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Abstract

Federated Learning (FL) has the potential to train models on decentralized data while

maintaining data privacy. However, trust and security are major concerns in federated

learning architecture due to the possibility of malicious contributors. This essay aims to

improve the longevity of the federated learning system by addressing trust-based mitiga-

tion. The study explores different types of trust, including contributor trustworthiness,

model trustworthiness and data bias. In addition, it examines trust-based mitigation

techniques for the FL system, including reputation-based modelling, secure aggregation

protocols and privacy-preserving techniques. These mechanisms recognise and deal with

the non-trusted participants, ensuring the integrity of the FL system. The study also

investigates the effects of trust-based mitigation techniques on the performance and effi-

ciency of FL systems, balancing security measures and computational load. The approach

is tested through experiments and simulations using real-world datasets and scenarios,

estimating its performance in terms of model accuracy, convergence rate, communica-

tion efficiency and resemblance to application scenarios against adversarial attacks. This

essay contributes to the field of FL by addressing trust challenges and providing effec-

tive mitigation strategies, paving the way for a more secure and reliable FL system in

sensitive and private domains such as healthcare, finance and smart cities.

Keywords

FL system, trust , security, privacy, Secure aggregation protocols, Trust-based mitigation

techniques, Simulation , , Machine learning.



Résumé

L’apprentissage fédéré (Federated Learning) a le potentiel de former des modèles sur des

données décentralisées tout en maintenant la confidentialité des données. Cependant, la

confiance et la sécurité sont des préoccupations majeures dans l’architecture d’appren-

tissage fédéré en raison de la possibilité de contributeurs malveillants. Cet essai vise

à améliorer la longévité du système d’apprentissage fédéré en abordant l’atténuation

basée sur la confiance. L’étude explore différents types de confiance, notamment la fia-

bilité des contributeurs, la fiabilité des modèles et la partialité des données. En outre,

elle examine les techniques d’atténuation basées sur la confiance pour le système d’ap-

prentissage fédéré, y compris la modélisation basée sur la réputation, les protocoles

d’agrégation sécurisés et les techniques de préservation de la vie privée. Ces mécanismes

reconnaissent et traitent les participants non fiables, garantissant ainsi l’intégrité du

système FL. L’étude examine également les effets des techniques d’atténuation basées

sur la confiance sur les performances et l’efficacité des systèmes de FL, en équilibrant les

mesures de sécurité et la charge de calcul. L’approche est testée par le biais d’expériences

et de simulations utilisant des ensembles de données et des scénarios du monde réel, es-

timant ses performances en termes de précision du modèle, de taux de convergence, d’ef-

ficacité de la communication et de ressemblance avec les scénarios d’application contre

les attaques adverses. Cet essai contribue au domaine du FL en abordant les défis de

confiance et en fournissant des stratégies d’atténuation efficaces, ouvrant la voie à un

système FL plus sûr et plus fiable dans des domaines sensibles et privés tels que les soins

de santé, la finance et les villes intelligentes.

Mots clés

système FL, confiance, sécurité, la vie privée, protocoles d’agrégation sécurisés, tech-

niques d’atténuation basées sur la confiance, simulation.
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General Introduction

The year 2017 marked a significant turning point for Artificial Intelligence (AI) as Al-

phaGo Zero, developed by DeepMind, defeated professional chess players, demonstrating

the immense potential of (AI). Since then, there has been a growing expectation for more

advanced AI technologies to be implemented in various applications such as driverless

cars, medical care, and finance. As a result, AI has shown its strengths in recent years

across almost every industry and aspect of life. Nevertheless, still, the development of

AI has been facing challenges and setbacks. One of the key drivers of the current public

interest in AI is the availability of big data. AlphaGo Zero, for exam-ple, used 28.6 bil-

lion sets of human and machine-generated chess data for training to achieve remarkable

re-sults. This success has led to high expectations that AI-driven by big data, similar

to AlphaGo, will soon perme-ate every aspect of our lives. However, the reality could

be better, as most industries need more access to high-quality data, making the appli-

cation of AI technology more challenging than anticipated. For example, is it pos-sible

to gather data from different sources and create a central data repository ? Unfortu-

nately, breaking the barriers between data sources is difficult and impossible in many

situations. Data for AI projects often come in multiple types and are scattered across iso-

lated islands. Industries face competi-tion, privacy and security concerns, and complex

administrative procedures, making data integration even within different departments

of the same company a daunting task. Integrating data from multiple organiza-tions or

across geographical regions is nearly impossible or prohibitively expensive. Additionally,

as large companies compromise data security and user privacy, the importance of data

privacy and security has become a primary global concern. Incidents of data breaches,

such as the one involving Face-book, have raised significant public and government scru-

tiny. In response, Governments worldwide are enacting stricter data security and privacy

laws. For example, the General Data Protection Regulation (GDPR), implemented by

the European Union, aims to protect users’ privacy and ensure data security. It requires

businesses to use clear and transparent language in user agreements and grants users

the right to have their data deleted or withdrawn, commonly known as the ”right to

be forgotten.” In addition, non-compliant companies face substantial fines. Similar acts

1
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and regulations are being enacted in the United States and China, emphasizing the need

for data protection and privacy. These new regulations challenge the traditional data

transaction procedures used in AI, which typically involve one party collecting and trans-

ferring data to another party for cleaning, fusion, and modelling. The resulting models

are often sold as services. However, these transaction models may violate privacy and

security laws, such as the GDPR, as users may need a clearer understanding of the future

uses of their data. This essay presents an alternative approach called Federated Learning

(FL) with differential privacy, which offers a possible solution to these challenges. We

provide an overview of existing research on FL, define its characteristics, propose cate-

gorizations, and explore its applications within a comprehensive and secure federated

learning framework. Finally, we examine how this framework can be successfully applied

to various industries. By promoting federated learning, we aim to shift the focus of AI

development from solely improving model performance to investigating methods that

comply with data privacy and security laws for data integration.



Chapitre 1

OVERVIEW OF FEDERATED

LEARNING

1.1 Machine Learning

According to [7] machine learning can be classified into four types :

a) Supervised Learning :

In supervised learning, the algorithm learns from labelled examples. The training

data consists of input-output pairs, where the desired output is known. The algo-

rithm then learns to map inputs to outputs based on these examples. For example,

in a spam email classification system, the algorithm is trained on a dataset of

emails labelled as spam or not spam, and it learns to classify new emails based on

the patterns it discovers in the training data.

b) Unsupervised Learning :

Unsupervised learning involves learning from unlabelled data. The algorithm is

tasked with finding patterns or structures in the data without any predefined

output labels. Clustering is a common unsupervised learning technique where the

algorithm groups similar data points together based on their inherent similarities or

distances. Unsupervised learning is useful for tasks such as customer segmentation,

anomaly detection, or dimensionality reduction

c) Semi-supervised learning :

Semi-supervised learning combines the benefits of both supervised and unsupervi-

sed learning. It leverages the labeled examples to guide the learning process, while

also utilizing the unlabeled examples to extract additional information or patterns

from the data.

3
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d) Reinforcement Learning : Reinforcement learning involves an agent learning

to interact with an environment to maximize rewards or minimize penalties. The

agent learns by trial and error, receiving feedback in the form of rewards or pu-

nishments for its actions. Through a process of exploration and exploitation, the

agent learns to take actions that lead to favourable outcomes. Reinforcement lear-

ning has been successful in applications such as game playing (e.g., AlphaGo) and

robotic control.

In addition to these types, there are other specialized areas of Machine Learning (ML),

such as Deep Learning (DL), which is a subset of neural networks that involves training

deep architectures with multiple layers to learn hierarchical representations of data.

Deep learning has achieved remarkable success in various domains, including computer

vision, natural language processing, and speech recognition. Machine learning techniques

have revolutionized numerous industries and applications. They have been used for image

and speech recognition, recommendation systems, fraud detection, autonomous vehicles,

medical diagnosis, and much more. The ability to extract insights and patterns from large

volumes of data has opened new possibilities and improved decision-making processes

across various domains.
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1.2 Federated Learning

Federated learning is a novel machine learning technique that facilitates collaborative

model training across numerous decentralized or edge devices, while ensuring data pri-

vacy and security. It tackles the issues associated with conventional centralized machine

learning, where data is usually gathered and saved in a central server. Federated Lear-

ning is a distributed learning paradigm with two key challenges that differentiate it from

traditional distributed optimization :

— significant variability in terms of the systems characteristics on each device in the

network (systems heterogeneity).

— non-identically distributed data across the network (statistical heterogeneity).

Below is a summary of the federated learning procedure :

1. Initialization and Setup :

Figure 1.1 – Different learning schemes : (a) Unsupervised learning, (b) Supervised
learning, (c) Semi-supervised learning, (d) Reinforcement learning.[14]
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— Device Selection : A group of devices is selected to take part in the federated

learning procedure. These devices may belong to individuals, institutions, or

be dispersed across various geographic regions.

— Model Initialization : The central server starts a global model or a set of initial

model parameters. This model serves as a foundation for the collaborative

training process.

2. Local Model Training :

Each device trains its own model using its local data, without sharing it with

the central server or other devices. During the training process, the device com-

putes gradients based on its local data and updates its local model parameters,

accordingly, representing the direction of improvement for the model.

3. Model Aggregation :

The central server aggregates the computed gradients or model updates from the

devices to create a new global model. Various aggregation methods, such as ave-

raging or weighted averaging, can be used to combine the model updates. To

preserve data privacy, federated learning employs techniques such as Differential

Privacy (DP) or Secure Multi-Party Computation (SMC) during the aggregation

process.

4. Iterative Process :

The local model training and model aggregation steps are repeated iteratively,

with each round improving the global model based on the collective knowledge

of the participating devices. The central server communicates with the devices to

synchronize the training process, exchange model updates, and provide instruc-

tions for the next round of training.

1.3 Benefits of Federated Learning :

Federated learning enables data owners to retain control over their data, making it

suitable for sensitive data or compliance with data protection regulations. It leverages

the computing power of multiple devices, allowing for efficient and scalable training on

large data-sets without the need for data transfer. By training models on edge devices,

federated learning facilitates real-time decision-making and reduces the reliance on cloud-

based processing, making it suitable for applications with low latency requirements or

limited network connectivity. Federated learning allows for training models on diverse

data sources, leading to improved generalization and robustness.
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Figure 1.2 – General working process of federated learning [fed]

1.4 Characteristic of Federated Learning

Federated learning (FL) is distinct from traditional centralized machine learning ap-

proaches due to several key characteristics :

— FL involves decentralized data, where data remains on individual devices or edge

nodes instead of being collected and stored in a central server. This prioritizes data

privacy by avoiding the need for data sharing and keeping sensitive or personal

data on devices.

— Collaborative learning is enabled across multiple devices or nodes, allowing for the

aggregation of local model updates or gradients from diverse devices.

— It optimizes resource utilization by leveraging the computational capabilities of

individual devices and employs model aggregation techniques to combine local

model updates or gradients from participating devices.

— FL involves iterative rounds of local training and model aggregation, improving

the global model over time.

— It optimizes resource utilization by leveraging the computational capabilities of

individual devices and employs model aggregation techniques to combine local

model updates or gradients from participating devices.

— Finally, FL accommodates scenarios with heterogeneous and unbalanced data dis-

tributions, making it suitable for applications with non-uniform or specialized data.

These characteristics make FL a powerful approach for collaborative machine learning,

addressing challenges related to data privacy, scalability, and distributed learning. FL
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enables the collective utilization of data resources, fosters privacy-aware collaborations,

and supports intelligent decision-making at the edge.

1.5 Categorization of FL

Federated learning can be categorized into three main types :

1.5.1 Horizontal Federated Learning

Horizontal federated learning is a type of machine learning where data is distributed

across multiple devices or nodes that have similar features. This approach is particularly

useful when dealing with large datasets that cannot be processed on a single machine. By

distributing the data across multiple devices, the computational load is shared, and the

training process can be completed faster. One example of horizontal federated learning is

a group of smartphones with similar hardware and software configurations participating

in the training process. Each device in the group has access to a subset of the data, and

the models are trained locally on each device. The local models are then aggregated to

create a global model that is more accurate than any of the local models. Horizontal

federated learning has several advantages over traditional machine learning approaches.

First, it allows for the training of models on sensitive data without the need to trans-

fer the data to a central location. This is particularly important in industries such as

healthcare, where patient data must be kept confidential. Second, it reduces the risk of

overfitting, as the models are trained on a diverse set of data. Finally, it allows for the

training of models on data that is distributed across multiple locations, which can be

useful in scenarios where the data cannot be centralized.

1.5.2 Vertical Federated Learning

In this approach, data is distributed across multiple devices or nodes that have different

features, such as different patient populations in the case of hospitals. By pooling their

data together, these organizations can develop more accurate and robust machine lear-

ning models that can be used to predict patient outcomes, identify disease patterns,

and improve healthcare delivery. One of the key benefits of vertical federated learning

is that it allows organizations to collaborate without sharing sensitive data. Instead

of sending data to a central server, each organization keeps its data locally and only

shares the necessary information with other nodes. This approach ensures that patient
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Figure 1.3 – An application sample of Horizontal FL.[9]

Figure 1.4 – An application sample of Vertical FL.[9]

privacy is protected, and that sensitive information is not exposed to unauthorized par-

ties. Another advantage of vertical federated learning is that it allows organizations to

leverage the strengths of different datasets. By combining data from multiple sources,

organizations can develop more comprehensive models that are better able to capture

the nuances of different patient populations. This can lead to more accurate predictions

and better healthcare outcomes for patients.
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Figure 1.5 – An application sample of federated transfer learn.[9]

1.5.3 Federated Transfer Learning

Federated Transfer Learning is a highly effective technique for training machine learning

models in a distributed setting. It harnesses the power of pre-trained models and fine-

tuning on local data, significantly reducing the data requirements for training a model

from scratch.

A major advantage of Federated Transfer Learning is its ability to produce more accurate

models, even when individual device data is limited. The pre-trained model serves as a

strong foundation, and fine-tuning allows customization to the specific data on each de-

vice. This approach improves model performance despite data constraints. Furthermore,

Federated Transfer Learning addresses privacy concerns in distributed environments.

By keeping data local to each device, sensitive information remains protected, while still

enabling the creation of accurate models. This privacy-preserving aspect enhances the

practicality and security of the technique.

1.6 Architectures of FL

1.6.1 Federated Averaging Architecture

The federated averaging architecture is the most widely used FL architecture. It consists

of the following components :
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Figure 1.6 – Federated Averaging Architecture.[20]

— Central Server : The central server plays a crucial role in federated learning by

overseeing the entire process. It starts by initializing the global model and then

collects the model updates from all the participating devices. The server then

aggregates these updates by averaging the local model updates or gradients to

generate an updated global model.

— Participating Devices : Devices that are involved in the process, such as smart-

phones, IoT devices, or edge servers, store the data locally and conduct model

training on their own. Every device trains the model using its own data, calcu-

lates model updates or gradients, and transmits them to the central server for

consolidation.

— Communication Protocol :

A communication protocol is put in place to facilitate the exchange of model

updates between the central server and the participating devices. The usual process

involves the devices sending their updates to the central server, which in turn sends

the updated global model for the next round of training.

1.6.2 Hierarchical Federated Learning Architecture

The FL process is structured hierarchically in the hierarchical federated learning ar-

chitecture, which is designed to handle large-scale federated learning scenarios. This

architecture comprises several levels of coordination and aggregation, and includes the

following components :

— Local Aggregators :
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Figure 1.7 – Hierarchical federated learning : architecture and data flow [1]

local aggregators serving as intermediate nodes between participating devices and

the central server. These local aggregators collect and aggregate model updates

from a subset of devices within their respective local clusters.

— Global Aggregator :

The root aggregator, also referred to as the global aggregator, obtains the combined

updates from the local aggregators. It conducts additional aggregation on the

collected updates and produces an updated global model.

— Communication Hierarchy :

The communication within this architecture is organized in a hierarchical manner,

where the local aggregators are responsible for communicating with the devices in

their respective clusters and consolidating their updates. The global aggregator, on

the other hand, communicates with the local aggregators to gather and combine

the updates from all the local clusters.

1.6.3 Peer-to-Peer Federated Learning Architecture

The Peer-to-Peer (P2P) federated learning architecture utilizes a decentralized network,

eliminating the need for a central server. Instead, participating devices communicate

with each other for model updates and aggregation. This approach provides improved

privacy and reduces dependence on a single point of coordination. The key components

of this architecture include :

— Participating Devices :
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Figure 1.8 – Peer-to-peer (P2P) network topology for decentralized parameter storage.
All workers may communicate with any other worker [2]

The devices in a peer-to-peer network establish direct communication with each

other, maintaining their own local data and performing local model training.

Through techniques such as averaging, weighted averaging, or secure multi-party

computation, the devices exchange their model updates or gradients, which are

then aggregated. (Niknam et al., 2020)

— Decentralized Coordination :

Gossip-based or overlay networks, which are peer-to-peer protocols, facilitate com-

munication and coordination between devices. Each device is connected to a subset

of other devices and disseminates updates across the network.

1.7 Open-source frameworks

Numerous open-source frameworks have been developed to assist researchers and de-

velopers in implementing federated learning into their projects. These frameworks are

equipped with essential tools and infrastructure, each with strengths and weaknesses.

Some of the most widely used frameworks, along with their key features and benefits,

are highlighted below

1. TensorFlow Federated (TFF) :

Developed by Google, TFF is an open-source framework for FL. It integrates with

TensorFlow and provides high-level APIs for building FL algorithms. TFF supports

federated aggregation, secure aggregation protocols, and advanced features like

differential privacy.[17]

2. PySyft :

PySyft is an open-source Python library built on top of PyTorch and supports

FL using the ”Federated Learning for Differential Privacy” (FLDP) concept. It
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provides tools for secure and private computation, federated training, and federated

evaluation.[13]

3. Flower :

Flower is an open-source framework designed to simplify the development of FL

systems. It provides a high-level API for building FL algorithms using TensorFlow

or PyTorch. Flower supports various communication protocols, such as gRPC and

WebSocket’s, and offers fault tolerance and dynamic scalability.[3]

4. FedML :

FedML is an open-source research library focusing on benchmarking and repro-

ducibility of FL algorithms. It implements state-of-the-art FL algorithms across

domains like FedAvg, FedProx, and FedNova. FedML supports TensorFlow and

PyTorch and offers tools for evaluating FL models.[6]

5. Federated AI Technology Enabler (FATE) :

FATE is an open-source project developed by Webank AI Department. It provides

a secure computing framework for FL, including federated learning, transfer lear-

ning, and federated inference. FATE supports heterogeneous computing environ-

ments and offers privacy-preserving techniques, such as homomorphic encryption

and secure multi-party computation. [5]

Frameworks such as those discussed earlier are essential for researchers and developers

to use federated learning techniques effectively. These frameworks offer a variety of

features and benefits that cater to different use cases and requirements. By using these

open-source frameworks, researchers and developers can contribute to the progress of

federated learning and create efficient machine-learning models that protect privacy.

1.8 Application of FL

1.8.1 Healthcare :

— Medical Research :

Federated learning facilitates collaborative research and analysis of medical data

while safeguarding patient confidentiality. Numerous healthcare organizations can

pool their data for joint model training without disclosing any sensitive patient

data.

— Personalized Medicine :

FL enables the creation of customized treatment plans by utilizing data from va-

rious sources, including genomics, EHRs, wearables, and mobile health apps. This
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allows for personalized healthcare interventions while maintaining the confidentia-

lity of sensitive patient information.

Figure 1.9 – application of federated learning for personal healthcare via learning
over heterogeneous electronic medical records distributed across multiple hospitals.[18]

.

1.8.2 Internet of Things (IoT) :

FL enables IoT devices like sensors, wearables, and connected devices to engage in

collaborative learning. These devices can learn from their local data and enhance their

performance without the need to transmit sensitive data to a central server. In the

context of smart cities, FL can be leveraged to create intelligent systems that analyse

data from diverse sources such as traffic sensors, environmental sensors, and surveillance

cameras. This collaborative analysis can optimize urban services and infrastructure.

Figure 1.10 – Federated Learning for IoT Devices.[22]
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Figure 1.11 – Overview of Federated Learning across organisations[22]

1.8.3 Finance :

Federated learning is a powerful tool for detecting fraudulent activities in financial tran-

sactions by utilizing data from multiple banks or financial institutions. Through colla-

boration, patterns indicative of fraudulent behaviour can be identified while ensuring

the protection of sensitive customer data. Additionally, FL enables financial institutions

to collectively model risk factors and develop robust risk assessment models, improving

the accuracy and effectiveness of credit scoring, insurance underwriting, and investment

risk analysis.

1.8.4 Natural Language Processing (NLP) :

— Language Translation :

The utilization of FL in training language translation models allows for the in-

corporation of multilingual data from various sources, resulting in the creation

of more precise and context-sensitive translation systems, all while ensuring data

confidentiality.

— Speech Recognition :

Collaborative training of speech recognition models using data from various de-

vices, including smartphones and smart speakers, is made possible by FL. This

results in enhanced accuracy and performance of voice-enabled applications.
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1.8.5 Autonomous Vehicles :

— Collaborative Learning :

Autonomous vehicles can leverage federated learning to exchange knowledge and

insights while upholding privacy. By pooling their local sensor data, these vehicles

can enhance their perception, decision-making, and control algorithms through

collaborative learning.

— Traffic Prediction :

By analysing data from multiple vehicles or traffic management systems, FL can

predict traffic patterns and congestion. This collaborative approach optimizes route

planning and traffic flow without compromising individual vehicle data.

1.8.6 Energy and Environment :

— Energy Management :

In smart grids or energy systems, FL enables collaborative optimization of energy

consumption and management. By leveraging local data, distributed devices can

work together to enhance energy efficiency and demand response.

— Environmental Monitoring :

Collaborative analysis of environmental data, such as air quality or pollution levels,

can be achieved using FL. By pooling data from multiple sensors or monitoring

stations, accurate models for environmental monitoring and prediction can be de-

veloped.

1.9 Conclusion

In summary, federated learning (FL) is an advanced machine learning technique that

enables collaborative model training while preserving data privacy and security. FL

achieves this by decentralizing data on individual devices or edge nodes, allowing col-

lective learning without transferring raw data to a central server. It offers benefits such

as privacy preservation, optimized resource utilization, promotion of edge intelligence,

and management of diverse and imbalanced data. FL has applications in healthcare,

IoT, finance, NLP, autonomous vehicles, and energy/environment. It also provides dif-

ferent architectural configurations, including federated averaging, hierarchical FL, and

peer-to-peer FL, allowing flexible implementation based on specific requirements. These

architectures facilitate efficient communication and coordination between devices. In

conclusion, federated learning strikes a balance between collective intelligence and data
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privacy, and as it advances, we can expect further progress and improvements in the field,

creating new opportunities for collaborative and privacy-conscious machine learning.



Chapitre 2

LITERATURE REVIEW

The literature review chapter of this essay critically examines a diverse range of scholarly

sources that contribute to the understanding of the research topic, specifically the appli-

cation of federated learning algorithms in a distributed learning environment. Numerous

authors and researchers have explored this area, and their contributions are discussed

in this chapter.

2.1 Motivation for Federated Learning

The motivation for adopting Federated Learning arises from the need to address chal-

lenges associated with data silos and data sensitivity in conventional machine learning

approaches, as highlighted by T. Li, Sahu, Talwalkar, et al. (2020). Traditional methods

involve collecting data from various sources and sending it to a central server for proces-

sing, which raises concerns about privacy, communication overhead, and data transfer

requirements. Federated Learning tackles these issues by enabling participants to col-

laboratively build a shared model while ensuring the privacy of their local data. This

approach allows sensitive data to remain on the devices, addressing privacy concerns and

complying with data protection regulations. Additionally, it reduces communication ove-

rhead by transmitting only model updates instead of raw data, optimizing bandwidth

usage and minimizing network latency. By enabling machine learning models to be trai-

ned on distributed data without centralizing it, Federated Learning offers a flexible and

efficient solution for large-scale learning tasks. This research aims to leverage the in-

sights provided by Li et al. to contribute to the practical implementation and further

advancements of Federated Learning.

19
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2.2 Trust issues in federated learning

Trust is a crucial concern in federated learning, and it is vital to address trust issues to

ensure the reliability and security of this approach. Li et al. (2020) emphasize in their

review of applications in federated learning that one of the key challenges is maintaining

data privacy and preventing unauthorized access to sensitive information during the

model training and aggregation process. Robust privacy-preserving mechanisms such as

secure aggregation protocols (Kairoz et al., 2021), encryption techniques (Bonawitz et

al., n.d.), and differential privacy (Abadi et al., 2016) are essential to safeguard data

privacy and protect against potential vulnerabilities.

Ensuring model integrity and fairness is another critical trust-related issue in federated

learning, as highlighted by Huang et al. (2020). Participants with diverse data sources

may introduce biased or adversarial data, leading to inaccurate or unfair models. Rigo-

rous model verification techniques and strategies are needed to address this concern.

Moreover, the central coordinating entity or server in federated learning needs to inspire

confidence in its trustworthiness and security. To enhance trust, secure and verifiable

aggregation protocols (Bonawitz et al., 2017), transparent governance mechanisms, and

participant validation of the aggregation process are recommended (Kairouz et al., 2021).

Addressing trust issues in federated learning requires a multidimensional approach en-

compassing technical solutions, legal frameworks, and organizational policies. This in-

cludes developing secure algorithms, establishing trust frameworks and certifications, im-

plementing transparent governance mechanisms, and fostering collaboration and trust-

building among participants (Li et al., 2020). These collective efforts will contribute to

making federated learning a reliable and trustworthy approach for collaborative machine

learning in distributed environments.

2.3 Related work on trust mitigated federated learning

Federated learning has emerged as a promising approach for training machine learning

models on distributed data without compromising data privacy. However, the trust-

worthiness of the participating clients in federated learning remains a critical concern.

Malicious clients can intentionally or unintentionally introduce noise or bias into the

model, leading to poor performance or even security breaches. To address this challenge,

trust mitigated federated learning has been proposed as a solution that leverages trust

mechanisms to ensure the reliability and integrity of the participating clients. In this
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section, we will review the related work on trust mitigated federated learning and explore

its potential to enhance the security and privacy of federated learning systems.

2.3.1 Securing Secure Aggregation : Mitigating Multi-Round Privacy

Leakage in Federated Learning :

In order to address trust concerns in federated learning, researchers have proposed the

use of secure aggregation techniques, as outlined in the study ”Securing Secure Aggre-

gation : Mitigating Multi-Round Privacy Leakage in Federated Learning by [16]. These

protocols aim to safeguard the privacy and integrity of client updates during the ag-

gregation process.Secure aggregation protocols ensure that the client updates remain

encrypted and private throughout the aggregation process. To provide privacy guaran-

tees, these protocols often incorporate the use of Differential Privacy (DP). By combining

secure aggregation with DP, the privacy of individual client data can be protected.

2.3.2 Flexible Byzantine Fault Tolerance :

In their work titled ”Flexible Byzantine Fault Tolerance [11], the authors address the

challenge of designing a Byzantine fault-tolerant (BFT) consensus solution capable of

withstanding higher corruption levels than those typically handled by the traditional

Byzantine fault model. To tackle this issue, the authors introduce a novel approach

called Flexible BFT, which is built on two fundamental principles : stronger resilience

and diversity.

The first principle, stronger resilience, introduces a new fault model known as alive-but-

corrupt faults. This model allows replicas to deviate from the protocol in an arbitrary

manner, aiming to compromise safety. However, it ensures that replicas will not attempt

to hinder the liveness of the protocol if they cannot compromise its safety. By incor-

porating this fault model, the protocol becomes more resilient and better equipped to

withstand attacks.

The second principle, diversity, focuses on designing consensus solutions that employ the

protocol transcript to generate different commit decisions based on diverse beliefs. This

separation of beliefs allows the Flexible BFT solution to support both synchronous and

asynchronous beliefs, as well as combinations of Byzantine and alive-but-corrupt fault

resilience thresholds. This flexibility enables the protocol to adapt to various scenarios

and requirements.

In conclusion, the authors propose a new approach to designing BFT consensus solutions

that emphasizes stronger resilience and diversity. This approach enhances the protocol’s
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resilience and ability to withstand attacks while accommodating synchronous and asyn-

chronous beliefs. The authors suggest that this approach has the potential to be applied

beyond Byzantine fault tolerance, extending its benefits to other consensus protocols as

well.

2.3.3 A Review on Various Applications of Reputation Based Trust

Management :

The paper discusses the challenges of trust management in cloud computing, including

issues with transparency, dynamism, and distribution. The authors propose a reputation-

based trust management framework to handle trust in cloud environments. This frame-

work includes a credibility model that differentiates between true and malicious feedback

from consumers. The authors also developed a Trust Assessor tool to compare the trust-

worthiness of services and store the results in a database for future use. In conclusion,

the paper highlights the importance of establishing trust between service providers and

consumers in cloud computing. The proposed reputation-based trust management frame-

work offers an efficient solution to this challenge by leveraging feedback from consumers

to establish trustworthiness.[15]

2.3.4 PRIVACY-PRESERVING FEDERATED LEARNING BASED

ON MULTI-KEY HOMOMORPHIC EN-CRYPTION :

The paper discusses the problems of data leakage and privacy breaches in federated lear-

ning scenarios, where multiple devices share the same encryption and decryption key.

The authors propose a solution to these problems by applying multi-key homomorphic

encryption, specifically the xMK-CKKS protocol. This protocol defines an aggregated

public key and decryption share to achieve secure and simple encryption and decryp-

tion, which is more suitable for privacy protection in federated learning scenarios. In

conclusion, the authors propose a novel privacy-preserving federated learning scheme

based on multi-key homomorphic encryption to protect data privacy. They introduce

xMK-CKKS as an improvement over MK-CKKS, which has the risk of privacy leakage

when used in federated learning scenarios. The xMK-CKKS protocol provides stronger

security than MK-CKKS and is also robust against any collusion between k ≤ N − 1

honest-but-curious devices and the server. The authors suggest that this approach could

have significant implications for mobile services and networks in the future.[10]
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2.3.5 PPFL : Privacy-preserving Federated Learning with Trusted Exe-

cution Environments :

The paper discusses the problem of privacy leakage in federated learning and proposes a

Privacy-preserving Federated Learning PPFL framework to address this issue. The pa-

per highlight that traditional federated learning approaches can lead to privacy breaches

as the model updates are sent in plaintext, which can be intercepted by adversaries. To

solve this problem, the paper proposes a framework that utilizes Trusted Execution En-

vironments (TEEs) on both clients and servers for local training and secure aggregation,

respectively. This approach ensures that model/gradient updates are hidden from adver-

saries, thus limiting privacy leaks in federated learning. The proposed PPFL framework

is based on greedy layer-wise training and aggregation, which overcomes the constraints

posed by limited TEE memory while providing comparable accuracy of complete model

training at the price of a tolerable delay. The layer-wise approach supports sophistica-

ted settings such as training one or more layers (block) each time, potentially better

dealing with heterogeneous data at the client-side and speeding up the training process.

In conclusion, the authors present a practical framework that utilizes TEEs to limit

privacy leaks in federated learning. Their implementation shows that this approach can

significantly improve privacy while incurring small performance overhead. The propo-

sed PPFL framework provides a promising solution for mobile systems where privacy is

crucial.[12]

2.3.6 CRYPTEN : Secure Multi-Party Computation Meets Machine

Learning :

The adoption of secure multi-party computation (MPC) in machine learning is limited

due to the absence of flexible software frameworks that can integrate popular secure MPC

primitives with modern machine learning frameworks. This limits the accessibility of

secure MPC techniques to machine learning researchers and developers without a back-

ground in cryptography. The paper presents CRYPTEN, a flexible software framework

that aims to make modern secure MPC techniques accessible to machine-learning re-

searchers and developers without a background in cryptography. The framework exposes

popular secure MPC primitives via abstractions that are common in modern machine-

learning frameworks, such as tensor computations, automatic differentiation, and mo-

dular neural networks. The paper describes the design of CRYP TEN and measures its

performance on state-of-the-art models for text classification, speech recognition, and

image classification. The authors demonstrate that CRYP TEN’s flexible PyTorch-like

API makes private inference and training of modern machine-learning models easy to
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implement and efficient. The paper concludes with a discussion of open problems and a

roadmap for further development of CRYPTEN.[8]

2.4 Conclusion

In this chapter, we explored the literature related to Federated Learning, focusing on

the motivation behind its adoption, trust issues, and related work on trust mitigated

Federated Learning.

The reviewed literature highlights the importance of addressing trust issues from a mul-

tidimensional perspective, encompassing technical solutions, legal frameworks, and or-

ganizational policies. It emphasizes the need for secure algorithms, trust frameworks,

transparent governance mechanisms, collaboration, and trust-building among partici-

pants.

Moving forward, further research and development are required to enhance the secu-

rity, privacy, and trustworthiness of Federated Learning. The insights provided by the

literature reviewed in this chapter serve as a foundation for the practical implemen-

tation and advancement of Federated Learning in real-world scenarios. By addressing

trust concerns, Federated Learning can become a reliable and trustworthy approach for

collaborative machine learning in distributed environments, enabling the development

of robust and privacy-preserving models while respecting data privacy and protection

regulations.



Chapitre 3

THREATS AND SECURITY IN

FL

3.1 Privacy and Security Threats

Federated learning, as a distributed learning paradigm, introduces unique privacy and

security challenges due to its collaborative nature involving multiple participants. This

section focuses on exploring the key privacy and security threats associated with fede-

rated learning, which need to be addressed to ensure the confidentiality, integrity, and

privacy of participants’ data.

3.1.1 Data Leakage

One of the primary concerns in federated learning is the risk of data leakage. As the

training process occurs locally on each participant’s device or server, there is a potential

for sensitive information to be exposed. Without appropriate privacy-preserving tech-

niques, adversaries may attempt to infer private data samples from the global model’s

updates.

3.1.2 Membership Inference

Membership inference attacks aim to determine whether specific data points were present

in a participant’s training dataset. By analyzing the changes made to the global model

during federated learning, an attacker may infer the presence or absence of certain data

samples. This poses a significant privacy threat, particularly in sensitive domains where

the mere knowledge of data membership can be detrimental.

25
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3.1.3 Model Inversion

Model inversion attacks involve adversaries attempting to extract sensitive information

from the trained model itself. By analyzing the model’s outputs, gradients, or other

information, attackers may gain insights into the participant’s private training data.

This threat becomes more prominent when the trained model is shared or deployed in

untrusted environments.

3.1.4 Byzantine Attacks

Federated learning relies on the assumption that participants contribute honest and

accurate model updates. However, adversaries may act maliciously and intentionally

provide incorrect or manipulated updates to the global model. Such Byzantine attacks

can compromise the quality and integrity of the trained model, leading to biased or

misleading results.

3.2 Attack Models

Understanding different attack models is crucial for assessing the security risks in fede-

rated learning. Some common attack models include :

— Model Poisoning Attacks :

Attackers can manipulate the training data or the model update process to inject

harmful samples or influence the learned parameters, which can compromise the

accuracy of the model or introduce backdoors.

Figure 3.1 – Overview of the poisoning attacks against FL. The attacker pretends to
be a benign participant, and shares crafted training data or deliberately tainted model

updates to the aggregator.[21]
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— Membership Inference Attacks :

By exploiting information leakage from the shared model’s predictions, adversaries

can determine if a particular sample was included in the training dataset, which

violates the privacy of the participants.

Figure 3.2 – Overview of inference attacks in FL. The attacker saves the snapshots
of the aggregated model parameters in each round and performs inference attacks by

employing the difference between the continuous snapshots.[21]

— Model Inversion Attacks :

Adversaries can reconstruct inputs or data samples that resulted model outputs,

which may expose confidential information about the training data or individual

participants.GAN-based model inversion attacks are a type of model inversion

attack that uses generative adversarial networks (GANs) to generate synthetic

data that is similar to the data used to train the model. GANs are a type of

machine learning model that can be used to generate realistic images, text, and

other types of data. By using a GAN, an attacker can generate synthetic data that

is almost identical to the original data of the victim. This can be used to infer

sensitive information from the victim.

Figure 3.3 – By using the client-side GAN attacks, the attacker can reconstruct
sensitive information from the victim.[21]

— Byzantine Attacks :

Adversaries may act in an arbitrary manner or collaborate with others to inter-

fere with the federated learning process, thereby jeopardizing the shared model’s

accuracy and integrity.
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3.3 Defense Mechanisms

To enhance the security of federated learning, various defense mechanisms can be em-

ployed :

3.3.1 Differential Privacy :

Differential privacy is a technique that enhances privacy by safeguarding the data of

individual participants in federated learning. It employs a mathematical framework to

measure and regulate the privacy guarantees provided by a learning algorithm or model.

The core concept of differential privacy is to introduce controlled randomness or noise

into the computation of the learning algorithm. This ensures that the output does not re-

veal any specific information about any individual participant’s data, making it difficult

for attackers to identify whether a particular individual’s data was used in the training

process or not. The privacy budget or privacy parameter is the foundation of differential

privacy, which determines the level of privacy protection provided. A smaller privacy

parameter provides stronger privacy guarantees but may also result in reduced accuracy

or utility of the learning model. Therefore, finding the right balance between privacy and

utility is a crucial consideration in the design of differentially private federated learning

systems. There are various mechanisms and approaches to achieving differential privacy

in federated learning, including Gaussian Noise Addition, Laplace Noise Addition, and

Secure Multi-Party Computation (MPC). Gaussian noise and Laplace noise are com-

monly used methods for introducing privacy in federated learning, while MPC protocols

allow participants to jointly compute the model updates or aggregate the results without

revealing their individual contributions. Differential privacy provides a rigorous and pro-

vable privacy guarantee, ensuring that even with access to the output of the learning

algorithm, it is challenging to infer sensitive information about individual participants.

By incorporating differential privacy techniques into federated learning systems, orga-

nizations can demonstrate their commitment to privacy protection and build trust with

data contributors. However, introducing noise for privacy preservation comes at the cost

of utility or model accuracy. Striking the right balance between privacy and utility is a

key challenge, and researchers continue to explore novel techniques and optimizations

to improve the trade-off between privacy and model performance in federated learning.

[19]
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3.3.2 Secure Aggregation :

Secure aggregation protocols play a critical role in federated learning by ensuring that

model updates from participants are combined securely without revealing individual

contributions. These protocols aim to protect the privacy and integrity of participants’

data during the aggregation process, mitigating the risk of attacks and information

leakage. The aggregation process in federated learning involves collecting the model

updates from multiple participants and merging them to create a global model. Howe-

ver, traditional aggregation methods may expose sensitive information, as adversaries

could potentially infer participants’ data by analyzing the aggregated updates. Secure

aggregation protocols employ cryptographic techniques to enable privacy-preserving and

tamper-resistant aggregation. They provide strong security guarantees by ensuring that

the aggregated model reflects the contributions of all participants while preserving the

privacy of their individual updates. Here are some common techniques used in secure

aggregation protocols :

3.3.2.1 Homomorphic Encryption :

Homomorphic encryption allows computations to be performed directly on encrypted

data without decrypting it. Secure aggregation protocols leverage homomorphic encryp-

tion to encrypt the participants’ model updates before sending them to the aggregator.

The aggregator can perform computations on the encrypted updates and generate an

encrypted aggregated model. Finally, the aggregated model is decrypted to obtain the

final global model. The use of homomorphic encryption ensures that the participants’

updates remain private throughout the aggregation process.

3.3.2.2 Secret Sharing :

Secret sharing is a technique where a secret is divided into multiple shares distributed

among participants. Secure aggregation protocols use secret sharing to divide the model

updates into shares and distribute them among the participants. During the aggregation,

the participants collaboratively combine their shares to compute the aggregated model

without any participant revealing their individual update. Secret sharing provides pro-

tection against attacks, as an attacker would need to compromise multiple participants

to obtain the complete model update.[4]



30

3.3.2.3 Secure Multi-Party Computation MPC :

MPC protocols enable participants to jointly compute functions or operations on their

private inputs without revealing those inputs to each other. In the context of secure

aggregation, MPC protocols are used to securely aggregate the participants’ model up-

dates. Each participant locally processes their update in a way that conceals their input,

and the aggregated result is obtained without exposing individual contributions. MPC

ensures that the aggregation process remains secure and private, even when participants

are potentially untrusted or compromised.

By employing secure aggregation protocols, federated learning systems can effectively

protect against attacks during the aggregation process. These protocols ensure that par-

ticipants’ data remains confidential and secure, preventing adversaries from extracting

sensitive information or manipulating the aggregated model to undermine the learning

process. However, it is important to carefully design and implement secure aggregation

protocols to ensure their effectiveness. Adversaries may attempt various attacks, such

as Byzantine attacks, where malicious participants intentionally provide incorrect or

manipulated updates. Therefore, robust security measures, such as redundancy checks,

error detection, and anomaly detection, should be incorporated into the protocols to

detect and mitigate such attacks. Overall, secure aggregation protocols provide a cru-

cial security mechanism in federated learning, enabling participants to collaborate while

preserving the privacy and integrity of their data throughout the aggregation process.



Chapitre 4

Implementation and Results

4.1 System design and architecture

4.1.1 Data Partitioning and Distribution :

— Data partitioning is a crucial aspect of federated learning. It involves dividing the

data among multiple clients while preserving data ownership and privacy.

— Partitioning strategies can be based on various factors, such as client devices,

geographic locations, or specific data characteristics.

— Partitioning ensures that sensitive user data remains on the clients, reducing the

risk of data exposure and complying with privacy regulations

4.1.2 Client-Side Execution :

— In federated learning, clients perform local training on their respective datasets

using their computational resources, such as CPUs or GPUs.

— TensorFlow Federated enables the execution of federated computations on client

devices, allowing clients to train models using their local data

— - Client-side execution ensures that sensitive data remains on the clients’ devices,

preventing the need for centralized data storage and reducing privacy risks.

4.1.3 Server-Side Aggregation :

— After local training, clients send their model updates or gradients to the server for

aggregation.
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— The server aggregates the model updates using secure aggregation protocols while

preserving privacy and maintaining the confidentiality of individual client contri-

butions.

— Secure aggregation techniques, such as cryptographic protocols (e.g., secure multi-

party computation) or trusted execution environments (TEEs), can be used to

protect the privacy and integrity of the model updates during aggregation.

4.1.4 Logging and Visualization :

— Logging mechanisms capture relevant metrics, such as accuracy and loss, during

the federated learning process

— These metrics are logged at regular intervals and stored in a centralized log or

database for analysis and monitoring.

— Visualization techniques, using libraries like Matplotlib and Seaborn, are utilized

to create graphical representations of the training progress, model performance,

and privacy measures.

— Stakeholders can leverage these visualizations to gain insights into the learning

process, track performance trends, and make informed decisions.

4.1.5 Scalability and Robustness :

— The system design should be scalable to handle a large number of clients and

varying computational resources and network conditions.

— Load balancing mechanisms can be implemented to distribute the computational

load across multiple servers and ensure efficient training.

— The system should be robust, capable of handling client failures, network dis-

ruptions, or unexpected events without compromising privacy or interrupting the

learning process.

— Techniques like client selection strategies, fault tolerance mechanisms, and adaptive

training processes can enhance system robustness and performance.

In summary, the system design and architecture ensure the privacy-preserving nature of

federated learning through techniques such as client-side execution, secure communica-

tion, and differential privacy integration. The logging and visualization components offer

transparency and insights into the training process, facilitating analysis and decision-

making. Scalability and robustness considerations enable the system to handle many

clients and varying conditions while maintaining data privacy and integrity.
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4.2 Data privacy and security measures

Data privacy and security measures are strategies and practices implemented to protect

sensitive data from unauthorized access, disclosure, alteration, or destruction. In the

context of this essay, the following data privacy and security measures are relevant :

4.2.1 dp accounting

dp accounting is a library that provides tools for calibrating and accounting for the

privacy parameters in differentially private algorithms. It offers functionalities to com-

pute privacy budgets, determine noise levels, and manage privacy guarantees based on

the desired level of privacy.

Differential Privacy Algorithm implmented by dp accounting :

Algorithm 1 Differential Privacy Algorithm

Require: ε : privacy parameter
Require: δ : privacy parameter
Require: D : dataset
1: Initialize an empty arrayM to store the modified dataset
2: for each record x in D do
3: Generate a random noise N from a Laplace distribution : N ∼ Lap(∆f

ε ), where
∆f is the sensitivity of the function f

4: Add the noise to the record : x′ ← x+N
5: Add x′ toM
6: end for
7: returnM

4.2.2 tff.learning.model update aggregator.dp aggregator

tff.learning.model update aggregator.dp aggregator is a function provided by Ten-

sorFlow Federated (TFF) that enables differential privacy with adaptive clipping during

the model aggregation process. It applies differential privacy mechanisms to the aggre-

gated model updates, preventing the disclosure of sensitive information from individual

clients.

4.2.3 Preprocessing Functions :
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1 def get_emnist_dataset():

2 emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data(

3 only_digits=True)

4

5 def element_fn(element):

6 return collections.OrderedDict(

7 x=tf.expand_dims(element['pixels'], -1), y=element['label'])

8

9 def preprocess_train_dataset(dataset):

10 return (dataset.map(element_fn)

11 .shuffle(buffer_size=418)

12 .repeat(1)

13 .batch(32, drop_remainder=False))

14

15 def preprocess_test_dataset(dataset):

16 return dataset.map(element_fn).batch(128, drop_remainder=False)

17

18 emnist_train = emnist_train.preprocess(preprocess_train_dataset)

19 emnist_test = preprocess_test_dataset(

20 emnist_test.create_tf_dataset_from_all_clients())

21 return emnist_train, emnist_test

22

23 train_data, test_data = get_emnist_dataset()

The preprocess train dataset and preprocess test dataset functions are respon-

sible for preparing the training and testing datasets, respectively, before they are used

in the federated learning process. These functions typically apply data transformations,

such as reshaping, shuffling, and batching, to ensure the data is in the appropriate format

for training while preserving privacy.

4.3 Results and Analysis

1. Accuracy Trend :

As the training rounds progress, there is a general upward trend in accuracy for

all noise multiplier values. At the beginning of the training process, the accuracy

is relatively low for all noise multiplier values. This is expected as the model is

initially untrained. As the training continues, the accuracy improves steadily for
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Figure 4.1 – accuracy plotting result

each noise multiplier value. Higher noise multiplier values (e.g., 0.75 and 1.0) show

a slightly slower improvement in accuracy compared to lower noise multipliers (e.g.,

0.0 and 0.5). This suggests that higher noise levels may introduce more challenges

for the model to learn effectively. Towards the later rounds of training, the accuracy

tends to plateau or reach a stable level for all noise multiplier values.

2. Loss Trend :

Figure 4.2 – loss plotting result

The loss values show a decreasing trend as the training progresses for all noise 44

multiplier values. Initially, the loss is relatively high for all noise multipliers, indi-

cating that the model makes significant errors during the early stages of training.

As the training continues, the loss gradually decreases, indicating that the model
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learns to make better predictions and reduces its overall error. Higher noise multi-

plier values exhibit slightly higher loss values compared to lower noise multipliers

throughout the training process, suggesting that higher noise levels may hinder

the model’s ability to minimize its loss effectively.

Overall, the trends observed in the graph indicate that the model’s performance improves

with more training rounds, regardless of the noise multiplier. However, higher noise levels

can introduce additional challenges, leading to slower improvements in accuracy and

relatively higher loss values. It’s important to strike a balance between noise levels and

model performance to achieve the desired level of accuracy while maintaining acceptable

loss values.

the previous process estimate that for reaching the desired (2, 1e-05)-DP settings we

need to use, use 120 clients with noise multiplier 1.2 so the final model parameters as

blow :

Figure 4.3 – final private model parameters

As we can see, the final model has similar loss and accuracy to the model trained without

noise, but this one satisfies (2, 1e-5)-DP :

Figure 4.4 – final model result



Conclusion

In this essay, the analysis of trust-mitigated federated learning has provided signifi-

cant insights to the field. The findings demonstrate the effectiveness of trust mitigation

techniques, specifically noise multipliers, in improving model accuracy and convergence

while preserving data privacy. The performance evaluation offers valuable metrics such

as accuracy, loss, and convergence rate, enabling researchers and practitioners to assess

the approach’s efficiency and effectiveness. By comparing trust-mitigated federated lear-

ning with traditional methods, the study highlights the trade-offs between privacy pre-

servation and model performance, providing benchmarking and understanding of trust

mitigation techniques. The practical implications are relevant to industries and organiza-

tions seeking privacy-preserving solutions, showcasing the benefits of federated learning

in privacy preservation, enhanced trustworthiness, and balancing privacy and perfor-

mance requirements. The research also identifies future directions, including exploring

advanced trust mitigation techniques, addressing scalability challenges, and adapting

the approach to diverse data types and domains. In conclusion, this essay contributes

to advancing federated learning by providing insights into its performance, practical im-

plications, and potential for enhancing privacy and trust in machine learning systems.

These findings can guide the development of secure and privacy-preserving solutions,

promoting responsible data collaborations across various domains.

37



Bibliographie

[1] Alaa Awad Abdellatif et al. Communication-Efficient Hierarchical Federated

Learning for IoT Heterogeneous Systems with Imbalanced Data. en. arXiv :2107.06548

[cs]. Juill. 2021. url : http://arxiv.org/abs/2107.06548 (visité le 14/06/2023).
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