
Asymptotic Modelling of 

Viscoelastic von Karman Plate Model 

kasdi Merbah University of Ouargla 

Faculty of Mathematics and Material Science 

Department of Mathematics 

 
Mathematics 

Specialisation : Modelling and Numerical Analysis 

 
A Thesis Submitted to Obtain the Degree of 

MASTER 

 
 
 

 
 

By : 

Bouras RABAB IBTISSAM 

 
 

Presented Publicly On : 25/06/2023  

 
 

Examination Committee : 
 
 
 

 
Med El Hadi MEZABIA 

 
MCA 

 
Kasdi Merbah University of Ouargla 

 
President 

 
Abderrezak GHEZAL 

 
MCA 

 
Kasdi Merbah University of Ouargla 

 
Examiner 

 
Djamal Ahmed  

CHACHA 

 
Pr 

 
Kasdi Merbah University of Ouargla 

 
Supervisor 

 
 
 

Academic Year 

2022 - 2023 

 
N◦ d’ordre 
N◦ de sÃľrie 



Dedication 

This work is dedicated  to my parents  you are the sunshine that 

brightens my days. 

The pillars of strength that hold me up and the source of endless love 

and joy in my life. 

This dedication is a tribute to the incredible bond we share, filled with 

cherished memories and countless moments of laughter. Your 

unwavering support and encouragement have shaped me into the 

person I am today, and I am eternally grateful for your presence in my 

life.  With all my heart, I dedicate this to you, my beloved family, for 

being my rock and my inspiration. 

 

Acknowledgement 

     First of all, I would like to thank Allah for all his abundant blessings. 

Then, I would like to thank my family for the needed support they 

provided during my thesis journey. 

     I would like to express my sincere gratitude to my supervisor 

Professor Djamal Ahmed CHACHA for suggesting this interesting topic, 

guiding me through the process of writing my thesis, and equipping me 

with the necessary research skills. 

     I am also grateful to Med El Hadi MEZABIA, Dr. Abderrezak GHEZAL, 

and for honouring us with their presence in the examination committee, 

and accepting to evaluate my thesis, without forgetting all of my 

teachers and lecturers who have helped me during my years in college. 

Finally,I would like  to thank those who helped me answer my questions 

during the writing and preparation process. Dr.Ibtissam TALHA, Dr. 

Bochra AZZAOUI, Tarek ASSILA,  Maroua GNAWA . 

    



Contents

Introduction 1

1 Viscoelasticity: Introduction and Equations 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Examples of Materials Exhibiting Viscoelastic Behavior . . . . . . . . 6

1.2.2 Properties of viscoelastic materials . . . . . . . . . . . . . . . . . . . 6

1.2.3 Stress-Strain Constitutive law . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Motivations for studying viscoelasticity . . . . . . . . . . . . . . . . . 8

2 Modeling of Viscoelastic von Karman Plate 10

2.1 Geometry of the plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Problem of the Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The mixed variational problem . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Weak Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Asymptotic Analysis 20

3.1 The Scaled Three-Dimensional Problem . . . . . . . . . . . . . . . . . . . . 21

3.1.1 The Fixed Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



Contents

3.1.2 Scaling of the Data and the Unknowns . . . . . . . . . . . . . . . . . 22

3.1.3 The Scaled Weak Formulation . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The limit three dimentional problem . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Solution of the limit problem . . . . . . . . . . . . . . . . . . . . . . 30

Appendix 1 36

Appendix 2 37

Appendix 3 38

Contents iv



Contents

Notations

ä ε : A small positive parameter characterizing the half-thickness.

ä xε = πεx = (xε1, x
ε
2, x

ε
3) = (x1, x2, εx3) : an arbitrary point of Ωε.

ä ∂i = ∂
∂xi

: Partial differentiation with respect to xi.

ä ∂εi = ∂
∂xεi

: Partial differentiation with respect to xεi .

ä Ωε : Reference configuration of a thin plate.

ä ω Middle surface of the plate.

ä Γε± : The upper and lower faces respectively of Ωε.

ä Γε0 : Portin of the lateral face where a plate is clamped.

ä aεijkl : Relaxation matrix.
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Conventions

ä A = (aijkl)

1/The symmetry:

aijkl = ajikl = aklij = aklji

2/Ellipticity:

∃c > 0 ∀εij = εji (ε = (εij))

aijkl = εklεij ≥ cεijεij

3/aijkl ∈ L∞(Ω)

ä Latin indices {i, j, k, l} over the set {1, 2, 3}.

ä [L2(Ω)]
3 or [L2(Ω)]

9.

ä H1(Ω) and H2(Ω) represent [H1(Ω)]
3 and [H2(Ω)]

3, respectively .

ä
∑ε

ij = σεij + σεkj∂
ε
ku

ε
i

ä σεij(x
ε, t) =

∫ t

0

aεijkl(t− s)
∂Eε

kl(u
ε(xε, s))

∂s
ds = aεijkl ∗

∂Eε
kl

∂s

ä aεijkl(θ) = λε(θ)δijδkl + µε(θ) (δikδjl + δilδjk) (the relaxation modulus)

ä Eε
kl = 1

2
(∂εl u

ε
k + ∂εku

ε
l + ∂εku

ε
m∂

ε
l u

ε
m) (the components of strain tensor)
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Introduction

In 1910 Theodore von Karman introduced a system of "two fourth order elliptic quasilin-

ear partial differential equations" which can be used to describe the large deflections and

stresses produced in a thin elastic plate subjected to compressive forces along its edge. The

most interesting phenomenon associated with this non linear situation is the appearance

of "buckling", i.e. the plate may deflect out of its plane when these forces reach a certain

magnitude. Mathematically this circumstance is expressed by the multiplicity of solutions

of the boundary value problem associated with von Karman’s equations.

The formulation of von Kármán equations is as follows: We consider a thin elastic body

occuping a domain Ω ⊂ R2, that is flat in its undeformed state subjected to a compressive

force (of magnitude λ) acting on the boundary ∂Ω of Ω. Then the stresses produced in Ω,

as measured by the Airy stress function, f(x, y) + λF0(x, y) and the displacement u(x, y)

of the plate are defined by the following quasilinear elliptic system:

∆2f = −1
2

[u, u] , in Ω

∆2u = λ [F0, u] + [f, u] , in Ω

u = ∂u
∂x

= ∂u
∂y

= 0 on ∂Ω,

f = ∂f
∂x

= ∂f
∂y

= 0 on ∂Ω,

where ∆2 denotes the biharmonic operator and

[v, w] =
∂2v

∂x2

∂2w

∂y2
+
∂2w

∂x2

∂2v

∂y2
− 2

∂2v

∂x∂y

∂2w

∂x∂y
.

1



Introduction

Here F0(x, y) is the function obtained by solving an associated inhomogeneous linear prob-

lem, and is a measure of the stress produced in the undeflected plate if it were prevented

from deflecting.

In the past decades many models of physics and mechanics have been derived and justified

by the use of the asymptotic expansion method. Ciarlet-Rabier and Ciarlet-Paumier were

successfully to justify the von Karman and Marguerre von-Karman equations in framework

of nonlinear elasticity by the asymptotic methode [2]. Nevertheless, elasticity models can-

not describe important mechanical phenomena such as hardening, memory or relaxation

of the materials involved. For more details about the von Karman and Marguerre von Kar-

man equations see [3].

Thus the objective of our work is the justification of the von Karman equations in the vis-

coelastic case using the mixed asymptotic expansions method.

The constitutive law of viscoelastic materials is of long memory type and can be expressed

in the following form:

σij(x, t) = aijkl(x, t)Ekl(x, 0) +

∫ t

0

aijkl(x, t− θ)
∂E(x, θ)

∂θ
dθ,

where aijkl(x, t) are the relaxation functions, describe the mechanical properties of the

material.

The thesis is divided into three chapters, each has a main focus and purpose.

The first chapter provides a broad definition of viscoelasticity as well as its fundamental

equations. We also explain the study’s aim.

In the second chapter, We introduce the geometry of the von karman plate with mentioning

the types of forces applied on this plate, then we address the problem of the plate and give

The elastodynamic viscoelastic 3D plate model von Karman. We then turn our problem

into a formulation variationall.

The third chapter is the core of our thesis. We proceed our asymptotic analysis by posing

the problem satisfied by the scaled solution on a fixed interval using appropriate specific

scalings.

Introduction 2



Chapter 1

Viscoelasticity: Introduction and

Equations

The first chapter provides a broad definition of viscoelasticity as well as its fundamental

equations. We also explain the study aim.

3



Chapter 1.

1.1 Introduction

A viscoelasticity is the property of materials that exhibit both viscous (dashpot-like)

and elastic (spring like) characteristics when undergoing deformation. It combines aspects

of both fluid mechanics (viscosity) and solid mechanics (elasticity) to describe the unique

response of these materials to applied forces or deformations. In simple terms, viscoelastic

materials possess the ability to deform under stress and also exhibit a time-dependent be-

havior. The viscoelastic behavior of materials arises from the internal molecular structure

and interactions within the material. These interactions can involve various mechanisms,

such as the sliding and reordering of molecular chains, the breaking and reformation of

bonds, or the diffusion of molecules. These mechanisms contribute to the material’s ability

to store and dissipate energy under applied loads. The viscoelastic response of a mate-

rial is typically characterized by several important parameters, including elastic modulus,

viscous modulus, and time-dependent functions. The elastic modulus represents the ma-

terial’s resistance to deformation, while the viscous modulus characterizes its resistance to

flow. The time-dependent functions, such as relaxation modulus and creep compliance,

describe the material’s behavior over time under constant stress or strain. Viscoelasticity

finds applications in various fields, including engineering, biomechanics, polymer science,

and materials engineering. Understanding the viscoelastic behavior of materials is crucial

for designing and predicting the performance of structures and products subjected to dy-

namic or time-varying loads. Overall, the study of viscoelasticity provides insights into the

complex mechanical properties of materials, helping researchers and engineers develop

better materials and designs for a wide range of applications. in this work we study the

viscoelasticity modeling of a von Karman plate involves considering the material behav-

ior of the plate as both elastic and viscous. A von Karman plate refers to a thin plate

with a moderate amount of curvature. The viscoelastic modeling takes into account the

time-dependent deformation and stress relaxation of the material.

To describe the viscoelastic behavior of a von Karman plate, a constitutive equation is

1.1. Introduction 4



Chapter 1.

used that combines the elastic and viscous responses. One commonly used model for

viscoelasticity is the Maxwell model.

In the context of a von Karman plate, the strain and stress tensors would be formulated

to describe the plate’s deformation and internal forces, respectively. The strain rate tensor

captures the rate at which the strain changes over time.

By incorporating the Maxwell model into the governing equations for a von Karman plate,

such as the Kirchhoff-Love equations, it is possible to simulate the time-dependent behavior

of the plate under various loading conditions. These equations involve terms related to the

plate’s curvature, moments, and distributed loads.

It’s worth noting that the viscoelastic behavior of a von Karman plate can be more com-

plex than the simplified Maxwell model. Depending on the specific material properties and

desired accuracy, other viscoelastic models such as the Kelvin-Voigt model or the general-

ized Maxwell model may be employed. These models can capture additional viscoelastic

phenomena such as creep, stress relaxation, and frequency-dependent behavior.

The viscoelastic modeling of von Karman plates is a topic of ongoing research, and vari-

ous numerical methods, such as finite element analysis, are commonly used to solve the

governing equations and simulate the plate’s behavior.

1.1. Introduction 5



Chapter 1.

1.2 Governing Equations

1.2.1 Examples of Materials Exhibiting Viscoelastic Behavior

Synthetic polymers, wood, soil, human biological tissue (bone , tendons , ligaments ,

muscles and articular cartilage), plastics , and metals at elevated temperatures .

1.2.2 Properties of viscoelastic materials

Viscoelastic materials are those for which the relationship between stress and strain de-

pends on time, and they possess the following three important properties:

♦ Stress relaxation: If the strain is held constant , the stress decreases with time.

♦ Creep: If the stress is held constant , the strain increases with time.

♦ Hysteresis: If cyclic loading is applied , a phase lag occurs , leading to a dissipation of

mechanical energy.

1.2.3 Stress-Strain Constitutive law

The stress-strain relationship for a viscoelastic material is not unique but is a function of

the time or the rate at which the stresses (σ) and strains (e) are developed in the material:

σ = σ(e,
·
e, ..., t), where

·
e =

de

dt
.

There are several types of constitutive laws to describe the behavior of viscoelastic ma-

terials: Maxwell model , Kelvin-Voigt model, Burgers model,...,etc. The choice of model

depends on the specific properties of the material being studied and the type of deforma-

tion being applied.

1.2. Governing Equations 6
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The strain behavior over time of a viscoelastic material is a function of the creep function

and the stress , while the stress behavior over time is a function of the stress relaxation

function and the strain . Boltzmann (1844-1906) first generalized these observations by

saying that for a simple bar subject to a stress σ(t) , that the increment in stress over a

small time interval dt would be:
dσ

dt
=
dσ

dτ
dτ.

This assumes that the stress is continuous and differentiable in time . Given that the stress

is related to the strain via the creep function , Boltzmann postulated that an increament

of strain de , which depends on the complete stress history up to time t , would be related

to the increment of stress dσ at the specific time increment from τ to t through the creep

function J at the time t− τ as:

de(t) = J(t− τ)
dσ(t)

dτ
dτ.

The complete strain at a time t would then be obtained by integrating the strain incre-

ments from time 0 to time t, over all the increments dt:

e(t) =

∫ t

0

J(t− τ)
dσ(t)

dτ
dτ. (1.1)

We can also make the same argument for an increment of stress dσ through time t de-

pending on the increment of strain de at time t and the stress relaxation over the time t− τ

as:

σ(t) =

∫ t

0

G(t− τ)
de(t)

dτ
dτ. (1.2)

The above constitutive relationships (1.1) and (1.2) can be generalized to three dimen-

sions in tensorial form for a strain history from time t = −∞ to t as:

σij(x, t) =

∫ t

−∞
Gijkl(x, t− τ)

∂ekl(x, t)

∂τ
dτ (1.3)

where Gijkl is a tensorial stress relaxation function satisfying:

Gijkl = Gjikl = Gijlk.

1.2. Governing Equations 7
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We can write a similar relationship for strain in terms of a prescribed stress history and a

tensorial creep function Jijkl as:

eij(x, t) =

∫ t

−∞
Jijkl(x, t− τ)

∂σkl(x, t)

∂τ
dτ (1.4)

where the functions Jijkl satisfy:

Jijkl = Jjikl = Jijlk.

If we know that the loading starts at t = 0 and the stress and strain are zero at this point ,

we may write the above constitutive relationships as:

σij(x, t) = Gijkl(x, t)ekl(x, 0) +

∫ t

0

Gijkl(x, t− τ)
∂ekl(x, t)

∂τ
dτ

and

eij(x, t) = Jijkl(x, t)σkl(x, 0) +

∫ t

0

Jijkl(x, t− τ)
∂σkl(x, t)

∂τ
dτ

For a viscoelastic body , some of the strain energy is stored in the body as a potential

energy and some of it is dissipated as heat. This dissipation is also known as hysteresis . In

comparison, elastic materials do not exhibit energy dissipation or hysteresis . Indeed, the

fact that all energy due to deformation is stored is a characteristic of elastic materials.

1.2.4 Motivations for studying viscoelasticity

Understanding and studying the behavior of viscoelasticity is important and of interest in

a wide range of fields, including materials science, engineering, physics, and biology.

First, materials used for structural applications of practical interest may exhibit viscoelastic

behavior which has a profound influence on the performance of that material . Materials

used in engineering applications may exhibit viscoelastic behavior as an unintentional side

effect . In applications, one may deliberately make use of the viscoelasticity of certain

materials in the design process , to achieve a particular goal.

1.2. Governing Equations 8
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Second , the mathematics underlying viscoelasticity theory is of interest within the applied

mathematics community.

Third , viscoelasticity is of interest in some branches of materials science , metallurgy , and

solid-state physics since it is causally linked to a variety of microphysical processes and can

be used as an experimental probe of those processes.

Fourth , the causal links between viscoelasticity and microstructure are exploited in the

use of viscoelastic tests as an inspection tool.

1.2. Governing Equations 9
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Modeling of Viscoelastic von Karman

Plate

In the second chapter, We introduce the geometry of the von karman plate with mentioning

the types of forces applied on this plate, then we address the problem of the plate and give

The elastodynamic viscoelastic 3D plate model von Karman. We then turn our problem

into a formulation variationnel.

10



Chapter 2. Modeling of Viscoelastic von Karman Plate

2.1 Geometry of the plate

In this model , the plate is assumed to be thin , which means its thickness is small compared

to its lateral dimensions . The geometry of the plate is typically described in terms of its

mid-surface and the displacement field. The mid-surface is a two-dimensional surface that

represents the undeformed shape of the plate.

To define the geometry of a viscoelastic von Karman plate , we need to consider the fol-

lowing parameters :

Mid-surface shape : The mid-surface of the plate is typically defined by a mathematical

function that describes its shape in its undeformed state . Common choices include a

flat plate , a cylindrical plate , or a spherical plate. The specific equation describing the

mid-surface shape depends on the problem at hand.

Displacement field : The displacement field describes the deformation of the plate from

its undeformed state . It is typically represented by a vector field that specifies the displace-

ment of each point on the mid-surface in the plate’s thickness direction. The displacement

field is usually decomposed into in-plane displacements (in the plane of the mid-surface)

and out-of-plane displacements (perpendicular to the mid-surface).

Plate dimensions : The dimensions of the plate include its length, width, and thick-

ness. The length and width define the lateral dimensions of the plate, while the thickness

represents the distance between the undeformed mid-surface and the deformed surface .

Boundary conditions : The boundary conditions specify how the plate is supported and

constrained at its edges . Common boundary conditions include clamped edges (zero

displacement and zero slope) , simply supported edges (zero displacement but non-zero

slope) , and free edges (no constraint).

These parameters collectively define the geometry of a viscoelastic von Karman plate

model. Once the geometry is established , the governing equations of motion and bound-

ary conditions can be applied to solve for the plate’s deformation and response under

external load .

2.1. Geometry of the plate 11



Chapter 2. Modeling of Viscoelastic von Karman Plate

Let ω be a domain in the plane spanned by the vectors eα. We denote by να and τα the

unit outer normal vector and unit tangent vector along the boundary γ of ω , related by

τ1 = −ν2, τ2 = ν1 . Given ε > 0 , let


Ω = ω × ]−ε,+ε [

Γ0 = γ × [−ε,+ε ]

Γ± = ω × {±ε }

(2.1)

where ω is a bounded domain of R2 with a LIPSCHITZ-boundary, and ε is a small real

parameter (0 < ε ≤ 1).

So that the boundary ∂Ωε of the set Ωε is partitioned into the lateral face γ × [−ε, ε ] and

the upper and lower faces Γε+ and Γε−. Finally , we let (nεi ): ∂Ωε → R3 , denotes the unit

outer normal vector along ∂Ωε ; hence (nεi )= (ν1, ν1, 0 ) along the lateral face

γ × [−ε, ε ].

We assume that , for each ε > 0, the set Ωε is the reference configuration of a nonlinearly

elastic plate , subjected to three kinds of applied forces:

ä applied body forces acting in Ωε , of density (f εi ): Ωε → R3 ,

ä applied surface forces acting on the upper and lower faces ,

of density
(
gεi
)
: Γε+

⋃
Γε− → R3 ,

ä applied surface forces parallel to the plane spanned by the vectors eα acting on the

lateral face γ × [−ε, ε ] , whose only the resultant density (hε1, h
ε
2, 0 ): γ → R3 a per unit

length, obtained by integration across the thickness, is known along the boundary Ω of the

middle surface of the plate.

2.1. Geometry of the plate 12



Chapter 2. Modeling of Viscoelastic von Karman Plate

Figure 2.1: A von Kàrmàn plate

The three-dimensional equations are characterized by specific boundary conditions on the

whole lateral face γ × [−ε, ε ] , where γ = ∂ω . Applied surface forces parallel to the plane

spanned by the vectors are acting on the lateral face through their resultant (hεα )= γ → R2

obtained by integration across the thickness of the plate . The admissible displacements uεα

are independent of xε3 and uε3 = 0 along γ × [−ε, ε ] in other words, any "vertical" segment

along the lateral face can only undergo "horizontal" translations.

Finally, all applied forces are "vertical",i.e., f εα = 0 and gεα = 0.

The coefficients are defined as follows:

Let aεijkl(t− s) be bounded functions . these functions satisfy the following conditions:

aεijkl(y) = aεjikl(y) = aεklij(y) a.e y ∈ Ωε

∃m > 0 such that ∀τ = (τ εij), τ
ε
ij = τ εji

m τ εijτ
ε
ij ≤ aijkl(y)τ εijτkl a.e y ∈ Ωε

∃M > 0 such that M = sup aεijkl(y), y ∈ Ω, (k, h = 1, 2, 3).

(2.2)

2.1. Geometry of the plate 13



Chapter 2. Modeling of Viscoelastic von Karman Plate

2.2 Problem of the Plate

The elastodynamic viscoelastic 3D plate model von Karman is a mathematical model

used to describe the behavior of viscoelastic plates subjected to dynamic loading . It com-

bines the principles of elastodynamics , which describes the motion of elastic materials

under dynamic loads, with the viscoelastic behavior of the material. The model is based

on the von Karman plate theory, it considers the plate to be thin and assumes that the

displacements are small compared to the plate dimensions. The viscoelastic behavior is

incorporated into the model by introducing a time-dependent constitutive equation that

describes the stress-strain relationship of the material. This constitutive equation includes

both elastic and viscous components , allowing the material to exhibit time-dependent and

rate-dependent behavior. We use in the following the conventions and notations : Greek

indices , belong to the set {1, 2 } while Latin indices belong to the set {1, 2, 3 } . δij is the

Kronecker symbols , the symbols of differentiation ∂εi =
∂

∂xεi
, ∂i =

∂

∂xi
.

For each ε > 0 , the plate is subjected to theree kinds of applied forces:

ä Body forces acting on its interior, of density

(f εi ) : Ωε×]0,∞[−→ R3.

ä Surface forces acting on its upper and lower faces, of density

(gεi ) :
(
Γε+ ∪ Γε−

)
×]0,∞[−→ R3.

ä Horizontal forces of von Karman type acting on its lateral boundary , of den-

sity (hε1, h
ε
2, 0) : ∂ω×]0,∞[−→ R2, such that

hεα = 1
2ε

∫ ε

−ε

ε∑
αβ

νβdx
ε
3.

2.2. Problem of the Plate 14



Chapter 2. Modeling of Viscoelastic von Karman Plate

The ELASTODYNAMIC VISCOELASTIC 3D plate model with von Karman conditions is formu-

lated as follows:

(Pε)



Find uε(xε, t) : Ωε×]0,∞[−→ R3 solution of

ρε
∂2uεi
∂t2
− ∂εj

∑ε
ij = f εi in Ωε×]0,∞[


uε1, u

ε
2 independent of xε3 and uε3 = 0 on Γε0×]0,∞[

1
2ε

∫ ε

−ε
Σε
αβνβdx

ε
3 = hεα on ∂ω×]0,∞[

Σε
ijn

ε
j = gεi on

(
Γε+ ∪ Γε−

)
×]0,∞[

uε(xε, 0) =
∂uε(xε, 0)

∂t
= 0 in Ωε

(2.3)

where 

ρε : the mass density

∑ε
ij = σεij + σεkj∂

ε
ku

ε
i

σεij(x
ε, t) : the components of stress tensor

σεij(x
ε, t) =

∫ t

0

aεijkl(t− s)
∂Eε

kl(u
ε(xε, s))

∂s
ds = aεijkl ∗

∂Eε
kl

∂s

Eε
kl : the components of strain tensor,

Eε
kl = 1

2
(∂εl u

ε
k + ∂εku

ε
l + ∂εku

ε
m∂

ε
l u

ε
m)

2.2. Problem of the Plate 15



Chapter 2. Modeling of Viscoelastic von Karman Plate

2.3 The mixed variational problem

The aim of this section is to determine an appropriate weak formulation to our prob-

lem . To archieve this objective , we will give some preliminaries and define some spaces

needed to carry on our study.

2.3.1 Preliminaries

Now, We define the spaces

V(Ωε) :
{
vε = (vεi ) : vεi ∈ W 1,4(Ωε), vεα|Γε

0
independent of xε3, and vε3|Γε

0
= 0
}
, (2.4)

H(Ωε) =
{
τ = (τij) : τ εij ∈ L2(Ωε), τ εji = τ εij

}
. (2.5)

Theorem 2.1 (GREEN’s Integration by Parts Formula) Let Ω be a bounded open domain

in R3 with a sufficiently smooth boundary Γ and n is the outward normal. Then for all

u, v ∈ C1(Ω) ∫
Ω

∂iu(x)v(x)dx = −
∫
Ω

u(x)∂iv(x)dx+

∫
Γ

u(x)v(x)nidΓ.

Proof. See ( [7]).

2.3. The mixed variational problem 16



Chapter 2. Modeling of Viscoelastic von Karman Plate

2.3.2 Weak Formulations

To avoid complexity , we will derive the weak formulation of each equation in the bound-

ary value problem (2.3.2 ) , then obtain the weak formulation of the whole problem . We

suppose the data of the problem satisfy the regularity conditions stated in the previous

subsection. Multiplying equation (2.2)1 by a test-function vε ∈ Vε (Ωε) and integrating on

Ωε gives ∫
Ωε

(
ρε
∂2uεi
∂t2

(xε, t)vεi dx
ε

)
−
∫

Ωε

∂εjΣ
ε
ijv

ε
i dx

ε =

∫
Ωε

f εi v
ε
i dx

ε.(2.6)

By applying GREEN’s formula on the integral equation (2.6) and using the appropriate

boundary conditions we find, for all vε ∈ Vε (Ωε) and t ∈]0, T [∫
Ωε

ρε
∂2uεi
∂t2

(xε, t)vεi dx
ε −

∫
∂Ωε

Σε
ijnjv

ε
i dx

ε +

∫
Ωε

Σε
ij∂

ε
jv

ε
i dx

ε =

∫
Ωε

f εi v
ε
i dx

ε (2.7)



∫
Ωε Σε

ijnjv
ε
i dx

ε =
∫

Γε
+∪Γε

−
gεi v

ε
i dΓ +

∫
Γε
0

Σε
αβηβv

ε
αdΓ

=
∫

Γε
+∪Γε

−
gεi v

ε
i dΓ +

∫
γ

(
Σε
αβnβdx

ε
3 )vεαdx1dx2

=
∫

Γε
+∪Γε

−
gεi v

ε
i dΓ + 1

2

∫ ε
−ε h

ε
αv

ε
αdγ

We can rewrite this equation in the form :

Aε (uε(x, t); vε) = Lε (vε) . (2.8)

Where Aε and Lε are given by

Aε(uε(x, t); vε) =
d2

dt2

{
ρε
∫

Ωε

uεiv
ε
i dx

ε

}
+

∫
Ωε

Σ3
i,j

∂vεi
∂xεj

dxε (2.9)

Lε(vε) =

∫
Ωε

f εi v
ε
i dx

ε +

∫
Γε
+∪Γε

−

gεi v
ε
i dΓε +

∫
∂ω

(∫ ε

−ε
vεαdx

ε
3

)
hεαdγ (2.10)

Eε
ij = bεijkl ∗

∂σεkl
∂θ

=

∫ t

0

bεijkl(t.θ)
∂σεkl
∂θ

dθ

where

bε = (bεijkl) is the inverse of aε = (aεijkl).(2.11)

2.3. The mixed variational problem 17
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Multiplying equation (2.3.2) by a test-function τ εij ∈ H (Ωε) and integrating over Ωε gives :∫
Ωε

Eε
ijτ

ε
ijdx

ε =

∫
Ωε

[∫ t

0

bεijkl(t− s)
(
∂σεkl
∂s

(xε, s)

)
ds

]
τ εijdx

ε (2.12)

∫
Ωε

Eε
ijτ

ε
ijdx

ε −
∫

Ωε

[∫ t

0

bεijkl(t− s)
(
∂σεkl(x

ε, s)

∂s

)
ds

]
τ εijdx

ε = 0, (2.13)

∀τ ε = (τ εij) ∈ H(Ωε) , uε(xε, 0) =
∂uε(xε, 0)

∂t
= 0 in Ωε. (2.14)

2.3. The mixed variational problem 18
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We formulate the problem (P ε) as a time-dependent variational mixed problem



Find (uε(., t), σε(., t)) ∈ V(Ωε)×H(Ωε) such that ∀t ≥ 0 :

d2

dt2

{
ρε
∫

Ωε

uεiv
ε
i dx

ε

}
+

∫
Ωε

3∑
i,j

∂vεi
∂xεj

dxε =

∫
Ωε

f εi v
ε
i dx

ε +

∫
Γε
+∪Γε

−

gεi v
ε
i dΓε

+

∫
∂ω

(∫ ε

−ε
vεαdx

ε
3

)
hεαdγ , ∀vε ∈ V(Ωε)

∫
Ωε

Eε
ijτ

ε
ijdx

ε −
∫

Ωε

[∫ t

0

bεijkl(t− s)
(
∂σεkl(x

ε, s)

∂s

)
ds

]
τ εijdx

ε = 0,

∀τ = (τij) ∈ H(Ωε) , uε(xε, 0) =
∂uε(xε, 0)

∂t
= 0 in Ωε.

2.3. The mixed variational problem 19
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Asymptotic Analysis

In this chapter, we proceed our asymptotic analysis by posing the problem satisfied by the

scaled solution on a fixed interval using appropriate specific scalings.

20



Chapter 3. Asymptotic Analysis

3.1 The Scaled Three-Dimensional Problem

In this section, we use the method called "asymptotic analysis" developed by CIARLET &

DESTUYNDER [5], it involves three steps: first we fix our domain by getting rid of the

thickness parameter ε, then we give appropriate scaling assumptions on the data, and

scale the unknown uε(xε, t) by defining a new unknown u(ε)(x, t) on the fixed domain

found in the first step, finally we transform our weak problem (2.3.2) into a "scaled" weak

problem posed on the fixed domain.

3.1.1 The Fixed Domain

Recall that Ωε = ω×] − ε, ε[, and 0 < ε ≤ 1. Since the unknowns (uε, σε) are defined over

the set Ωε × [0, T ] which depends on ε, we want to transform our problem into a problem

that is established on a fixed domain that does not depend on ε. For that, we let

Ω = ω×]− 1, 1[,

Γ± = ω × {±1},

Γ0 = ∂ω × ]−1, 1[ .

Let x = (x1, x2, x3) denotes a current point in Ω . For each point x ∈ Ω, we associate the

point xε ∈ Ωε with the bijective mapping

πε : Ω→ Ωε

x 7→ xε,

where xε = (x1, x2, εx3). Note that

∂εα = ∂α, ∂ε3 =
1

ε
∂3. (3.1)

With the space Vε , H(Ωε) , we associate the spaces V = {v ∈ W 1,4(Ω), vα|Γ0
is independent of x3, and v3|Γ0

= 0 },

H(Ω) = {τ = (τij) : τij ∈ L2(Ω), τji = τij} .
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3.1.2 Scaling of the Data and the Unknowns

Before finding the scaled weak formulation, which will be denoted (3.2) , we first need to

decide how will the data, the unknowns , and the test-functions , in the appropriate spaces,

be mapped over the set Ω . Also , we should control the way the material coefficients

depend on ε.

First we start with the data . We scale the applied forces as in [2]

f εα (xε, t) = 0 , f ε3 (xε, t) = ε3f3 (x, t) , x ∈ Ω,

gεα (xε, t) = 0 , gε3 (xε, t) = ε4g3 (x, t) , x ∈ Γ±.

hεα (xε, t) = ε2hα (x, t) .

For the unknowns , the scaling of the mechanical displacement and the stress:

uεα (xε, t) = ε2uα(ε) (x, t) , uε3 (xε, t) = εu3(ε) (x, t) , x ∈ Ω,

σεαβ (xε, t) = ε2σαβ(ε) (x, t) , σεα3 (xε, t) = ε3σα3(ε) (x, t) ,

σε33 (xε, t) = ε4σ33(ε) (x, t) ,

The test-functions are scaled in a similar way but independent of t

vεα (xε) = ε2vα (x) , vε3 (xε) = εv3 (x) , x ∈ Ω,

τ εαβ(xε) = ε2ταβ (x) , τ εα3(xε) = ε3τα3 (x) τ ε33(xε) = ε4τ33 (x) x ∈ Ω.

From now on, we will be writing u(ε), σ(ε), instead of u(ε)(x, t), σ(ε)(x, t) respectively .

Similarly , we write u(ε) instead of u(ε)(t). Therefore , the test-functions V ε = (vεi ) and

the unknown u(ε)(t) = (u(ε), σ(ε) ) belong to the space V(Ω) × H(Ω). We suppose that

the material coefficients remain the same, meaning that they are already independent of

ε.
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We assume that the mass density ρε takes the following scalings:

ρε = ε2ρ.

3.1.3 The Scaled Weak Formulation

After fixing the domain and scaling the data and the unknowns, we are now in a position

to pose the weak formulation on the fixed domain Ω. For any test-function v ∈ V(Ω).

The following theorem gives the scaled weak formulation (3.2) equivalent to the weak

formulation

The scaled weak formulation satisfies the following variational problem:

Find u(ε)(x), σ(ε)) ∈ V(Ω)×H(Ω), ∀t ∈ ]0, T [ such that:

A(ε) (u(ε)(x); v) = L(ε) (v) ,∀v ∈ V(Ω),∀t ∈]0, T [,

u(ε)(x, 0) = 0, u̇(ε)(x, 0) = 0, in Ω,

(3.2)

where

A(ε) (u(ε); v) =
d2

dt2
[ρ

∫
Ω

u3(x, t)v3dx] +

∫
Ω

σij(x, t)[∂jvi

+ ∂iu3(ε)∂jv3]dx+ ε2

{
d2

dt2
[ρ

∫
Ω

uα(ε)vαdx]

+

∫
Ω

σij(x, t)[∂iuα(ε)∂jvα(ε)]dx }

L(ε) (V) =

∫
Ω

f3v3dx+

∫
Γ+∪Γ−

g3v3dΓ

+

∫
∂ω

(

∫ 1

−1

ναdx3)hαdγ ∀v ∈ V(Ω)
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Proof. Proving this theorem goes through scaling our weak formulation (2.3.2) using the

scaling assumptions we mentioned above. To do this, we have to scale all the terms of Aε

and Lε. The calculations are long but simple, so we will work only on some of the terms

to build the idea. We will scale the terms (f ε,vε) and (gε,vε)Γε
±

and (hεα,v
ε) in Lε and the

terms (ρεuε,vε) and Σε
ij (σε,vε) in Aε.

• Scaling the terms of Lε:

ä The scalings on the data f εi and the functions vεi , give

(f ε,vε) =

∫
Ωε

f εi v
ε
i dx

ε =

∫
Ωε

(f εαv
ε
α + f ε3v

ε
3) dxε

ä The scalings on the data gεi and the functions vεi , give:

(gε,vε)Γε
+∪Γε

−
=

∫
Γε
+∪Γε

−

gεi v
ε
i dΓε =

∫
Γε
+∪Γε

−

(gεαv
ε
α + gε3v

ε
3) dΓε

ä The scalings on the data hεα and the functions vεα, give:∫
γ

hεα

(∫ ε

−ε
vα(xε1, x

ε
2, x

ε
3)dxε3 )dγ = ε5

∫
γ

hα

(∫ 1

−1

vα(x1, x2, x3)dx3 )dγ
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• Scaling the terms of Aε:

ä scalings on ρε, the mechanical displacement uεi , and the functions vεi :∫
Ωε

ρε
∂2uεi
∂t2

vεi dx
ε =

∫
Ωε

(
ρε
∂2uεα
∂t2

vεα +

∫
Ωε

ρε
∂2uε3
∂t2

vε3 )dxε

= ε7

∫
Ω

ρ
∂2uα(ε)

∂t2
vα(x)dx+ ε5

∫
Ω

ρ
∂2u3(ε)

∂t2
v3(x)dx

ä scalings on Σε
ij the functions vεi :∫

Ωε

Σε
ij

∂vεi
∂xεj

dxε =

∫
Ωε

σεij
∂vεi
∂xεj

dxε +

∫
Ωε

σεkj∂
ε
ku

ε
i

∂vεi
∂xεj

dxε

we have :

?

∫
Ωε

σεij
∂vεi
∂xεj

dxε = ε

∫
Ω

[
ε2σαβ(ε)ε2 ∂vα

∂xβ
+ ε3σα3(ε)ε

∂vα
∂x3

+ ε3σ3β(ε)ε
∂v3

∂xβ

+ ε4σ33(ε)
ε

ε

∂v3

∂x3

]
dx = ε5

∫
Ω

σij(ε)
∂vi
∂xj

dx

?

∫
Ωε

σεkj∂
ε
ku

ε
i

∂vεi
∂xεj

dxε =

∫
Ωε

σεαj∂
ε
αu

ε
i∂

ε
jv

ε
i +

∫
Ωε

σε3j∂
ε
3u

ε
i∂

ε
jv

ε
i

= ε7[

∫
Ω

σαγ(ε)∂αuβ(ε)∂γvβ + σα3(ε)∂αuβ(ε)∂3vβ

+ σ3γ(ε)∂3uα(ε)∂γvα + σ33(ε)∂3uα(ε)∂3vα]dx

+ ε5[

∫
Ω

σαγ(ε)∂αu3(ε)∂γv3 + σα3(ε)∂αu3(ε)∂3v3

+ σ3γ(ε)∂3u3(ε)∂γv3 + σ33(ε)∂3u3(ε)∂3v3]dx

1.

1Voir APPENDIX 1
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• Scaling the terms of Eε
ij (uε(xε, t) )

Eε
ij(u

ε(xε, t)) =

∫ t

0

bεijkl(x
ε, t− θ)∂σ

ε

∂θ
(xε, θ)dθ = bεijkl ∗

∂σεkl
∂θ

= eεij(u
ε) +

1

2
∂εi u

ε
m∂

ε
ju

ε
m

∫
Ωε

Eε
ijτ

ε
ijdx

ε −
∫

Ωε

(
b
ε

ijkl ∗
∂σεkl
∂θ

)
τ εijdx

ε = 0



Eε
αβ  ε2

[
eαβ(u(ε)) + 1

2
∂αu3∂βu3

]
+ε4 1

2
∂αuγ∂βuγ

= ε2γαβ + ε4Iαβ

Eε
α3  ε

[
eα3(u(ε)) + 1

2
∂αu3∂3u3

]
+ε3 1

2
∂αuγ∂3uγ

= εγα3 + ε3Iα3

Eε
33  ε

[
e33(u(ε)) + 1

2
∂αu3(∂3u3)2

]
+ε2 1

2
∂3uγ∂3uγ

= γ33 + ε2I33

(3.3)

we define: 
A =

∫
Ωε E

ε
ijτ

ε
ijdx

ε

B =
∫

Ωε

(
bεijkl ∗

∂σεkl
∂θ

)
τ εijdx

ε

(3.4)
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where :

A = ε3
∫

Ω

(
ε2γαβ + ε4Iαβ

)
ταβdx+ 2ε4

∫
Ω

(εγα3 + ε3Iα3 )τα3dx

+ε5
∫

Ω
(γ33 + ε2I33) τ33dx = ε5

∫
Ω
γijτijdx+ ε7

∫
Ω
Iijτijdx

B = ε3
∫

Ω

[
ε2

(
bαβγδ ∗

∂σγδ
∂θ

)
+ 2ε3

(
bαβγ3 ∗

∂σγ3

∂θ

)
+ ε4

(
bαβ33 ∗

∂σ33

∂θ

)]
ταβdx

+2ε4
∫

Ω

[
ε2

(
bα3γδ ∗

∂σγδ
∂θ

)
+ 2ε3

(
bα3γ3 ∗

∂σγ3

∂θ

)
+ ε4

(
bα333 ∗

∂σ33

∂θ

)]
τα3dx

+ε5
∫

Ω

[
ε2

(
b33γδ ∗

∂σγδ
∂θ

)
+ 2ε3

(
bα3γ3 ∗

∂σγ3

∂θ

)
+ ε4

(
b3333 ∗

∂σ33

∂θ

)]
τ33dx

(3.5)

A−B = 0⇔

−ε9
∫

Ω

(
b3333 ∗

∂σ33

∂θ

)
τ33dx− 2ε8

∫
Ω

[(
bα333 ∗

∂σ33

∂θ

)
τα3

+

(
b33γ3 ∗

∂σγ3

∂θ

)
τ33

]
dx+ ε7

∫
Ω

[
Iijτij −

(
bαβ33 ∗

∂σ33

∂θ

)
ταβ

−4

(
bα3γ3 ∗

∂σγ3

∂θ

)
τα3 −

(
b33γδ ∗

∂σγδ
∂θ

)
τ33

]
dx

−2ε6
∫

Ω

[(
bαβγ3 ∗

∂σγ3

∂θ

)
ταβ +

(
bα3γδ ∗

∂σγδ
∂θ

)
τα3 }dx

+ε5
∫

Ω

{
γijτij −

(
bαβγδ ∗

∂σγδ
∂θ

)
ταβ

]
= 0

(3.6)
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We rewritten in the following form:

Find(u(ε), σ(ε)) ∈ V(Ω)× Σ(Ω) ∀t ∈ [0, T ], such that
d2

dt2

[
ρ
∫

Ω
u3(x, t)v3dx

]
+
∫

Ω
σij(x, t)[∂jvi + ∂iu3∂jv3]dx

+ε2

{
d2

dt2

[
ρ
∫

Ω
uα(ε)vαdx

]
+
∫

Ω
σij(x, t)∂iuα∂jvαdx

}
=
∫

Ω
f3v3dx+

∫
Γ+∪Γ−

g3v3dΓ +
∫
∂ω

(vαdx3)hαdγ ∀v ∈ V

∫
Ω

[
γijτij − (bαβγδ ∗

∂σγδ
∂θ

)ταβ

]
dx = 0, ∀τ ∈ H,

u(ε)(x, 0) = 0, u̇(ε)(x, 0) = 0, in Ω.

(3.7)
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3.2 The limit three dimentional problem

The form of the problem (3.6) makes it amenable to the formal asymptotic expansion

method . We assume a priori that the solution ((u(ε), (σ(ε)) of the problem can be sought

in the form of the following expansion :

((u(ε), (σ(ε)) = (u0, σ0) + ε(u1, σ1) + ε2(u2, σ2) + ...... (3.8)

with

u0 = (u0
i ) ∈ V(Ω), ∂3u

0
3 ∈ C0(Ω), up = (upi ) ∈ W 1,4(Ω;R3)∀p > 1.

We assume that the relaxation tensor is independent of ε , such that

aεijkl(x
ε, t) = aijkl(x, t),

where the functions aijkl(x, t) satisfies the symmetry and coercivity . We substitute the

formal asymptotic expansion (3.8) into the variational problem (P (ε)), we obtain the fol-

lowing limit three-dimensional problem. The leading term (u0, σ0) satisfies the following

variational problem:

(P 0(Ω))



Find(u0, σ0) ∈ V(Ω)× Σ(Ω)∀ t ∈ [0, T ], such that

d2

dt2

[
ρ
∫

Ω
u0

3(x, t)v3dx

]
+
∫

Ω
σ0
ij[∂jvi + ∂iu

0
3∂jv3]dx = L(v) ∀v ∈ V

∫
Ω

[
γ0
ijτij − (bαβγδ ∗

∂σγδ
∂θ

)ταβ

]
dx = 0, ∀τ ∈ H,

u0(ε)(x, 0) = 0, u̇0(ε)(x, 0) = 0, in Ω

(3.9)
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3.2.1 Solution of the limit problem

The solution (u0, σ0) :

� Firstly we choose in (3.9) the second equation :

ä τ33 6= 0, τα3 = ταβ = 0 ∀τ33 ∈ L2(Ω);∀t ∈ ]0, T [∫
Ω

γ0
33τ33dx = 0⇒ γ0

33 =∂3u
0
3(1 +

1

2
∂3u

0
3) = 0

∂3u
0
3 = 0 or ∂3u

0
3 = (−2)

since we have assumed that ∂3u
0
3 ∈ C0(Ω) and u0

3 = 0 on γ × [−1, 1 ] the solution

∂3u
0
3 = (−2) is eliminated. Hence, we obtain

∂3u
0
3 = 0 ⇔ u0

3 = ξ3

ä τα3 6= 0, τ33 = ταβ = 0 ∀τα3 ∈ L2(Ω)∀ t ∈ ]0, T [∫
Ω

γ0
α3τα3dx = 0⇒ γ0

α3 = eα3(u0) +
1

2
∂αu

0
3∂3u

0
3 = 0⇒ eα3(u0) = 0

⇒ u0
α = ξα − x3

∂ξ3

∂xα

ä ταβ 6= 0, τ33 = τα3 = 0 ∀ταβ ∈ L2(Ω)∀ t ∈ ]0, T [∫
Ω

[γ0
αβ − (bαβγδ ∗

∂σγδ
∂θ

)]ταβdx = 0

γ0
αβ = bαβγδ ∗

∂σ0
γδ

∂θ

We obtaine:

L(γ0
αβ)(s) = sL(bαβγδ)L(σ0

γδ) where L is the Laplace transfor

2.

2Voir APPENDIX 3
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� Secondly we choose in (3.9) the first equation:

∀v ∈ Vkl(Ω)


vα = ηα(x1, x2)− x3∂αη3(x1, x2)

v3 = η3(x1, x2), η3 ∈ H2(ω) , ηα ∈ H1(ω)

we obtain:

d2

dt2

[
ρ

∫
Ω

u0
3(x, t)v3dx

]
+

∫
Ω

σ0
ij(x, t)[∂jvi + ∂iu

0
3(x, t)∂jv3]dx = L(η)

d2

dt2

[
ρ

∫
Ω

ξ3(x1, x2, t)η3(x1, x2)dx

]
+

∫
Ω

σ0
αβ

{
∂β[ηα − x3∂αη3] + ∂αξ3∂βη3

}
dx

+

∫
Ω

σ0
α3[−∂αη3]dx+

∫
Ω

σ0
3β[∂βη3]dx+

∫
Ω

σ0
33[0]dx = L(η)

We defined

N0
αβ =

∫ 1

−1

σ0
αβdx3 M0

αβ =

∫ 1

−1

x3σ
0
αβdx3 (3.10)

then using Fubini’s formula : ∫
Ω

Fdx =

∫
ω

{∫ 1

−1

Fdx3

}
dw

we have

d2

dt2

[
ρ

∫
Ω

ξ3(x1, x2, t)η3(x1, x2)dx

]
= 2ρ

∫
ω

∂2ξ3

∂t2
η3dw

∫
Ω

σ0
αβ∂βηαdx =

∫
ω

N0
αβ∂βηα

∫
Ω

x3σ
0
αβ∂αη3dx =

∫
ω

Mαβ∂αβη3dw

∫
Ω

σ0
αβ∂αξ3∂βη3dx =

∫
ω

N0
αβ∂αξ3∂βη3dw
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Chapter 3. Asymptotic Analysis

∫
Ω

f3η3dx+

∫
Γ+∪Γ−

g3η3dΓ =

∫
ω

{∫ 1

−1

f3dx3 + g3(.,+1) + g3(.,−1)

}
η3dω

∫
γ

(∫ 1

−1

ηαdx3

)
hαdγ =

∫
∂ω

(∫ 1

−1

ηαdx3 )hαdω

� Finally , we have to find σ0
αβ .

we have:

γ̂0
αβ(s) = sb̂αβγδ(s)σ̂

0
γδ(s)

If ĉαβγδ is the inverse of b̂αβγδ , we show that

ĉαβγδ(s)γ̂
0
γδ(s) = sσ̂0

αβ(s)

σ̂0
αβ(s) =

1

s
ĉαβγδ(s)γ̂

0
γδ(s)

Note that

f ∗ g(t) =

∫ 1

0

f(t− τ)g(τ)dτ

3. We obtain

ĉαβγδ(s)γ̂γδ(s) = L(cαβγδ ∗ γ0
γδ)

L(1) =

∫ ∞
0

e−tsdt = −1

s
e−ts]∞0 = −1

s
[0− 1] =

1

s

1̂ =
1

s
⇒ L−1(1̂) = 1 = L−1(

1

s
)

3Voir APPENDIX 2
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Then

1

s
ĉαβγδ(s)γ̂

0
γδ(s) = L(1).L(cαβγδ ∗ γ0

γδ)

= L(1 ∗ cαβγδ ∗ γ0
γδ)

σ̂0
αβ(s) = L(1 ∗ cαβγδ ∗ γ0

γδ)

σ0
αβ(s) = L−1(σ̂0

αβ) = 1 ∗ cαβγδ ∗ γ0
γδ

where f̂ is the Laplace transform of f

L(f)(s) ≡ f̂(s) = F (s)

4. Finally

σ0
αβ(s) = 1 ∗ cαβγδ ∗ γ0

γδ

σ0
αβ(s) =

∫ t

0

(cαβγδ ∗ γ0
γδ)(τ)dτ (3.11)

we make up (3.11) in (3.10), we find:

N0
αβ =

∫ 1

−1

σ0
α,βdx3 =

∫ 1

−1

[∫ t

0

(cαβγδ ∗ γ0
γδ)(τ)dτ

]
dx3

M0
αβ =

∫ 1

−1

x3σ
0
α,βdx3 =

∫ 1

−1

x3

[∫ t

0

(cαβγδ ∗ γ0
γδ)(τ)dτ

]
dx3

4Voir APPENDIX 3
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The DYNAMIC VISCOELASTIC von Karman plate conditions is formulated as follows:

2ρ
∫
ω
ξ̈3(x1, x2, t)η3(x1, x2)dx1dx2 +

∫
ω
(
∫ 1

−1
σ0
αβdx3)∂βηα

−
∫
ω
(
∫ 1

−1
x3σ

0
αβdx3)∂αη3 +

∫
ω
(
∫ 1

−1
σ0
αβdx3)∂αξ3∂βη3dx1dx2

= 2ρ
∫
ω
ξ̈3η3dx1dx2

+
∫
ω
N0
αβ∂βηα −

∫
ω
M0

αβ∂αη3 +
∫
ω
N0
αβ∂αξ3∂βη3dx1dx2 = L(η)

(3.12)

where: 

L(η) =
∫
ω

{∫ 1

−1
f3dx3 + g3(.,+1) + g3(.,−1)

}
η3dω

+
∫
ω

(∫ 1

−1
ηαdx3 )hαdγ

N0
αβ =

∫ 1

−1
σ0
α,βdx3 =

∫ 1

−1

[∫ t
0
(cαβγδ ∗ γ0

γδ)(τ)dτ
]
dx3

M0
αβ =

∫ 1

−1
x3σ

0
α,βdx3 =

∫ 1

−1
x3

[∫ t
0
(cαβγδ ∗ γ0

γδ)(τ)dτ
]
dx3

(3.13)
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Conclusion

The work presented in this Master’s thesis concerns the asymptotic approximation of the

three-dimensional equilibrium equations of a viscoelastic plate in the nonlinear frame-

work, with von Karman-type boundary conditions. The viscoelastic behavior law consid-

ered is of the long memory type. Using the techniques of formal asymptotic analysis, we

obtain the variational formulation of the two-dimensional limit problem of the viscoelastic

von Karman n plate.

This work needs to be completed in order to obtain the two-dimensional viscoelastic von

Karman n system of nonlinear equations whose unknowns are the bending displacement

and the Airy function. Then to compare the model obtained with existing models.

Perspectives: Some problems can be considered as perspectives to this work: - Asymptotic

analysis of viscoelastic (linear and nonlinear) shallow shells.

- Asymptotic analysis of viscoelastic Marguerre von Karman shallow shell.

- Asymptotic analysis of thermo-viscoelastic von Karman plates.

- Asymptotic analysis of the contact problem (with and without friction) of viscoelastic von

Karman plates.
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Appendix 1

∫
Ωε

σεkj∂
ε
ku

ε
i

∂vεi
∂xεj

dxε = σεαj∂
ε
αu

ε
i∂

ε
jv

ε
i + σε3j∂

ε
3u

ε
i∂

ε
jv

ε
i

⇒ σεαj∂
ε
αu

ε
i∂

ε
jv

ε
i = σεαj

[
∂εαu

ε
β∂

ε
jv
ε
β + ∂εαu

ε
3∂

ε
jv

ε
3

]
= σεαγ

[
∂εαu

ε
β∂

ε
γv

ε
β∂

ε
αu

ε
3∂

ε
γv

ε
3

]
+ σεα3

[
∂εαu

ε
β∂

ε
3v

ε
β + ∂εαu

ε
3∂

ε
3v

ε
3

]
= ε2σαγ(ε)

[
ε4∂αuβ(ε)∂γvβ + ε2∂αu3(ε)∂γv3

]
+ ε3σα3(ε)

[
ε3∂αuβ(ε)∂3vβ + ε∂αu3(ε)∂3v3

]
∫

Ωε

σεαj∂
ε
αu

ε
i∂
ε
jv

ε
i = ε7

∫
Ω

σαγ(ε)∂αuβ(ε)∂γvβ + σα3(ε)∂αuβ(ε)∂3vβ

+ ε5

∫
Ω

σαγ(ε)∂αu3(ε)∂γv3 + σα3(ε)∂αu3(ε)∂3v3

⇒ σε3j∂
ε
3u

ε
i∂

ε
kv

ε
i = σε3j

[
∂ε3u

ε
α∂

ε
jv

ε
α + ∂ε3u

ε
3∂jv

ε
3]

= σε3γ
[
∂ε3u

ε
α∂γv

ε
α + ∂ε3u

ε
3∂γv

ε
3

]
+ σε33

[
∂ε3u

ε
α∂

ε
3v

ε
α + ∂ε3u

ε
3∂

ε
3
εvε3
]

= ε3σ3γ(ε)
[
ε3∂3uα(ε)∂γvα + ε∂3u3(ε)∂γv3

]
+ ε4σ33(ε)

[
ε2∂3uα(ε)∂3vα + ε∂3u3(ε)∂3v3

]
∫

Ωε

σε3j∂
ε
3u

ε
i∂

ε
jv

ε
i = ε7

∫
Ω

[
σ3γ(ε)∂3uα(ε)∂γvα + σ33(ε)∂3u3(ε)∂3vα

]
+ ε5

[
σ3γ(ε)∂3u3(ε)∂γv3 + σ33(ε)∂3u3(ε)∂3v3

]
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Appendix 2

Definition 3.1 Let φ and ψ be functions defined on [0,+∞[, and let the Riemann integral

v(t) =

∫ t

0

φ(t− τ)ψ(τ)dτ

exists for all t in [0,+∞[.

Then the function v, so defined on [0,+∞[, is the Riemann convolution of φ and ψ. We also

write

v = φ ∗ ψ

to denote this function.

(Properties of the Riemann convolution):- Let φ, ψ and χ be in C0 ([0,+∞[) . Then

(a) φ ∗ ψ ∈ C0 ([0,+∞[)

(b) φ ∗ ψ = ψ ∗ φ

(c) φ ∗ (ψ ∗ χ) = (φ ∗ ψ) ∗ χ = φ ∗ ψ ∗ χ

(d) φ ∗ (ψ + χ) = φ ∗ ψ + φ ∗ χ

(e) φ ∗ ψ = 0 =⇒ φ = 0 or ψ = 0.
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Appendix 3

Definition 3.2 The Laplace transform of a function f(t), 0 < t <∞, is defined by

L(f)(s) = F (s) =

∫ ∞
0

f(t)e−tsdt.

Here s is the transformation parameter.

The corresponding inverse Laplace transform, computed by means of complex variable tech-

niques, is

L−1(F )(t) = f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds.

If

(i) f is a piecewise continuous on [0,∞[.

(ii) there are constants C and α such that |f(t)| ≤ Ceαt, 0 < t <∞,

then L(f)(s) = F (s) exists for all s > α.

(i) L and L−1 are linear.

(ii) If u = u(x, t) and L(u)(x, s) = U(x, s), then

L(
∂u

∂t
)(x, s) = sU(x, s)− u(x, 0)

L(
∂2u

∂t2
)(x, s) = s2U(x, s)− su(x, 0)− ∂u

∂t
(x, 0).

(iii) For the same type of function u, differentiation with respect to x and the Laplace

transformation commute:

L(
∂u

∂x
)(x, s) =

∂L(u)

∂x
(x, s).
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APPENDIX 2

(iv) If (f ∗ g) (t) =
∫ t

0
f(s)g(t− s)ds =

∫ t
0
f(t− s)g(s)ds, then

L (f ∗ g) = L(f) · L(g).
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Résumé 

    Le but de ce projet est l’etude de la modelisation asymptotique d’une plaque 
viscoelastique de von Karman. A partir des equations de l’e lasticitenon lineaire 3D 
classique avec une loi de comportement elonguememoire, et en utilisant les techniques 
des methodes asymptotiques, nous obtenons le module 2D du module de plaque 
viscoelastique de von Karman. 
 

Les mots-clés 

Analyse asymptotique, elasticitenon lineaire, plaque mince, viscoelasticite, memoire 
longue. 
                                                                    

 

                           

                    

   

 الملخص

بدءًا من معادلات . لهدف من هذا المشروع هو دراسة النمذجة المقاربة لصفيحة فون كارمان اللزجة المطاطية    ا

المرونة اللاخطية ثلاثية الأبعاد الكلاسيكية ذات الذاكرة الطويلة وقانون السلوك وباستخدام تقنيات طرق التقارب ، نحصل 

  .على نموذج ثنائي الأبعاد من المرونة اللزجة فون كارمان

 الكلمات المفتاحية

.مقارب، مرونة غير خطية، صفيحة رقيقة، مرونة لزوجة، ذاكرة طويلةتحليل   

 

Abstract 

    The aim of this project is the study of the asymptotic modeling of a viscoelastic von 
Karman plate. Starting from equations of the classical 3D nonlinear elasticity with a long 
memory behaviour law, and using the technics of asymptotic methods, we obtain the 2D 
model of viscoelastic von Karman plate model. 

Key words 

Asymptotic analysis, nonlinear elasticity, thin plate, viscoelasticity, long memory. 
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