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Abstract

Brain tumor segmentation plays a crucial role in medical image
analysis and assists in the diagnosis, treatment planning, and moni-
toring of brain tumor patients. However, accurately segmenting brain
tumors from multi-modal medical images remains a challenging task
due to the complex and heterogeneous nature of tumors, tissues. In
this thesis, we propose a 3D U-net deep learning model for the purpose
of having accurate 3D brain tumor segmentation from multi-modality
data to take advantage of different levels of information that exist in
the MRI sequences, in addition to reducing the diagnosis time and hav-
ing an automated process to address the problem from like-real data
and scale down the human bias when dealing with such a sensitive
task. The 3D U-net model is trained on the BRATS2020 data-set and
evaluated with segmentation volumetric metrics. The model showed
promising results on the majority of the test data 63 % that reached
high IOU score for the whole tumor region and showed a tolerance to
variation after applying the test on noisy data. However, it miss classi-
fied the 37 % of the test data because of the imbalance between classes.
as a recommendation to tackle this problem; a customized approach
to deal with imbalance conditions can be proposed.

Key words: MRI Multi-modals, segmentation, Deep learning and
U-net architecture.
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ملخص
والتخطيط التشخيص في ويساعد الطبية الصور تحليل في حاسمًا دورًا الدماغ ورم تجزئة يلعب
الصور من بدقة الدماغ اؤرام تقسيم يظل ، ذلك ومع ، المخ اؤرام مرضى ومراقبة للعلاج
في الاؤرام. من المتجانسة وغير المعقدة الطبيعة بسبب صعبة مهمة الوسائط متعددة الطبية
دقيقة تجزئة على الحصول لغرض الابٔعاد ثلاثي العميق التعلم نموذج نقترح ، الاطٔروحة هذه
من المختلفة المستويات من للاستفادة الوسائط متعددة بيانات من الابٔعاد ثلاثي الدماغ لورم
التشخيص تقليل الٕى بالإضافة ، المغناطيسي بالرنين التصوير تسلسل في الموجودة المعلومات
البشري التحيز وتقليل المماثلة الحقيقية البيانات من المشكلة لمعالجة الٓية عملية ووجود الوقت
مجموعة على الابٔعاد ثلاثي نموذج تدريب يتم الحساسة. المهمة هذه مثل مع التعامل عند
غالبية على واعدة نتائج النموذج اظٔهر للتجزئة الحجمية المقاييس باستخدام وتقييمه بيانات
بعد للتباين تحملاً واظٔهرت باكٔملها الورم لمنطقة ٪ 63 درجة الٕى وصلت التي الاختبار بيانات
الاختبار بيانات من ٪ 37 تصنيفها فقد ، ذلك ومع الصاخبة. البيانات على الاختبار تطبيق
مخصص نهج طرح يمكن ؛ المشكلة هذه لمعالجة كتوصية الفئات. بين التوازن عدم بسبب

التوازن. عدم ظروف مع للتعامل
معمارية. U-net و العميق التعلم ، التجزئة ، الوسائط متعدد الرئيسية: الكلمات
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General introduction

Cancer is one of the most deadly and pervasive diseases in the
world, and early detection can help prolong survival and boost sur-
vival rates. CT or MRI imaging are the most commonly used clinical
auxiliary approaches for cancer diagnosis. In despite, due to the un-
equal regional distribution of medical resources, physicians with the
diagnostic capabilities are also unequally distributed. The distribution
of cancer patients in rural areas is erratic, increasing the workload of
physicians. However, due to the complexity of the medical image and
the high accuracy requirements of the segmentation result, physicians
must perform extensive analysis for an extended period of time. This
discrepancy has emerged as one of the most pressing issues in cancer
diagnosis around the world, and a high-precision automatic segmenta-
tion model is needed to reduce physician workload and increase work
efficiency[1].

Gliomas are the most frequent central nervous system (brain and
spinal cord) tumors. They are caused by the uncontrollable growth
of glial cells and are categorized as astrocytomas, ependymomas, and
oligodendrogliomas. The most dangerous kind is glioblastoma (an as-
trocytoma). Gliomas can afflict people of any age, although they are
more frequent in adults. They can cause symptoms by compressing or
invading neighboring tissues and raising intracranial pressure.[2].

A complete history, neurologic exam, and neuroimaging scans are
the starting point for addressing a probable glioma patient. A multi-
disciplinary approach to patient-centered care is advised.

Several scientific investigations have found that age, sex, genetic
inheritance, radiation, food, viral infections, and stress all have varying
degrees of relationship with the formation of gliomas. However, the
precise reason remains unknown.

x



Gliomas are classified into subtypes, some of which are benign and
others of which are malignant. They are classified based on the cells
that give birth to them (i.e., astrocytes, oligodendrocytes, and ependy-
mal cells). A further categorization in WHO Grades I–IV based on
cell architecture is possible. The grade of a tumor is related to its
aggressiveness. Observation, surgery, radiation, chemotherapy, or a
combination of these are the treatment options. Treatment is cho-
sen based on baseline patient and tumor characteristics. Lower-grade
cancers have better results in general. As a result, the presence of a
multidisciplinary team that collaborates with the patient to choose the
optimum treatment plan is critical.

A tumor’s grade is defined by how its cells appear when exam-
ined under a microscope. Lower grade, slower-growing cancers had a
longer median survival time than more aggressive, faster-growing tu-
mors. The least invasive and most likely to survive are cancers of
grade I. Lesions in grade II start out as slow-growing masses but can
advance to higher grades. Malignant grade III tumors have a rapid
pace of growth, are more prevalent in adults, and are malignant. The
worst prognosis is associated with grade IV gliomas, which are the
most aggressive, quickly developing, and invasive[2].
• Low-Grade Glioma.

• High-Grade Glioma.

The brain tumor diagnosis requires qualified surgeons to manually
contour the tumor regions from 2D MRI slices or using other systems
to provide 3D view for the brain, this process requires a consensus of
doctors following medical protocols to settle on an approved and accu-
rate tumor segmentation. However this diagnosis is a time consuming
process especially with hundreds of brain tumor cases, when time is a
key factor for the treatment. For the sake of brain tumor patients, we
develop an approach that process the targeted data and have the abil-
ity to extract relevance information that will lead to an approved tu-
mor segmentation, taking in consideration reducing the diagnosis time
by exploiting both recent powerful technologies and Medical imaging
which are included in the experiment process. In addition to that, the
biomedical image analysis took a real interest in the research and ar-
tificial intelligence community, hence providing promising results and
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conclusions in this task will contribute to the understanding of this
problem and harnessing specialized tools to build an automated and
reliable systems to handle the medical image problems[3].
Our thesis is organized as follows:

• The first chapter ”Background” presents the prior knowledge
and overviews about the problem.

• The second chapter ”Related works” presents the challenges
that occur when dealing with brain tumor segmentation, in addi-
tion to the state of the art and how previous researchers tackled
this task.

• The third chapter ”Method” presents the proposed approach
to deal with the brain tumor segmentation with explaining the
different employed techniques and their impact on having accurate
results.

• The last chapter ”Experimental results” shows the final out-
come of the proposed architecture and the performance of the
model based on the metrics used for this type of problems. Be-
sides to the environment and the work place adopted during the
implementation. Finally we disclose with the limits and the possi-
ble future improvements that can be done to achieve more precised
segmentation.

xii



�CHAPTER 1. BACKGROUND =0

Chapter 1

Background

1.1 Introduction
Brain tumor segmentation is one of the most critical challenges in

the technology field. Shedding the light on this problem would repre-
sent a huge step forward for the fields of medicine and oncology. The
use of AI techniques offers accurate border detection and avoids human
bias. Additionally, the 3D representation of the tumor cells spreading
among the brain cells in the final phase of the experiment provides a
comprehensive view. However, before delving into the technical details,
this chapter will introduce some basic definitions and background.

1.2 Digital image
A digital image is a numerical representation of real-world pictures

and views captured by a digital camera. The image is represented by a
matrix with two dimensions for 2D images or three dimensions for 3D
images. When the matrix dimension is (N x N), the matrix elements
are called pixels, and when the dimension is (N x N x N), the matrix
elements are called voxels. Pixels/voxels are numerical binary values
that represent the intensity of color in the image. There are three
types of image representation based on color:

1. Grayscale images: Each pixel or voxel has a single value that
represents the brightness level of the image.
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2. Color images: Each pixel or voxel has three or more values that
represent the intensity of the red, green, and blue (RGB) colors
or other color spaces.

3. Multispectral images: Each pixel or voxel has values that rep-
resent the intensity of light at various wavelengths, providing ad-
ditional information about the image.

Each type represent a different level of information and used for
different tasks depending on the problem.

Figure 1.1: Representation of pixels and voxels

Medical 3D images are presented on a grid that can have different
sizes depending on the body part image and the resolution. The grid
size is denoted by (W x H x D), denoting the width, height, and depth
of the 3D image.[4].
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1.2.1 3D image vs 2D image
It is worth noting that 3D medical images outperform 2D images in

medical image analysis, especially when using deep learning, for several
reasons. Some of the most common reasons include:

1. Improved accuracy: 2D images present a flat format of the
body part in question, which lead to noticeable loss of informa-
tion. Unlike 3D images that give real view or modeling and give
access to a complete set of features, the implementation of this
option yields a favorable results.

2. Reduced noise: 3D medical images typically have less noise than
2D image as they contain more information about the underlying
structure or tissue.

3. Consistency across slices: 3D medical images provide a more
consistent representation of the structure or lesion across slices,
which can improve model performance.

4. Reduced manual intervention: When it comes to annotation,
it is difficult to contour lesion across slices in case of 2D medical
images and could require significant manual intervention. Unlike
3D images case when annotation is easy and consistent, as the
annotation can be applied on the entire volume.

At last, 3D medical images offer a variety of advantages when pro-
cessing medical analysis tasks with deep learning. In addition, 3D
images provide a more comprehensive view of the anatomy and pathol-
ogy of the body than 2D images, which can be limited in their ability
to capture the full complexity of the human body from different an-
gles. However, it’s important to note that working with 3D images
can also introduce some challenges, such as increased computational
requirements and the need for specialized software tools.
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1.2.2 Medical image
The images we see nowadays are produced based on different energy

sources. The principal energy source for images in use today is the
electromagnetic energy spectrum. Other important sources of energy
used for producing images include acoustic, ultrasonic, and electronic.
Additionally, synthetic images used for modeling and visualization can
be generated by computers [4].

Medical images are digital images that are captured by various med-
ical equipment such as MRI and CT scans. These types of equipment
use different wavelengths to capture images, with each wavelength
showing a different level of tissue or information. Figure 1.2 shows
examples of medical images.

Figure 1.2: wavelength and there different medical images

1.3 Segmentation
Image segmentation is a sub-domain of computer vision and digital

image processing that aims to group similar regions or segments of an
image under their respective class labels. Since the entire process is
digital, the representation of the analog image in the form of pixels is
available, making the task of forming segments equivalent to grouping
pixels.

Image segmentation is an extension of image classification, where
in addition to classification, we perform localization. As such, image
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segmentation is a super-set of image classification, with the model
pinpointing where a corresponding object is present by outlining its
boundary [4].

1.3.1 Semantic segmentation
Semantic segmentation refers to the classification of pixels in an

image into semantic classes. Pixels belonging to a particular class are
simply classified to that class with no other information or context
taken into consideration.

However, this task can be challenging when there are closely grouped
multiple instances of the same class in the image, as it can result in
poor definition and provides very little in-depth details or information
about the image.

1.3.2 Medical segmentation
Medical image segmentation is the process of extracting areas of

interest (ROIs) from medical image data, such as CT or MRI scans.
The primary objective of this process is to locate the anatomical regions
required for a particular study, such as simulating physical attributes
or accurately placing implants with CAD designs (Computer Aided
Design) inside patients. Recent advancements in AI techniques are
simplifying tasks such as medical image segmentation, which can be a
time-consuming process.
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1.3.3 The benefits of medical image segmentation
The primary goal of segmentation is to identify the anatomical re-

gions required for a given study, such as implant design or simulating
physical properties. One of the key advantages of medical image seg-
mentation is that it enables a more precise examination of anatomical
data by isolating only the relevant areas. Segmentation also facilitates
the removal of unwanted scan components, such as air, and allows for
the differentiation of various tissues, including bone and soft tissues.
When combined with various software processing options, researchers
and physicians can generate multiple segmented masks that are ready
for further analysis.

1.3.4 Applications and impacts
1. Increase the speed of tumor diagnosis.

2. Identify abnormalities that are undetectable by the naked eye.

3. Early diagnostic.

4. Assist other deep learning methods to improve accuracy (pre-
processing).

1.4 Image segmentation before deep learning
Image segmentation originally started in digital image processing

coupled with optimization algorithms. These primitive algorithms
made use of methods like region growing and snakes algorithm where
they set up initial regions, and the algorithm compared pixel values to
gain an idea of the segment map. These methods took a local view of

6



Figure 1.3: Machine learning pipeline for segmentation

the features in an image and focused on local differences and gradients
in pixels [4].

Algorithms that took a global view of the input image came much
later, with methods like adaptive thresholding, Otsu’s algorithm, and
clustering algorithms being proposed among classical image processing
methods. However, the use of machine learning methods in complex
segmentation problems comes with limitations. The process of feature
engineering is entirely done by human intervention, with parameters
such as filter size tuned to extract different levels of information to
provide a feature space that can be fed to a machine learning algorithm
for pixel-wise classification. However, this process is entirely dependent
on the human perspective and their idea of the suitable feature space
that will lead to promising results.

The extraction of feature space to offer relevant information to train
a model presents a sensitive question about the quality and quantity
of data provided by human intervention. The task of adding more
and generalizing accurate data will lead to the curse of dimensionality.
The solution is to seek techniques and algorithms that provide a more
general representation of the data used for training.

1.5 Deep learning for image segmentation
The idea behind using DL for image segmentation is to have an

automated feature extraction system with no human intervention at
all as shown in 1.4, with more general and accurate information. To
illustrate the point, consider these listing [5, 6, 7]:

1. Ability to learn complex features :
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Figure 1.4: Deep learning learning pipeline for segmentation

thanks to the learn-able parameters in the convolution operation
(illustrated in the convolution block section), Convolution neural
networks can learn automatically complex features from raw data
without the need of an explicit feature engineering. In contrast
to machine learning, where this task can be time consuming and
error prone.

2. Robustness to variation :
Due to the hierarchical learning approach that consists of learn-
ing features at multiple levels of abstraction ( starting with low
level features such as edges and corners and gradually building
up to high level features as texture and shapes )[4] which is orig-
inally inspired from the primary cortex in the human brain [8].
This propriety specifically is needed when working on multi-modal
segmentation where different imaging parameters are selected to
generate various MRI sequences. For the same reason this kind
of data can miss-lead a machine learning algorithm because of
notable variation in the multi-modal data.

3. Scalability :
Deep learning models can be scaled to handle large datasets with

8



millions of samples, specifically this propriety is a crucial option
when addressing a sensitive task as medical image analysis prob-
lems in parallel with the availability of these kind of data from
research centers and medical institutions.

4. State of the art :
Previous papers and biomedical image analysis searches dealt
with in comparison between the machine learning and deep learn-
ing and the outcome confirmed the above points.

In deep learning, a CNN is a class of deep neural networks that
are typically used to recognize patterns present in images; they are
also used for spatial data analysis, computer vision, natural language
processing, signal processing, and various other purposes. The archi-
tecture of a convolutional network resembles the connectivity pattern
of neurons in the human brain and was inspired by the organization
of the visual cortex. This specific type of artificial neural network gets
its name from one of the most important operations in the network:
convolution.

1.5.1 CNN
One of the important types of Deep learning algorithms that are

used to handle computer vision problems is CNN, this specific type
uses what known as a stack of convolution blocks to extract features
and treat a wide range of computer vision tasks. Convolution is an
orderly procedure where two sources of information are intertwined.
Convolutions have been used for a long time, typically in image pro-
cessing to blur and sharpen images but also to perform other operations
(e.g., enhance edges and emboss). CNNs enforce a local connectivity
pattern between neurons in adjacent layers. CNNs make use of fil-
ters (also known as kernels) to detect what features, such as edges,
are present throughout an image. There are four main operations in a
CNN:

1. Convolution

2. Non Linearity (ReLU)
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3. Pooling or Sub Sampling

4. Classification (Fully connected layer)

1.5.2 Convolution opertion
The first layer of a Convolutional Neural Network is always a Con-

volutional Layer. Convolutional layers apply a convolution operation
to the input, passing the result to the next layer. A convolution con-
verts all the pixels in its receptive field into a single value. For example,
if you would apply a convolution to an image, you will be decreasing
the image size as well as bringing all the information in the field to-
gether into a single pixel. The final output of the convolutional layer
is a vector. Based on the type of problem we need to solve and on the
kind of features we are looking to learn, we can use different kinds of
convolutions [4].

The most common type of convolution that is used is the 2D con-
volution layer, which is usually abbreviated as conv2D. A filter or a
kernel in a conv2D layer ”slides” over the 2D input data, performing
an element-wise multiplication. As a result, it will sum up the results
into a single output pixel. The kernel will perform the same operation
for every location it slides over, transforming a 2D matrix (image) into
a different 2D matrix of features[4]. In the case of a 3D image, the
same process is applied with a kernel of (n*n*n) size; henceforward,the
receptive field becomes a grid, and the pixels are called voxels.
The filter size plays a very important role in the quality of the ex-
tracted features, where large-sized kernels tend to find global features
(such as tumor location and size) with a large receptive field and small
kernels tend to contain local features (such as boundary and texture)
with a small receptive field, as illustrated in the figure.1.5.
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Figure 1.5: Convolution operation

1.5.3 Non linearity
After completing the convolution operation and resulting feature

maps, the next step is applying a non linear activation function for
the reason that the non linearity concept improve neural networks by
speeding up training [4]. Depending on the sign of x, the gradient
computation is relatively straightforward (either 0 or 1). Moreover,
a ReLU’s computation phase is simple: all negative elements are set
to 0.0, requiring no use of exponential functions or multiplication or
division operations. ”RelU(x) = max(0, x)” Despite that, the ReLU
function discards the negative values, which can hold some information.
This is why a new activation function is proposed by[9] called ’Leaky
ReLU’, ”Leaky−ReLU(x) = max(0, x)+min(0, x)”, where” is a pre-
determined parameter that can also be learned.[10].

1.5.4 Max Pooling
This step consists of replacing a (n x n ) region by the max value

within[4], it is also called the max filter. This operation is done for the
purpose of:
1. Choosing the highest activation in a local region, thereby provid-

ing a small degree of spatial invariance.

2. It reduces the size of the activation for the next layer by a factor of
n2. With a smaller activation size, a smaller number of parameters
need to be learned in the later layers.
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There are other types of polling such as global-average-pooling, winner-
takes-all-pooling and stochastic-pooling [11, 12].

1.5.5 Fully connected layer
The final phase in the CNN architecture is the fully connected layer

or a sub neural networks that has the right to decide or make segmen-
tation after getting features from the previous convolution blocks.
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1.6 Conclusion
In this chapter, we have explored the fundamental concepts and

background of medical image segmentation in the context of deep
learning. We started by discussing the availability of digital images and
their properties, which lead to various tasks such as semantic segmen-
tation, and then we discussed medical image segmentation as a crucial
task in various clinical applications, enabling accurate delineation of
anatomical structures and pathological regions within medical images.
We then delved into the foundations of deep learning, highlighting
its revolutionizing impact on image segmentation and why we priori-
tize it over machine learning. Furthermore, we showed the basic and
fundamental concepts of deep learning and what a deep learning algo-
rithm is composed of for both neural and CNN architectures. Overall,
this chapter provided a comprehensive overview of the background of
medical image segmentation and deep learning. It laid the founda-
tion for understanding the upcoming chapters, which will discuss more
advanced titles.
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Chapter 2

Related works

2.1 Introduction
Magnetic resonance imaging is one of the most common imaging

methods used before and after surgery and is used to diagnose a wide
range of medical conditions, such as joint and bone disorders, cardio-
vascular disorders, and brain and nervous system disorders. Aiming
at providing fundamental information for the treatment plan. The
availability of multi-modal MRI data motivated many deep learning
researchers to develop techniques and approaches that are discussed
in this chapter for medical image segmentation, which plays an active
role in diagnosis and treatment. An accurate segmentation mask may
help surgery planning and improve survival rates[13].

2.2 Research challenges
It is to mention the challenges that are held by brain tumor segmen-

tation that still state-of-the-art and deep learning methods experience.
Due to the wide spatial distribution of tumorous cells and their gluey
nature, a location uncertainty issue arises, especially when dealing with
cells that may appear at any location in the brain. The morphologi-
cal uncertainty is also a huge challenge. Despite being a rigid object,
the morphology (shape and size) of different brain tumors varies with
such large uncertainty that it barely provides any prior information
for describing the tumor shapes and structures. High-resolution and
high-contrast images are recommended to get very accurate image seg-
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mentation while containing diverse image information. However, it is
not the case with MRI images with low quality and low contrast. Due
to the image projection and tomography, the boundary between biolog-
ical tissue tends to be blurred and hard to detect.[14]. In addition to
the biological nature and imaging conditions, the manual annotation
(producing the ground truth mask) presents a real challenge, which is
the annotation bias because of the individual experience. This partic-
ular point would have a notable impact on the segmentation algorithm
during the learning process.

2.3 Related works
To have a better understanding of the existing work and research

in deep learning-based brain tumor segmentation and a systematic
study, it is better to categorize the existing work based on the task and
the purpose of each DL network. The figure 2.1 shows a comprehen-
sive taxonomy that includes designing effective segmentation networks
in the section2.3.1, dealing with imbalanced conditions in the section
2.3.2, and finally learning from multi-modality in the section 2.3.3.
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Figure 2.1: Taxonomy of deep learning based brain tumor segmentation methods.

2.3.1 Designing effective segmentation modules and archi-
tectures

Designing effective segmentation modules and architectures consists
of using different deep learning techniques and even different neural
network concepts and structures to extract high discriminitive data
features for the sake of achieving accurate performance for the tumor
segmentation.

We can see through the literature developments that affect the de-
sign of deep learning in the transition from single-channel networks
[15] to multi-channel networks [16], from networks with fully con-
nected layers to CNN. As the network goes deeper, the ability of the
deep learning model to learn relevance features will be enhanced. One
of the most common ways to deepen the neural network is by stacking
convolution blocks with different kernel sizes; this will get the network
to learn complex features gradually when moving from the input side
to the output side of the network.
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As the network goes deeper, it will face the vanishing or exploding
gradient issue, which can be solved by the residual connections tech-
nique, which helped learn meaningful representation of the data. This
solution is expanded also in [17] as dense connections that gave the
segmentation deep learning algorithm a huge step forward in different
aspects as follow [18]:

• Improved gradient flow.

• Feature reuse and combining.

• Parameters efficiency.

• Enhanced information flow.

• Regularization and over-fitting reduction.

Other convolution methods, such as dilated convolution, that pre-
serve the spatial resolution and enlarge the receptive field with the
introduction of additional parameters to capture large area targets as
edema [19]. Also, there is the anistropic convolution, which is em-
ployed in [20] that helped in extracting features that aligned with
dominant orientations in the image and allowed the kernel to be more
sensitive to specific orientations.

When mentioning designing networks for accurate segmentation,
encoder-decoder based algorithms take the lead when it comes to get-
ting accurate feature-to-label mapping and localization of the tumor
region, as in [21] which adopted the U-net that used the skip connec-
tion method to help layers in the network in contracting path recover
details. Other research [22, 23] proposed brain tumor segmentation
based on U-net with a change in loss function, setting the padding
to zero to avoid over-fitting and preserve the identical output, respec-
tively.
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2.3.2 Segmentation under imbalanced conditions
Data imbalance is defined as the number of pixels in the sub-region

of the brain tumor that is totally different from patient to patient,
in addition to the class imbalance within tumor classes. At the same
time, labeling biases that are introduced by manual experts are also
counted as data imbalances that will affect the false-positive rate.

Inspired by expert systems and ensembles of trees, the multi-network
approach has come with the same principle that even complex models
and architectures [19] can learn the best discriminative features, yet a
single network cannot be protected from the data imbalance.An exam-
ple of a network ensemble is a network cascade, a series of top-down
networks with the principle that the output of the upstream network is
the input of the downstream network. Where the upstream network ex-
tracts features (a coarse-to-fine strategy) and the downstream network
subdivides the input to achieve a fine-grained segmentation. As pro-
posed in [24] a cascade network of three layers (streams) of anisotropic
and dilated convolution is combined with multi-view fusion to reduce
the false-positive rate.

Another solution for the imbalance conditions in brain tumor seg-
mentation is the multi-task-driven approach that divides the whole
segmentation task or the task in question into other related tasks, as
in [25, 26], which splits the brain tumor segmentation into different
sub-region segmentations, i.e., segmentation of the whole tumor, tu-
mor core, and enhancing tumor individually. One further multi-task
approach was discussed in [27, 28] that introduced localization, or
first detection, then segmentation, to perform precise tumor segmen-
tation. In addition, [29] manages three auxiliary tasks, among them
reconstruction, edge segmentation, and patch comparison. The au-
thors consider the auxiliary task to be regularization of the main brain
tumor segmentation.

2.3.3 Learning from multi-modalities
In this section, we tackle the task of learning from a complete mul-

timodality for the purpose of a better understanding of the brain tissue
and lesion and make use of the whole available BRATS dataset. The
designed work can be categorized as learning to rank, learning to pair,
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and learning to fuse modalities, as shown in the figure. In learning to
rank, the data is sorted by relevance, as in [30], where the features are
extracted from different embedding modalities and the relationship be-
tween modalities and the segmentation of different tumor sub-regions
are modeled, so that the data of distinct MRI sequences are weighted
and ordered accordingly to individual tasks. In addition to that, a
cross-modality feature is employed to pair between modalities, also
processed in [30]. Another aspect is to fuse modality by feature con-
catenation from each modality and send it to a downstream classifier,
as in [30]. Although concatenation and addition are used, these two
Fusion methods do not change the semantics of learned features and
cannot highlight or suppress features. To tackle this problem, many
research studies in recent years have adopted attention mechanisms to
strengthen the learned features. [31, 32, 33] used a spatial and chan-
nel attention-based fusion module. The proposed attention mechanism
highlights useful features and suppresses redundant features, resulting
in accurate segmentation. In the case of missing modalities scenarios,
[34] learned the explicit relationship between modalities and examined
all possible missing scenarios. The results show that multi-modality
has an important influence on accurate segmentation. As [35] proposed
an intensity correction algorithm for different cases to distinguish the
tumor and non-tumor regions in synthetic data.

2.4 Summery
Designing effective modules with good results and small amounts

of data to understand the learning process and performance is encour-
aging work. However, the need to design comprehensive architectures
to deal with large-scale data remains necessary, especially since the
deeper the neural network, the more problems emerge that deserve
treatment and solutions that do not affect the accuracy of the network
or the sensitivity of the task. While using network ensembles and
cascades shows good results in decreasing the false negative rate, the
output of the downstream network is completely dependent on the up-
stream output, in addition to the memory and computation resources
needed for the training. Learning from multi-modality is a great as-
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pect when most of the research works model the implicit ranking while
learning the modality-aware feature; however, existing pair works show
modality pairing through exhausting combinations with large comput-
ing resources. In the fusion of modalities, addition or concatenation
does not introduce additional parameters, despite the lack of physical
expression of features. the need for a process to combine modalities to
help the back propagation phase learn features at different levels and
relate them to build feature awareness for the available MRI modalities
in the BRATS data set.

2.5 Table description
We categorize the methods based on their main contributions. In

column Input, ‘P’ means patch and ‘I’ means image. ‘Dim’ means
the dimension of the network. Column Dataset indicates the the year
of the BRATS data release which the paper worked on. The DCS
column indicates the dice similarity metric value for the whole tumor
segmentation.
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Aspects paper Input Dim Dataset DCS
Designing effective mod-
ules and architectures

Gaffari et al.2020 [36] I 3D 2020 0.9

Yuan et al.2020 [37] I 3D 2020 0.91

Henry et al.2020 [38] I 2D 2020 0.91

Rehan et al.2022 [39] - 3D 2020 0.86

Yuan et al.2022 [40] - 3D 2020 0.89
Dealing with imbalanced
conditions

Jia et al.2020 [41] I 3D 2020 0.91

Cirillo et al.2020 [42] I 3D 2020 0.89

Weninger et al.2019
[43]

P 3D 2019 0.85

Liu et al.2020 [44] I 2D 2020 0.88

Huang et al.2020 [45] I 3D 2020 0.9
Learning from Multi-
Modality

Zhang et al.2020 [30] P 3D 2020 0.9

Zhou.2020 [34] I 3D 2020 0.88

Yi et al.2018 [35] I 3D 2018 0.91

Li et al.2019 [31] P 3D 2019 0.9

Islam et al.2020 [32] I 2D 2020 0.88

Table 2.1: State of the art Table
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2.6 Conclusion
In this chapter, we conducted a comprehensive review of the related

work in deep learning-based brain tumor segmentation, in addition to
the existing aspects and purposes of the works reviewed. The aim was
to explore the advancements, methodologies, and key findings from
existing studies in this field. By synthesizing and analyzing a wide
range of research papers, we gained valuable insights into the current
state-of-the-art techniques, challenges, and future directions in deep
learning-based brain tumor segmentation.

The reviewed literature showcased the tremendous progress made
in recent years, highlighting the effectiveness of deep learning models
in accurately segmenting brain tumors from medical images. Various
architectures, including U-Net, cascade networks, and 3D CNNs, have
been successfully employed to tackle this task. These models leverage
the hierarchical features learned from large-scale data-sets to achieve
high segmentation accuracy, capturing both the spatial and contextual
information present in brain tumor images.

While significant progress has been made, several challenges remain
in deep learning-based brain tumor segmentation. Class imbalance,
dealing with small tumor sub-regions, handling multi-modal imaging
data, and addressing interpretability, uncertainty estimation, and mor-
phological nature are among the key areas that require further explo-
ration and development.

In conclusion, reviewing the literature gave us insights about the
approach we are working on and a clear representation of the existing
challenges, which by solving them would make significant contributions
to clinical practice by assisting radiologists and oncologists in accurate
diagnosis, treatment planning, and monitoring of brain tumor patients.
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Chapter 3

Method

3.1 Introduction
In this chapter, we will introduce the data used for multi-modal

brain tumor segmentation, in addition to explaining the techniques
used to build the deep learning architecture that can produce insightful
results.

3.2 Methodology
In order to organize the process of our study, we must follow a cer-

tain methodology that defines the different phases and stages of our
project. A well-known method CRISP-DM stands for cross-industry
process for data mining. It provides an Structured approach to plan-
ning a data exploration project. By CRISP-DM Divide the project
into six stages, as shown in the figure 3.1.

3.2.1 Data Description for Imaging
The BraTS2020 dataset is a well-known and widely used dataset

in medical imaging research, particularly in the field of brain tumor
segmentation and classification. It is made up of multimodal MRI im-
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Figure 3.1: The methodology and the development process adopted by a artificial
intelligence research.

ages from various institutions obtained from individuals diagnosed with
various forms of brain tumors, with a focus on gliomas. T1-weighted
(T1), T1-weighted with contrast enhancement (T1ce), T2-weighted
(T2), and Fluid Attenuated Inversion Recovery (FLAIR) MRI scans
are included in the collection. Expert radiologists use manual annota-
tions to delineate the various tumor locations. The BraTS2020 dataset
can be used by researchers and data scientists to develop and evaluate
algorithms for brain tumor segmentation and classification, and it has
been instrumental in advancing the state-of-the-art in medical image
analysis and facilitating the development of automated methods for
tumor detection, segmentation, and treatment planning. Researchers
should go to the official website provided before to access the dataset
or participate in the challenge[45].

3.2.2 Comparative analysis with earlier BraTS datasets
Each NIfTI file from a BraTS multimodal scan includes a volume

description for the native (T1), post-contrast (T1Gd), T2-weighted
(T2), and T2-FLAIR volumes. Using the same annotation technique,
one to four raters manually segmented each imaging dataset, and their
annotations were approved by skilled neuroradiologists. The supplied
data have been stripped of the skull, co-registered to the same anatom-
ical template, and interpolated to the same resolution (1 mm3) [45].

24



3.2.3 Dataset information
1. Multimodal scans available as NIFTI files (.nil.gz).

2. Four ’channels’ of information - 4 different volumes of the same
region [45]:

(1) L Native (T1).
(2) Post-contrast T1-weighted (T1CE).
(3) T2-weighted (T2).
(4) T2 Fluid Attenuated Inversion Recovery (FLAIR) volumes.

3.3 Data pre-processing

3.3.1 Loading and data undersatanding
1. Load the the MRI modalities in an appropriate data structure.

2. Choose a slice to display (e.g. Slice 50 of the enhancing tumor
sub-region).

3. Visualize the MRI modalities.

• All the imaging datasets have been segmented manually and were
approved by experienced neuro-radiologists[46].

• Annotations (labels):

– Label 0: Unlabeled volume.
– Label 1: Necrotic and non-enhancing tumor core (NCR/NET).
– Label 2: Peritumoral edema (ED)
– Label 3: Missing (No pixels in all the volumes contain label

3)
– Label 4: GD-enhancing tumor (ET)
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Figure 3.2: Visualistaion of the MRI modalities
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3.3.2 Physics of MRI Imaging Sequences
• FLAIR : FLAIR is a highly effective MRI sequence to distin-

guish the edema region from the CSF with white matter appearing
dark grey, cortex light grey and fat light [47] .

• T1 : T1-weighted MRI sequences are used to analyze brain
tumor patterns, allowing for easy annotation of healthy cells.

• T2-weighted : T2-weighted sequences generate long TE and
TR times, making CSF brighter than other MRI sequences.

• T1-ce : T1ce sequences are more sensitive than other sequences,
showing details of regional angiogenesis and the integrity of the
blood-brain barrier.
The MRI modality characteristics are organised in the table 3.1

Figure 3.3: The FLAIR modality Figure 3.4: The T1 modality

Figure 3.5: The T2 weighted modal-
ity

.
Figure 3.6: The T1ce modality
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Sequence TR TE Tumor CSF
FLAIR Very long Very long Bright Dark
T1 Short Short Dark Dark
T2 Long Long Bright Bright
T1ce Long Long Dark Dark

Table 3.1: Brain MRI sequences based on features and graphical appearance.

3.3.3 Data exploration
As an exploring step, we tried to visualise the data and scatter the

data points to check the possibility of classification.
The figure 3.7 indicates that the classes are considered clusters,

which the CNN can classify.
On the other hand, the number of voxels within each class is counted
to check the data imbalance. The voxel counter applied to the raw
data shows the following ratios:

• Background : 98 %

• Edema : 0.25 %

• Non-enhancing Tumor : 0.65 %

• Enhancing tumor : 0.22 %
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Figure 3.7: Visualisation of the data voxele’s intensity
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The ratios indicate the imbalance of the data, and as an action to re-
duce the dominance of the background over the other classes, cropping
is applied to the images of data where the black area is cropped as in
3.8.

after the cropping, the ratios become :

• Background : 75 %

• Edema : 7.91 %

• Non-enhancing Tumor : 9.204 %

• Enhancing tumor : 7.889 %

Figure 3.8: Cropping of the black area.
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3.3.4 Data combining
Combining various MRI modalities into a single 3D image volume

is a preprocessing step for the BraTS 2020 data set. According to
the results of the investigation [47], it is feasible to avoid using T1
in combination, but combining FLAIR, T2, and T1ce pictures is re-
garded as the best strategy for brain tumor segmentation since it offers
the most thorough information about the tumor and its surrounding
tissue. FLAIR imaging focuses on the edema (swelling) around the
tumor, whereas T2 imaging focuses on the tumor’s necrotic (dead) tis-
sue. T1CE imaging improves tumor contrast and helps identify it from
surrounding healthy tissue. The combination of FLAIR, T2, and T1ce
images gives the most complete and accurate picture of brain tumors
in the Brats dataset. The combining process is done by the following
steps:

1. Load the MRI images for each modality ( T2, FLAIR, and T1ce).

2. Stack the images along the 3th dimension to create a 3D volume
where each channel corresponds to a different modality.

3. Resample the image volume to a common voxel size to ensure
consistency across modalities.

4. Use the combined 3D volume as input to segmentation models.

3.4 What is the U-Net Model
The UNet model is a type of convolutional neural network that

we refer to as ”deeply connected. Both an encoder network and a
decoder network are part of it. The decoder network reconstructs
the output layer segmentation map, while the encoder network is in
charge of extracting features from the incoming picture. Convolutional
processes with weights that indicate multi-channel feature maps make
up the encoder and decoders [48].
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3.5 U-Net Architecture
The network’s general structure is obvious from the term alone. It’s

a U-shaped network made up of an expansive route and a contract-
ing path. The network itself resembles a skateboard ramp, and the
fundamental idea is that while moving uphill (an expansive path), the
network learns to locate the object, while moving downhill (a contract-
ing path), the network learns to classify the object[49].

3.5.1 Skip connections
Convolution is a matrix multiplication, while transpose convolu-

tion is a reverse-order multiplication. U-shape (U-net) is an encoder-
decoder scheme design with long skip connections used for tasks with
the same spatial dimension as the input, such as picture segmentation[50],
optical flow estimation, and video prediction. Skip connections can be
used to recover fine-grained features in prediction, and symmetrical
long skip connections perform well in dense prediction tasks (medical
picture segmentation).

3.5.2 Contracting path
This path is similar to a convolutional network, with layers made

up of two 3x3 convolutions and a rectified linear unit. Each layer is
followed by a 2x2 max pooling operation with a stride of two and a
doubling of the number of feature channels. Convolutions begin with
64 feature channels and progress until 1024 channels are present, at
which point the output transfers to the expansive path[50].

3.5.3 Expansive path
A U-Net differs from other CNNs in that the last pooled output

is not delivered to a fully connected layer, but instead goes through
a 2x2 ”up-convolution”. This is followed by layers in which the up-
convoluted output is concatenated with its contracted path pair to re-
include localization information and treated in two 3x3 convolutions
each followed by a ReLU. Finally, an 1x1 convolution transfers the
resulting 64-component feature vector to classes[50].
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3.5.4 3D U-Net architecture
The 3D U-Net architecture is a deep neural network designed for

volumetric medical image segmentation, using 3D convolutional layers
to process volumetric data for MRI and CT scans[51].

The 3D U-Net architecture is composed of an encoder and decoder
network connected by skip links. The encoder network increases fea-
ture channels while decreasing spatial resolution, while the decoder
network uses 3D transposed convolutional layers to improve feature
spatial resolution while decreasing the number of feature channels.
Skip connections are used to preserve spatial information.

3D U-Net is a powerful and effective method for volumetric medical
picture segmentation, used in a variety of applications such as brain
tumor, liver, and cardiac segmentation.
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Figure 3.9: Our U-net like architecture

Advantages

The 3D U-Net architecture has been proven to be highly accurate
in a number of medical picture segmentation tasks, including brain tu-
mors, the liver, and the heart. It surpassed other cutting-edge topolo-
gies in terms of segmentation accuracy, sensitivity, and specificity for
lung segmentation. Volumetric segmentation is also more reliable and
accurate than 2D segmentation techniques, as it can account for the
whole volume of the picture. This is essential for the segmentation of
tiny items or structures. The 3D U-Net has demonstrated noise re-
sistance against a variety of noise types, including impulse noise and
Gaussian noise. Wang et al. (2021) found that the 3D U-Net outper-
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formed other state-of-the-art designs in terms of accuracy and noise
resistance. The deep learning architecture of the 3D U-Net enables
automatic feature learning from input data, eliminating the need for
manual feature extraction, which can take a long time and result in
information loss[52].

Disadvantages

The 3D U-Net has a high cost of computing and data requirements,
which can be limiting for some medical image analysis applications. To
work at its best, the 3D U-Net needs a substantial amount of annotated
training data, which can be expensive and time-consuming. Addition-
ally, the 3D U-Net design is susceptible to over-fitting, which is when
a model grows too complicated and begins to remember the training
set of data rather than understanding the underlying patterns[52].

3.6 Conclusion
We have proposed a U-Net-like architecture in this chapter as a

unique method for segmenting 3D brain tumors in order to overcome
the difficulties of precise and effective segmentation in volumetric brain
imaging. Through modifications tailored to 3D segmentation tasks, our
research aims to make use of the U-Net architecture’s benefits while
also enhancing performance and clinical application.

For precise 3D brain tumor segmentation, we determined the ne-
cessity of a specialized architecture that efficiently captures spatial
context and includes multi-scale data. We expanded U-Net’s function-
ality to handle volumetric data in response to the success of U-Net in
2D picture segmentation, offering a full solution for the segmentation
of brain tumors in numerous slices of the 3D domain.By combining
3D convolutional layers and volumetric pooling operations to capture
spatial relationships and maintain spatial resolution throughout the
network, our suggested U-Net-like architecture improves on the orig-
inal U-Net design. In order to simplify the integration of multi-scale
information and enable accurate localization of tumor boundaries, we
also implemented skip connections.The outcome, experimental results,
and challenges for our U-net-like architecture will be presented in the
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next chapter, as will the evaluation of the whole deep learning model.
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Chapter 4

Evaluation and experimental
results

4.1 Introduction
In this chapter we present the evaluation phase for our approach,

first we will tackle the existing metrics that evaluate the volumetric
segmentation models. Then we show the experimental results of the
approach in addition to the applied technologies and environment.

4.2 Metrics
Before passing on to the tests and experiments, we should tackle

different metrics to evaluate the performance of volumetric approaches.
On the other hand, ensuring that the model is making accurate matches
is not the only problem we have in the process of building an end-to-end
system; there are several hurdles to overcome when dealing with med-
ical volume segmentation, such as metric selection and the inefficiency
of the metric evaluation.the use in the literature of multiple definitions,
leading to difficulties with large volumes and last but not least, a lack
of support for fuzzy segmentation by existing metrics. In spite of that,
the following metrics for volume segmentation are derived from the lit-
erature review. There are six types of metrics: overlap-based, volume-
based, pair-counting-based, information-theoretic-based, probabilistic-
based, and spatial distance-based.
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4.2.1 Medical volume segmentation metrics
Medical volume can be denoted as a point set X = {x1, x2,…, xn}

where |X| = w ∗ h ∗ d = n. The ground truth segmentation set is
Sg = {S1

g ,…, Sk
g} where k is the number of labels / classes. f(x)g is

the assignment that indicates where x belongs to S. In the case of
crisp segmentation or what known as a voxels membership f(x)g = 1
so x ∈ Sg, f(x)g = 0sox /∈ Sg (When the classification is binary). In
case of fuzzy classification or a probability degree f(x)g ∈ [0, 1], where
the crisp segmentation is just a special case of the fuzzy segmentation.
f(x)t is the assignment that indicates the predicted segmentation.

4.2.2 Confusion matrix
A confusion matrix is a common table used for supervised classi-

fication that indicates how many pixels or data samples are correctly
segmented or classified and how many are not[53], it is well illustrated
in the figure 4.3. In addition to several performance metrics that are
calculated from the confusion matrix, like in equations 4.1 and 4.2,
these values [54] can also evaluate the effectiveness of the model and
at what state the algorithm can give the highest possible accuracy.

Figure 4.1: Confusion matrix in case of binary classification.

1. TP : The model correctly predicts a positive sample.

2. TN : The model correctly predicts a negative sample.
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3. FP : The model incorrectly predicts a positive sample when the
actual label is negative.

4. FN : The model incorrectly predicts a negative sample when the
actual label is positive.

There are other values that can be extracted from the confusion
matrix as follows :

•
Specificity = Recall = TPR =

TN

TN + FP
(4.1)

•
Sensitivity = TNR =

TP

TP + FN
(4.2)

4.2.3 Dice similarity coefficient DSC
DSC is a spatial overlap metric that is used as a statistical validation

metric. DSC measures the similarity and reproducibility between the
predicted and ground truth masks. It ranges from 0 to 1, where 1
indicates a perfect match. Formula :

DCS =
2TP

2TP + FP + FN
=

2|S1
g ∩ S1

t |
|S1

g |+ |S1
t |

(4.3)

4.2.4 Intersection over Union IOU
Known also as the Jaccard Index, it is widely used in the evaluation

of semantic segmentation tasks. Comparable to DSC, the IOU metric
measures the overlap between the predicted and ground truth masks
and also ranges from 0 to 1, whereas DSC 1 expresses a perfect match.
Formula :

IOU =
TP

TP + FP + FN
=

|S1
g ∩ S1

t |
|S1

g ∪ S1
t |

=
DCS

2−DCS
(4.4)
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4.2.5 The Mutual Information MI
The mutual information between 2 variables is a measure of the

amount of information one variable has about the other i,e the reduc-
tion is uncertainty of one variable, given that the other is known, as in
[55] used the MI as a similarity between image segmentation, where
the MI of regions (segments) is calculated instead on individual pixels.

MI(Sg, St) = H(Sg) +H(St)−H(Sg, St) (4.5)

where H(S) is the marginal entropy and H(S1, S2) is the joint entropy

4.3 Technologies and environment
Our U-net model is implemented in Python and uses the TensorFlow

library, as well as other machine learning and matrix manipulation
libraries. The model is trained on a local CPU, the i5 9300H, and a
compact GPU, the Intel 630 HD, with 16 GB of RAM.
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4.4 Training process
We start by creating a training set (split the dataset in to train=0.80

,(test=0.20) before developing our brain tumor segmentation model.
We train the model to precisely segment the tumors using this set,
which includes 3D slices of several types of brain tumors and matching
masks. The weights of our model will be optimized using the Adam
optimizer during training with a learning rate of 0.0001.

A mix of dice loss and focal loss will make up the loss function. The
weighting of the dice loss will be [wt0, wt1, wt2, wt3] = [0.25, 0.25,
0.25, 0.25], giving each of the four classes equal weight. The model
will be able to focus on cases that are challenging to categorize since
the focused loss will be weighted with 1.

We utilize the accuracy metric, which measures the proportion of
properly categorized cases, and the IOU-Score metric with a threshold
of 0.5, which measures the intersection over union of the predicted and
ground truth masks, to assess how well the model performed during
training.

4.4.1 Focal loss FL
Focal loss adapts the standard CE to deal with extreme foreground-

background class imbalance, where the loss assigned to well-classified
examples is reduced [56].
focal loss formula:

L(y, p) = −y(1−p)log(p)−(1−y)plog(1−p) (4.6)

4.4.2 Dice loss DC
Dice loss directly optimize the Dice coefficient which is the most

commonly used segmentation evaluation metric[57, 58].
Dice loss formula:

DL = 1—DiceCoefficient (4.7)
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4.4.3 total loss TL
We chose total loss, which is a combination of two losses, dice and

focal, both of which are suitable for our objective. focal loss formula:

totalloss = Diceloss+ focalloss

4.5 Results
In this section, we unveil the model outcome with real brain tumor

cases . Also by applying different scenarios to the brain image as noise
to simulate the real world artifacts, for the purpose of testing how far
is the tolerance to variation of the deep learning model.

4.5.1 Test with the original data:
Before moving to the test results and the model performance, we

tested the model before training to see how the model is far from giving
random results as illustrated in the figure 4.2 the model outcome is
completely confusing between the classes even when the whole tumor
region have the least proportion area compared to the background.

Figure 4.2: Randomness test

In this step, we predict from the test data with no changes applied
to the input. As a result, we have a mean IOU of 0.24, which is
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apparently a low value for segmentation for the whole validation data;
this is why we applied a threshold.(threshold = 0.5), dividing where
images with a high IOU score are separated from the low score image
to find an explanation for the low accuracy of the model,results in the
table 4.2,and in the figure4.3 of the confusion matrix for the model.

metrics Background Edema Enhancing Non-
enhancing

Recall=0.024 0.96 00 0.025 0
Sensitivity=0.96 0.96 00 0.025 00

Table 4.1: Recall and sensitivity values for each class
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Quality number Mean IOU
good 43 0.64
bad 26 0.38

Table 4.2: Result analysis

Figure 4.3: confusion matrix

Because the model’s purpose is typically to minimize total training
loss, unbalanced data can result in a biased model that favors the ma-
jority class. This bias might hamper the model’s capacity to generalize
to new data, resulting in poor performance[59].

Figure IOU score DSC
image 1 0.740 0.85
image2 0.781 0.87
image3 0.783 0.87

Table 4.3: images with good effect of figure4.4.
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Figure 4.4: good image effect1

45



Figure IOU score DSC
image 1 0.23 0.37
image 2 0.30 0.46

Table 4.4: bad images effect of figure 4.5.

Figure IOU score DSC
image 1 0.67 0.80
image 2 0.46 0.63

Table 4.5: model predicte tumor, reflected that the testing label did not 4.6.

Figure 4.5: bad image effect.

We also noticed that the model predicte tumor as illustrated in the
figure 4.6, reflected that the testing label did not contain any trace of
the tumor:
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Figure 4.6: model predicte tumor, reflected that the testing label did not

47



4.5.2 Test with noisy data:
To see if the model is tolerant to variation,a noise was applied on

some testing images a normally distributed noise. The following figures
and table 4.6 show the model performance on noisy data. Based of the
figure 4.7 the model performed well segmentation on light noise, even
when the image is near to be corrupted as in images were the noise
standard deviation is 0.3 and 0.4 the model is still capable of locating
the whole tumor region although the segmentation of the tumor regions
is low, it is worth to mention that the model has been not trained of
the noisy data; which means that these are definitely new cases the
model had to see for the first time. This can conclude that our model
is not memorizing the training data even when the imbalanced data
problem still exists.

Noise std IOU score DCS
noise=0.0 0.70 0.82
noise=0.1 0.6382 0.77
noise=0.2 0.5112 0.76
noise=0.3 0.3829 0.55
noise=0.4 0.21 0.34

Table 4.6: Noise results.
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Figure 4.7: noise image effect.
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4.6 discussion
Based on the experimental results, the model performed well in seg-

mentation and tolerance to variation through the noise test on limited
computation resources compared to the state of the art, even when the
data is corrupted the model still recognise the existence of a tumor;
this result that cannot be done by the naked eye, when the observation
is a preliminary step in the diagnosis.
Despite of that, a handful of cases are missed by the model and can
be considered exceptions. Also, we cannot deny the imbalance of data;
even after the cropping, the background is still dominant over the whole
tumor region. This concludes to the need for more refinement and
improvement to handle the imbalance condition. Another important
point that should be mentioned is that learning from multi-modality
is a great way to deal with different angles of the problem and have a
good representation of the data, specifically for a crucial problem such
as brain tumor segmentation. However, other information from other
data sources could be merged with MRI modalities to offer an obvious
representation of the data to the deep learning model and avoid the
exception cases that may occur only with the MRI data.

4.7 Conclusion
In this chapter, we illustrate the training information in addition to

the development environment. The metrics used for the targeted task
were also tackled.
passing by the results and outcomes of the U-net model. The test
phase is applied under different scenarios. The first scenario is to test
the data and analyze the results by figuring out what percentage of
the good and bad results were performed by the model. This will lead
to inferences about the model’s learning and possible improvements to
reduce the false-positive rate. The second scenario is to test the model
on noisy data to see if it is tolerant to variation. The test result showed
an encouraging outcome and proved that the deep learning model can
outperform the human eye even when dealing with corrupted data,
without forgetting that the model is trained on very limited computa-
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tion results. With all the findings in the result section, the model still
needs serious improvements to handle the imbalanced conditions and
techniques to increase its IOU score.
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4.7. CONCLUSION�CHAPTER 4. EVALUATION AND EXPERIMENTAL RESULTS =0

General conclusion

In this thesis, we addressed deep learning-based multi-modal brain
tumor segmentation. The approach developed is a 3D U-net designed
for volumetric multi-modal MRI scans, aimed at extracting valuable di-
agnostic information contained within the medical image data. The au-
tomation of tumor segmentation using deep learning algorithms holds
significant potential in the healthcare field, particularly in treatment
planning and monitoring. It enables the identification of optimal treat-
ment strategies, improves efficiency, saves time, and allows for quanti-
tative assessment of different anatomical structures, tissue properties,
and disease characteristics. The model development is based on var-
ious deep learning techniques aimed at achieving high accuracy and
reliable segmentation. The input to the model is a multi-modal MRI
tensor, which undergoes processing by the network to extract relevant
features, ultimately yielding promising results.

By leveraging advanced deep learning techniques, the model demon-
strates its capability to accurately segment the multi-modal MRI data,
showcasing its potential for effective analysis and diagnosis in the med-
ical field. The incorporation of multiple modalities allows for a compre-
hensive understanding of the underlying structures and characteristics,
enhancing the overall performance and reliability of the segmentation
process.

In this thesis, an extensive study was conducted utilizing the BRATS-
2020 data-set. The developed model has showcased its effectiveness
in accurately segmenting brain tumor regions within medical imaging
data that encompasses multiple modalities. Through meticulous ex-
perimentation and evaluation, the obtained results consistently demon-
strate improved segmentation performance in comparison to existing
methods.
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The thorough analysis of the BRATS2020 dataset has provided
valuable insights and validation for the developed model’s capability in
managing the complex task as brain tumor segmentation. The model’s
correctness and robustness have been demonstrated by comprehensive
evaluation of its performance against recognized benchmarks. These
discoveries help advance medical imaging analysis by offering a de-
pendable and effective tool for tumor localisation.
Despite the findings and outcomes of the model, several limitations
and conditions were present during the research. One such limitation
is the existence of imbalanced classes, where the background domi-
nates compared to the tumor regions. Consequently, the model tends
to prioritize background learning, classifying any misclassified voxel as
background and disregarding the existence of other classes.

Additionally, deep learning algorithms require substantial amounts
of data and computational resources to effectively generalize to differ-
ent and new samples and cases. In future work, it is crucial to address
the issue of data imbalance through dedicated techniques. Further-
more, incorporating auxiliary data from multiple medical sources and
fusing it with multi-modal MRI scans can provide a comprehensive
understanding of the tumor’s overall state and its interaction with the
brain.
In conclusion, the development of an accurate segmentation model rep-
resents a significant and encouraging advancement in medical analysis
research, despite the limitations and areas for improvement. Each re-
sult and outcome contributes to the understanding of the training and
learning processes employed by deep learning algorithms in addressing
medical data and image analysis.
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