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Abstract

Federated learning (FL) provides convenience for cross-domain machine learning applica-
tions and has been widely studied. However, the original FL is still vulnerable to poisoning
and inference attacks, which will hinder the landing application of FL. Therefore, it is
essential to design a trustworthy federation learning (TFL) to eliminate users’ anxiety. In
this paper, we aim to provide a well-researched picture of the security and privacy issues
in FL that can bridge the gap to TFL. Firstly, we define the desired goals and critical
requirements of TFL, observe the FL model from the perspective of the adversaries and
extrapolate the roles and capabilities of potential adversaries backward. Subsequently,
we summarize the current mainstream attack and defense means and analyze the charac-
teristics of the different methods. Based on a priori knowledge, we propose directions for
realizing the future of TFL that deserve attention.
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General Introduction

In many industries, including healthcare, finance, and transportation, artificial intel-
ligence (AI) has emerged as a game-changing technology. Security issues relating to AI
have grown along with its usage. AI systems are more susceptible to cyber threats like
data breaches, cyberattacks, and malicious exploitation as they become more complex
and interconnected. Therefore, it is crucial to investigate fresh ideas for improving the
security of AI systems.

Federated learning, a cutting-edge method for cooperative machine learning, is one
such strategy. Federated learning enhances the privacy and security of the data by allowing
multiple participants to contribute their local data models without disclosing their own
data. Federated learning has the potential to make it possible for secure and effective AI
systems by utilizing the capabilities of distributed computing.

Federated learning has its drawbacks, though, including communication costs, partic-
ipant diversity, and potential model poisoning attacks. To ensure the secure and reliable
implementation of federated learning, it is crucial to address these issues and create strong
solutions.

This master’s thesis examines federated learning’s potential as a safe method for AI
systems. The thesis will go over the advantages and difficulties of federated learning,
look at cutting-edge federated learning strategies, and suggest fresh ideas to improve the
security of federated learning systems. We aim to contribute to the creation of reliable
and secure AI systems through this thesis.

1



Chapter 1

Introduction

1.1 Overview

Federated learning has its drawbacks, though, including communication costs, participant
diversity, and potential model poisoning attacks. To ensure the secure and reliable im-
plementation of federated learning, it is crucial to address these issues and create strong
solutions.

This master’s thesis examines federated learning’s potential as a safe method for AI
systems. The thesis will go over the advantages and difficulties of federated learning,
look at cutting-edge federated learning strategies, and suggest fresh ideas to improve the
security of federated learning systems. We aim to contribute to the creation of reliable
and secure AI systems through this thesis.

Federated learning (FL) [1] offers a great solution to these issues. In federated learn-
ing, as opposed to distributed machine learning, users update the model rather than their
data to produce a more accurate overall model. It allays users’ concerns about their pri-
vacy by ensuring that data can be used locally. We discovered that the current level of
FL is still insufficient to meet its security requirements, despite the fact that it has been
partially used in practice, such as when Google used it to predict the user’s keyboard’s
subsequent input. The usability of FL is still impacted by methods like poisoning attacks
and inference attacks, particularly when combined with highly sensitive information do-
mains like medicine and finance. Such problems have prevented FL from being used
widely, and researchers have had to redesign the model to make it more user-credible.
Therefore, trustworthy federated learning (TFL) [2] deserves to be further discussed in
conjunction with security measures. TFL’s objective, in contrast to traditional FL, is to
allay users’ worries about the security and privacy of the model system and to guarantee
the legitimacy of the model framework. To achieve TFL, researchers frequently pick se-

2



CHAPTER 1. INTRODUCTION

curity algorithms or secure architecture, like blockchain technology. The requirements for
TFL are not, however, systematically defined in the current research. The following fun-
damental principles should be present in FL systems because TFL imposes more stringent
safety requirements on them:

• High Confidentiality: Confidentiality is reflected in the fact that malicious adver-
saries cannot steal sensitive information in FL.

• High Integrity: Integrity is reflected in the fact that private data cannot be mali-
ciously modified without authorization during training.

• High Availability: The model system is required to provide access by authorized
users and be used on demand. The model also needs to have a usable accuracy rate as
well as efficiency. The cost of trustworthiness cannot be a significant loss of accuracy and
a high rate of loss of efficiency.

• Strong Robustness: In addition to following the information security fundamentals,
FL should have sufficient resistance in the face of complex scenarios or unknown attacks
[3].

• Provable Security: The security protocols and methods must be rigorously secure
based on specific mathematical assumptions. In response to the above requirements, we
survey the current status of FL and look forward to the next more promising development
direction of TFL. Analytical work on TFL has been partially studied, but we will look at
the threats faced by FL from some new perspectives

1.2 Motivation

With the help of the potent method known as federated learning, machine learning mod-
els can be trained on decentralized data without the need for centralized data collection
and processing. It has many advantages, including better model performance, lower com-
munication costs, and increased user privacy. The decentralized nature of the technique
introduces new security risks, such as data breaches, model poisoning, and adversarial
attacks, so the security of federated learning continues to be a serious concern.

For federated learning to be widely adopted and reach its full potential in a variety of
applications, including healthcare, finance, and the Internet of Things (IoT), its security
must be ensured. Failure to address security issues in federated learning can have serious
repercussions, such as the disclosure of sensitive data, loss of trust in the system, and
financial losses.

Several strategies, including cryptographic methods, differential privacy, and trust-
based methods, have been put forth to address security issues in federated learning.

3



CHAPTER 1. INTRODUCTION

Combining these techniques can provide better security guarantees and protection against
various types of attacks, even though each approach has its benefits and drawbacks.

Overall, for federated learning to be widely adopted and to realize its potential benefits,
it is essential to ensure its security. As a result, in order to handle the particular difficulties
presented by federated learning, researchers and practitioners must keep creating and
testing new security techniques.

1.3 Contribution

Although similar investigations into the FL threat have been made, it is still necessary for
these efforts to give a more thorough overview of current technologies and a clear indica-
tion of where future research should go. Our research offers a thorough overview of FL,
covering its definition, dangers, and potential future research using the promising Trust-
Based (Score Method) technology. This work will make it easier to create practical TFL
paradigms and apply them quickly to real production. Here are our main contributions:

• We carefully examine the existing Federated Learning research content and thor-
oughly investigate the development mapping and key technologies of FL.

• From the viewpoint of the adversary, we evaluate FL’s threats. Additionally, we list
common FL-specific attacks from the standpoint of security and privacy risks.

• We summarize and abstract the state’s privacy protection strategies and assess their
advantages and disadvantages. We offer some worthwhile prospects for developing Trusted
Federated Learning based on this.

1.4 Organization of the Thesis

In Chapter 2, we define Federated Learning and categorize the existing FL models from
various angles. We outline the main attack vectors that pose a security and privacy risk
to the model, and we compare and contrast the available defense strategies. In Chapter
3, we highlight the method we propose for enhancing network security that is based on
trusted clients. Chapter 4 provides the Experimental results of our work.

4



Chapter 2

Federated Learning

2.1 Definition

In order to develop cognitive and analytical functionality, which are challenging and inef-
ficient to develop algorithmically, machine learning (ML) has emerged as a critical tech-
nique. With the introduction of Deep Neural Networks (DNNs) and the computational
hardware required to efficiently train complex networks, applications in computer vision,
speech recognition, and natural language understanding advanced significantly. Addi-
tionally, traditional ML methods like support vector models (SVMs), decision trees, and
linear regression have become more popular, especially in relation to structured data.
The availability of top-notch training data is essential for ML applications. However,
there are times when privacy concerns make it impossible to transfer training data to a
central data repository where it can be curated and managed for the ML process. The
method known as federated learning (FL) was first put forth in [4] to train ML models
using training data from various sources without the need for centralized data collection.
The lack of adoption of a central data repository has been largely attributed to various
jurisdictions’ differing laws governing consumer privacy. Examples of legal frameworks
for the gathering and use of consumer data include the General Data Protection Regu-
lation (GDPR), the Health Insurance Portability and Accountability Act (HIPAA), and
the California Consumer Privacy Act (CCPA) [5]. Additionally, news stories about data
breaches have made people more aware of the risk involved in keeping sensitive customer
data on hand. FL makes it possible to use data without actually storing it in a central
repository, reducing this risk. The transfer of data between jurisdictions, such as different
countries, is also restricted by regulation. This decision was made in light of the pos-
sibility that data protection in other nations may be insufficient or related to national
security, necessitating the retention of critical data domestically. International businesses
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CHAPTER 2. FEDERATED LEARNING

that have subsidiaries in various markets but want to train a model using all of their data
must navigate national and regional regulations. Beyond legal requirements, using data
from various locations could also be practical. Central data collection may be impossible
due to unreliable communication links, the sheer volume of data collected by sensors or
in telecommunication devices, or both.

Figure 2.1: Fedrated Learning.

Additionally, FL enables various businesses to collaborate and develop models for their
mutual benefit without disclosing their trade secrets. Then, how does FL operate? In the
FL approach, a number of different parties who each have control over their own training
set work together to develop a machine learning model. They carry out this action without
disclosing their training information to any other parties or outside organizations. In the
literature, parties to the collaboration are also referred to as clients or devices. Parties
include consumer electronics like smartphones or automobiles, but they can also be cloud
services from various providers, data centers processing enterprise data in various nations,
application silos within a business, or embedded systems like manufacturing robots in an
automotive plant.

Although the FL collaboration can be carried out in various ways, its most typical
form is shown in Fig. 2.2. In this method, the collaboration is facilitated by an aggrega-
tor, also known as a server or coordinator. On the basis of their personal training data,
parties conduct local training processes. When local training is complete, they update
the aggregator with their model parameters. Depending on the type of machine learn-
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ing model being trained, the model updates may take the form of network weights, for
example, in the case of a neural network.

The model updates from the parties can then be combined into a single model through
a process we call model fusion after the aggregator has received them. This can be ac-
complished in the neural network example by simply averaging the weights, as suggested
by the FedAvg algorithm [6]. The parties are then given a second distribution of the com-
bined model as a model update to serve as the foundation for the following learning cycle.
Up until the training process converges, this process can be repeated. The aggregator’s
job is to coordinate the parties’ learning and information-sharing processes, as well as to
carry out the fusion algorithm to combine the model parameters from each party into a
single model. The FL process produces a model that is based on the training data of
all parties; however, the training data is never disclosed. The FL approach resembles
distributed learning on clusters, a popular strategy for challenging ML tasks. With dis-
tributed learning, the learning process is sped up by sharing the computational workload
among a group of compute nodes. Similar to the federated model, distributed learning
typically uses a parameter server to combine results from nodes. However, there are some
significant differences. If all training data is kept private, the distribution and volume of
data in FL may not be known and may not be centralized controllable. We cannot as-
sume that the parties’ data will be distributed among them independently and identically
(IID). The datasets among the parties may also be imbalanced as a result of some parties
having more data than others. In distributed learning, the stochastic characteristics of
the data are managed centrally and distributed to various nodes in shards by a central
entity. When creating FL training algorithms, imbalance and non-IIDness of party data
must be taken into consideration. In contrast, depending on the use case, the number of
parties in FL may vary. Less than ten parties may be involved in training a model using
datasets from various data centers of a multinational corporation. It’s frequently referred
to as an enterprise or cross-silo use case. A mobile phone application’s training data may
be contributed to by hundreds of millions of people. The cross-device use case is what
people commonly refer to as here. In the enterprise use case, it is typically crucial to
take model updates into account from all or the majority of parties in each round. Every
FL round in the device use case will only contain a—possibly sizable—sub-sample of the
entire set of devices. The FL process can use the enterprise use case’s consideration of the
parties’ identities in the training and verification processes. Party identity is typically not
significant in the cross-device use case, and one party may participate in only one training
session. Given the high number of participants, it is more likely in the device use case
than in the enterprise scenario that some devices will experience communication prob-
lems. Cell phones may be turned off, or a device may be in a poor network coverage area.
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This can be controlled by sampling parties, establishing time restrictions for performing
aggregation, or using other mitigation strategies. Because there are fewer participants in
the enterprise use case, it is important to carefully manage communication breakdowns
because individual party contributions are significant. We give a formal introduction to
the key ideas discussed in the following section. After that, we discuss FL systems than
the approach of FL Personalization, then we took a full discussion about these Concepts
which is: Classification of FL, Threats in FL providing the Byzantine attacks, we also
give a definition of Defence mechanism, at last we provide our main subject which is trust
in FL.

Figure 2.2: Federated Learning Overview.

2.2 Concepts and Terminology

Like any machine learning task, FL trains a model M representing a predictive function f
on training data D. M can have the structure of a neural network or any other, non-neural
model. In contrast to centralized machine learning, D is partitioned between n parties P
= P1, P2, . . . , Pn, where each party Pk P owns a private training dataset Dk. An FL
process involves an aggregator A and a set of parties P . It is important to note that Dk
can only be accessed by party Pk. In other words, no party has knowledge of any other
dataset than its own, and A has no knowledge of any dataset. How the FL process is
conducted at this abstract level is shown in Fig.2.17. To train a global machine learning
model M, the aggregator and the parties perform
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Figure 2.3: Federated learning concepts.

a Federated Learning algorithm that is executed in a distributed way at the aggregator
and the parties. The two main algorithmic parts are the aggregator’s fusion function F,
which combines the output of each party’s L into a new joint model, and each party’s
local training function L, which performs the local training on dataset Dk. Rounds are
a collection of local training and fusion iterations that use the index t. By exchanging
messages with the aggregator, the parties involved in the algorithm execution are able to
work together. The general procedure goes like this:

1. The aggregator is where the process begins. The aggregator employs a function Q
to train the model by generating a query qt for the current round from the model from the
previous round of training Mt1 at round t. M0 may be empty when the process begins or
it may be seeded at random. Additionally, some FL algorithms might add more Q inputs
and tailor their queries to each party, but we use this less complex method to keep things
simple and maintain generality.

2. The parties are contacted by the query qt, which asks for details about each party’s
local model or dataset in aggregate form. Examples of queries include those for a neural
network’s gradients or model weights, or counts for decision trees.

3. After receiving qt, the local training procedure applies the local training function
L, which takes the query qt and the local dataset Dk as inputs and produces a model
update rk,t. The query qt typically contains details that the party can use to start the
local training procedure. For instance, model weights of the new, widely used model Mt
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to start local training are included, as well as other details for various model types.
4. After L is finished, party pk sends rk,t back to aggregator A, which gathers all the

rk,t from all parties.
5. The fusion function F, which accepts Rt as an input and returns Mt, is applied to

all model updates from expected parties that are received by the aggregator and have the
form Rt = (r1, t, r2, t,..., rn, t).

A final global model M = Mtmax is produced by repeating this process over a number
of rounds until a termination criterion, such as the completion of the maximum training
rounds tmax, is met. When using a Naive Bayes approach, the required number of
rounds can range from a single model merge to numerous training rounds for conventional
gradient-based machine learning algorithms. The fusion function F, the query generation
function Q, and the local training function L typically form a complementary set that is
intended to work together. L performs the local training and interacts with the actual
dataset to produce the model update rk,t. The information in Rt serves as F’s input, so
F must interpret it before building the subsequent model Mt from it. Q then generates
a new query if more rounds are necessary. We will go into more detail about how this
process works when training neural networks, decision trees, and gradient-boosted trees in
subsequent sections. We can add several variations to this fundamental FL methodology:
Cross-device FL frequently has a sizable, millions-strong party population. Some parties
don’t take part in every round. In this scenario, Q chooses the query as well as which
parties Ps P to include in the subsequent round of querying. The party can be chosen at
random, according to party traits, or on the basis of previous contributions. Additionally,
inquiries to each party might differ, and F would need to combine the answers to various
inquiries when developing a new model Mt. While the most typical and practical method
uses a single aggregator, other alternative FL architectures have been proposed. The set
of parties may be divided between aggregators, and a hierarchical aggregation process
may occur. For instance, each party Pk may have its own, associated aggregator Ak that
queries the other parties. The common single aggregator configuration is the main topic
of the remainder of the introduction.

2.3 Federated Learning Systems

In the end, parties and the aggregator run on a distributed system on which a FL process
is executed. The components of this system must meet the computational, memory, net-
working, and communication needs of the parties, the aggregator, and their inter-party
communication. We must pay close attention to the resources available at the point of
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training the parties because the local model training is carried out in the area where the
data is located. At least in the commonly used single aggregator architecture, aggrega-
tors are typically operated in a data center environment. When working with numerous
parties, they still need to have the appropriate resources and scalability. Finally, depend-
ing on model size, model-update content, frequency, and use of cryptographic protocols,
as discussed in the previous section, network connectivity and bandwidth requirements
may vary. As a result, federated learning has very different system requirements than
centralized learning methods do. Party attendees: The fact that a party might not be
located on a system we would typically choose as an ML platform is the most obvious
difference between decentralized and centralized machine learning systems. This may not
be a problem if the parties have data centers in different countries, but embedded systems,
edge computing, and mobile phones are more problematic. Three different functionalities
could each use a certain amount of resources:

• If the model is big, the local machine learning process might need a lot of compute
and memory. This is particularly true for big DNNs, like big language models. It might
be necessary GPU support, which might not be present in embedded systems, let alone
distant data centers or data stores connected to software as a service. However, there
are small footprint packages like Tensorflow Lite that require less on-party storage and
memory, and conventional methods might still be practical even on diminutive gadgets
like Rasberry Pis.

• The local machine learning model is operated by the federated learning party client,
which also interacts with the aggregator. However, it typically has a small footprint that
can fit even in tiny edge devices.

• Using a cryptographic protocol, such as a secure multi-party computation (SMC)
implementation based on a threshold Paillier cryptosystem, could, however, significantly
increase the computation cost for the party client. The majority of encryption and decryp-
tion methods can be parallelized, making a GPU or other specialized hardware necessary.
Servers for aggregators Typically, an aggregator is situated in a resource-rich data center
environment. Scaling up to many parties, though, comes with a number of difficulties:

The aggregator must be able to manage numerous connections in order to communi-
cate with numerous parties. A tried-and-true strategy for all types of systems that can be
applied here similarly is connection pooling. It frequently costs only a little bit of compu-
tation to run a fusion algorithm at the aggregator. Simple fusion algorithms, like FedAvg,
carry out very basic averaging tasks. In contrast to the local training at the party, other
fusion algorithms may be more complex but frequently have lower computational require-
ments. The size of the set of, say, weight vectors received as replies from parties, however,
can be very large in the case of large DNNs and a large number of parties. The weight
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vector of a single party can be up to tens of megabytes. Dealing with thousands of parties
may be too much for one compute node to handle while performing an average computa-
tion in memory. There have been several methods suggested for computationally scaling
the aggregator: The fusion algorithm can be run in parallel, for example, using Hadoop or
Spark, and the weights can be made persistent. Other strategies divide parties into groups
based on the addition’s commutative properties. Each aggregator given to these groups
computes averages over this group. The outcomes of local aggregation are then combined
by a primary aggregator, weighted by the quantity of parties at each aggregator. As a re-
sult, they propose one such method; there are other variations as well, such as multi-level
aggregation. Sub-sampling of parties is frequently used at each round for very large sets
of parties and can support the other methods. As a rule, tree-based FL algorithms place
more computational burden on the aggregator than the parties. Communication: When
designing a FL, aggregators and parties’ quantity and quality of communication must
be taken into account. We can frequently assume adequate bandwidth and dependable
connections in data center and cloud settings.

FL processes can be time-consuming. Therefore, communication protocols must be
resilient to sporadic disconnection. The direction of the connection is a crucial practical
factor in business settings. Organizations with IT departments have strictly regulated
procedures for opening networking ports. FL system implementations will go more quickly
if a networking protocol is chosen that doesn’t require parties to open ports but instead
requires them to initialize the connection to the aggregator. A greater challenge is posed
by embedded systems, edge devices, and mobile systems. Because they are inexpensive
devices, some party systems may only occasionally be connected, as in vehicles, or they
may have low bandwidth. For the FL process, this could be problematic.

We must have a plan in place to handle these drop-offs if parties do not reply in time
for the following round. We must establish a quorum, which might differ depending on
the use case. We also require a strategy for re-joining parties. Quora offers a straightfor-
ward method of drop-off management, but other strategies, like TIFL, suggest an active
straggler management strategy that groups parties by response time and queries them
less frequently [7]. Even bias in the model can result from systemic differences in re-
sponse times. Algorithms can also be used to deal with intermittent or low-bandwidth
communication, for instance, by reducing the number of rounds, compressing models,
and fusing more divergent models. Using secure computation techniques like SMC may
result in an increase in message volume and size, which could be problematic for devices
with weak connections. Peer-to-peer communication between parties may be necessary
for some SMC protocols for vertical federated learning, which is problematic in two ways:
It calls for parties to expose ports to their peers, which presents a challenge for imple-
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mentation in businesses. This again doubles network traffic if it is lessened by routing all
traffic through the aggregator or another middleman. As a result, even though SMC is
frequently a very good method for protecting privacy, it has high resource requirements.

When implementing a FL system, we frequently must trade off the available resources
with an appropriate algorithmic strategy. Design decisions and trade-offs. If we have the
option to choose, we can select hardware that is compatible with the ML approach we
select. We can add a powerful embedded GPU to a car or factory robot, or we can add
GPUs to the data centers we want to take part in the federation. Not always is that
feasible. When a party’s compute platform is provided, we can use an ML strategy that
works with our available resources. DNNs require a lot of resources on the party side, but
tree-based models like federated XGBoost require less. Also, algorithms can be adapted
to system constraints.

2.4 Model Personalization

Model personalization is the process of adjusting a (federally trained) global model to the
data distribution of the particular FL process participants. Even though everyone who
participates in an FL process has access to a large pool of training data, there are times
when it is advantageous to customize the final model so that it accurately represents the
data that belong to a particular party. This is important, especially if parties relate to
specific users or organizations. Individual parties can run additional local training epochs
on local data to complete an FL process in a simple scenario.

Wang et al. suggest a method to assess the value of personalization for every party.
User clustering, training on interpolated data (between global and local), and model
interpolation are three different methods for personalization. For the first method to
cluster users based on training data, privacy requirements must be relaxed or advanced
privacy techniques must be used. The foundation of data interpolation is the creation
of a global dataset. All methods are effective, but model interpolation has the broadest
range of privacy-related applications. Grimberg and others. Expanding on the strategies
discussed prior to [8], propose a method to optimize averaging a global model and a local
model for personalization purposes by determining optimized weights. Personalization
strategies are still developing, but this is a crucial addition to the FL procedure.
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Figure 2.4: Learning Personalized Models.

2.5 Related Work

FLTrust is a Byzantine robust federated learning framework that uses trust bootstrapping
and trimmed averages to identify and remove malicious clients. FLTrust has proven
effective in protecting federated learning from Byzantine attacks.

Byzantine Robust Federated Learning with Differentiated Privacy: In this article,
we propose a Byzantine-robust federated learning framework that leverages differential
privacy to protect client privacy and make it more difficult for adversaries to launch
Byzantine attacks.

Federated learning with Byzantine resilience: In this article, we propose a federated
learning framework that is resistant to Byzantine attacks. The framework uses a combina-
tion of techniques such as trust bootstrapping, differential privacy, and secure aggregation
to protect client privacy and make it difficult for adversaries to launch Byzantine attacks.
we will discuss them on the Chapter 4 and compare their results.
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2.6 Classification of FL

The applicability of FL is being improved using a variety of techniques and methods as
it develops quickly. FL with various complex morphologies is suggested in order to han-
dle more complicated requirements [1]. Some research projects want to use distributed
machine learning models in more significant scenarios, which requires FL to take commu-
nication and data aggregation costs into account. Focusing on the use of FL in mobile
edge computing, for instance. Other jobs, however, necessitate more secure training par-
ticipation, so FL must pay closer attention to security and privacy protection.

In ref. [9], the authors place more emphasis on security risks and categorize FL accord-
ing to the distribution of data features. Additionally, FL is categorized with technologies
from various angles. Therefore, a crucial first step in comprehending and improving FL
design is classifying FL according to various perspectives.

2.6.1 Centralized/Multi-Center/Decentralized FL

Although FL has been implemented for decentralized training, centralized FL—what we
refer to as centralized FL—still needs a central server to finish the accusation of ag-
gregation and broadcasting. The single-server architecture makes sure that the model’s
rights are centralized in the server, which aids in managing the entire training process
and preventing mistakes. The Gboard for Android keyboard, for instance, is based on
this architecture. A centralized server, however, is more likely to experience a single
point of failure, which could completely devastate the FL system. A decentralized FL
was suggested to release this security dependency. It makes an effort to lessen or even
do away with the server’s influence over the overall model. For the innovative setting
of decentralized collaborative learning of personalized models, two asynchronous peer-to-
peer algorithms are proposed. This method directly relocates the server to achieve total
decentralization. However, this strategy frequently comes at a high time and communi-
cation cost. A centralized server is not necessary for multi-center FL, but model updates
must be managed by numerous decentralized edge servers. By doing this, the global
model’s vulnerability to servers acting as malicious nodes is reduced while maintaining
the model’s usefulness. In order to address the aforementioned issues, [10] builds multiple
global models from the data, simultaneously determines the best match between users
and centers, and suggests a federated SEM optimization strategy to successfully address
the multi-center FL problem.
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2.6.2 Horizontal FL/Vertical FL/Federated Transfer Learning

Furthermore, when dealing with various application scenarios, it is a common method
to design FL based on the characteristics of training data. FL is classified into horizon-
tal federated learning (HFL), vertical federated learning (VFL), and federated transfer
learning (FTL) based on the degree of overlap between the feature space and the sample
space . To begin with, clients in business-to-consumer (B-C) FL frequently use data sets
with overlapping features. For example, different banks may provide similar data training
models with highly coincidental data characteristics. The HFL is more appropriate in this
case. To minimize losses, the client typically employs stochastic gradient descent (SGD),
while the server employs a secure aggregation algorithm (such as FedAvg, FedPorx) to ob-
tain a global model. We can further refine HFL based on different applications into HFL
to businesses (H2B) and HFL to consumers (H2C). HFL has the advantage of quickly
extracting features from similar data and obtaining a highly credible global model, but it
is less effective for data with little overlap in features. Insurance companies, for example,
rely on credit data from banks to provide customized services, and because the two have
different feature spaces, they cannot be trained directly using HFL.

Figure 2.5: Horizontal FL.

VFL is more complex than HFL, but it is applicable to a broader range of scenarios
and has greater practical value. However, VFL has some drawbacks, such as low effi-
ciency, and related research has been conducted in this area. For example, created a new
backward updating mechanism and bilevel asynchronous parallel architecture to address
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the issue of low efficiency caused by synchronous calculation in practical applications.
It’s worth noting that the first two do well with supervised learning but struggle with
unsupervised or weakly supervised data.

Figure 2.6: Vertical FL.

To deal with the need for tiny overlapping samples, FTL introduces the concept of
migration learning. The direct use of the first two models for training results in poor
effectiveness for data with low correlation because the aggregation algorithm is difficult
to extract similar effective features. Transfer learning makes use of similarities between
the target domain and the source domain in order for the migration model to learn from
data with significant differences. As a result, a federated learning model that incorporates
transfer learning gains the ability to learn from heterogeneous data [11], providing a viable
solution for collaborative modeling.
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Figure 2.7: Federated Transfer Learning

2.7 Threats in FL

In this section, we will discuss the most common attacks encountered in Florida. Before
delving into the threats that FL faces, we’ll take a look at where these threats might come
from. In the second and third parts, we examine potential FL attacks from the standpoints
of security and privacy, respectively. The investigation of the source of threats.

2.7.1 Adversary Status

To assess FL threats, we must first understand the adversary’s role in the system model.
In contrast to traditional machine learning, the adversary’s identity in FL is relatively
complex. Using the basic FL as a reference object, the participating entities are classified
as server, client, and malicious external entities. It is difficult to pinpoint the source of
the threat. Assuming they both produce malicious attackers, we can distinguish between
internal and external attackers (Server and Client). Simultaneously, we cannot rule out
the possibility of a collusion attacker.

1. Server: The server has high privileges in FL. As a result, once malicious, it poses
a greater risk to the system’s security and utility. There are general types of attacks,
such as model poisoning and backdoor attacks. By poisoning the global gradient, the
server can easily break model convergence. It can also steal the client’s privacy if it is
semi-honest by using inference or model reversal attacks. Because the server has updated
gradient information, a gradient change-based membership inference attack can easily
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steal membership information from the client. As a result, it is necessary to allow the
server to obtain as little accurate information as possible based on its responsibilities.

2. Client: On the one hand, the client is the most vulnerable target of attack,
such as membership inference attacks aimed at stealing customers’ private information.
Homomorphic encryption and differential privacy are promising methods for preventing
gradient information leakage. In the meantime, the addition of a shuffler mechanism can
be used to further mask the user’s ID. A malicious client, on the other hand, can have a
negative impact on model training. It can interfere with the global model’s availability
by poisoning [12] or inserting backdoors [13], but unlike the server, the impact of a single
malicious client is limited.

3. External attackers: An external saboteur could hijack the server or bring it
down directly, completely disrupting the training. External entities that listen in on server
and client communication channels endanger clients’ privacy significantly. Homomorphic
encryption and differential privacy can limit its access to accurate information, while the
trusted execution environment’s FL can protect it from threats.

4. Collusion: Malicious opponents may band together to carry out a coordinated
attack. In reality, a conspiracy attack only needs a tiny bit of information to be leaked by
an internal foe to compromise the availability of the majority of security protocols. For
instance, the absolute security of keys is a prerequisite for HE and SMC-based security
schemes. They perform iterative attacks to impair the performance of the model by
synchronizing and uploading the compromised malicious parameters to the server for
aggregation. Furthermore, the partially privacy-preserving FL model is threatened by
dishonest clients and servers working together to steal private information (such as private
keys). Table 1 compares and analyzes the effects of various malicious entities on the model.
Whether the model can converge sufficiently determines the level of security concern. We
merely categorize the threats our system faces from low to high. The threat to the client
depends on how many attacks are taking place, while the server is under high threat
because it has too much information. Threats to client privacy are used to gauge privacy.
Even though a single client has little information and poses little risk, collusion with
the server compromises the information of other users. The collusion attack is a notable
exception, and it is harder to analyze because different entities colluded in it. However,
we set the threat level as high because server-based collusion attacks are common.
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Position Malicious Entities Security Treat Privacy Treat Reference
Internal Server high high Poisoning [8]

Internal Client medium low Poisoning [12],
Backdoor [13]

External Attacker medium high Inference [2]

Collusion Server and Client high high Sybil-based Collusion
Attacks [14]

Tableau 2.1: Evaluation of the threat of different attack entities.

2.7.2 Security Threats in FL

According to this thesis, security attacks aim to impair the model’s availability and ro-
bustness. A security attack specifically is the potential for a vulnerability to be used by
a malicious or curious attacker to compromise the security of a system and violate its
privacy policy. Here are a few common attack motifs, and Table 2.2 provides a summary
of the primary attacks.

2.7.2.1 Poisoning Attack

One of the most frequent security attacks in Florida is poisoning. The accuracy of the
model can be negatively impacted by malicious training data and even model weights
because each client can have an impact on the overall model. A poisoning attack attempts
to undermine the model’s usability by weakening its capacity for generalization. Although
there are numerous ways to poison someone at the moment, they can roughly be divided
into data poisoning and model poisoning depending on the target of the poisoning. It
is important to remember that different participants may start a poisoning attack. The
server can effectively carry out both types of poisoning attacks as the training progresses,
especially if it is malicious.

The two types of data poisoning—dirty-label attacks and clean-label attacks—can be
roughly divided into two groups. Injecting desired target labels into training datasets
causes the former to frequently misclassify. The typical dirty-label attack is a label-
flipping attack [15], which flips a feature-invariant sample’s label in order to trick the
model into classifying it as a different type. Figure 2.8 depicts how malicious adversaries
produce lethal training samples by label flipping, eventually tricking the global model
into producing false classifications. Clean-label attacks correctly classify poisoned labels
during training, in contrast to dirty-label attacks. The classification models, however,
will put it in the incorrect class. Clean label attacks are more sneaky than the former
because they are less susceptible to the majority of defense strategies based on distribution
differences.
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Figure 2.8: Poisoning attack and member inference attack in FL.

Model poisoning, in contrast to data poisoning, typically calls for advanced technical
knowledge and substantial computational resources. But it also tends to be more dam-
aging to models. Model poisoning aims to make the model confidently misclassify certain
inputs. The work was done by an adversary in control of a small number of malicious
agents in order to highly confidently misclassify a set of selected inputs by the global
model. The practice of misjudging the model by noise is widespread. The pixel space of
opposing images was detected using the noise of various intensities and distributions.

2.7.2.2 Backdoor Attack

A backdoor attack uses triggers to systematically control the decision boundaries of the
model, as opposed to a poisoning attack, which modifies the proper decision boundaries by
using datasets with different boundaries. To complete the malicious attack, the attacker
introduces a hidden backdoor into the model and activates it during the prediction phase.
The adversary specifically takes part in FL training and inserts a backdoor into the data
of the designated label. The backdoor will be activated and a specific malicious output
will be produced by the classifier when the global model classifies the backdoor data.
Identification is challenging because the malicious model has a similar level of accuracy.
In Ref [16], The authors showed that it is more challenging for the system to identify
malicious samples when backdoor implantation is designed for low-probability or edge-
case samples. The upside of this flaw is that the backdoor attack swaps out the original
uploaded local model for one that gives the attacker control over how the model performs
on a backdoor subtask of their choosing. By scaling the model weights, the backdoor
mean is maintained. Instead, Ref. [17] tested various attacks on the non-iid dataset and
discovered that canonical cropping and weak differential privacy can mitigate backdoor
attacks. Due to their superior performance and relative lack of detection, backdoor attacks
pose a significant security risk to FL.
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Figure 2.9: Backdoor Attack.

2.7.2.3 Free-Rider Attack

The free-rider attack is sneaky and causes less harm. Without actually providing any
data during the training process, a malicious client could take part in obtaining a joint
model. As a result, participants with high-quality data may become discouraged and may
not earn enough money, which could harm FL training. Less free riders typically cause
less harm, but this is unfair to other customers. Currently, this aspect of the issue can be
solved by using FL models based on contribution value estimation.

Figure 2.10: Free-Rider Attack.
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2.7.2.4 Byzantine Attacks

A Byzantine attack is a sort of federated learning attack in which a hostile actor purpose-
fully corrupts the data or model changes given by a client. This can lead to the global
model learning inaccurate information, lowering the model’s performance.

In federated learning, there are several approaches to guard against Byzantine attacks.
One popular method is to employ a technique known as robust aggregation. Robust ag-
gregation entails combining the model updates from the clients using a statistical method,
such as median aggregation or trimmed mean aggregation. These methods are intended
to be resistant to outliers, which can aid in mitigating the consequences of Byzantine
attacks.

Client selection is another method of fighting against Byzantine attacks. Allowing
only trusted clients to participate in the training process is part of client selection. This
can be accomplished by forcing clients to pass a security check or through the use of a
reputation system.

Byzantine attacks pose a significant risk to federated learning. However, there are
several strategies that can be employed to counteract them. Organizations can use these
strategies to help preserve their data and ensure that their federated learning models are
not jeopardized. These are some types:

1.Krum attack By introducing malicious data into the training dataset, the Krum
attack operates. The global model can be trained to learn false information using this
malicious data. For instance, a malicious data injection by an attacker could teach the
global model that a particular class of data is more likely to be fraudulent than it actually
is. This might cause the global model to predict fraudulent transactions incorrectly.

2.Trim attack Trim attack operates by tampering with model updates that clients
send. This can be accomplished by altering the weights’ values in the model update or
by introducing noise. As a result, the global model might pick up inaccurate knowledge.
For instance, a hacker could tamper with model updates transmitted by a client who is
in charge of training the model on a specific kind of data. This might result in the global
model picking up inaccurate knowledge about that class of data.

3.Scaling attack Sending sizable updates to the global model is a technique used in
scaling attacks, a kind of Byzantine attack. Malicious clients with access to a lot of data
are capable of doing this. The global model’s stability and performance may suffer as a
result of the large updates.

4.Label flipping Changing the labels of data points in the training dataset is a type
of attack known as label flipping. Malicious clients with access to the training dataset
may carry out this action. The global model may learn the wrong information as a result
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of the altered labels.

2.8 Privacy in FL

Attacks against user privacy undermine the confidentiality of the FL model. Although
FL needs to share model parameters instead of sharing local data, there are still ways to
steal user local information.

2.8.1 Inference Attack

By teaching the shadow model to behave like the target model, member inference attacks
help create an attack model to determine whether the target is a member of the original
data. Depending on whether it is possible to steal the gradient parameters, inference
attacks can be classified as black-box or white-box attacks. In a white-box attack, the
adversary can accumulate snapshots of the FL model’s parameters and perform attribute
inference by identifying differences between them, which is the same as aggregating up-
dates from all participants minus the adversary [14].

Black box attacks are more practical because they require little knowledge to be ac-
quired. An adversary will typically test the global model with particular inputs and
produce confidence scores based on variations in the distribution, which are then used
to infer sensitive information. Based on this, introduces a label-only attack that doesn’t
require confidence scores and doesn’t suffer from attack efficiency loss at the same time,
further lowering the amount of prior knowledge needed for an attack. Inference attacks
against the target can be divided into four categories: category inference attack (CIA),
feature inference attack (FIA), label inference attack (LIA), and member inference at-
tack (MIA). All of these result in unintended information leaks to the enemy. The one
that has drawn the most attention is MIA. A data record’s use in training a target FL
model is inferred using MIA in FL models. The most popular technique in Figure 1 for
training attack models is the use of shadow models. The target model and the shadow
model exhibit similar behaviors, such as supervised training with a verifiable dataset. In
order to distinguish between target model members and outsiders, the attack model uses
the shadow model to spot behavioral variations in the target model. However, this ap-
proach still uses a white-box model because it depends on stealing intermediate gradients.
Transfer attacks and borderline attacks have been developed in earlier work to decrease
the knowledge needed to attack label-only and can achieve remarkable performance.
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2.8.2 Model Inversion Attack

Model inversion attacks, in contrast to inference attacks, typically gather some level of
statistical data. They are used to train inversion models that use the model’s received
preliminary data to reconstruct the client’s original data . In this case, the attacker is a
trustworthy but honest server. By training the inversion model, the server can recreate
the user’s initial data from intermediate activations. For instance, split federated learning
(SFL) as being susceptible to a MI attack. By using only the recognized intermediate
activations, the server is able to reconstruct the team doctor client’s original numbers.

Due to the server node’s ability to access any intermediate activation, MI resistance
during training is noticeably more challenging. But there is a solution out there. Related
research shows how to reduce the usability of the model inversion model by minimizing
the distance correlation between the original data and the intermediate representation.

2.8.3 GANs

GANs have achieved great success in the field of images. Through gaming techniques, it
can produce a significant amount of false data of high quality. As a result, it is improved
from both an offensive and a defensive standpoint. One way to improve poisoning and
attack inference is through GAN-based techniques. GAN-generated false data makes
poisoning attacks easier. By using GAN to generate data, the work achieves over 80
accuracy in both the poisoning and the main task. According to the research in [53], it
is possible to use GAN to produce enriched attack data for the shadow model, increasing
the accuracy of member inference attacks to 98The system cannot predict all potential
threats based on GANs because of their nature. As a result, it is more challenging to
stop attacks based on GANs. On the other hand, combining mechanisms with GAN can
also increase the FL model’s robustness [18]. By sharing the client’s generator with the
server, the client’s collective knowledge can be gathered, which enhances the performance
of each client’s local network.
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Category Attack Description Method Initiators Hazards Ref.

Poisoning The attacker injects malicious data
to corrupt the output model.

Data Pos,
Model
Pos

Client,
Server

Availability,
Robust-
ness

[16]

Security Backdoor Prediction by implanting backdoor control
models. Backdoor Client

Integrity,
Robust-
ness

[13]

Free-
rider

The attacker obtains a high-value training
model with low-value data.

Random
weights
attack

Client Availability,
Fairness [19]

Inference High confidence sensitive information deduced
by means of attacks.

Member Inf
Class Inf,
Feature Inf,
Label Inf

Server,
Attacker Confidentiality [20]

Privacy Model In-
version

Using leaked information to reverse model analysis to
obtain private information

Map In-
version Client Confidentiality [21]

GANs The attacker obtains a high-value training
model with low-value data.

Random
weights
attack

Client Confidentiality [22]

Tableau 2.2: Summary of the main attacks

2.9 Defense Mechanism

Based on the above analysis of security and privacy concerns in federated learning, two
key perspectives are worthwhile taking into account to increase FL security: At any point
in the training process, FL must recognize and address any potential security threats.
Additionally, FL should promote mutual trust among all parties in order to draw in higher-
quality data for training. We typically employ some preventative measures to address the
first issue. These techniques should be able to identify and eliminate threats as they
materialize. Although this is typically cost-effective, the number of threats it can handle
is constrained. The main issue with the second issue is preventing direct transmission
of sensitive information. Typically, sensitive data is encrypted or transmitted through a
secure channel. Such methods frequently involve a reactive respons and processed data
are not followed up on.

2.9.1 Anomaly Detection

Statistical and analytical techniques are used in anomaly detection to find events that
don’t follow expected trends or behaviors. Anomaly detection for the server and anomaly
detection for clients are the two broad categories that apply to target-based detection
models. For identifying poisoned clients on the server side, anomaly detection techniques
like parametric threshold-based, feature-based, and smart contract-based have been sug-
gested. It is common practice to actively defend against data poisoning attacks by testing
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the outlier degree of data points on the server. This effectively reduces the harm that
poisoned data causes to the global model. For instance, They created a mechanism
for detecting outlier data points that can successfully stop attacks like tag reversal and
backdoor-based poisoning.

Li et al. [23] test whether users deviate from the FL training regulations using a pre-
trained anomaly detection model. Additionally, the server can recognize and verify model
updates by saving incremental updates in the blockchain-distributed ledger. Another fea-
ture of client-side anomaly detection techniques like BAFFLE enables the detection to be
decentralized to the client, with the server merely analyzing the participant’s determina-
tion’s outcomes. In addition, to counter free-rider attacks, anomaly detection techniques
based on participant parameter distributions and energy anomalies can be developed.

2.9.2 Blockchain

Peer-to-peer networking is the foundation of blockchain. Blockchain uses a combination of
chain, tree, and graph structures to guarantee secure storage and data traceability. Addi-
tionally, the blockchain achieves tamper-evident data thanks to the proof of work (POW)
consensus mechanism. FL and blockchain are complementary to one another. Blockchain
is an inherently secure distributed system, so it makes sense to develop it alongside FL.
Together with FL, we can enable multiple servers to copy, share, and distribute all of its
data. As shown in Figure 2.11, FL can create a trustworthy third party and carry out a
few trusted chain operations, easing the server’s trust apprehension [2].

Figure 2.11: Blockchain in VFL.
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While the distributed ledger offers secure FL verification, the decentralization of the
blockchain may reduce server authority. Along with being verifiable, the blockchain can
improve FL’s fairness. Smart contracts can be used to improve the transparent and
verifiable distribution of incentives, ensuring that all customers receive rewards that align
with their values. Blockchain is used in Ref. [24] to promote open procedures and enforce
rules. Because the server is not reliant on blockchain technology, it can establish a trust
relationship with the user.

2.9.3 Differential Privacy

Since the a priori knowledge of the attack in FL is frequently transmitted as gradient
information, it is crucial to hide the information’s veracity. By introducing a specific per-
turbation, differential privacy seeks to mask the actual query. Information from databases
was first encrypted using differential privacy. The privacy lines between related data sub-
sets can be blurred to satisfy both security and unpredictability. In situations where
time performance is required, DP execution excels because it uses the least amount of
time compared to other approaches. Ref. [25] applies differential For the first time, deep
learning can measure privacy loss while introducing privacy moments and still maintain
high accuracy guarantees for the model. The curator model, the local model, and the
shuffle model are three broad categories that describe the FL model when combined with
DP. Although the curator model’s (CDP) security is lax, it has high accuracy. On the
other hand, the local model (LDP) increases security by perturbing local training progress
while sacrificing more accuracy. The middle ground between the two is the shuffle model
(SDP). This makes the DP model’s consideration of privacy, accuracy, and efficiency a
research hotspot. On the MNIST dataset, we tested this and illustrated the utility loss
in Figure 2.12 in a more understandable way.

Figure 2.12: The performance of different DP-FL schemes on the MNIST dataset.
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In conjunction with DP, FL has received a great deal of academic attention. Although
the loss of accuracy is unavoidable for DP, some solutions are proposed to make up for
it. Renyi differential privacy uses Renyi entropy to expand the definition of DP and
further reduce the privacy budget’s upper bound. The distinction between lax DP and
strict DP is muddled. It is suggested that the newest discrete Gaussian DP be used to
resolve the conflict between utility and security. Additionally, privacy amplification with
a third-party shuffler merits consideration.

2.9.4 Homomorphic Encryption

To get the same result, HE encrypts the plaintext computation, converts it to ciphertext,
and then decrypts it. Since the operator is only concerned with the ciphertext and is
not required to know any decryption information (decryption key K), this eliminates
the trust-building and key-transfer issues that are present in conventional cryptography.
Consequently, a secure aggregation of gradient information is possible when combined
with HE. In order to be secure, a homomorphic system must:

In this case, M and C stand for the operator and the plaintext and ciphertext spaces,
respectively. Operations like addition and multiplication on ciphertext can be overloaded.
According to Paillier, subdivision operations can be applied to multiplication and addition,
respectively. Decsk(m1 C m2) = Decsk(m1 + m2) is an addition. Decsk(m1 C m2) is equal
to Decsk(m1 m2) in scalar multiplication. Generally speaking, homomorphic encryption’s
functionality increases with complexity.

Figure 2.13: Privacy-Preserving Federated Learning Using Homomorphic Encryption
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This allows for the separation of HE into two groups: partially homomorphic encryp-
tion and fully homomorphic encryption. While the latter satisfies arbitrary operations
but is inefficient, the former does so while being efficient for finite operations. Made a
proposal for BatchCrypt for Cross-silo federated learning in light of this, lowering the
communication and time costs of HE with almost no accuracy loss. FedML was created
based on the Paillier homomorphic encryption algorithm to implement federation matrix
factorization in scenarios with a modicum of honesty. High interaction overhead and
accuracy loss are the main limitations of HE in FL at the moment.

2.9.5 Secure Multiparty Computing

Secure multiparty computing (SMC) typically hides the input data from the output side
and encrypts the communication process. Each party’s individual output value can only
be determined based on its input; no other information is available. Multiple parties
can work together to compute functions of mutual interest using secure SMC without
disclosing their private inputs to the other parties. SMC is the most appropriate method
for secure aggregation because multiple clients in FL interact with the server. Three
frameworks can be used to implement SMC: secret sharing, accidental transmission, and
inadvertent transmission. Secret sharing is the foundation of secure multiparty computing.

Secret sharing is used to create a compact FL framework for the IoT. To lower the
communication overhead, various carefully created local gradient masks and an additional
mask reuse scheme are used. VerifyNet is a verifiable FL framework created. that employs
a double masking mechanism to protect sensitive data on a private sharing mechanism.
Additionally, this strategy guarantees clients’ privacy if they leave training.

2.9.6 Trusted Execution Environments

TEE offers integrity and confidentiality assurances for handling private computer code
and data. Its primary design goal is to address the issue of secure remote computing,
which TFL requires. By way of illustration, Intel SGX offers a secure container that
limits the sensitive data that remote users upload in the container. It makes sure that
calculations and intermediate data are kept private. Based on this idea, created FLATEE,
an effective privacy-preserving federated learning framework that can handle malicious
parties without leaking personal information. The symmetric encryption key and the
public key in FLATEE are generated by TEE. In the secure enclave TEE, the client
executes the privacy algorithm (DP and encryption), and the server executes the privacy
aggregation in the aggregator secure enclave TEE. Even so, SGX still has a lot of attack
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surfaces due to resource sharing, including page tables, cache, CPU internal structures,
etc. TEE attacks like side-channel attacks are frequent. To address these weaknesses,
created the ShuffleFL with TEE, in which all players are dynamically organized into
hierarchical groups using a randomized grouping algorithm, combined with intra-group
gradient segmentation aggregation against rival groups. The specific method is shown in
Figure. (2.14).

Figure 2.14: ShuffleFL with TEE.

2.9.7 Hybrid

On the one hand, maintaining data localization by itself frequently falls short of providing
adequate privacy guarantees in the face of complex security needs. Using DP fuzzy se-
crets, combined DP and SMC in the database and employed a secret sharing mechanism
to slice and dice the restructuring of parameters and solutions for computational and
output privacy. Combine FL with the hybrid methodology as an inspiration. In other
areas, introduces a novel approach that combines homomorphic encryption methods and
differential privacy methods to get the best of both worlds.

has developed a reliable and secure aggregation system and uses distributed DP to
improve privacy. On the other hand, a single-defense strategy has inherent drawbacks.
For instance, HE and SMC perform poorly in terms of efficiency, and differential privacy
has an inherent loss of accuracy. The DP in [?] can guarantee a predetermined trust rate
while achieving a slight increase in noise when used in conjunction with SMC. This lessens
the detrimental effect of DP on the model’s usefulness. However, fundamental security
mechanism is additive homomorphic encryption, which has a longer training period and
more expensive transmission costs. HybridAlpha was created with a better security policy
using function encryption to achieve faster communication and lower costs. Together, HE
and TEE were used to accurately analyze genomic data. This combined approach offered
a good balance between computational support for safe statistical analysis and efficiency.
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2.9.8 Security Evaluation

In Table 2.3, we compare the aspects of protection capability, model accuracy, scheme
efficiency, model robustness, scalability, and generalization for different methods.

Scheme Protection Precision Efficiency Robustness Scalability Generalizability Ref.
Anomaly
Detection medium high high medium high low [10]

Data medium high medium low high high [4]
Differential
Privacy high low high high high high [12]

Homomorphic
Encryption high high low high low high [26]

Sanitization high high low medium high medium [14]
Secure

Multiparty
Computing

high high medium high low medium [5]

Trusted
Execution En-
vironments

medium high high medium low high [27]

Tableau 2.3: The horizontal comparison of security solutions.

AD, TEE, and DS cannot defend against internal malicious nodes in terms of system
security. The related methods based on perturbation and cryptography provide strong
theoretical security for hiding the computation’s intermediate variables. DP introduces
noise to hide important information, which has an impact on the accuracy of the final
model convergence. Under LDP, this accuracy loss is frequently intolerable. Due to its
streamlined algorithm, the DP-based FL has the lowest time consumption in terms of
efficiency performance. For various kinds of FL, the intermediate information masking
technique represented by DP has good generalizability. Contrarily, programs like AD
must be created especially for various types of FL and have specific bureaus.

When dealing with high-dimensional vectors in FL, which take a long time to encrypt
and decrypt, homomorphic encryption is typically ineffective. The robustness of AD and
DS to new attacks is poor, and they require timely dynamic updating. The performance
of FL in complex situations, such as widespread node distribution and unexpected user
dropouts, is indicative of its scalability. The participating nodes in HE and SMC are
computational as well as heavily computational and communication-burdened. It is im-
portant to note that HE and SMC are cryptographically provably secure, which has an
impact on how easily TFL can be interpreted. Training efficiency is drastically decreased
when there are many level nodes. The use of TEE is also constrained by a lack of available
local computing resources. Performance will significantly suffer if the training process is
carried out in the TEE environment. Consider Intel SGX as an illustration; it only per-
mits CPU operation, which restricts the effectiveness of the model (CNN, DNN), and is
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dependent on GPU training. Additionally, when the memory goes over the limit, there
will be a significant increase in paging overhead.

2.10 Application Of Privacy Preserving FL

2.10.1 Mobile Devices:

A secure aggregation protocol for PPFL in mobile devices was created by Bonawitz (2017).
The suggested protocol is robust to all users and operates on high-dimensional vectors.
It can manage situations where a user abruptly leaves a training session. In terms of
communication with security in an unauthenticated network model, it is also very effec-
tive. Additionally, using Tensorflow, Bonawitz (2019) improved their work and created
a scalable PPFL framework for mobile devices. The framework addresses a number of
problems, including erratic connectivity, halted operations, constrained device storage,
and insufficient computing power [9].

2.10.2 Medical Imaging

A PPFL study in medical imaging was suggested by Kaissis (2020). They want to address
the moral and legal concerns surrounding patient privacy when using artificial intelligence
in the field of medical imaging. Because there are currently no electronic medical records
that are standardized, strict requirements must be established. The suggested framework
protects patient privacy while using medical imaging from patients to train AI. They
examine the interaction of HE, Secure MPC, and DP with federated learning.
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Figure 2.15: Federated learning with privacy preserving in medical imaging.

2.10.3 Traffic Flow Prediction

A PPFL method for traffic flow prediction is the Federated Learning-based Gated Recur-
rent Unit Neural Network Algorithm (FedGRU) (Liu et al. 2020). It differs from other
centralized learning methods in that it employs a secure parameter aggregation mecha-
nism. FedGRU is able to avoid direct raw data sharing between participants thanks to
the federated learning algorithm. They use a random sub-sampling protocol to improve
scalability. This reduces the communication overhead, which is suitable for large-scale
systems. They also create a clustering method that combines the best global model with
spatial traffic flow data to improve prediction accuracy.

2.10.4 Healthcare

Grama (2020) used a healthcare dataset to propose a robust aggregation method in PPFL.
They ran experiments to see how DP and k-anonymity affected model accuracy. Typical
PPFL methods are sensitive to changes in the local model. It can be a barrier to developing
a strong global model. During the training process, their experiments revealed that the
proposed method successfully detected and discarded malicious local parties. They also
demonstrated that DP had no significant effect on the time spent during the aggregation
process.
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2.10.5 Android Malware Detection

Hsu (2020) proposed a PPFL system for detecting Android malware. To protect partic-
ipants’ privacy, the system employs static and meta-data analysis, as well as federated
learning. Edge computing is used in the system design to reduce latency and communi-
cation costs. They use an Android malware dataset to combine SVM and Secure MPC
in a PPFL system. The results of the experiments revealed that the proposed system
has comparable accuracy with the same amount of data as a traditional machine learning
system with no privacy preservation.

Figure 2.16: Distributed Detection of Malicious Android Apps While Preserving Privacy Using
Federated.

2.11 Trust in Federated Learning

Trust in federated learning refers to participants’ belief in the system and in one another.
This is significant because federated learning relies on participants sharing their data
with one another, and they must be confident that their data will be safe and not used
maliciously.

A variety of factors can contribute to trust in federated learning, including:
• System security: Participants must have confidence that their data will be safe from

unauthorized access.
• The system’s fairness: Participants must have confidence that the system will not

be used to discriminate against them.
• System transparency: Participants must be able to understand how the system works

and how their data is used.
A variety of mechanisms can be used to build and maintain trust, including:
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Security: The system should be designed to prevent unauthorized access to data.
This can be accomplished using a variety of techniques, including encryption and access
control.

Fairness: The system should be built to prevent discrimination. This can be accom-
plished by ensuring that all participants are treated equally and that the system does not
favor any one group of participants over another.

Transparency: Participants should be able to see the system. This implies that
participants should understand how the system works and how their data is used. [6].

The success of federated learning is dependent on trust. Participants will be hesitant
to share their data if they lack trust, and the system will not be able to reach its full
potential.

Figure 2.17: Trust-Augmented Deep Reinforcement Learning for Federated Learning Client
Selection.

2.12 Trust Models for Federated Learning

Federated learning trust models are intended to ensure that participants in a federated
learning system can trust one another. This is significant because federated learning relies
on participants sharing their data with one another, and they must be confident that their
data will be safe and not used maliciously.

36



CHAPTER 2. FEDERATED LEARNING

There are several trust models that can be used in federated learning. Among the
most common trust models are:

Centralized trust model: A single entity manages the trust relationships between
the participants in a centralized trust model. This entity can be a trusted third party, such
as a cloud service provider, or it can be one of the federated learning system’s participants.

Decentralized trust model: In a decentralized trust model, no single entity is in
charge of managing trust relationships. Instead, the participants manage their own trust
relationships. This can be accomplished through the use of a variety of techniques, such
as reputation systems or blockchain technology.

Hybrid trust model: A hybrid trust model is a hybrid of a centralized and a decen-
tralized trust model. A single entity is responsible for managing the trust relationships
between the participants in a hybrid trust model, but the participants also play a role in
managing the trust relationships.

The specific trust model used will be determined by the application’s requirements.
The general principles outlined above, on the other hand, can be used to implement trust
models in any federated learning setting.

Here are a few examples of trust models used in federated learning:
• Federated Learning Client Platform (FLC) by Google: FLC employs a centralized

trust model. The FLC server is in charge of managing the participants’ trust relationships.
To ensure data security and privacy, the FLC server employs a number of techniques such
as encryption, access control, and auditing.

• Private Set Intersection (PSI) by Apple: PSI employs a decentralized trust model.
PSI ensures data privacy by employing a cryptographic technique known as secret sharing.
PSI participants do not share their data, but they can still compute the intersection of
their sets.

TEEs (Trusted Execution Environments) are a type of hardware security module that
can be used to protect data privacy. TEEs can be used to implement a wide range of
trust models, including centralized, decentralized, and hybrid trust models.

A great deal of research is being conducted on trust models for federated learning.
Among the most active research areas are:

Security: Researchers are working on new techniques for ensuring data security in
federated learning. This includes the creation of new encryption methods, access control
mechanisms, and auditing methods.

Privacy: Researchers are working on new techniques for protecting data privacy
in federated learning. Developing new cryptographic techniques, data anonymization
techniques, and differential privacy techniques are all part of this.

Trustworthiness: Researchers are developing new metrics to assess the reliability of
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federated learning systems. This includes creating metrics to assess federated learning
systems’ security, privacy, and fairness.

Trust models are an essential component of federated learning. Federated learning
systems can use trust models to ensure that participants can trust one another and that
data is safe and secure.
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Implementation and Materials

3.1 Introduction

Over traditional machine learning methods, federated learning has several security advan-
tages. For starters, federated learning eliminates the need for data to be centralized on a
server, making it more difficult for attackers to access the data. Second, federated learning
can be used to train models on sensitive data, such as medical or financial information,
without jeopardizing the data’s privacy.

However, federated learning has some security issues. For starters, federated learning
necessitates communication between devices, which makes it vulnerable to attacks. Sec-
ond, federated learning can be vulnerable to data poisoning attacks, in which an attacker
manipulates data shared by devices to corrupt the model.

3.2 Overview

The score method is a technique for assessing the accuracy of federated learning models.
The score method computes the similarity between the model’s predictions and the ground
truth labels. The similarity is then used to compute a score that can be used to compare
the performance of various models.

The score method is a simple technique that can be used to assess the accuracy of
federated learning models. The score method is also a privacy-preserving technique, which
means that no sensitive data is required to be shared.

The model is trained using a dataset distributed across multiple devices. On the
test set, the model makes predictions. The predictions are compared to the labels on
the ground. The similarity between the predicted and true labels is calculated. A score
is calculated based on the similarity. The score is used to evaluate the performance of
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various models. The score method can be used to assess the accuracy of federated learning
models for a wide range of tasks such as classification, regression, and forecasting. The
score method is a privacy-preserving technique, which means that no sensitive data must
be shared. As a result, the score method is an appealing option for assessing the accuracy
of federated learning models in sensitive situations, such as healthcare and finance.

3.3 Propesed Approach

The ScoTrust is a technique for increasing the security of a model. It works by giving
each client a score based on their behavior. Clients with a high score are thought to be
trustworthy, while those with a low score are thought to be untrustworthy. When making
predictions, the model only takes into account data from reliable clients. [28].

ScoTrust is useful for defending against various attacks, including the Byzantine at-
tack. A Byzantine attack occurs when a group of malicious clients collaborate to disrupt
the training process. By identifying and removing malicious clients from the training
process, the score method can help to defend against this attack. [22].

Scotrust is a simple and effective way to improve a model’s security. It is simple to
set up and can be used to defend against a wide range of attacks.

ScoTrust can be used in a fraud detection model to identify and remove fraudulent
transactions.

ScoTrust can be used in a spam filtering model to identify and remove spam emails.
ScoTrust in a credit scoring model can be used to identify and remove risky borrowers.
ScoTrust can be used to improve a model’s security by detecting and removing mali-

cious clients. Malicious clients are those who attempt to disrupt the training process or
influence the model’s predictions. By assigning a low score to malicious clients, the score
method can assist in identifying them. Clients with low scores are either removed from
the training process or have their predictions ignored. [27].

3.4 Model

Federated learning is a machine learning method in which multiple devices collaborately
train a shared model while storing their data locally. As a result, it is a more secure and
privacy-protecting alternative to traditional machine learning methods, in which data is
centralized on a server.

The score method is a technique for identifying and eliminating Byzantine clients in
a federated learning model. Byzantine clients are malicious clients who provide incorrect
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or incomplete data to the model on purpose. The score method works by assigning a
score to each client based on the quality of their data and their behavior. Clients with
low scores are more likely to be Byzantine and are excluded from the model.

The combination of federated learning and the score method can significantly improve
machine learning model security and privacy. Because federated learning keeps data local,
attackers have a more difficult time accessing it. The score method can then be used to
identify and remove Byzantine clients, increasing the model’s security.

Some of the advantages of using the score method to improve the security of federated
learning models are as follows:

Increased security: The scoring technique can identify and remove Byzantine clients,
increasing the model’s security.

Improved accuracy: Excluding Byzantine clients, which can offer erroneous or in-
sufficient data, the scoring technique can help to increase the model’s accuracy.

Reduced data leakage: Federated learning keeps data local, potentially lowering
the risk of data leakage.

Increased privacy: Because federated learning keeps data local, it can increase data
privacy.

Overall, the score technique is an effective method for enhancing the security and
privacy of federated learning models.

3.5 Datasets

we use the MNIST and CIFAR-10 as a datasets:
MNIST: is a collection of handwritten digits. It is a widely used dataset for training

and assessing machine learning models. The collection contains 60,000 handwritten digit
images, each 28x28 pixels in size. The photos are divided into two groups: 50,000 for
training and 10,000 for testing.

CIFAR-10: is a collection of photographs of items. It is yet another well-known
and popular dataset for training and assessing machine learning models. The collection
contains 60,000 photos of ten different object classes, each measuring 32x32 pixels. The
photos are divided into two groups: 50,000 for training and 10,000 for testing.

MNIST and CIFAR-10 are both relatively tiny datasets, making them simple to work
with and evaluate. They are also well-balanced datasets, which means that each class
is similarly represented. As a result, they are perfect for training and assessing machine
learning models.

MNIST and CIFAR-10 are very easy datasets in addition to being small and well-
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balanced. As a result, they are great for beginners who are just getting started with
machine learning. They are also an excellent alternative for more experienced machine
learning practitioners looking to put new algorithms and strategies to the test.

Finally, MNIST and CIFAR-10 are open source datasets. This means that anyone can
use them without restriction. This makes them an excellent alternative for master’s thesis
studies because it allows students to share their findings with the larger machine learning
community.

Here are some of the benefits of using MNIST and CIFAR-10 as a datasets for our
research:

• They are widely known and used datasets. This means that there is a lot of study on
these datasets available, which might assist students in getting started with their research.

• The datasets are relatively tiny. This makes them simple to work with and analyze,
which is useful for students learning about machine learning for the first time.

• The datasets are well-balanced. This ensures that each class in the dataset is repre-
sented equally, which is critical for training and testing machine learning models.

• They are freely accessible datasets. This means that students will be able to share
their findings with the larger machine learning community.

Overall, MNIST and CIFAR-10 are great datasets for machine learning master thesis
studies. They are well-known, commonly utilized, modest in size, well-balanced, and
freely available. As a result, they are suitable for both novice and experienced machine
learning practitioners. [29]

3.6 Framework

TensorFlow Federated (TFF) is an open-source framework for machine learning and other
computations on decentralized data. TFF has been developed to facilitate open research
and experimentation with Federated Learning (FL), an approach to machine learning
where a shared global model is trained across many participating clients that keep their
training data locally. For example, FL has been used to train prediction models for mobile
keyboards without uploading sensitive typing data to servers.

TFF enables developers to simulate the included federated learning algorithms on
their models and data, as well as to experiment with novel algorithms. Researchers will
find starting points and complete examples for many kinds of research. The building
blocks provided by TFF can also be used to implement non-learning computations, such
as federated analytics. TFF’s interfaces are organized in two main layers:

Federated Learning (FL) API This layer offers a set of high-level interfaces that al-
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low developers to apply the included implementations of federated training and evaluation
to their existing TensorFlow models.

Federated Core (FC) API At the core of the system is a set of lower-level inter-
faces for concisely expressing novel federated algorithms by combining TensorFlow with
distributed communication operators within a strongly-typed functional programming
environment. This layer also serves as the foundation upon which we’ve built Federated
Learning.

TFF enables developers to declaratively express federated computations, so they could
be deployed to diverse runtime environments. Included with TFF is a performant multi-
machine simulation runtime for experiments [30].

3.7 Python

In my thesis I use Python, a high-level general-purpose programming language widely used
in data science and for the production of deep learning algorithms. This brief tutorial
introduces Python and its libraries.

Figure 3.1: Python

3.8 Libraries

Our model needs to perform better than this. I am using the following libraries: Pandas,
Numpy, Keras, Matplotlib, and TensorFlow

3.8.1 Tensorflow

TensorFlow est une plate-forme Open Source de bout en bout dédiée au machine learning.
Elle propose un écosystème complet et flexible d’outils, de bibliothèques et de ressources
communautaires permettant aux chercheurs d’avancer dans le domaine du machine learn-
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ing, et aux développeurs de créer et de déployer facilement des applications qui exploitent
cette technologie [30].

Figure 3.2: Tensorflow

3.8.2 Pandas

Pandas is an open-source Python library that uses strong data structures to provide high-
performance data manipulation and analysis. Pandas is derived from the term Panel Data,
which is an Econometrics from Multidimensional data. Wes McKinney, a developer, began
developing pandas in 2008 in response to a demand for a high-performance, versatile tool
for data analysis. Python was mostly used for data munging and preparation prior to
Pandas. It made very little contribution to data analysis. Pandas solved this issue. We
can use Pandas to do five common phases in data processing and analysis, independent
of data origin: load, prepare, manipulate, model, and analyze. Python with Pandas is
utilized in a variety of academic and commercial disciplines such as finance, economics,
statistics, analytics, and so on. [31].

Figure 3.3: Pandas

3.8.3 Numpy

This library, whose name means numerical Python, constitutes the core of many other
Python libraries that have originated from it. Indeed, NumPy is the foundation library
for scientific computing in Python since it provides data structures and high-performing
functions that the basic package of the Python cannot provide. In fact, NumPy defines a
specific data structure that is an N-dimensional array defined as ndarray. [32]
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Figure 3.4: Numpy

3.8.4 Keras

Keras is a deep learning API written in Python, running on top of the machine learning
platform TensorFlow. It was developed with a focus on enabling fast experimentation.
Being able to go from idea to result as fast as possible is key to doing good research [33].

Figure 3.5: Keras

3.8.5 Matpotlib

This package is the Python library that is currently most popular for producing plots and
other data visualizations in 2D. Since data analysis requires visualization tools, this is the
library that best suits this purpose. [33]

Figure 3.6: Matpotlib

3.9 Summary

In federated learning, the Score method is a technique for locating Byzantine clients.
Malicious clients are known as byzantine clients because they purposefully send the server
inaccurate or altered data. The Score method assigns each client a score based on a
variety of considerations, such as the client’s reputation, the number of samples provided,
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the consistency of updates, and participation in training rounds. Low-scoring clients can
be taken out of the training set because they are more likely to be Byzantine clients.

Several datasets, including MNIST, CIFAR, and TFF, have been used to evaluate the
Score method. On these datasets, it has been demonstrated that the ScoTrust works well
for identifying Byzantine clients.

In federated learning, the ScoTrust is a promising strategy for locating Byzantine
clients. The Score method is made simple to use because it is implemented in the Ten-
sorFlow Federated (TFF) library.
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Chapter 4

Experimental Results

4.1 Introduction

In this chapter, the results obtained after implementing the proposed models are pre-
sented. Then evaluate the results.

4.2 Confusion matrix and Test Accuracy

A score method is a methodology used in federated learning to evaluate the performance
of a federated learning model. To evaluate the model, score techniques often employ a
number of metrics such as accuracy, precision, and recall.

The specific scoring mechanism utilized will be determined by the application’s re-
quirements. The broad principles discussed below, on the other hand, can be applied to
build score methodologies in any federated learning scenario.

Here are some of the most frequent federated learning score methods:
• Accuracy: Accuracy is the percentage of predictions that are correct. It is calcu-

lated as follows:
Accuracy = (TP + TN) / (TP + TN + FP + FN)
Where:
TP: True Positives
TN: True Negatives
FP: False Positives
FN: False Negatives
• Precision: Precision is the percentage of positive predictions that are correct. It is

calculated as follows:
Precision = TP / (TP + FP)
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•Recall: Recall is the percentage of actual positives that are correctly identified. It
is calculated as follows:

Recall = TP / (TP + FN)
• F1 Score: The F1 score is a weighted harmonic mean of precision and recall. It is

calculated as follows:
F1 Score = 2 * (precision * recall) / (precision + recall)
The F1 score is a good measure of overall model performance, as it takes into account

both precision and recall.
In addition to the score methods mentioned above, there are a number of other score

methods that can be used to evaluate federated learning models. The specific score
method that we will use in our application all the metrics we mentioned above.

4.3 Experimental

Our ScoTrust achieves the defense goals:
Identify Byzantine clients: The ScoTrust can be used to identify Byzantine clients

by computing a score for each client based on their model parameters’ similarity to the
server’s model parameters. Clients with high scores are more likely to be Byzantine and
are thus excluded from the training set.

Reduce the impact of Byzantine assaults: By excluding Byzantine clients from
the training set, the scoring approach can be used to reduce the impact of Byzantine
attacks. This can aid in improving the model’s accuracy and preventing it from being
compromised by bad actors.

Improve federated learning robustness: The score approach can be used to im-
prove federated learning robustness by making it more difficult for hostile actors to in-
terrupt the training process. This can help to ensure that, even in the face of threats,
federated learning can be utilized to train accurate and dependable models.

4.3.1 No Attack

First, when there is no attack, our ScoTrust has Accuracy similar to FedAvg and FLTrust.Using
MNIST datasets, The accuracy of ScoTrust is 95, higher than The FedAvg.

FedAvg: FedAvg [23] was proposed by Google. FedAvg computes the average of the
clients’ local model updates as the global model update, where each client is weighted by
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Figure 4.1: Accuracy under no attacks

its number of training examples. The local training dataset size on the client and the total
number of training examples. FedAvg is the state-of-the-art FL method in non-adversarial
settings. However, the global model in FedAvg can be arbitrarily manipulated by a single
malicious client.

FLTrust: FLTrust [2] is that the server itself collects a clean small training dataset
(i.e., root dataset) to bootstrap trust in FLTrust. Our extensive evaluations on six datasets
show that FLTrust with a small root dataset can achieve Byzantine robustness against
a large fraction of malicious clients. In particular, FLTrust under adaptive attacks with
a large fraction of malicious clients can still train global models that are as good as the
global models learned by FedAvg under no attacks.

4.3.2 with Attack

As you can see, the accuracy and precision both decrease at the 20% of Byzantine clients
for both datasets, this is because the attacks were able to corrupt the data, preventing
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(a) MNIST (b) CIFAR

the model from learning anything.

Tableau 4.1: Metrics under different attacks

Attack Krum attack Trim attack scalling attack
Accuracy 35% 42% 38%
Precision 40% 33% 37%

4.3.3 ScoTrust

Next, we simulate different attacks (Byzantine attacks) we have mentioned in Chapter 2
Under the section of Threats in FL. Achieving our first goal.

Tableau 4.2: Impact of the fraction of malicious clients

Attack 10% 20% 30% 60% 80% 95%
Krum attack 91 89 88 87 25 23
Trim attack 92.1 89.2 88.4 87.5 87 22
Scalling attack 91.4 89 88.3 87.6 25 23.5

50



CHAPTER 4. EXPERIMENTAL RESULTS

(a) Trim Attack - MNIST (b) Trim Attack - CIFAR

(c) Krum Attack - MNIST (d) Krum attack - CIFAR

Figure 4.3: Impact of the fraction of malicious clients on accuracy - precision of different FL
methods under different attacks

Impact of the number of malicious clients: Figure 4.3 shows the accuracy -
precision rates of ScoTrust under different attacks on MNIST, when the fraction of mali-
cious clients increases from 0 to 80% Accuracy and Precision are both still high above 90.
Therefore ScoTrust cannot be applied when the fraction of malicious clients exceeds 80%
because the number of local model updates removed by ScoTrust is twice the number of
malicious clients.ScoTrust shows results only when the percentage of Byzantine clients is
under 80%.

Impact of the measure of threshold:
Fig 4.4 shows the Accuracy - Precision under Krum attack for both MNIST and CIFAR

datasets, we observe that the metrics we used reach 90 when the percentage of malicious
clients went to 85% because we set the threshold of ScoTrust up to 0.8.
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(a) (b)

Figure 4.4: Impact of high threshold in the training set

4.3.4 Discussion

ScoTrust vs. False positive:
False positives can be reduced by using a more robust scoring method. A more robust

scoring method would make it less likely that a legitimate customer would be identified as
a Byzantine customer. There are many ways to make the evaluation method more robust.
Use more functions or more sophisticated algorithms to calculate the score. By tracking
model accuracy, you can monitor false positives. If your model accuracy drops signifi-
cantly, your training set may contain false positives. By monitoring model accuracy, you
can identify and fix false positives before they become serious problems. Misinformation
can be reduced by using other methods to identify Byzantine customers.

ScoTrust vs False negative:
Using a more robust scoring method can reduce false negatives. With a more robust

scoring method, Byzantine customers are less likely to be identified as legitimate cus-
tomers. There are many ways to make the evaluation method more robust. B. Use more
functions or more sophisticated algorithms to calculate the score. False negatives can be
monitored by tracking model accuracy. If the accuracy of your model drops significantly,
your training set may contain false negatives. By monitoring model accuracy, you can
identify and fix false negatives before they become serious problems. Using other methods
to identify Byzantine clients can reduce false negative results. The scoring method is not
the only way to identify Byzantine clients. Other methods can also be used to identify
Byzantine clients, such as monitoring client behavior during training. Using multiple
methods to identify Byzantine customers can reduce the chance of false positives.
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4.3.5 Comparison

We observe that, under existing attacks, FLTrust can tolerate up to 90% of malicious
clients. Specifically, FLTrust under these attacks still achieves Accuracy rates similar to
ScoTrust without attacks when up to 90% of the clients are malicious. However, existing
Byzantine robust FL methods can tolerate much less malicious clients.

(a) MNIST (b) CIFAR

Figure 4.5: Comparison between different FL method with different Datasets

Trimmed Mean (Trim-mean) [34]: Trimmed mean is a coordinate-wise aggrega-
tion rule that considers each model parameter individually. For each model parameter,
the server collects its values in all local model updates and sorts them. Given a trim
parameter, the server removes the largest k and the smallest k values and then computes
the mean of the remaining values as the value of the corresponding parameter in the
global model update. The trim parameter k should be at least the number of malicious
clients to make Trim-mean robust. In other words, Trim-mean can tolerate less than 50%
malicious clients.
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4.4 Code Source

Figure 4.6: Snippet Code of ScoTrust

Our ScoreMethod class has the following methods:
init: This method initializes the class with a threshold. The threshold is used to

determine which clients are Byzantine.
calculatescores: This method calculates a score for each client. The score is a

measure of how likely the client is to be Byzantine.
identifybyzantineclients: This method identifies Byzantine clients. A client is

Byzantine if its score is below the threshold.
removebyzantineclients: This method removes Byzantine clients from a list of

clients.
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Our ScoTrust class uses the following features to calculate a score for each client:
• The number of times the client has participated in training
• The consistency of the client’s data
• The number of samples the client has provided
• The client’s reputation

4.5 Conclusion

In federated learning, the Score method is a promising strategy for locating Byzantine
clients. Although it is a quick and easy method to identify Byzantine clients, there are
some drawbacks, including accuracy based on data quality, computational cost, and vul-
nerability to attacks. The Score method can be enhanced in a number of ways, including
by using better data quality, more effective algorithms, and attack defenses. The Score
method can be used to increase the security of federated learning by addressing these
issues and combining various techniques.

By locating and removing Byzantine clients from the network, the Score method can
be used to increase network security. Malicious clients are known as byzantine clients
because they purposefully send the server inaccurate or altered data. As a result, the
model’s accuracy may suffer during the training process. The Score method can assist in
ensuring that the model is trained on accurate data and is not vulnerable to malicious
actors by removing Byzantine clients. The Score method is an effective tool for federated
learning security enhancement. Organizations can increase the security and accuracy of
their machine learning models by employing the Score method.

The Score method (ScoTrust) is an approach that shows promise, but it is still be-
ing refined. To increase the Score method’s precision, security, and effectiveness, more
research needs to be done. To increase the overall security of federated learning systems,
the Score method can be used in conjunction with other security measures like access con-
trol and encryption. Organizations considering using federated learning to train machine
learning models on sensitive data can benefit from using the Score method.
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General Conclusion

The score method is a promising strategy for federated learning’s Byzantine client
identification. Before the score method can be widely used, there are still a few issues
that need to be resolved.

One problem is that the quality of the data can have an impact on how accurate the
score method is. The score method may not be able to accurately identify Byzantine
clients if the data is noisy or lacking. The score method’s potential cost in computation
is another drawback. For large datasets, the server must compute a score for every client,
which can take some time. Finally, there is a risk of attacks using the score method.
Malicious clients may attempt to manipulate the system by sending phony data or by
manipulating the score calculation.

To solve these issues, a variety of research avenues could be pursued. One approach
is to create more robust scoring systems that are less vulnerable to attacks. Another
approach would be to create ways for automatically recognizing and eliminating Byzan-
tine clients from the training set. Finally, researchers could devise ways to reduce the
processing cost of the score approach.

Exploring these research avenues may lead to the development of a more accurate,
secure, and efficient scoring technique. As a result, federated learning may become a
more appealing alternative for training machine learning models on sensitive data.

Creating more robust scoring systems: Researchers could create scoring algorithms
based on machine learning or game theory. These algorithms could be built to be more
resistant to malicious client attacks.

Byzantine client detection and removal: Researchers could create ways for automati-
cally detecting and removing Byzantine clients depending on their behavior. These tech-
niques could be used to eliminate Byzantine clients from the training set before they
wreak havoc on the model.

Researchers could devise strategies to reduce the computational cost of the scoring
approach. This could be accomplished by the use of more efficient methods or by paral-
lelizing the calculation.
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Researchers might create a score method that is more precise, safe, and effective by
addressing these issues. As a result, using federated learning to train machine learning
models on sensitive data may become more appealing.
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