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ABSTRACT

Recently, there has been a substantial surge in interest surrounding diffusion probabilistic

models, which are considered a prominent class of generative models, particularly in the

realm of deep learning. These models have garnered significant attention due to their po-

tential applications in a range of deep-learning problems.

The primary objective of this thesis is to assess the effectiveness of Diffusion models as a

data augmentation technique in the context of medical image analysis. Furthermore, it

aims to conduct a comparative analysis of the performance exhibited by deep-based classi-

fiers trained on two distinct datasets. One dataset was augmented using diffusion models,

while the other dataset underwent traditional data augmentation techniques.

Utilizing the IDRID dataset for the purpose of diabetic retinopathy diagnosis, the acquired

outcomes substantiate the efficacy of Diffusion models as a data augmentation methodol-

ogy for medical images, in contrast to the traditional data augmentation technique which is

predominantly employed. The integration of diffusion model augmented data yielded su-

perior performance for both classifiers, namely the Fine-tuned Resnet50 and the proposed

CNN, surpassing the performance of classifiers trained using traditional data augmentation.

KEYWORDS

Diffusion Models, Data augmentation, Diabetic retinopathy, deep learning classifier,

IDRID dataset, Medical images.
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RÉSUMÉ

Dans les années dernières,il y a eu une augmentation substantielle de l’intérêt entourant les mod-

èles probabilistes de diffusion, qui sont considérés comme une classe de modèles génératifs, en

particulier dans le domaine de l’apprentissage profond. Ces modèles ont suscité une attention con-

sidérable en raison de leurs applications éventuelles dans une gamme de problèmes d’apprentissage

profond.

L’objectif principal de cette thèse est d’évaluer l’efficacité des modèles de diffusion en tant que

technique d’augmentation de données dans le contexte de l’analyse d’images médicales. En outre,

l’objectif est de réaliser une analyse comparative des performances des classifieurs basés sur l’apprentissage

profond entraînés sur deux ensembles de données distincts. Un ensemble de données a été aug-

menté en utilisant des modèles de diffusion, tandis que l’autre ensemble de données a été soumis à

des techniques d’augmentation de données traditionnelles.

En utilisant IDRID dataset dans le but du diagnostic de la rétinopathie diabétique, les résultats

obtenus confirment l’efficacité des modèles de diffusion en tant que méthodologie d’augmentation

de données pour les images médicales, par rapport à la technique traditionnelle d’augmentation de

données qui est principalement utilisée. L’intégration de données augmentées par des modèles de

diffusion a conduit à des performances supérieures pour les deux classifieurs, à savoir le Resnet50

fine-tuned et le CNN proposé, dépassant les performances des classifieurs entraînés à l’aide de

l’augmentation de données traditionnelle.

MOTS-CLÉS:

Les modèles de diffusion, L’augmentation de données, La rétinopathie diabétique, Classifieur

d’apprentissage profond, IDRID dataset, Les images medicales.
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GENERAL INTRODUCTION

Machine learning (ML) has significantly impacted various domains of our modern society over the

past few decades [3] where it has demonstrated cognitive capabilities comparable to humans and

has even surpassed human performance, exhibiting superhuman abilities [4, 5]. As a result, both

ML and its subset, deep learning (DL), have found increasing applications in the medical field [3],

and the ability to automatically process medical images has led researchers to develop systems for

automated analysis and diagnosis [6]. This advancement has paved the way for the creation of ef-

ficient and accurate tools to enhance the capability of the tasks of medical image analysis [6]. The

success of machine learning in the medical field can be attributed to the availability of high-quality

and large-scale training data. However, it is important to note that the collection and annotation

of a specific medical dataset can be a time-consuming and expensive process, requiring careful at-

tention and concentration [7], while given the sensitive nature of this field, precision and accuracy

are paramount in the diagnostic process, which often requires a significant time commitment and

concentration [7].

One approach to address the limited availability of medical datasets and the cumbersome task

of collecting and annotating medical images is through data augmentation techniques. Data aug-

mentation involves generating additional images, either by augmenting existing ones or creating

new ones from scratch, utilizing various methods [8]. This process aims to improve the diversity

and quantity of the available annotated data, thereby enhancing the robustness and generalization

capabilities of machine learning models in medical image analysis tasks.

In the context of data augmentation, a range of methods and tools have emerged to underline

this process, encompassing both traditional approaches and deep learning-based techniques. Focus-

1



GENERAL INTRODUCTION 2

ing on deep generative models, these latter have gained attention due to their ability to generate

high-quality samples. Noteworthy among these models are diffusion models, which have demon-

strated state-of-the-art performance in image generation tasks [9].

Based on an extensive literature review that we conducted on the diverse applications of dif-

fusion models in the medical domain, it was observed that most of the previous research focused

predominantly on utilizing diffusion models to process medical images. Brain datasets were the

most commonly used images in the studies reviewed, with six papers using them for a variety of

tasks [10–15]. Four papers used chest images [12, 16–18]as a consequence of the study on the

paper [12] used two diffrent types of datasets, while one paper used retinal images [19]. and

mentioning the data augmentation task„ two papers applied data augmentation to dermatology

images [20,21].

However, in the context of data augmentation, only a few investigations were conducted on

dermatology datasets.

In this work, we aim to assess the employment of diffusion models as a data augmentation tech-

nique for the diabetic retinopathy dataset. This choice aims to facilitate a new study with unique

perspectives and research contributions.

To do so, the augmented dataset is utilized to train deep-learning models for disease diagnosis.

The diagnostic outcomes that are obtained from these models are compared to those achieved using

the widely recognized data augmentation techniques, serving as a validation of the effectiveness of

the proposed approach.

Our main contributions are summarized as follows:

• We conducted an extensive and comprehensive literature review on the use of diffusion mod-

els in the medical field. We have to mention that, although we used the categorization given

in [21], our investigation provides more details about the state of the artworks.

• We make use of diffusion models as a data augmentation technique. We assess the quality of

the obtained images by evaluating two classifiers on the task of diabetic retinopathy diagnosis.

Our thesis is organized as follows:

Chapter 1 provides a brief overview of diverse data types and associated data collection devices,

emphasizing the critical role of data in the advancement of ML models. The chapter also discusses

the preprocessing and preparation of medical datasets and presents notable ML tasks specific to
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the medical domain. Additionally, it explores the challenges encountered when applying ML in the

medical field.

Chapter 2 presents a brief overview of data augmentation surveys and aligns the methods

utilized in this thesis.

Chapter 3 discusses variants of diffusion models that have been refined from diffusion proba-

bilistic models. Moreover, we present a comprehensive study of the state-of-the-art in the applica-

tion of diffusion models to medicine field. We review the various tasks that diffusion models have

been used for in medicine and mention the various types of medical images that diffusion models

have been used with (Brain images, chest images, etc).

Chapter 4 provides a detailed description of the methodology that is used for augmenting data

set images as well as the architecture of the classifiers used for retinopathy diagnosis.

Chapter 5 concludes this thesis by presenting and discussing the results of the disease grading

using the methodology that was described in the previous chapter.



CHAPTER 1
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1 INTRODUCTION

Machine learning refers to the ability of systems to acquire knowledge from specific training data,

enabling the automated construction of analytical models and the resolution of associated tasks [4].

In recent years, the field of machine learning has experienced a transformative phase, characterized

by a growing demand for precise and effective models that possess cognitive capabilities similar

to humans [4], and even surpass human performance, exhibiting superhuman capabilities [5]. In

order to attain such achievements, models are iteratively trained and their parameters are adjusted

until optimal outcomes are attained. However, the fundamental determinant in developing an opti-

mal model lies in the quality and quantity of data employed for training purposes [22]. Therefore,

it is of paramount importance to meticulously collect, filter, preprocess, and visualize the data prior

to training any model. The subsequent sections will provide some diverse data types and the associ-

ated data collection devices, highlighting the crucial role of data in the progress of machine learning

models. Additionally, we will address the preprocessing and the preparation of medical datasets and

showcase notable machine learning tasks specific to the medical domain. Furthermore, we will dis-

cuss the challenges encountered by machine learning in the medical field.

2 DATA COLLECTION

Data, within the realm of machine learning, represents the foundational substrate upon which sig-

nificant patterns are automatically discerned. Over the preceding decades, machine learning has

emerged as an omnipresent tool deployed across a diverse spectrum of tasks demanding the ex-

traction of information from extensive datasets [23]. The availability of data assumes paramount

importance in the development of machine learning models. With the proliferation of various online

platforms, such as Kaggle 1, IEEE 2, UCI Machine Learning Repository 3, Data.gov 4, GitHub 5, and

TensorFlow 6, data can be readily accessed and downloaded. While the acquisition of private data

may necessitate specific permissions, it does not impede the accessibility of other data sources. In

certain scenarios, developers must procure data themselves, particularly when it pertains to private

datasets or those that are not publicly accessible.

1https://www.kaggle.com
2https://www.ieee.org
3https://archive.ics.uci.edu/ml/index.php
4https://data.gov
5https://github.com
6https://www.tensorflow.org

https://www.kaggle.com
https://www.ieee.org
https://archive.ics.uci.edu/ml/index.php
https://data.gov
https://github.com
https://www.tensorflow.org
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Textual data can be procured from social media platforms (e.g., Facebook 7, Twitter 8) [24], legal

documents such as scientific papers [25], web pages, and online reviews [26].

Audio data can be obtained from diverse resources such as podcasts [27], music recordings [28],

and voice recordings [29].

For video data, various sources can be utilized, including smartphone video recordings [30], home

videos, surveillance footage [31], news footage [32], or motion capture data [33].

In the case of image data, a plethora of devices can be employed, encompassing digital cam-

eras [34], smartphones [35], and satellites [36]. Medical imaging which can be considered as

a subset of the image dataset warrants the use of distinct devices for image acquisition, such as the

Methylammonium lead iodide (MAPbI3) perovskite-based semiconductor detector for X-ray and CT

scans [37], or magnetic resonance imaging (MRI) scanner systems for MRI scans [38].

The use of data necessitates meticulous planning, entailing the delineation of objectives and re-

quirements, meticulous selection of appropriate data sources, and meticulous assurance of data

quality and consistency, particularly for sensitive datasets such as medical datasets. Furthermore,

ethical and legal considerations, such as data privacy and intellectual property rights, assume criti-

cal significance [39].

3 MEDICAL DATASET

Medical imaging encompasses a range of procedures that facilitate the visual representation of

anatomical and physiological information pertaining to the human body. Its primary objective is to

support radiologists and clinicians in enhancing the efficiency of diagnostic and therapeutic proce-

dures. As an integral component of disease diagnosis and management, medical imaging comprises

diverse imaging modalities, each offering unique insights into the underlying pathologies and con-

ditions [40].

To date, both academia and industry have predominantly relied on limited, publicly available

datasets and data obtained through commercial products [39]. However, due to privacy and eth-

ical constraints, institutions that possess medical data face challenges in making it publicly acces-

sible [41]. Furthermore, researchers who specialize in applying deep learning (DL) methods to

medical image analysis often lack a medical background, typically computer scientists. As a result,

they encounter obstacles in independently collecting data due to restricted access to medical equip-

ment and patients, as well as in annotating the acquired data due to a lack of relevant medical

7https://www.facebook.com
8https://www.twitter.com

https://www.facebook.com
https://www.twitter.com
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knowledge [41].

Therefore, in the context of utilizing medical images for the development of machine learning al-

gorithms, a well-defined sequence of steps becomes crucial. Firstly, it is imperative to obtain local

ethical committee approval before employing medical data for algorithm development [42]. This

approval signifies adherence to ethical guidelines and ensures the preservation of patient privacy.

Subsequently, an institutional review board evaluates the associated risks and benefits of the study

to safeguard patient safety and well-being [42]. Following ethical approval, the de-identification

of collected data becomes essential to maintain patient confidentiality and privacy [43]. Addition-

ally, the implementation of secure storage measures is necessary to prevent unauthorized access or

breaches.

Another critical aspect involves establishing the connection between medical images and their corre-

sponding ground-truth information. Ground-truth information may encompass one or more labels,

segmentation masks, or electronic phenotypes such as biopsy or laboratory results [42]. This link-

age enables accurate training and evaluation of machine learning models, facilitating meaningful

analysis and interpretation.

In conclusion, it is crucial to adhere to a systematic process when utilizing medical images for the

development of machine learning algorithms. This process involves obtaining ethical approval, de-

identifying the data, implementing secure storage measures, and establishing connections between

images and ground-truth information to enable effective analysis and interpretation [42].

4 MACHINE LEARNING TASKS IN THE MEDICAL FIELD

During the period spanning from the 1970s to the 1990s, the field of medical image analysis pri-

marily relied on a sequential approach that involved the application of low-level pixel processing

techniques (such as edge and line detector filters, region growing) and mathematical modeling

(including the fitting of lines, circles, and ellipses). These methods were utilized to construct rule-

based systems capable of addressing specific tasks within medical image analysis [6]. However, in

recent years, there has been a substantial increase in the number of publications utilizing computer

vision techniques for the analysis of static medical imagery, with the volume of such publications

rising from hundreds to thousands [6]. Machine learning algorithms have been developed to op-

timize workflow and provide support to medical specialists, including doctors, surgeons, analysts,

and radiologists. Furthermore, these algorithms have the potential to alleviate challenges in patient

care, particularly in scenarios where access to medical experts is limited or unavailable at certain

medical centers. Notably, the efficacy of machine learning and deep learning algorithms in various
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medical tasks has surpassed the performance of medical specialists in certain cases.

Significant progress has been made in the medical domain, leading to improvements in workflow

and the resolution of diverse challenges. For example, Computer-Aided Detection (CAD) algorithms

have been employed for the purpose of triaging screening mammograms by detecting and annotat-

ing suspicious findings, thereby enhancing the sensitivity of radiologists [44]. Deep learning neural

networks have facilitated the reduction or elimination of gadolinium-based contrast media usage

in MRI scans [45]. Additionally, noise reduction techniques have been applied to CT images to

decrease radiation dosage during CT imaging [46].

Machine learning techniques have also demonstrated successful outcomes in automatic lesion de-

tection across various imaging modalities. Examples include the identification of pulmonary ma-

lignant neoplasms, active tuberculosis, pneumonia, and pneumothorax in thoracic diseases [47],

the identification of intracranial hemorrhages [48], Retinal image analysis, encompassing blood

vessel segmentation [49] and diabetic retinopathy detection [50], the prediction of Alzheimer’s

disease diagnosis [51] and urinary stone detection [52]. Moreover, automatic quantification of

medical images has enabled the assessment of skeletal maturity based on pediatric hand radio-

graphs [53], coronary calcium scoring using CT images [54], prostate cancer classification using

MRI images [55], ventricle segmentation from cardiac MRI scans [56] and innovation in surgery

simulation, allowing surgeons to predict and explore potential solutions before performing opera-

tions, thus saving time and costs [57].

The scarcity of image data for training and evaluating artificial intelligence (AI) algorithms poses

a substantial constraint and challenge within the field of medical image analysis. Scholars and

professionals emphasize the criticality of obtaining ample and diverse datasets to enhance the per-

formance and generalizability of AI algorithms in the context of analyzing medical images. Access to

such datasets is essential for advancing the capabilities of AI algorithms and enabling more accurate

and reliable analysis of medical images.

5 DATA UNAVAILABILITY IN THE MEDICAL FIELD

Data availability constitutes a fundamental consideration in the realm of machine learning (ML) ap-

plied to healthcare. Sufficient and diverse data are indispensable for developing high-performance

ML models and evaluating their generalizability with confidence. However, data availability en-

counters various constraints that hinder these objectives. Such limitations may arise from factors

like incomplete digitization, as observed in pathology where a majority of slides remain unscanned,

inaccessibility due to patient privacy concerns or commercial restrictions [58], or insufficiency con-
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cerning diseases affecting a small patient population, thereby impeding both diagnosis and treat-

ment [59].

According to the European Union (EU) definition, diseases are categorized as rare when their preva-

lence is below 5 individuals per 10,000 [60]. This scarcity of data engender adverse effects, includ-

ing delayed disease diagnosis, hindered treatment efficacy, and potential fatality, exemplified by

Fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder that causes systemic and pro-

gressive ossification in various fibrous tissues, which was examined in a study involving a cohort of

four patients. However, due to certain limitations, the images of one patient were excluded from

the study. Among the remaining three patients, two underwent three separate CT scans each, while

the third patient underwent four CT scans [61].

Moreover, the acquisition of well-annotated medical data is a resource-intensive and time-consuming

process [62], necessitating the involvement of specialists. For instance, in the study [7], three

datasets comprising 11,852 image samples from 872 patients were collected from three medical

centers and were utilized to evaluate the method’s applicability in real-world scenarios. The an-

notations of these datasets were meticulously curated by three experienced radiologists with over

a decade of expertise in interpreting breast MR images and which coasts a significant amount of

time, effort, and financial resources to be realized. However, the labor-intensive and resource-

demanding nature of the annotation process poses limitations on the availability of adequately

annotated datasets.

Overall, data availability poses significant challenges when applying ML to healthcare, as relying on

limited-sized data for training machine learning algorithms proves inadequate. This insufficiency

is demonstrated by the study on Soft Tissue Sarcoma conducted on the Cancer Imaging Archive

dataset of anatomical MR imaging data from 51 patients [63], indicating that ML algorithms typ-

ically necessitate substantial volumes of data with balanced class distributions to achieve optimal

performance.

To address this predicament, a robust and comprehensive approach is required to handle the un-

availability of data. This approach aims to augment patient care for individuals afflicted with rare

diseases and expedite diagnosis in cases burdened by extensive waiting lists, particularly in densely

populated urban areas. By adopting such an approach, more efficient referrals can be facilitated,

leading to enhanced healthcare delivery in terms of quality and timeliness [59].

Furthermore, the unavailability of data is a significant factor that impacts the development of the

machine learning domain in the medical field. This limitation poses a challenge to the effective im-

plementation and advancement of machine learning models, hindering their potential in providing

additional support and augmenting the expertise of medical practitioners.
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6 CONCLUSION

In conclusion, recent years have witnessed significant advancements in machine learning, resulting

in the development of models that exhibit cognitive capabilities comparable to humans and even

surpass human performance in certain tasks.

The quality and quantity of data utilized for training machine learning models play a pivotal role in

achieving optimal outcomes. Data collection encompasses accessing diverse sources and employing

specific devices for various data types, including textual, audio, video, and image data.

In the realm of medical imaging, ethical considerations, and data privacy assume paramount impor-

tance, particularly when dealing with medical datasets. Machine learning techniques have greatly

benefited the field of medical image analysis, facilitating improved workflow and addressing chal-

lenges in patient care. However, the scarcity of labeled data remains a significant constraint, im-

peding the progress of AI algorithms in medical image analysis.

Data availability presents challenges in healthcare applications of machine learning, including fac-

tors such as incomplete digitization, limited accessibility, and diseases affecting small patient pop-

ulations. The scarcity of data negatively impacts disease diagnosis, treatment efficacy, and patient

outcomes. Furthermore, the acquisition of well-annotated medical data is a resource-intensive and

time-consuming process, further limiting the availability of adequately annotated datasets.

The field of machine learning in healthcare holds immense potential, yet it faces challenges related

to data availability. Therefore, in the subsequent chapter, we will delve into one of the prominent

strategies employed to tackle the challenge of data unavailability.
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1 INTRODUCTION

As stated in Chapter 1, the adequacy or bias in the training data can significantly impact the gener-

alization performance, irrespective of advancements in model design and training methodologies.

Conversely, employing comprehensive, diverse, and representative datasets consistently results in

satisfactory performance, even with less complex algorithms [64]. Data augmentation is a com-

monly employed approach to tackle the scarcity of training datasets, wherein new samples are

generated either from existing data or from scratch [8]. Furthermore, this chapter aims to present

a brief overview of data augmentation surveys. To align with the methods utilized in this thesis, we

have adopted a taxonomy from relevant papers [8,21,65–68].

2 DATA AUGMENTATION

Data augmentation involves generating additional training samples from existing data or creating

them from scratch using various methods [8]. Expanding the training data can be achieved through

two main approaches: the manipulation of existing training data, which is called the traditional

(classical) image data augmentation, and the generation of new data samples, called the deep-

based learning augmentation [65]. Figure 2.1 portrays the employed taxonomy for various data

augmentation tools including the utilized ones.
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Figure 2.1: Taxonomy of data augmentation tools

2.1 TRADITIONAL DATA AUGMENTATION

The traditional image transformation methods, comprising both photometric and geometric tech-

niques and other methods, such as random erasing [8,65]. These techniques are employed to apply

various transformations to the existing training data, thereby enhancing its diversity and expanding

the size of the training set. By introducing such variations, the training data is effectively augmented

to simulate real-world scenarios, leading to improved generalization capabilities of machine learn-

ing models [69–71].

GEOMETRIC TRANSFORMATION

Geometric transformations encompass a set of image data augmentation techniques utilized to alter

the geometric properties of images [8]. This category of transformations comprises operations such

as flipping, rotation, shearing, cropping, and translation. Unlike other augmentation methods, geo-
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metric transformations do not modify the pixel values but instead focus on repositioning the pixels

within the image [8]. The primary objective of these transformations is to introduce variations in

the training data that accurately reflect real-world changes in appearance, including variations in

viewpoint, non-rigid deformations, perspective adjustments, and changes in scale [8].

Image flipping is a geometric transformation that entails reflecting an image across its vertical

axis, horizontal axis, or both axes simultaneously [65]. By employing flipping techniques, users can

augment the dataset without the need for artificial processing [65]. This augmentation technique

encompasses various methods, including vertical flipping, horizontal flipping, and the combined

approach involving both vertical and horizontal flipping. Vertical flipping entails rotating the image

upside down, with the y-axis positioned at the top and the x-axis at the bottom. The transformation

is described by the fx and fy values, which represent the current coordinates of each pixel after

flipping along the vertical axis (Eq 2.1).[
fx

fy

]
=

[
1 0

0 −1

]
·

[
x

y

]
(2.1)

On the other hand, horizontal flipping requires the image to be horizontally rotated, resulting in its

left and right sides being reversed. The fx and fy components determine the pixel’s new location

after reflection along the horizontal y-axis (Eq 2.2).[
fx

fy

]
=

[
−1 0

0 1

]
·

[
x

y

]
(2.2)

Furthermore, vertical and horizontal flipping combines both of these transformations, resulting

in a horizontally and vertically rotated image where both the horizontal and vertical columns are

preserved. The fx and fy coordinates represent the current coordinates of each pixel after reflection

along the vertical and horizontal axes, respectively (Eq 2.3).[
fx

fy

]
=

[
−1 0

0 −1

]
·

[
x

y

]
(2.3)

Rotation is a classical geometric image data augmentation technique whereby the image is

rotated around an axis, either clockwise or counterclockwise, by angles ranging from 1 to 359

degrees [65]. The rotation process can be applied to images incrementally by a specified angle

degree. For instance, rotating an image at approximately 30-degree intervals would result in a

set of 11 images with rotation angles of 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, and 330

degrees. The rotation equation, as depicted in Eq. 2.4, describes the transformation of the pixel’s



CHAPTER 2. DATA AUGMENTATION TOOLS 15

new position (fx, fy) after the rotation process, based on the initial coordinates (x, y) of the raw

image. [
fx

fy

]
=

[
cosφ − sinφ

sinφ cosφ

]
·

[
x

y

]
(2.4)

Shearing is a geometric transformation that alters the shape of an object within an image by

modifying its dimensions along both the x and y directions [65]. This technique is particularly useful

for distorting the original shape of an object. Shearing can be classified into two types: shearing

along the x-axis and shearing along the y-axis. Equation 2.5 defines the shearing transformation

along the x-axis, while Equation 2.6 describes the shearing transformation along the y-axis. The fx

and fy variables represent the new position of each pixel after the shearing operation, whereas x

and y denote the coordinates of the corresponding pixel in the original image.[
fx

fy

]
=

[
1 shX

0 1

]
·

[
x

y

]
(2.5)

[
fx

fy

]
=

[
1 0

shY 1

]
·

[
x

y

]
(2.6)

Cropping is a classical geometric image data augmentation technique used to magnify the orig-

inal image. Cropping involves two distinct methods [65] (sometimes referred to as "zooming" or

"scaling" in scientific research). The first method involves selecting a region within the image, start-

ing from a specific X, Y location and ending at another X, Y location. For instance, if the image

size is 200x200 pixels, a cropping operation may involve cutting the image from the location (0,

0) to (150, 150), or from (50, 50) to (200, 200). The second method entails scaling the cropped

image back to its original size. Following the previous example, the cropped image would be resized

to 200x200 pixels. Equation 2.7 depicts the scaling equation, where fx and fy represent the new

coordinates of each pixel after the scaling operation, and x and y represent the coordinates of the

original location within the image.[
fx

fy

]
=

[
Xscale 0

0 Yscale

]
·

[
x

y

]
(2.7)

The translation is a fundamental operation that involves displacing an object within an image

from one position to another. In the geometric image data augmentation, translation is typically

performed while considering the preservation of image data [65]. This can be achieved by leaving

a portion of the image white or black after the translation, preserving the original image data, or
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introducing randomness or Gaussian noise. Translation can be performed in the X direction, Y

direction, or both simultaneously (X and Y direction). Translating images in different directions,

such as left, right, up, or down, can be particularly useful for mitigating positional bias in the data.

Equation 2.8 presents the translation equation, where fx and fy denote the new coordinates of each

pixel after the translation operation, and x and y represent the coordinates of the original location

within the image. [
fx

fy

]
=

[
x

y

]
+

[
Tx

Ty

]
(2.8)

PHOTOMETRIC TRANSFORMATION

Photometric transformations represent a class of image data augmentation methodologies employed

to manipulate the pixel values of images while retaining their fundamental structure and geome-

try [70, 72]. Their principal objective is to modify the visual appearance and attributes of images,

encompassing elements such as brightness, contrast, color, and texture [70, 72]. In the realm of

computer vision tasks, photometric transformations assume a critical role in the augmentation of

training data. By introducing variations in the visual appearance of images, these transformations

strive to enhance the generalization capacity and robustness of machine learning models. Their pur-

pose extends to simulating real-world scenarios, accommodating diverse lighting conditions, and

bolstering the diversity exhibited within the training dataset [70,72]. The photometric transforma-

tion encompasses various methods, including color space-shifting, image filters, and noise [65].

Color space-shifting is a classical photometric data augmentation technique within the realm

of color manipulation [65]. A color space is a mathematical construct used to represent and ma-

nipulate colors based on their properties such as brightness and hue. In human perception, colors

are distinguished based on the quantities of red, green, and blue light emitted by the phosphor

panel. In classical photometric data augmentation, color space shifting is considered an impor-

tant technique for augmenting the number of images and revealing hidden features that may be

obscured under a specific color space. Several well-known color spaces are commonly used, includ-

ing CMY(K) (Cyan-Magenta-Yellow-Black), YIQ, YUV, YCbCr, YCC (Luminance/Chrominance), HSL

(Hue-Saturation-Lightness), and RGB (Red-Green-Blue). Color space shifting allows for random

and intelligent modifications. Adjusting pixel values by a constant value can enhance the visibility

of bright or dark images. Furthermore, color space manipulation enables independent processing

of individual RGB color channels. Another approach involves constraining pixel values to a mini-

mum or maximum range. These techniques contribute to enhancing the color appearance of optical

photographs without the need for sophisticated tools.
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Image Filters are numerous widely used image processing techniques, including histogram

equalization, brightness adjustments, sharpening, blurring, and filters, that have gained significant

popularity [65]. These techniques and filters employ the application of an n×m matrix across the

entire image. Histogram equalization is a method used to modify image intensities in order to en-

hance contrast. On the other hand, white balancing aims to alter the image such that it appears

illuminated by a neutral light source [65]. Special operations are often conducted separately in dif-

ferent spectral domains of the signal. Sharpening filters are spatial filters utilized to emphasize fine

details or enhance blurred features within an image [65]. Conversely, blurring involves an averag-

ing process that integrates pixel values with those of neighboring pixels. Combining the sharpening

and blurring filters may result in a distorted image or the accentuation of high-contrast horizontal

or vertical edges, which can aid in the identification of image details [65]. These aforementioned

filters are applied through matrix multiplication between the original image and the corresponding

filter matrix.

Noise is a fundamental element in image augmentation techniques, often employed to enhance

the realism and robustness of image processing algorithms [65]. Various types of noise can be in-

troduced to images, each serving a unique purpose. Gaussian noise, for instance, is commonly used

as it introduces color value variations by applying a noise matrix derived from a standard distribu-

tion. Poisson noise, on the other hand, is inherent in electromagnetic frequencies encountered in

applications like X-ray and gamma-ray machines that emit photons continuously. Another type, salt,

and pepper noise, involves modifying pixel values in specific regions of an image. Lastly, speckle

noise, found in optical devices such as lasers, radar systems, and sonar, can be both multiplicative

and additive. These diverse forms of noise play a crucial role in simulating real-world conditions

and enhancing the overall resilience of image processing algorithms.

RANDOM ERASING

The random erasing technique, an image data augmentation method, is distinct from geometric

transformations commonly employed in image processing [65]. Random erasing operates on the

fundamental principle of randomly selecting a square region within an image and removing its con-

tents. Empirical evidence supports the efficacy of this technique, illustrating its positive influence

on image augmentation and subsequent performance enhancements across diverse tasks. By se-

lectively erasing regions within an image, random erasing introduces perturbations that encourage

robustness and generalization in deep learning models, ultimately improving their ability to handle

variations and challenges present in real-world scenarios.
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2.2 DEEP-BASED GENERATIVE MODELING

Generative modeling techniques are essential in the generation of synthetic data samples that

closely resemble real data instances, capturing their statistical properties and characteristics [8].

These models achieve this by learning the underlying distribution of the training data, enabling

the generation of novel samples that exhibit similar statistical properties to the original data [8].

By comprehending the intricate patterns and dependencies within the training dataset, generative

models excel at generating synthetic data instances that effectively mimic the complexities observed

in real-world data [8].

The application of generative modeling for data augmentation offers several advantages in the

context of machine learning tasks. It facilitates the expansion of the training dataset by creating

additional samples, thereby increasing its size and diversity [8]. This augmentation technique

effectively addresses the challenges associated with limited training data and has the potential to

enhance the generalization performance of machine learning models.

By harnessing the power of generative models, researchers can generate new samples with de-

sired variations, such as different poses, lighting conditions, or object appearances. This capability

allows for the creation of synthetic data that can supplement the original dataset and enhance the

model’s capacity to handle diverse real-world scenarios. In this chapter, we provide a comprehensive

overview of three fundamental generative models: Vanilla Variational Autoencoders (VAEs) [73],

Generative Adversarial Networks (GANs) [74], Diffusion Probabilistic models(DMs) [75].

VANILLA VARIATIONAL AUTOENCODER (VAE)

A vanilla variational autoencoder (VAE) [73] is a probabilistic generative model [76] that is built

upon the concept of an "autoencoder" in deep learning [77]. It comprises two fundamental com-

ponents, namely the encoder and the decoder [76]. During training, the VAE aims to minimize

the reconstruction error between the input and the decoded/reconstructed data, following the stan-

dard autoencoder reconstruction objective. Additionally, it incorporates a variational objective term

to encourage the learning of a latent space distribution resembling a standard normal distribu-

tion [77].
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Figure 2.2: Variation AuotoEncoder architecture
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The basic idea of the VAE for image generation can be summarized as the following:

The probabilistic encoder component of the VAE probabilistically encodes the input data sam-

ples, denoted as x, from a specific dataset X, into a latent variable z from a conditional distribution

qφ(z | x). This encoding process involves the generation of a distribution of representations through

a probabilistic encoder, which is implemented using a neural network and its associated parame-

ters [78].

The generator component, known as the probabilistic decoder, within the VAE, generates data

x̃ through a random process that involves the latent variable z. This process begins by sampling a

value z from a normal distribution. Subsequently, a value x̃ is generated from a conditional distri-

bution pθ(x̃ | z), which is parameterized by θ [76]. The conditional distribution pθ(x̃ | z) determines

the relationship between the generated data x̃ and the latent variable z.

z ∼ N (0, I)

x ∼ pθ(x̃ | z)
The training: Throughout the training process, the VAE aims to maximize the marginal likeli-

hood of the reconstructed data x̃. However, due to the integral of the marginal likelihood pθ(x̃) =∫
pθ(z)pθ(x̃ | z) dz is intractable, the involvement of posterior inference pθ(z|x̃) = pθ(x̃|z)pθ(z)

pθ(x̃)
be-

comes intractable, researchers employ backpropagation and stochastic gradient descent [73] to

optimize the variational lower bound of log likelihood [73].

By utilizing these techniques, the VAE seeks to approximate and improve the likelihood estimation,

thereby enhancing the overall training process.

log pθ(x̃) ≥ Lvae = Eqϕ(z|x)[log pθ(x̃ | z)]−DkL(qϕ(z | x)∥p(z))) (2.9)

Where in 2.9, p(z) is the prior distribution (Unit Gaussian), the posterior distribution of latent

variable z given data x is approximated by the variational posterior, qφ(z | x), which is parame-

terized by an encoder network, and pθ(x̃ | z) is a probabilistic decoder parameterized by a neural

network to generate data x̃ given the latent variable z (a reconstruction term) [73].

To optimize the VAE model, the lower bound of the marginal likelihood Lvae is maximized using

techniques such as the reparameterization trick [73] and the Stochastic Gradient Variational Bayes

(SGVB) estimator [73]. By applying these methods, the VAE model can effectively learn the process

of generating data based on a random latent variable z sampled from a normal distribution.



CHAPTER 2. DATA AUGMENTATION TOOLS 21

GENERATIVE ADVERSARIAL NETWORKS (GAN)

Generative Adversarial Networks (GANs) [74] have emerged as prominent models for effectively

capturing the complexity of real-world data. Comprising a generator (G) and a discriminator (D),

GANs employ adversarial optimization to achieve their objectives [79].

In GANs, the generator and discriminator engage in a competitive interplay, each enhancing

its own capabilities. The generator’s role is to learn and capture the underlying distribution of

authentic samples, while the discriminator, often implemented as a binary classifier, evaluates the

likelihood of a given sample originating from the real dataset. By functioning as a critic, the dis-

criminator strives to refine its ability to discern synthetic samples from genuine ones [80].

Conceptually, the generative model (G) can be likened to a team of counterfeiters producing

and utilizing fake currency without detection, while the discriminative model (D) represents the

police force aiming to identify counterfeit currency [74]. This competitive game pushes both teams

to continuously refine their methods until the counterfeits become indistinguishable from genuine

articles [74]. The following Figure 2.3 illustrates the generator and the discriminator of GANs.

Figure 2.3: General GANs Architecture

To estimate the underlying distribution of real data instances, a prior distribution pz(z) is es-

tablished for the input noise variables. The generator component, denoted as G(z; θg), employs a

differentiable multilayer perceptron function parameterized by θg to map the noise variables z to

the data space. Simultaneously, the discriminator component, denoted as D(x; θd), is introduced as

a multilayer perceptron that outputs a single scalar.

The optimization process involves a minimax game aimed at minimizing the classification loss

function, given by:
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min
G

max
D

V (D,G) = Ex ∼ pdata(x)[logD(x)]︸ ︷︷ ︸
I

+Ez∼pz(z)[log(1−D(G(z)))]︸ ︷︷ ︸
II

(2.10)

In Equation 2.10, D(x) represents the probability that sample x is drawn from the original

data distribution rather than the generator’s distribution. The classification loss consists of two

terms: the first term (I), influenced by real images, is maximized when the discriminator correctly

classifies them as real; the second term (II), influenced by generated images, is maximized when

the discriminator accurately classifies them as fake.

During training, the generator aims to minimize the II term to generate realistic images that

can deceive the discriminator, while the discriminator is trained to maximize the I term to improve

its classification accuracy. The generator and discriminator are trained iteratively in an adversarial

manner. When training the generator, the discriminator is kept fixed, and the classification loss is

minimized. Conversely, when training the discriminator, the generator is fixed, and the classification

loss is minimized from the discriminator’s perspective.

During the inference phase, the discriminator is no longer involved. Instead, random noise

samples z are drawn from a normal distribution (z ∼ N (0, 1)), and the generator maps these

samples to the image space (x′ = G(z)). This process enables the generation of both real and

synthetic images in the image space, which can then be compared using the discriminator through

classification.

In summary, Generative Adversarial Networks (GANs) are designed to learn a probability density

model P (x) that can be sampled. The training procedure involves random sampling from a normal

distribution, with the generator learning a mapping function to generate images in the image space.

The discriminator is employed to compare the real and generated images by classifying them.
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DIFFUSION PROBABILISTIC MODELS

The main idea of Diffusion Probabilistic models (DPMs) [75] is to develop an approach that simul-

taneously achieves both flexibility and tractability. The essential idea, inspired by non-equilibrium

statistical physics, is to systematically and slowly destroy the structure in a data distribution

through an iterative forward diffusion process. We then learn a reverse diffusion process that re-

stores structure in data, yielding a highly flexible and tractable generative model of the data [75].

Figure 2.4: Diffusion models architecture

The method proposed in this paper [75] leverages concepts from non-equilibrium statistical

physics [81] and sequential Markov Chain Monte Carlo [82]. It introduces a novel approach using

a Markov chain to gradually transform one distribution into another.

The central concept introduced by the authors of [75] involves a systematic and gradual destruction

of structure within a given data distribution through an iterative forward diffusion process. Sub-

sequently, a reverse diffusion process is learned to restore the structure in the data, resulting in a

highly adaptable and computationally manageable generative model.

In this approach, the authors construct a generative Markov chain that converts a known simple

distribution (e.g., Gaussian) into the target data distribution through a diffusion process. Instead

of using this Markov chain to approximate the evaluation of a pre-defined model, they explicitly

define the probabilistic model as the final state of the Markov chain. Since each step in the diffusion

chain has a computationally tractable probability, the entire chain can be analytically evaluated.

THE ALGORITHM BEHIND

The objective is to establish a forward diffusion process, referred to as the inference process, that

transforms intricate data distributions into simpler and computationally manageable distributions.
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Subsequently, a finite-time reversal of this diffusion process is learned, defining the generative

model distribution. The authors commence by presenting the details of the forward diffusion

process, followed by elucidating the training and utilization of the reverse diffusion process for

probability evaluation.

Forward Process: The initial distribution, denoted as q(x(0)), represents the data distribution.

Through a series of iterative steps using the Markov diffusion kernel Tπ(y | y′;β), the data

distribution q(x(0)) is gradually transformed into a well-behaved distribution π(y), which pos-

sesses desirable properties and can be analytically evaluated. Here, β represents the diffusion

rate, governing the pace of the transformation process.

π(y) =

∫
dy′ Tπ(y | y′;β)π(y′) (2.11)

q(x(t)|x(t−1)) = Tπ(x
(t) | x(t−1);βt) (2.12)

Referring to Equation 2.12, the conditional distribution q(xt | xt−1) can be represented as

follows: for the Gaussian distribution, q(xt | xt−1) = N (xt;
√
1− βt x

t−1, βtI), and for the

Binomial distribution, q(xt | xt−1) = B
(
xt; (1− βt)x

t−1 + 0.5βt
)
.

In the case of Gaussian diffusion, the selection of β within the forward trajectory plays a

crucial role in determining the efficacy of the trained model. The forward diffusion schedule,

denoted as β2...T , is acquired through gradient ascent on K, ensuring optimized performance.

To mitigate the risk of overfitting, a small constant value is assigned to the initial step’s vari-

ance, denoted as β1. In the discrete Specifically, the diffusion rate βt is set to (T − t + 1)−1,

ensuring that a diminishing proportion of the original signal is preserved as the diffusion pro-

gresses.

The forward trajectory, which entails initiating from the data distribution and executing T

steps of diffusion, can be expressed as follows:

q(x(0...T )) = q(x(0))

T∏
t=1

q(x(t) | x(t−1)) (2.13)

In the conducted experiments (see Equation 2.13), the diffusion process q(x(t) | x(t−1)) cor-

responds to two scenarios: Gaussian diffusion into a Gaussian distribution with an identity

covariance, or binomial diffusion into an independent binomial distribution.

It is important to note that the final state of the diffusion process π(x(T )) follows a Gaussian
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distribution π(x(T )) = N (x(T ), 0, I) for the case of Gaussian diffusion, or a binomial distribu-

tion π(x(T )) = B(x(T ), 0.5) for the case of binomial diffusion.

Reverse Process: The generative distribution will be trained to model the reverse trajectory of the

forward diffusion process, ensuring consistency between the two

p(x(T )) = π(x(T )) (2.14)

p(x(0...T )) = p(x(T ))
T∏
t=1

p(x(t−1) | x(t)) (2.15)

p(x(t−1) | xt) = T (x(t−1); fµ(x
t, t), fΣ(x

t, t)) (2.16)

Referring to Equation 2.16, the conditional distribution p(x(t−1) | xt) can be represented as

follows: for the Gaussian distribution, p(x(t−1) | xt) = N (x(t−1); fµ(x
t, t), fΣ(x

t, t)), and for

the Binomial distribution, p(x(t−1) | xt) = B(x(t−1); fb(x
t, t)).

During the learning process, the estimation of the mean and covariance for a Gaussian diffu-

sion kernel, or the determination of the bit flip probability for a binomial kernel, is required.

Specifically, the functions fµ(xt, t) and fΣ(x
t, t) define the mean and covariance of the reverse

Markov transitions for the Gaussian distribution, while fb(x
t, t) represents the function that

yields the bit flip probability for the binomial distribution.

Training Objective: The process of training involves maximizing the log-likelihood of the model,

L =

∫
dx(0) q(x(0)) log p(x(0)) (2.17)

which has a lower bound provided by Jensen’s inequality,

L ≥
∫
dx(0...T )q(x(0...T )). log p(x(T ))

T∏
t=1

p(x(t−1) | x(t))
q(x(t) | x(t−1))

(2.18)

for the diffusion trajectories, this reduces to,

L ≥ K

K = −
T∑
t=2

∫
dx(0)dx(t)q(x(0), x(t)).DkL(q(x

(t−1) | x(t), x(0))∥p(x(t−1) | x(t)))

+ C

(2.19)
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During the training process, the objective is to identify the reverse Markov transitions that

optimize the lower bound on the log-likelihood, which will automatically minimize the KL

divergence between (q(x(t−1) | x(t), x(0)) which is the ground truth (in image in the forward

Markov chain) and p(x(t−1) | x(t)) which is an image generated from the reverse Markov

chain.

The training process involves identifying the reverse Markov transitions that maximize the

lower bound on the log likelihood

Hence, the estimation of a probability distribution is simplified to the regression task of de-

termining the functions that specify the mean and covariance of a sequence of Gaussian

distributions (or the state flip probability for a sequence of Bernoulli trials).

3 CONCLUSION

In conclusion, this chapter provided a brief overview of data augmentation tools. Data augmenta-

tion serves as a widely adopted strategy to address the limited availability of training datasets and

enhance the generalization performance of machine learning models. The chapter discussed two

primary approaches to data augmentation: traditional (classical) methods and deep-based learning

augmentation.

Traditional data augmentation involves manipulating existing training data to introduce variations

and expand the size of the dataset. Geometric transformations, such as image flipping, rotation,

shearing, cropping, and translation, mimic real-world changes in appearance. Photometric trans-

formations modify pixel values to enhance visual attributes like brightness, contrast, color, and

texture. Additionally, the technique of random erasing randomly selects and removes a square re-

gion within an image.

Deep-based generative modeling provides an alternative data augmentation approach by generating

synthetic data samples that closely resemble real instances. The chapter introduced three genera-

tive models: Vanilla Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs),

and Basic Diffusion Models (DMs). These models learn the underlying distribution of the training

data and generate new samples with desired variations, expanding the dataset and improving the

model’s adaptability to diverse real-world scenarios.

In summary, data augmentation is a valuable technique for mitigating the scarcity of training data

and enhancing the performance of machine learning models. By diversifying and expanding the

training dataset, models can achieve better generalization and increased robustness.
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In the next chapter, we will present a brief overview of the three categories of diffusion models,

which have been refined from diffusion probabilistic models. Additionally, we will examine the

manifold applications of Diffusion models in the field of medicine.
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1 INTRODUCTION

In Chapter 1, it has been observed that the field of Diffusion models has recently gained prominence

as a state-of-the-art category of deep generative models [9]. These models have surpassed the long-

standing dominance of generative adversarial networks (GANs), particularly in the challenging task

of image synthesis [83]. The application of Diffusion models extends across various domains, en-

compassing computer vision, natural language processing, temporal data modeling, multi-modal

modeling, robust machine learning, and interdisciplinary areas such as computational chemistry

and medical image reconstruction [83].

This chapter aims to present a brief overview of three notable formulations of diffusion models,

along with a succinct overview of relevant research conducted in the medical domain.

2 DIFFUSION MODELS VARIANTS

Three notable formulations of diffusion models have emerged as prominent approaches in the

field [80, 83]. These include denoising diffusion probabilistic models (DDPMs) [84], score-based

generative models (SGMs) [85], and stochastic differential equations (Score SDEs) [86]. All these

formulations share a common fundamental concept with diffusion probabilistic models from [75]

(discussed in Chapter 2), they offer distinct perspectives and novel techniques that deviate from

traditional diffusion probabilistic models.

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPMS)

In the denoising diffusion probabilistic model (DDPM) [84], the forward process is meticulously

designed to achieve the objective of mapping any given data distribution to a simpler prior distri-

bution, often exemplified by a standard Gaussian distribution. Simultaneously, the reverse process

learns transition kernels parameterized by deep neural networks to effectively reverse the opera-

tions performed by the forward process.

FORWARD PROCESS

Consider the original data distribution as q(x0), where x0 is a data sample drawn from the distri-

bution (x0 ∼ q(x0)). By employing a forward noising process with a transition kernel q(xt|xt−1),

a sequence of random variables x1,x2 . . .xT is generated. The joint distribution of x1,x2, . . . ,xT
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conditioned on x0, denoted as q(x1, . . . ,xT |x0), can be factorized using the chain rule of probability

and the Markov property:

q (x1, . . . ,xT | x0) =
T∏
t=1

q (xt | xt−1) (3.1)

In the case of denoising diffusion probabilistic models (DDPMs), the transition kernel q(xt|xt−1) is

manually designed to progressively transform the data distribution into a tractable prior distribution

q(x0). A common choice for the transition kernel is Gaussian perturbation, which can be represented

as:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)

Here, t denotes the number of diffusion steps, β represents the variance schedule applied during

the diffusion process, I is the identity matrix, and N (x;µ, σ) refers to the normal distribution with

mean
√
1− βtxt−1 and covariance βtI.

As previously highlighted in Diffusion probabilistic models(DPMs) [75], the utilization of a Gaus-

sian transition kernel enables the analytical derivation of q(xt|x0) for all t ∈ 0, 1, . . . , T through the

integration of the joint distribution mentioned in Eq. 3.1.

Nevertheless, denoising diffusion probabilistic models (DDPMs) differ from Diffusion Probabilis-

tic modes by obviating the need for an iterative procedure. This is achieved by introducing ᾱt =∏t
s=0(1 − βs), which allows for the direct sampling of any step of the perturbed latent variable

conditioned on the input x0 using Eq. 3.2.

The values of βt correspond to a noise schedule designed such that ᾱt converges to zero and

q(xT |x0) ≈ N (xT ;0, I). The noise schedule controls the diffusion of the data, ensuring that ᾱt

approaches zero at the final step, leading q(xT |x0) to approximate a standard normal distribution

N (xT ;0, I).

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(3.2)

To generate a sample xt conditioned on x0 following the normal distribution as expressed in Eq. 3.2,

denoising diffusion probabilistic models (DDPMs) make use of the reparametrization trick (Eq.3.3),

This technique involves introducing a Gaussian vector ϵ (ϵ ∼ N (0, I)) to enable the transformation
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of the sample generation process.

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (3.3)

REVERSE DIFFUSION PROCESS

The reverse process in denoising diffusion probabilistic models (DDPMs) is parametrized by a prior

distribution p(xT ) = N (xT ;0, I) and a learnable transition kernel pθ(xt−1|xt). The choice of the

prior distribution as p(xT ) = N (xT ;0, I) is based on the design of the forward process, ensuring

that the base distribution at the end of the forward process approximate to the standard normal

distribution (q(xT ) ≈ N (xT ;0, I)).

The joint distribution of the full trajectory of the reverse process is defined as follows:

pθ (x0,x1, · · · ,xT ) := p (xT )
T∏
t=1

pθ (xt−1 | xt) (3.4)

Denoising diffusion probabilistic models (DDPMs) defines The learnable transition kernel pθ(xt−1|xt)

that sample from xt−1 conditioned on xt as follows:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (3.5)

Where θ represent the model parameter, whith the mean µθ(xt, t) and variance Σθ(xt, t) being

parametrized by deep neural networks. µθ(xt, t) is trained to predict the mean of the less noisy data

xt−1 conditioned on the noisy data xt.

The effectiveness of the sampling process in Denoising Diffusion Probabilistic Models (DDPMs)

hinges on the successful training of the reverse process to accurately reverse the forward process in

real-time. This training objective is accomplished By adjusting the parameter θ through the opti-

mization process so that the joint distribution of the reverse process approaches and approximates

that of the forward process.

During the training phase of the reverse process, where the objective is to learn the true data dis-

tribution q(x0) through p(x0), we can optimize a variational bound on the negative log-likelihood
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using the following formulation:

E [− log pθ (x0)] ≤ Eq

[
− log

pθ (x0:T )

q (x1:T | x0)

]
= Eq

− log p (xT )−
∑
t≥1

log
pθ (xt−1 | xt)

q (xt | xt−1)

 =: L (3.6)

The authors of denoising Diffusion Probabilistic Models (DDPMs) show that loss function 3.6 can

be decomposed into several terms as follows:

Eq[DKL (q (xT | x0) ∥p (xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

] (3.7)

The loss in Eq 3.7 is not tractable to estimate. They ignored the fact that the forward process

variances βt are learnable and instead fix them to constants. Thus, in their implementation, the

approximate posterior q(xT |x0) has no learnable parameters, so LT is a constant during training

and can be ignored. L0 measure the likelihood of input clean data x0 even the noisy data x1 under

the denoising process.

In Lt−1, where q(xt−1|xt, x0) is a tractable posterior distribution (defined in Eq 3.8) predicts the less

noisy data xt−1 condition on the noisy data xt and the clean data x0.

q (xt−1 | xt,x0) = N
(
xt−1; µ̃t (xt,x0) , β̃tI

)
(3.8)

Where the mean µ̃t is a simple weighted average of the clean data x0 and the noisy data xt (defined

in Eq 3.9). The β̃t is determined based on the parameter of the forward process (defined in Eq 3.10).

µ̃t (xt,x0) :=

√
ᾱt−1βt
1− ᾱt

x0 +

√
1− βt (1− ᾱt−1)

1− ᾱt
xt (3.9)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (3.10)

Given that both q(xt−1|xt, x0) and pθ(xt−1|xt) are Gaussian distributions, the loss function Lt−1 can

be expressed as follows:

Lt−1 = DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt)) = Eq

[
1

2σ2
t

∥µ̃t (xt,x0)− µθ (xt, t)∥2
]
+ C (3.11)
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The Eq 3.11 represents the square distance between the mean of the tractable posterior of the

forward process and the mean of the reverse process. C is a constant that does not depend on any

training parameters. The authors of DDPMs observe that the mean of the tractable distribution in

Eq 3.9 can be expressed as the following:

µ̃t (xt,x0) =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵ

)
(3.12)

So they propose to present the mean of the reverse process (as shown in Eq 3.13) using the deep

neural network ϵθ, parameterized by θ, and it predicts the noise vector ϵ given xt and t.

µθ (xt, t) =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
(3.13)

In order to estimate the mean of less noisy data, it should take xt and subtract it from the neural

network ϵθ. This neural network ϵθ is trained to predict the noise component that was utilized

in generating xt, thereby representing the denoising process. According to the parametrization of

Eq 3.13. The Lt−1 loss function can be reformulated as the following:

Lt−1 = Ex0∼q(x0),ϵ∼N (0,I)

 β2
t

2σ2
t (1− βt)(1− ᾱt)︸ ︷︷ ︸

λt

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2


Such that λt is a weighting function that ensures that the training objective is weighted properly for

maximum data likelihood training. However authors of DDPMs found that λt weight is often very

large for small time steps t, so they propose to use Lsimple loss function (defined in Eq 3.14), where

they set λt to equal to 1 because according to the experiences, it improves the sample quality.

Lsimple = Ex0∼q(x0),ϵ∼N (0,I),t∼U(1,T )

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] (3.14)

Such that the term U(1, T ) represents a uniform distribution over the set 1, 2, . . . , T .

In brief, the authors of DDPMs proposed a technique to enhance the quality of samples within
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the framework of variational lower bound (VLB) optimization. Their approach involved reweighting

various terms within the loss function, resulting in notable performance improvements. Interest-

ingly, they discovered a substantial connection between their modified loss function Lsimple and the

training objective of noise-conditional score networks (NCSNs), a specific category of score-based

generative models previously introduced by Song and Ermon [85]. In the next subsection, we will

delve into the details of NCSNs and their implications.

2.2 SCORE-BASED GENERATIVE MODELS (SGMS)

Score-based generative models (SGMs) belong to a class of generative models that rely on the

direct estimation of the score function [85]. The score function of a probability density func-

tion (PDF) p(x) is defined as the gradient of the log probability density, denoted as ∇x log p(x).

This gradient captures the derivative of the logarithm of the PDF with respect to the data point

x. Following the notations introduced in DDPM section, let q(x0) denote the data distribution,

and 0 < σ1 < σ2 < · · · < σt < · · · < σT be a sequence of noise levels. In order to esti-

mate the score functions, SGMs adopt a similar strategy to that of Diffusion Probabilistic mod-

els and DDPMs, which is perturbing a data point x0 to xt using the Gaussian noise distribution

q (xt | x0) = N
(
xt;x0, σ

2
t I
)
. This yields a sequence of noisy data densities q (x1) , q (x2) , · · · , q (xT ),

where q (xt) :=
∫
q (xt) q (x0) dx0.

The objective of SGMs is to estimate the score functions for each perturbed data distribution. This is

achieved through training a noise-conditional score network (NCSN) [85]—a deep neural network

model specifically designed for this purpose. The NCSN takes into account the noise levels and

estimates the corresponding score functions.

Score estimation, involves established techniques such as score matching [87], denoising score

matching [88, 89], and sliced score matching [90]. One can directly employ one of these tech-

niques to train the noise-conditional score networks using perturbed data points. For instance,

using denoising score matching and similar notations as in Eq. 3.14, the training objective is given

by

Et∼U [1,T ],x0∼q(x0),xt∼q(xt|x0)

[
λ(t)σ2

t ∥∇xt log q (xt)− sθ (xt, t)∥2
]

(3.15)

(i)
= Et∼U [1,T ],x0∼q(x0),xt∼q(xt|x0)

[
λ(t)σ2

t ∥∇xt log q (xt | x0)− sθ (xt, t)∥2
]
+ C (3.16)

(ii)
= Et∼U [1,T ],x0∼q(x0),xt∼q(xt|x0)

[
λ(t)

∥∥∥∥−xt − x0
σt

− σtsθ (xt, t)

∥∥∥∥2
]
+ C (3.17)
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(iii)
= Et∼U [1,T ],x0∼q(x0),ϵ∼N (0,I)

[
λ(t) ∥ϵ+ σtsθ (xt, t)∥2

]
+ C (3.18)

The ∇x log p(x) is the marginal score of the diffused data and sθ(xt, t) is a neural network that is

trained to predict the marginal score of the diffused data.

The (i) is derived from the work of Vincent et al. (2011) [91], (ii) assumes q (xt | x0) = N
(
xt;x0, σ

2
t I
)
,

and (iii) follows from the fact that xt = x0 + σtϵ. The positive weighting function λ(t) and constant

C do not depend on the trainable parameter θ.

Comparing Eq. 3.18 with Eq. 3.14, it is evident that the training objectives of DDPMs and SGMs are

equivalent when setting ϵθ(x, t) = −σtsθ(x, t).

Regarding sample generation, SGMs utilize iterative approaches to produce samples from sθ(x, T ), sθ(x, T−
1), . . . , sθ(x, 0) sequentially. Due to the decoupling of training and inference in SGMs, various sam-

pling methods can be employed beyond the training stage. One of the initial sampling techniques

for SGMs is called Annealed Langevin dynamics (ALD) [85].

There exists a multitude of score-based sampling methods that can be employed for the purpose of

sample generation. These methodologies encompass diverse techniques, including Langevin Monte

Carlo [85], stochastic differential equations [86,92], ordinary differential equations [93], and their

combinations [86].

2.3 STOCHASTIC DIFFERENTIAL EQUATIONS (SCORE SDES)

Denoising Diffusion Probabilistic Models (DDPMs) and Score-Based Generative Models (SGMs) can

be extended to handle undefined time steps or noise levels by formulating them as solutions to

stochastic differential equations (SDEs). This generalization is referred to as Score SDE [86], which

utilizes SDEs for noise perturbation and sample generation while estimating score functions of noisy

data distributions to perform the denoising process.

In Score SDE, the perturbation of data with noise is described by the following stochastic differential

equation (SDE) [86]:

dx = f(x, t)dt+ g(t)dw (3.19)

Here, f(x, t) represents the drift function, and g(t) is the diffusion function of the SDE. The term dw

corresponds to a standard Wiener process, which is a white Gaussian noise. Both DDPMs and SGMs

discretize the forward processes based on this SDE. Specifically, for DDPMs, the corresponding SDE
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is given by:

dx = −1

2
β(t)xdt+

√
β(t)dw (3.20)

In this equation, β
(
t
T

)
= Tβt as T approaches infinity. Similarly, for SGMs, the corresponding SDE

is expressed as:

dx =

√
d [σ(t)2]

dt
dw (3.21)

Here, σ
(
t
T

)
= σt as T goes to infinity. The distribution of xt in the diffusion process is denoted as

qt(x). To recover the original data distribution p0 from a perturbed sample pT obtained from the

forward SDE (Eq. 3.19), a reverse-time SDE is employed. By reversing the diffusion process and

starting with a sample from pT , the reverse-time SDE allows generating samples from the desired

data distribution p0. The reverse-time SDE is given by:

dx =
[
f(x, t)− g(t)2∇x log qt(x)

]
dt+ g(t)dw (3.22)

In this equation, w is a standard Wiener process when time flows backward, and dt represents

an infinitesimal negative time step. The solution trajectories of the reverse SDE have the same

marginal densities as those of the forward SDE, but they evolve in the opposite time direction [86].

These reverse-time SDE solutions gradually convert noise to data. Furthermore, a probability flow

ordinary differential equation (ODE) exists, which shares the same marginals as the reverse-time

SDE. The probability flow ODE is expressed as:

dx =

[
f(x, t)− 1

2
g(t)2∇x log qt(x)

]
dt (3.23)

Both the reverse-time SDE and the probability flow ODE enable sampling from the desired data

distribution since their trajectories possess the same marginals. To estimate the score function at

each time step t, denoted as ∇x log p(x), a time-dependent score model sθ(xt, t) is parameterized.

The score-matching objective is generalized to continuous time, resulting in the following objective

function:

Et∼U [0,T ],x0∼q(x0),xt∼q(xt|x0)

[
λ(t) |sθ (xt, t)−∇xt log qt (xt | x0)|2

]
(3.24)
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Here, U [0, T ] represents the uniform distribution over the interval [0, T ], and the remaining symbols

follow the score-matching objective as in previous work. This objective is utilized to train the score

model within the Score SDE framework. Various numerical techniques such as annealed Langevin

dynamics [85], numerical SDE solvers [86], numerical ODE solvers [86], and predictor-corrector

methods (combining MCMC and numerical ODE/SDE solvers) [86] can be employed to solve the

reverse-time SDE (Eq. 3.22) and the probability flow ODE (Eq. 3.23) for generating samples from

the desired data distribution.

3 DIFFUSION MODELS TASKS IN THE MEDICAL FIELD

Over the past decade, generative models have demonstrated significant impact across diverse do-

mains, including images [94,95], audio [96], and text [97], and there has been a notable increase

in research focused on generative models applied to medical image synthesis [16]. Among the

cutting-edge generative models that have emerged, Diffusion Models have gained considerable at-

tention and have been extensively applied in various areas such as image generation [14, 16–18],

image segmentation [13], image inpainting [11], and image denoising [19,98,99], data augmenta-

tion [20,21]. Furthermore, it is anticipated that further investigations will uncover additional tasks

in this field.

In the field of medical imaging, there has been a recent surge in the adoption of diffusion-based

techniques. Consequently, several survey papers have been published [80, 83], providing com-

prehensive overviews of deep generative models in medical imaging applications. These surveys

encompass different datasets and specifically highlight the utilization and applications of diffusion

models. While some of these papers focus on specific tasks, others concentrate on specific types of

medical image data. Noteworthy references in this regard include:

3.1 DIFFUSION MODELS FOR IMAGES GENERATION

• For the specific application of generating synthetic images of lungs in X-Ray and computed

tomography (CT) modalities. The study from the paper [16] employed two distinct experi-

ments: In the first experiment, the researchers utilized the OpenAI DALL.E2 API 1 to generate

images based on textual input. In the second experiment, three subsets of these generated

1https://openai.com/blog/openai-api

https://openai.com/blog/openai-api
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images were randomly selected and presented to two expert radiologists who were trained in

the interpretation of medical scans.

The radiologists were assigned two primary tasks during the evaluation. Firstly, they were re-

quested to categorize each image as either real, fake, or uncertain based on their professional

expertise and perception.

Secondly, the radiologists were asked to provide succinct descriptions outlining potential lung

conditions or disease diagnoses that could be inferred from the images, such as normal lungs,

significantly damaged lungs, or lungs affected by pneumonia.

Importantly, the radiologists were not provided with any prior information regarding the

authenticity of the images. In fact, all images presented to the radiologists were entirely syn-

thetic in nature.

Furthermore, the radiologists worked independently without any knowledge of each other’s

assessments. It is noteworthy that one of the radiologists possessed prior knowledge of artifi-

cial intelligence and generative models, whereas the other radiologist had no prior exposure

to deep generative models.

Results: in the table 3.1.

Real Fake Uncertain
Radiologist A 14 X-ray and 3 CT 4 X-ray and 17 CT 2 X-ray
Radiologist B 10 X-ray and 2 CT 10 X-ray and 18 CT

Table 3.1: presents the evaluation results of the two radiologists, who were independently presented with a
common set of 40 images consisting of 20 X-ray images and 20 CT images

Agreement between radiologists: Of the 20 CT images, only three images were labeled as

real by both radiologists. Similarly, five X-Ray images were marked as real by both radiolo-

gists. There were 2 X-Ray and 2 CT images for which both the radiologists were uncertain.

For the second ask, they asked the radiologist to provide a description of what the images

may reveal, the radiologists made some interesting observations, some examples are in the

table 3.2:

Image modality Remarks*
X-ray Left lower lobe effusions Possibility

of pneumonia Bilateral infection
CT Possible effusions Pneumonia

Table 3.2: Samples of remarks from radiologists (no-specific order)
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• In another study in [18], researchers aimed to investigate and enhance the representational

capacities of large pre-trained foundational models within the context of medical concepts.

Specifically, their focus was on harnessing the potential of the Stable Diffusion model to

generate domain-specific images encountered in the field of medical imaging. The research

delved into the sub-components of the Stable Diffusion pipeline to fine-tune the model for

generating medical images.

For this task, two large CXR datasets were used: The CheXpert dataset contains 224,316 chest

radiographs of 65,240 patients treated at Stanford Hospital between October 2002 and July

2017 in both inpatient and outpatient centers [100]. The second dataset, MIMIC-CXR (ver-

sion 2.0.0), contains a total of 377,110 images from studies performed at the Beth Deaconess

Medical Center in Boston, MA, USA under institutional review board approval [101].

The effectiveness of these endeavors was evaluated through a combination of quantitative

image quality metrics and qualitative assessments conducted by expert radiologists, ensuring

a comprehensive representation of the clinical content conveyed by conditional text prompts.

Notably, the highest-performing model exhibited notable improvements over the stable diffu-

sion baseline, showcasing the ability to conditionally introduce realistic-looking abnormalities

into synthetic radiology images while maintaining a classifier accuracy of 95% for detecting

said abnormalities.

• The following paper [17] explores the utilization of a latent diffusion model to synthesize

a dataset of chest X-ray images that are both anonymous and of high quality. The primary

objective of the researchers is to assess the viability of using solely synthetic training datasets

for the purpose of learning and identifying thoracic abnormalities in chest radiographs. To

achieve this, they employ a Latent Diffusion Model (LDM) [102], which enables the genera-

tion of high-quality class-conditional images by sampling from a real data distribution.

In order to conduct their investigation, the researchers leverage a large-scale dataset known

as ChestX-ray14 [103], comprising a total of 112,120 chest radiographs obtained from 30,805

individual patients. To address privacy concerns and prevent the transfer of biometric infor-

mation during the image generation process, the researchers propose a privacy-enhancing

sampling strategy. To assess the quality and potential suitability of the generated images as

exclusive training data, the researchers evaluate their performance in a thoracic abnormality

classification task. A comparative analysis with a real classifier reveals competitive results,

with a performance gap of only 3.5% in terms of the area under the receiver operating char-

acteristic curve. By employing the latent diffusion model and the proposed privacy-enhancing

sampling strategy, this study offers insights into the generation of anonymous and high-quality
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chest radiographs. The findings highlight the feasibility of employing synthetic datasets for

training purposes in the field of thoracic abnormality recognition, showcasing the potential

of such an approach in medical imaging research.

• The last paper for this task is the following [14] where the researchers employ Latent Diffu-

sion Models (LDM) [102], to generate synthetic images derived from high-resolution 3D brain

scans. To accomplish this, they utilize a dataset of 31,740 T1-weighted magnetic resonance

imaging (MRI) training images sourced from the UK Biobank [104] for training their mod-

els. To effectively handle the challenges associated with applying diffusion models to these

high-resolution 3D data, the researchers integrate compression models into their architec-

ture, drawing inspiration from the framework of Latent Diffusion Models (LDM). Moreover,

the generation of images is conditioned on various covariables, including age, sex, and brain

structure volumes.

The researchers perform a comparative analysis between the synthetic images produced

by their approach and state-of-the-art methods based on Generative Adversarial Networks

(GANs). Additionally, they publicly release their synthetic dataset, which consists of 100,000

brain images, to contribute to the scientific community’s research efforts in this domain.

As a result, it showed that LDMs are promising models to be explored in medical image

generation.

3.2 DIFFUSION MODELS FOR IMAGE SEGMENTATION

• In this paper [13], the researchers introduce a novel approach named MedSegDiff, which

is the first Diffusion Probabilistic Model-based model designed for general medical image

segmentation tasks. The efficacy of MedSegDiff is assessed through its application to three

distinct medical segmentation tasks: optic cup segmentation, brain tumor segmentation, and

thyroid nodule segmentation.

To enhance the reconstruction accuracy, the researchers leverage a corrupted current-step

mask that dynamically enhances the conditioning features. Additionally, to address the issue

of high-frequency noises present in the corrupted mask, they propose the utilization of a fea-

ture frequency parser (FF-Parser) that filters the features in the Fourier space.

The performance of MedSegDiff is evaluated across the three aforementioned medical seg-

mentation tasks, which encompass various image modalities. These tasks involve optic cup

segmentation utilizing fundus images, brain tumor segmentation employing MRI images, and

thyroid nodule segmentation utilizing ultrasound images. Notably, MedSegDiff demonstrates
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state-of-the-art (SOTA) performance across all three medical segmentation tasks, irrespective

of the imaging modality.

3.3 DIFFUSION MODELS FOR IMAGE INPAINTING

• In the conducted investigation [11], a novel diffusion model is introduced for multitask brain

tumor inpainting on multi-sequential brain magnetic resonance imaging (MRI) scans. The

proposed model demonstrates the ability to perform various inpainting tasks, including the

creation of individual tumoral components, a multi-component tumor, or normal-appearing

brain tissue, all within a single inference iteration. Moreover, the model accommodates two

distinct types of input regions of interest (ROIs): the free-form ROI and the bounding box

ROI. For the free-form ROI, the model precisely inpaints a lesion that conforms to the bound-

aries of the input ROI, while for the bounding box ROI, it generates a random lesion and its

surrounding tissue in a manner that aligns with the given bounding box. Furthermore, the

researchers showcase several capabilities of the model, such as generating infinite instances

of synthetic images based on a specific input with varying randomization seeds, adjusting

the weighting of user-defined ROIs to emphasize their influence on the generated image, and

enabling fast inference through the adoption of a DDIM protocol.

3.4 DIFFUSION MODELS FOR IMAGE DENOISING

• In a recent study [98], the researchers propose the utilization of a score-based diffusion

model to address the denoising task. Specifically, they suggest hijacking the generative pro-

cess of diffusion models by initiating it from the distribution of the noisy images rather than

pure Gaussian noise. To preserve fine structures during denoising, a novel low-frequency

constraint is introduced, which establishes a natural connection with the recent theory of

stochastic contraction in diffusion models [105]. Furthermore, the researchers propose a

method to super-resolve the denoised image using the same score function employed for de-

noising. This innovative approach yields sharper images that retain high-frequency informa-

tion, an accomplishment not previously reported with widely used self-supervised denoising

methods. For training the network, the researchers utilize open-sourced data, including the

fast MRI knee dataset [106]. Specifically, they adhere to the recommended training guide-

lines outlined in [107], employing fully-sampled single coil MRI magnitude images with a

resolution of 320×320 pixels. The experimental outcomes of their approach exhibit state-of-

the-art performance, surpassing other comparative methods by a substantial margin in terms
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of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).

• In a recent study focusing on retinal optical coherence tomography (OCT) denoising [19],

the researchers propose the utilization of a diffusion probabilistic model. The model is trained

using 6 volumes of optic nerve head (ONH) scans from the human retina and evaluated on

6 volumes of fovea scans. Each volume consists of 500 b-scans with dimensions of 512 ×

500 pixels. To assess the model’s performance under varying speckle levels, the data is ac-

quired with three different signal-to-noise ratio levels (92dB, 96dB, 101dB). Since the model

aims to learn the speckle pattern rather than the retina’s appearance, it is not necessary for

the reference image used during training to be the true noise-free image. In this study, the

self-fusion method [108,109] is employed to obtain a clean reference image, and the param-

eterized Markov chain is trained using variational inference. The algorithm offers flexibility

in producing denoised results at different levels by adjusting the number of reverse steps.

This adaptability is advantageous as different tasks may require varying degrees of fine detail

retention in denoised images.

• In a recent study focusing on Low-Dose computed Tomography (LDCT) denoising [99], the

authors present a conditional denoising diffusion probabilistic model (DDPM) to enhance the

denoising performance of LDCT images. The proposed approach utilizes a U-Net architecture

to learn the reverse diffusion process of a normal-dose CT (NDCT) image conditioned on its

LDCT counterpart. By gradually sampling from a normal noise distribution, the DDPM pro-

gressively recovers cleaner images while preserving clinically important details and removing

structural noise. To improve computational efficiency, a fast ordinary differential equation

(ODE) solver [110] is employed, resulting in a significant speed increase of 20 times com-

pared to the original DDPM implementation.

For this study, the authors selected the 2016 NIH-AAPM Mayo Clinic Low-Dose CT Grand

Challenge dataset. The dataset consists of 2,378 paired NDCT and LDCT images with a

thickness of 3mm obtained from 10 patients. From this dataset, 1,923 paired images from

8 patients were chosen as the training set, while 455 paired images from the remaining 2

patients were used as the test set. To ensure consistency, the image matrix was resampled to

a size of 256x256.

Overall, the results demonstrate that the ODE Solver has both a high denoising performance

and a high sampling efficiency. The use of an ODE solver for DDPM sampling will guide to a

great potential for clinical applications.
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3.5 DIFFUSION MODELS FOR LESION DETECTION

• In this paper [12], the authors propose a novel pixel-wise anomaly detection approach based

on Denoising Diffusion Implicit Models (DDIMs). The approach consists of two parts. Firstly,

the researchers train a Denoising Diffusion Probabilistic Model (DDPM) and a binary classifier

on a dataset of healthy and diseased subjects. Secondly, they encode the anatomical infor-

mation of an image using the reversed sampling scheme of DDIMs, simulating the noising

process. Then, during the denoising process, they employ the deterministic sampling scheme

proposed in DDIM with classifier guidance to generate an image of a healthy subject. The

final pixel-wise anomaly map is obtained by calculating the difference between the original

and synthetic images.

To evaluate the effectiveness of the proposed approach, the algorithm was applied to two

different medical datasets: the BRATS2020 brain tumor challenge and the CheXpert dataset.

Comparative analysis was conducted against standard anomaly detection methods such as

the Fixed-Point GAN (FP-GAN) [111]and the variational autoencoder (VAE) [112].

The results indicate that the proposed approach generates realistic-looking images while pre-

serving important details, demonstrating its potential in pixel-wise anomaly detection tasks.

• The proposed paper [15] introduces a novel approach for detecting anomalies in medical im-

ages. The approach involves using deep diffusion probabilistic models (DDPMs) to destroy

the image and reconstruct a healthy approximation. Instead of using Gaussian noise, simplex

noise - a popular method in computer graphics - is employed for anomaly detection. The key

contributions of the paper include a partial diffusion strategy where the anomalous image is

noised to a parameterized timestep λ and reconstructed from the corruption. Additionally,

multi-scale (multi-octave) simplex noise is utilized to allow larger anomalous regions to be-

come reconstructed as healthy regions.

To evaluate the proposed approach, the Neurofeedback Skull-Stripped (NFBS) repository [113]

was used, which contains 125 T1-weighted MRI scans with dimensions 256 × 256 × 192,

containing the full skull, skull stripped, and brain mask. Results show that the proposed ap-

proach (referred to as AnoDDPM with simplex noise) successfully captures large anomalous

regions with stable training that does not require large datasets.

The use of multi-scale (simplex) noise was found to offer significant improvements in terms

of capturing larger anomaly shapes.
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3.6 DIFFUSION MODELS FOR IMAGE TRANSLATION

• The present research paper [10] focuses on addressing the challenge of unsupervised medical

image synthesis through the introduction of a novel adversarial diffusion model, SynDiff. The

primary objective of SynDiff is to enable efficient and high-fidelity modality translation in the

context of medical image analysis.

This paper makes several notable contributions to the field. Firstly, it presents the first ad-

versarial diffusion model specifically designed for high-fidelity medical image synthesis. By

utilizing diffusion-based techniques, SynDiff offers a unique approach to unsupervised medi-

cal image translation, allowing for training on unpaired datasets consisting of different source

and target modalities.

To facilitate efficient image sampling, the authors propose a novel source-conditional adver-

sarial projector. This projector is designed to capture reverse transition probabilities over

large step sizes, thereby enhancing the effectiveness of image generation and SynDiff.

To evaluate the performance and capabilities of SynDiff, the authors conducted comprehen-

sive demonstrations using two multi-contrast brain MRI datasets (IXI1 and BRATS) as well as

a multi-modal pelvic MRI-CT dataset. Through these demonstrations, the authors assessed

the efficacy of SynDiff in achieving modality translation in different medical imaging scenar-

ios.

The experimental results presented in the paper clearly indicate the superiority of SynDiff

when compared to competing generative adversarial networks (GAN) and diffusion models.

SynDiff exhibits improved performance and produces more faithful and realistic synthesized

medical images, demonstrating its effectiveness in addressing the challenges of unsupervised

medical image synthesis.

3.7 DIFFUSION MODELS FOR DATA AUGMENTATION

• The present study focuses on enhancing the performance of dermatology classifiers through

the utilization of a pipeline that leverages the transformer-based generative model, DALL·E

2 [20]. The primary objective is to produce photorealistic images of skin diseases to augment

the training dataset and improve classification accuracy.

To achieve this, the researchers employed OpenAI’s DALL·E2 [95] model to generate photore-

alistic synthetic images based on seed images from the Fitzpatrick 17k dataset. For each skin

condition, a set of sixteen seed images was randomly sampled, comprising eight images from

the lightest Fitzpatrick skin types and eight images from the darkest skin types.



CHAPTER 3. DIFFUSION MODELS VARIANTS AND THEIR APPLICATION IN THE MEDICAL

FIELD 45

To evaluate the impact of the synthetic images on classification performance, image classifi-

cation models were trained using various train and test splits. These models aimed to predict

skin condition labels among the seven skin conditions of interest.

The results of the study demonstrate the efficacy of the targeted generation of synthetic

images in improving the performance of dermatological classifiers on a diverse benchmark

dataset. Notably, the improvement is particularly notable for underrepresented groups, in-

dicating the potential for the generated synthetic images to address the challenges posed by

limited data availability for certain skin conditions. By utilizing the DALL·E 2 model and

conducting comprehensive experiments, this study contributes to the advancement of der-

matology classifiers. The findings highlight the potential of synthetic image generation as a

means to enhance classification accuracy and address data limitations in dermatology, ulti-

mately improving the diagnosis and treatment of skin diseases.

In the present study, the others describe a pipeline for producing photorealistic images of skin

disease using the transformer-based generative model DALL·E 2. They generated photorealis-

tic synthetic images from seed images in the Fitzpatrick 17k dataset using OpenAI’s DALL·E 2

model. For a given skin condition, we randomly sampled eight images from the lightest and

darkest Fitzpatrick skin types (16 total images for one condition) to use as seed images. For

the training, they trained image classification models to predict skin condition labels among

the seven skin conditions using different train and test splits.

As a result, they show that the targeted generation of synthetic images can be used to im-

prove the performance of dermatological classifiers on a diverse benchmark dataset overall

and particularly for underrepresented groups.

• In a recent study conducted by [21], the potential of Diffusion Probabilistic Models (DPMs)

for skin disease classification was investigated. The authors focused on fine-tuning DPMs

on six distinct disease conditions, namely basal cell carcinoma, melanoma, actinic keratosis,

atypical melanocytic nevus, lentigo, and seborrheic keratosis. By conditioning the probabilis-

tic diffusion-based generation on text prompt inputs using stable diffusion model [102], they

demonstrated the generation of fine-grained synthetic images that closely resemble real skin

disease samples.

To facilitate their research, a fully synthetic dataset was constructed, consisting of 500 images

per skin disease category. In parallel, a set of real images was randomly sampled, including

500 images per class, from a macroscopic skin image dataset. This synthetic dataset was

specifically created to evaluate the impact of synthetic images on classification metrics.

Through their comprehensive classification task involving the six skin diseases, the study
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underscored the reliability of synthetic images as valuable data sources. The findings demon-

strated the efficacy of synthetic images in skin disease classification, emphasizing their poten-

tial benefits in augmenting the limited availability of real-world datasets for this domain.

Overall, this study sheds light on the promising applications of DPMs and synthetic images

in skin disease classification tasks, highlighting their value as reliable data sources in the

absence of extensive real-world datasets.

4 CONCLUSION

This chapter provides a brief overview of the different variants of diffusion models and presents

a comprehensive and detailed literature review of their applications in the medical field. The

three prominent variants of diffusion models discussed are Denoising Diffusion Probabilistic Models

(DDPMs), Score-Based Generative Models (SGMs), and Stochastic Differential Equations (SDEs).

Each formulation offers distinct insights and methodologies for modeling the diffusion process and

capturing the underlying dynamics of the data. These models have demonstrated successful uti-

lization across various domains, including computer vision and natural language processing. Fur-

thermore, their application in the medical domain has been extensive, encompassing tasks such

as image generation, segmentation, inpainting, and denoising. These models have exhibited their

efficacy in generating synthetic medical images, which can be leveraged for training and research

endeavors.

Based on previous studies, diffusion models have been widely employed in diverse medical

tasks such as image segmentation, image inpainting, image denoising, augmentation, and so on.

Primarily, the most used datasets for these tasks are CT and MRI datasets. However, in the realm

of data augmentation, dermatology datasets have been predominantly employed. Thus, in light of

this, we have chosen to apply data augmentation techniques specifically to the context of diabetic

retinopathy grading, an area that has received relatively less attention in this regard. The objective

is to present a novel study that offers valuable insights, setting it apart from previously conducted

research in the field.

Therefore, the subsequent chapter includes our utilization of the diffusion model within the frame-

work of diabetic retinopathy grading, we will delineate the workflow and methodologies employed

for this specific context.
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1 INTRODUCTION

In the previous chapter (Chapter 3), the application of Diffusion models in the field of medicine

was explored across various domains. Expanding upon this groundwork, the current chapter delves

deeper into the specific topic of data augmentation. The purpose of this study is to evaluate the

quality of images generated by Diffusion models.

The primary objective of this chapter is to assess the quality and realism of the images generated by

the diffusion model. Specifically, we aim to examine the suitability of these generated images for

data augmentation and their potential incorporation into a small-sized training dataset. To evaluate

their efficacy, we compare the results obtained from deep-based classifiers trained on the augmented

dataset with those obtained using the same deep-based classifiers under identical conditions, but

with a different training dataset that underwent traditional data augmentation.

METHODOLOGY

The adopted methodology for our task involves employing data augmentation techniques to aug-

ment the dataset, followed by fitting the augmented training data to the classifier for evaluation

purposes. By applying data augmentation, the aim is to enhance the size and diversity of the

dataset, thus enabling the classifier to learn more robust and generalized patterns.

To address this goal, we employ two different types of data augmentation: traditional data aug-

mentation and deep-based data augmentation. For each augmented dataset, two different deep-

based classifiers are trained on the task of Diabetic retinopathy diagnosis.

2 STEP1 : EMPLOYED DATA AUGMENTATION TECHNIQUES

In this methodology, we apply multiple data augmentation techniques and conducted a comparative

analysis of their respective performances. We use data augmentation techniques that encompassed

both traditional methods geometric and Photometric, as well as two deep-based generative mod-

els. The deep generative models employed are Deep convolution Generative Adversarial Networks

(DCGAN) [1], a variant of the Generative Adversarial Network (GAN), and a pre-trained DALLE 2

model [95], which falls under the category of diffusion models. The selection of these models is

based on several considerations, including resource limitations, specifically the availability of GPUs.
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2.1 TRADITIONAL DATA AUGMENTATION

The initial approach adopted in this study entails the utilization of traditional data augmentation

techniques that are widely employed in various image processing tasks. These techniques encom-

pass a range of geometric image transformations, including rotation, translation, scaling, and flip-

ping, among others. For the purpose of our specific task, we choose to apply horizontal and vertical

flips as geometric transformations.

Additionally, we adopt photometric image transformations, which involve modifying the bright-

ness or intensity values of the pixels within an image (Image Filters). In our particular case, we

decide to augment the images by increasing their brightness. This photometric transformation aims

to introduce variations in the intensity levels of the image pixels, potentially enhancing the model’s

ability to generalize and capture variations in illumination conditions.

By incorporating both geometric and photometric transformations, we aim to create a more di-

verse and comprehensive dataset that encompasses a wider range of variations in terms of spatial

orientation and pixel intensity. This augmented dataset is expected to facilitate improved general-

ization and performance of the classification model.

2.2 DEEP-BASED DATA AUGMENTATION

DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS (DCGANS)

In the paper [1], the authors introduced Deep Convolutional Generative Adversarial Networks (DC-

GANs) as a framework for unsupervised representation learning. DCGANs aim to learn meaningful

representations from unlabeled data by training a generator network and a discriminator network

in an adversarial manner [1].

To facilitate effective image-related tasks, deep convolutional neural networks (CNNs) are em-

ployed as the underlying architecture for both the generator and discriminator networks [1]. CNNs

are well-suited for capturing spatial dependencies in images, making them suitable for generating

high-quality images that closely resemble real images.

The primary objective of DCGANs is to enable unsupervised representation learning. The au-

thors leverage the internal representations learned by the discriminator for this purpose. They

observe that the intermediate layers of the discriminator capture meaningful and discriminative

features that can be utilized in downstream tasks, such as image classification. The quality of the

learned representations is assessed through qualitative analysis of the generated images and quan-

titative evaluation of image classification tasks, demonstrating their effectiveness [1].
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DCGANs offer several advantages as outlined in [1] paper. These advantages include stable

training facilitated by architectural constraints, hierarchical feature learning through convolutional

and pooling layers, the generation of high-quality images with coherent structures, the ability to

learn meaningful representations, enabling fine-grained control over generated outputs, semantic

vector arithmetic for manipulating specific attributes, and the potential for transfer learning by

utilizing pre-trained discriminator networks as feature extractors. These advantages collectively

demonstrate the efficacy of DCGANs in unsupervised representation learning, image generation,

and transfer learning tasks.

Figure 4.1: The DCGAN architecture [1]

DIFFUSION MODELS (DALL.E2 MODEL):

A CONCISE SURVEY OF CLIP

One of the notable advantages of DALL.E2 lies in its integration with CLIP, which refers to Con-

trastive Language Image Pre-training. CLIP is a robust vision-language model that has been trained

on a large-scale dataset encompassing images and their corresponding textual captions extracted

from the internet [114].
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Figure 4.2: The CLIP encoders

The primary functionality of CLIP revolves around matching images with their respective textual

captions [114]. It comprises two encoders, as illustrated in Figure4.2: the text encoder, responsible

for generating text embeddings denoted as zt, and the image encoder, responsible for generating

image embeddings denoted as zi. These encoders are trained together to accurately predict the

correct pairings of a batch of training examples consisting of image-text pairs [114].

Within the framework of DALL.E2, CLIP is fine-tuned to function as an embedding network

tailored to the specific task at hand. For instance, in the case of variation creation, CLIP exclusively

generates image embeddings zi when provided with an input image.

DALL.E2 (UNCLIP)

DALL.E2 [95] is an advanced generative model designed to acquire resilient representations of im-

ages, effectively capturing both semantic and stylistic aspects.

The text-to-image generation procedure the authors presented in their paper [95]: Initially, a CLIP

text embedding is utilized as input and processed by an autoregressive or a diffusion prior. This

process yields an image embedding, which subsequently serves as a conditioning factor for a dif-

fusion decoder, ultimately generating the final image output. It is noteworthy that the CLIP model

remains static or "frozen" during the training of both the prior and decoder components.
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Figure 4.3: The text-to-image generation process

DALL.E2 training dataset consists of pairs (x, y) comprising images x and their corresponding

text captions y.

The methodology employed in their scholarly publication [95] encompasses a training approach

centered on a dataset composed of image-caption pairs (x, y), where x denotes images and y repre-

sents their respective captions. Let zi and zt be its CLIP image and text embeddings When provided

with an image x, respectively. The architecture of the generative stack, aimed at generating images

based on captions, incorporates two key components:

• A prior P (zi | y) that produces CLIP image embeddings zi conditioned on captions y.

• A decoder P (x | zi, y) that produces images x conditioned on CLIP image embeddings zi (and

optionally text captions y).

The prior allows us to learn the CLIP image embeddings while the decoder inverts images from their

CLIP image embeddings.

Stacking these two components yields a generative model P (x | y) of images x given captions y:

P (x | y) = P (x, zi | y) = P (x | zi, y)P (zi | y)

In our study, we employed the pre-trained DALL.E2 framework to utilize the sampled images

for the purpose of the diffusion model for data augmentation. The utilization of this framework

enabled us to encode a given image, denoted as x, into a bipartite latent representation represented

by the tuple (zi, xT ). This representation proved to be adequate for the decoder to generate a
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precise reconstruction of the input image. Consequently, our subsequent investigation will primarily

concentrate on the decoder component, which plays a crucial role in image manipulation.

THE DIFFUSION DECODER

The authors employed a diffusion model to generate images, conditioned on CLIP image embed-

dings. This diffusion model, adapted from GLIDE [115], operates as a guided diffusion model that

used classifier-free guidance.

conditional diffusion Incorporating conditioning information alongside the timestep information

at each iteration provides a natural approach. To transform this into a conditional diffusion model,

arbitrary conditioning information y can be straightforwardly included at each transition step [116],

resulting in the following formulation:

pθ(x0:T |y) = p(xT )
T∏
t=1

pθ(xt−1|xt, y)

Classifier-free guidence The proposed method is for providing guidance to diffusion models

without the need for a distinct classifier model training. In the context of class-conditional diffusion

models, the conventional label y is replaced with an empty sequence (which also refers to as ∅) dur-

ing training. Then they guide towards the conventional label y using the modified prediction [115]:

θ̂(xt|y) = θ(xt|∅) + s · (θ(xt|y)− θ(xt|∅))

Here s ≥ 1 is the guidance scale [115].

GENERATE VARIATION OF AN IMAGE USING DALL.E2

The generation of related images x with shared semantic and stylistic content, known as image

variation, has been explored in recent research [95]. This involves the fitting of a bipartite repre-

sentation, denoted as (zi, xT ), where zi represents the CLIP image embedding and xT corresponds

to the initial noise utilized in the application of the Decomposition of Inverse Methods (DDIM) tech-

nique 1 using the decoder. Specifically, the DDIM approach utilizes the decoder to reconstruct the

image, while conditioning on the CLIP image embedding zi and utilizing the initial noise xT .

1the process of recovering or reconstructing an unknown image or signal from its distorted or degraded
version
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By considering the value of s ≥ 1 for sampling, the image variations can be examined to gain

insights into the information captured within the CLIP image embedding. Increasing the value of s

enables a more comprehensive exploration of the variations and provides valuable insights into the

content encoded within the CLIP image embedding.

Figure 4.4: Image variation process

3 STEP2: EMPLOYED CLASSIFIERS

Furthermore, to introduce a higher level of challenge, the evaluation will focus on the task of

diabetic retinopathy disease grading. This grading task poses significant complexity and requires

accurate classification of retinal images based on disease severity. By conducting this evaluation, we

seek to determine the effectiveness of the generated images from the diffusion model in improving

the performance of deep-based classifiers for diabetic retinopathy disease grading.

Diabetic Retinopathy (DR) is predominantly characterized by retinal vascular alterations, re-

sulting in the manifestation of initial indications such as microaneurysms. These changes arise due

to the impact of diabetes on the blood vessels within the retina. Diabetic Retinopathy (DR) is a

disease that is closely tied to high blood sugar levels and can result in vision loss in patients with

long-term diabetes. This loss of vision can occur due to two main factors: firstly, high blood sugar

levels can damage blood vessels in the retina, leading to blood and fluid leakage as well as swelling

of the retina; and secondly, abnormal new blood vessels can grow on the retina, increasing pressure
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within the eye. As such, the examination and analysis of models for DR are of utmost importance

in the development of effective screening and diagnosis tools for this disease [117].

3.1 PROPOSED CONVOLUTIONAL NEURAL NETWORK

To address the task of disease grading, we reconstruct from scratch a Convolutional Neural Network

(CNN) architecture specifically tailored for this purpose. The design of our CNN model is as follows

in figure 4.5:

Figure 4.5: The proposed CNN architecture

The Convolutional Neural Network (CNN) architecture employed in this study consists of three

convolutional layers. Each convolutional layer is followed by a batch normalization layer to nor-

malize the outputs. The network also includes three fully connected layers, incorporating dropout

regularization to mitigate overfitting, and an output layer.

This CNN architecture is developed to effectively capture and learn the intricate features present

in the disease images. Moreover, this comprehensive training setup optimizes the model’s ability

to learn and generalize from the provided dataset, enabling accurate and robust disease grading

outcomes.

3.2 FINE-TUNING RESNET50

In addition, we employed a fine-tuning approach by leveraging the ImageNet dataset to address the

challenges posed by the relatively limited size of our dataset. Transfer learning enables the utiliza-

tion of pre-trained models on large-scale datasets such as ImageNet, thereby reducing the extensive
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training time typically required by deep learning algorithms [118]. The pre-trained model, exten-

sively trained on ImageNet, has been made publicly available, allowing for fine-tuning on other

datasets. Due to its adaptability to diverse datasets, the transfer learning methodology can be read-

ily applied to our specific dataset, facilitating efficient learning and inference in the context of the

particular problem domain [119].

To fulfill this objective, the ResNet50 model [2] is selected, leveraging its deep architecture for

effective feature extraction and representation learning.

Figure 4.6: The resnet-34 architecture [2]

The resnet50 is to replace each 2-layer block in the 34-layer net with this 3-layer bottleneck

block, resulting in a 50-layer ResNet.
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Figure 4.7: The bottleneck block [2]

In our customization process, the final fully connected layer of the ResNet50 model is substi-

tuted with two newly introduced layers, tailored to suit the specific requirements of our task. These

additional layers are fine-tuned by adjusting their parameters while maintaining the remaining pa-

rameters of the ResNet50 model frozen. This approach allows us to capitalize on the pre-trained

knowledge embedded within the ResNet50 model while adapting it to the intricacies of our partic-

ular classification task.

4 CONCLUSION

In conclusion, this chapter provided a comprehensive overview of the methodology employed in

the study. The primary objective of this chapter is to assess the quality and realism of the images

generated by Diffusion models and evaluate their potential for data augmentation in a small-sized

training dataset.

To achieve this, we employed two types of data augmentation techniques: traditional data augmen-

tation and two deep-based data augmentation (DCGANs and Diffusion models).

Furthermore, we evaluate the efficacy of the generated images by using them to train two deep-

based classifiers (Proposed CNN and Fine-tunned Resnet50).

For the task of diabetic retinopathy disease grading. By conducting this evaluation, we aim to

determine the effectiveness of the generated images in improving the performance of deep-based

classifiers.

In the forthcoming chapter, we will proceed with the practical realization of the outcome through

the amalgamation of preceding methodologies. Subsequently, we will present a visual representa-
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tion of the findings and engage in a comprehensive discourse to scrutinize the results, while also

acknowledging and examining the constraints encountered.
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1 INTRODUCTION

In the previous chapter 4, we delineate the workflow of the chosen task elucidating the essential

steps involved in data augmentation through the utilization of both traditional and deep-based

techniques. Additionally, we present the deployed classifiers, highlighting their crucial role in the

successful attainment of disease diagnosis.

In this chapter, we will present a detailed exploration of the aforementioned techniques applied

to the specific IDRID dataset with the objective of diabetic retinopathy grading. We will provide a

comprehensive insight into the utilization of these techniques, highlighting their effectiveness and

impact in the context of assessing the severity of diabetic retinopathy.

Finally, we will present the final results obtained from our study, accompanied by visualizations and

a comprehensive discussion. This analysis will emphasize the implications and significance of our

findings within the broader context of our research.

2 THE INDIAN DIABETIC RETINOPATHY IMAGE DATASET (IDRID)

The Indian Diabetic Retinopathy Image Dataset (IDRID) [120] is a meticulously curated collection

of images falling under the domain of Biomedical and Health Science. This dataset was assem-

bled using real clinical examinations conducted at an eye clinic located in Nanded, India. Retinal

photographs of individuals affected by diabetes were captured with a specific focus on the macula,

employing the Kowa XV-10α fundus camera. To ensure optimal image quality, the pupils of all

subjects were dilated using a 0.5% concentration of tropicamide prior to image acquisition. The

captured images possess a field of view of 50 degrees, a resolution of 4288 × 2848 pixels, and are

stored in the JPG format. Notably, the dataset encompasses typical lesions associated with diabetic

retinopathy as well as annotations of normal retinal structures at a pixel level. The comprehensive

nature of this dataset renders it particularly well-suited for the development and evaluation of im-

age analysis algorithms aimed at the early detection of diabetic retinopathy.

The dataset is organized into three distinct parts, each serving a different purpose:

a. Segmentation: Segmentation of retinal lesions associated with diabetic retinopathy as microa-

neurysms, hemorrhages, hard exudates, and soft exudates. Comprises original color fundus

images that have been divided into a train set and a test set, consisting of 81 images in to-

tal in JPG format. In addition to the fundus images, the Segmentation part also includes

ground truth images for specific lesions, including microaneurysms, hemorrhages, and hard

exudates, all of which are also divided into train and test sets and stored in TIF file format.
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Furthermore, this part of the dataset also contains ground truth images for the optic disc, also

divided into train and test sets and stored in TIF file format.

b. Disease Grading: Classification of fundus images according to the severity level of diabetic

retinopathy and diabetic macular edema. Includes original color fundus images that have

been divided into 413 training images and 103 testing images, all stored in JPG format. The

Disease Grading part also includes ground truth information for the severity grade of diabetic

retinopathy and diabetic macular edema, also divided into train and test sets and stored in

CSV file format.

c. Optic Disc and Fovea Center Localization: Automatic localization of optic disc and fovea cen-

ter coordinates and also segmentation of optic disc. Includes original color fundus images

divided into 413 training images and 103 testing images, all stored in JPG format. In ad-

dition to the fundus images, the Localization part includes ground truth information for the

location of the optic disc center and the fovea center, both of which are divided into train and

test sets and stored in CSV file format.

In this study, we choose the Disease Grading dataset. Each image in the dataset is annotated

with ground truth information of the severity grade, which ranges from 0 to 4, indicating the sever-

ity of diabetic retinopathy. The selection of the Indian Diabetic Retinopathy Image Dataset (IDRID)

dataset for diabetic retinopathy grading is primarily motivated by its intrinsic characteristics. The

dataset possesses a noteworthy attribute in the form of a relatively limited training dataset, consist-

ing of only 413 images. Additionally, the distribution of these images across the five distinct grade

classes is imbalanced, necessitating the implementation of data augmentation techniques to address

this inherent imbalance and alleviate its impact on the training process.

By employing data augmentation, our objective is to overcome the challenges posed by the limited

training data and imbalanced class distribution, aiming to improve the performance and resilience

of the diabetic retinopathy grading task.
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Figure 5.1: images distribution in the five grade classes

A preprocessing step is undertaken prior to the application of data augmentation techniques,

involving the removal of the dark areas surrounding the training and testing images. This process

entails cropping the images to exclusively retain the region corresponding to the retina. Subse-

quently, the cropped images are resized to a square shape with dimensions of 256x256 pixels. The

purpose of this preprocessing step is to focus solely on the relevant retinal region and reduce the

size of the input images, ensuring consistency in their dimensions. The following figures, Figure 5.2,

display an original sample from the dataset, while Figure 5.3 shows the same image after applying

the preprocessing step of cropping and resizing.

Figure 5.2: Original image sample. Figure 5.3: Cropped-resized image sample.
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3 STEP 1: DATA AUGMENTATION

3.1 TRADITIONAL DATA AUGMENTATION

The predominant justification for adopting horizontal and vertical flips as geometric augmentations

reside in the intrinsic circular morphology of the retina, wherein the mirrored rendition of the

right side accurately corresponds to the left side. Moreover, the inclusion of horizontal flips is

substantiated by its capacity to uphold the fundamental circular configuration of the retina, while

concurrently engendering enhancements in brightness via photometric augmentation. Furthermore,

the augmentation process is not conducted randomly; rather, it is employed with the objective of

addressing the imbalance in image distribution across classes and augmenting the training dataset

by increasing the number of available images.

By incorporating these augmentations, the resultant dataset is rendered more comprehensive and

varied, thereby fostering augmented robustness and generalizability of the models trained on the

enriched data.

3.2 DEEP CONVOLUTION GAN FOR DATA AUGMENTATION

The preference for Deep Convolutional Generative Adversarial Network (DCGAN) over alternative

models, including BigGAN, SkyGAN, and ProGAN, stems from various factors, primarily driven by

resource limitations such as GPU availability and time constraints.

DCGAN stands out due to its computational efficiency when compared to other models. Its ar-

chitecture places a significant emphasis on convolutional operations, which leads to streamlined

processing and a reduction in computational burden. Consequently, DCGAN becomes more viable

for training under conditions of limited GPU availability.

Another critical consideration is the time-consuming nature of training deep generative models.

DCGAN’s reliance on smaller image sizes allows for faster iterations during the training process.

This reduction in image resolution results in a decrease in the number of parameters and com-

putations, thereby mitigating overall training time when compared to models like BigGAN which

typically handle higher-resolution images.

The decision to employ 64x64-sized images within the DCGAN framework predominantly arises

from the challenges associated with scaling DCGAN to accommodate high-resolution images (as

we mentioned in chapter 4). Practical considerations and computational constraints play a signifi-

cant role in opting for this image size. Training generative models, particularly deep convolutional

neural networks, on high-resolution images can demand substantial computational resources and
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extensive time investment. As image size increases, so does the number of model parameters and

computational requirements, which can impede efficient training processes.

Regarding the training specifics, DCGAN was trained on a Tesla T4 GPU, utilizing a learning rate

of 0.0002 for 50 epochs. The images produced in the training phase of DCGAN are depicted in

Figure 5.4. Additionally, Figure 5.5 illustrates the generated images obtained during the sampling

phase. Furthermore, Figure 5.6 presents the relevant training information associated with the DC-

GAN model.

Figure 5.4: DCGAN generated images from training phace

Figure 5.5: DCGAN generated images from sampling phase

Figure 5.6: DCGAN during Training
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Despite the potential of DCGANs in unsupervised representation learning, certain limitations

and concerns are acknowledged by the authors of [1]. One common concern with GANs, in general,

is their training dynamics, which may suffer from instability issues in their training dynamics such as

vanishing or exploding gradients, mode collapse, and non-convergence [79]. In addition, DCGANs

exhibit sensitivity to hyperparameters and face challenges in scaling to high-resolution images [1].

We aimed to upscale the images from a resolution of 64x64 pixels to a higher resolution of 256x256

pixels. However, due to time constraints, it is not feasible to complete the image scaling process

within the given timeframe.

3.3 DIFFUSION MODELS FOR DATA AUGMENTATION

In these current years, it appears multi-existing trained diffusion models for image generation

(mostly text-to-image generation) mentioning the most famous ones as: DALL.E2 1 and GLIDE 2

from OpenAi, Stable Diffusion 3 from StabilityAi, The premium Midjourney 4, Imagen 5 from

Google.

The decision to utilize the DALL.E2 model is made following a comparative analysis of results

generated by various freely available models, namely Stable Diffusion and GLIDE, as well as the

semi-freely available DALL.E2 model. The objective of the evaluation is to assess the quality of im-

ages generated in response to a specific text prompt, which defined the characteristics of an image

from the utilized dataset. The prompt specified photographs of the retina, which is the layer of

tissue at the back of the eye that its Retinopathy grade = 1/4 and its Risk of macular edema

= 0 for medical purposes.

1https://openai.com/dall-e-2
2https://www.glideapps.com/docs/reference/integrations/openai
3https://stability.ai/stablediffusion
4https://www.midjourney.com/home/
5https://imagen.research.google

https://openai.com/dall-e-2
https://www.glideapps.com/docs/reference/integrations/openai
https://stability.ai/stablediffusion
https://www.midjourney.com/home/
https://imagen.research.google
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Figure 5.7: sampled from Stable Diffusion Figure 5.8: Sampled from GLIDE

Figure 5.9: Sampled from DALL.E2

Upon analyzing the outputs from the various models used, it becomes evident that the image

generated by the DALL.E2 model exhibits the highest resemblance to a retina. The comparison of

the samples from different models allowed for a clear distinction in terms of visual fidelity and the

ability to capture the specific characteristics of a retina. Among the evaluated models, the DALL.E2

model stood out as it produced an image that closely resembled the desired features and exhibited

a high degree of similarity to a real retina (Figure 5.9). This observation highlights the effectiveness

of the DALL.E2 model in generating retina-like images, making it a favorable choice for the given

task.
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HOW DALL.E2 WAS USED?

We utilize the developer API offered by OpenAI 6 to generate novel images. This API facilitates the

creation of diverse variations for each image in our dataset. However, we encounter a challenge dur-

ing the process as the images have to be submitted individually to the API for generating variations,

resulting in a repetitive operation that had to be performed more than 413 times. Subsequently,

the generated images were downloaded individually and incorporated back into the dataset. This

workflow considerably extended the duration of the operation, spanning several days to complete,

while repeating this operation 413 times.

The figure 5.10 resents illustrative outcomes of sampling with the DALL.E2 API across various grades

Figure 5.10: Sampling results of different grades (0-4, starting from the left)

4 STEP 2: TRAINING THE CLASSIFIERS AND OBTAINING RESULTS

Considering the lack of achievement by the current State-Of-The-Art model, it is unjustifiable to

employ the sampled images generated by the DCGAN generator. Hence, the subsequent results will

entail a comparative analysis between the outcomes obtained by employing traditional data aug-

mentation techniques and the outcomes obtained through augmentation using the Diffusion model.

Upon the successful completion of the data augmentation process, our training sets are enriched

with a total of 1773 images, meticulously curated to ensure a well-balanced distribution across the

five distinct grade classes. We conducted a comparative analysis between traditional and diffusion

models for augmentation techniques to evaluate their effectiveness in medical image augmentation.

6https://platform.openai.com/docs/guides/images/introduction

https://platform.openai.com/docs/guides/images/introduction
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Figure 5.11: images distribution in the five grade classes after the augmentation process

The primary objective of our study is to comprehensively assess the realistic quality and vali-

date the utilization of generated images from diffusion models as a data augmentation technique,

specifically within the context of medical images which are known for their sensitive and accurate

information. This objective is accomplished by training classifiers using augmented data obtained

from both traditional techniques and deep-based techniques, specifically employing deep-based dif-

fusion models, while ensuring the use of consistent parameters and conditions.

Through rigorous evaluation using classification reports, we seek to uncover any advantages or

limitations associated with each technique, paving the way for improved diagnostic and prognostic

capabilities in medical decision-making.

Note:Before feeding the datasets into the network, a preprocessing step of z-score normaliza-

tion is applied. This technique involved standardizing the pixel values to have a mean of zero

and a variance of one. Z-score normalization is a common practice in data preprocessing that en-

sures the data’s distribution is centered and rescaled, facilitating more effective model training and

performance evaluation in a standardized metric.
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4.1 CLASSIFICATION RESULTS OF OUR CNN MODEL

In our study, we present a comparative analysis of traditional data augmentation and diffusion

model augmentation techniques using the same training set which is augmented with an equal

number of images with the same distribution across grade classes. Both techniques were evaluated

using a convolutional neural network (CNN). In this process, the CNN is trained during 80 epochs

and using a batch size of 25 for both datasets. Additionally, The model’s weights are initialized

using a specific seed value (0). The optimization is performed using the Adam optimizer, a widely-

used optimization algorithm that combines adaptive learning rates with momentum, effectively

accelerating the convergence process. The model’s performance is evaluated using the cross-entropy

loss, a common loss function utilized for classification tasks.

RESULTS

When employing traditional data augmentation, the grading results achieve an overall accuracy

of 33.01% with a corresponding loss of 3.56. However, it should be noted that these results are

obtained under the condition of network overfitting. This implies that the model performed well on

the training data but may not generalize effectively to unseen testing data. On the other hand, when

the CNN is trained using the augmented data with diffusion model, the grading results demonstrate

an improved overall accuracy of 40.78% and a reduced loss of 2.82. Similarly, these results were

attained under the condition of network overfitting.

Figure 5.12: Accuracy and Loss behavior during the
training in the traditional data augmentation

Figure 5.13: Accuracy and Loss behavior during the
training in diffusion model data augmentation

The confusion matrix of the classifier for both data sets is as the following:
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G-0 G-1 G-2 G-3 G-4
G-0 1 1 15 4 3
G-1 2 0 2 0 1
G-2 3 1 17 3 8
G-3 3 0 6 5 5
G-4 4 0 4 4 1

Table 5.1: Confusion matrix of the CNN trained
with augmented data with traditional technique

G-0 G-1 G-2 G-3 G-4
G-0 18 0 14 1 1
G-1 2 0 2 1 0
G-2 6 1 19 5 1
G-3 3 2 5 5 4
G-4 1 2 9 1 0

Table 5.2: Confusion matrix of the CNN trained
with augmented data using diffusion models

One notable finding is that the training process with traditional data augmentation exhibits a

faster tendency to overfit the data compared to the diffusion model augmentation. This implies that

the traditional approach is more susceptible to overfitting, whereby the model performed excep-

tionally well on the training data but struggled to generalize effectively to test data.

Conversely, the diffusion model augmentation demonstrates superior performance in terms of ac-

curacy and loss and the confusion matrix, which provides additional information about the classifi-

cation performance. The improvements observed in these metrics indicate that the diffusion model

augmentation technique facilitates enhanced learning and generalization capabilities, contributing

to a more effective and robust model compared with traditional augmentation.

Nevertheless, it is important to exercise caution when interpreting the improvements in accuracy

and loss, as network overfitting was still present even with the diffusion model augmentation. Over-

fitting remains a challenge that needs to be addressed to ensure the model’s ability to generalize

well to unseen data.

4.2 CLASSIFICATION RESULTS OF FINE-TUNED RESNET50

This research study involves a comparative analysis of traditional data augmentation techniques

and augmentation using diffusion models. Two training sets are created, with one set augmented

using geometric techniques (horizontal and vertical flipping) and photometric techniques (increased

brightness), while the other set is augmented using diffusion models. Both augmented datasets are

balanced in the number of included images and in terms of image distribution across different

grade classes. We Fine-Tune a pre-trained ResNet50 model [2] by replacing the last fully connected

layer with two new layers. The Resnet model is fine-tuned with a batch size of 25 over the course

of 25 epochs. The newly added layer weights are initialized following the same distribution as

Xavier’s normal distribution. The optimization process employs the Adam optimizer, and the model’s

performance is assessed using the cross-entropy loss, a prevalent loss function commonly employed

for classification tasks.
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Our objective is to evaluate the impact of these augmentation strategies on classification accuracy

and loss metrics. Through systematic evaluation, we aim to determine the effectiveness of each

technique when integrate with the Fine-Tuned ResNet50 model.

RESULTS

When the pre-trained ResNet50 model is Fine-Tuned using the training set augmented with tradi-

tional techniques, the training achieves an overall accuracy of 41.74% with a corresponding loss

of 2,11. In contrast, when the pre-trained ResNet50 model is Fine-Tuned using the training set

augmented with diffusion techniques, the training achieves an overall accuracy of 53.40% with a

corresponding loss of 1,36.

Figure 5.14: Accuracy and Loss behavior during the
fine-tuning of the training augmented using traditional
augmentation

Figure 5.15: Accuracy and Loss behavior during the
fine-tuning of the training augmented using diffusion
model

With confusion matrices as the following:

G-0 G-1 G-2 G-3 G-4
G-0 13 0 19 2 0
G-1 3 0 1 1 0
G-2 4 1 16 11 0
G-3 0 1 7 11 0
G-4 1 0 7 2 3

Table 5.3: Confusion matrix of the fine-tuned
Resnet-50 with augmented data with traditional
technique

G-0 G-1 G-2 G-3 G-4
G-0 22 1 11 0 0
G-1 4 0 1 0 0
G-2 7 0 22 0 3
G-3 1 0 10 7 1
G-4 2 1 6 0 4

Table 5.4: Confusion matrix of the fine-tuned
Resnet-50 with augmented data using diffusion
models

It is crucial to highlight that the results obtained from the augmented training using traditional

augmentation techniques are affected by the presence of network overfitting. Conversely, in the

case of fine-tuning the ResNet50 model with the training augmented using the diffusion model, the
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network demonstrates resilience against overfitting to the training data.

These observations emphasize the contrasting effects of traditional and diffusion model augmen-

tation on the generalization capability of the network. While traditional augmentation leads to

overfitting, the diffusion model approach effectively mitigates this issue, allowing the network to

generalize well to unseen data.

This finding underscores the potential of the diffusion model augmentation technique in enhancing

the generalization performance of the fine-tuned ResNet50 model. It suggests that diffusion model

augmentation can contribute to improved model robustness and performance in scenarios where

overfitting is a concern.

5 CONCLUSION

In conclusion, due to the limited performance of our DCGAN generator, it was not suitable for

utilization as an augmentation technique in the classification task. Consequently, we did not incor-

porate the generator as part of our experimentation process, and therefore, no results were obtained

using this approach.

Thus, our study focused on evaluating the effectiveness of traditional data augmentation ver-

sus diffusion model augmentation in the context of medical image classification. Through rigorous

analysis and comparison, we aimed to assess the impact of these augmentation strategies on classi-

fication outcomes, model generalization, and overfitting tendencies.

Our findings demonstrate that the diffusion model augmentation technique offers notable ad-

vantages over traditional data augmentation approaches. When applied to both a convolutional

neural network (CNN) model and a fine-tuned ResNet50 model, the diffusion model augmentation

consistently led to higher accuracy and lower loss values. This suggests that the diffusion model

augmentation facilitated enhanced learning and improved generalization capabilities, contributing

to more robust and effective models.

Importantly, our results highlight the challenge of overfitting in medical image classification

tasks. While both augmentation techniques exhibited some degree of overfitting, the traditional

data augmentation approach displayed a faster tendency to overfit compared to the diffusion model

augmentation. This emphasizes the potential of diffusion models in mitigating overfitting and im-

proving the generalization performance of the models.

Overall, the findings from this study emphasize the value of diffusion model augmentation in

the realm of medical image classification. By enhancing accuracy, reducing overfitting tendencies,

and improving generalization capabilities, diffusion models offer promising avenues for improving
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diagnostic and prognostic capabilities in medical decision-making.



GENERAL CONCLUSION

The findings of this study demonstrate that the utilization of a diffusion model for data augmen-

tation presents notable advantages over traditional data augmentation approaches. Specifically,

when applied to a deep-based classifier, the diffusion model augmentation exhibited superior per-

formance. These results highlight the challenge of overfitting commonly encountered in medical im-

age classification tasks. While both augmentation techniques displayed some degree of overfitting,

the traditional data augmentation approach exhibited a faster tendency to overfit in comparison

to the diffusion model augmentation. These findings underscore the significance of incorporating

diffusion model augmentation in the realm of medical image classification.

The research objective of this study was to evaluate the quality of images generated by Diffusion

models. This objective has been successfully addressed in this thesis through a comparative anal-

ysis of the performance exhibited by deep-based classifiers trained on two distinct datasets. One

dataset was augmented using diffusion models, while the other dataset underwent traditional data

augmentation techniques.

The findings of this study bear significance in the field of medical image analysis, particularly in

the context of medical classification tasks. These findings effectively tackle the prevailing challenges

associated with the scarcity of available medical datasets and the fatigued process of collecting and

annotating medical images.

While this study has yielded valuable insights, it is crucial to acknowledge its limitations. One

limitation pertains to the restricted number of generated images due to the time-consuming nature

of the image generation process using the pretrained DALLE2 model. Additionally, the achieved
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accuracy of 53% indicates that further improvements are necessary to enhance the effectiveness

of the classifiers. Furthermore, the low resolution of the images generated by the DCGAN model

prevented their inclusion in the comparative analysis as they could not be fed to the classifier.

These limitations highlight areas for future research and emphasize the need for several im-

provements. These improvements encompass the generation of a larger number of images for the

training set through the utilization of DALLE2, thereby aiming to achieve improved classification

accuracy. Additionally, it is imperative to improve the DCGAN model to generate higher quality

images. This enhancement will enable more advanced comparative analyses and facilitate a com-

prehensive assessment of image quality. Moreover, in order to provide a comprehensive evaluation,

we will incorporate other data augmentation techniques alongside the aforementioned methods,

allowing for a thorough comparison with diffusion models.



BIBLIOGRAPHY

[1] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep con-

volutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,

2016.

[3] D. J. Park, M. W. Park, H. Lee, Y.-J. Kim, Y. Kim, and Y. H. Park, “Development of machine

learning model for diagnostic disease prediction based on laboratory tests,” Scientific reports,

vol. 11, no. 1, p. 7567, 2021.

[4] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic

Markets, vol. 31, no. 3, pp. 685–695, 2021.

[5] A. Madani, R. Arnaout, M. Mofrad, and R. Arnaout, “Fast and accurate view classification of

echocardiograms using deep learning,” NPJ digital medicine, vol. 1, no. 1, p. 6, 2018.

[6] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak,

B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,”

Medical image analysis, vol. 42, pp. 60–88, 2017.

[7] S. Wang, C. Li, R. Wang, Z. Liu, M. Wang, H. Tan, Y. Wu, X. Liu, H. Sun, R. Yang, et al.,

“Annotation-efficient deep learning for automatic medical image segmentation,” Nature com-

munications, vol. 12, no. 1, p. 5915, 2021.

[8] A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern ap-

proaches,” Array, p. 100258, 2022.

76



BIBLIOGRAPHY 77

[9] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in

Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.

[10] M. Özbey, S. U. Dar, H. A. Bedel, O. Dalmaz, Ş. Özturk, A. Güngör, and T. Çukur, “Un-
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