and their oppo-
sites. Moreover, the proposed hybrid algorithm introduces a new balancing mechanism
to dynamically adjust the exploration and exploitation trade-off during the optimization
process. This mechanism ensures a proper balance between exploration, to avoid pre-
mature convergence, and exploitation, to exploit promising regions in the search space
effectively.

The experimental results demonstrate that the hybrid algorithm achieves superior/e-
qual performance compared to the individual algorithms and other state-of-the-art meta-
heuristic approaches. It consistently outperforms the baseline algorithms in terms of
convergence speed, solution quality, and robustness across various test functions. The
findings of this research indicate that the combination of BWO, HBA, and JS, along with
the incorporation of COBL and the novel balancing mechanism, yields a powerful hybrid
metaheuristic algorithm capable of addressing complex optimization problems.

Future research directions may focus on further improving the hybrid algorithm by
investigating alternative combinations of metaheuristic algorithms or exploring different
balancing mechanisms. Additionally, conducting experiments on larger-scale problems
and extending the algorithm’s applicability to various real-world applications, that require
efficient and effective optimization techniques, would provide valuable insights into its
capabilities and limitations.

60

Conclusion et perspectives

61

Conclusion et perspectives

General conclusion

In this thesis, we have explored the field of optimization and its fundamental concepts in
Chapter focused on a comprehensive study of metaheuristic algorithms in Chapter 1.9.
Building upon this knowledge, in Chapter2.9 , we proposed a novel hybrid optimization
algorithm called BHJO, which combines the strengths of BWO, HBA, and JS algorithms.
We provided a thorough explanation of the algorithm’s inspiration, a mathematical for-
mulation, and its corresponding code implementation.

Furthermore, the BHJO algorithm was extensively evaluated by conducting experi-
ments on a diverse set of 40 test functions, considering various problem definitions and
dimensions ranging from 30 to 1000. The performance of the BHJO algorithm was rig-
orously analyzed using Friedman’s test, providing statistical evidence of its efficacy and
competitiveness in solving optimization problems.

Perspectives

The findings of this research make significant contributions to the advancement of op-
timization techniques and open up promising avenues for further exploration. Future
studies can build upon the BHJO algorithm and expand its capabilities by developing
a multi-objective version that addresses problems involving the simultaneous optimiza-
tion of multiple conflicting objectives. Additionally, an intriguing direction for research
would involve applying the algorithm to real-world scenarios, such as optimizing a Deep
Neuro Fuzzy network for cancer detection. By exploring these areas, researchers can fur-
ther enhance the algorithm’s effectiveness and broaden its application in solving complex
optimization problems with practical implications.

62

Bibliographie

[1] Hani Abdeen et al. “Multi-Objective Optimization in Rule-Based Design Space
Exploration.” In: Sept. 2014. doi: 10.1145/2642937.2643005.

[3] Mohamed Abdel-Basset et al. “Nutcracker optimizer: A novel nature-inspired meta-
heuristic algorithm for global optimization and engineering design problems.” In:
Knowledge-Based Systems (2023), p. 110248.

[4] Benyamin Abdollahzadeh et al. “Mountain gazelle optimizer: a new nature-inspired
metaheuristic algorithm for global optimization problems.” In: Advances in Engi-
neering Software 174 (2022), p. 103282.

[5] Laith Abualigah et al. “The arithmetic optimization algorithm.” In: Computer
methods in applied mechanics and engineering 376 (2021), p. 113609.

[6] Iman Ahmadianfar et al. “INFO: An efficient optimization algorithm based on
weighted mean of vectors.” In: Expert Systems with Applications 195 (2022), p. 116516.

[7] Dabba Ali. Méthodes de Résolution Exactes Heuristiques et Métaheuristiques. 2023.
[8] M Montaz Ali, Charoenchai Khompatraporn, and Zelda B Zabinsky. “A numerical

evaluation of several stochastic algorithms on selected continuous global optimiza-
tion test problems.” In: Journal of global optimization 31.4 (2005), p. 635.

[9] Shima Amirsadri, Seyed Jalaleddin Mousavirad, and Hossein Ebrahimpour-Komleh.
“A Levy flight-based grey wolf optimizer combined with back-propagation algo-
rithm for neural network training.” In: Neural Computing and Applications 30
(2018), pp. 3707–3720.

[10] Majsa Ammouriova et al. “A Heuristic-Based Simulation for an Education Process
to Learn about Optimization Applications in Logistics and Transportation.” In:
Mathematics 10.5 (2022), p. 830.

[11] Basavaraj M Angadi, Mahabaleshwar S Kakkasageri, and Sunilkumar S Manvi.
“Computational intelligence techniques for localization and clustering in wireless
sensor networks.” In: Recent Trends in Computational Intelligence Enabled Re-
search. Elsevier, 2021, pp. 23–40.

[12] Mustapha Aouchiche et al. Variable neighborhood search for extremal graphs 14:
the AutoGraphiX 2 system. Springer, 2006.

[13] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[14] Yasir Aslam and N Santhi. “A comprehensive survey on optimization techniques
in image processing.” In: Materials Today: Proceedings 24 (2020), pp. 1758–1765.

63

https://doi.org/10.1145/2642937.2643005

Bibliographie

[15] Mahdi Azizi. “Atomic orbital search: A novel metaheuristic algorithm.” In: Applied
Mathematical Modelling 93 (2021), pp. 657–683.

[16] Srinivasan Balan. “Metaheuristics in optimization: Algorithmic perspective.” In:
INFORMS ().

[17] Ozgur Baskan. Optimization Algorithms. Rijeka: IntechOpen, Sept. 2016. isbn:
978-953-51-2593-8. doi: 10.5772/61426.

[18] Dimitris Bertsimas and John Tsitsiklis. “Simulated annealing.” In: Statistical sci-
ence 8.1 (1993), pp. 10–15.

[19] Christian Blum et al. “Hybrid metaheuristics in combinatorial optimization: A
survey.” In: Applied soft computing 11.6 (2011), pp. 4135–4151.

[20] Mohamed Abdelhai Bouaicha and Abdellatif Houari Hocine. “The walking palm
tree algorithm: A novel nature-inspired metaheuristic algorithm for global opti-
mization.” PhD thesis.

[21] Stephen Boyd and Jacob Mattingley. “Branch and bound methods.” In: Notes for
EE364b, Stanford University 2006 (2007), p. 07.

[22] Edmund K Burke et al. “Hyper-heuristics: A survey of the state of the art.” In:
Journal of the Operational Research Society 64 (2013), pp. 1695–1724.

[23] Alexei V Chechkin et al. “Introduction to the theory of Lévy flights.” In: Anomalous
transport: Foundations and applications (2008), pp. 129–162.

[24] C. L. Philip Chen, Tong Zhang, and Sik Chung Tam. “A novel evolutionary algo-
rithm solving optimization problems.” In: 2014 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). 2014, pp. 557–561. doi: 10.1109/SMC.
2014.6973966.

[25] Jui-Sheng Chou and Ngoc-Tri Ngo. “Modified firefly algorithm for multidimen-
sional optimization in structural design problems.” In: Structural and Multidisci-
plinary Optimization 55 (2017), pp. 2013–2028.

[26] Jui-Sheng Chou and Dinh-Nhat Truong. “A novel metaheuristic optimizer inspired
by behavior of jellyfish in ocean.” In: Applied Mathematics and Computation 389
(2021), p. 125535.

[27] Carlos A Coello Coello and Efrén Mezura Montes. “Constraint-handling in ge-
netic algorithms through the use of dominance-based tournament selection.” In:
Advanced Engineering Informatics 16.3 (2002), pp. 193–203.

[28] Erik Cuevas, Alonso Echavarrı́a, and Marte A Ramı́rez-Ortegón. “An optimization
algorithm inspired by the States of Matter that improves the balance between
exploration and exploitation.” In: Applied intelligence 40 (2014), pp. 256–272.

[29] Ana Luı́sa Custódio and JF Aguilar Madeira. “MultiGLODS: global and local
multiobjective optimization using direct search.” In: Journal of Global Optimization
72 (2018), pp. 323–345.

[30] Kalyanmoy Deb. Optimization for engineering design: Algorithms and examples.
PHI Learning Pvt. Ltd., 2012.

64

https://doi.org/10.5772/61426
https://doi.org/10.1109/SMC.2014.6973966
https://doi.org/10.1109/SMC.2014.6973966

Bibliographie

[31] Mohammad Dehghani et al. “A new “Doctor and Patient” optimization algorithm:
An application to energy commitment problem.” In: Applied Sciences 10.17 (2020),
p. 5791.

[32] Mohammad Dehghani et al. “Coati Optimization Algorithm: A new bio-inspired
metaheuristic algorithm for solving optimization problems.” In: Knowledge-Based
Systems 259 (2023), p. 110011.

[33] John E Dennis Jr and Robert B Schnabel. Numerical methods for unconstrained
optimization and nonlinear equations. SIAM, 1996.

[34] Sachin Desale et al. “Heuristic and meta-heuristic algorithms and their relevance
to the real world: a survey.” In: Int. J. Comput. Eng. Res. Trends 351.5 (2015),
pp. 2349–7084.

[35] Jason G Digalakis and Konstantinos G Margaritis. “On benchmarking functions
for genetic algorithms.” In: International journal of computer mathematics 77.4
(2001), pp. 481–506.

[36] John H Drake et al. “Recent advances in selection hyper-heuristics.” In: European
Journal of Operational Research 285.2 (2020), pp. 405–428.

[37] Emad Elbeltagi, Tarek Hegazy, and Donald Grierson. “Comparison among five
evolutionary-based optimization algorithms.” In: Advanced engineering informatics
19.1 (2005), pp. 43–53.

[38] Saber Elsayed, Ruhul Sarker, and Carlos A. Coello Coello. “Sequence-Based De-
terministic Initialization for Evolutionary Algorithms.” In: IEEE Transactions on
Cybernetics 47.9 (2017), pp. 2911–2923. doi: 10.1109/TCYB.2016.2630722.

[39] Michael TM Emmerich and André H Deutz. “A tutorial on multiobjective op-
timization: fundamentals and evolutionary methods.” In: Natural computing 17
(2018), pp. 585–609.

[40] Andries P Engelbrecht. Computational intelligence: an introduction. John Wiley
& Sons, 2007.

[41] Hadi Eskandar et al. “Water cycle algorithm–A novel metaheuristic optimization
method for solving constrained engineering optimization problems.” In: Computers
& Structures 110 (2012), pp. 151–166.

[42] Qian Fan et al. “Engineering with Computers ESSAWOA: Enhanced Whale Op-
timization Algorithm integrated with Salp Swarm Algorithm for global optimiza-
tion.” In: Engineering With Computers 38 (Apr. 2022), p. 18. doi: 10 . 1007 /
s00366-020-01189-3.

[43] Amir Mohammad Fathollahi-Fard, Mostafa Hajiaghaei-Keshteli, and Reza Tavakkoli-
Moghaddam. “Red deer algorithm (RDA): a new nature-inspired meta-heuristic.”
In: Soft Computing 24 (2020), pp. 14637–14665.

[44] P. Festa. “A brief introduction to exact, approximation, and heuristic algorithms
for solving hard combinatorial optimization problems.” In: 2014 16th International
Conference on Transparent Optical Networks (ICTON). 2014, pp. 1–20. doi: 10.
1109/ICTON.2014.6876285.

65

https://doi.org/10.1109/TCYB.2016.2630722
https://doi.org/10.1007/s00366-020-01189-3
https://doi.org/10.1007/s00366-020-01189-3
https://doi.org/10.1109/ICTON.2014.6876285
https://doi.org/10.1109/ICTON.2014.6876285

Bibliographie

[45] Sabrina Fossette et al. “Current-oriented swimming by jellyfish and its role in
bloom maintenance.” In: Current Biology 25.3 (2015), pp. 342–347.

[46] Prashant J Gaidhane and Madhav J Nigam. “A hybrid grey wolf optimizer and
artificial bee colony algorithm for enhancing the performance of complex systems.”
In: Journal of computational science 27 (2018), pp. 284–302.

[47] Amir H Gandomi et al. “Firefly algorithm with chaos.” In: Communications in
Nonlinear Science and Numerical Simulation 18.1 (2013), pp. 89–98.

[48] Amir Hossein Gandomi et al. “ng and optimizatiMetaheuristic algorithms in mod-
elion.” In: Metaheuristic applications in structures and in frastructures 1 (2013).

[49] Xiao Zhi Gao et al. “Harmony search method: theory and applications.” In: Com-
putational intelligence and neuroscience 2015 (2015), pp. 39–39.

[50] Michel Gendreau. An introduction to tabu search. Springer, 2003.
[51] Carla P. Gomes and Ryan Williams. “Approximation Algorithms.” In: Search

Methodologies: Introductory Tutorials in Optimization and Decision Support Tech-
niques. Ed. by Edmund K. Burke and Graham Kendall. Boston, MA: Springer US,
2005, pp. 557–585. isbn: 978-0-387-28356-2. doi: 10.1007/0-387-28356-0_18.

[52] Vahid Goodarzimehr et al. “Bonobo optimizer algorithm for optimum design of
truss structures with static constraints.” In: Structures 50 (2023), pp. 400–417.
issn: 2352-0124. doi: https://doi.org/10.1016/j.istruc.2023.02.023.

[53] Igor Griva, Stephen G Nash, and Ariela Sofer. Linear and nonlinear optimization.
Vol. 108. Siam, 2009.

[54] Bertrand Guenin, Jochen Könemann, and Levent Tuncel. A gentle introduction to
optimization. Cambridge University Press, 2014.

[55] Fatma A Hashim et al. “Archimedes optimization algorithm: a new metaheuristic
algorithm for solving optimization problems.” In: Applied Intelligence 51 (2021),
pp. 1531–1551.

[56] Fatma A Hashim et al. “Henry gas solubility optimization: A novel physics-based
algorithm.” In: Future Generation Computer Systems 101 (2019), pp. 646–667.

[57] Fatma A Hashim et al. “Honey Badger Algorithm: New metaheuristic algorithm
for solving optimization problems.” In: Mathematics and Computers in Simulation
192 (2022), pp. 84–110.

[58] Mohammad Reza Hassanzadeh and Farshid Keynia. “An Overview of the Con-
cepts, Classifications, and Methods of Population Initialization in Metaheuristic
Algorithms.” In: Journal of Advances in Computer Engineering and Technology
7.1 (2021), pp. 35–54.

[59] Ali Asghar Heidari et al. “Harris hawks optimization: Algorithm and applications.”
In: Future generation computer systems 97 (2019), pp. 849–872.

[61] Reiner Horst and Panos M Pardalos. Handbook of global optimization. Vol. 2.
Springer Science & Business Media, 2013.

[62] Patrik T Hultberg and David Santandreu Calonge. “Effective teaching of eco-
nomics: A constrained optimization problem?” In: The Journal of Economic Edu-
cation 48.4 (2017), pp. 265–275.

66

https://doi.org/10.1007/0-387-28356-0_18
https://doi.org/https://doi.org/10.1016/j.istruc.2023.02.023

Bibliographie

[63] Kashif Hussain et al. “On the exploration and exploitation in popular swarm-
based metaheuristic algorithms.” In: Neural Computing and Applications 31 (2019),
pp. 7665–7683.

[64] Satoshi Ide. “A Brownian walk model for slow earthquakes.” In: Geophysical Re-
search Letters 35.17 (2008).

[65] Ehsan Jahani and Mohammad Chizari. “Tackling global optimization problems
with a novel algorithm–Mouth Brooding Fish algorithm.” In: Applied Soft Com-
puting 62 (2018), pp. 987–1002.

[66] Laetitia Jourdan, Matthieu Basseur, and E-G Talbi. “Hybridizing exact methods
and metaheuristics: A taxonomy.” In: European Journal of Operational Research
199.3 (2009), pp. 620–629.

[67] Imed Kacem. Méthodes exactes en optimisation combinatoire. 2023.
[68] Janusz Kacprzyk. “Studies in Computational Intelligence, Volume 100.” In: (2008).
[69] Nikos Ath Kallioras, Nikos D Lagaros, and Dimitrios N Avtzis. “Pity beetle algorithm–

A new metaheuristic inspired by the behavior of bark beetles.” In: Advances in
Engineering Software 121 (2018), pp. 147–166.

[70] Daniel J Kapner et al. “Tests of the gravitational inverse-square law below the
dark-energy length scale.” In: Physical review letters 98.2 (2007), p. 021101.

[71] A Kaveh and A Dadras Eslamlou. “Water strider algorithm: A new metaheuristic
and applications.” In: Structures. Vol. 25. Elsevier. 2020, pp. 520–541.

[72] A Kaveh, R Mahdipour Moghanni, and SM Javadi. “Optimum design of large steel
skeletal structures using chaotic firefly optimization algorithm based on the Gaus-
sian map.” In: Structural and Multidisciplinary Optimization 60 (2019), pp. 879–
894.

[73] J Kennedy and RC Everhart. “A new optimizer using particle swarm theory. In
proceedings of the sixth international symposium on micro machine and human
science. Nagoya Japón.” In: IEEE service center Piscataway, NJ (1995).

[74] Mustafa Servet Kıran and Oğuz Fındık. “A directed artificial bee colony algorithm.”
In: Applied Soft Computing 26 (2015), pp. 454–462.

[75] Annu Lambora, Kunal Gupta, and Kriti Chopra. “Genetic algorithm-A literature
review.” In: 2019 international conference on machine learning, big data, cloud and
parallel computing (COMITCon). IEEE. 2019, pp. 380–384.

[76] Jouni Lampinen and Ivan Zelinka. “Mixed integer-discrete-continuous optimization
by differential evolution.” In: Proceedings of the 5th international conference on soft
computing. Vol. 71. Citeseer. 1999, p. 76.

[77] Qian Li, Yiguang Bai, and Weifeng Gao. “Improved Initialization Method for Meta-
heuristic Algorithms: A Novel Search Space View.” In: IEEE Access 9 (2021),
pp. 121366–121384. doi: 10.1109/ACCESS.2021.3073480.

[78] Shimin Li et al. “Slime mould algorithm: A new method for stochastic optimiza-
tion.” In: Future Generation Computer Systems 111 (2020), pp. 300–323.

67

https://doi.org/10.1109/ACCESS.2021.3073480

Bibliographie

[79] Xiaojian Li, Yijia Zhao, and Zhengxian Liu. “A novel global optimization algo-
rithm and data-mining methods for turbomachinery design.” In: Structural and
Multidisciplinary Optimization 60 (2019), pp. 581–612.

[80] Yilun Liu and Xiaoming Li. “A Hybrid Mobile Robot Path Planning Scheme Based
on Modified Gray Wolf Optimization and Situation Assessment.” In: Journal of
Robotics 2022 (2022).

[81] Zhi-Zhong Liu, Bing-Chuan Wang, and Ke Tang. “Handling Constrained Multi-
objective Optimization Problems via Bidirectional Coevolution.” In: IEEE Trans-
actions on Cybernetics 52.10 (2022), pp. 10163–10176. doi: 10.1109/TCYB.2021.
3056176.

[82] Marco Locatelli and Fabio Schoen. Global optimization: theory, algorithms, and
applications. SIAM, 2013.

[83] Cuicui Lu, Hongyi Yuan, and Nianen Zhang. “Nanophotonic devices based on
optimization algorithms.” In: Intelligent Nanotechnology. Elsevier, 2023, pp. 71–
111.

[84] Rosario Nunzio Mantegna. “Fast, accurate algorithm for numerical simulation of
Levy stable stochastic processes.” In: Physical Review E 49.5 (1994), p. 4677.

[85] Boris Marcone et al. “Brownian non-Gaussian diffusion of self-avoiding walks.” In:
Journal of Physics A: Mathematical and Theoretical 55.35 (2022), p. 354003.

[86] Robert M May. “Simple mathematical models with very complicated dynamics.”
In: Nature 261 (1976), pp. 459–467.

[87] Seyedali Mirjalili. “Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm.” In: Knowledge-based systems 89 (2015), pp. 228–249.

[88] Seyedali Mirjalili. “SCA: a sine cosine algorithm for solving optimization problems.”
In: Knowledge-based systems 96 (2016), pp. 120–133.

[89] Seyedali Mirjalili and Andrew Lewis. “The whale optimization algorithm.” In: Ad-
vances in engineering software 95 (2016), pp. 51–67.

[90] Abdolkarim Mohammadi-Balani et al. “Golden eagle optimizer: A nature-inspired
metaheuristic algorithm.” In: Computers & Industrial Engineering 152 (2021),
p. 107050.

[91] Seyyed Hamid Samareh Moosavi and Vahid Khatibi Bardsiri. “Poor and rich op-
timization algorithm: A new human-based and multi populations algorithm.” In:
Engineering Applications of Artificial Intelligence 86 (2019), pp. 165–181.

[92] Seyed Jalaleddin Mousavirad and Hossein Ebrahimpour-Komleh. “Human mental
search: a new population-based metaheuristic optimization algorithm.” In: Applied
Intelligence 47 (2017), pp. 850–887.

[93] Olaide Nathaniel Oyelade et al. “Ebola optimization search algorithm: A new
nature-inspired metaheuristic optimization algorithm.” In: IEEE Access 10 (2022),
pp. 16150–16177.

[94] Vladimir V Palyulin et al. “First passage and first hitting times of Lévy flights and
Lévy walks.” In: New Journal of Physics 21.10 (2019), p. 103028.

68

https://doi.org/10.1109/TCYB.2021.3056176
https://doi.org/10.1109/TCYB.2021.3056176

Bibliographie

[95] Markus Pantsar. “Descriptive complexity, computational tractability, and the log-
ical and cognitive foundations of mathematics.” In: Minds and Machines 31.1
(2021), pp. 75–98.

[96] Moushita Patnaik and Angelia Melani Adrian. “Chapter 4 - A perspective de-
piction of heuristics in virtual reality.” In: Cognitive Big Data Intelligence with
a Metaheuristic Approach. Ed. by Sushruta Mishra et al. Cognitive Data Science
in Sustainable Computing. Academic Press, 2022, pp. 101–116. isbn: 978-0-323-
85117-6. doi: https://doi.org/10.1016/B978-0-323-85117-6.00006-6.

[97] Catherine PORTE. “Méthodes directes d’optimisation-Méthodes à une variable et
simplex.” In: (2017).

[98] Hojatollah Rajabi Moshtaghi, Abbas Toloie Eshlaghy, and Mohammad Reza Mo-
tadel. “A comprehensive review on meta-heuristic algorithms and their classifica-
tion with novel approach.” In: Journal of Applied Research on Industrial Engineer-
ing 8.1 (2021), pp. 63–89.

[99] Sohail Razzaq et al. “Efficient optimization techniques for resource allocation in
UAVs mission framework.” In: PLOS ONE 18.4 (Apr. 2023), pp. 1–19. doi: 10.
1371/journal.pone.0283923.

[100] Franz Rothlauf. Design of modern heuristics: principles and application. Vol. 8. 9.
Springer, 2011.

[101] Stuart J Russell. Artificial intelligence a modern approach. Pearson Education,
Inc., 2010.

[102] Malek Sarhani, Stefan Voß, and Raka Jovanovic. “Initialization of metaheuristics:
comprehensive review, critical analysis, and research directions.” In: International
Transactions in Operational Research (2022).

[103] Soudeh Shadravan, Hamid Reza Naji, and Vahid Khatibi Bardsiri. “The Sailfish
Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained
engineering optimization problems.” In: Engineering Applications of Artificial In-
telligence 80 (2019), pp. 20–34.

[104] Abha Singh et al. “Parameter extraction of solar module using the sooty tern
optimization algorithm.” In: Electronics 11.4 (2022), p. 564.

[105] Narinder Singh and Hanaa Hachimi. “A new hybrid whale optimizer algorithm with
mean strategy of grey wolf optimizer for global optimization.” In: Mathematical and
computational applications 23.1 (2018), p. 14.

[106] Shanmugam Sundaramurthy and Preethi Jayavel. “A hybrid grey wolf optimization
and particle swarm optimization with C4. 5 approach for prediction of rheumatoid
arthritis.” In: Applied Soft Computing 94 (2020), p. 106500.

[107] E-G Talbi. “A taxonomy of hybrid metaheuristics.” In: Journal of heuristics 8
(2002), pp. 541–564.

[108] El-Ghazali Talbi. Metaheuristics: from design to implementation. John Wiley &
Sons, 2009.

69

https://doi.org/https://doi.org/10.1016/B978-0-323-85117-6.00006-6
https://doi.org/10.1371/journal.pone.0283923
https://doi.org/10.1371/journal.pone.0283923

Bibliographie

[109] Hichem Talbi and Amer Draa. “A new real-coded quantum-inspired evolutionary
algorithm for continuous optimization.” In: Applied Soft Computing 61 (2017),
pp. 765–791. issn: 1568-4946. doi: https://doi.org/10.1016/j.asoc.2017.
07.046.

[110] HR Tizhoosh. “Opposition-based learning: A new scheme for machine intelligence.
Paper presented at the International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference on Intelli-
gent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06).”
In: (2005).

[111] Jose L Villegas, Enrique Castro, José Gutiérrez, et al. “Representations in problem
solving: A case study with optimization problems.” In: (2009).

[112] Dongshu Wang, Dapei Tan, and Lei Liu. “Particle swarm optimization algorithm:
an overview.” In: Soft computing 22 (2018), pp. 387–408.

[113] Shuang Wang et al. “An improved hybrid aquila optimizer and harris hawks algo-
rithm for solving industrial engineering optimization problems.” In: Processes 9.9
(2021), p. 1551.

[114] HATTAB Wassila et al. “Algorithme d’optimisation inspiré de la poussée d’archiméde
appliqué au dispatching économique.” In: ().

[115] Bernd Wursig, William F Perrin, et al. Encyclopedia of marine mammals. Academic
Press, 2009.

[116] Tao Xiang, Xiaofeng Liao, and Kwok-wo Wong. “An improved particle swarm
optimization algorithm combined with piecewise linear chaotic map.” In: Applied
Mathematics and Computation 190.2 (2007), pp. 1637–1645.

[117] Yaning Xiao et al. “IHAOAVOA: An improved hybrid aquila optimizer and African
vultures optimization algorithm for global optimization problems.” In: Mathemat-
ical Biosciences and Engineering 19.11 (2022), pp. 10963–11017.

[118] Xin-She Yang. “A new metaheuristic bat-inspired algorithm.” In: Nature inspired
cooperative strategies for optimization (NICSO 2010) (2010), pp. 65–74.

[119] Xin-She Yang. “Chapter 13 - How to Deal with Constraints.” In: Nature-Inspired
Optimization Algorithms. Ed. by Xin-She Yang. Oxford: Elsevier, 2014, pp. 183–
196. isbn: 978-0-12-416743-8. doi: https://doi.org/10.1016/B978-0-12-
416743-8.00013-0.

[120] Xin-She Yang. Engineering optimization: an introduction with metaheuristic ap-
plications. John Wiley & Sons, 2010.

[121] Xin-She Yang. Nature-inspired optimization algorithms. Academic Press, 2020.
[122] Xin-She Yang et al. “A framework for self-tuning optimization algorithm.” In:

Neural Computing and Applications 23 (2013), pp. 2051–2057.
[123] Xin Yao, Yong Liu, and Guangming Lin. “Evolutionary programming made faster.”

In: IEEE Transactions on Evolutionary computation 3.2 (1999), pp. 82–102.

70

https://doi.org/https://doi.org/10.1016/j.asoc.2017.07.046
https://doi.org/https://doi.org/10.1016/j.asoc.2017.07.046
https://doi.org/https://doi.org/10.1016/B978-0-12-416743-8.00013-0
https://doi.org/https://doi.org/10.1016/B978-0-12-416743-8.00013-0

Bibliographie

[124] Mohd Z Zakaria et al. “Comparison between multi-objective and single-objective
optimization for the modeling of dynamic systems.” In: Proceedings of the insti-
tution of mechanical engineers, part i: journal of systems and control engineering
226.7 (2012), pp. 994–1005.

[125] DJMB Zavodnik. “Spatial aggregations of the swarming jellyfish Pelagia noctiluca
(Scyphozoa).” In: Marine Biology 94.2 (1987), pp. 265–269.

[126] Chaoyong Zhang et al. “A new hybrid GA/SA algorithm for the job shop schedul-
ing problem.” In: Evolutionary Computation in Combinatorial Optimization: 5th
European Conference, EvoCOP 2005, Lausanne, Switzerland, March 30-April 1,
2005. Proceedings 5. Springer. 2005, pp. 246–259.

[127] Jinhao Zhang et al. “Queuing search algorithm: A novel metaheuristic algorithm
for solving engineering optimization problems.” In: Applied Mathematical Modelling
63 (2018), pp. 464–490.

[128] Yu-Jun Zhang et al. “AOAAO: The hybrid algorithm of arithmetic optimization
algorithm with aquila optimizer.” In: IEEE Access 10 (2022), pp. 10907–10933.

[129] Kaiqing Zhang et al. “Global convergence of policy gradient methods: A nonconvex
optimization perspective.” In: SIAM Journal on control and Optimization (under
review) (2019).

[130] Shijie Zhao et al. “Dandelion Optimizer: A nature-inspired metaheuristic algorithm
for engineering applications.” In: Engineering Applications of Artificial Intelligence
114 (2022), p. 105075.

[131] Changting Zhong, Gang Li, and Zeng Meng. “Beluga whale optimization: A novel
nature-inspired metaheuristic algorithm.” In: Knowledge-Based Systems 251 (2022),
p. 109215. issn: 0950-7051.

[132] Wang Zhongyu, Li Yaru, and Tang Yingqi. “An efficient hybrid DE-WOA al-
gorithm for numerical function optimization.” In: 2019 IEEE 28th International
Symposium on Industrial Electronics (ISIE). IEEE. 2019, pp. 2629–2634.

[133] Farouq Zitouni, Saad Harous, and Ramdane Maamri. “The solar system algorithm:
a novel metaheuristic method for global optimization.” In: IEEE Access 9 (2020),
pp. 4542–4565.

[134] Farouq Zitouni et al. “The archerfish hunting optimizer: A novel metaheuristic
algorithm for global optimization.” In: Arabian Journal for Science and Engineering
47.2 (2022), pp. 2513–2553.

71

Webographie

[2] M Abdel-Basset, L Abdel-Fatah, and AK Sangaiah. Chapter 10-Metaheuristic Al-
gorithms: A Comprehensive Review In Computational Intelligence for Multimedia
Big Data on the Cloud with Engineering Applications. 2018.

[60] B HongKong. Approximation Algorithms. https://www.ics.uci.edu/~vazirani/
book.pdf. 2001.

72

https://www.ics.uci.edu/~vazirani/book.pdf
https://www.ics.uci.edu/~vazirani/book.pdf

	Dedicace
	Dedicace
	Acknowledgment
	Abstract
	Résumé
	 ملخص
	General Introduction
	Introduction Optimization
	Introduction
	Optimization problem
	Classification of optimization problems
	Unconstrained optimization
	Constrained optimization
	Local search and Global search
	Complexity classes
	Optimization methods
	Conclusion

	Metaheuristics
	Introduction
	Initialization methods
	Search strategy
	Tuning and Controlling of parameters
	Random Walks
	Classification of meta-heuristic algorithms
	Hybridization method
	No-Free-Lunch Theorem
	Conclusion

	BHJO:A novel hybrid metaheuristic algorithm for global optimization
	Introduction
	Proposed hybrid algorithm
	Experimental results and discussion
	Conclusion

	Conclusion et perspectives

