
Ministry of Higher Education and
Scientific Research University of Kasdi

Merbah Ouargla Faculty of New
Technologies of Information and
Communication Department of

Computer Science and Information
Technologies

ACADEMIC MASTER

Domain: Mathematics and Computer Science

Faculty: Computer Science

Specialty: Industrial Computing

PARALLEL METAHEURISTIC FOR
SEMANTIC BASED QUERY

EXPANSION

Evaluation date:
18/06/2023

Mrs BENKHROUROU CHAFIKA President UKM Ouargla
Mr.CHRIET ABDELHAKIM Examiner UKM Ouargla
Mr BEKKARI FOUAD Supervising UKM Ouargla

Presented by:
AYACHI NOUR ELHOUDA

GHOULA HADJER

Year University: 2022/2023

Acknowledgements

First and foremost, praises and thanks to Allah, the almighty, for his showers of
blessings throughout our research and its successful completion.

We would like to acknowledge and give our warmest thanks to our supervisor
Mr.Bekkari Fouad who made this work possible, his guidance and advice carried us
through all stages of writing our project. We would like to thank Mrs.Benkhrourou
Chafika for having honored us by chairing the defense jury, and Mr.Chriet Abd
Elhakim for accepting to examine this work.

We would like also to give special thanks to our family and friends as a whole
for their continuous support and understanding when undertaking our research and
writing our project, your prayers for us were what sustained us this far.

Abstract

Word mismatch problem between the user’s query and the retrieved search results
is one of the biggest problems facing the information retrieval(IR) field. Due to
this problem, several techniques have been proposed such as query expansion(QE),
which improves the IR performance by giving a more suitable extended query for
users in comparison to the original query. In this work, we are looking for the
best combination of the words in the extended queries using the semantic-based
query expansion approach “ConceptNet”. To find these combinations we applied a
low-level parallel metaheuristic Iterated local search(ILS) and a high-level parallel
metaheuristic Accelerated particle swarm optimization(APSO) with Local search.

Keywords: Information retrieval, Query expansion, ConceptNet, Iterated local
search(ILS),Accelerated particle swarm optimization(APSO), Parallel metaheuristic.

�
	
jÊÓ

�
èYg@ð

�
éªk.

Q���ÖÏ @
�
IjJ. Ë @ l .

�

'A
�
J
	
Kð ÐY

	
j
�
J�ÖÏ @ ÐCª

�
J�@

	á�
K.
�
HAÒÊ¾Ë@

�
�K. A¢

�
� ÐY«

�
éÊ¾

�
�Ó Yª

�
K

h@Q
�
�
�
¯@ Õç

�
' ,

�
éÊ¾

�
�ÖÏ @ è

	
Yë I. �.��. .

�
HAÓñÊªÖÏ @ X @XQ

�
��@ ÈAm.

× ék. @ñ
�
K ú

�
æË @

�
HC¾

�
�ÖÏ @ Q�.»

@ 	áÓ

ÈC
	
g 	áÓ

�
HAÓñÊªÖÏ @ ¨Ag.

Q���@ Z @X

@ 	á�m�'
 AÜØ , ÐCª

�
J�B@ ©J
�ñ

�
K É

�
JÓ

�
HAJ

	
J
�
®
�
JË @ 	áÓ YK
YªË@

, ÉÒªË@ @
	
Yë ú

	
¯ . ú

Î�

B@ ÐCª

�
J�BAK.

�
é
	
KPA

�
®Ó

	á�
ÓY
	
j
�
J�ÒÊË

�
éÓZCÓ Q��»

@ ©�ñÓ ÐCª

�
J�@ ZA¢«@

i. î
	
E Ð@Y

	
j
�
J�AK.

�
éª�ñÖÏ @

�
H@PA�

	
®
�
J�B@ ú

	
¯

�
èXP@ñË@

�
HAÒÊ¾Ë@ 	áÓ l .

�'

	QÓ É

	
�
	
¯

@ 	á«

�
Ij�.

	
K 	ám�

	
'

A
	
JÔ
�
¯ ,

�
HAJ. J
»

Q��Ë @ è
	
Yë úÎ« Pñ

�
JªÊË ."

�
HA

	
K

�
I�.�

	
�ñ»

�
@

�
éËBYË@ úÎ« Õç

'A
�
®Ë @ ÐCª

�
J�B@ ©J
�ñ

�
K

ð PQº
�
JÖÏ @ ú

ÎjÖÏ @

�
IjJ. Ë @ ú

	
¯ É

�
JÒ
�
JÖÏ @ øñ

�
J�ÖÏ @

	
�

	
®
	
j
	
JÓ ø

	P@ñ
�
JÓ ½J

�
���
PñëA

�
JJ
Ó

�
�J
J.¢

�
�K.

ú

ÍA« ø

	P@ñ
�
JÖÏ @ ¨PA�

�
�ÖÏ @

�
HAÒJ
�m.

Ì'@ H. Qå�
	á�
�m�

�
' ú

	
¯ É

�
JÒ
�
JÖÏ @ øñ

�
J�ÖÏ @ ú

ÍA« ½J

�
���
PñëA

�
JJ
Ó

. ú

ÎjÖÏ @

�
IjJ. Ë @ ©Ó øñ

�
J�ÖÏ @

	á�
�m�
�
' ,PQº

�
JÖÏ @ ú

ÎjÖÏ @

�
IjJ. Ë @ , ÐCª

�
J�B@ YK
YÖ

�
ß , ÐCª

�
J�B@ ¨Ag.

Q���@ :
�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

�
HAÒJ
�m.

Ì'@ H. Qå�

Résumé

Le problème de correspondance de mots entre la requête de l’utilisateur et les
résultats de recherche récupérés est l’un des plus grands problèmes auxquels fait
face le champ de recherche d’information(RI). En raison de ce problème, plusieurs
techniques ont été proposées telles que l’expansion de requête (ER), qui améliore la
performance IR en donnant une requête étendue plus appropriée pour les utilisateurs
par rapport à la requête originale. Dans ce travail, nous recherchons la meilleure com-
binaison de les mots dans les requêtes étendues en utilisant l’approche d’expansion
de requête sémantique ConceptNet. Pour trouver ces combinaisons, nous avons ap-
pliqué une métaheuristique parallèle de bas niveau recherche locale itérée(ILS) et
une métaheuristique parallèle de haut niveau Optimisation accélérée des essaims de
particules(APSO) avec le Recherche Locale.

Les mots clés:Recherche d’informations, expansion de la requête, ConceptNet,
recherche locale itérée (ILS), optimisation accélérée des essaims de particules (APSO),
métaheuristique parallèle.

Contents

General Introduction . 6

1 State Of The Art 9
1.1 Introduction . 10
1.2 Information Retrieval . 10

1.2.1 Information Retrieval Definition 10
1.2.2 Information Retrieval Components 11
1.2.3 Information retrieval system 12
1.2.4 Information Retrieval Applications 15

1.3 Query Expansion . 15
1.3.1 Query Expansion Definition : 15
1.3.2 Query Expansion Models . 16
1.3.3 Query Expansion Process : . 16
1.3.4 Query Expansion Approaches 18
1.3.5 Semantic Query Expansion . 20

1.4 Problematic and Proposition . 22
1.5 Conclusion . 23

2 Metaheuristic and Parallelization 24
2.1 Introduction . 25
2.2 Metaheuristic . 25

2.2.1 Metaheuristic Definition . 25
2.2.2 Exploration and Exploitation 26
2.2.3 Metaheuristic Classification 26

2.3 Hybridization . 30
2.3.1 Hybridization Definition . 30
2.3.2 Hybridization Classification 30

2.4 Parallelization . 34
2.4.1 Parallel Architecture . 34

3

CONTENTS

2.4.2 GPU Computing . 34
2.4.3 Message Passing Interface(MPI) 35
2.4.4 Parallel Metaheuristic . 36
2.4.5 Parallel Metaheuristic Classification 37

2.5 Iterated Local Search . 38
2.5.1 Iterated Local Search Definition 38

2.6 Accelerated Particle Swarm Optimization 41
2.6.1 APSO Definition . 41
2.6.2 APSO Algorithm . 42

2.7 Conclusion . 43

3 Experimental and Results 44
3.1 Introduction . 45
3.2 Implementation . 45

3.2.1 Programming Language . 45
3.2.2 MPI4Py . 46
3.2.3 CUDA Threading Model . 46
3.2.4 Dataset . 47

3.3 The system implementation steps . 47
3.3.1 Evaluation Metrics . 47
3.3.2 Experimental . 48
3.3.3 Results . 56

3.4 Conclusion . 57
General Conclusion . 58

4

List of Figures

1.1 Informatin retrieval components . 11
1.2 Indexing process . 13
1.3 Query expansion working model . 17

2.1 Ant Colony . 28
2.2 Genetic Algorithm . 29
2.3 Classification of hybrid metaheuristics in terms of design issues 31
2.4 GPU parallelization strategies for metaheuristics 37
2.5 Iterated Local Search . 39
2.6 ILS Psuedo Code . 40
2.7 Psudo code of APSO algorithm . 42

3.1 CUDA threads model . 47
3.2 Implementation System . 49
3.3 Document stemmed list . 50
3.4 Query stemmed list . 50
3.5 Document ifd . 51
3.6 Document vectorizing . 51
3.7 Query vectorizing . 52
3.8 Best Extended Part . 52
3.9 Generate neighbors . 52
3.10 Neighberhood Dictionary . 53
3.11 ILS-GPU . 54
3.12 APSO with Local Search -MPI . 55

5

LIST OF FIGURES

General Introduction

Nowadays, informations are easily accessible on the Internet, and we can access it
whenever we want. With the growth and availability of information, it became chal-
lenging to store, organize, and retrieve them. An ever-increasing volume of data has
made classical information retrieval systems suffer from the problem of incompati-
bility between retrieved documents and the user’s query. To remedy this problem,
many techniques have emerged, such as query expansion, that aim to enhance the
effectiveness of information retrieval systems.

Information retrieval is the process of retrieving documents that are related to a
query entered by the user from a large amount of data. Getting the appropriate
information that is compatible with what the user wants in a better and faster has
therefore become an essential problem in this field due to the abundance and diversity
of information available on the web.

Due to this problem, query expansion has been proposed to solve it. Query expan-
sion technique is one of the promising approaches to improve the performance and
reliability of information retrieval system, which means adding one or more suitable
expansion keywords in comparison to the initial queries given by the user, the more
appropriate the added words are, the greater the opportunity to retrieve the docu-
ments that are related to the initial query, query expansion strives to improve recall
and precision, leading to more accurate search results.

Although query expansion helps in improving the performance of information re-
trieval, it’s not enough. The word-mismatch problem between what the user wants
and what the system offers him is one of the biggest problems facing this field. So the
researchers used other techniques to improve the performance of query expansion.

Metaheuristics are techniques that have shown their effectiveness in solving various
complex problems in the least amount of time and at the lowest cost, such as Particle
Swarm Optimization(PSO), Genetic Algorithm(GA), Fireworks Algorithm(FWA),
and Iterated Local Search(ILS).

We will deal with the problem of query expansion as a combinatorial problem
using two algorithms ”Accelerated particle swarm optimization (APSO) with Local
Search ” using MPI implementation and ”Iterated local search (ILS)” with GPU
implementation to solve this problem, each one of them proved their effectiveness

6

in solving many other problems. In this work, we have chosen to use the semantic-
based query approach “ConceptNet”. ConceptNet has been widely used in document
searches for identifying indexing terms, that have similar concepts to the user’s query,
these terms can be used therefore to augment the initial query.

Our memory is organized into three chapters, beginning with the general intro-
duction and ending with a general conclusion.

The three chapters are titled respectively and detailed as follows:

In the first chapter we draw a state of the art, the first section aim to present the
field of IR we start by introducing it and showing its importance, then we talk about
IR system and their models and gave some examples of IR applications.

Then in the second section we introduce Query Expansion, starting with its defi-
nition and models, then we talked about the QE process and its approaches, and we
finished it with the Semantic Query expansion.

In the second chapter, we divide it into three sections, the first section is about
metaheuristics, and we looked at its definition and classification. In the second
chapter, we talked about hybridization’s definition and classification.

The last section includes parallelism architecture, and also we define GPU, MPI,
parallel metaheuristic, and parallel classification.

Finally, in the third chapter, we presented our experimental environment, the used
tools, the implementation stage of the system, and presents the obtained results as
well as the analysis of the results.

Motivation

Our inspiration for this work was the existence of parallel machines that would
help us to improve our approach, the existence of the programming technology such
as GPU and MPI, that help us to develop parallel applications that would be able
to execute in parallel and exploit more search spaces.

the strength of metaheuristics in solving many combinatorial problems was an
inspiration for this work too. For high-dimensional problems, they become limited
in terms of effectiveness and runtime, that’s why we want to use two techniques which
are parallelization, which will help us to reduce execution time, and hybridization
which allow us to obtain better high-quality solutions.

In this work we used Iterated local search(ILS) and Accelerated particle swarm op-
timization(APSO) with local search, these metaheuristics proved their effectiveness
in solving many difficult problems and gave good results.

Chapter 1

State Of The Art

9

CHAPTER 1. STATE OF THE ART

1.1 Introduction

People have known how crucial it is to archive and find information for thousands of
years. With the development of computers, it became possible to store vast amounts
of information; and obtaining valuable information from such collections became an
essential need; the field of Information Retrieval(IR) arose out of this necessity in
the 1950s.

At this time, there is a huge amount of data available on the internet and it is
growing exponentially, finding the right information that we are needing became a
challenge because of the huge diversity and availability of information on the web, we
still struggle to find information due to several reasons such as; the retrieved search
results are not that we are looking for, or the search queries are too short because
when searching we only enter the least possible of the word(average size of a web
search is 2.4 words). To overcome this problem, query expansion has been proposed.

In this chapter, we started by giving a brief introduction then we defined Informa-
tion retrieval, its components, and the IR system and give some of IR applications.
In the last section of this chapter, we defined QE, mentioning its models and process,
then we talked about its approaches

We conclude this chapter with a conclusion, we mentioned the problem we are
dealing with and propose a solution which will be treated as an introduction for the
second chapter

1.2 Information Retrieval

1.2.1 Information Retrieval Definition

Information retrieval is mainly seen as a branch of computer science concerned
with the representation, storage and access of information, and it has pertained to
the structuring and retrieval of information from massive database sources.[1]

The goal of information retrieval (IR) is to find results that are relevant to the
user’s needs in response to a user’s query.[2] The challenge is how to achieve a good
match between these two in order to ensure that the information presented is rele-
vant to the user who made the original query. This process involves several stages

10

CHAPTER 1. STATE OF THE ART

beginning with representing data and concluding with returning relevant information
to the user.[1]

1.2.2 Information Retrieval Components

Figure 1.1: Informatin retrieval components

The first component, as seen in figure , is crawling. The crawler component
searches for and retrieves documents for the search engine. Crawlers come in a
number of shapes and sizes, but the most common is the standard web crawler,
which follows connections on internet pages to find and download new pages. As a
beginning point for site search, a web crawler can be restricted to a specific site, such
as a college.[2]

The second component, known as indexing, is the technique for representing docu-
ments. It essentially means that the system produces a document index. As a result,
the query representation process is discovered. During this stage, the user creates a
query to retrieve relevant information. Following that, the system searches the index
for pages relevant to the query and presents them to the user, which is what we call
ranking. The final step is for users to submit relevant feedback to the search engine.
[2]

11

CHAPTER 1. STATE OF THE ART

1.2.3 Information retrieval system

An information retrieval (IR) system is a collection of algorithms that makes it
easier for presented documents to be relevant to search queries, which are generally
text documents but may also include multimedia. Simply said, it helps users discover
the information they need by sorting and ranking documents according to their search
terms, there are many examples like Google, Bing, Yahoo...[3]

To ”find relevant information or a document that satisfies user information needs”
is the primary objective of information retrieval systems (IRS), the procedures that
IRSs typically use to accomplish this purpose are as follows:[1]

1. During the indexing process, document contents are summarized.

2. All stop words and common words are eliminated throughout the filtering pro-
cess.

3. The core function of IRS is searching, there are several methods for finding
documents that suit users’ needs.

There are three basic processes an information retrieval system has to support:
the representation of the content of the documents, the representation of the user’s
information need, and the comparison of the two representations.

Representing the documents is usually called the indexing process. The process
takes place offline, that is, the end user of the information retrieval system is not
directly involved. The indexing process results in a representation of the document.
The process of representing their information need is often referred to as the query
formulation process. The resulting representation is the query. Comparing the two
representations is known as the matching process. Retrieval of documents is the
result of this process.[1]

Indexing stage

An essential step in Information Retrieval (IR) systems is indexing. Since it is
the first stage in IR and helps in effective information retrieval, it forms the core
functioning of the IR process. The documents are reduced to their informative terms
through indexing. It offers a mapping of the terms to the corresponding documents
where they are used.[4]

12

CHAPTER 1. STATE OF THE ART

Figure 1.2: Indexing process

The four stages of indexing include content specification, tokenization of docu-
ments, processing of document terms, and index construction. The index can be kept
in the form of many data structures, including direct indexes, document indexes,
lexicons, and inverted indexes.[5]

Search stage

Searching is defined as the process of comparing a query to all documents in a
database in order to retrieve information related to that query. It is difficult to
extract relevant information from documents; therefore, these documents must first
be properly represented using any IR model.

An IR model explains how the document representation, user query representation,
and retrieval mechanism or process are elaborated, There are three fundamental IR
models: Boolean model, vector-space model, and probabilistic model.

Boolean model

The Boolean model was the first information retrieval model and is likely the
one that has received the most criticism[1]. It is extensively used in search engines
because this simple yet fast model performs better in searching techniques that em-
phasize speed over precision.[6]

The Boolean model uses set theory, or boolean algebra and its three components,
AND, OR, and NOT, for the formulation of queries, but it has a major weakness:

13

CHAPTER 1. STATE OF THE ART

it fails to rank the list of documents that are retrieved as results, according to the
Boolean model, each document is linked to a certain set of keywords and users.
Queries can also be represented by keyword expressions separated by AND, OR, or
NOT, the boolean model’s retrieval function classifies a document as either relevant
or irrelevant.[6]

Probabilistic Model

The most important or fundamental function of the probabilistic model is its
ability to rank documents by their probability to be relevant given a user’s query,
both documents and user queries are represented by binary vectors, with each binary
vector component indicating whether a specific document attribute/component or
term is in the document or query or not. The index term weight variables for the
probabilistic model are entirely binary rather than using probabilities.[6]

Vector space model

A model based on Luhn’s similarity criterion that has a stronger theoretical mo-
tivation was proposed by Gerard Salton and his colleagues. They viewed the query
and index representations as vectors embedded in a highly dimensional Euclidean
space, where each term is given its own dimension.[1]

As indicated by the name, this model links terms to documents through the use
of vectors. The vector model is a straightforward model that uses vectors to indicate
the direction in which documents are relevant to the terms. The model was proposed
in response to the Boolean Model because it uses binary values to evaluate relevancy,
which was seen to be ambiguous when obtaining documents.[6]

Each query and each document have a vector connected with them, thus we can say
that query Q and document D each have a vector of the form Q=w1,w2,w3,...wN and
D=w1,w2,w3,...wN. Documents and queries are represented as vectors in the Vector
Space Model (VSM), and the angle between the two vectors is calculated using the
similarity cosine function.

The term-weighting system known as tf-idf weighting has been introduced for
the Vector Space Model. These weights include a term frequency (tf) factor that
measures the frequency of occurrence of terms in document or query texts and an
inverse document frequency(idf) factor that measures the inverse of the number of
documents that contain a query or document term.[6]

14

CHAPTER 1. STATE OF THE ART

The vector model has advantages over the other models since it uses term weights
rather than binary values, which increases the document’s relevancy. Partial match-
ing is done, as well as ranking the documents based on their relevancy.

1.2.4 Information Retrieval Applications

Systems for information retrieval (IR) were initially developed to help with the
management of huge amounts of data. Many universities, organizations, and public
libraries now provide access to books, documents, journals, and other types of data
through the use of IR systems[2]. Information retrieval is used in many different
applications nowadays. The following are some examples of IR system applications:

Digital Library: A digital library is one that uses computers to access collections
that were stored digitally. Through computer networks, digital content can be
accessed remotely or locally, A digital library is a sort of IR system.

Search Engines: One of the most useful information retrieval strategies for large-
scale text collections is a search engine. Web search engines are the most
famous examples, but there are also federated search, desktop search, mobile
search, enterprise search, web search, and social search.

Multimedia Search: In order to obtain information that is different from textual
search, this type of search can be applied by multi-modal search interfaces,
which include other types of media as well[1]. As an example, an image retrieval
system is a multimedia search system in a computer that allows users to browse,
search for, and retrieve images from huge collections of digital images.

1.3 Query Expansion

1.3.1 Query Expansion Definition :

Query expansion is one of the promising approaches to dealing with the word
mismatch problem in information retrieval (IR). The main motivation of query ex-
pansion is to expand a user’s query by adding meaningful terms that are related to
the original query terms from other documents in the corpus or by adding synonyms
from a thesaurus; the added words should be very effective and improve retrieval
performance. Adding related words to the initial query can improve the number of
relevant documents identified, thereby increasing the probability of relevant docu-
ment discovery.

15

CHAPTER 1. STATE OF THE ART

1.3.2 Query Expansion Models

Query expansion models (QE) are techniques used to increase the effectiveness
of information retrieval by adding new terms. QE models fall into the following
categories according to automation and end-user involvement:

Manual Query Expansion :

Manual query expansion encourages and motivates the user to refine the original
query through heuristics by providing a list of potential terms from the query log
and allowing them to select the most appropriate terms.

Automatic Query Expansion :

AQE automatically expands search queries by analyzing documents returned from
first-pass retrieval. It weights candidate terms for expansion and expands the original
query as needed.

Interactive Query Expansion :

Query reformulation is achieved through joint cooperation between the system and
the user. It is a human-in-the-loop approach where the system returns search results
and the user chooses meaningful results.[7]

1.3.3 Query Expansion Process :

The process of generating query expansion consists of mainly four steps: prepro-
cessing of data sources, term weights and ranking, term selection and query refor-
mulation.

16

CHAPTER 1. STATE OF THE ART

Figure 1.3: Query expansion working model

Preprocessing of Data Sources :

Preprocessing data sources aims to extract terms that will enhance the user’s initial
query depending on the data sources and appoaches used, it consists of the following
four sub-steps:[7]

1. Text extraction from data sources(extraction of the whole texts from the spe-
cific data source used for query expansion).

2. Tokenization (process of splitting the stream of texts into words).

3. Stop word removal (removal of frequently used words e.g., articles, adjective,
prepositions, etc.).

4. Word stemming (process for reduction of derived or inflected words to their
base word).

Weighting and Ranking of Query Expansion Terms :

QE involves assigning weights and ranks to query expansion terms based on the
user’s query and texts obtained from data sources. These weights indicate the rele-
vance of the terms and are used to rank documents based on relevancy. There are
various techniques for ranking and weighting query expansion terms. Researchers
classifies the techniques into four categories on the basis of relationship between the
query terms and the expansion features.[7]

One-to-One Association: Such as WordNet to find synonyms and similar terms
for the query terms.

17

CHAPTER 1. STATE OF THE ART

One-to-Many Association: Correlates one query term to many expanded query
terms.

Feature Distribution of Top Ranked Documents: Deals with the top retrieved
documents from the initial query and considers the top weighted terms from
these documents.

Query Language Modeling: Constructs a statistical model for the query and
choses the expansion terms having highest probability.

Selection of Query Expansion Terms:

The previous section dealt with the ranking and weighting of expansion terms.
Following this process, the top-ranked terms are chosen for query expansion. The
selection of terms is done on an individual basis; mutual dependency of terms is
not taken into consideration. The independence assumption might be questionable,
but certain experimental studies suggest that it might be empirically equitable. It
is possible that the chosen query technique generates a large number of expansion
terms, but it may not be realistic to employ them all; as a result, noise reduction
only allows for the selection of a limited number of expansion terms.[7]

Query Reformulation:

In the last step of query expansion, the expanded query is reformulated to achieve
better results when used for retrieving relevant documents. The reformulation is done
based on weights assigned to the individual terms of the expanded query known as
query reweighting.[7]

1.3.4 Query Expansion Approaches

Query expansion approaches can be classified mainly into two categories based
on global analysis, which obtains expansion terms on the statistics of terms in the
whole corpus, and local analysis, which extracts expansion terms from a subset of
the search results.

Global Analysis :

One of the earliest techniques to produce consistent and effective improvements
through query expansion was global analysis. The main idea behind global analysis is
to evaluate a term’s context to determine its similarity to other terms. Each term is

18

CHAPTER 1. STATE OF THE ART

allocated a weight, and expansion terms can be given less weight than the initial query
terms. Global analysis, different from local analysis, selects expansion terms based
on information from the entire document collection. To select the relevant terms for
a given query, global analysis usually depends on a set of statistical relationships.[8]

Usually, global analysis relies on a set of statistical relationships to select relevant
terms for a given query.

Global analysis can be classified into four categories on the basis of query terms
and data sources:

Linguistic-based Approaches: Methodologies in this category examine lexical,
morphological, semantic, and syntactic term relationships to reformulate or
extend query terms, using thesaurus, dictionaries, ontologies, Linked Open
Data (LOD) cloud, WordNet, and other knowledge resources.[7]

Corpus-based Approaches: Corpus-based Approaches look at the entire text cor-
pus’s content to identify the expansion features that are used for query expan-
sion. They use co-occurrence statistics to link terms together to build sentences,
paragraphs, or clusters of words for query expansion.[7]

Search log-based Approaches: Search log analysis is used to analyze user input,
which is a key source for query growth due to the expanding size of the web
and the rising use of web search engines. User feedback is used to provide a
set of related terms depending on the user’s initial query.[7]

Web-based Approaches: These strategies, which have recently gained popularity,
include anchor texts and Wikipedia to broaden the user’s original inquiry. An-
chor text serves as a brief description of a page, while Wikipedia is the largest
free online encyclopedia and is continuously updated, making it the perfect
information source for query expansion.[7]

To expand queries, the global analysis generally necessitates corpus-wide statistics
and a global association thesaurus. However, it only gives an incomplete solution to
the term mismatch problem because it concentrates entirely on the document side
and ignores the query side.

19

CHAPTER 1. STATE OF THE ART

Local Analysis :

Local analysis differs from global analysis in that it focuses on a particular subset
of documents returned by a query. It is divided into two categories: approaches
based on user feedback information and approaches based on information derived
from a subset of the returned documents [8]

Relevance Feedback: Rocchio’s method was the first to use relevance feedback,
which is a collection of user feedback about documents retrieved in response
to an initial query. It can be categorized into two types: explicit feedback
and implicit feedback. Explicit feedback evaluates the relevance of retrieved
documents, while implicit feedback uses user activity to infer user preferences.
Relevance feedback suffers from a lack of semantics in the corpus, which limits
its applications when the query concept is as general as a disjunction of more
specific concepts.[7]

Psuedo-Relevance Feedback: Local feedback, also known as blind feedback or
pseudo-feedback, is commonly used in research to overcome the difficulty due
to a lack of sufficient relevance judgments. It mimics relevance feedback by
assuming the top-ranked documents to be relevant. The idea of local analysis
can be traced back to a 1977 paper[Attar and Fraenkel,1977], which proposed
the top-ranked documents for a query as a source of information for building
an automatic thesaurus. Terms in these documents were clustered and treated
as quasi-synonyms.[9]

1.3.5 Semantic Query Expansion

To improve the IR system interpretation of the search query, QE is a technique
used to compute expansion terms that are important to the user intent and add them
to the initial search query.

The search query is expanded using a corpus in traditional QE methods like global
analysis and local analysis, however, semantic QE approaches do not have such
limitations as they are built on corpus-independent knowledge structures (e.g., a
lexical thesaurus or ontology), the expansion terms are used to broaden the search
query with relevant terms (concepts) that are closer to the user’s intent, they are
derived based on a similarity measure between the initial search query terms and the
concepts of the knowledge structure.[10]

20

CHAPTER 1. STATE OF THE ART

As compared to other QE approaches like relevance feedback, where the expansion
process depends on the initial search results, semantic QE always has access to the
knowledge structure in the expansion mechanism.

To illustrate the value of knowledge structures in the QE process, search query
terms were manually disambiguated and obtained from an ontology or thesaurus,
a knowledge structure is made up of relationships among concepts, from which the
context (semantics) of a concept can be used to derive meaningful expansion terms.
[11]

Efthimiadis divided corpus-independent knowledge structures into three categories:
dictionaries like the Collins dictionary, general thesaurus like WordNet which are not
limited to a specified domain, and domain-specific thesaurus that provide synonyms
or other related relationships between concepts of a domain.[10]

Semantic Query Expansion Approaches

Semantic-based QE approaches are classified into three types: the thesaurus-based
approach, the Ontology-based approach, and word-embedding-based semantic query
expansion.

Thesaurus Based Approach: The thesaurus-based approach is a widespread tech-
nique used to select appropriate terms for query enhancement like WordNet.
In this approach, the query is reformulated using synonyms, hyponyms, and
other relationships based on the context of the query.[12]

Word Embedding Based Approach : Contextual data responds well to this ap-
proach. Instead of searching for synonyms in external data sources, it helps
contextually derive the meaning of the user’s given query.[12]

Ontologie Based Approach : Ontology is used to convert implicit knowledge to
explicit knowledge, allowing users to access and share that field knowledge.
Ontology approaches are classified into two categories: Domain-specific, which
belong to the field of agriculture, medicine, business, law, and sports and
domain-independent, which consist of general purpose vocabulary, concepts,
and instances.Candidate expansion terms are retrieved based on the similarity
between query terms and ontology concepts. [12]

21

CHAPTER 1. STATE OF THE ART

ConceptNet :

ConceptNet is one of the largest common-sense knowledge base that covers se-
mantic relationships between real-world concepts. Similar to Wikipedia, Concept-
Net reflects the ”knowledge of the crowds” and was built by assembling huge num-
ber of sentences that serve as assertions about the real world from various online
contributors.[13]

Semantic networks are used by ConceptNet as a model for knowledge representa-
tion, the knowledge in ConceptNet is gathered from a variety of resources, including
crowd-sourced resources like Open Mind Common Sense and Wiktionary, games with
a purpose such as Verbosity, and expert-created resources like Wordnet. Its semantic
network’s nodes stand in for semi-structured natural language fragments (eg, ”food,”
”grocery shop,” ”buy food,” and ”at home”) and represent real world concepts. A
semantic connection between two concepts is represented by an edge connecting two
nodes.[14]

In contrast to ontologies such as WordNet, ConceptNet is not limited to hy-
ponym/hypernym relations and offers a more varied relational ontology with twenty
relationship kinds, including causal, spatial, and functional relationships. The net-
work structure of ConceptNet does not require any additional analysis to establish the
relations between the concepts, in contrast to online encyclopedias like Wikipedia.[14]

ConceptNet has been demonstrated to be a valuable resource that could enhance
retrieval performance, especially for challenging queries.[15]

1.4 Problematic and Proposition

Most of the query expansion techniques work to find the best way to make the
added word more valuable for the user to get his satisfaction, in this work we are using
the semantic query expansion approach ConceptNet, which enhances the original
query by adding more expanded words that are related to the initial query by their
concept.

In classical ”ConceptNet”, they usually pick the top ranked concept but in this
work, we are not interested in the top-ranked concept, we are looking for the best
combination of n-words from a bag of words but we found that the evaluation phase

22

CHAPTER 1. STATE OF THE ART

was too expensive and take a lot of execution time that’s why we will apply a low-level
and high-level parallel metaheuristics to reduce it.

1.5 Conclusion

In this chapter, we provide an introduction to the field of information retrieval from
the definition and components to concepts related to the methods and structure of
its work, and we moved to the importance which is the query expansion, giving a
definition and touching on the existing approaches to use which we will use semantic
query expansion approach conceptnet in our work.

In the second chapter, we will look at the Iterated Local Search and Accelerated
Particle Swarm Optimization metaheuristics and how they work.

23

Chapter 2

Metaheuristic and
Parallelization

24

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

2.1 Introduction

In the process of solving challenging optimization issues, metaheuristics have been
showing interesting results; however, for high-dimensional problems, they become
limited in terms of effectiveness and runtime. Parallel computing appears to be an
attractive choice for reducing execution time and improving solution quality due to
the independence of metaheuristic components.[16]

By exploiting the increasing performance and programmability of graphics pro-
cessing units (GPUs) to this aim, GPU-based parallel metaheuristics have been im-
plemented using different designs. Recent research indicates that GPUs are effective
co-processors for leveraging complex optimization problems.

2.2 Metaheuristic

2.2.1 Metaheuristic Definition

In iterative master processes, metaheuristic algorithms direct and modify subordi-
nate heuristics to high-quality solutions, they modify either a complete (or partial)
single solution at each iteration or a set of such solutions. These algorithms are sim-
ple, adaptable, and capable of avoiding local optima because they are derivative-free
approaches, as they don’t require any knowledge about the gradient of the objec-
tive function to determine the global solution, metaheuristic optimization algorithms
have been suggested as effective alternatives to traditional deterministic methods.[17]

Metaheuristic algorithms display stochastic behavior; they begin the optimization
process by producing random solutions. The primary characteristic of metaheuristic
algorithms is their exceptional ability to prevent the algorithms’ premature conver-
gence; because of the stochastic nature of algorithms, the techniques operate as a
black box, avoiding local optima and efficiently and effectively exploring the search
space.[18]

The metaheuristic algorithms trade-off between two of its most important compo-
nents, exploitation, and exploration. The algorithms completely analyze the promis-
ing search space in the exploration phase, and the exploitation phase involves the

25

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

local search of any promising area(s) that were discovered in the exploration phase.
[18]

2.2.2 Exploration and Exploitation

The ability of an optimization algorithm to ”explore” and ”exploit” data is the
most crucial factor affecting performance. Exploration refers to a search algorithm’s
ability to explore various areas in the search space to boost the probability to discover
a good optimum; Exploitation, on the other hand, refers to the ability to concentrate
the search around a promising region to refine a candidate solution.[19]

A good optimization algorithm should optimally balance the two conflicted objec-
tives, which indicates that the ability of exploration and the ability of exploitation
should be adjusted via the population diversity analysis when solving different prob-
lems or on different search stages. For example, strong exploration ability means
that the algorithm has a great possibility to “jump out” of local optima.[19]

2.2.3 Metaheuristic Classification

Metaheuristic algorithms classify into the following two main categories :

Single solution based metaheuristic algorithms

These methods begin their optimization process with a single solution, and during
the iterations, their solution is updated; it could result in trapping into local optima
and also does not explore the search space thoroughly.[18]

Tabu search : The purpose of Tabu Search is to keep track of the search paths that
the search procedure has already visited to avoid it from falling into a local
optimum; this may cause the algorithm to accept some inferior solutions to
avoid revisiting past paths to get the best solution through a more globalized
search.[20]

The visited search paths (forbidden solutions) are stored in a tabu list, which
is maintained by a forbidding strategy that determines which solutions are
candidates and should be preserved in the tabu list.

Simulated annealing : The Simulated Annealing (SA), was introduced by Kirk-
patrick; it is a single solution based metaheuristic optimization method that

26

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

was motivated by the metallurgical process of annealing. In the SA, the cool-
ing process of metals is regulated to build stable crystal structures that reduce
defects; the SA considers the energy of a thermodynamic system as the values
that will be optimized.[21]

The SA is an iterative process that uses a random walk to modify the posi-
tions of the candidate solutions; here are considered the changes of temperate,
when the temperatures are high the SA operators perform large movements
and it has more probabilities to accept solutions far away from the global opti-
mal; however, this situation permits to avoid suboptimal solutions, meanwhile,
if the temperatures are low the movement of solutions and the probability to
accept bad solutions is low.[21]

Population (multiple) solution based metaheuristic algorithms

These algorithms start their optimization process by generating a population of
solutions, with each generation or iteration the population of solutions updates. The
algorithms help prevent local optima since they have a great search space exploration
and various solutions that work together to help one another; also, they possess the
ability to jump to the promising area of the search space. Hence, the majority of
difficulties in the real world are solved using population-based algorithms.[18]

Ant colony : The ant colony algorithm simulates the ”exploring” and ”using” of
pheromones by natural ants; in other words, ants use the pheromones left by
other ants in the foraging process, choose a path or explore a new path with a
certain probability, and secrete pheromones at the same time.

The pheromone on the path will accumulate, volatilize and spread, and affect
the following ants, ants tend to choose a path with high pheromone concentra-
tion and eventually search for the optimal path; path selection and pheromone
update are the two most crucial elements in the algorithm’s implementation.[22]

27

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

Figure 2.1: Ant Colony

Genetic Algorithms : Genetic Algorithms are general-purpose, robust optimiza-
tion algorithms that were invented by Holland in the early 1970s; the Darwinian
laws of genetics, natural selection, and evolution are used as their operational
principles.[23]

In a genetic algorithm, an initial population is chosen at random, with each
individual of the population being referred to as a chromosome, these chromo-
somes represent the solution for the problem; a chromosome is the string of
codes where each bit is called as gene and holds information of the problem in
coded form, once the population is chosen, each chromosome’s fitness is cal-
culated, and the fittest ones are transferred to the next generation while the
others are eliminated.[24]

28

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

Figure 2.2: Genetic Algorithm

Based on their behavior, the metaheuristic algorithms can be divided into four
categories: evolution-based, swarm intelligence based, physics-based, and human-
related algorithms.

The principles of natural evolution are imitated by evolutionary algorithms like
genetic algorithms and differential evolution to create effective optimization meth-
ods. Particle swarm optimization and whale optimization are two examples of swarm
algorithms that mimic the collective behavior of various beings. Physical-based al-
gorithms are inspired by real-world physical processes like simulated annealing or
gravitational search algorithms, but human behavior-related algorithms are purely in-
spired by human behavior, such as the League Championship algorithm and learning-
based optimization (TLBO) .[21]

29

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

2.3 Hybridization

2.3.1 Hybridization Definition

Hybridization is a general model of two or more algorithms that takes advantage
of their strengths while minimizing their weaknesses; the combination of techniques
does well for tackling a specified problem, given that the obtained results can be
improved by these combined techniques on their own. With the hybridization of
algorithms, an algorithm’s exploitation and exploration can be completely enhanced,
for example, an algorithm can cater for the lack of its preciseness and refine the results
through synergy with a local search method. [17]

The hybrid approach is becoming more and more common in the field of optimiza-
tion, and it uses the intention of hybridizing the components from top optimization
techniques to enhance the performance of traditional optimization algorithms.

Several factors can be used to categorize hybrid approaches, such as whether the
components come from different search paradigms (often constructive or exact meth-
ods like constraint programming or integer linear programming) or whether they are
homogeneous (e.g., local search or evolutionary methods); a common source of nov-
elty in metaheuristic research is the presentation of a specific hybridization of two or
more metaheuristics.[17]

2.3.2 Hybridization Classification

At the first level, we may distinguish between low-level and high-level hybridiza-
tions. The functional composition of a single optimization method is addressed
via low-level hybridization; in this hybrid class a certain metaheuristic function is
changed by another metaheuristic, and the different metaheuristics used in high-level
hybrid algorithms are self-contained; the internal workings of a metaheuristic are not
directly related.[25]

In relay hybridization, several metaheuristics are used sequentially(one after one),
with each taking the output of the previous as its input and functioning as a pipeline;
teamwork hybridization represents cooperative optimization models, in which a large
number of cooperating agents develop concurrently, each agent searching for a solu-
tion space.[25]

30

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

Figure 2.3: Classification of hybrid metaheuristics in terms of design issues

Hierarchical Classification: Four classes are derived from this hierarchical tax-
onomy:

LRH (Low-level Relay Hybrid): This category of hybrids represents algo-
rithms in which a given metaheuristic is embedded into an S-metaheuristic
(Single solution based metaheuristic), like embedding local search into
simulated annealing.[25]

LTH (Low-level Teamwork Hybrid): Two competing goals govern the de-
sign of a metaheuristic: exploration and exploitation. To provide a reli-
able estimate of the global optimum, exploration is required to make sure
that every area of the space has been fully searched. Exploitation is essen-
tial since the refinement of the current solution will often provide a better
solution. Evolutionary algorithms, scatter searches, particle swarms, and
ant colonies are a few examples of P-metaheuristics (Population-based
metaheuristics), which are powerful at exploring the search space and
weak in the exploitation of the solutions found.[25]

Therefore, most effective P-metaheuristics have been combined with
S-metaheuristics such as local search, simulated annealing, and tabu
search, are powerful optimization methods in terms of exploitation. The

31

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

strengths and weaknesses of the two categories of algorithms are comple-
mentary. The P-metaheuristics will attempt global optimization, whereas
the S-metaheuristics will attempt local optimization. A metaheuristic is
embedded into a P-metaheuristic in the LTH hybrid. [25]

HRH (High-level Relay Hybrid): Self-contained metaheuristics are exe-
cuted sequentially in HRH hybrids. For example, another optimization
algorithm might produce the initial solution of a given S-metaheuristic.
Indeed, the initial solution in S-metaheuristics has a great impact on
their performances. Generating the initial solution using greedy heuris-
tics, which often have lower computational costs than iterative heuristics,
is a well-known combination scheme.[25]

This hybrid scheme is applied to P-metaheuristics, but to generate a di-
verse population, a randomized greedy heuristic must be utilized. Greedy
heuristics are typically deterministic algorithms, and they always produce
the same solution. This has a great impact on P-metaheuristic perfor-
mance and is carried out explicitly in the scatter search metaheuristic.[25]

P-metaheuristics and S-metaheuristics are frequently combined in the
HRH scheme. P-metaheuristics are effective for fast discovering high per-
formance regions in vast and complex search spaces, but they are not ideal
for fine-tuning structures close to optimal solutions. S-metaheuristics
can then be applied to the high performance structures evolved by the
P-metaheuristic.[25]

HTH (High-level Teamwork Hybrid): The HTH scheme covers several self-
contained algorithms searching in parallel and cooperating to reach an
optimum. It makes sense that HTH will ultimately perform at least as
well as one algorithm working alone, if not more often, as one algorithm
will be able to help others by exchanging information with them.[25]

Flat Classification: Three classes are derived from the flat classification based
on their type, domain, and function :

Homogeneous/Heterogeneous: All combined algorithms in homoge-
neous hybrids apply the same metaheuristic. Hybrid algorithms such

32

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

as the island model for GAs belong to this class of hybrids. The ini-
tialization of the homogeneous metaheuristics may be different from
their:[25]

Parameters: In general, different parameters are used for the algo-
rithms. For example, in the HTH hybrid scheme which is based
on tabu search, the algorithms may be initialized with different
tabu list sizes; different crossover and mutation probabilities
may be used in evolutionary algorithms, etc

Search components: Given a metaheuristic, one can use differ-
ent strategies for any search component of the metaheuristic,
such as the representation of solutions, objective function ap-
proximations, initial solutions, search operators (neighborhood,
mutation, crossover, ...), termination criteria, etc.

The robustness of the hybrid algorithm can be improved by using
several parameters or search components into a particular meta-
heuristic.

Global/Partial: we can also distinguish two kinds of cooperation: global
and partial. In global hybrids , all the algorithms explore the same
whole search space. The goal is here to explore the space more
thoroughly, in the sense that all the algorithms solve the whole op-
timization problem. In partial hybrids, the problem to be solved
is decomposed a priory into subproblems, each one having its own
search space. Then, each algorithm is dedicated to the search in one
of these sub-spaces. Generally speaking, the subproblems are all
linked with each other, thus involving constraints between optima
found by each algorithm. Hence, the algorithms communicate to
respect these constraints and build a globally viable solution to the
problem.[25]

Generalist/Specialist: If the algorithms involved all work to solve the
same problem, we will speak of a general approach, but if they are
launched on different problems, hybridization is then specialized.[25]

33

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

2.4 Parallelization

2.4.1 Parallel Architecture

In the last years, parallel computing architectures systems experienced an evo-
lution. This parallelism is achieved by architectures based on shared or based on
distributed memory; distributed memory was the first architecture developed and
consisted of the use of clusters of a single central processing unit (CPU) computers
communicating through a network .[26]

At the beginning of this millennium, shared memory systems have been introduced
and are now widely used. Shared memory architectures consist of multiple CPU cores
on the same integrated circuit having access to the same global memory. According to
the number of cores, these architectures may be classified as Multi-core processors in
the case of a lower number of cores processors (two, four, eight, twelve, sixteen...) or
Many-core processors, in the case of a larger number of cores. Xeon Phi is considered
an example of a many-core processor and may have up to 72 cores, those systems
are here referred to as ”Multi-core CPU” and ”Many-Core CPU” respectively.[26]

One particular case of a many-core CPU is the Graphics Processing Unit (GPU).
GPU hardware has a particular architecture and memory management. For that
reason, it will be separated into another category and here referred to as ”GPU”.
Programming parallel computing systems, especially heterogeneous ones, is more
difficult than sequential programming processors because it depended on the number
of cores and communication technologies. To take advantage of parallel architectures,
algorithms must be adapted and redesigned to allow task and data parallelism.[26]

2.4.2 GPU Computing

GPUs have achieved great results in recent years, this current hardware was first
built to assist video games and 3D graphic applications, but subsequently it has been
used for general computational tasks. It is now used in various fields such as data
compression, image processing, data mining, etc. The availability of application pro-
gramming interfaces(API) has made it easier to create parallel applications, but there
are still some important principles to follow in order to get efficient performance from
GPUs. Understanding the GPU’s fundamental parallel programming mechanism is
required for designing a parallel application (metaheuristics in our case).[16]

34

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

The kernel is the essential unit of a parallel application by which the execution is
conducted. It is a piece of code that is called from the CPU (also known as the host)
and duplicated on the GPU (also known as the device). The kernel runs within a
grid (a collection of blocks), with each block containing a collection of threads.[16]

In NVIDIA’s architecture, memory is divided into six types: global memory, con-
stant memory, read-only cache, L2 cache, shared memory, and local memory (reg-
isters). The largest memory is global memory, but its frequent use has a negative
impact on performance. Constant memory is a global memory with a particular
cache that allows a single memory address to be broadcast to all threads in a warp.
A read-only cache is a type of data cache that allows users to access read-only data in
global memory with lower latency. The L2 cache handles streaming multiprocessor
load, store, atomic, and texture instruction requests. Shared memory is a 64-KB
on-chip memory with extremely low latency. Local memory(registers) is the fastest
but also the smallest type of memory. Each thread has its local memory that is not
accessible to other threads.[16]

2.4.3 Message Passing Interface(MPI)

A message passing interface(MPI) is a common software model for parallel envi-
ronments. MPI is a message passing application developer interface that includes
semantic judgments and a protocol for how its highlights must be carried out in any
implementation, MPI plans to maintain scalability, performance, and portability.[27]

The Message Passing Interface(MPI) standard was developed by the Message Pass-
ing Interface forum. To develop parallel computing in a distributed memory envi-
ronment, MPI is the appropriate tool to utilize because it has the required standard
libraries. MPI’s first version was launched in 1994, followed by MPI-2 in 1997, MPI
is capable of both collective and point-to-point communication. In the parallel pro-
gramming environment, MPI Library has hundreds of function interfaces executed
by computers such as different clusters interacting with one another, it is supported
by multiple programming languages, including FORTRAN, C, and C++, which can
call the MPI library directly. Scalability and high performance are the main goals of
message passing interfaces. The following is the message forwarding interface prin-
ciples: point-to-point communication, process groups, collective operations, process
topologies, communication context, environmental management, and inquiry and
profiling interface.[27]

35

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

2.4.4 Parallel Metaheuristic

The performance of most metaheuristics is not scalable; when dealing with high
dimensional problems, it suffers in terms of both time complexity and effectiveness;
to overcome this limit, GPU-based parallel metaheuristics have been proposed. The
scientific community is becoming more and more interested in this latter technique
to reduce the execution time and to improve the quality of the solutions found[16].
There are three categories for the parallel design of metaheuristics:

Algorithmic level: This level enables the parallel execution of many algorithms;
the algorithms are capable of independently running with various starting so-
lutions and/or parameters and selecting the best run results. In this situation,
we speed up the execution time and achieve the same result as if we had per-
formed all of these algorithms sequentially. The behavior of the metaheuristics
might vary as a result of the algorithms’ ability to cooperate, which enhances
the expected quality of the resulting solutions.[16]

Iteration Level: At this level, parallelization is allowed during each iteration; this
parallelizes the neighborhood generation and/or evaluation processes, and dif-
ferent areas of the neighborhood are executed in parallel. The metaheuristic
continues to operate in the same manner. The primary objective is to accelerate
the algorithm by reducing the search time.[16]

Solution Level: This level enables the parallelization of a single solution; for exam-
ple, to evaluate the constraints or objective function for a generated solution,
the metaheuristic continues to operate in the same manner. The basic goal is
to accelerate the search.[16]

36

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

Figure 2.4: GPU parallelization strategies for metaheuristics

2.4.5 Parallel Metaheuristic Classification

When multiple processes are working simultaneously on multiple processors to
handle a single instance of a problem and try to find the best (or a) solution for it, this
is referred to as parallel, distributed, or concurrent computing. Parallelism results
from the decomposition of the overall computing load and the assignment of the
resulting tasks to available processors. The term fine or coarse-grained parallelization
refers to how ”small” or ”large” the tasks are in terms of algorithm work or search
space.[28]

The algorithm, the search space, or the problem structure may be the subject of
the decomposition.

Functional parallelism: Corresponds to the first case, where the computing inten-
sive parts of the algorithm are divided into several tasks(processes), working
on the same data or particular parts of the data, are assigned to separate pro-
cessors and execute in parallel, perhaps exchanging information. The primary
source of functional parallelism for metaheuristics is the concurrent execution
of the innermost loop iterations, such as evaluating neighbors, computing an
individual’s fitness, or having ants forage concurrently.[28]

37

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

This is frequently the only source of readily available parallelism in meta-
heuristics, as the execution of most other steps in the algorithm depends on the
status of the search, what has been done up to this point, and the values of the
decision variables, which necessitates either the computation of the previous
steps to be completed, or the synchronization of computations; synchronization
typically yields significant delays, which may make such parallel computation
irrelevant.[28]

Functional parallelism has historically been appealing as a low-level com-
ponent of hierarchical parallelization strategies or when addressing problem
settings that need a significant part of the computational work to be spent in
inner-loop algorithmic components. The rapid growth of graphical processing
units (GPU), which are now prevalent in most computers, is modifying this as-
sertion as very substantial reductions in computing times can be achieved.[28]

Search space separation: A second important class of parallel strategies. The
search space and the problem structure are two other situations which belong
within this category. The fundamental concept is to divide the problem domain
or associated search space and then address the problem on each of the resulting
components using a specific solution methodology. In fact, there are no data
dependencies between the evaluation functions of various solutions, allowing
for parallel computation of these functions.[28]

Furthermore, when a processor is assigned to each solution, theoretically, the
parallelism in the solution or search space is as large as the space itself. The
latter strategy is obviously impractical, thus the search space is divided into
subspaces and assigned to several different processors. An exact or heuristic
search method is needed to implicitly explore the search space left by such a
separation because it is too large for explicit enumeration for each processor.[28]

2.5 Iterated Local Search

2.5.1 Iterated Local Search Definition

Iterated Local Search(ILS) is a well-known single-solution based metaheuristic that
works well for combinatorial optimization problems(COPs), such as issues with logis-
tics, transportation, scheduling, health care, and marketing. It is an effective method

38

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

because it has many desirable characteristics, such as accuracy, speed, simplicity, and
flexibility.[29]

The Local Search(LS) algorithm, which includes identifying an initial solution and
performing a neighborhood search until a local optimal solution is discovered, is
extended by the Iterated Local Search algorithm; each individual problem requires
the definition of a neighborhood, which is a set of solutions that can be produced
from the existing solution by performing slight modification. It is rather easy to
find an initial solution, define a neighborhood, and define an LS for all or almost all
COPs.[29]

The fundamental problem with such a straightforward LS method is that the
quality of the solutions is typically poor and the local optimal solution is frequently
distant from the global optimal solution. ILS is a multi-start metaheuristic that,
by combining more sophisticated methods, improves the basic random restart, by
using a walk that moves from one local optimal solution to a nearby one, it aims
to overcome the disadvantages of random restart. To implement this idea, another
phase is included in the LS that allows to ”restart” the search but not to ”lose” the
good properties and components of the solutions already obtained.[29]

Figure 2.5: Iterated Local Search

39

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

Implementation Details

s(0) = GenerateInitialSolution
s∗ = LocalSearch(s0)
REPEAT
s’ = Perturbation(s*,history)
s*’ = LocalSearch(s’)
s* = AcceptanceCriterion(s*,s*’,history)
UNTIL termination condition met

Figure 2.6: ILS Psuedo Code

The ILS algorithm is composed of four main components: GenerateInitialSolution,
LocalSearch, Perturbation, and AcceptanceCriterion. A simple implementation of
the ILS for a COP can be quite straightforward to design. The four main components
can be defined as follows:

Generate Initial Solution: Because random solutions are often of low quality, it
is necessary, to begin with the best possible solution. A greedy heuristic is a
suitable choice for this since it typically produces solutions of higher quality
than random solutions. To obtain the initial solution, additional metaheuristics
or approximation methods can be applied. While this does not guarantee the
quality of the final local optimal solution, it can reduce the search process.[30]

Local Search: The local research method chosen has a significant impact on the
overall performance of an ILS. An important consideration while constructing
an ILS is the equilibrium between the local search phase and the number of
iterations. A faster and more frequent local search algorithm may be more
effective than a slower and more powerful one. As a result, the Local Search
phase’s design and interaction with the other ILS components need to be care-
fully done and properly considered, and studied.[29]

Perturbation: The main goal of the Perturbation phase is to escape from the lo-
cal optimal solution area by applying perturbations or changes in the current
local optimal solution. It is important to ensure that the obtained solution
is not undoable by the local search and should complement it in some way.
The design of the Perturbation phase is one of the most important issues when

40

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

implementing an ILS algorithm, as small perturbations can lead to large com-
putational times and a random restart type algorithm, and large perturbations
can lead to jumping from one solution to another without descent to a good
local optimal solution.[30]

AcceptanceCriterion: AcceptanceCriterion is a procedure that determines if a
solution is accepted or not. It controls the balance between intensification and
diversification of the search. Two strategies are possible: improvement type
descent which only accepts better solutions or the opposite extreme of accepting
the new solution regardless of its cost. There are many intermediate choices
between these two extreme cases are possible, and in particular rather complex
acceptance criteria that involve a limited amount of directed diversification or
intensification are also possible.[29]

2.6 Accelerated Particle Swarm Optimization

2.6.1 APSO Definition

To update particle velocity, the standard PSO uses both the personal best position
pi and the current global best x*. The objective of using the personal best position
is to improve the swarm’s diversity; however, this diversity can be achieved with
some randomness. As a result, there is no compelling reason to use the personal best
position. Yang suggested a simplified version of PSO known as accelerated particle
swarm optimization (APSO) in 2008 to accelerate the algorithm’s convergence, in
which only the global best solution is involved[31]. In APSO, velocity is given by:

vi
t + 1 = vi

t + b(x ∗ −xi
t) + a(e− (1/2) (2.1)

The APSO can be further improved by formulating the update of particle’s position
in a single step as mentioned in:

xi
t + 1 = xi

t + b(x ∗ −xi
t) + a(e− (1/2) (2.2)

Equation (2.2) consists of three terms. The first term determines the current
position of the ith particle. The second term refers to a social component of moving
the particle i toward the position of the current global best particle, while the third
term is connected with the randomized move of the ith particle within the search

41

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

space. In the second term of (2.2), the parameter b expresses the attractiveness of
the global best solution. Its value can be increased gradually from 0 to 1 to speed
up the convergence of APSO.[32] In the third term of(2.2), a is a randomization
parameter and e is a random number generator uniformly distributed in the range
[0, 1].

2.6.2 APSO Algorithm

The algorithm begins by setting the initial values for the attraction b and random-
ization a parameters. The initial population of N particles (i = 1, 2,..., N) is then
produced at random, with each solution starting at xi. The fitness function value
of each solution is used to evaluate the initial swarm. The best solution x* is then
initialized by all of the particles’ best solutions. The APSO moves on from the ini-
tial set of solutions to the optimal solution iteratively by updating the position xi of
each particle i. Based on the continuous flying iterations, solutions are continuously
changed.[32]

This is repeated till the termination criteria are satisfied. Finally, when all criteria
are successfully met the best so far particle x is reported.

Fitness function f(x)
Define the attraction parameter b,
Randomization parameter a
Generate an initial population of N particles
while (t¡ Max number of iteration) do
for i¡– 1 to N do
Calculate new location(2.2)
Evaluate fitness function at new locations
end for
Rank the particles and find the current global best x*
end while

Figure 2.7: Psudo code of APSO algorithm

42

CHAPTER 2. METAHEURISTIC AND PARALLELIZATION

2.7 Conclusion

In this chapter, we presented the metaheuristics, hybridization, and parallelization
which will be used to enhance our approach, we also define the Iterated Local Search
and Accelerated Particle Swarm Optimization.

In the next chapter, we will present our application which is the proposed solution
for the query expansion problem and discuss the results and evaluate the work.

43

Chapter 3

Experimental and Results

44

CHAPTER 3. EXPERIMENTAL AND RESULTS

3.1 Introduction

In this chapter, we detailed our work starting with a simplified explanation of the
implementation phase and the used tools: programming languages, and libraries we
used, we mentioned also CUDA and MPI4Py, then we define the dataset we used
which is CISI.

Then, we moved to the system implementation where we mentioned the evaluation
metrics, which will be used to measure the quality of this work, then we talked about
our experiment, and how we make this work from the beginning, and after that we
will present the obtained results.

3.2 Implementation

3.2.1 Programming Language

Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics. Its high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid Application Develop-
ment, as well as for use as a scripting or glue language to connect existing components
together. Python’s simple, easy to learn syntax emphasizes readability and therefore
reduces the cost of program maintenance. Python supports modules and packages,
which encourages program modularity and code reuse. The Python interpreter and
the extensive standard library are available in source or binary form without charge
for all major platforms; and can be freely distributed.

Over the last few years, Python has become increasingly popular in the scientific
community, which is largely due to the availability of performance-oriented libraries
like NumPy, SciPy, TensorFlow, or sci-kit-learn. However, for compute-intensive
operations that cannot be accelerated using specialized libraries, pure interpreted
Python can be very slow. Moreover, for CPU-bound tasks multi-threading is gener-
ally inefficient, because of Python’s global interpreter lock (GIL). Therefore, several
projects like PyPy, Cython, Numba, and Nuitka aim at increasing Python’s perfor-
mance.

Numba is an alternative implementation of Python using JIT compilation to trans-
late subsets of Python and NumPy to fast machine code. However, instead of re-

45

CHAPTER 3. EXPERIMENTAL AND RESULTS

placing the Python interpreter, Numba provides decorators that are inserted into the
code to trigger the LLVM-based JIT compilation of selected functions.

3.2.2 MPI4Py

MPI for Python provides Python bindings for the Message Passing Interface (MPI)
standard, allowing Python applications to exploit multiple processors on worksta-
tions, clusters, and supercomputers.

This package builds on the MPI specification and provides an object oriented
interface resembling the MPI-2 C++ bindings. It supports point-to-point (sends,
receives) and collective (broadcasts, scatters, gathers) communication of any pickable
Python object, as well as efficient communication of Python objects exposing the
Python buffer interface (e.g. NumPy arrays and builtin bytes/array/memoryview
objects).

3.2.3 CUDA Threading Model

CUDA (Compute Unified Device Architecture) is a parallel computing environ-
ment, which provides an application programming interface for NVIDIA architec-
tures. The notion of thread in CUDA doesn’t have exactly the same meaning as
CPU thread. A thread on GPU is an element of the data to be processed. Com-
pared to CPU threads, CUDA threads are lightweight. That means that changing
the context between two threads is not a costly operation.[33]

Threads are organized within so called thread blocks. A kernel is executed by
multiple equalThe figure thread blocks. Figure below illustrates these multiple blocks
organization. Blocks can be organized into a one-dimensional or two-dimensional
grid of thread blocks, and threads inside a block are regrouped similarly. First, the
advantage of grouping is that the number of blocks processed simultaneously by the
GPU is closely linked to hardware resources. Secondly, since each thread is provided
with a unique id that can be used to compute different data, this model of threads
provides an easy abstraction for SIMD architecture.[33]

46

CHAPTER 3. EXPERIMENTAL AND RESULTS

Figure 3.1: CUDA threads model

3.2.4 Dataset

The data were collected by the Centre for Inventions and Scientific Information
(”CISI”) and consisted of text data from about 1,460 documents and 112 associated
queries. Its purpose is to be used to build models of information retrieval where a
given query will return a list of document IDs relevant to the query.

3.3 The system implementation steps

3.3.1 Evaluation Metrics

Precision

it’s the percentage of documents that are truly related to the query.

Precision =
|Relevantdocuments ∩Retrieveddocuments|

|Retrieveddocuments|
(3.1)

47

CHAPTER 3. EXPERIMENTAL AND RESULTS

Recall

It is the percentage of documents that have been found and are relevant to the
query.

Precision =
|Relevantdocuments ∩Retrieveddocuments|

|Relevantdocuments|
(3.2)

Precision@k

Precision usually takes into account all of the documents that have been retrieved.
However, another method of calculating precision involves a cut-off rank, k. We
calculate precision just for the top kdocuments using this method. This is known as
precision at k, or P(k). Consider an information retrieval model that accepts a query
and returns documents that are similar to that query to better understand P(k).

Mean Average Precision

We use the mean average precision (mAP) to measure the accuracy of informa-
tion retrieval models. The mAP is a value between 0–1 0–1, with higher scores
representing a more accurate model.We describe it by the following formula:

mAP = (
1

N
)

N∑
i=1

APi (3.3)

In the above formula, N is the total number of queries, and APi is the average
precision of the query. In simple terms, mAP is the average of average precisions
across allqueries.

Mean Reciprocal Rank(MRR)

The Mean Reciprocal Rank (MRR) is a relative score that computes the average
or mean of the inverse of the ranks at which the first relevant document for a set of
queries was retrieved. It is related to the use case in which the user only wants to
see one relevant document for search.

3.3.2 Experimental

48

CHAPTER 3. EXPERIMENTAL AND RESULTS

Figure 3.2: Implementation System

49

CHAPTER 3. EXPERIMENTAL AND RESULTS

Preprocessing

In the preprocessing step, first, we read the entered data which are queries and
documents; and extract the words from both of them, after that, we tokenize the
extracted words because they come as a sequence of symbols or characters, so we use
a special NLP tool called ”Tokenizer” to extract words.

In this step, we used a tokenizer to convert text to lowercase, split it into word
entries in both documents and queries as word lists and we removes stop words as
well.

the last step of preprocessing is called stemming, it takes word matching one step
further and tries to map related words and this means not just the forms of the very
same word.

As a result, we have as sorts: query stemmed list and document stemmed list.

Figure 3.3: Document stemmed list

Figure 3.4: Query stemmed list

Indexing

Term frequency(tf) is the occurrence of the term in a document, the more fre-
quently the term is used in a document, the more relevant this document becomes

50

CHAPTER 3. EXPERIMENTAL AND RESULTS

to the query. Not all terms are equally important, even after stopwords are removed
there are still terms that are frequently used across all documents.

Inverse document frequency(idf) is the frequency of occurrence of the term across
all documents in the collection; the higher the number of documents that contain
the term, the lower its discriminative power.

Figure 3.5: Document ifd

The second step of indexing is vectorize, it’s used to apply idf weighting to the
document terms.

Figure 3.6: Document vectorizing

51

CHAPTER 3. EXPERIMENTAL AND RESULTS

Figure 3.7: Query vectorizing

Get Concept

In this step, we extract the concepts which they are query neighbors from Con-
ceptNet, then we store them in a dictionary having the query id and list of these
concepts.

Figure 3.8: Best Extended Part

Figure 3.9: Generate neighbors

Initialization

In this step, we used two functions; the first one will generate the initial extended
part. and the other will generate the initial extended part’s neighbors and we store

52

CHAPTER 3. EXPERIMENTAL AND RESULTS

them in a dictionary. We call neighbor every extended part that differs from the
initial extended part by a certain number of n-words.

Figure 3.10: Neighberhood Dictionary

Parallel ILS Using GPU

53

CHAPTER 3. EXPERIMENTAL AND RESULTS

Figure 3.11: ILS-GPU

We have implemented a parallel low-level algorithm ILS using GPU in order to
reduce the execution time of the evaluation process, in this step, we started with the
initialization of a random extended part, then we update it with GPU; we get the
best extended part by evaluation then we generate his neighbors and keep repeating
the same process until we get the best extended part, then we do a perturbation for
exploring more search areas, we keep searching as long as the new gmax is greater
than old gmax; if the best extended query lacks improvement we will re-evaluate
it and redo the process until we get the best extended part that satisfies the user’s
need.

54

CHAPTER 3. EXPERIMENTAL AND RESULTS

Parallel APSO Using MPI

Figure 3.12: APSO with Local Search -MPI

We have implemented a parallel high-level algorithm APSO with a local search
using MPI, we wanted to launch multiple processus here but due to the lack of
material, we could just launch two processus. In this step, we send one solution to
each processus, and every solution will generate its neighbors to get the best local
solution when he gets it, he will send it to the other processus, and the two processus
will update their solution according to the global solution and their local solution,
after that, they will generate new neighbors for the new solutions and do a local
search when they find another local solution they will keep doing the same process
until the number of iterations ends or all the obtained solution are equal. The final

55

CHAPTER 3. EXPERIMENTAL AND RESULTS

process here is to compare their results and choose the best one of them as a ”Global
Best”.

3.3.3 Results

Original Query ILS-GPU APSO-LS-MPI

MAP 0.10785475676540142 0.12768650921895297 0.1259851132750418876

MRR 0.43312049062049063 0.5607434640522875 0.46522444946357994

Table 3.1: Test Results

We note that there is a clear improvement between the original using Baseline
Model, iterated local search with GPU, and accelerated particle swarm with a local
search using MPI; although the resources used are somewhat scarce.

For APSO, we could not use more than two processors, but MPA got the best value.
This demonstrates the effectiveness of the method of using the parallel accelerated
particle swarm optimization with serial local search.

For GPU, we relied on a certain number of neighbourhoods. Due to time con-
straints, we were not allowed to determine the optimal values of the neighbourhood
and number of the blocks and the threads in every block.

Original Query ILS-GPU APSO-LS-MPI

P@5 0.8 0.6 0.8

P@20 0.45 0.4 0.5

Table 3.2: p@k comparaison

56

CHAPTER 3. EXPERIMENTAL AND RESULTS

CPU GPU[10,10] GPU[20,20] GPU[30,30] GPU[40,40]

time 2139.477 258.588 260.359 264.574 142.581

Table 3.3: Time compraison

In this table we used 50 neighborhoods and 50 iterations, where we noticed that
there is a wide difference between the speed of implementation of CPU and GPU,
this is evidence that the use of parallelism is very useful in the process of evaluation,
as well as the increase in the number of the blocks and threads within each block
increases the effectiveness of the execution time.

3.4 Conclusion

In this chapter, we talked about how we built our approach based on the Iterated
Local Search algorithm and Accelerated Particle Swarm Optimization with Local
Search.

The obtained results were satisfying and led to many possible future improvements
at several levels, such as the iteration number, the neighborhood generation, and the
selection of the initial extended part.

57

General Conclusion

We achieved our goal of using ConceptNet to develop parallel applications based
on query expansion in this study. After studying and researching, we implemented
a parallel Iterated Local Search (ILS) with GPU and a parallel Accelerated parti-
cle swarm optimization (APSO) with Local Search (LS) using MPI. We tested our
approach on the CISI dataset, which proved that our approach was good and not
expensive, but we noticed that its effectiveness was limited due to a lack of materials.

We concluded that programming and implementing parallel machines differ from
implementing standard machines in that the characteristics of the machine and the
targeted programs, as well as the ability to merge programming technologies, make
this project larger than implementing a standard program.

We want in the future to test this program on good machines that will allow us to
measure the effectiveness of these programs, we will be able to reset the parameters
of our program such as the length of the extended part, number of neighbors, number
of iterations, etc and we hope that we apply this program to other datasets such as
TREC-3, CACM, FIREBASE, etc.

We planned to construct a hybrid algorithm combining ILS and APSO with the
two MPI and GPU technologies, but due to the lack of time and techniques we
couldn’t achieve this goal.

Bibliography

[1] A. Roshdi and A. Roohparvar, “Review: Information Retrieval Techniques and
Applications,” International Journal of Computer Networks and Communica-
tions Security.

[2] S. Ibrihich, A. Oussous, O. Ibrihich, and M. Esghir, “A Review on recent re-
search in information retrieval,” Procedia Computer Science, vol. 201, pp. 777–
782, 2022.

[3] H. Kaur and V. Gupta, “Indexing process insight and evaluation,” in 2016 Inter-
national Conference on Inventive Computation Technologies (ICICT), (Coim-
batore, India), pp. 1–5, IEEE, Aug. 2016.

[4] R. Agarwal, K. Arya, S. Shekhar, and R. Kumar, “An Efficient Weighted Algo-
rithm for Web Information Retrieval System,” in 2011 International Conference
on Computational Intelligence and Communication Networks, (Gwalior, India),
pp. 126–131, IEEE, Oct. 2011.

[5] S. Ceri, A. Bozzon, M. Brambilla, E. Della Valle, P. Fraternali, and S. Quar-
teroni, “An Introduction to Information Retrieval,” in Web Information Re-
trieval, pp. 3–11, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[6] B. Saini, V. Singh, and S. Kumar, “Information Retrieval Models and Searching
Methodologies: Survey,” vol. 1, no. 2.

[7] H. K. Azad and A. Deepak, “Query expansion techniques for information re-
trieval: A survey,” Information Processing & Management, vol. 56, pp. 1698–
1735, Sept. 2019.

[8] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma, “Query expansion
by mining user logs,” IEEE Transactions on Knowledge and Data Engineering,
vol. 15, pp. 829–839, July 2003.

59

BIBLIOGRAPHY

[9] I. Rasheed, H. Banka, and H. M. Khan, “Pseudo-relevance feedback based query
expansion using boosting algorithm,” Artificial Intelligence Review, vol. 54,
pp. 6101–6124, Dec. 2021.

[10] M. A. Raza, R. Mokhtar, N. Ahmad, M. Pasha, and U. Pasha, “A Taxonomy
and Survey of Semantic Approaches for Query Expansion,” IEEE Access, vol. 7,
pp. 17823–17833, 2019.

[11] M. A. Khedr, F. A. El-Licy, and A. Salah, “Ontology based Semantic Query Ex-
pansion for Searching Queries in Programming Domain,” International Journal
of Advanced Computer Science and Applications, vol. 12, no. 8, 2021.

[12] D. K. Sharma, R. Pamula, and D. S. Chauhan, “Semantic approaches for query
expansion,” Evolutionary Intelligence, vol. 14, pp. 1101–1116, June 2021.

[13] G. Jain and A. Bansal, “Common sense based automatic query expansion,”
Journal of Information and Optimization Sciences, vol. 41, pp. 1579–1587, Oct.
2020.

[14] A. Kotov and C. Zhai, “Tapping into knowledge base for concept feedback:
leveraging conceptnet to improve search results for difficult queries,”

[15] A. Bouchoucha, J. He, and J.-Y. Nie, “Diversified query expansion using con-
ceptnet,” in Proceedings of the 22nd ACM international conference on Confer-
ence on information & knowledge management - CIKM ’13, (San Francisco,
California, USA), pp. 1861–1864, ACM Press, 2013.

[16] M. Essaid, L. Idoumghar, J. Lepagnot, and M. Brévilliers, “GPU paralleliza-
tion strategies for metaheuristics: a survey,” International Journal of Parallel,
Emergent and Distributed Systems, vol. 34, pp. 497–522, Sept. 2019.

[17] J. Swan, S. Adriaensen, A. E. Brownlee, K. Hammond, C. G. Johnson, A. Kheiri,
F. Krawiec, J. Merelo, L. L. Minku, E. Özcan, G. L. Pappa, P. Garćıa-Sánchez,
K. Sörensen, S. Voß, M. Wagner, and D. R. White, “Metaheuristics “In the
Large”,” European Journal of Operational Research, vol. 297, pp. 393–406, Mar.
2022.

[18] P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W. Mohamed, “Metaheuris-
tic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-
2019),” IEEE Access, vol. 9, pp. 26766–26791, 2021.

60

BIBLIOGRAPHY

[19] B. Morales-Castañeda, D. Zald́ıvar, E. Cuevas, F. Fausto, and A. Rodŕıguez,
“A better balance in metaheuristic algorithms: Does it exist?,” Swarm and
Evolutionary Computation, vol. 54, p. 100671, May 2020.

[20] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and
S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,” IEEE
Access, vol. 10, pp. 10031–10061, 2022.

[21] M. Abd Elaziz, A. H. Elsheikh, D. Oliva, L. Abualigah, S. Lu, and A. A.
Ewees, “Advanced Metaheuristic Techniques for Mechanical Design Problems:
Review,” Archives of Computational Methods in Engineering, vol. 29, pp. 695–
716, Jan. 2022.

[22] Q. Luo, H. Wang, Y. Zheng, and J. He, “Research on path planning of mo-
bile robot based on improved ant colony algorithm,” Neural Computing and
Applications, vol. 32, pp. 1555–1566, Mar. 2020.

[23] G. Papazoglou and P. Biskas, “Review and Comparison of Genetic Algorithm
and Particle Swarm Optimization in the Optimal Power Flow Problem,” Ener-
gies, vol. 16, p. 1152, Jan. 2023.

[24] H. Malik, A. Iqbal, P. Joshi, S. Agrawal, and F. I. Bakhsh, eds., Metaheuristic
and Evolutionary Computation: Algorithms and Applications, vol. 916 of Studies
in Computational Intelligence. Singapore: Springer Singapore, 2021.

[25] E.-G. Talbi, ed., Hybrid Metaheuristics, vol. 434 of Studies in Computational
Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[26] J. Gmys, T. Carneiro, N. Melab, E.-G. Talbi, and D. Tuyttens, “A comparative
study of high-productivity high-performance programming languages for parallel
metaheuristics,” Swarm and Evolutionary Computation, vol. 57, p. 100720, Sept.
2020.

[27] T. Ragunthar, P. Ashok, N. Gopinath, and M. Subashini, “A strong reinforce-
ment parallel implementation of k-means algorithm using message passing in-
terface,” Materials Today: Proceedings, vol. 46, pp. 3799–3802, 2021.

[28] T. Crainic, “Parallel Metaheuristics and Cooperative Search,” in Handbook of
Metaheuristics (M. Gendreau and J.-Y. Potvin, eds.), vol. 272, pp. 419–451,
Cham: Springer International Publishing, 2019. Series Title: International Se-
ries in Operations Research & Management Science.

61

BIBLIOGRAPHY

[29] G. Parlier, F. Liberatore, M. Demange, and C. a. C. Institute for Systems and
Technologies of Information, eds., ICORES 2019: proceedings of the 8th Inter-
national Conference on Operations Research and Enterprise Systems: Prague,
Czech Republic, February 19-21, 2019. Setúbal, Portugal: SCITEPRESS - Sci-
ence and Technology Publications, Lda, 2019. Meeting Name: ICORES.

[30] Y. Kong, “An iterative local search based hybrid algorithm for the service area
problem,” Computational Urban Science, vol. 1, p. 19, Dec. 2021.

[31] D. K. Sharma, R. Pamula, and D. S. Chauhan, “A hybrid evolutionary algorithm
based automatic query expansion for enhancing document retrieval system,”
Journal of Ambient Intelligence and Humanized Computing, Feb. 2019.

[32] I. Khennak, “An accelerated PSO for query expansion in web information re-
trieval: application to medical dataset,”

[33] “Institut national de recherche en informatique et en automatique,” Bulletin of
Sociological Methodology/Bulletin de Méthodologie Sociologique, vol. 37, pp. 55–
57, Dec. 1992.

62

	General Introduction
	State Of The Art
	Introduction
	Information Retrieval
	Information Retrieval Definition
	Information Retrieval Components
	Information retrieval system
	Information Retrieval Applications

	Query Expansion
	Query Expansion Definition :
	Query Expansion Models
	Query Expansion Process :
	Query Expansion Approaches
	Semantic Query Expansion

	Problematic and Proposition
	Conclusion

	Metaheuristic and Parallelization
	Introduction
	Metaheuristic
	Metaheuristic Definition
	Exploration and Exploitation
	Metaheuristic Classification

	Hybridization
	Hybridization Definition
	Hybridization Classification

	Parallelization
	Parallel Architecture
	GPU Computing
	Message Passing Interface(MPI)
	Parallel Metaheuristic
	Parallel Metaheuristic Classification

	Iterated Local Search
	Iterated Local Search Definition

	Accelerated Particle Swarm Optimization
	APSO Definition
	APSO Algorithm

	Conclusion

	Experimental and Results
	Introduction
	Implementation
	Programming Language
	MPI4Py
	CUDA Threading Model
	Dataset

	The system implementation steps
	Evaluation Metrics
	Experimental
	Results

	Conclusion
	General Conclusion

