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Abstract

Modern society is heavily dependent on energy as a critical resource. However, with the
increasing demand for energy, the world is facing several challenges such as global carbon
emission, climate change, and environmental degradation. To address these issues, it is crucial
to predict future electricity consumption accurately. This prediction is necessary for efficient
energy management, demand-response, and grid planning.

In this thesis, we propose four deep learning models, namely Multilayer Perceptron(MLP),
Convolutional Neural Networks(CNN),Long-Short Terme Memory (LSTM), and (CNN-LSTM),
for energy forecasting. Our aim is to demonstrate that these models outperform other existing
approaches. The models were trained and evaluated using a dataset collected from Two cities
in Algeria: Sidi bel Abbes, Mascara. The dataset consists of approximately 2700 HVA clients
total of 66000 measurements.

To assess the performance of our models, we utilize popular evaluation metrics such as Mean
Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Mean Absolute
Error (MAE). These metrics provide a comprehensive evaluation of the accuracy and reliability
of the models in predicting energy consumption.

Remarkably, our results indicate that even with a relatively small number of data measure-
ments, our proposed models deliver excellent forecasting outcomes. This suggests the robust-
ness and effectiveness of the deep learning architectures in capturing and predicting energy
consumption patterns in the studied cities.

Keywords
Energy forecasting, Deep Learning models, Multilayer Perceptron, Convolutional Neural Net-
works, Long-Short Terme Memory
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Résumé

La société moderne dépend fortement de l’énergie en tant que ressource critique. Cepen-
dant, avec la demande croissante en énergie, le monde est confronté à plusieurs défis tels que les
émissions mondiales de carbone, le changement climatique et la dégradation de l’environnement.
Pour faire face à ces problèmes, il est crucial de prédire avec précision la consommation future
d’électricité. Cette prédiction est nécessaire pour une gestion efficace de l’énergie, la réponse à
la demande et la planification du réseau.

Dans cette mémoire, nous proposons quatre modèles d’apprentissage en profondeur , à
savoir le Perceptron Multi-Couches (MLP), les Réseaux de Neurones Convolutifs (CNN) , la
Mémoire à Court Terme Longue (LSTM) et (CNN-LSTM) , pour la prévision énergétique.
Notre objectif est de démontrer que ces modèles surpassent les autres approches existantes. Les
modèles ont été entraı̂nés et évalués à l’aide d’un ensemble de données collectées dans deux
villes en Algérie : Sidi bel Abbes , Mascara . L’ensemble de données comprend environ 66000
mesures.

Pour évaluer les performances de nos modèles, nous utilisons des métriques d’évaluation
courantes telles que l’erreur absolue moyenne en pourcentage (MAPE), l’erreur quadratique
moyenne (RMSE) et l’erreur absolue moyenne (MAE). Ces métriques permettent une évaluation
complète de l’exactitude et de la fiabilité des modèles dans la prédiction de la consommation
d’énergie.

Remarquablement, nos résultats indiquent que même avec un nombre relativement restreint
de mesures de données, nos modèles proposés offrent d’excellents résultats de prévision. Cela
suggère la robustesse et l’efficacité des architectures d’apprentissage en profondeur dans la
capture et la prédiction des schémas de consommation d’énergie dans les villes étudiées.

Mote Clé
Prévision énergétique , modèles d’apprentissage en profondeur , Perceptron Multi-Couches,
Réseaux de Neurones Convolutifs , Mémoire à Court Terme Longue
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General Introduction

This is an important point to consider when it comes to electricity production and consump-

tion. When the amount of electricity generated exceeds the required amount, there is a risk

of wasted resources and unnecessary costs. To prevent this, it is important to ensure that the

amount of electricity generated matches up with the demand in real-time, in order to avoid

overproduction or underproduction The distribution subsidiary orders electricity from the gen-

eration subsidiary, and then the energy produced is distributed to customers through their elec-

trical grids. This ensures that customers receive reliable and efficient energy while providing

a cost-effective solution for both the generation and distribution subsidiaries, Overproduction

or production losses can be defined as the difference between the electricity produced and the

actual electricity distributed. A better prediction of customers’ consumption can help reduce

these errors and minimize losses due to overproduction. This is beneficial for companies, as the

overproduction of energy that is not distributed constitutes a dead loss for them At the level of

distribution subsidiaries, electricity losses are a major concern for the company.

To control their impact, they have implemented a strategy to ensure that the amount of elec-

tricity purchased is equal to the amount billed. This is an ideal goal for them as it will help to

minimize losses and increase efficiency Predictive models for accurately forecasting electricity

consumption can be an important tool in helping to plan and monitor electricity usage in the

economic sector. These models can help to identify potential issues before they become prob-

lems, as well as provide insight into how different factors may affect future consumption. By

understanding past patterns and trends, these models can also provide a more accurate assess-

ment of future needs, allowing for better decision-making when it comes to resource allocation..
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This thesis is organized into four chapters.

Chapter 1 serves as an introduction, providing the background, objectives, and structure of

the thesis.

Chapter 2 presents a comprehensive literature review, analyzing existing research to estab-

lish the research gap.

Chapter 3 details the methodology and experimental setup, including research design, data

collection methods, and ethical considerations.

Finally, Chapter 4 presents the results and engages in a critical discussion, interpreting the

findings in relation to the research questions and existing literature. Together, these chapters

provide a coherent framework for the study, guiding the reader through the research process

and contributing to the understanding of the research problem.
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Overview of Electricity Consumption

Prediction
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5 1. Overview of Electricity Consumption Prediction

1.1 Background and Motivation.

Electricity is an essential component of the economic infrastructure worldwide, permeating

every aspect of daily life. Over the past three decades, electricity consumption has more than

doubled,In algeria Electricity consumption increased by 5% in 2021 to 72 TWh [1]. It had

been increasing very rapidly over 2009-2019 (8%/year) driven by industrial development in

emerging economies and advancements in various sectors such as the widespread use of smart

devices and the adoption of electric vehicles. Electricity is generated from both renewable (e.g.,

wind, solar, hydropower) and non-renewable (e.g., coal, natural gas, oil, nuclear) sources [2].

Given the critical role electricity plays in our daily lives, understanding and predicting its

consumption patterns have become crucial. Predicting electricity energy consumption can aid

in various ways, including diversifying the generation process towards renewable sources and

taking appropriate actions to reduce emissions. Accurate predictions are especially vital as they

inform decision-making processes and facilitate effective management of energy resources [2].

Moreover, electricity consumption prediction plays a significant role in load balancing within

power grids. Power grids maintain a frequency of 50Hz, and any discrepancies between elec-

tricity consumption and production can disrupt this frequency, leading to potential damages to

the power grid infrastructure.

In summary, accurate electricity consumption prediction is essential for managing energy

resources, reducing emissions, facilitating load balancing within power grids, and ensuring the

stability and sustainability of electricity supply.

1.1.1 Overview of the Importance of Electric Energy Consumption Pre-

diction:

Electric energy consumption prediction plays a crucial role in various domains, including

utility companies, grid operators, energy suppliers, businesses, and households. Accurate pre-

diction of electricity demand enables effective energy management, cost reduction, grid stabil-

ity, renewable energy integration, demand response programs, and infrastructure planning.

For utility companies and grid operators, accurate prediction of energy consumption allows

5



1. Overview of Electricity Consumption Prediction 6

for efficient planning and optimization of energy generation, distribution, and allocation strate-

gies. By forecasting future energy demands, they can ensure a reliable and stable supply of

electricity, avoid power shortages or excess capacity, and optimize resource allocation [3].

Businesses and households also benefit from electric energy consumption prediction. Ac-

curate forecasts help them optimize their energy usage, identify peak demand periods, and

implement energy-saving measures during high-demand hours. This proactive approach leads

to reduced energy costs, improved energy efficiency, and better financial planning.

1.1.2 The Current Challenges and Limitations in Traditional Prediction

Methods:

Traditional prediction methods for electric energy consumption often rely on statistical mod-

els or simplistic machine learning algorithms. While these approaches have been widely used,

they have certain limitations that hinder their accuracy and effectiveness.

One challenge is the complexity and non-linearity of energy consumption patterns. Tra-

ditional methods may struggle to capture the intricate relationships and dynamic behavior ex-

hibited by energy consumption data, leading to sub-optimal predictions. Moreover, traditional

methods often require manual feature engineering, where domain knowledge is used to extract

relevant features from the data. This process can be time-consuming and may not capture all

the relevant information for accurate prediction [4].

Additionally, traditional methods may face difficulties in handling the increasing volume,

velocity, and variety of data in the energy sector. The emergence of smart meters, IoT devices,

and other data sources have resulted in large-scale and high-dimensional energy consumption

datasets. Traditional methods may struggle to effectively process and analyze such data, limit-

ing their prediction accuracy.

6



7 1. Overview of Electricity Consumption Prediction

1.1.3 The Potential of Deep Learning Techniques in Improving Prediction

Accuracy:

Deep learning techniques, a subset of machine learning, have shown great promise in over-

coming the challenges of traditional prediction methods for electric energy consumption. Deep

learning models, such as Multilayer Perceptron (Multilayer Perceptrone (MLP)), long short-

term memory (long short-term memory (LSTM)) networks, and convolutional neural networks

(Convolutional Neural Networks (CNN)), can capture complex temporal dependencies, non-

linear relationships, and high-dimensional patterns present in energy consumption data.

one advantage of deep learning models is their ability to automatically learn hierarchical

representations of the data, eliminating the need for manual feature engineering. Deep learn-

ing models can directly process raw energy consumption data, extracting relevant features at

different levels of abstraction, leading to more accurate predictions.

Furthermore, deep learning models are highly scalable and can handle large-scale and high-

dimensional datasets efficiently. With their ability to process vast amounts of data and capture

intricate patterns, deep learning techniques have the potential to significantly improve the accu-

racy of electric energy consumption prediction [5].

1.2 Research Objectives

The main objectives of this thesis are as follows:

Develop an accurate deep-learning model for electric energy consumption prediction: The

primary goal of this research is to design and construct a deep-learning model specifi-

cally tailored for predicting electric energy consumption. The model will leverage ad-

vanced deep-learning techniques, such as long short-term memory (LSTM) networks,

or convolutional neural networks (CNNs),Multilayer Perceptron (MLP) and combina-

tion between long short-term memory with convolutional neural networks that are called

(CNN-LSTM)to capture the complex temporal dependencies and non-linear relationships

present in energy consumption data.

7



1. Overview of Electricity Consumption Prediction 8

Improve prediction accuracy compared to traditional methods: The thesis aims to demon-

strate that the proposed deep-learning model outperforms traditional prediction methods

commonly used in the field. By leveraging the power of deep learning and its ability to

automatically extract relevant features from raw data, the objective is to achieve higher

prediction accuracy and reduce forecasting errors.

Explore the impact of incorporating additional data sources: In addition to historical en-

ergy consumption data, the research aims to investigate the effects of integrating other

relevant data sources into the prediction model. This may include weather data, socioe-

conomic factors, time-of-day information, or any other variables that may influence elec-

tricity consumption patterns. The objective is to assess the extent to which incorporating

these additional data sources can enhance prediction accuracy.

Evaluate the model’s performance under different scenarios and time periods: The thesis

seeks to evaluate the robustness and generalizability of the proposed deep-learning model.

By testing the model’s performance across various scenarios, such as different geographic

regions, seasons, or economic conditions, the objective is to assess its effectiveness and

reliability in predicting electric energy consumption in diverse contexts.

Provide insights and recommendations for practical implementation: Alongside develop-

ing the deep-learning model, the research aims to provide practical insights and recom-

mendations for implementing the model in real-world scenarios. This includes discussing

potential challenges, limitations, and considerations for deployment, as well as proposing

strategies for integrating the model into existing energy management systems.

1.3 Scope and Limitations

1.3.1 Scope

Dataset: The scope of this thesis will focus on utilizing deep learning techniques to predict

electricity consumption based on a specific dataset. The analysis and modeling will be

8



9 1. Overview of Electricity Consumption Prediction

conducted using a comprehensive and relevant dataset that encompasses historical elec-

tricity consumption data.

Deep learning algorithms: The study will explore various deep learning algorithms such as

long short-term memory (LSTM) [], or convolutional neural networks (CNNs) and com-

bination between convolutional neural networks with long short-term memory(CNN-

LSTM) and multi layer perceptrone(MLP) to develop accurate models for electricity con-

sumption prediction. The scope will include comparing and evaluating the performance

of different deep learning architectures.

Feature selection and engineering: The scope will involve identifying and selecting relevant

features or variables that have a significant impact on electricity consumption prediction.

Feature engineering techniques may also be employed to enhance the performance of the

deep learning models.

Accuracy assessment: The scope of the thesis will involve evaluating the accuracy of the

developed models for electricity consumption prediction. This assessment will include

quantitative measures such as mean absolute error (Mean Absolute Error (MAE)), Root

mean square error (Root Mean Square Error (RMSE)), and coefficient of determination

(R-squared) to validate the accuracy of the predictions.

1.3.2 Limitations

Data availability: The accuracy and performance of the developed models heavily depend on

the availability and quality of the dataset. Limitations may arise if the dataset is limited

in terms of size, temporal coverage, or missing values, which could impact the accuracy

of the predictions.

Generalizability: The scope of this thesis will focus on accurate electricity consumption pre-

diction within a specific dataset or geographical area. The models developed may have

limitations in generalizing the predictions to different regions or datasets due to variations

in consumption patterns, infrastructure, or socio-economic factors.

9



1. Overview of Electricity Consumption Prediction 10

External factors: Electricity consumption can be influenced by external factors such as weather

conditions, holidays, or special events. While efforts will be made to incorporate rele-

vant external factors, the scope of this thesis may not fully capture the complexity and

variability introduced by these external factors, which could affect the accuracy of the

predictions.

Computational resources: Deep learning models can be computationally intensive and re-

quire substantial computational resources. The limitations of this thesis may arise in

terms of the computational power or time constraints that may restrict the exploration of

complex deep learning architectures or larger datasets.

Interpretability: Deep learning models are often considered as black-box models, making

it challenging to interpret the underlying factors or features contributing to the predic-

tions. The limitations of interpretability may arise in understanding the specific factors or

variables influencing electricity consumption in the developed models.

It is important to consider these scope and limitations while conducting the research and inter-

preting the results to ensure a comprehensive understanding of the accuracy and applicability

of the developed deep learning models for electricity consumption prediction.

1.4 Methodology overview

Our research thesis aims to develop an approach model that consists of four algorithms,

namely long short-term memory (LSTM), convolutional neural networks (CNNs), a combina-

tion of convolutional neural networks with long short-term memory (CNN-LSTM), and multi-

layer perceptron (MLP). The model will be used to analyze data from two cities in Algeria,

namely Sidi Bel-Abbes, Mascara. The data will comprise almost 8 features that will be used

to train and test the algorithms. The LSTM algorithm will be used for sequence prediction

tasks, while the CNN algorithm will be used for image classification tasks. The CNN-LSTM

algorithm is a hybrid approach that combines the strengths of both CNN and LSTM algorithms.

The MLP algorithm is a feedforward neural network that is widely used for classification and

10



11 1. Overview of Electricity Consumption Prediction

regression tasks. The data analysis will provide insights into the patterns and trends of the se-

lected features in the three cities, which will be useful for decision-making processes in various

fields, such as urban planning, transportation, and environmental management.

1.5 Conclusion

the first chapter has provided a solid foundation for the research, addressing the background,

motivation, objectives, scope, and limitations. The subsequent chapters will build upon this

groundwork, delving deeper into each aspect and employing the proposed methodology to in-

vestigate the selected cities in Algeria. By the end of this study, it is anticipated that new

knowledge will be generated and valuable contributions will be made to the field, ultimately

benefiting the targeted cities and beyond.
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13 2. Literature Review

2.1 Introduction

According to Statista Research Department The world’s electricity consumption has con-

tinuously grown over the past half a century, reaching approximately 25,300 terawatt-hours in

2021. Between 1980 and 2021, electricity consumption more than tripled, while the global

population increased by roughly 75 %. Growth in industrialization and electricity access across

the globe have further boosted electricity demand. There are no prerequisites for reducing elec-

tricity consumption in the future, since at the present stage of human development, electricity

is a key resource—professional and household human activity are impossible without the use

of electricity [2] For an extensive period of time, researchers have dedicated their efforts to-

wards the exploration and development of methodologies aimed at enhancing the accuracy and

efficiency of electricity consumption forecasting. This particular area of study has garnered

significant attention due to its vital importance in various sectors, including energy planning,

resource allocation, and infrastructure development. The reliable prediction of electricity con-

sumption plays a crucial role in ensuring the stability and sustainability of power systems, as

well as facilitating optimal decision-making processes for energy providers, policymakers, and

consumers. this chapter will present a detailed review of recent related works in the field of

electricity consumption forecasting. It will examine existing methodologies, models, and tech-

niques employed in the literature while critically assessing their strengths and limitations. By

identifying the gaps and areas that require further investigation, we aim to establish the founda-

tion for our research objectives and demonstrate the relevance and significance of our proposed

approach.

2.2 State of the art - Related work

The significance of electricity in our daily lives has led to an increased emphasis on predict-

ing its consumption. As a result, there is a wealth of research papers, articles, blogs, and videos

dedicated to this topic due to its widespread popularity.

About prediction methods from D. Hadjout [6] they mentions about different methods to

solve the Electrical energy prediction problem ,to predict monthly electricity consumption for

13



2. Literature Review 14

the economic sector.

A novel ensemble learning approach was devised by the researchers, incorporating three

highly effective models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (Gated

Recurrent Unit (GRU)) neural networks, as well as Temporal Convolutional Networks (Temporal

Convolutional Networks (TCN)). The researchers conducted experiments utilizing extensive

data encompassing almost 2000 clients and 14 years of monthly electricity consumption records

from Bejaia, Algeria.

Figure 2.1: Ensemble learning method.

The results demonstrate that the ensemble models proposed in the study outperform both

the requirements set by the company and the predictions made by traditional individual models.

There is a good approach written by Jaewon Chung [7] Accurate estimation of energy de-

mand and consumption necessitates the effective analysis of multivariable data, including fac-

tors such as gross domestic product, imports, exports, temperature, precipitation, electricity

consumption, and trade balance. To address this, the researchers proposed a CNN-LSTM model

that incorporates a multivariable augmentation approach.

14



15 2. Literature Review

Figure 2.2: Visualization of the proposed methodology.

The proposed model demonstrates exceptional forecasting accuracy for electricity consump-

tion, surpassing the performance of existing models.

The paper of Le, Tuong and Vo, Minh Thanh [8] this study proposed a novel Electric Energy

Consumption Prediction By CNN BI-LSTM (EECP-CBL) model was introduced for electric

energy consumption prediction. The model combines the strengths of CNN and Bi-LSTM on

the Individual Household Power Consumption (IHEPC) dataset. Comprising three modules,

namely CNN Bi-LSTM, and Fully Connected (FC), the proposed model demonstrates effective

prediction of energy consumption.

Figure 2.3: Ensemble learning method.

The resarch done in 2017 by Wan He [9]The researchers introduced a Deep Neural Network

(Deep Neural Network (DNN)) that incorporates both Convolutional Neural Network (CNN)

and Recurrent Neural Network (Recurrent Neural Network (RNN)) components to accurately

forecast electric energy consumption.

15
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Figure 2.4: Model Architechture

In Turkey F. Kaytez [10]In this research, historical electricity load and real-time climate

data were utilized to conduct energy consumption forecasting. Unlike most studies that con-

sider factors such as population, import/export values, and gross domestic product (GDP) on an

annual basis, this research specifically focuses on long-term electricity consumption forecast-

ing in Turkey. To achieve this, a hybrid model combining Auto-Regressive Iterative Moving

Avarage (Auto-Regressive Iterative Moving Avarage (ARIMA)) and Least Square Support Vec-

tor Machine (Least Square Support Vector Machine (LSSVM)) was proposed.

Also Researchers form U.S.A (Rabin K. Jana) [11] ,The research presents a novel approach

for predicting energy consumption in various sectors at a macro level. The proposed method

combines maximal overlap discrete wavelet transformation (Maximal Overlap Discrete Wavelet

Transformation (MODWT)) and long short-term memory (LSTM) network, enabling a granular

deep learning approach. The input features undergo evaluation using the Boruta algorithm-

based feature selection model. To separate linear and nonlinear components, MODWT is

employed to decompose the energy consumption time series. At a granular level, the LSTM

network, a powerful deep learning tool, is then utilized to make predictions on individual sub-

series.

In 2019 [12], a research study conducted in Montreal, Canada proposed the Adaptive Circu-

lar Conditional Expectation (Adaptive Circular Conditional Expectation (ACCE)) method for

defining sub-residuals operation schedules. This method utilizes circular analysis to handle pe-

riodic patterns in data and predict the residual component demand within each time window. To

enhance total electricity demand forecasting, an adaptive Linear Model (Linear Model (LM))
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procedure is employed, incorporating the ACCE results to predict the residual component de-

mand. The proposed approach, focused on modeling periodic residual demand in a daily hori-

zon, demonstrates a promising accuracy increase of 23 % compared to existing methods, eval-

uated using the Normalized Mean Absolute Error (Normalized Mean Absolute Erro (NMAE))

metric. Combining the residual modeling method with temperature-related component fore-

casting further improves total power consumption prediction performance by 7%. Numerical

analysis using real data validates the effectiveness and practical benefits of the ACCE method

and its integration with other forecasting techniques for electricity demand prediction.

Another research have done in france by chinese researchers in 2020, [13] for A hybrid

prediction model for residential electricity consumption using holt-winters and extreme learn-

ing machine, A hybrid model, combining the Holt-Winters (Holt-Winters (HW)) method and

Extreme Learning Machine (Extreme Learning Machine (ELM)) network, is developed for

ultra-short-term predictions of residential electricity consumption. The original data under-

goes decomposition using the Moving Average (Moving Average (MA)) filter, separating it into

a stationary linear component and a fluctuant nonlinear residual. The HW method is used to

establish a linear prediction model for forecasting the linear component. In conjunction with the

linear prediction results, nonlinear residual, and original data, the ELM network builds a non-

linear prediction model for residential electricity consumption. The proposed HW-ELM model

is evaluated for predicting 15-minute electricity consumption values with varying training set

sizes and seasons. Compared to other models such as HW, ELM, and long short-term memory

network, the proposed model consistently demonstrates lower prediction error when forecasting

residential electricity consumption.

In [14] The research proposes a neural network architecture called CNN-LSTM for accurate

prediction of housing energy consumption. The CNN-LSTM network combines the strengths

of both convolutional neural network (CNN) and long short-term memory (LSTM) models. The

CNN layer is capable of extracting relevant features from multiple variables that impact energy

consumption, while the LSTM layer is well-suited for capturing temporal patterns and irreg-

ular trends in time series data. Experimental results demonstrate that the CNN-LSTM model

achieves nearly flawless prediction performance for electric energy consumption, which was
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previously challenging to accurately forecast.Also, it records the smallest value of root mean

square error compared to the conventional forecasting methods for the dataset on individual

household power consumption. The empirical analysis of the variables confirms what affects to

forecast the power consumption most

The last document in our research was done in 2019 by Junhong Kim in Three distribution

complexes of South Korea [15] The aim of the research is to develop an accurate short-term

load forecasting model using recurrent neural network (RNN)-based models,When forecast-

ing electric load at a specific time, existing RNN-based models have limitations in utilizing

predicted future hidden state vectors and fully available past information. This leads to inaccu-

racies that cannot be corrected for subsequent predictions. To overcome these issues, a research

proposes a recurrent inception convolution neural network (RICNN) that combines RNN and

1-dimensional CNN (1-D CNN). The model employs a 1-D convolution inception module to

adjust the prediction time and the hidden state vector values from nearby time steps, creating

an optimized network. The RICNN model is evaluated using power usage data from three

large distribution complexes in South Korea. Experimental results demonstrate that the RICNN

model outperforms benchmarked models such as multi-layer perception, RNN, and 1-D CNN

in daily electric load forecasting, specifically for 48-time steps with a 30-minute interval

All the previous documentation and accomplishments have been summarized in the table 2.1 .
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Ref Input Variables Output variables Prediction Interval Prediction Area

[7]

Electricity consumption , trade balance
Temperature , precipitation
GDP
export value, import

Electricity usage Monthly Korea

[8] Electrical Energy Consumption electrical energy consumption Monthly Seoul, korea

[9] Electrical Energy Consumption ,Temperature , holiday EEC Daily China

[6] Electricity consumption history EEC Monthly Bejaia, Algeria

[10]
Gross electricity generation, GDP,
population, installed capacity,
import value, export value, total subscribership

EEC Annual Turkey

[11]
Energy consumption history, moving average
, bias, momentum, rate of change, TEC Monthly USA

[12] Electricity load history, climatic data Residential electricity load Hourly
An individual household
in Montreal, Canada

[13] Active power, reactive power, voltage, global intensity Residential electricity consumption 15 minutes
An individual residential
building in Paris, France

[14]
Global active power, global reactive
power, voltage, global intensity, sub metering Residential power consumption Hourly An individual household in France

[16]
Electricity load history
(ISO-NE, NYISO 13 years of electricity load
of New England, New York)

Electricity load Hourly New England and New York, USA

[15]
Electricity load history, climatic data,
time information, electricity rates
, number of sensors

Electricity load Daily
Three distribution complexes
of South Korea

Table 2.1: Some typical types of energy forecasting techniques

2.3 Reveal The Gaps

The accumulation of various documents has significantly contributed to the enrichment of

our knowledge regarding the subject of our research - improving electricity consumption pre-

diction using deep learning. These documents have served as valuable sources of information,

enabling us to make informed decisions in selecting the most appropriate model for our pur-

poses. Consequently, our proposed approach will entail the integration of Convolutional Neural

Networks (CNN), Long Short-Term Memory (LSTM), and Multilayer Perceptron (MLP) within

a single codebase.

The choice to incorporate CNN-LSTM and MLP stems from their effectiveness as evidenced

by the results obtained in related works. These models have demonstrated promising outcomes

in similar research endeavors, making them suitable candidates for our electricity consumption

prediction framework.

One particularly influential document that significantly impacted our research trajectory

was the most recent publication we encountered. In this document, the author focused on three
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complexes located in South Korea. The findings and insights gained from this study served as a

source of inspiration for us to extend our prediction efforts to two specific cities: Mascara, and

Sidi Bel Abbes. By examining electricity consumption patterns in these urban areas, we hope

to further enrich our understanding and generate applicable predictions.

Furthermore, we have decided to direct our thesis towards High Voltage Type (HVA) due

to various reasons. HVAs are invoiced on a monthly basis, which provides a consistent and

structured data collection framework for our research. Moreover, HVAs represent a significant

portion, approximately 45 percent, of the overall electricity consumption in Algeria. By focus-

ing on HVAs, we can gain valuable insights into consumption patterns and contribute to more

accurate predictions.

To construct our dataset, we have carefully chosen multiple variables that are crucial in

capturing the intricacies of electricity consumption. These variables include Active Power, Re-

active Power, Voltage, PMA, Power Factor, and Temperature. By incorporating a multivariable

approach, we aim to leverage the wealth of information contained within these factors. Recent

research has shown that utilizing multivariable data offers improved performance compared to

relying solely on univariable data. Therefore, by incorporating multiple variables, we antici-

pate achieving enhanced prediction accuracy and more comprehensive insights into electricity

consumption patterns.

2.4 conclusion

In this chapter, we have dedicated extensive efforts to thoroughly explore the existing body

of related works and literature relevant to our thesis topic. This rigorous examination of prior

research has proven to be immensely valuable in broadening our knowledge and deepening

our understanding of the subject matter. By delving into these works, we have gained invalu-

able insights, discovered novel perspectives, and identified potential gaps that our research can

address.

Furthermore, our comprehensive review of related works has played a pivotal role in inform-

ing our decision-making process regarding the selection of the most appropriate and promising
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approached model. We have meticulously evaluated various models, techniques, and method-

ologies proposed in the literature, considering their merits, drawbacks, and empirical evidence

of their effectiveness. Our ultimate aim is to identify an approached model that offers the high-

est level of accuracy, predictive power, and applicability to our specific research context.

Simultaneously, we have conscientiously considered the choice of dataset type for our re-

search endeavor. Recognizing the significance of robust and well-curated data, we have taken

great care in selecting an appropriate dataset that aligns with the objectives and requirements of

our thesis. This selection process involves careful consideration of various factors, such as the

availability, quality, relevance, and representativeness of the data. We aim to choose a dataset

that encompasses a comprehensive range of variables and encompasses a significant portion of

the electricity consumption landscape we intend to study.

By thoroughly exploring related works and meticulously choosing our approached model

and dataset type, we endeavor to embark on our research journey armed with a strong foun-

dation of knowledge, an optimized model architecture, and high-quality data. This strategic

approach will enable us to maximize the accuracy and effectiveness of our research outcomes

while ensuring their relevance and applicability to the real-world context of electricity con-

sumption prediction.
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3.1 Introduction

In an era characterized by rapid advancements in technology, the field of artificial intelli-

gence (artificial intelligence (AI)) has emerged as a prominent force driving innovation across

various industries. AI encompasses a range of techniques and methodologies that empower

machines to mimic human intelligence and perform complex tasks autonomously. Among the

various branches of AI, one particular area that has gained significant attention and transforma-

tive power is deep learning.

In this chapter, we embark on a journey to unravel the intricate world of artificial intelligence

and delve into the depths of deep learning. Our aim is to demystify these concepts, providing

you with a comprehensive understanding of their significance and practical applications.

To begin, we shall explore the fundamental concept of artificial intelligence. AI is the

science and engineering behind the creation of intelligent machines that can perceive, reason,

learn, and make decisions like humans. It encompasses a wide range of techniques, including

machine learning, natural language processing, computer vision, and expert systems, among

others. Our focus in this chapter, however, will primarily be on deep learning—a subfield of

machine learning that has revolutionized various domains by enabling computers to learn from

vast amounts of data.

Understanding deep learning requires us to grasp the underlying principles of neural net-

works. Neural networks are computational models inspired by the structure and functioning of

the human brain. They consist of interconnected nodes, known as neurons, organized in layers

that process and transform data. Through a process called training, neural networks learn pat-

terns and relationships in data, allowing them to make accurate predictions and classifications.

But before we dive deeper into the intricacies of deep learning, it is essential to address

the crucial aspect of data collection and preprocessing. The quality and suitability of the data

significantly impact the performance and reliability of any AI model. We will explore various

techniques for data collection, discuss the challenges of dealing with diverse data sources, and

delve into the crucial process of data preprocessing, which involves cleaning, transforming, and

organizing the data to make it suitable for analysis.

Once the data is prepared, we move on to the modeling stage, where we construct our
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approach model for analysis. Deep learning models are renowned for their ability to extract

complex features and patterns from raw data, enabling them to make accurate predictions and

classifications. We will explore different architectures of deep learning models, such as con-

volutional neural networks (CNNs) for image analysis and recurrent neural networks (RNNs)

for sequential data, among others. We will also discuss the training process, optimization tech-

niques, and ways to evaluate model performance.

However, building a robust model is only part of the equation. Visualizing and interpreting

the results are equally essential to gain insights and communicate findings effectively. In this

chapter, we will delve into various evaluation metrics commonly used in deep learning, such

as Mean Absolute Percentage Error (Mean Absolute Percentage Error (MAPE)), Root Mean

Square Error (RMSE), and Mean Squared Error (Mean Squared Error (MSE)). We will explore

how these metrics help us measure the performance of our model and guide decision-making in

real-world scenarios.

Through this comprehensive exploration, we aim to equip you with the knowledge and tools

necessary to comprehend and apply artificial intelligence and deep learning principles in your

own data analysis endeavors. By the end of this chapter, you will have gained a profound

understanding of AI, deep learning, data collection and preprocessing, model construction and

evaluation, and the visualization of results. So let us embark on this exciting journey into the

realm of artificial intelligence and deep learning, as we unravel the power of data-driven insights

and pave the way for a future driven by intelligent machines.

3.2 Artificial Neural Networks

Artificial neural networks (Artificial neural networks (ANN)) are computational models in-

spired by the structure and functioning of biological neural networks, such as the human brain.

ANNs are at the core of the field of machine learning, and they have proven to be remarkably

effective in solving complex problems across various domains [17].

The fundamental building block of an artificial neural network is the neuron, also known

as a node. Neurons are interconnected in layers, forming a network that processes and trans-
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forms data. Each neuron receives input signals, performs a mathematical computation on them,

and produces an output signal. These output signals are then passed on to other neurons in

subsequent layers, creating a chain of interconnected computations [18].

The layers in an artificial neural network are typically categorized into three types: the input

layer, hidden layers, and the output layer. The input layer receives the initial data, while the

output layer produces the final results or predictions. The hidden layers, as the name suggests,

are intermediary layers that perform complex computations to extract meaningful features from

the input data.

The strength of artificial neural networks lies in their ability to learn from data. During

the training phase, the network is exposed to a large amount of labeled data, where the correct

output is known for each input. The network adjusts its internal parameters, known as weights

and biases, based on the discrepancy between the predicted output and the actual output. This

adjustment process, known as backpropagation, allows the network to learn and improve its

performance over time [19].

Figure 3.1: Artificial Neural Network Structure

There are several types of artificial neural networks, each designed to address specific types

of problems. Here are a few common architectures:
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MultiLayer Perceptrone (MLP): A Multilayer Perceptron (MLP) is a type of artificial neural

network that consists of multiple layers of interconnected nodes, known as artificial neu-

rons or perceptrons. It is a feedforward neural network, meaning that information flows

through the network in one direction, from the input layer to the output layer.

Convolutional Neural Networks (CNNs): CNNs are particularly effective for analyzing vi-

sual data, such as images and videos. They consist of convolutional layers that apply

filters to detect features at different spatial locations, followed by pooling layers that

downsample the data. CNNs have achieved remarkable success in tasks such as image

classification, object detection, and image generation.

Long Short Term Memory (LSTM): designed to overcome the limitations of traditional RNNs

in capturing and retaining long-term dependencies in sequential data. LSTMs are specifi-

cally designed to address the vanishing gradient problem that occurs when training RNNs

on long sequences.

LSTMs have an internal memory mechanism that allows them to selectively remember or

forget information over extended time intervals

Convolutional Neural Network and Long Short Term Memory(CNN-LSTM): In the CNN-

LSTM architecture, the output of the CNN layers is fed into the LSTM layers. The LSTM

layers then process the sequential information and learn to model the temporal dependen-

cies present in the data. This combined architecture enables the network to effectively

capture both spatial and temporal features, making it suitable for tasks such as video

classification, action recognition, and spatio-temporal forecasting.

By leveraging the strengths of both CNNs and LSTMs, CNN-LSTM provides a powerful frame-

work for analyzing sequential data with spatial and temporal characteristics, enabling the net-

work to learn rich representations and make accurate predictions or classifications..

Artificial neural networks have been successfully applied in various fields, including com-

puter vision, natural language processing, robotics, healthcare, finance, and many more. Their

ability to learn complex patterns and make accurate predictions from data has propelled ad-

vancements in AI and has the potential to drive further innovation in the future.
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3.3 Deep Learning Networks

Deep learning networks, a subset of artificial neural networks (ANNs), have revolutionized

the field of machine learning by enabling computers to learn and make sense of vast amounts

of data. Deep learning networks excel at automatically learning and extracting intricate pat-

terns and representations from raw data, without the need for explicit feature engineering. This

has led to remarkable advancements in various domains, including computer vision, natural

language processing, speech recognition, and many others [20].

The key characteristic of deep learning networks is their depth, which refers to the presence

of multiple hidden layers between the input and output layers. These hidden layers allow for

the extraction of increasingly complex and abstract features from the data. The depth of the net-

work facilitates the learning of hierarchical representations, where lower layers capture simple

features, and higher layers combine those features to form more sophisticated representations.

Deep learning networks are primarily built using architectures such as Convolutional Neu-

ral Networks (CNNs) and Recurrent Neural Networks (RNNs), although there are numerous

other types and variants as well. Here’s an overview of some commonly used deep learning

architectures:

3.3.1 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are a powerful class of deep learning algorithms

specifically designed for image classification tasks. They employ a shared-weight ar-

chitecture, where convolutional kernels or filters slide across input features, extracting

precise representations known as feature maps. At the core of CNNs lies the convolu-

tional operator, a central building block that enables the network to construct informative

features by combining spatial and channel-wise information within local receptive fields

at each layer. [21] One key advantage of CNNs is their ability to automatically learn and

optimize the filters or kernels through automated learning, as opposed to traditional al-

gorithms where these filters need to be manually tuned. The input to a CNN is a tensor

with a shape of (number of inputs) x (input height) x (input width) x (input channels).
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This input shape undergoes convolutional layers to extract feature maps, also known as

activation maps, with a shape of (number of inputs) x (feature map height) x (feature

map width) x (feature map channels) [22]. a typical CNN model, as shown in Figure 2,

comprises several layers: convolutional layer, pooling layer, a flattening layer, and a fully

connected layer. The convolutional layer is the main component of the CNN network,

which operates on the principle of sliding windows and weight sharing to reduce com-

putational complexity. In this layer, the kernel method is used to extract various features

from the input data. The next layer is the pooling layer. This layer is designed to reduce

the size of the feature map involved by reducing the connections between layers and run-

ning each feature map independently. The main goal of the pooling operation is to reduce

the dimensionality and extract the dominant features for efficient training of the model

[6]. There are several types of pooling operations: max pooling and average pooling.

Before proceeding with the fully connected linked layer (FC), it is necessary to use the

flattening layer to create a one-dimensional vector, because the FC layer consists of the

weights and biases along with the neurons to connect the neurons between the different

layers. The FC layer is sometimes inserted as the last layer before the output layer of the

CNN network [23].

Figure 3.2: Convolutional Process in Neural Networks

3.3.2 MultiLayer Perceptrone (MLP)

A Multilayer Perceptron (MLP) is a type of artificial neural network that consists of mul-

tiple layers of interconnected nodes, known as artificial neurons or perceptrons. It is a

feedforward neural network, meaning that information flows through the network in one
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direction, from the input layer to the output layer.

The MLP is composed of an input layer, one or more hidden layers, and an output layer.

Each layer, except the input layer, contains a set of artificial neurons that receive inputs

from the previous layer and pass their outputs to the next layer. The neurons in the hidden

layers and the output layer typically use an activation function to introduce non-linearity

into the network’s computations [24].

During training, the MLP learns by adjusting the weights associated with each connec-

tion between the neurons. This process is usually performed using a technique called

backpropagation, where the error between the network’s predicted output and the desired

output is propagated backward through the network, allowing the weights to be updated

in a way that minimizes the error.

MLPs are known for their ability to learn complex relationships in the data and can be

applied to a wide range of tasks, including classification, regression, and pattern recogni-

tion. They have been widely used in various fields, such as machine learning, computer

vision, natural language processing, and many others [25].

As shown In the figure It has 3 layers including one hidden layer. If it has more than

1 hidden layer, it is called a deep ANN. An MLP is a typical example of a feedforward

artificial neural network. In this figure, the ith activation unit in the lth layer is denoted as

ai(l). The number of layers and the number of neurons are referred to as hyperparameters

of a neural network, and these need tuning. Cross-validation techniques must be used to

find ideal values for these [26].

The weight adjustment training is done via backpropagation. Deeper neural networks are

better at processing data. However, deeper layers can lead to vanishing gradient problems.

Special algorithms are required to solve this issue.
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Figure 3.3: Multilayer Perceptrones Process in Neural Networks

3.3.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) archi-

tecture that belongs to a family of models capable of automatically learning meaningful

features from sequences of data. It is specifically designed to address the challenge of

capturing long-term dependencies in sequential data, such as time series or temporal data.

One of the distinguishing features of LSTM is its ability to handle multivariate time se-

ries data, where multiple variables are observed at each time step. This makes LSTM

well-suited for tasks like multivariate forecasting, where the network can learn to predict

future values for multiple variables simultaneously [27].

In addition, LSTM is capable of outputting variable-length sequences, which makes it

suitable for tasks involving multi-step forecasting. For example, given an input sequence,

LSTM can generate a sequence of predictions for multiple future time steps.

Similar to another type of recurrent neural network called Gated Recurrent Unit (GRU),
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LSTM incorporates internal mechanisms known as gates. These gates regulate the flow of

information within the network, allowing it to selectively remember or forget information

over time [28].

The gates in LSTM play a crucial role in managing the flow of information through the

network. They determine which information from the previous time step should be re-

tained in the current memory state and which information should be discarded or updated.

By selectively gating the flow of information, LSTM is able to capture and preserve

long-term dependencies in the sequential data, thereby addressing the vanishing gradi-

ent problem often encountered in traditional RNNs. Long Short-Term Memory (LSTM)

networks employ gates to handle Long-Term Memory (LTM) and Short-Term Memory

(STM). The Forget Gate discards irrelevant LTM information, the Learn Gate combines

the current input with STM to integrate recent knowledge, the Remember Gate updates

the LTM by merging LTM, STM, and the current input, and the Use Gate predicts the out-

put based on the combined LTM, STM, and input. LSTMs effectively process sequential

data, capturing both long-term and short-term dependencies [29].

Figure 3.4: Remeber Gate

The above figure shows the simplified architecture of LSTMs. The actual mathematical

architecture of LSTM is represented using the following figure:
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Figure 3.5: LSTM Architecture

3.3.4 Long Short-Term Memory combined with Convolutional Neu-

ral Networks (CNN-LSTM)

CNN-LSTM is a hybrid neural network architecture that combines Convolutional Neural

Networks (CNNs) and Long Short-Term Memory (LSTM) networks. This architecture is

commonly used for processing sequential data with spatial information, such as images

or videos. It has been widely adopted in various tasks, including computer vision, natural

language processing, and time series analysis.

The CNN-LSTM architecture takes advantage of the strengths of both CNNs and LSTMs.

CNNs are known for their ability to extract spatial features from input data by using con-

volutional layers and pooling layers. They are particularly effective in image recognition

tasks, where they can learn hierarchical representations of visual patterns [30].

On the other hand, LSTMs are a type of recurrent neural network (RNN) that are designed

to capture long-term dependencies and temporal dynamics in sequential data. They are

capable of learning patterns over time and maintaining memory of past information.

In the CNN-LSTM architecture, the CNN component is typically used as a feature extrac-

tor. The input data, such as an image or a sequence of images, is passed through several

convolutional layers and pooling layers to extract high-level spatial features.
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These features can capture important patterns and structures in the input data [31].

The output of the CNN component is then fed into the LSTM component. The LSTM

layers process the spatial features over time, modeling the temporal dependencies in the

data. The LSTM layers maintain a hidden state that represents the network’s memory of

past information. This memory enables the network to capture long-range dependencies

and make predictions based on the context of the entire sequence.

The CNN-LSTM architecture can be used for a variety of tasks. In computer vision, it

can be employed for tasks such as video classification, action recognition, and video cap-

tioning. In natural language processing, it can be used for tasks like sentiment analysis,

text classification, and machine translation. Additionally, it can also be applied to time

series analysis tasks, such as weather forecasting and stock market prediction.

Overall, the CNN-LSTM architecture combines the spatial feature extraction capabilities

of CNNs with the temporal modeling abilities of LSTMs, making it a powerful tool for

processing sequential data with spatial information [32].
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Figure 3.6: CNN-LSTM structure
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Deep learning networks require substantial computational resources, especially for train-

ing large-scale models on massive datasets. GPUs and specialized hardware accelerators

like TPUs have made deep learning training and inference feasible. These networks excel

in automatically learning complex features from raw data, reducing the need for manual

feature engineering. However, challenges include the requirement for labeled training

data, the risk of overfitting, and the interpretability of the learned representations. Reg-

ularization techniques help address overfitting, while the lack of interpretability remains

an active research area.

3.4 Dataset

In this thesis, we collected invoices from clients of HVA (30 KV)in two cities: Mascara,

Sidi Bel Abbes. The dataset comprises approximately 66000 records, with Sidi Bel Abbes

having 44,415 records, Mascara having 21,261 records. As a result, we worked with data

from two cities, totaling almost 3,000 clients, covering a period of three years starting

from 2020 to 2023.

3.4.1 Household Power Consumption (HPC) Dataset

This dataset is a multivariate time series dataset consisting of 66000 records col-

lected in two cities, Sidi Bel Abbes and Mascara, located in Algeria. The data

spans from January 2020 to January 2023. Observations were recorded at minute

intervals, forming a sequential dataset covering a period of four years. However,

for the purpose of this study, the data was downsampled to hourly intervals and

then further aggregated to daily intervals, focusing on the total power consumption

per day. this data is collected from Sonalgaz distribution Subsidary The original

35



3. Methodology And Experimental Setup 36

data, collected in the time domain, provides insights into consumption behavior

over the specified period, disregarding seasonal variations and weather conditions.

The dataset consists of seven independent variables:

Global Active Power:The total active power consumed by individual loads mea-

sured in kilowatts

Global Reactive Power:The total Reactive power consumed by individual loads

measured in kilo Volts Reactive

PMD::Power Peak Power Demand (KW)

Power Factor:Represents Ration of Global Reactive Power and Global Active

Temperature:Average month Temperature of Sidi Bel Abbes and Mascara

Voltage: The installation Voltage of clients (30 KV).

It is worth noting that an additional variable was introduced in the dataset design

Figure 3.7: Data Structure from Mascara showing 7 input variable
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Figure 3.8: Overall monthly consumption Mascara

Figure 3.9: Data Structure from Sidi Bel Abbès showing 8 input variable
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Figure 3.10: Overall monthly consumption of Sidi Bel Abbès

3.4.2 Problem formulation

We are dealing with a specific problem called one-step multivariate time series forecast-

ing. In this problem, our aim is to predict the next value, where the prediction horizon

is set to 1 (h=1) [6].To make this prediction, we utilize a window of W previous values.

This formulation can be represented by Equation (3.1).

y(t+ 1) = f(y(t), y(t− 1), . . . , y(t− (W − 1))), (3.1)

where the goal is to find the model f.

In this particular case, the consumption of N clients for the next month is wanted to be

forecast. Let Ci(t+1) be the consumption of the i-th customer at time t = 1 and Ĉi(t+1)

the associated forecast for such consumption. Therefore, the goal is to accurately predict
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the value at t = 1 for each of the N clients, as shown in Eq. (2):

Ĉ(t+ 1) =
N∑
i=1

Ĉi(t+ 1)

Where Ĉ(t + 1) denotes the prediction of the consumption for the next value of all N

customers.

3.4.3 Data Normalization

Normalization is a commonly employed data preparation technique in the realm of ma-

chine learning. It involves the transformation of columns within a dataset to a standard-

ized scale. It is important to note that not every dataset necessitates normalization for

machine learning purposes. This technique is primarily utilized when the ranges of char-

acteristics within the dataset vary significantly. Data normalization is a process that aims

to bring a set of data onto a comparable scale. In the context of machine learning models,

our objective often revolves around repositioning and rescaling the data to fall within the

range of 0 to 1 or -1 to 1, depending on the specific data characteristics. One prevalent ap-

proach to achieve this involves calculating the mean and standard deviation of the dataset,

and then transforming each sample by subtracting the mean and dividing by the standard

deviation. This method is particularly beneficial when assuming a normal distribution for

the data, as it facilitates standardization and attainment of a standard normal distribution.

Normalization plays a crucial role in the training of neural networks since it ensures that

different features are scaled similarly. This aspect contributes to the stability of the gradi-

ent descent step, enabling the use of larger learning rates or accelerating the convergence

of models with a given learning rate [6].
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Figure 3.11: Importance of Normalization

During our research, we have experimented with two distinct approaches for Data Nor-

malization. The first technique we employed is known as Min-Max Normalization, while

the second technique is referred to as mean and standard Normalization [33].

(a)(b)(c)(d)(e)(f)(a) Min-Max Normalization: Min-max normalization (usually called feature scaling)

performs a linear transformation on the original data. This technique gets all the

scaled data in the range (0, 1). The formula to achieve this is the following:

x′ =
x−min(x̄)

max(x̄)−min(x̄)
(3.2)

Min-max normalization preserves the relationships among the original data values.

The cost of having this bounded range is that we will end up with smaller standard

deviations, which can suppress the effect of outliers.

Mean Standard Normalization: The data can be normalized subtracting the mean (µ)

of each feature and a division by the standard deviation . This way, each feature has

a mean of 0 and a standard deviation of 1. This results in faster convergence.

X ′ =
x− µ

σ
(3.3)
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The standard deviation can be calculated with the following formula:

σ =
√
E [X2]− (E[X])2 (3.4)

E[X2] represents the mean of the squared data, while (E[X])2 represents the square of the

mean of the data.

In the scope of our research study, we meticulously examined two distinct methods and

carefully evaluated their performance. It was observed that the mean standard method,

when compared to the alternative method, exhibited a noteworthy advantage in terms of

both convergence speed and overall outcome quality.

The empirical data collected throughout our experimentation process consistently demon-

strated that the mean standard method showcased a remarkable ability to converge to-

wards the desired solution at a significantly accelerated rate. This swift convergence not

only saved valuable computational resources but also allowed for quicker attainment of

the optimal outcome.

Moreover, the superiority of the mean standard method extended beyond convergence

speed, as it consistently generated better results in comparison to the alternative method.

The evaluation metrics utilized in our study, be it accuracy, precision, or any other relevant

performance measure, consistently favored the mean standard method, further highlight-

ing its effectiveness and reliability.

Thus, based on our comprehensive analysis and rigorous experimentation, we assert that

the mean standard method stands out as the preferred choice, as it offers both faster con-

vergence to the solution and consistently superior outcomes when compared to the alter-

native method under investigation.

Figure 3.12: Data After Normalization (Mascara)
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Figure 3.13: Data After Normalization (Sidi Bel Abbes)

3.4.4 Transform the data into a time series problem

In our research, we adopted a time-series forecasting approach that involved utilizing

the data from the current and next time steps to predict the value of the third time step,

which corresponded to a period of two months. This methodology was applied during the

training phase, while the validation phase entailed using the data from the third month to

evaluate the accuracy and effectiveness of our forecasting model.

To ensure robust and accurate predictions, we employed a sequential analysis framework

that leveraged the temporal dependencies present in the dataset. By incorporating the in-

formation from consecutive time steps, we aimed to capture the underlying patterns and

trends in the data, enabling us to make reliable forecasts for the future.

During the training stage, we utilized the data from the current and next time steps as

input features, while the corresponding value from the third time step served as the target

variable. This setup allowed our forecasting model to learn the relationships between the

input variables and the target variable, enabling it to make predictions for the third time

step based on the observed patterns in the data.

Subsequently, in the validation phase, we evaluated the performance of our model by em-

ploying the data from the third month, which was not used during the training process.

By comparing the predicted values generated by our model with the actual values from

the third time step, we assessed the accuracy and generalization capabilities of our fore-
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casting approach.

This two-month training and one-month validation setup allowed us to validate the predic-

tive power of our model and assess its ability to generalize to unseen data. By employing

such a comprehensive and rigorous methodology, we aimed to develop a robust forecast-

ing framework that can effectively capture and predict future trends and patterns in the

dataset.

Figure 3.14: Data Transformed Into Time series(Mascara)

Figure 3.15: Data Transformed Into Time series(Sidi Bel Abbes)

43



3. Methodology And Experimental Setup 44

Figure 3.16: Data After Transforming Into Time Series(Mascara)

Figure 3.17: Data After Transforming Into Time Series(Mascara)
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Figure 3.18: Walking-Forward-Validation Process

3.4.5 Train/validation/Test split

In our research, we employed a systematic approach to partition our dataset into distinct

subsets for the purposes of training, testing, and validation. The dataset was initially split

into two main parts, with 70% of the data allocated for training our model and the re-

maining 30% designated for testing its performance.

Within the training dataset, an additional subdivision was made, whereby 80% of the data

was used for actual model training, while the remaining 20% was reserved for validation.

This secondary division allowed us to assess the model’s performance and fine-tune its

parameters during the training process, while maintaining a separate set of data specifi-

cally for validation.

By splitting the data in this manner, we aimed to strike a balance between training the

model on a sufficiently large portion of the dataset to capture underlying patterns and

testing it on independent data to evaluate its generalization abilities. Furthermore, the

45



3. Methodology And Experimental Setup 46

inclusion of a validation subset within the training data enabled us to monitor the model’s

performance during training and make adjustments as needed.

This approach ensured that our model was not only trained on diverse and representa-

tive data but also evaluated using unseen data to gauge its ability to generalize beyond

the training set. Such a comprehensive evaluation strategy allowed us to derive reliable

insights into the model’s performance and make informed decisions regarding its effec-

tiveness and suitability for the intended task.

Overall, our research methodology encompassed a careful division of the dataset into

training, testing, and validation subsets, enabling us to train and assess our model’s per-

formance in a systematic and robust manner.

3.4.6 Correlation coefficients of input variables.

Correlation coefficients provide a concise summary of data and facilitate the comparison

of findings across different studies.

If the correlation metrics between the features you mentioned (Feels Like Min, Feels Like

Max, precipitation, snow, wind speed, Temp min, Temp max) are all 1, it indicates that

there is a perfect linear relationship between these features. This high correlation may

indeed lead to overfitting in our model.

Overfitting occurs when a model becomes too complex and starts to capture noise or ran-

dom fluctuations in the training data, instead of the underlying patterns. In this case, if

the correlation between these features is 1, it suggests that they are essentially providing

the same information to the model, leading to redundancy.

To address this issue and avoid overfitting, it would be appropriate to remove some of

these highly correlated features. You can choose to keep only one representative feature

that captures the essential information, or you can consider using dimensionality reduc-

tion techniques such as Principal Component Analysis (PCA) to combine these correlated

features into a smaller set of uncorrelated features.

Removing redundant or highly correlated features can help simplify our model and im-

prove its generalization to new data. It is important to strike a balance between having
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enough relevant features to capture the underlying patterns and avoiding the inclusion of

redundant or excessive features that may cause overfitting.

Figure 3.19: Correlation coefficients of input variables(Mascara)

Figure 3.20: Correlation coefficients of input variables(Sidi Bel Abbes) Before Cleaning
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Figure 3.21: Correlation coefficients of input variables(Sidi Bel Abbes) After Cleaning

3.5 Modelling

The process of forecasting electricity consumption entails a well-defined and structured

approach, which follows a standardized data mining procedure. This procedure comprises

four essential steps, as visually represented in Figure 2. Each of these steps holds signif-

icance and contributes to the overall accuracy and reliability of the forecasting process.

Let’s delve into a comprehensive explanation of these steps:

Data Processing Phase: During this phase, our primary focus was on data collection.

Following that, we proceeded with the crucial steps of understanding and normal-

izing the dataset. Subsequently, we employed a time series approach to split the

data into training and testing sets. The training set encompassed 70% of the data,

while the remaining 30% was reserved for testing purposes. Within the training set,

we further divided it into two portions: 80% for actual training and the remaining

20% for validation purposes.
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Training Phase: In the second phase, we trained and validated four different models us-

ing the prepared training dataset. The training process involved fitting the models

to learn from the data and capture the underlying patterns. After training, we eval-

uated the performance of each model using a separate validation dataset. Various

metrics were used to assess the models’ accuracy and effectiveness in predicting

electricity consumption. The validation results provided valuable insights into the

strengths and weaknesses of each model, enabling us to make informed decisions

about selecting the most suitable model for accurate forecasting.

Testing Phase: In the last phase, we tested the four trained models using the reserved

testing dataset comprising 30% of the data. We compared the predictions generated

by each model with the actual values in the testing dataset. Evaluation metrics such

as MAE, RMSE, or R-squared were calculated to assess the models’ performance.

Based on the comparison, we generated a concise report summarizing the findings,

highlighting the strengths and weaknesses of each model in forecasting electricity

consumption. This report aided in selecting the most reliable and accurate model

for future predictions.

3.5.1 Models Configuration

In the course of our comprehensive research investigation, we meticulously explored

an extensive array of configurations, diligently testing and evaluating their performance

across multiple iterations. After rigorous experimentation, we successfully identified the

ultimate configuration that outperformed all others for each of the four architectures un-

der examination. This meticulous process allowed us to ensure that our findings were

backed by substantial evidence and provided robust support for our conclusions

MLP for Time Series Forecasting First we will use a Multilayer Perceptron model or

MLP model, here our model will have input features equal to the window size. The

thing with MLP models is that the model don’t take the input as sequenced data, so
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for the model, it is just receiving inputs and don’t treat them as sequenced data, that

may be a problem since the model won’t see the data with the sequence patter that

it has. Input shape [samples, timesteps].

epochs = 500 batch = 256 Learning rate = 0.0003

CNN for Time Series Forecasting For the CNN model we will use one convolutional

hidden layer followed by a max pooling layer. The filter maps are then flattened

before being interpreted by a Dense layer and outputting a prediction. The con-

volutional layer should be able to identify patterns between the timesteps. Input

shape [samples, timesteps, features]. learning rate=1e-2 decay steps=10000 de-

cay rate=0.9 epochs=500

LSTM for Time Series Forecasting Now the LSTM model actually sees the input data

as a sequence, so it’s able to learn patterns from sequenced data (assuming it ex-

ists) better than the other ones, especially patterns from long sequences. Input

shape [samples, timesteps, features]. learning rate=1e-2 decay steps=10000 de-

cay rate=0.9 epochs=500

CNN-LSTM for Time Series Forecasting The benefit of this model is that the model

can support very long input sequences that can be read as blocks or subsequences

by the CNN model, then pieced together by the LSTM model.

When using a hybrid CNN-LSTM model, we will further divide each sample into

further subsequences. The CNN model will interpret each sub-sequence and the

LSTM will piece together the interpretations from the subsequences. As such, we

will split each sample into 2 subsequences of 2 times per subsequence.

The CNN will be defined to expect 2 timesteps per subsequence with one feature.

The entire CNN model is then wrapped in TimeDistributed wrapper layers so that it

can be applied to each subsequence in the sample. The results are then interpreted

by the LSTM layer before the model outputs a prediction. learning rate=1e-3

decay steps=1000 decay rate=0.9 epochs=500
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Figure 3.22: Methodology steps.

3.5.2 Evaluation Metrics

The assessment of forecast performance for this model relies on three prominent standard

error measurements: Root Mean Square Error (RMSE), Mean Absolute Error (MAE),

and Mean Absolute Percentage Error (MAPE). These metrics are specifically tailored to

address the challenges posed by the dynamic nature and stochastic characteristics inher-

ent in neural network models used for power forecasting. By emphasizing prediction and

evaluation times, we prioritize the accuracy and efficiency of the model’s predictions.

The choice to utilize these specific standard error measurements stems from several rea-

sons. Firstly, RMSE, MAE, and MAPE are well-established and widely accepted metrics

that effectively capture the performance of forecasting models. Secondly, they are de-

signed to share the same scale as the measured data, ensuring compatibility and facilitat-

ing easy interpretation of the error. Moreover, these metrics accommodate a broad range

of error values, from 0 to infinity, enabling comprehensive evaluation of forecasting ac-

curacy. Notably, these metrics exhibit a negative orientation, meaning that lower values
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indicate better performance, regardless of the direction of errors. [21]

3.5.2.A Root Mean Square Error(RMSE)

Root Mean Square Error (RMSE) is a widely recognized quadratic scoring rule utilized

to quantify the average magnitude of errors. It is computed by taking the square root of

the average of squared differences between the predicted values and the corresponding

actual observations.

RMSE =

√
1

n

∑ n

i = 1
(xi − yi)

2 (3.5)

In this context, where (Xi) represents the observed data, (Yi) represents the predicted data,

, and (n) denotes the total number of observations, the Root Mean Square Error (RMSE)

is calculated as follows: It involves capturing the differences between the predicted and

actual values, squaring them to account for both positive and negative deviations, obtain-

ing the mean to aggregate all the unseen data, and finally taking the square root to offset

the previous squaring operations [21].

3.5.2.B Mean Absolute Error(MAE)

These error metrics, such as Mean Absolute Error (MAE) or Mean Absolute Deviation

(Mean Absolute Deviation (MAD)), provide an assessment of the average magnitude of

errors in each set of predictions, irrespective of their direction. MAE, also referred to as

Mean Absolute Deviation, quantifies the overall error magnitude in the data points during

the forecasting process. It is calculated by averaging the absolute differences between the

predicted values and the corresponding actual observations, with equal weight assigned

to each individual difference across the test sample.

MAE =
Σn

i |xi − yi|
n

=
Σn

i |ei|
n

(3.6)

where (ei) represents the arithmetic average of the absolute error, Mean Absolute Error

(MAE) is employed as a scale-dependent accuracy measure. Consequently, it is not ap-
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propriate to directly compare this metric with others that involve different scales. MAE

is widely utilized for assessing forecast error in time series analysis. One advantage of

MAE is its reduced sensitivity to outliers when compared to metrics like Mean Absolute

Percentage Error (MAPE) and Root Mean Square Error (RMSE).

3.5.2.C Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) serves as a metric to evaluate the accuracy

of a forecasting system, expressed in terms of percentage. It is often employed as a loss

function for regression tasks and model evaluation due to its interpretation in relation to

relative error. MAPE quantifies the forecast error and performs well under the assump-

tion of no extreme values or zeros in the data. The calculation involves determining the

average absolute percent error for each time period by subtracting the actual values from

the forecasted values and dividing them by the actual values [21].

MAPE =
1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣× 100 (3.7)

In the given context, where n represents the number of fitted points, At represents the

actual value, and Ft represents the forecast value, the calculation of the Mean Absolute

Percentage Error (MAPE) involves summing the absolute differences between the fore-

casted and actual values for each point in time. This summation is then divided by the

number of fitted points, n. This performance metric is designed to be independent of the

scale of measurement, but it can be influenced by any data transformation that has been

applied to the variables.

3.6 Conclusion

In this chapter, we presented a comprehensive overview of our research. We began by

discussing the data collection process and the significance of the dataset for our study.

We then delved into the theoretical background of artificial neural networks, emphasizing
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their role in our research and the application of deep learning models. Next, we provided

an in-depth explanation of the architecture we employed and outlined its functionality.

To ensure the validity and accuracy of our findings, we described the methodology and

steps we followed in conducting our research. We paid special attention to the selection

and configuration of our neural network models, as well as the specific techniques utilized

in the training and evaluation processes.

Furthermore, we introduced and emphasized the importance of evaluation metrics, in-

cluding Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE),

and Mean Absolute Error (MAE). These metrics enable us to quantitatively assess the

performance and accuracy of our models in forecasting.

As we conclude this chapter, we are optimistic about the potential outcomes of our re-

search in the next chapter. We look forward to presenting and analyzing the results ob-

tained through our experiments, with the hope that they will provide valuable insights and

contribute to the advancement of the field.
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4.1 introduction

The purpose of this chapter is to present our research findings and delve into a detailed

discussion, focusing on the comparative analysis of the results achieved by four distinct

models: CNN, LSTM, MLP, and CNN-LSTM. These models have demonstrated remark-

able predictive capabilities, outperforming other models in the context of our study. The

evaluation and comparison of these models will be conducted using datasets from two

specific cities, Mascara and Sidi Bel Abbes.

To provide a comprehensive understanding of the models’ performance, we will utilize

a comprehensive training and validation process, tailored to each individual model. This

will involve training the models on the available data from the respective cities, iteratively

refining their parameters, and validating their performance against relevant metrics.

Following the training and validation phases, we will proceed to the testing stage, where

the proposed approach will be rigorously assessed. To ensure the validity of our evalua-

tion, we will allocate 30% of the overall dataset for testing purposes. This will enable us

to assess the generalization capabilities and real-world effectiveness of the models.

By conducting this comprehensive analysis and evaluation process, we aim to highlight

the strengths, weaknesses, and comparative advantages of each model. Additionally, we

aim to provide valuable insights into their applicability and potential for predictive mod-

eling in the context of the selected cities.

4.2 results and discussion

By observing the figure 4.1, 4.2 we can see a consistent pattern across all three models

(CNN, MLP, and CNN-LSTM) regarding the relationship between the number of epochs

and the corresponding loss values. As the number of epochs increases, both the validation

loss and train loss gradually decrease until they reach a point of stability.

Interestingly, the CNN-LSTM model demonstrates a notably faster rate of decline in
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losses when compared to the other models. This suggests that the CNN-LSTM model

is more efficient in learning and capturing meaningful patterns from the data.

However, it is important to note that the LSTM model exhibits significantly larger losses

throughout the training process. This discrepancy in loss values may potentially have

adverse effects on the model’s performance during validation and testing phases. The

elevated losses indicate that the LSTM model may struggle to effectively generalize and

make accurate predictions on unseen data.

Therefore, while the CNN-LSTM model shows promise with its rapid loss reduction,

the LSTM model’s substantial losses raise concerns about its ability to perform well on

validation and testing tasks.

Figure 4.1: Validation losses and Training losses of Mascara City
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Figure 4.2: Validation losses and Training losses of Sidi Bel Abbes city

4.2.1 Train and Validation

4.2.2 Mascara

The figures (4.3 , 4.4 , 4.5 , 4.6) provide valuable information about the performance of

various models during the training phase. An intriguing finding is that the LSTM model,

despite experiencing higher losses, surprisingly exhibits good performance in terms of

validation. This performance surpasses that of the MLP model, which did not meet the

desired expectations.

In contrast, both the CNN model and the CNN-LSTM model demonstrate excellent per-

formance. Their validation values closely match the actual values, indicating their ability

to accurately capture and model the underlying patterns in the data. This suggests that

these models have successfully learned and generalized from the training data.

However, it’s important to note that the MLP model did not perform as well as expected
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during the training phase. The higher losses experienced by the MLP model may be in-

dicative of its struggle to effectively learn complex patterns and generalize from the data.

Consequently, there are concerns about its performance in the testing phase, where it will

encounter unseen data.

As we transition to the testing phase, we hope that all models, except for the MLP model,

will continue to demonstrate their good performance. The observed trends in the train-

ing phase provide some confidence that the CNN model and the CNN-LSTM model are

likely to excel in handling new, unseen data. Nonetheless, careful evaluation and further

analysis will be crucial to assess the models’ true capabilities in real-world scenarios.

Figure 4.3: MLP on Train and validation(Mascara)
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Figure 4.4: CNN on Train and validation(Mascara)

Figure 4.5: LSTM on Train and validation(Mascara)
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Figure 4.6: CNN-LSTM on Train and validation(Mascara)
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4.2.2.A Sidi Bel Abbes

Figure 4.7: MLP on Train and validation(sidi Bel Abbes)

Figure 4.8: CNN on Train and validation(Sidi Bel Abbes)
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Figure 4.9: LSTM on Train and validation(Sidi Bel Abbes)

Figure 4.10: CNN-LSTM on Train and validation(Sidi Bel Abbes)
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Discussion: In Sidi Bel Abbes, the performance of the four models (MLP, LSTM, CNN)

during the validation phase is not particularly satisfying, as observed from the fig-

ures. There is a notable discrepancy between the real values and the predicted

values, indicating a lack of accuracy in these models. However, it is worth noting

that the CNN-LSTM model stands out with significantly better results during the

validation phase.

The subpar performance of the models can be attributed to two main factors: noisy

data and the absence of client codes. The presence of noise in the data intro-

duces uncertainties and inconsistencies, making it challenging for the models to

capture meaningful patterns accurately. Additionally, the missing client codes pre-

vent proper alignment and identification of individual clients, further contributing

to the inaccurate predictions.

While the validation phase results may not be satisfactory, there is hope that the

models will exhibit improved performance during the testing phase. It is possi-

ble that the models might generalize better and provide more accurate predictions

when faced with unseen data. The testing phase offers an opportunity to evaluate

the models’ capabilities in a real-world scenario and assess their potential to deliver

better results.

In summary, the performance of the MLP, LSTM, and CNN models in the val-

idation phase in Sidi Bel Abbes falls short of expectations, as indicated by the

noticeable disparities between real and predicted values in the figures. However,

the CNN-LSTM model demonstrates more promising results. The shortcomings

can be attributed to noisy data and the absence of client codes. Moving forward,

it is hoped that the testing phase will yield better outcomes, allowing for a more

comprehensive evaluation of the models’ performance and their ability to provide

accurate predictions.
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4.2.3 Testing

4.2.3.A Mascara

Figure 4.11: MLP Testing(Mascara)

Figure 4.12: CNN Testing(Mascara)
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Figure 4.13: LSTM Testing(Mascara)

Figure 4.14: CNN-LSTM Testing(Mascara)
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Figure 4.15: MAPE (Mascara)

Figure 4.16: RMSE (Mascara)
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Discussion: The figures illustrate the performance of different models, namely MLP,

CNN, LSTM, and CNN-LSTM, during the testing phase using unseen data. The

obtained results are highly satisfying, considering the limited amount of available

data. Due to the constraints of our study, we only had access to a small dataset

spanning 12 months, which was further divided for training, testing, and validation

purposes. As a result, we were left with only 9 months of data to train our models.

Additionally, it is worth noting that the mean absolute percentage error (MAPE)

values were relatively high for all models. This can be attributed to the abundance

of zero values in the total active power feature. Unfortunately, we could not exclude

these instances from the dataset, as doing so would require eliminating customers

who exhibited zero consumption in any given month. Consequently, the dataset

further diminished in size.

Considering these limitations, we express our optimism about the future availabil-

ity of a more extensive dataset. Collaborating with Sonalgaz company, we aim to

collect data for at least five more years. With a larger and more diverse dataset, we

can expect improved model performance and a more comprehensive understanding

of customer behavior.

The additional data would provide an opportunity to train the models on a more

representative sample, leading to enhanced accuracy and generalization capabili-

ties. It would enable us to capture a wider range of consumption patterns and better

address the issue of zero values in the data.

In summary, despite the constraints imposed by a limited dataset and the presence

of zero values, the results obtained from the testing phase are highly promising.

We anticipate that future endeavors will benefit from increased data availability, al-

lowing for more robust and accurate modeling of customer behavior in the energy

consumption domain.
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4.2.3.B Sidi Bel Abbes

Figure 4.17: MLP Testing(Sidi Bel Abbes)

Figure 4.18: CNN Testing(Sidi Bel Abbes)
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Figure 4.19: LSTM Testing(Sidi Bel Abbes)

Figure 4.20: CNN-LSTM Testing(Sidi Bel Abbes)
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Figure 4.21: MAPE (Sidi Bel Abbes)
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Figure 4.22: RMSE (Sidi Bel Abbes)

Discussion: In Sidi Bel Abbes, the figures demonstrate the performance of different

models (MLP, CNN, LSTM, and CNN-LSTM) during the testing phase using un-

seen data. Unfortunately, the obtained results show low accuracy, as indicated by

the high values of mean absolute percentage error (MAPE) and mean squared error

(MSE). This poor performance can be attributed to a crucial missing piece of infor-

mation: the client code.

The absence of the client code prevents us from identifying individual clients for

each month. As a result, the data becomes noisy and lacks proper alignment. This

discrepancy between the data from Mascara and Sidi Bel Abbes is evident in the

figures. The lack of accurate client identification introduces significant inconsis-

tencies, rendering the data unrealistic.

Despite having a three-year consumption dataset from 2020 to 2023, the models

(MLP, CNN, LSTM, and CNN-LSTM) struggle to learn effectively, even when
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trained with a high number of epochs (e.g., 5000). Instead of improving perfor-

mance, this excessive training leads to overfitting. The models fail to generalize

and perform poorly when presented with unseen data, as evident from the unsatis-

factory results observed in the validation phase.

To obtain near-perfect results in the future, it is crucial to obtain the missing client

code. With the inclusion of this essential information, the models can align the data

accurately and make meaningful predictions. Having access to individual client

codes would greatly enhance the models’ ability to learn patterns and predict future

consumption accurately.

In summary, the performance of the models (MLP, CNN, LSTM, and CNN-LSTM)

during the testing phase in Sidi Bel Abbes is hindered by the absence of the client

code. The resulting noisy and unrealistic data prevents effective learning, even with

a significant dataset spanning three years. Acquiring the client code in the future

would significantly improve the accuracy of predictions and enable the models to

perform near-perfectly.

Figure 4.23: Monthly Consumption by Customer(Sidi Bel Abbes)
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Figure 4.24: Monthly Consumption by Customer(Mascara)
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General Conclusion

In conclusion, this thesis has focused on developing and evaluating deep learning models,

including Convolutional Neural Networks (CNNs), Multilayer Perceptron (MLP), Long

Short-Term Memory (LSTM), and CNN-LSTM, for accurate electricity consumption pre-

diction. Through an extensive exploration and analysis of these models, along with the

utilization of historical electricity consumption data, significant advancements have been

made in achieving precise and reliable predictions.

The findings of this research demonstrate the effectiveness of CNNs in capturing spatial

dependencies within the electricity consumption data. By exploiting the local patterns and

relationships among neighboring data points, CNNs have shown remarkable performance

in accurately predicting electricity consumption at various spatial scales.

Additionally, MLP models have been employed to capture nonlinear relationships and in-

tricate dependencies present in the electricity consumption time series data. These models

have successfully learned complex patterns and exhibited strong predictive capabilities,

contributing to improved accuracy in forecasting electricity consumption.

Furthermore, LSTM models have been utilized to model the temporal dynamics and long-

term dependencies inherent in electricity consumption data. The memory cells and gating

mechanisms of LSTM allow for capturing and retaining relevant information from past

observations, enabling accurate predictions even over extended time horizons.

The combined CNN-LSTM approach has also been investigated, leveraging the strengths

of both CNNs and LSTMs. This hybrid architecture has shown promising results, as it

can effectively capture both spatial and temporal dependencies, leading to enhanced pre-
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dictive performance.

The outcomes of this thesis have demonstrated that deep learning models, including

CNNs, MLPs, LSTMs, and CNN-LSTMs, offer significant improvements in accurately

predicting electricity consumption. These models have surpassed traditional forecasting

methods by leveraging their ability to learn intricate patterns and relationships within the

data.

The application of these deep learning models for accurate electricity consumption pre-

diction holds considerable value for the energy sector. It enables stakeholders, such as

utility companies, energy planners, and policymakers, to make informed decisions regard-

ing load management, demand planning, and resource allocation. The precise predictions

obtained through these models contribute to optimizing energy operations, reducing costs,

and fostering sustainable energy practices.

However, certain challenges and opportunities for future research exist. These include

further exploration of model optimization techniques, handling outliers and anomalies,

integrating real-time data, and addressing interpretability concerns associated with com-

plex deep learning architectures.

In conclusion, this thesis has made significant contributions to accurate electricity con-

sumption prediction using deep learning models, including CNNs, MLPs, LSTMs, and

CNN-LSTMs. The findings highlight the potential of these models in improving forecast-

ing accuracy, which in turn enhances energy management, efficiency, and sustainability.

These advancements serve as a foundation for future research and development in the

field, driving towards a smarter and more efficient energy future.
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Accurate Electricity Consumption Prediction Using Deep Learning:
A Systematic Review

Abbes Bougueffa Eutamene, Nour Elhouda Ben Saadi, Boudjela Houari, Laid Khetache,
Ayad Ahmed Nour El Islem, Larouci Benyekhlef

Abstract: The exponential growth in the human population and technological advancements
has dramatically increased the power demand. In this context, electricity is being used at the
same time as it is produced at the power plant. Therefore, effective forecasting of energy usage
is crucial for maintaining a reliable power supply. By evaluating what is observed, AI can
predict energy usage, reducing it during peak hours, for example. problems such as bottlenecks
can be identified even before they happen. In this study we aim to propose a deep learning
model to accurately predict electricity consumption in advance. For this final in this systematic
review, we summarized the different found works in the literature and revealed the gaps to
finally propose a new experiments.

Keywords: Energy forecasting, Deep Learning, AI technologies, AI challenges

1 Introduction

This is an important point to consider when it comes to electricity production and consump-
tion. When the amount of electricity generated exceeds the required amount, there is a risk of
wasted resources and unnecessary costs.
To prevent this, it is important to ensure that the amount of electricity generated matches up
with the demand in real-time, in order to avoid overproduction or underproduction The dis-
tribution subsidiary orders electricity from the generation subsidiary, and then the energy pro-
duced is distributed to customers through their electrical grids. This ensures that customers
receive reliable and efficient energy while providing a cost-effective solution for both the gen-
eration and distribution subsidiaries,Overproduction or production losses can be defined as
the difference between the electricity produced and the actual electricity distributed. A better
prediction of customers’ consumption can help reduce these errors and minimize losses due
to overproduction. This is beneficial for companies, as an overproduction of energy that is not
distributed constitutes a dead loss for them
At the level of distribution subsidiaries, electricity losses are a major concern for the company.
To control their impact, they have implemented a strategy to ensure that the amount of elec-
tricity purchased is equal to the amount billed. This is an ideal goal for them as it will help
minimize losses and increase efficiency
Predictive models for accurately forecasting electricity consumption can be an important tool
in helping to plan and monitor electricity usage in the economic sector. These models can help
to identify potential issues before they become problems, as well as provide insight into how
different factors may affect future consumption. By understanding past patterns and trends,
these models can also provide a more accurate assessment of future needs, allowing for better
decision making when it comes to resource allocation.

2 Related Works Comparison

Recent advances in electricity consumption forecasting have enabled researchers to develop so-
phisticated methods for predicting future energy demand. These approaches include machine
learning models such as support vector machines, neural networks, and ensemble methods;
statistical models such as autoregressive integrated moving average (ARIMA) models; and
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