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ABSTRACT 

Deep learning methods, particularly Convolutional Neural Networks (CNNs), 

have revolutionized image classification, including the classification of electronic 

components, when compared to traditional methods, deep learning methods have 

several advantages. Firstly, CNNs are capable of automatically learning hierarchical 

representations from raw input data, eliminating the need for manual feature 

engineering. This allows CNNs to effectively capture intricate patterns and features in 

images, enabling accurate classification. Moreover, it excels in handling large-scale 

datasets. 

 In this thesis, we focused on investigating the classification of electronic 

components using deep learning techniques and evaluated the performance of popular 

models such as LeNet, AlexNet, GoogleNet, and VGG16, leveraging transfer learning 

by comparing their performance on a small dataset representing four classes of 

electronic components: bypass capacitor, transistor, LED, and relay. Notably, our 

findings demonstrated that VGG-16 achieved superior results, exhibiting higher 

accuracy within a shorter time frame. This outcome highlights the effectiveness of 

transfer learning, where pre-trained models can be fine-tuned on specific tasks, in 

improving the classification accuracy of electronic components. 

Key words and terms: Machine Learning, Electronic components recognition, 

Deep Learning, Convolutional Neural Networks, Image Classification.  

 خلاصة 

( و ث رة  ي للااف    CNNأحدثت أساايب ا تبلم ا تبمق ، و  س ساا قي تبتاالعيت تبملاال ف تبل     ف  

تبلا ر و لقي  ي لب  للاف   تبقع فيت تكبعلر ف ف و دفد قريرفل ي ليبقرا تبلر  د ف و للقلط قرا تبلم ا تبمق ،  

أن للم ا تبلقث ل تب رقي ل ريئ ًي قن ل يفيت تكدخيل تبخيا و ققي    CNNليبمد د قن تبقزت ي. أ سً و  قعن بتاااالعيت 

ليبلريق تلأفقيق  تبق زتت تبقمردة لتااعل   CNNتت تب د  ف.  سااقه هلت بتاالعيت    غي تبحيجف إبى هفدسااف تبق ز

 ميل  ي تبلاا ر و ققي  ل ه تبللااف   تبد  ،. د  ة د ى لب  و   ي لل  ا  ي تبلميقل قط قجق ديت تبل يفيت 

 . تسمف تبفقيا

تا لرف يت تبلم ا .  ي هله تلأقر حف و رعزفي د ى تبلحر ،  ي للاااف   تبقع فيت تكبعلر ف ف ليسااالخد

و  تسسال يدة قن   LeNet    AlexNet    GoogleNet    VGG16تبمق ،  لر  ا أدتء تبفقيلج تبتايئمف قثل 

تبلم ا دن قر ، قريرفف أدتئ ي د ى قجق دف ل يفيت لااااغ رة لقثل أرلط  ئيت قن تبقع فيت تكبعلر ف فث قعث   

  VGG16أن تبفليئج تبلي ل لاا في إب  ي أر رت أن  و  قرحل.  تبجد ر ليبلعر    قلاالي لجي ز و لرتفزساال ر و  

ف تبضا ء د ى  ميب ف لم ا تبفرل حررت فليئج قل   ف و  أر رت د ف أد ى  ي إقير زقفي أ لار. لسا ق هله تبفل ج

 .ح ث  قعن ضلق تبفقيلج تبقدرلف قسلرًي د ى ق يا قحددة و  ي لمز ز د ف للف   تبقع فيت تكبعلر ف ف

و تبلم ا تبمق ، و تلعيت   تبلمر  د ى تبقع فيت تسبعلر ف فتبلم ا تلآبي و   الأساسية: الكلمات والمصطلحات

تبل ر و للف   بل ي  فتبملل ف تس تسلقفيدي تبلعيء    
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I.INTROUDCTION 

Electronic components are an essential part of modern technology 

and are used in a wide range of applications, from consumer electronics to 

industrial machinery. The ability to accurately and efficiently recognize 

electronic components is critical for many tasks, such as quality control, 

inventory management, and equipment maintenance. Hence why 

Electronic component recognition is an important task in the field of 

computer vision, with a wide range of applications in various industries. 

Traditional methods of recognizing electronic components(such as 

principal component analysis (PCA) and support vector machine (SVM)) 

rely on hand-crafted features and shallow learning models, which often 

suffer from limitations such as poor low recall , accuracy , scalability and 

generalization.  

In recent years, deep learning has emerged as a promising approach 

for improving the accuracy and efficiency of electronic component 

recognition. By learning hierarchical representations of features directly 

from raw data, deep learning models can capture more complex and 

abstract patterns that are difficult to extract using traditional methods.  

The objective of this thesis is to propose a deep learning-based 

approach for recognizing electronic components in real-world scenarios. 

Specifically, we use a convolutional neural network (CNN) to extract 

features from images of electronic components and apply a classifier to 

predict the component type. Our approach is trained and evaluated on a 

large-scale dataset of electronic components, and we compare the 

performance  between popular existing methods like LENET, AlexNet , 

GoogleNet and VGG16. Additionally, we investigate the impact of various 
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factors on the performance of our approach, such as the size and quality of 

the training data, the architecture of the CNN. 

I.1 thesis structure: 

 In Chapter II, we review related works on electronic component 

recognition . We discuss the limitations of existing methods and the 

advantages of using deep learning for this task 

 In Chapter III, we describe the methodology of our approach. We 

introduce the dataset that we use for training and evaluation and explain 

the data preprocessing steps. We also provide a detailed description of the 

architecture of the CNN that we use and the training procedure. Finally, we 

explain the classifier that we use to predict the component type and the 

evaluation metrics that we use to compare the performance of our approach 

to existing methods.  

In Chapter IV, we present the experimental results and analysis. We 

report the accuracy and efficiency of our approach and and we compare the 

performance of popular CNN network's such as AlexNet ,LENET, 

GoogleNet and a pretrained VGG16 , we provide qualitative analysis of 

the results by visualizing the learned features of the CNN and analyzing 

the errors made by the classifier. 

 Finally we conclude the thesis and discuss the contributions and 

limitations of our approach. We also suggest future research directions in 

this area, such as incorporating additional modalities (e.g., sound) to 

improve the accuracy of component recognition. 

 

 



  

 

 

 

 

 

CHAPTER Ⅱ 

 

RELATED WORKS



 RELATED WORK                                                                                                                   CHAPTERⅡ 

3 
 

II.Related work 

Electronic component recognition is a critical task in the electronics industry, 

where the ability to accurately and efficiently recognize and classify components is 

essential for quality control and inventory management. In recent years, there has been 

a significant increase in research focused on developing effective methods for 

electronic component recognition, with a particular emphasis on the application of deep 

learning techniques. In this section, we will review the related works on traditional 

methods and deep learning methods for electronic component recognition. 

The majority of current Image  classification techniques fall into two categories. 

Images are primarily categorized in the first group according to their spatial domains 

and transforms domains. The second category applies deep learning to categorize 

photos. Convolutional neural networks (CNNs) and other networks are used to 

automatically learn image attributes. 

 

Figure 1: Electronic component classification methods 
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II.1 TRADITIONAL  METHODS 

Traditional techniques for classifying images. For many years, researchers have 

explored and developed traditional  picture categorization techniques. These techniques 

identify the images based on the features they have extracted through a number of 

difficult picture preprocessing procedures (such morphological transforms). For 

instance, Du et al [2]. utilized the Hough transform and least squares method to classify 

components by extracting their edge features. Traditional image classification 

algorithms cannot analyze very large images due to computational cost, and multiple 

component classification is challenging even if classification accuracy is generally 

high. 

In previous studies such as [3]by D. Lefkaditis and all , This paper gives an 

account of the construction of an intelligent sorting system for electronic components. 

Specific focus is given on the comparison of two feature selection methods used to 

optimize the morphological feature vector. Correlation analysis and support vector 

machines were considered as they represent two very different approaches for feature 

selection. The performance of these methods was measured through the successful 

recognition rates of two neural classifiers, the multilayer perception and the radial basis 

function network. The best performing combination of methods was then proposed as 

the classification module of the sorting system. Correlation analysis was utilized to 

discover any underlying relationships between the features, in essence to find out if 

they refer to the same property of the sample’s outline. Therefore, unwanted repetitions 

of information were discarded, thus the feature vector was shrunk and simplified with 

minimum loss of its descriptive ability. 

 Support vector machines (SVMs) were examined as an alternative technique 

for feature selection. Here, SVMs were set to perform a supervised classification task 

on the data. The focus was not to optimize the classification performance but to quantify 

the discrimination ability of the features and sort them on this basis. The sorting 

criterion was the squared weight of each variable defined by the support vectors.  

In [4] Fast Classification in PCA+SVM Settings PCA is often used to project 

input samples into a (generally lower dimensional) space where classification is carried 

out. This is specially useful when the input samples are images. Basically, PCA gives 
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a set of orthogonal dimensions that maximize the variance of the input samples. In face 

recognition, this set is called eigenfaces Not all of these dimensions (eigenfaces) are 

useful for classification. Only the first n eigenfaces are appropriate for classification, 

with the last eigenfaces typically encoding noise. 

When a test sample X is to be projected with PCA, the operation to perform is: 

Y = XW, where W is the transform matrix. When working with vectorized images in 

the rows of X, the columns of W are the eigenfaces. As mentioned above, usually only 

the first n columns of W are used in the multiplication. This is thought to avoid the 

noise of the last eigenfaces. What should be a good value for n? There are reasons to 

believe that a large dimensional input space would be needed to separate difficult 

samples, while 'easy' samples could be separated in simpler spaces (i.e. lower value for 

n). In this method, a different K value may be used for each specific test sample, instead 

of a fixed dimension n. Easy samples can be classified in a PCA space of a low number 

K of dimensions. The necessary number of dimensions to use will be ultimatelygiven 

by the classifier output. For each test sample the system would classify it in a low 

dimensional space first. If the classifier output is large enough (i.e. above a fixed 

threshold) then classification will end and a class label will be retrieved. Otherwise the 

process should be repeated in a more informative space of a larger dimension, see 

Figure 2. 

 

Figure 2 : Top: Typical PCA+SVM classification [4] 

Traditional machine learning methods, such as PCA and SVM, have been used 

for electronic component recognition. PCA is a dimensionality reduction technique that 

projects high-dimensional data onto a lower-dimensional space. SVM is a popular 

machine learning algorithm that can be used for classification tasks. However, these 
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methods have limitations when it comes to recognizing complex images with high 

variability  , such as electronic  components. 

In  [5] by Ravi Kumar and all ,The Local Binary Pattern (LBP) method is a 

feature extraction technique that has been used for electronic component recognition. 

LBP extracts texture features from an image by comparing the intensity of each pixel 

in the image to the intensities of its surrounding pixels. The method creates a binary 

code for each pixel based on whether its intensity is greater than or less than the 

intensities of its surrounding pixels. By applying LBP to an image, we obtain a binary 

code for each pixel, which can be represented as a histogram of local patterns . 

For electric components recognition ,LBP can be used to extract  features from 

images of electronic components. These features can be used as input to a classifier, 

such as a support vector machine (SVM) or a neural network, to predict the type of 

component in the image. 

he DS-1D-LBP method has some significant advantages. The first advantage is 

that this method uses individual values in all marks for feature extraction. The second 

advantage is that the implementation of this model is easy and fast. Another advantage 

is that it can extract different feature groups depending on the window length (WL) and 

related sampling parameters. they tested their proposed DS-1D-LBP + ELM approach, 

the data set in the Kaggle database repository was used. High performance was obtained 

for activity recognition by using DS-1D-LBP + ELM approach. However, LBP also 

has some limitations, such as its sensitivity to noise and its inability to capture spatial 

relationships between pixel. 

 

Figure 3: Local Binary Pattern strecture 

in [6] by M. Moetesum and others, This paper presents an effective technique 

for segmentation and recognition of electronic components from hand-drawn circuit 

diagrams. Segmentation is carried out by using a series of morphological operations on 

the binarized images of circuits and discriminating between three categories of 

https://ieeexplore.ieee.org/author/37086123605
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components (closed shape, components with connected lines, disconnected 

components). 

 Each segmented component is characterized by computing the Histogram of 

Oriented Gradients (HOG) descriptor while classification is carried out using Support 

Vector Machine (SVM). The system is evaluated on 100 hand-drawn circuit diagrams 

with a total of 350 components. A segmentation accuracy of 87.7% while a 

classification rate of 92% is realized demonstrating the effectiveness of the proposed 

technique. 

 

Figure 4 : An overview of the system 

Traditional methods of classifying images, such as principal component 

analysis (PCA) and support vector machine (SVM), have some limitations and 

drawbacks. One major limitation is their reliance on hand-crafted features, which can 

be time-consuming and subjective. Additionally, they may not perform well when faced 

with complex images with high variability, such as electronic components. These 

methods may also suffer from over fitting or under fitting, leading to poor 

generalization to new data. Lastly, these methods may not scale well to large datasets 

and may require significant computational resourcesIn addition to the lack of accuracy 

and taking a lot of time. 
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II.2 DEEP LEARNING  METHODS 

Deep learning methods using convolutional neural networks (CNNs) can 

automatically extract information from images by utilizing techniques such as 

convolutions, backpropagation, weight sharing, sparse connections, and pooling. 

However, general deep learning networks may struggle with handling large amounts of 

data and operating in real-time due to their complex structure and numerous 

calculations. 

 Recent studies, such as [7] by IpekAtik proposed a new CNN model with six 

convolution layers, four pooling layers, two fully connected layers, softmax , and a 

classification layer,  The training parameters of the network were determined as an 

ensemble size of 16   maximum period of 100, initial learning rate of 1 × 10−3  which 

shows excellent performance when optimized with the Sgdm method with accuracy 

value of 98.99% compared to selected pre-trained  models   (Google Net  shuffle 

Net...etc)   but with its very large parameters and complex architecture it took longer 

time.  .

 

Figure 5 :The proposed CNN model architecture[7]while in [8] by Xu and 

others ,  they used a Faster SqueezeNet network algorithm which can reduce the size of 

network parameters and computational complexity without deteriorating the 

performance of the network along with tensorflow techniques achieved a reasoning 

time is about 2.67 ms and 99% accuracy  for the industrial application level in terms of 

time consumption and performance. Since the test only used small data set (22 
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subcategories of resistor, capacitor and inductor) it can't be taken for granted when it 

comes to larger amount of dataset and various categories of components. 

 

Figure 6: Faster SqueezeNet network structure.[8] 

In [9] by Rui Huang, Jinan Gu, Xiaohong Sun, Yongtao Hou  and Saad Uddin 

Introduced a fast recognition method which is an improved YOLO (You Only Look 

Once)-V3 network model by the lightweight technique that resulted on good detection 

accuracy and speed (accuracy  95.21% and the speed was 0.0794 s) but there still some 

a   bit   gab between  them. 

 

Figure 7: Standard convolution vs. depthwise separable convolution [9] 
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Figure 8: YOLOV3–Mobilenet detection network [9] 

In [10]  by Sun, Gu and Rui ,they provided a rapid recognition  method known  

as an  improved model based on SSD (single shot multi-box detector) which is 

conducted by adopting feature fusion strategy and adding visual reasoning techniques 

showed an great balance between accuracy and detection speed like on small dataset 

only which  might degrades on a large dataset. 

 

Figure 9 :The improved SSD [10] 

in [11] by Tianhong Panand Mian Khuram Ahsan a hand-drawn electronic 

component recognition method was proposed using a Convolutional Neural Network 

(CNN) and a soft max classifier is proposed. The CNN composed of a convolutional 

layer, an activation layer and an average-pooling layer is designed to extract features of 

a hand-drawn electronic component image with a sparse auto-encoder method has 

achieved 95% . 

recognition accuracy on rotating images most of these  deep  learning methods 

has showed Impressive evolution electronic component recognition compared to 

https://www.inderscienceonline.com/doi/abs/10.1504/IJCAT.2020.103905
https://www.inderscienceonline.com/doi/abs/10.1504/IJCAT.2020.103905
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traditional methods in terms of performance in real time industrial level of requirements 

(accuracy and time) . 

 

 

Figure 10 :Hand-drawn model[11] 

conclusion 

In this thesis , we aim to compare different CNN-based methods, including 

AlexNet, VGG16, Google Net, Lenet with vgg16 trained with transfer learning 

technique and the others models from scratch  . We will then select the best one to 

identify electronic components in industries real-time requirements.  
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III.METHOLOGY 

III.1 Artificial  neural network  

Artificial neural networks are a programming paradigm with biological 

inspiration that enables a computer to learn from empirical data. Artificial neurons, 

which are a network of interconnected units or nodes loosely fashioned after the human 

brain and intended to recognize patterns, form the foundation of a [ANN]. Neural 

networks are capable of labeling, categorizing, or grouping unprocessed inputs to 

interpret sensory data. They need to translate the patterns that are digital, represented 

in vectors, and made up of real-world data like photos, sound, text, or time series. They 

are used to categorize, group, and group unlabeled data based on similarities between 

sample inputs. When they have a labeled data set to train on, they also classify data. 

They can extract features that are fed into other clustering and classification algorithms. 

 

Figure 11: Conceptual hierarchy of Artificial Intelligence and its subsidiaries [41] 

III.2 Deep neural network  

The neural network was developed with inspiration from the human brain, its 

functions, and how it operates. Its functionality depends heavily on artificial 

intelligence and machine learning, a subset of AI. When a developer enters data and 

creates a machine learning algorithm, they largely employ the ("if...else...") concept of 

programming to make the system operate. Along with following the procedure, the deep 

neural network also uses its prior knowledge to forecast solutions to problems and make 

inferences. You can obtain an answer in this situation without using programming or 

coding. When autonomous labor needs to replace human labor without sacrificing 

efficiency, a deep neural network is advantageous.  Numerous real-world uses for deep 

neural networks can be found. For instance, the Chinese business Sensetime has 
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developed an automatic facial recognition system to discover criminals in crowds using 

real-time cameras. In the present day, the police and other government agencies have 

adopted it as a common practice. 

 

Figure 12: (a) simple neural network and (b) Deep neural network [13] 

III.3 COUNVOLUTIONAL NEURAL NETWORK  (CNN) 

Different neural network types exist, and what sets them apart from one another 

is how they operate, how they are organized, and in what contexts they are used. 

Convolutional neural networks (CNN) are primarily employed for image recognition 

and infrequently for audio recognition. Since it is not necessary to verify each pixel 

individually, photos are where it is most commonly used. The upper left corner of an 

image is where CNN starts to check it, going pixel by pixel until it passes. A 

convolutional layer is then applied after each check, where some data points have 

connections while others do not. Based on this information, the system may output the 

results of the checks and determine what is depicted in the image. 

Conv nets, also known as convolutional neural networks (CNNs), are a 

particular type of feed forward neural network. In that they are composed of neurons 

with trainable weights and biases,  The fundamental distinction is that we can encode 

certain features in the CNN design since it implicitly assumes that the input is image-

like Convolutions in particular capture translation invariance (i.e., filters are location 

independent) As a result, the forward function is more effective, there are much less 

parameters, the network is easier to improve, and the dependence on the amount of the 

data is reduced Unlike conventional neural networks, CNNs' layers feature neurons 

arranged in a few different dimensions, including channels, width, height, and number 

of filters in the most basic 2D example Similar to an MLP, a convolution neural network 
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consists of a series of layers, where each layer modifies the activations or outputs of the 

layer before it using a differentiable function.  

The convolution layer, pooling layer, and fully connected layers are the most 

typical building blocks you will find in most CNN architectures. There are other layers 

used in CNNs as well, and they will be covered in following sections. These layers 

essentially function as dimensionality reduction, feature extractors, and classification 

layers, respectively. These CNN layers are stacked to create a full convolutional neural 

network We briefly halt at the convolution layer before moving on to a summary of the 

various layers. In essence, a convolution layer filters the input using a convolutional 

kernel. These filters typically come in large numbers A filter glides across the input 

volume during a forward pass, generating its activation map at that location by 

calculating the pointwise product of each value and combining them to get the 

activation at the point.  

Convolution naturally implements such a sliding filter, and as convolution is a 

linear operator, it may be efficiently expressed as a dot-product This implies that while 

training a CNN of this type, the network will discover filters that recognize specific 

types of visual data, such as edges, orientations, and eventually, in a higher layer of the 

network, whole patterns. We have a vast array of such filters in each of these 

convolution layers, and each of these filters will result in a unique activation map. To 

create the output map or activation volume of this layer, these activation maps are 

stacked CNN generally. Convolutions are employed in CNN to learn higher-order 

features from the data. With regard to object recognition in photos, they do remarkably 

well [12]. CNN may also be utilized for character recognition in text analysis and for 

analyzing words as separate textual units. CNN also utilizes voice data effectively. For 

image recognition, CNN is more well-known. Today, CNN is utilized in a variety of 

systems, such as autonomous vehicles, robots, and drones. Data that has some structure 

and spatial correlation typically performs well when using CNN. CNNs are employed 

in computer vision, as seen in Figure 13. 
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Figure 13: CNNs and computer vision [12] 

The inefficiency of classic neural networks when dealing with large amounts of 

picture input is the basis for CNN [11]. Network architecture can be changed with the 

help of image data. The length, height, and depth properties of CNNs can therefore be 

mapped to the image width, height, and RGB channels, allowing the neurons to be 

aligned in a three-dimensional structure. To put it simply, CNNs take an input image 

and convert it through a series of connected layers to produce a collection of class 

probabilities. As seen in Figure 14  CNN architectures  will have some similar layers. 

 

Figure 14: High-level CNN architecture [12] 

III.3.1 convolution 

A "kernel" is used in convolution to pull out specific "features" from an input 

image. A kernel is a matrix that is applied to the image and multiplied by the input in 

order to enhance the output in a desired manner. See an example of this below. 
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Figure15: how convolution is performed on an input image to extract features [19] 

 

Figure 16: Convolution operation on an MxNx3 image matrix with a 3x3x3 Kernel 

[18] 

III. 3.2 CNN Base architecture 

The base architecture consist of input layer , convolution layer . pooling layer 

and fully connected  layer 

III.3.2.1 Input layer  

The CNN input data is loaded to the input layer for processing, as shown in 

figure 17- The input layer uses the image's three dimensions (width,height, and RGB 

channel) 

 

Figure 17: 3D data input [12]  
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III.3.2.2 convolutional layers 

The first layer utilized to extract the different features from the input photos is 

this one. Convolution is a mathematical process that is carried out at this layer between 

the input image and a filter of a specific size, MxM. The dot product between the filter 

and the portions of the input image with regard to the filter size (MxM) is taken by 

sliding the filter across the input image.The result is known as the Feature map, and it 

provides details about the image, including its corners and edges. This feature map is 

later supplied to further layers to teach them additional features from the input image 

Once the convolution operation has been applied to the input, CNN's convolution layer 

passes the output to the following layer. The spatial link between the pixels is preserved 

thanks to convolutional layers of CNN. 

The foundation of CNN designs are convolutional layers. Applying a filter or 

kernel to the input image causes convolution layers to transform it. To create the feature 

map, the layer executes a dot product operation between the filters and the region of the 

input layer's neurons. Convolution layer with input and output volume is shown in 

Figure 18. 

 

Figure 18: Convolution layer with input and output volume [12]The output 

generated after the convolution has the same usually as the input seen in figures 19 
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Figure 19: The convolution operation [12] 

Figure 19 illustrates how the filter or kernel is smaller than the input size slid. 

It produces a convolved feature by applying a specified stride value to the input data. 

Feature detector is another name for this procedure. The 3D output is created by adding 

the feature map or activation map (as shown in figure 20) for each filter along the depth 

axis. The activation value reflects the feature detector's learning process. Each filter 

thereafter learns to recognize a certain feature. A two-dimensional filter activation map 

is created by sliding the filter on the input. 

 

Figure 20 Convolution and activation maps [12] 

The staked activation maps form output volume. The values in activation 

volume correspond to neurons outputs that cover a small area of the input volume 

 

Figure 21: Activation volume output of convolutional layer [12] 

Neurons are linked to the input layer through the eceptive field. The size of filter 

maps is set using 
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III.3.2.3 The pooling layer  

In order to make feature maps smaller, groups of layers are used. As a result, it 

lessens the amount of network computation and the number of parameters that must be 

taught The feature map created by a convolution layer's feature clustering layer lists the 

features that are present in a specific area. As a result, rather than using the precisely 

positioned features produced by the convolution layer, other operations are done on the 

summarized features. As a result, the model is more resistant to changes in the features' 

positions in the input image. 

III.3.2.3.1 Pooling layer  types 

Max Pooling is a pooling process that chooses the most objects from the area of 

the feature map that the filter covers a feature map comprising the most crucial features 

from the prior feature map would be the output following the maximum clustering 

layer. 

The average of the elements in the feature map area filtered by the filter is 

determined via average pooling. Thus, average pooling provides the average of the 

features present in a patch whereas maximum common implementation provides the 

most significant feature in a certain patch of the map of features. 

 

Figure 22: Illustration of maximum pooling and average pooling [17] 

III.3.2.4 Fully connected layers 

To connect the neurons between two layers, the Fully Connected (FC) layer, 

which also includes weights and biases, is utilized. These layers make up the final few 

layers of a CNN architecture and are often positioned before the output layer. 
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The input image from the layers below is flattened and supplied to the FC layer 

in this. The flattened vector is then put through a few additional FC layers, where the 

standard operations on mathematical functions happen. The classification procedure 

starts to take place at this point. Because two fully connected layers will function better 

than one connected one, two layers are connected. These CNN layers lessen the need 

for human oversight. 

III.3.3 Transfer learning  

Machine learning uses transfer learning as a key approach to address the 

fundamental issue of insufficient training data. By relaxing the presumption that 

training data and test data should be distributed equally, it attempts to transfer 

knowledge from the source domain to the target domain. This has a profoundly good 

impact in a variety of areas. The figure 23 depicts the transfer learning process. 

 

Figure 23: Learning Process of Transfer Learning [15] 

III.3.4 ImageNet  

The fundamental driving force behind deep learning is the need for vast volumes 

of labeled data for supervised models, which may be highly challenging given the time 

and effort needed to label data points. Most models that address complicated problems 

require a lot of data. The ImageNet dataset, which includes millions of images falling 

under several categories, serves as a straightforward illustration. 
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Figure 24: A sample of the ImageNet dataset [16] 

III.3.5 Tuning Hyperparameters 

Deep learning models are parameterized such that their behavior can be changed 

from data for a specific task. He will be able to change the model's parameters by 

training it with existing data. However, there is another type of parameter known as 

hyperparameters that cannot be learned directly from the standard training procedure. 

They are usually corrected before the actual training process begins. These parameters 

represent crucial model aspects such as the model's complexity or the rate at which it 

must learn. 

A model parameter is an internal configuration variable of the model whose 

value can be inferred based on the data presented. The model requires them to make 

predictions. The values of these parameters are learned from data and define the model's 

performance on a given problem. They are frequently not set by the practitioner 

manually and are saved as part of the learnt pattern. Weights in a neural network, 

support vectors in a support vector machine, and linear or logistic regression 

coefficients are examples of model parameters. 

A hyperparameter is a constant parameter whose value is determined prior to 

the start of the learning process and cannot be approximated from data. Learning is used 

to derive parameter values, which are then employed in procedures to help estimate 

model parameters. The values may be mutually dependent. These parameters are 

frequently modified for a particular predictive modeling task. Learning rate, number of 

masked layers, and batch size are examples of hyper parameters. 
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In general, no best values for a model hyper  parameter on a specific problem 

are known. A practitioner can utilize rules of thumb, copy values from other problems, 

or trial and error to obtain the best value. When you tune a machine learning algorithm 

for a specific problem, you're effectively tuning the model's hyper  parameters to find 

the model parameters that produce the best accurate predictions. These parameters will 

aid the model's learning and convergence. The sections that follow will go over the 

hyper  parameters that were employed in this project to optimize performance on the 

Identify and Classify Electronic Components dataset. 

III.3.5.1 Learning rate 

The learning rate algorithm. Depending on the optimizer used for the neural 

network, the model can employ Xe learning rate, steadily decreasing learning rate, 

momentum-based approaches, or adaptable learning rates. 

III.3.5.2 Epoch 

The number of epochs is the number of times the training is processed by the 

neural network. The model's number of epochs should be increased until there is a 

modest gap between the test error and the training error. 

III.3.5.3 Batch Size 

In the training of a convolutional network, the mini-batch method is commonly 

preferred. A range of 16-128 is a decent place to start when testing. Typically, CNN are 

batch size dependent ,In this experiment, leads were created to train with batches 

ranging from 16 to 256. However, there is a catch. The larger the batch size, the more 

accurate the validation, but there is a catch. When the batch size is increased, the 

training time is reduced and the quantity of learning is reduced when compared to a 

smaller batch size. Because the training was done on GPUs, a batch size of 64 was 

enough to train the network. 

III.3.5.4 Optimizer 

Optimize makes changes to the weight settings in order to reduce the loss 

function. The loss function functions as a guide to the terrain, informing the optimizer 

whether it is heading in the proper direction to achieve the valley's bottom, the global 
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minimum. Adam, Adagrad, Nadam, Nesterov[12] Accelerated Gradient (NAG), 

RMSprop, and SGD are examples of optimizers. In most circumstances, Adam 

performs admirably. 

Adam can be thought of as a hybrid of RMSprop and Stochastic Gradient 

Descent with momentum. It uses squared gradients to scale the learning rate, similar to 

RMSprop, and it takes advantage of momentum by using the gradient's moving average 

rather than the gradient itself, similar to SGD with momentum. It is an adaptive learning 

rate method that determines individual learning rates based on various characteristics. 

It gets its name from adaptive moment estimation, as it employs estimates of the 

gradient's first and second moments to adjust the learning rate for each weight in the 

neural network. 

III.3.5.5 Fine tuning 

Boost performance even further. Fine tuning during transfer learning entails 

unfreezing part or all of the layers of the pre-trained model and allowing it to adapt 

more to the task at hand. This project's scope includes transfer learning and the usage 

of pre-trained models trained on ImageNet classes. It employs ImageNet pre-trained 

weights and adjusts for the properties of electronic components. set of data We will 

employ a typical strategy for fine-tuning transfer learning As illustrated in Fig. 25, fine 

tuning consists of the four phases listed below. 

 

Figure 25 : Fine tuning. [14] 
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1.Train a neural network model (the source model) on a source dataset (the ImageNet 

dataset) . 

 .2.Create a new neural network model, which will serve as the target model. Except 

for the output layer, this transfers all model designs and their settings to the source 

model. We expect that these model parameters include the information gained from the 

source dataset and that this knowledge will be applied to the target dataset as well. We 

also assume that the source model's output layer is strongly related to the labels in the 

source dataset; thus, it is not employed in the target model. 

 .3.Add an output layer to the target model with the same number of outputs as the 

target dataset's categories. Then, at random, set the model parameters for this layer. 

4.Train the target model on the target dataset, for example, a chair dataset The output 

layer will be trained from scratch, while the parameters of all other layers will be refined 

using the source model's parameters. 

III.3.5.6 Dropout 

Normally, overfitting in the training dataset might result from all features being 

connected to the FC layer. When a given model performs so well on training data that 

it has a negative effect on the model's performance when applied to new data, this is 

known as overfitting. To solve this issue, a dropout layer is used, in which a small 

number of neurons are removed from the neural network during training, reducing the 

size of the model. Thirty percent of the nodes in the neural network are randomly 

removed upon passing a dropout of 0.3 A machine learning model performs better 

thanks to dropout since it reduces overfitting by simplifying the network. During 

training, neurons are removed from the neural networks. 

 

Figure 26: Left: Two layers of a neural network that are fully connected with no 

dropout. Right: The same two layers after dropping 50% of the connections[13] 
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III.3.5.7 Activation functions 

The activation function is one of the most crucial elements of the CNN model. 

They are employed to discover and approximation any type of continuous and complex 

link between network variables. Simply said, it determines which model information 

should shoot forward and which information should not at the network's end. 

The network gains nonlinearity as a result. The ReLU, Softmax, tanH, and 

Sigmoid functions are a few examples of regularly used activation functions. Each of 

these operations has a particular use. Sigmoid and softmax functions are preferred for 

a CNN model for binary classification, and softmax is typically employed for multi-

class classification. To put it simply, activation functions in a CNN model decide 

whether or not to activate a neuron. It determines through mathematical processes if the 

input to the work is significant or not. 

Sigmoid function 

It is a function which is plotted as ‘S’ shaped graph. 

 Equation : A = 1/(1 + e-x)  

Nature : Non-linear. Notice that X values lies between -2 to 2, Y values are very steep. 

This means, small changes in x would also bring about large changes in the value of Y.  

Value Range : 0 to 1  

Uses : Usually used in output layer of a binary classification, where result is either 0 or 

1, as value for sigmoid function lies between 0 and 1 only so, result can be predicted 

easily to be 1 if value is greater than 0.5 and 0 otherwise 

Tanh function 

The activation that works almost always better than sigmoid function is Tanh function 

also known as Tangent Hyperbolic function. It’s actually mathematically shifted 

version of the sigmoid function. Both are similar and can be derived from each other.  

Equation :-  
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Value Range :- -1 to +1 

Nature :- non-linear 

Uses :- Usually used in hidden layers of a neural network as it’s values lies between -1 

to 1 hence the mean for the hidden layer comes out be 0 or very close to it, hence helps 

in centering the data by bringing mean close to 0. This makes learning for the next layer 

much easier 

Relu function 

It Stands for Rectified linear unit. It is the most widely used activation function. Chiefly 

implemented in hidden layers of Neural network. 

Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 otherwise. 

Value Range :- [0, inf) 

Nature :- non-linear, which means we can easily backpropagate the errors and have 

multiple layers of neurons being activated by the ReLU function. 

Uses :- ReLu is less computationally expensive than tanh and sigmoid because it 

involves simpler mathematical operations. At a time only a few neurons are activated 

making the network sparse making it efficient and easy for computation.In simple 

words, RELU learns much faster than sigmoid and Tanh function 

Softmax function 

The softmax function is also a type of sigmoid function but is handy when we are trying 

to handle multi- class classification problems. 

Nature :- non-linear 

Uses :- Usually used when trying to handle multiple classes. the softmax function was 

commonly found in the output layer of image classification problems.Thesoftmax 

function would squeeze the outputs for each class between 0 and 1 and would also 

divide by the sum of the outputs.  
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Output:- The softmax function is ideally used in the output layer of the classifier where 

we are actually trying to attain the probabilities to define the class of each input.  

The basic rule of thumb is if you really don’t know what activation function to use, then 

simply use RELU as it is a general activation function in hidden layers and is used in 

most cases these days. If your output is for binary classification then, sigmoid 

function is very natural choice for output layer. If your output is for multi-class 

classification then, Softmax is very useful to predict the probabilities of each classes. 

III.3.6 CNN Models 

Researchers are creating new architectures and algorithms to solve image 

categorization challenges as machine learning for images continues to grow. CNNs 

come in a variety of architectures, and these are essential when creating algorithms. We 

will examine some of the most significant computer vision Olympics in this chapter. 

There are over 15 million photos in the ImageNet's database, which has more than 

22,000 categories. The top-1 error rate and top-5 error rate are used as benchmarks for 

evaluating the models. Top-1 error rate is the percentage of incorrectly classified test 

images or inputs, whereas top-5 error rate is the percentage of incorrectly categorized 

test inputs that were not placed in one of the top-5 most likely classes. LeNet, Alex Net, 

and other convolutional neural network designs are some example ..  

III.3.6.1 LeNet 

In 1998, the LeNet-5 architecture was introduced in a research paper titled 

“Gradient-Based Learning Applied to Document Recognition” by Yann LeCun, and all 

[32]. It is one of the earliest and most basic CNN architecture. 

.
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Figure27 : LENET architecture[32] 

It consists of 7 layers. The first layer consists of an input image with dimensions 

of 32×32. It is convolved with 6 filters of size 5×5 resulting in dimension of 28x28x6. 

The second layer is a Pooling operation which filter size 2×2 and stride of 2. Hence the 

resulting image dimension will be 14x14x6. Similarly, the third layer also involves in 

a convolution operation with 16 filters of size 5×5 followed by a fourth pooling layer 

with similar filter size of 2×2 and stride of 2. Thus, the resulting image dimension will 

be reduced to 5x5x16Once the image dimension is reduced, the fifth layer is a fully 

connected convolutional layer with 120 filters each of size 5×5. In this layer, each of 

the 120 units in this layer will be connected to the 400 (5x5x16) units from the previous 

layers. The sixth layer is also a fully connected layer with 84 units The final seventh 

layer will be a softmax output layer with ‘n’ possible classes depending upon the 

number of classes in the dataset. 

III.3.6.2 AlexNet 

AlexNet is a convolutional neural network architecture that was introduced by 

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in 2012. This deep learning 

model won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 

2012, which is a benchmark competition in image classification , AlexNet was one of 

the first deep convolutional neural networks that was designed to handle large-scale 

image classification tasks. It consists of eight layers, including five convolutional 

layers, two fully connected layers, and a softmax classifier at the output layer, One of 

the key features of AlexNet is the use of Rectified Linear Units (ReLU) as activation 

functions in the hidden layers. ReLU is a non-linear activation function that is faster 

and more efficient than other activation functions, such as sigmoid and hyperbolic 

tangent. Another important aspect of AlexNet is the use of dropout regularization, 

which helps to prevent overfitting by randomly dropping out units in the fully connected 

layers during training, AlexNet was trained on the ImageNet dataset, which consists of 

1.2 million images and 1000 classes.  

The network was trained using a stochastic gradient descent (SGD) optimizer 

with a learning rate of 0.01, a momentum of 0.9, and weight decay of 0.0005. The 

network was trained on two NVIDIA GTX 580 GPUs for five to six days The 
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performance of AlexNet on the ImageNet dataset was groundbreaking at the time. It 

achieved a top-5 error rate of 15.3% and a top-1 error rate of 37.5%, which was a 

significant improvement over the previous state-of-the-art results. The success of 

AlexNet sparked a revolution in deep learning and led to the development of many 

other deep convolutional neural network architectures for image classification and other 

computer vision tasks, AlexNet is a pioneering deep learning model that introduced 

several important concepts, such as the use of ReLU activation functions and dropout 

regularization, which have become standard in modern deep learning architectures. Its 

success on the ImageNet dataset paved the way for many other deep learning models 

and applications in computer vision and beyond. 

 

Figure 28 : ALEXNET architecture[33] 

AlexNet is a deep convolutional neural network that consists of eight layers, including 

five convolutional layers, three fully connected layers, and a softmax classifier at the 

output layer. The architecture of AlexNet is as follows: 

Input layer: The input to the network is a 224 x 224 RGB image. 

Convolutional layers: The first layer of AlexNet is a convolutional layer that consists 

of 96 filters with a size of 11 x 11 and a stride of 4. The second and the third 

convolutional layers have 256 and 384 filters with a size of 5 x 5, respectively. The 

fourth and the fifth convolutional layers have 384 and 256 filters with a size of 3 x 3, 

respectively 

Max pooling layers: After each convolutional layer, there is a max pooling layer with a 

size of 3 x 3 and a stride of 2. 
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Fully connected layers: The output of the last convolutional layer is flattened and fed 

into two fully connected layers with 4096 neurons each. The last fully connected layer 

has 1000 neurons, corresponding to the number of classes in the ImageNet dataset. 

Softmax classifier: The output of the last fully connected layer is fed into a softmax 

classifier to produce the final probability distribution over the classes 

How  does it works ? 

AlexNet is primarily used for image classification tasks. It works by learning 

features of images in a hierarchical manner. The input image is first passed through a 

series of convolutional layers, where each layer learns different features of the image. 

These features become more complex and abstract as the image moves through the 

layers. The max pooling layers reduce the spatial dimension of the feature maps, 

making the network more efficient and reducing overfitting. 

The fully connected layers at the end of the network combine the learned 

features from the convolutional layers and produce a final probability distribution over 

the classes in the ImageNet dataset. The softmax classifier ensures that the probabilities 

sum up to 1 and produces the final output of the network.AlexNet uses ReLU activation 

functions in the hidden layers, which help to speed up the training process and prevent 

the vanishing gradient problem. Dropout regularization is also used in the fully 

connected layers to prevent overfitting and improve the generalization performance of 

the network 

 

. 

III.3.6.3 GoogleNet 

The ILSVRC 2014 competition was won by Google's GoogleNet (a.k.a. 

Inception V1). It had a top-five error rate of 6.67%! This was quite near to human level 

performance, which the challenge organizers were now obligated to analyze As it turns 

out, beating GoogleNets accuracy was actually quite difficult and required some human 

training. The human expert (Andrej Karpathy) was able to attain a top-5 error rate of 

5.1% (single model) and 3.6% (ensemble) after only a few days of training. The 
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network employed a CNN inspired by LeNet but included a new element known as an 

inception module. Batch normalization, picture distortions, and RMSprop were all 

employed. This module relies on a series of extremely small convolutions to 

dramatically minimize the amount of parameters. Their architecture included a 22-layer 

deep CNN, however the number of parameters was lowered from 60 million (AlexNet) 

to 4 million. 

 

Figure 29 : GoogleNet Inception Module[34] 

The alternate view of this architecture in a tabular format in below 

 

Table 1 : GoogleNet Architecture Tabular View. 

III.3.6.4 VGG-16 

. VGG-16 is a convolutional neural network (CNN) architecture proposed by 

Karen Simonyan and Andrew Zisserman [34] from the University of Oxford in 2014. 

It is a widely-used deep learning model for image classification and other computer 

vision  tasks . 

III.3.6.4.1 VGG16 Architecture: 
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A picture with the dimensions (224, 224, 3) is used as the network's input. The 

same padding and 64 channels with a 3*3 filter size are present in the first two layers. 

Then, two layers have convolution layers of 128 filter size and filter size (3, 3), followed 

by a max pool layer of stride (2, 2). The next layer is a max-pooling stride (2, 2) layer 

that is identical to the layer before it. There are then 256 filters spread across 2 

convolution layers with filter sizes of 3 and 3. There are then two sets of three 

convolution layers, followed by a max pool layer. Each filter has the same padding and 

has 512 filters of size (3, 3). The stack of two then receives this image. 

 

Figure 30 : VGG-16 Map [34] 

We obtained a (7, 7, 512) feature map after adding a convolution and max-

pooling layer to the stack. This output is flattened to create a (1, 25088) feature vector. 

There are then 3 fully connected layers; the first layer uses the most recent feature 

vector as input and produces a vector of size (1, 4096); the second layer also produces 

a vector of size (1, 4096); however, the third layer produces a vector of size (1, 1000), 

which is used to implement the softmax function to classify 1000 classes. ReLU is used 

by every hidden layer as its activation function. Because ReLU promotes quicker 

learning and lessens the likelihood of vanishing gradient issues, it is more 

computationally efficient ,One of the main contributions of VGG-16 is its use of very 

small 3x3 convolutional filters, which allows for a deeper architecture while keeping 

the number of parameters relatively low. This makes the model easier to train and less 

prone to overfitting , VGG-16 has achieved excellent performance on the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) dataset, surpassing the previous 

state-of-the-art performance by a large margin. Its architecture has also been used as a 

base model for many other computer vision tasks, such as object detection and semantic 

segmentation . 

Overall, VGG-16 is a simple yet powerful deep learning architecture that has 

contributed greatly to the advancement of computer vision research. 
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III.3.6.5 VGG-19 

           The Visual Geometry Group Network (VGGNet) is a process multilayer deep 

neural network. VGGNet is based on the CNN model and is applied to the ImageNet 

dataset. VGG-19 is useful because of its simplicity as 3 3 convolution layers they are 

installed on top to expand with depth level. To reduce the volume size, the maximum 

grouping layers were used as a parameter in VGG-19. Used as input data for 

VGGNet. In the training phase, convolutional layers are used Extraction of features 

and maximum pooling layers associated with certain convolutional layers Reduce the 

dimensions of the features. In the first convolutional layer, there were 64 cores (3*3 

filter size). Apply to extract the entity from the captured images. Fully connected 

layers were used to prepare feature vectors. The acquired feature vector is additionally 

exposed for PCA and SVD to the dimensions Reduce and select image data function 

for better classification results. Reduce high [31]. Dimensional data using PCA and 

SVD is an important task. PCA and SVD are more beneficial because it is faster and 

numerically more stable than other reduction techniques. Technical. The performance 

of the VGG-19 based system was compared against other feature mining architectures 

including AlexNet and SIFT. AlextNet is a multi-layered retrieval architecture used in 

CNN. Scaled Fixed Feature Transformation (SIFT) is a classical feature extraction 

[31]. A technique introduced by Mansour to detect local features of the input image in 

a computer vision field .

 

Figure 31 : layers in the vgg19 architecture[36] 

III.3.6.6 ResNet 

Deep residual learning for image identification developed by Microsoft 

researchers was incorporated into the ResNet model, which won the ISRVC2015[38] 

with a top-5 error rate of 3.57%, which is even lower than the standard for humans (5-

10%). In comparison to its forerunners, the AlexNet and VGG nets, the ResNet is 

substantially deeper. One of the models created using residual networks has 152 layers, 

which is nearly eight times as many as VGG nets Although the accuracy of the CNN 
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model tends to increase with depth  training deep networks would encounter the 

vanishing/exploding gradient problem [39, 40], which prevents convergence But 

normalized initialization  handles this issue and allows deep networks to converge for 

stochastic gradient descent (SGD) with backpropagation. The accuracy of the training 

set saturates and consistently worsens with increasing depth, as seen in figure 32-33, 

even while deeper networks are able to converge a degradation This is not the result of 

greater depth or overfitting. This means that not all models behave in optimization in 

the same way. 

Residual Network: This architecture introduced the idea of Residual Blocks to 

address the vanishing/exploding gradient issue. We apply a method known as skip 

connections in this network. The skip connection bypasses some levels in between to 

link layer activations to subsequent layers. This creates a leftover block. These leftover 

blocks are stacked to create resnets  . 

The strategy behind this network is to let the network fit the residual mapping 

rather than have layers learn the underlying mapping. Thus, let the network fit instead 

of using the initial mapping H(x)  . 

F(x) = H(x) - x which gives H(x) = F(x) + x 

 

Figure 32 :Skip (Shortcut) connection[12]      

The benefit of including this kind of skip link is that regularization will skip any 

layer that degrades architecture performance. As a result, training an extremely deep 

neural network is possible without encountering issues with vanishing or expanding 

gradients.  The CIFAR-10 dataset's 100–1000 layers were used for experimentation by 

the paper's authors   .  The term "highway networks" refers to a similar method that also 

uses skip connections. These skip connections also make use of parametric gates, just 

as LSTM. The amount of data that flows across the skip connection is controlled by 
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these gates. However, this architecture has not offered accuracy that is superior to 

ResNet architecture. Network Architecture: This network uses a 34-layer plain 

network architecture inspired by VGG-19 in which then the shortcut connection is 

added. These shortcut connections then convert the architecture into a residual network. 

 

Figure 33: ResNet architecture [12] 

III.3.6.7 DenseNet 

DenseNet (Densely Connected Convolutional Networks) is a deep neural 

network architecture that was introduced by Gao Huang, Zhuang Liu, Laurens van der 

Maaten, and Kilian Weinberger in their 2016 paper titled "Densely Connected 

Convolutional Networks". It has gained popularity due to its ability to mitigate the 

vanishing gradient problem, promote feature reuse, and improve the accuracy of image 

classification tasks. 

DenseNet architecture  

The DenseNet architecture is based on the concept of dense connections. In 

traditional convolutional neural networks, the output of a layer is fed as input to the 

next layer. In DenseNet, every layer is connected to every other layer in a feedforward 

fashion. This means that the output of each layer is fed as input to all subsequent layers. 

This creates dense connections between layers, which allows for the reuse of features 

learned by earlier layers in the network. 
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Figure 34 : DenseNet Architecture[37] 

The core building block of DenseNet is the dense block. A dense block is 

composed of a series of convolutional layers followed by a concatenation operation that 

merges the output of all the previous layers. The concatenation operation produces a 

feature map that is then passed as input to the next dense block. By connecting each 

layer to every subsequent layer, the number of feature maps increases in a geometric 

progression, resulting in a high-dimensional feature space. This allows DenseNet to 

learn more discriminative features while minimizing the number of parameters in the 

network In addition to dense blocks, DenseNet also includes transition layers, which 

reduce the spatial dimensions of the feature maps. A transition layer consists of a batch 

normalization layer, a 1x1 convolutional layer, and a 2x2 average pooling layer. The 

batch normalization layer normalizes the output of the previous layer, the 1x1 

convolutional layer reduces the number of feature maps, and the average pooling layer 

reduces the spatial dimensions of the feature maps. 

CNN has great advantage in the field of image processing and recognition . it 

also has several popular models , among them will chose LeNet, AlexNet,GoogleNet 

and VGG-16 to test them in our dataset of electronic components .we will also compare 

them and chose the best one in terms of performance. 
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IV.INTRODUCTION  

Following feature engineering, dataset selection, and model implementation 

that produced an output as a probability or a class, the next stage was to assess the 

performance of the metric-based model using ensemble test data. Evaluation of deep 

learning models is a crucial component of a project. 

IV.1 Dataset preprocessing 

The dataset consists of 1378 images belonging to four distinct classes: 

transistor, capacitor, LED, and relay  in some cases, the dataset may be insufficient to 

achieve better results in deep CNN networks To enhance the dataset's diversity and 

size.as shown in figure 35. 

 

Figure 35 :  Distribution of dataset class data 

Before the training we split our dataset into 70% for training and 15% for testing 

and 15% for validation  then we apply a series of data augmentations such horizon flip 

gaussian blur …etc , The reason we do this is very simple. If we don't split the data into 

different sets, the models would be evaluated on the same data it saw during the training  
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RELAY

32.14%
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Figure 36 : Bypass Capacitor                                 Figure 37 : LED 

 

Figure 38 : Relay                                             Figure 39 :Transistor 

 

The performance metrics used to evaluate the knowledge and outcomes attained 

as a result of the network experiments covered in the previous chapter are presented in 

this Chapter. 

2 Performance indicators 

As vital as it is to prepare data and train a machine learning model, it is also 

crucial to evaluate the effectiveness of the model after it has been trained. It is crucial 

to understand how well the model generalizes the hidden data and whether it can be 

used to address the issue , Deep  learning activities are related to evaluation measures. 

Different metrics are available for various jobs. The focus will be on measures that can 

assess a classification task because this experiment is based on classification. 

IV.3 Confusion matrix 

Machine learning entails giving an algorithm with data so that it can figure out 

how to carry out a particular task on its own. In classification issues, it makes 

predictions that must be compared to actual outcomes to see how well it performed. 

The confusion matrix, also known as the contingency table, is typically used. It will not 

only show which forecasts were right and wrong, but more importantly, it will show 

what kinds of mistakes were made. One needs a set of test data and another set of 
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validation data that contains the values of the findings acquired in order to calculate a 

confusion matrix. confusion matrix An N x N matrix, where N is the number of 

expected classes, is a confusion matrix. There are three classes and a 3x3 grid in the 

current issue. The values shown in the confusion matrix are as follows The rows of the 

table's columns correspond to the actual classes, and each column contains a class 

predicted by the algorithm. 

True Positive (TP) - A result where the model correctly predicts the positive class. 

True Negative (TN) - A result where the model correctly predicts the negative class. 

False Positive (FP) - A result where the model incorrectly predicts the positive class. 

False Negative(FN) -A result where the model incorrectly predicts the negative Class 

 

Table 2: confusion Matrix 

 True/Reel confusion matrix 

False True 

TP/ (TP+FN) Precision 

 =  

FP 

(False 

positive) 

TP 

(True positive) 

True Model 

Predictions 

TP/ (FN+TN) Negative 

Predictive 

Value 

TN 

(Truenegativ

e) 

FN 

(False 

negative) 

False 

Accuracy= 

(TP+TN)/(TP+FP+TN+F

N) 

Specificity 

=TN/ 

(FP+TN) 

Sensitivity/rec

all 

=  TP/ 

(TP+FN) 
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To evaluate a model's performance, the confusion matrix can be used to derive 

the following values : 

Accuracy: The proportion of the total number of predictions that were correct. 

Precision: The proportion of positive cases that were correctly identified. 

Sensitivity or Recall: The proportion of actual positive cases that are correctly 

identified. 

Specificity: The proportion of actual negative cases that are correctly identified. 

F1-score: precision and recall weighted mean or harmonic mean. This score considers 

both false positives and false negatives. The F1 score is a number between 0 and 1. 

IV..4 Multi-class classification metrics 

IV.4.1 Marco accuracy 

 the ratio between the amount of correct predictions. It averages over the number 

of labels in the classification. The numerator finds how many labels in the predicted 

vector have in common with the ground truth, and the ratio calculates how many of the 

predicted true labels are actually in the ground truth. 

Accuracy=(TP+TN)/(TP+FP+TN+FN) 

IV.4.2 Macro recall 

the ratio of predicted labels to actual labels. The numerator determines how 

many labels in the predicted vector share similarities with the ground truth, then 

calculates the ratio to the number of real labels, yielding the proportion of actual labels 

predicted. 

Recall =  
TP

TP+FN
 

 

 

 



DISCUSSION                                                                                                                          CAHPTER Ⅳ 

41 
 

IV.4.3 Macro F1-Score  

the most commonly used F-measure variation in multi-class settings due to its 

equal emphasis on rare classes. It applies the F-measure to multi-class parameters by 

averaging precision and recall levels across all classes It depicts the delicate balance of 

precision and recall. In simple terms, we might state that it is the harmonic mean of the 

two. 

 

F1 = 2.
PRE.REC 

PRE + REC
 

 

IV.5 Experiments  and results 

All experimentation in this thesis  is conducted using the Windows platform. 

the machine uses an Intel Core i5- 8400H 2.5 GHz CPU, an NVIDIA GTX1050 (2G) 

GPU and 12 GB RAM  . In addition to selecting several deep learning networks such 

as  LENET, ALEXNET, and GOOGLE NET  ,VGG16  This experiment performed a 

preliminary examination of the networks' training performance to identify the final 

network to be processed for the detection challenge. To examine network efficiency, 

performance was measured against a micro set of 1378 images of Electronic 

components divided into 4 classes (153 transistor ,443 relay,480 Led ,302 bypass-

capacitor). 

 

Figure 40: Flowchart of our Models training process 
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IV.5.1 Comparison of performance between models 

V.5.1.1 LeNet performance  

LeNet was trained for 100 epochs from scratch  before setting the other half of 

the layers. By unlocking these layers, the associated weights were learned and changed 

based on the specific dataset's properties. The architecture acquired after the layer 

change process is shown in the table below. 

Table 3: Layers in the new model architecture 

 

The following training settings were also chosen categorical_ cross entropy 

loss, 'Adam' optimizer, 100 epochs, 32 batch size The following curves were obtained 

after 1 hours 15 min of training on the above parameters. 

 

Figure 41: Training graphs of LeNet 
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The network reached its maximum training accuracy of 99% at the end of 50 

epochs with a commit accuracy of 67.58%. The training time for LeNet was estimated 

at 1 hours 15 minutes. The trained model was evaluated against the same mini-test set 

and achieved an accuracy of 67 % and a Macro f1 score of 0.66 and recall of 0.66. 

 

Figure 42 : Confusion matrix of LeNet on mini-testes 

 

 

 

IV.5.1.2 AlexNet performance  

AlexNet was trained for 100 epochs  from scratch before setting the other half 

of the layers. By unlocking these layers, the associated weights were learned and 

changed based on the specific dataset's properties. The architecture acquired after the 

layer change process is shown in the table below. 
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The following training settings were also chosen categorical_ cross entropy 

loss, 'Adam' optimizer, 100 epochs, 32 batch size The following curves were obtained 

after 2 hours 50 min of training on the above parameters. 

 

Figure 43: Training graphs of AlexNet 

The network reached its maximum training accuracy of 98.86% at the end of 82 

epochs with a commit accuracy of 67.58%. The training time for AlexNet was estimated 

at 2 hours 50 minutes. The trained model was evaluated against the same mini-test set 

and achieved an accuracy of 74% and a Macro f1 score of 0.74 and recall of 0.73. 

 

Table 4: Layers in the new model architecture 
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The following image represents the confusion matrix during the test phase 

 

Figure 44: Confusion matrix of AlexNet on mini-testes 

IV.5.1.3 GoogleNet performance  

GoogleNet was trained for 100 epochs from scratch before setting the other half 

of the layers. By unlocking these layers, the associated weights were learned and 

changed based on the specific dataset's properties. The architecture acquired after the 

layer change process is shown in the table below. 
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The following training settings were also chosen 

'categorical_ cross entropy loss, 'Adam' optimizer, 100 epochs, 32 batch size 

The following curves were obtained after 3 hours 40 min  of training on the above 

      

Figure 45: Training  graphs of GoogleNet 

The network reached its maximum training accuracy of 97.57% at the end of 94 

epochs with a commit accuracy of 75 %. The training time for GoogleNet was estimated 

at 3 hours 40 minutes. The trained model was evaluated against the same mini-test set 

and achieved an accuracy of 71% and a Macro f1 score of 0.68 and recall of 0.66. 

 

Table 5: Layers in the new model architecture 
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The following image represents the confusion matrix during the test phase 

 

Figure 46: Confusion matrix of GoogleNet on mini-testes 

IV.5.1.4 VGG-16 performance  

VGG-16 was trained for 25 epochs in transfer learning before setting the other 

half of the layers. By unlocking these layers, the associated weights were learned and 

changed based on the specific dataset's properties. The architecture acquired after the 

layer change process is shown in the table below. 

 

Table 6: Layers in the new model architecture 
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The following training settings were also chosen categorical_ cross entropy 

loss, 'Adam' optimizer, 25 epochs, 32 batch size The following curves were obtained 

after 1 hours of training on the above parameters. 

 

Figure 47: graphs of pre-trained VGG-16 

• The network reached its maximum training accuracy of 89.48% at the 

end of 24 epochs with a commit accuracy of 80%. The training time for 

VGG16 was estimated at 1 hours. The trained model was evaluated 

against the same mini-test set and achieved an accuracy of 81% and a 

Macro f1 score of 0.81 and recall of 0.81. 

The following image represents the confusion matrix during the test phase 
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Figure 48: Confusion matrix of VGG-16 on mini-testes 

IV.5.2 Results Comparison  

The results obtained for Macro-Accuracy, Macro Recall and Macro F1-Score 

are summarized for all networks so that we can compare with a more accurate picture. 

The results are listed in the following table. 

 

 

Table 7: Precision, recall and F1-Scores of different networks on mini-testset 

  

Macro F1-Score Macro Recall Macro-precision  

66 66 67 LENET 

74 73 74 ALEXNET 

68 66 71 GOOGLENET 

81 81 81 VGG16 
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Figure 49.Performance indicators obtained with CNN model 

 

By comparing the results as shown in figure 49 it is safe to say that the pre-

trained VGG16 model got the highest perfomance compared the other models such as 

LeNet, AlexNet and GoogleNet In terms of accuracy  by 14% 7% and 10% respectively  

and in terms of recall it got 15% , 8% and 15% compraed to LeNet ,AlexNet and 

GoogleNet respectively and  by 15% . 7% and 13% in terms of f1-score compraed to 

LeNet ,AlexNet and GoogleNet  respectively. 

 

As shown in figure 50  its clear that the transistor was the easiest components 

to classified by the models followed by  the led , relay, and the bypass capacitor  mostly 

because it’s the class  with the lowest number of components compared to other classes 

this means the accuracy  of our tested models might decrease in larger amount of data 

however the accuracy of transistor and led are quite similar in vgg16 thanks to  it being 

pre-trained model  unlike other models whom trained from scratch. 
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Figure 50 : Accuracy(%) for each class by CNN model 
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V. CONCLUSION GENERAL 

In this thesis , various deep learning-based classification approaches were 

utilized to classify electronic components. We compared the forecasting performances 

of these approaches and. Instead of modifying the data, we also focused on identifying 

the appropriate fine-tuning strategies. 

The study observed that the implementation of CNN-based architectures for 

classification yielded effective results, with high accuracy rates. Specifically, the 

following accuracy values were obtained for the classification of electronic 

components: AlexNet achieved 74% accuracy, GoogleNet achieved 71% accuracy, 

LeNet achieved 67% accuracy, and pretrained VGG-16 achieved 81% accuracy on 

small data set of 1378 images this means that the  pre-trained VGG-16 was the best 

model out of all with higher performance in shorter time thanks to transfer learning .  

V.1 Future studies 

In future studies, we  plan to explore improved data augmentation methods, such 

as mirroring, and utilize larger datasets in conjunction with several pretrained models. 

We also aim to calculate the training duration for larger datasets and make efforts to 

enhance the training process to achieve high performance in a shorter time. 

Overall, the study highlights the effectiveness of deep learning-based 

approaches, particularly CNN-based architectures, in classifying electronic 

components. The researchers emphasize the need for further research to, incorporate 

larger datasets, and optimize training processes for improved performance. 
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