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ABSTRACT

Deep learning has emerged as a transformative technology in various domains, ranging

from computer vision to natural language processing. The success of deep learning models

heavily relies on effective optimization algorithms. In this thesis, two main contributions

are presented. In Contribution 1, which is a two-fold comparative study, we first explore

the impact of various first-order optimization techniques on the learning process of U-Net

for the task of Change Detection. Namely, Gradient descent with Momentum (Momen-

tum GD), Nesterov Accelerated Gradient (NAG), Adaptive Gradient (AdaGrad), Root Mean

Square Propagation optimizer (RMSProp), and the adaptive moment estimation optimizer

(Adam). The results show that RMSProp, NAG, and AdaGrad reached the highest valida-

tion accuracies: 0.976, 0.978, and 0.979 with 10−2, 10−3, and 10−4 respectively, while Adam

was the fastest to converge and scored the lowest validation loss. Moreover, Adam scored

the highest precision and F1 score across all learning rate values with 0.491 and 0.376

respectively. Nevertheless, we noticed that Adam’s performance could be significantly in-

fluenced by the data sparsity. In light of this hypothesis, the second part of Contribution 1

investigates the impact of sparsity on the performance of Adam optimizer. We compare

different sparsity-level models, U-Net, DenseU-Net, and DenseNet using Adam optimizer

for BCE and focal Tversky losses, on dense and sparse datasets for three ML tasks: Change

detection, image segmentation, and object recognition. According to the obtained results,

the Adam optimizer seems to be more sensitive to the model than the data sparsity. In

Contribution 2, we propose a new method that aims to improve Adam’s performance. In

this approach, we combine a simulated annealing strategy with a dynamic learning rate
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to overcome the generalization gap which characterizes adaptive methods. We assess the

several variants of the proposed approach compared to Adam, stochastic Gradient Descent,

and Adabound. For this purpose, a simple 3-layer CNN is trained on two datasets MNIST

and CIFAR-10.

Key words: Deep learning, optimization, first order optimization, Adam, CNN, U-Net.
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RÉSUMÉ

L’apprentissage profond a émergé en tant que technologie transformative dans divers do-

maines, allant de la vision par ordinateur au traitement du langage naturel. Le succès

des modèles d’apprentissage profond repose largement sur des algorithmes d’optimisation

efficaces. Dans cette thèse, deux contributions principales sont présentées. Dans la Con-

tribution 1, qui est une étude comparative à double volet, nous explorons d’abord l’impact

de différentes techniques d’optimisation du premier ordre sur le processus d’apprentissage

de l’U-Net pour la tâche de détection de changements. Plus précisément, la descente de

gradient avec moment (Momentum GD), le gradient accéléré de Nesterov (NAG), le gradi-

ent adaptatif (AdaGrad), l’optimiseur de propagation de la racine carrée de la moyenne

quadratique (RMSProp) et l’optimiseur d’estimation du moment adaptatif (Adam) ont

été étudiés. Les résultats montrent que RMSProp, NAG et AdaGrad ont atteint les pré-

cisions de validation les plus élevées : respectivement 0,976, 0,978 et 0,979 avec des taux

d’apprentissage de 10−2, 10−3 et 10−4, tandis qu’Adam a été le plus rapide à converger et a

obtenu la perte de validation la plus faible. De plus, Adam a obtenu la précision et le score

F1 les plus élevés pour toutes les valeurs du taux d’apprentissage, avec respectivement

0,491 et 0,376.

Cependant, nous avons remarqué que les performances d’Adam peuvent être signi-

ficativement influencées par la raréfaction des données. En tenant compte de cette hy-

pothèse, la deuxième partie de la Contribution 1 examine l’impact de la raréfaction sur

les performances de l’optimiseur Adam. Nous comparons différents modèles de niveau

de raréfaction, U-Net, DenseU-Net et DenseNet, en utilisant l’optimiseur Adam pour les

vii



RÉSUMÉ VIII

pertes BCE et focal Tversky, sur des ensembles de données denses et rares pour trois tâches

d’apprentissage automatique : la détection de changements, la segmentation d’images et

la reconnaissance d’objets. Selon les résultats obtenus, l’optimiseur Adam semble être plus

sensible au modèle qu’à la raréfaction des données.

Dans la Contribution 2, nous proposons une nouvelle méthode visant à améliorer les

performances d’Adam. Dans cette approche, nous combinons une stratégie de recuit simulé

avec un taux d’apprentissage dynamique pour surmonter l’écart de généralisation qui carac-

térise les méthodes adaptatives. Nous évaluons plusieurs variantes de l’approche proposée

par rapport à Adam, à la descente de gradient stochastique et à Adabound. Dans cette

optique, un simple réseau de neurones à trois couches est entraîné sur deux ensembles de

données, MNIST et CIFAR-10.

Mots-clés: l’apprentissage en profondeur , optimisation, Optimisation du premier

ordre, Adam, CNN, U-Net.
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GENERAL INTRODUCTION

1 INTRODUCTION

Deep Learning(DL) is a powerful tool of Machine Learning(ML) that particularly reached

unmatched performance for various tasks. However, there is a high cost associated with

obtaining such a performance. A current challenge for all DL practitioners is developing

efficient models that aim to reach an optimal trade-off between the performance of the

model and its cost [41].

A DL model consists of three major components: The data set, the model’s architecture,

and the training process. The latter is the dynamic component through which the final

model learns from the data set to achieve a predefined task.

Optimization is an essential phase in the training process. It consists in minimizing the

cost function in order to determine the optimal set of parameters for the corresponding DL

model. However, optimization in turn is very time and material-consuming.

Different optimizers were established to address the issues that arise during training due

to the characteristics of data and/or models. These methods are typically categorized into

adaptive and non-adaptive.

Starting with Stochastic Gradient Descent(SGD) [54] and Momentum SGD [49], non-

adaptive optimizers update all the parameters of the model with equal step sizes. Con-

jugate gradient [59] and Nesterov Accelerated gradient(NAG) [45] also fall under this

category. Nevertheless, the aforementioned algorithms show a remarkable delay through-

out the training.

1



GENERAL INTRODUCTION 2

To accelerate the process, adaptive methods as the name suggests, refer to the meth-

ods where the learning rate is adapted to each parameter. Adaptive Moment Estima-

tion(ADAM) [30], Adaptive Gradient(AdaGrad) [17], and Root Mean Squared Propaga-

tion(RMSProp) [62] among various other methods and variants which employed adaptiv-

ity.

Although the second family of optimizers succeeded to gain in speed, there is an impact-

ful generalization gap between these and their non-adaptive counterparts [67]. Several

works proposed empirical and theoretical analysis to explore the phenomenon. Zhang et

al. [69] linked this issue to direction missing which occurs due to detaching individual

weights from the network. Zhou et al. [70] confirmed that ADAM-like optimizers suffer

from heavy-tailed gradient noise. Conversely, Gupta et al. [25] observed that for classifi-

cation problem type, networks tend to large values when trained with adaptive methods

causing loss flattening.

An ongoing research trend to enhance the performance of these fast yet overfitted meth-

ods resulted in a number of new methods. AMSGrad [50] and AdaBound [39] addressed

the problem from a heavy-tailed noise perspective, Logit Attenuating Weight Normaliza-

tion(LAWN) [25] proposed a fix for loss flattening and regarding the direction missing,

Normalized Direction Preserving ADAM(ND-ADAM) [69] was developed to resolve the di-

rection missing by normalizing hidden layers’ weights.

With that being said, as far as we know, no adaptive methods considered exploring so-

lutions and preventing extreme learning rate values (heavy-tailed noise) within a single

framework. In this thesis, we first conduct a two-fold comparative study investigating the

performance of common adaptive methods and then present a set of optimizers. Our con-

tributions can be summarized as follows:

• The first comparative study comprises five major adaptive and nonadaptive optimiza-

tion techniques on the specific case of U-Net [55] for Change Detection(CD) task.

• The second, consists of a deeper investigation of the behavior of ADAM optimizer on

different models and architectures with an eye toward the effect of sparsity.

• Finally, we develop a set of optimization methods based on ADAM and Simulated

Annealing(SA) strategy [31].
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2 THESIS STRUCTURE

This thesis is organized as follows:

In Chapter 1, we start by introducing machine learning and its main paradigms: super-

vised learning, unsupervised learning, semi-supervised learning, and reinforcement learn-

ing with a focus on some tasks that we used in our work: change detection, image segmen-

tation, and image recognition. After that, we present the three different components of the

ML framework: data set, model, and learning process, presenting the required concepts

needed for this work.

In Chapter 2, we introduce optimization in ML and DL, highlighting the crucial role it

plays in the enhancement of ML and DL models. In this context, we focus on first-order

optimization and the most common gradient-based optimization methods.

Chapter 3 is dedicated to our first contribution when we first conduct a comparative

study of five common gradient-based optimization techniques to highlight the effect of the

optimizer on the performance and effectiveness of a deep learning method. Then, we in-

vestigate through another comparative analysis the effect of the sparsity on the perfomance

of ADAM optimizer considering different ML tasks.

Our second contribution is presented in Chapter 4. In this contribution, we propose a

set of optimizers that make use of the simulated annealing strategy. The main purpose we

aim to address is the generalization issue that characterizes adaptive methods. Experiments

are conducted using two of the popular ML datasets: MNIST and CIFAR-10.



CHAPTER 1

INTRODUCTION TO MACHINE LEARNING AND DEEP

LEARNING

1 INTRODUCTION

Machine learning and deep learning have made significant strides in recent years, revo-

lutionizing a variety of fields and industries. The training and performance enhancement

of deep learning and machine learning models both heavily rely on optimization. In this

chapter, We will introduce the field of ML and its paradigms with a focus on some tasks

of ML and then we present ml framework components: data, model, and process learning

specifying some models that we used in our work. Finally, we will address the importance

of optimization in the learning process.

2 MACHINE LEARNING

2.1 DEFINITION

In 1959, Arthur Samuel defined machine learning as “ a field of study that gives computers

the ability to learn without being explicitly programmed” [58], a subset of artificial intelli-

gence (AI) that focuses on developing algorithms and models that can analyze and interpret

data, identify patterns, and make predictions or decisions based on that analysis. With ma-
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chine learning, computers can learn from past experiences and improve their performance

over time, making them valuable tools for many applications.

2.2 MACHINE LEARNING PARADIGMS

ML can be classified into four major types: Supervised Learning (SL), Unsupervised Learn-

ing (UL), Semi-supervised Learning, and Reinforcement Learning (RL).

2.2.1 SUPERVISED LEARNING

Supervised Learning (SL) is one of the most popular and effective paradigms in machine

learning. This setting entails training a model using labeled data, enabling it to acquire

knowledge from this information and then, utilize this knowledge to make accurate pre-

dictions for new, unseen data.

Mathematically, we have a training dataset represented as a set of pairs (x, y), where

x ∈ Rd is the input or features vector, and y is the output. The goal is to find the best

mapping function f such that y = f(x) that maps the inputs to the correct outputs using

machine learning algorithms [38].

Depending on the output type, two main predictive tasks can be identified: classification

and regression. In classification, the algorithm predicts a categorical label for new data

based on the labeled data it was trained on, whereas in regression, the algorithm predicts

a real value for new data based on patterns learned from labeled data.

2.2.2 UNSUPERVISED LEARNING

Unsupervised Learning (UL) is another type of machine learning where, unlike supervised

learning, the algorithm learns from unlabeled data, UL algorithms are used to identify

patterns and relationships in data without prior knowledge of the outcome, which means

the data does not come with a specified target but only as an input of features x ∈ Rd.

The goal is to learn a function f describing the unknown process P (x) from which the

examples were derived in some way [38]. This makes UL useful for tasks such as clustering,

Visualization, and dimensionality reduction.
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2.2.3 SEMI-SUPERVISED LEARNING(SSL)

Semi-supervised learning is a branch of machine learning that involves using both labeled

and unlabeled data to accomplish learning tasks. It sits between supervised and unsuper-

vised learning methods, allowing the utilization of large amounts of unlabeled data along-

side smaller sets of labeled data, which is often the case in real-world scenarios. The model

can thus learn more about the underlying structure of the data and potentially improve its

generalization ability by using unlabeled data.

Formally and in addition to the labeled dataset DL = {((xi, yi)), i = 1, . . . , l}, we make

use of unlabeled dataset DU = {xi, i = l + 1, . . . , n} for the learning task [64].

2.2.4 REINFORCEMENT LEARNING(RL)

Unlike supervised learning, RL does not rely on labeled examples but instead learns through

trial-and-error interactions with the environment. This type of learning has three primary

components: the agent, the environment, and the actions. where an agent learns to make

decisions by exploring and interacting with an environment to maximize cumulative re-

wards. The primary objective is for the agent to select actions that yield the highest ex-

pected rewards within a specified time frame. RL has been successfully applied in various

fields, including robotics, gaming, and autonomous vehicles.

Figure 1.1 provides an illustration of the four paradigms aforementioned.

2.3 MACHINE LEARNING TASKS

ML is applied to a wide range of tasks in various domains like Healthcare[66], Recom-

mender Systems[48], Financial Analysis[13], Natural Language Processing (NLP)[44], etc.

In our work, we focus on three tasks and will address each of them: change detection, im-

age segmentation, and object recognition.

2.3.1 CHANGE DETECTION TASK

Change detection is a task in which machine learning algorithms are employed to identify

and analyze alterations or differences in data over time. In other words, change detection is

1https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning

https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
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Figure 1.1: Main Machine learning paradigms.1

the process of identifying differences in the state of an object or phenomenon by observing

it at different times[60]. The process requires multi-temporal images and certain criteria

specified by the mask. A mask is a binary image where black regions correspond to areas

with negligible change while white regions represent significant changes[53]. It is a crucial

step for analyzing temporal Earth observation sequences in order to build evolution maps

of land cover, urban expansion, deforestation, etc. Figure 1.2 is a sample from the Onera

Satellite Change Detection dataset where the change mask corresponds to the bi-temporal

images. Therefore, Change Detection is reduced to binary image segmentation.

Difference image techniques are suitable for medium-resolution images like those of the

dataset used in our experiments, based on the observation that the smaller the resolution,

the less spatial-contextual information affects the resulting CD map[46] since fewer pixels

represent an object. DL-based approaches are summarized under three categories: feature-

based, patch-based, and image-based[46]. The method we use falls under patch-based DL

methods, where different images are calculated and then divided into smaller patches of
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Figure 1.2: Beirut city. Sample from Onera Satellite Change Detection dataset created by Daudt et al[12].

256×256 due to the large size of the images.

2.3.2 IMAGE SEGMENTATION TASK

Image segmentation is the task of finding groups of pixels that “go together”. In statis-

tics, this problem is known as cluster analysis and is a widely studied area with hundreds

of different algorithms[28]. Image segmentation is a computer vision task that involves

dividing an image into multiple regions or segments to identify and extract meaningful

objects or areas. The goal is to partition the image into different homogeneous regions

based on properties such as color, texture, or intensity. Segmentation plays a central role

in a broad range of applications including medical image analysis (e.g., tumor boundary

extraction and measurement of tissue volumes), autonomous vehicles (e.g., navigable sur-

face and pedestrian detection), video surveillance, and augmented reality[21]. It enables

the extraction of meaningful information from images, allowing for further analysis, in-

terpretation, and decision-making. Numerous image segmentation algorithms have been

developed[42], such as thresholding, edge-based methods, region-based approaches, and

deep learning-based models, and are employed to achieve accurate and efficient image seg-

mentation results, depending on the specific requirements and characteristics of the task at

hand. Figure 1.3 show an example of segmentation results.
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Figure 1.3: example of segmentation results[9]

2.3.3 OBJECT RECOGNITION TASK

Object recognition is a core task of computer vision, which helps detect and analyze im-

ages to enable the automation of a specific task. It is a technology that is capable of

identifying places, people, objects, and many other types of elements within an image

or video frame and drawing conclusions from them by analyzing them. This involves two

main steps: object detection, where potential object regions are identified using techniques

like convolutional neural networks (CNNs)[34] or region proposal methods[22], and ob-

ject classification, where labels or categories are assigned to the detected objects using

machine learning algorithms. Deep learning models like AlexNet, VGGNet, GoogLeNet,

ResNet, MobileNet, YOLO[51], and Faster R-CNN[52] have significantly advanced object

recognition performance, with applications in areas such as autonomous vehicles, surveil-

lance, and augmented reality. These models have been developed and refined through

research efforts in computer vision, leveraging large-scale annotated datasets like Ima-

geNet for training and evaluation. igure 1.4 represents objects classified through image

recognition.

3 MACHINE LEARNING FRAMEWORK’S COMPONENTS

A machine learning (ML) framework typically involves several components that aim to fa-

cilitate the development, training, evaluation, and deployment of machine learning mod-

2https://www.techtarget.com/searchenterpriseai/definition/image-recognition

https://www.techtarget.com/searchenterpriseai/definition/image-recognition
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Figure 1.4: Objects are classified through image recognition.2

els [23]. We will specify three components very important: Dataset, Model, and Learning

process.

3.1 DATASET

The dataset is a fundamental component of any machine learning framework. It consists

of a collection of labeled or unlabeled examples that are used to train, validate, and test

machine learning models. The dataset serves as the input for the learning process and

contains features and corresponding labels for each example. The dataset can come in two

forms: sparse or dense depending on the specific problem, data collection methods, and

the characteristics of the dataset itself.

Sparse dataset: Sparse data refers to a dataset or data representation where a large

portion of the entries or features is missing or contain zero values, resulting in a low density

of available data and a high degree of sparsity [24].

Dense datasets: Dense data refers to a dataset or data representation where a significant

majority of the entries or features contain non-zero values, resulting in a high density of

available data and a low degree of sparsity [4]

The choice of dataset depends on the specific problem being tackled as well as the

available processing and storage resources where the quality, size, and diversity of the

dataset greatly influence the performance and generalization ability of the trained models.
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3.2 MODEL

The model is a central component of the machine-learning framework and refers to a

mathematical representation or algorithm that learns patterns and relationships and makes

predictions or decisions based on input data. The choice of the best function or model de-

pends on several factors, including the nature and characteristics of the data and the type

of problem that you want to solve. Some common machine-learning models are Support

Vector Machines (SVM), K-Nearest Neighbor (KNN), K-means, Principal Component Anal-

ysis (PCA), Artificial Neural Networks (ANN), etc. A model can be trained with respect to

a selected paradigm to perform a specific task.

For the purpose of this work, we make focus on ANN that are explicitly detailed in the

following subsection.

3.2.1 ARTIFICIAL NEURAL NETWORK (ANN)

An artificial neural network (ANN) is a computational model inspired by the structure and

function of biological neural networks, such as those in the human brain. ANNs consist of

interconnected artificial neurons organized into layers. There are three primary types of

layers in an ANN: the input layer, the hidden layer(s), and the output layer. The input layer

receives the external data and passes it on to the hidden layers, which are the intermediate

layers that separate the other layers and perform the computations using the feedforward

algorithm. The output layer produces the final result or prediction based on the processed

data, and then the ANN uses the backpropagation algorithm to adjust the weights of the

connections between neurons depending on the error rate between the target and the

actual output. Figure 1.5 show the general structure of ANN.

3.2.2 DEEP NEURAL NETWORKS (DNNS)

Deep neural networks (DNNs) are artificial neural networks (ANNs) with multiple hid-

den layers between the input and output layers. It leverages the power of depth to learn

hierarchical representations of data, enabling it to capture complex patterns and rela-

tionships [23]. Each layer in a DNN consists of multiple artificial neurons that compute

weighted sums of inputs and apply activation functions to produce outputs. This process
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Figure 1.5: The general structure of ANN [57]

is known as feedforward. The DNN’s training process involves iteratively adjusting the

weights and biases to minimize the difference between the predicted outputs and the ac-

tual outputs using techniques like backpropagation This allows the DNN to learn complex

representations and make accurate predictions or classifications. Figure 1.6 represent an

example of the structure of DNN with three hidden layers.

Figure 1.6: Structural representation of a Deep Neural Network with three hidden Layers [63]
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3.2.3 CONVOLUTIONAL NEURAL NETWORKS (CNN)

CNN [34]is a type of deep artificial neural network commonly used in image recognition

and processing. It is designed to automatically and efficiently learn spatial hierarchies of

features from input images. CNNs are composed of multiple layers, including convolu-

tional, pooling, and fully connected layers, which work together to extract and classify

visual features in an image.

Convolutional layer: These layers apply a set of learnable filters (also known as kernels)

to the input image. Each filter convolves across the input image, computing dot products

between the filter weights and the pixel values in the receptive field. The output of each

filter is a feature map that highlights the presence of specific visual patterns or features.

pooling layer: The pooling layer, also known as downsampling, is typically inserted after

one or more convolutional layers. Its main purpose is to reduce the spatial dimensions

(width and height) of the input feature maps while retaining the most important informa-

tion. The most commonly used pooling method is max pooling, where the filter moves

(often 2x2 or 3x3 in size) over the input feature map and selects the pixel with the maxi-

mum value. This selected value is used to form the output feature map.

Fully connected layer: These layers are typically located towards the end of the network.

The main purpose of fully connected layers is to learn complex relationships and make

predictions based on the features extracted by earlier layers in the network. The output

of the previous layers is flattened into a one-dimensional vector and connected to a set of

neurons that produce the final prediction. Figure 1.7 represent the CNN architecture.

3.2.4 U-NET

U-Net[55] is an encoder-decoder architecture. The encoder part consists of several blocks.

Each block contains two successive convolutions of 3x3, doubling the number of channels

in the feature map, a ReLU unit, and max pooling. In the decoder part, each block consists

of an upsampling, a 2x2 up-convolution that halves the number of feature channels. Con-

catenation with the correspondingly cropped feature map from the contracting path and
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Figure 1.7: The CNN architecture [2]

two 3x3 convolutions, each followed by a 3x3 convolution. Figure 1.8 illustrates a UNet

architecture.

Figure 1.8: UNet original architecture where blue boxes represent feature maps, white boxes copied feature
maps with numbers of channels on top. Different operations are denoted with arrows of different colors [55]

3.2.5 DENSEUNET

DenseUNet[8], also known as Dense U-Net, is a deep learning architecture that combines

the concepts of3.2.4U-Net and DenseNet[27], two well-known neural network architec-

tures. It was specifically designed to address the challenges of semantic segmentation,



CHAPTER 1. INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING 15

which involves pixel-level classification and labeling of images. DenseUNet retains the

encoder-decoder structure of U-Net while incorporating dense connections from DenseNet.

These dense connections enable efficient information flow and enhanced feature reuse

throughout the network. By leveraging multi-scale features and incorporating skip connec-

tions, DenseUNet captures both local and global contextual information, making it effective

for accurate and robust semantic segmentation. DenseUNet has shown promising results in

various medical image segmentation tasks and continues to be an active area of research.

3.2.6 DENSENET

The Dense Convolutional Network (DenseNet)[27] is a deep-learning architecture for com-

puter vision tasks. It is known for its dense connectivity pattern, where each layer receives

direct inputs from all preceding layers, facilitating information flow and promoting feature

reuse. This connectivity pattern addresses the vanishing gradient problem and enhances

model expressiveness.

DenseNet consists of dense blocks which are the building blocks of the network, and tran-

sition layers, which control the spatial dimensions and the number of feature maps. Within

a dense block, each layer is connected to all previous layers, while transition layers are

responsible for downsampling the spatial dimensions and reducing the number of feature

maps before passing them to the next dense block, and its effectiveness has been demon-

strated through state-of-the-art performance on various computer vision tasks. Figure 1.9

illustrates DenseNet architecture.

Figure 1.9: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred
to as transition layers and change feature-map sizes via convolution and pooling.[27]
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3.3 LEARNING PROCESS

The learning process is a crucial component of machine learning frameworks. It refers

to the phase where a model is trained on a dataset to learn patterns, relationships, and

rules that can be used for making predictions or decisions on new, unseen data after the

selection of appropriate algorithms, the preparation and cleaning of data, the tuning of

hyperparameters, and the evaluation of model performance. The learning process can be

performed according to supervised, unsupervised, semi-supervised, or any other learning

paradigm, depending on the type of data availability and the desired outcome.

In the supervised setting, and during the learning process, the loss function plays a

crucial role by quantifying the model’s error or mismatch between the predicted output

and the true target values. The goal is to minimize this error by iteratively adjusting the

model’s parameters through an optimization algorithm. By minimizing the loss function,

the model aims to improve its performance and ability to make accurate predictions. There

are several functions that are used to measure the error loss for different types of machine

learning problems. We can mention

Root Mean Squared Error (RMSE): Which calculates the square root of the average of

squared differences between the predicted and true values. Its formula is given by

RMSE(h) =

√√√√ 1

N

N∑
i=1

(h(xi)− yi)2 (1.1)

Where h represents a hypothesis or prediction function, xi, yi, for i = 1, . . . , N represent

the input and the corresponding true or target value for the ith data point, respectively.

Binary Cross-Entropy Loss: Which is used when the target variable has two classes. It

measures the dissimilarity between the predicted probabilities and the true binary labels.

Its formula is given as follows

Binary Cross-Entropy Loss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (1.2)
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Where yi is the true label (either 0 or 1) for the ith sample, and pi represents the predicted

probability for the ith sample to belong to Class 1.

Categorical Cross-Entropy Loss: Suitable for multiclass classification problems. It mea-

sures the dissimilarity between the predicted class probabilities and the true class labels.

Categorical Cross-Entropy Loss = − 1

N

N∑
i=1

C∑
j=1

yij log(pij) (1.3)

Where C represents the total number of classes, yij represents the true label (0 or 1) for the

i sample belonging to class j, and pij represents the predicted probability for the i sample

belonging to class j.

Focal Tversky Loss: Focal Tversky Loss (FTL)[1] is used in image segmentation tasks

where ground truth annotations are available for training. It is used as the objective func-

tion during the training process to guiding the model to produce accurate segmentation.

The FTL combines elements from the Tversky index and the focal loss defined as:

FocalTverskyloss = − log(T ) · (1− T )γ (1.4)

Where γ is a hyperparameter that controls the degree of focusing, and T is The Tversky

index defined as:

T =
TP

TP + α · FP + β · FN
(1.5)

Where TP represents the number of true positive pixels, FP represents the number of false

positive pixels, and FN represents the number of false negative pixels. The parameters α

and β control the relative weighting of false positives and false negatives, respectively.

3.3.1 THE LEARNING PROCESS OF DEEP NEURAL NETWORKS

The learning process in a deep neural network is a crucial step too. The latter uses two key

steps for training the model, namely, feedforward and backpropagation.
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FeedForward In the feedforward, the input data is fed into the neural network, and

the network computes the output predictions where each input is multiplied by a random

weight. Then the result which is the product of each input and its weight is added to a

value called bias. Finally, an activation function is applied to the result Then, the output of

each neuron becomes the input of the neurons into the next layer, and the same process is

repeated until the final layer [23].

Backpropagation After the feedforward comes the step of backpropagation. The goal

is to minimize the error or loss of the neural network by adjusting its weights. The algo-

rithm works by propagating the error from the output layer back to the input layer, hence

the name "backpropagation." It utilizes the chain rule of calculus to compute the partial

derivatives of the loss function with respect to the weights of the network [23].

3.3.2 THE IMPORTANCE OF OPTIMIZATION IN THE LEARNING PROCESS

Optimization plays a critical role in the learning process of deep learning, specifically in

training deep neural networks. Deep neural networks often have a large number of pa-

rameters, making the optimization task complex. Efficient optimization algorithms are

crucial for minimizing the loss function and updating the network’s parameters iteratively.

They help in navigating the high-dimensional parameter space, avoiding local minima,

and finding optimal solutions. Optimization techniques also contribute to regularization,

generalization, scalability, and computational efficiency [23].

4 CONCLUSION

In this chapter, we have presented some concepts from machine learning and Deep learn-

ing that are mainly related to our work. We started by introducing the field of ML and

its paradigms with a focus on some tasks that we used in our work, then we got onto

the ML framework components: dataset, model, and the learning process with specifying

some models. Finally, we focused on the importance of optimization in the learning pro-

cess. In the upcoming chapter, we will explore the concept of optimization in the context

of machine learning (ML) and deep learning (DL) and will present various optimization

techniques that are employed in this field.



CHAPTER 2

OPTIMIZATION METHODS

1 INTRODUCTION

Optimization is a field that encompasses a collection of mathematical principles and meth-

ods used to solve quantitative problems across various disciplines. It provides a framework

for tackling physics, biology, engineering, economics, and business problems. In ML and

DL, optimization is crucial, whereby utilizing optimization techniques, ML and DL mod-

els can achieve, through an optimal learning process, higher accuracy, faster convergence,

and better scalability. Leading the machine learning model to greater effectiveness. In this

chapter, we discuss optimization along with its specific type, and finally, we will address

some optimization methods.

2 OPTIMIZATION

Optimization is the process of finding the best possible solution to a problem or achieving

the best possible outcome with respect to some criteria[33].

Formally, an optimization problem aims to find a vector of variables x ∈ E, called also

unknowns or parameters, that minimizes (or maximizes) a function f(x) over the set E,

defined from the constraints on its variables [68].

Optimization plays a crucial role in machine learning (ML) and deep learning (DL)

19
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by enabling models to learn and improve their performance. In this field, optimization

refers to the process of finding the optimal set of parameters or weights for a model that

minimizes a specified loss or cost function. The objective is to iteratively adjust the model’s

parameters based on training data to optimize its performance and enhance its ability to

make accurate predictions [23].

The usual and most common mathematical setting that is used in ML and DL is un-

constrained optimization. In this setting the set E = Rn, where n denotes the number of

parameters.

One way to solve such problems is to look closer at stationary or critical points. These

are points when the gradient of the function f vanishes.

Various algorithms are employed to solve unconstrained optimization problems, includ-

ing gradient-based methods like gradient descent and its variants. These algorithms cal-

culate the gradients of the objective function with respect to the model’s parameters and

update the parameters iteratively in a direction that decreases the value of the objective

function. By repeating this process over multiple iterations, the model gradually converges

toward the optimal set of parameters that minimizes the objective function [5].

2.1 FIRST ORDER OPTIMIZATION

First-order optimization is based on the observation that the cost function C(w1, .., wn) is

differentiable and a minimum exists. In DL models specifically, the parameter space is

very high dimensional, and the layered nature of DNNs results in highly complicated cost

functions [23].

That is to say, a closed form solution of ∇C(w1, .., wn) = 0 does not exist or otherwise, it is

memory-consuming to compute. The iterative process of finding a local minimum namely

gradient descent [56] is the adopted solution where we start from an initial solution and

move in the parameter space using the negative of the gradient at the current position

(which points at a local minimum) scaled by a learning rate α. The updating rule of GD is

given by the following equation:

wt = wt−1 − α
∂C

∂wt

(2.1)

However, it is to mention that performance of GD, i.e. the ability to successfully min-
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imize the cost, is subject to many factors; The training data properties, the DNN’s archi-

tecture 3.2.2 as well as the choice of the hyper-parameters could potentially affect the

convergence time and the overall training process. Several variants of GD emerged to

address this problem [61].

3 GRADIENT-BASED OPTIMIZATION METHODS

3.1 STOCHASTIC GRADIENT DESCENT (SGD)

Stochastic Gradient Descent (SGD) [54] is in fact the standard algorithm for training Deep

Neural Networks (DNNs). It is a popular gradient descent optimization algorithm variant

that updates model parameters based on the gradient of the objective function with respect

to a small subset of training examples, known as a mini-batch. The SGD update rule is as

follows:

wt+1 = wt − α∇wtJ(wt,xi : t,yi : t), (2.2)

where wt is the parameter vector at time step t

J(wt,xi : t,yi : t) is the loss function evaluated on the mini-batch of training examples

(xi : t,yi : t), and ∇wtJ(wt,xi : t,yi : t) is the gradient of the loss function with respect to

the parameters at time step t.

SGD is a simple and efficient algorithm that can work well for a wide range of machine-

learning tasks. However, it has some limitations such as being sensitive to the choice of

learning rate and mini-batch size, and it can get stuck in local minima [56]. To address

these limitations, various extensions and modifications of SGD have been proposed, such

as momentum [49], and adaptive learning rate methods.

3.2 MOMENTUM

In order to accelerate SGD, momentum SGD [49] keeps track of the history of gradients

and applies exponential decay to place more emphasis on the newer direction. The below

equation (2.3) is how the moving average of gradients is calculated:

vt = βvt−1 + (1− β)
∂C

∂wt

(2.3)
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Such that:

β: the momentum hyperparameter which controls the amount of history to include.

vt−1: the moving average at time t-1.
∂C
∂wt

: the partial derivative of the cost function w.r.t the weight parameter vector wt. Hence,

the update rule:

wt+1 = wt − αvt (2.4)

3.3 NESTEROV ACCELERATED GRADIENT(NAG)

The main enhancement NAG [45] suggests in relation to momentum, is to determine di-

rections based on history, and not just updates. Therefore, the moving average becomes as

follows:

vt = βvt + α
∂C

∂(wt − βvt)
(2.5)

The derivative of the cost is computed w.r.t (wt − βvt) which acts as an estimation of the

new position of w allowing more careful steps which help avoid overshooting.

3.4 ADAPTIVE GRADIENT (ADAGRAD)

Adagrad [17] works by adapting the learning rate of each parameter based on the historical

gradient information of that parameter. This adaptive learning rate helps Adagrad converge

faster on parameter values that are important for the optimization problem. Equation (2.6)

is the sum of squared gradients, (2.7) is the adaptive learning rate, and (2.8)is the update

rule.

vt =
t∑

i=0

(
∂C

∂wi

)2 (2.6)

αt = αt−1/(
√
vt + ϵ) (2.7)

wt = wt−1 − αt
∂C

∂wt

(2.8)

However, Adagrad may suffer from a diminishing learning rate problem as the historical

gradient information accumulates over time, which can slow down convergence and pre-

vent further learning. To address this issue, newer optimization algorithms such as Adam

and RMSprop [62] have been developed.
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3.5 ROOT MEAN SQUARE PROPAGATION (RMDPROP)

The RMSProp optimizer[62] is similar to the Adagrad optimizer, but it seeks to address

one of its limitations, which is that the learning rate can become too small over time due to

the accumulation of squared gradients. RMSProp solves this issue by introducing a decay

factor that controls the rate at which the past gradients influence the learning rate. This

decay factor allows the algorithm to adapt to changing gradients and adjust the learning

rate accordingly. Equation (2.9) is the moving average of squared gradients and equation

(2.10) is the update rule.

vt = βvt−1 + (1− β)(
∂C

∂wt

)2 (2.9)

wt = wt−1 −
α√
vt + ϵ

∂C

∂wt

(2.10)

3.6 ADAPTIVE MOMENT ESTIMATION (ADAM)

Adam[30]algorithms combine the heuristics of both Momentum and RMSProp.Hence, two

moving averages are calculated (Equations (2.11), (2.12)). A bias correction is then ap-

plied on the calculated moments (Equations (2.13), (2.14)). Equation (2.15) is the update

rule.

mt = β1mt−1 + (1− β1)gt (2.11)

vt = β2vt−1 + (1− β2)g
2
t (2.12)

m̂t =
mt

1− βt
1

(2.13)

v̂t =
vt

1− βt
2

(2.14)

wt = wt−1 − α
m̂t√
v̂t + ϵ

(2.15)

where mt is the moving average of gradients, and vt is the moving average of squared gra-

dients. β1, β2 ∈]0, 1] control the mt and vt respectively. m̂t and v̂t are the bias corrected mt

and vt respectively.
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3.7 ADABOUND

ADAPTIVE MOMENT ESTIMATION WITH DYNAMIC BOUND (ADABOUND)[39] addresses

the problem of extreme step size caused by the unbounded learning rates of adaptive

methods i.e these latter can explode or vanish uncontrollably due to excessively large or

small gradients. Bounding the learning rates combines the stability of SGD (non-adaptive

gradient-based methods) hence fair final generalization, and the fast convergence of ADAM

(adaptive methods) [39]. by introducing a dynamic range that converges towards constant

final values to prevent extremely large or small step sizes. Below is the formalization of the

ADABOUND optimizer:

Input: x1 ∈ F , initial step size α, {β1t}Tt=1, β2, lower bound function ηl, upper

bound function ηu

Set m0 = 0, v0 = 0;

for t = 1 to T do

gt = ∇ft(xt);

mt = β1tmt−1 + (1− β1t)gt;

vt = β2vt−1 + (1− β2)g
2
t and Vt = diag(vt);

η̂t = Clip
(

α√
Vt
, ηl(t), ηu(t)

)
and ηt =

η̂t√
t
;

xt+1 = ΠF ,diag(η−1
t )(xt − ηt ⊙mt);

end
Algorithm 1: AdaBound Algorithm

4 CONCLUSION

Optimization is very important for ML and DL because it helps improve the accuracy and

efficiency of the models. By optimizing the algorithms and parameters, we can reduce

the computational resources required for training and inference, which can save time and

money. Additionally, optimization can also help prevent overfitting and improve generaliza-

tion performance, making the models more robust and reliable. In this chapter, we talked

about optimization in ML and DL, and we particularly discussed first-order optimization by

highlighting six first-order optimizers.



CHAPTER 3

CONTRIBUTION 1: COMPARATIVE STUDY

1 INTRODUCTION

In this Chapter, we will present a comparative study of five common gradient-based op-

timization techniques to highlight the effect of the optimizer on the performance and ef-

fectiveness of deep learning. Next, we will conduct another comparative analysis for the

purpose of studying the effect of the sparsity of the model and that of the dataset consid-

ering different ML tasks.

PART I: A COMPARATIVE STUDY OF THE IMPACT OF DIFFERENT FIRST-

ORDER OPTIMIZERS ON THE LEARNING PROCESS OF U-NET FOR CHANGE

DETECTION TASK.

Our first comparative study [15] is a more in-depth analysis than the one initiated in [6].

This study is conducted to determine the best-performing optimizer among five: Gradi-

ent descent with Momentum (Momentum GD)(3.2), Nesterov Accelerated Gradient (NAG)(3.3),

Adaptive Gradient (AdaGrad)(3.4), Root Mean Square Propagation optimizer (RMSProp)(3.5),

and the adaptive moment estimation optimizer (Adam)(3.6) where we train U-Net[55] ar-

chitecture on CD dataset ONERA.

UNet has demonstrated its effectiveness in achieving robust learning even with a limited

25
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number of data images, which makes it a suitable choice for change detection (CD) tasks

using multi-spectral datasets like ONERA, where the available image count is relatively

small [11, 35, 65].

Recent research has investigated the use and performance of UNet architecture in detecting

changes in remote sensing images [7, 10, 36, 43]. In [7], UNet and UNet++ were trained

and evaluated using high-resolution satellite images. The authors analyzed the impact

of different loss functions, data augmentation, and deep supervision techniques on the

models’ performance.

In [43], the generality and performance of UNet and its variants were assessed on datasets

with class imbalance and small region of interest size. They examined the suitability of

these models for such challenging scenarios. Lv et al. [40] ccompared an existing deep

learning-based change detection approach with a UNet-based approach proposed in their

work. In [37], Li et al. evaluated a residual UNet model using Sentinel-1 SAR change

detection dataset for urbanization.

However, it is worth noting that no specific study has been conducted to investigate

the impact of different optimization methods on the performance of UNet architecture for

change detection tasks. We believe that such a study would provide valuable insights into

designing more efficient and high-performing UNet models for change detection, particu-

larly when resources are limited.

2 METHODOLOGY

The below subsections detail the experimental setup requirements of the comparative

study. Namely, the data and the preprocessing performed on it, the training setting, and

finally the evaluation metrics.

2.1 DATASET

In this work we use the data set ONERA for the experiments, The CD data set contains 24

pairs of multi-spectral images captured by Sentinel-2 satellites between 2015 and 2018,

depicting various cities worldwide, with spatial resolution range between 10m, 20m, and

60m. The data set includes the corresponding masks, where the white segments denote

changes and the black regions denote areas that haven’t changed or haven’t undergone
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irrelevant modification [12]. It is important to note that the size of this data set is regarded

as inadequate for training a typical deep neural network. However, the authors [55] claim

that UNet can be effectively trained with just a few images.

2.2 PREPROCESSING

To preprocess the dataset, the original images were split into 777 patches of 256x256

images. The root mean squared error (3.3RMSE) between the difference image and the

ground truth was used to calculate the image difference between the pairs. As a result, we

decided to combine average intensity (AI) and absolute distance (AD).

2.3 TRAINING

The related experiments were performed using Google Colab with the following listed

hardware specifications:

GPU: NVIDIA T4 16GB, 2560 CUDA cores, 585 MHz.

RAM: 12GB, 3200 MHz memory clock.

The model was trained by each of the five optimizers with three different learning rates:

10−2, 10−3, and 10−4

2.4 EVALUATION METRICS

We used Three metrics to evaluate the model’s performance: Accuracy (acc) for an overall

evaluation, Precision (prec) measure the relevant patterns that are correctly predicted from

the total predicted patterns within the class, and F1-score (F1) which is the harmonic

mean of the precision and the recall (another measure of the fraction of correctly classified

relevant patterns)[26]. These latter are defined by the below equations :

acc =
TP + TN

TP + TN + FP + FN
(3.1)

prec =
TP

TP + FP
(3.2)

F1 =
2TP

2TP + FP + FN
(3.3)
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Where TP and TN, the True Positive and The True Negative, refer to the correctly classified

patterns inside the class and outside of it respectively. Whereas FP and FN represent the

misclassifications.

3 RESULTS

This experiment aims to understand the behavior of the UNet model when trained for

the optimization of the binary cross entropy using the five optimization techniques with

different learning rates. Tab. 3.1 provides us with the accuracy, precision, and F1-score of

the model when trained over 200 epochs while Tab.3.2,3.3,3.4,3.5 and 3.6 illustrates the

plots of the training and validation loss over epochs for the three learning rates values.

Table 3.1: The results of training UNet using the five optimization methods for 200 epochs.

learning rate 10−2 10−3 10−4

Acc prec F1 Acc prec F1 Acc precision F1
Momentum 0.975 0.382 0.219 0.956 0.243 0.209 0.977 0.027 0.011

NAG 0.960 0.0002 0.0004 0.978 0.250 0.208 0.977 0.0006 0.0004
AdaGrad 0.971 0.290 0.200 0.972 0.201 0.198 0.979 0.002 0.004
RMSProp 0.976 0.274 0.249 0.975 0.435 0.373 0.973 0.350 0.330

Adam 0.971 0.330 0.310 0.977 0.491 0.376 0.972 0.388 0.331
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Learning rate
LR=10−2

Learning rate
LR=10−3

Learning rate
LR=10−4

Table 3.2: SGD with Momentum: Training and Validation Loss.
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Learning rate
LR=10−2

Learning rate
LR=10−3

Learning rate
LR=10−4

Table 3.3: NAG: Training and Validation Loss.
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Learning rate
LR=10−2

Learning rate
LR=10−3

Learning rate
LR=10−4

Table 3.4: AdaGrad: Training and Validation Loss.
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Learning rate
LR=10−2

Learning rate
LR=10−3

Learning rate
LR=10−4

Table 3.5: RMSProp: Training and Validation Loss.
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Learning rate
LR=10−2

Learning rate
LR=10−3

Learning rate
LR=10−4

Table 3.6: Adam: Training and Validation Loss.
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3.1 DISCUSSION

From Tables. ( 3.2), (3.3), (3.4), (3.5) and (3.6), we can notice that Momentum-based

methods, i.e., Momentum and NAG, have more stable convergence w.r.t the learning rate

than the rest of the methods. However, all of the optimizers stop significantly converging

through the early epochs. On the other hand, at 10−3, Adam, AdaGrad, and RMSProp con-

verge even further. These three optimizers eliminate the effect of different scales among

the model’s parameters. Therefore, they converge with more accurate steps than Momen-

tum and NAG and are less prone to falling into local minima (empirically shown by Kingma

and Lei Ba [30] that Adam outperforms other methods in cases of non-convexity).

Moreover, regardless of the learning rate value, AdaGrad, Momentum, and NAG have

large loss values compared to Adam and RMSProp. We observe that Momentum and NAG

have similar behavior while the rest of the methods behave in another way similarly. We

can interpret these two different ways as follow:

• Momentum and NAG Arrive at a local minimum due to large steps biased toward

large-scale parameters.

• AdaGrad did not converge because of vanishing gradients.

From Tab. 3.5, despite RMSProp scoring decent quantitative results, it is the most sen-

sitive to changing the learning rate value. In contrast, Momentum and NAG are the least

sensitive. These latter demonstrated an interesting behavior of similarity in the way that

they converge, while they have different update mechanisms (3.2, 3.3). During optimiza-

tion, Momentum and NAG start with large steps in the first epochs and then slow down,

given that in the early iteration, these two algorithms have equivalent update rules (mov-

ing average equals 0). Accelerating learning seems to have no significant effect on NAG

since the convergence has not improved, reinforcing the hypothesis that Momentum and

NAG arrive at local minima. At 10−4, all methods’ convergence slows remarkably.

It should be mentioned that better qualitative and quantitative results can be obtained

with more training. Although the authors of [55] stated that UNet can be trained effectively

with small data sets, this does not seem to be valid for all tasks and data patterns. The idea

is that with more exposure to the training data, the model can learn the patterns and

relationships in the data and thus make better predictions. However, over-fitting occurs
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when a model becomes too complex and starts to memorize the training data instead of

learning the underlying patterns, resulting in poor performance on unseen data. Since

ONERA is a small dataset, this is exactly what happens when training the UNET model

on this dataset using different optimization techniques. Deep learning models typically

require a large amount of data to learn complex patterns and generalize to new data. Even

after we increased the dataset size using data augmentation techniques, it was not enough

to train the model well. The medium-resolution dataset (ONERA) has irregular and non-

continuous change patterns which make it harder for the model to generalize. Hence, the

obtained quantitative results. This issue arises in similar tasks like crack detection [47]

where the authors also attributed the difficulty of the task to the challenging patterns of

cracks.

PART II: THE IMPACT OF DIFFERENT SPARSITY LEVELS OF MODELS AND

DATASETS ON ADAM OPTIMIZER

This second stage of experiments is motivated by the results of Part I, where we found that

ADAM is the best-performing optimizer and a learning rate of 10−3 is the most suitable.

Nevertheless, we noticed that ADAM’s performance could be significantly influenced by

the data sparsity.

To investigate this observation, we compare different sparsity-level models, U-Net,

DenseU-Net, and DenseNet. Speaking of model sparsity, here we refer to the number of

connections w.r.t all possible connections in the network architecture. The density/sparsity

of the network can be calculated by referring to graph connectivity as follows:

the number of connections
S

(3.4)

Where S is the maximum possible number of connections in the same network:

S =
1

2

N∑
j=0

N∑
i=0

|Li|.|Lj| (3.5)

Such that Li and Lj are layer number i and layer number j respectively and |.| is the cardi-

nality of a given layer (the number of neurons (vertices)).
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We train using ADAM optimizer for BCE and focal Tversky losses, on dense and sparse

datasets for three ML tasks, i.e. CD, image segmentation and object recognition. DenseU-

Net and DenseNet-121 are used in the following experiments for segmentation and recogni-

tion, respectively, as dense architectures. In contrast, U-Net and its encoder are considered

as sparser similarly. Moreover, in contrast to the first stage and based on the observation

that ADAM will converge even further after the specified number of epochs, we use early

stopping in a way that the training stops when the loss is no longer significantly changing.

4 METHODOLOGY

This section presents the details of the experimental setup of this study where we used the

same training environment as in Part 1. Additional datasets and evaluation metrics are

detailed hereafter.

4.1 DATASETS

• ONERA is the CD dataset which we use in the first comparative study.

• Annotated Web Ears (AWE) [19], AWE is a dataset of ear images that were collected

from the web where each straining has 10 images with a total number of 100 subjects.

• Sparse Annotated Web Ears is the sparse version of AWE which we create by adding

black a background to ear images with the ear forming only a tiny region of the

training image.

• Electron microscopy (EM) [18] represents a 5x5x5µm section taken from the CA1

hippocampus region of the brain. It comprises two 1065x2048 images and their

masks where the white segments correspond to mitochondria, and the black regions

are irrelevant backgrounds.

• Stanford Background (SB) The data set contains 715 images chosen from public

data sets: LabelMe, MSRC, PASCAL VOC, and Geometric Context. The selection

criteria for the images were of outdoor scenes, having approximately 320-by-240

pixels, with at least one foreground object, having the horizon position within the
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image (it need not be visible). Semantic and geometric labels were obtained using

Amazon’s Mechanical Turk (AMT).[3]

4.2 EVALUATION METRICS

In addition to the three metrics given in Subsection (2.4), we use an estimated training

speed where the convergence speed is measured according to the following equation:

s = W/t (3.6)

Where W is the number of trainable parameters, and t is the time step at which the training

stopped.

4.3 RESULTS

The following tables illustrate the experimental results of Part II(3.1).

The first two tables (3.7,3.8) show the cost plots for BCE and FTL cost functions respec-

tively. The last two tables (3.9,3.10) show quantitative results of the aforementioned costs.

Dataset Dense architecture U-Net

ONERA
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AWE

Sparse AWE

SB
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EM

Table 3.7: The training and validation BCE cost on five different datasets with Adam optimizer and a learning
rate of 10−3. The number of epochs here depends on early stopping with a patience of 10 epochs.

Dataset Dense architecture U-Net

ONERA CD

SB
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EM

Table 3.8: The training and validation focal tversky cost of three different data sets with Adam optimizer and
a learning rate of 10−3. The number of epochs here depends on early stopping with a patience of 10 epochs.

Table 3.9 presents quantitative results of the Dense/sparse comparison in terms of the

convergence speed.

Architecture Dense Sparse
speed Acc precision F1 speed Acc precision F1

ONERA 28,759.58 0.982 0.43 0.33 44,116.66 0.973 0.34 0.31
AWE 319,711.12 0.451 0.52 0.46 46,949.66 0.501 0.51 0.48

sparse AWE 170,512.6 0.397 0.41 0.31 33,140.94 0.528 0.51 0.46
SB 616,276.78 0.744 0.44 0.5 59,935.74 0.829 0.66 0.67
EM 233,185.81 0.941 0.76 0.52 74,131.05 0.963 0.84 0.86

Table 3.9: The results of training dense and sparse architectures (based on Densenet and UNet, respectively)
with dense and sparse data sets. loss = binary cross-entropy

Architecture Dense Sparse
speed Acc precision F1 speed Acc precision F1

ONERA 165,920.67 0.982 0.23 0.26 43,135.66 0.912 0.19 0.26
SB 215,696.87 0.475 0.42 0.51 45,050.01 0.800 0.69 0.65
EM 132,736.53 0.888 0.30 0.16 25,673.66 0.991 0.92 0.95

Table 3.10: The results of training dense and sparse architectures (based on DenseNet and UNet, respec-
tively) with dense and sparse data sets. loss = focal Tversky [1]
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5 DISCUSSION

As a first observation from the model perspective, from table 3.7, the dense model has

remarkably more stable training convergence than the sparser one. In terms of training

speed, the dense model outperformed the sparse model with an average of 235,689.17

parameter per epoch compared to 46,516.67 scored by the sparse model. This can be

explained by the dense connectivity preventing the gradients from vanishing through the

layers, which ensures updating all the weights, even those of earlier layers. The model

is a major determining factor for object recognition because the training seems somewhat

invariant to the data (sparse or dense) but varies remarkably with respect to the model.

From a dataset perspective, the most ideal case in all configurations is the EM data set

which, despite having similarities with ONERA (sparse images which are hard to interpret

by the model’s tables (3.7) and (3.8) show that EM and ONERA have the most oscillating

losses), the subject to the segment has fewer variations of shape (all mitochondria look

very similar) whereas this is not the case of change which can have any shape and usually

is a small region of the image. This interpretation is reinforced by the superior conver-

gence speed of the EM dataset compared to ONERA. The sparsity of the EM data set can be

viewed as a regularising factor since, for both losses, EM scored the highest metrics mostly.

Also, the sparse model was less over-fitting (less validation loss oscillations).

Additionally, from a task perspective, the sparse model is more prone to over-fitting when

the task is specifically object recognition. In fact, this can be interpreted by the classifica-

tion/ranking loss flattening investigated by [25](we can see that the loss value equals 0

but the validation loss is drastically high and fluctuating). Next, from a loss perspective,

for image segmentation, the region-based loss FTL seems to be superior to the distribution-

based loss BCE with denser models but takes a lot longer to converge.

In conclusion, the ADAM optimizer seems to be more sensitive to the model than data

sparsity since from the figures of tables (3.7) and (3.8) U-Net is more overfitted than the

denser architectures. Furthermore, as for the first loss BCE, ADAM either gets trapped into

local minima, in the cases where both the model and the data are sparser (U-Net with
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ONERA and U-Net with EM), and in the case of denser architecture and denser data (SB

with DenseU-Net). A possible interpretation could be that ADAM is highly prone to missing

the global minimum in the cases of more severe sparsity or density although the optimizer

does not necessarily overfit.

A major conclusion that we can draw from the experiment, is that ADAM suffers from

overfitting due to falling into local minima, especially in sparser settings.

6 CONCLUSION

Throughout this chapter, we performed a two-fold comparative study whose first level

examines the effect of the chosen optimizer on the U-Net deep model’s effectiveness and

performance. The second level was a more in-depth comparison where we focused on the

best-performing optimizer: ADAM where different aspects such as the loss function, the

training data, and the architecture were taken into consideration. The obtained results

provided deeper insights for potential improvements. The upcoming chapter will detail

experiments and the results as long as the description and the algorithms for our proposed

optimizers.
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CONTRIBUTION 2: SIMULATED ANNEALING WITH

DYNAMIC LEARNING RATE FOR ADAM OPTIMIZER

1 INTRODUCTION

To overcome the generalization issue which characterizes adaptive methods along the lines

of ADAM, we attempted to develop an optimization method through a series of experiments

using two of the popular ML datasets MNIST and CIFAR-10.

In this chapter, we will present in detail the formalization of the proposed methods, the

experimental setup, the obtained results, and the discussion.

2 SIMULATED ANNEALING (SA)

Simulated annealing is a probabilistic algorithm proposed by [31] which simulates the

cooling of materials in a heat bath, i.e., annealing. This latter can be used for both con-

tinuous and discrete problems [16]. The intuition behind this algorithm is to begin with

random moves (ways of changing the system’s configuration, steps in our case) and grad-

ually start to make more careful ones until the optimal configuration is attained. Within

an annealing system, we aim to find the best atoms positions value which maximizes the

energy of the material, analogous to finding the best configuration that minimizes the cost

43
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of the model. The algorithm goes as follows:

sc← s0;

T ← system temperature;

while T > Tmin do

Select s ∈ E(sc);

δ ← f(s)− f(sc);

if δ < 0 then

sc← s;

else

r ← rand[0, 1];

if e−δ/T > r then
sc← s

end

end

end

T ← α(T )

end
Algorithm 2: Simulated Annealing

Where sc is the initial configuration, E is the energy function, δ is the difference in

energy between the previous and the current configurations, e−δ/T is the probability of an

increase in energy magnitude which is compared with a random probability, and α(T ) is

the cooling function.

SA has been adopted into first-order optimization problems like SGD [20] where the au-

thors proposed a metaheuristic to determine the best learning rate value from a discrete

set of recommended values aiming to enhance the method’s solution quality. AdaBound

[39] uses the concept of ’annealing’ yet without referring to the solution’s quality.

3 ADAM WITH SA

Based on ADAM optimizer and SA, we attempted to develop an algorithm with an ex-

ploratory behavior in order to improve ADAM’s capacity to find the global solution.

The below algorithm is a general scheme of our simulated annealing-based algorithms.

The methods can be viewed as dual-phase optimizers which have an exploration and an
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optimization phase. The randomness of the learning rate α allows risky moves which in

turn allow escaping the local minima, especially at the beginning of the training.

The value of the probability exp− δ
T

decreases as the value of T increases such that less

moves (updates) are accepted.

VARIANT 1: ADAM WITH SA-BASED LEARNING RATE SELECTION (ADAM SA)

For the first variant, [a, b] corresponds to ]0, 1] where α is sampled according to uniform

distribution (α← randU ]0, 1]). A new learning rate α is explored in each iteration meaning

nb_epoch = 1.

VARIANT 2: ADAM WITH SA-BASED LEARNING RATE DECAY (ADAM SA-DECAY)

Similarly to variant 1, α ∼ U ]0, 1] and nb_epoch = 1, however cooling is applied on the

learning rate itself that is α = T . The direct effect of temperature and learning rate being

the same value is that both the acceptance probability and the learning rate α decay.

VARIANT 3: ADAM WITH SA-BASED DYNAMIC UPPER BOUND (ADAM SA-DUB):

In order to prevent large learning rates, we introduced a dynamic upper bound which de-

creases over iterations while maintaining the same configuration in terms of α’s distribution

and nb_epoch. In this case, α and T are independent yet b decreases proportionally to T .

In other words, no decaying is performed on α value.

b = 1− 1

T
(4.1)

First, we upper-bounded the learning rates and randomly sampled values within [0, b)

according to equation (4.1) from the uniform distribution. The bound failed to generalize

and had a remarkably slow convergence.

Second, we changed the bounding method that is given in equation (??) and the initial

range, based on the observation that large values prevent ADAM from converging or lead

to unstable convergence. Besides, instead of updating the range for each iteration, it is

given more iterations to try different solutions from the same range.
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VARIANT 4: ADAM WITH SA-BASED DYNAMIC RANGE (ADAM SA-DR)

Likewise, to prevent any extreme learning rates from dominating the training, both upper

and lower bounds are made dynamic, new a and b are computed and updated according

to equations (4.2) and (??).

a =
1

T p
(4.2)

Our method is very similar to AdaBound as they both dynamically bound the learning

rate with a gradually decreasing range. However, the main difference between AdaBound

and ours lies in the learning rate selection. ADAM SA-DR selects the learning rate itera-

tively from a decreasing range whereas AdaBound selects it randomly at the first iteration

than bounds it iteratively towards a smaller range. This makes AdaBound initialize exactly

like any adaptive method.

We found experimentally that sampling α from uniform distribution is more consistent

than normal distribution in terms of performance. A recommended configuration for ADAM

SA-DR to reach the best performance: (T = 10, p = 1, k = 10, nb_epochs = 10

ADAM WITH NORMALIZED LEARNING RATE (ADANORM):

This method is a variant of ADAM where we employed the l2 norm of the learning rate

as a step size for each nb_epochs. Normalization was introduced into ADAM in the form

of several methods. Normalized direction preserving ADAM [69] applies normalization on

the weight vectors of hidden layers in order to preserve direction w.r.t input vector. The

authors suggested that the generalization issue arises because adaptation leads ADAM to

lose the correct direction of gradients. Keskar and Socher [29] proposed a strategy to

improve generalization by switching from ADAM to SGD when an appropriate condition

is satisfied. Furthermore, Logit attenuating weight normalization (LAWN) [25] addressed

the problem from a loss perspective and linked the inferior generalization of ADAM to the

loss of weight adaptivity. This latter proposed LAWN where weights are constrained after a

number of epochs. The difference between our method and the existing methods consists

in the following:

• The normalization is applied each nb_epochs instead of switching completely (cor-
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recting the direction gradually preventing the loss of adaptivity)

• The learning rate for the non-adaptive step is the norm of the adaptive learning rate

(which is a vector in this case).

4 EXPERIMENTS, RESULTS, AND DISCUSSION

The following experiments are a series of comparisons of the proposed methods with exist-

ing adaptive and non-adaptive ones to validate our methods. For this purpose, we trained

a simple 3 layer CNN, on two datasets namely MNIST [14] and CIFAR-10 [32].

• In the first experiment, we compared the two variants of SA ADAM namely ADAM

with SA and ADAM SA-Decay to ADAM, SGD, SA SGD as shown in figures(4.1)(4.2)

(4.3)(4.4).

Figure 4.1: Training and validation loss of ADAM, ADAM with SA, ADAM with SA-Decay, SGD, AdaBound
and SGD with SA on CIFAR-10
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Figure 4.2: Training and validation accuracy of ADAM, ADAM with SA, ADAM with SA-Decay, SGD, Ad-
aBound and SGD with SA on CIFAR-10

Figure 4.3: Training and validation loss of ADAM, ADAM with SA, ADAM with SA-Decay, SGD, AdaBound
and SGD with SA on MNIST

Figure 4.4: Training and validation accuracy of ADAM, ADAM with SA, ADAM with SA-Decay, SGD, Ad-
aBound and SGD with SA on MNIST
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• Second, we introduced other variants, ADAM SA-DUB, ADAM SA-DR, and ADANORM,

and compared them with all previous methods plus AdaBound. Results in figures(4.5)(4.6)

(4.7)(4.8)

Figure 4.5: Training and validation loss of ADAM, SGD, AdaBound, ADAM with Dynamic Range, and Nor-
malised LR on CIFAR-10

Figure 4.6: Training and validation accuracy of ADAM, SGD, AdaBound, ADAM with Dynamic Range, and
Normalised LR on CIFAR-10
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Figure 4.7: Training and validation loss of ADAM, SGD, AdaBound, ADAM with Dynamic Range, and Nor-
malised LR on MNIST

Figure 4.8: Training and validation accuracy of ADAM, SGD, AdaBound, ADAM with Dynamic Range, and
Normalised LR on MNIST

• the final experiments was about determining the best configuration for our proposed

method (4.9)(4.10)(4.11)(4.12)
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Figure 4.9: Training and validation loss of ADAM, SGD, AdaBound, ADAM with Dynamic Range, and Nor-
malised LR on CIFAR-10

Figure 4.10: Training and validation accuracy of ADAM, SGD, AdaBound, ADAM with Dynamic Range, and
Normalised LR on CIFAR-10

Figure 4.11: Training and validation loss of ADAM, SGD, AdaBound, ADAM with Dynamic Range, and
Normalised LR on MNIST
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Figure 4.12: Training and validation accuracy of ADAM, SGD, AdaBound, ADAM with Dynamic Range, and
Normalised LR on MNIST

-Compared to ADAM, ADAM SA-Decay heavily relies on the initial guess making it very

sensitive to the initialization i.e. there is a much more remarkable difference among initial

as well as final loss and accuracy values.

-Even though simulated annealing inspired first-order optimization methods are essentially

based on the ’risky choices’ as it allows the algorithm to ’search’ for the global minimum,

starting with a large step should be very careful as it potentially leads to not converging

and ending up with very poor accuracy and performance.

From the first experiment, ADAM with SA-Decay has more stable convergence, w.r.t to

training epochs and dataset than ADAM with SA. As a result, it is less overfitted. This can

be interpreted by the following points:

• The randomness of the learning rate in ADAM with SA causes an instability through

epochs.

• MNIST has easier patterns with well defined shapes and edges, which means ADAM

with SA is potentially sensitive to noise in input data due to its randomness.

In the second experiment, we can see from the results that even with random selection,

bounding the learning rate has a stabilizing effect. Also, the noisier the data (even though

CIFAR-10 is numerically denser than MNIST which might be thought to prevent values

near zero), the more extreme values of the learning rate has a greater effect degrading the

performance. In other words, despite only considering extremely large values in ADAM SA-

DUB, the difference in terms of performance was less significant on MNIST than CIFAR-10.
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From the experimental results, we can see that even when our method ADAM SA-DR vali-

dation accuracy oscillates through the early epochs, it successfully stabilizes unlike ADAM.

The last experiment shows that our method ADAM SA-DR generalizes better or the same as

ADAM and performs superior or similar to AdaBound when tuned properly. Furthermore

our method ADANORM despite being slower than ADAM SA-DR outperformed AdaBound

on MNIST and as well generalized better than ADAM (has more stable validation accuracy).

5 CONCLUSION

Within this last chapter, we built a set of first-order optimizers upon a series of experiments

where we adopted the SA algorithm to enhance the generalization of adaptive optimizers.

Throughout the experiments, we compared our methods to existing adaptive and non-

adaptive methods and obtained promising results.



GENERAL CONCLUSION

In conclusion, this thesis has empirically examined the impact of optimizer on DL, the

properties of ADAM-like optimizers under different training conditions and finally proposed

a set of adaptive optimizers that aim to address the generalization gap issue.

The first chapter was an overview about ML and DL where we introduced the field and

explained related concepts. We put more emphasis on DL along with its main components

and accentuated the importance of the learning process in DL.

The second chapter expanded the major learning process elements on which we focus

through this work, namely optimization with the relevant methods and basic mathematical

background about first-order optimizers.

In the third chapter, we conducted a first comparative study to investigate more about

the impact of the optimizer on the training process and the performance of U-Net for CD.

In light of the obtained results, further investigation of the performance of ADAM was elab-

orated. Its main objective is to analyze the effect of different kinds of sparsity on ADAM’s

performance through an extensive set of experiments.

In the last chapter, we proposed a set of ADAM-like optimizers for the purpose of ad-

dressing the generalization gap issue. To do so, we make use of the simulated annealing

strategy that allows us to explore the space search and prevents the early convergence to
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local minima.

According to experiments, some of the variants we proposed showed promising results

as they outperformed baseline algorithms.

Future work will consider further analysis and enhancements of the proposed optimizers.
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