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Abstract—This paper proposes a solution to the prohibited zone 
dynamic economic dispatch (DED) p roblem i n p ower syst em 
using a hybrid artificial neural ne twork (HANN), w hich is a 
continuous model named H opfield model. The c onstrained DED 
must not only sat isfy t he syst em l oad d emand and t he sp inning 
reserve c apacity, b ut som e p ractical op eration c onstraints of  
generators, such as ramp r ate l imits an d p rohibited operating 
zone, are a lso c onsidered i n p ractical g enerator o peration. T he 
feasibility of  t he p roposed HANN of H opfield m odel method i s 
demonstrated using two power systems, and it is compared with 
the ot her methods i n t erms of  sol ution quality and computation 
efficiency. 
The e xperimental r esults s howed t hat the proposed HANN 
method was indeed capable of obtaining higher quality solutions 
efficiently in constrained DED problems. 

I. INTRODUCTION 
ynamic economic dispatch (DED) is used to determine the 
optimal schedule of generating outputs on-line so as to 

meet the load demand at the minimum operating cost under 
various system and operating constraints over the entire 
dispatch periods. DED is an extension of the conventional ED 
problem that takes into consideration the limits on the ramp 
rate of generating units to maintain the life of generation 
equipment. The ramp rate constraints distinguish the DED 
problem from the traditional, static ED [1] [2]. In general, the 
DED is solved by discretization of the entire dispatch period 
into a number of small time periods. Therefore, the static ED in 
each dispatch period is solved subject to the power balance 
constraints and generator operating limits. Previous efforts on 
solving static ED problems have employed various 
mathematical programming methods and optimization 
techniques (lambda-iteration method, the base point and 
participation factors method, the gradient method and dynamic 
programming (DP) ) [3]. Unfortunately, for generating units 
with non-linear characteristics, such as prohibited operating 
zones, ramp rate limits, and non-convex cost functions, the 
 

 

conventional methods can hardly to obtain the optimal 
solution. Furthermore, for a large-scale mixed-generating 
system, the conventional method often oscillates [4], which 
result in a longer solution time or a local minimum.  

Previously, the genetic algorithms (GA), simulated annealing 
(SA), tabu search (TS), and evolutionary programming (EP), 
have been successfully used to overcome the non-convexity 
problems of the constrained ED [5] [6] [7] and [8]. In this 
category, due to its high potential for global optimization, the 
GA has received great attention in solving DED problems.  

Yao proposed in [9] a fast evolutionary programming (FEP) 
which uses a Cauchy mutation and improved the EP. He 
proposed also in the same reference an improved fast 
evolutionary programming (IFEP) using mixed both Gaussian 
and Cauchy mutations for creation of offsprings from the same 
parent..  

Employing different adaptation of strategy parameters may 
also affect the effectiveness of FEPs [10]. Therefore, Sinha 
[11] first compared the above variants of FEP using different 
adaptation of strategy parameters in terms of convergence rate, 
solution time, minimum cost, and probability of attaining better 
solutions in solving the static ED with valve-point effects taken 
into consideration. The results showed that the IFEP had the 
best performance in solving the large-scale static ED problem. 
Though the IFEP had better convergence rate than other FEP-
based methods, the greater CPU time/iteration was its 
drawback. 

Particle swarm optimization (PSO), is one of the heuristic 
algorithms. It was developed through simulation of a simplified 
social system, and has been found to be robust in solving 
continuous nonlinear optimization problems [12] [13]. The 
PSO seems to be sensitive to the tuning of some weights or 
parameters, many researches are still in progress for proving its 
potential in solving complex power system problems [14]. 

In order to make numerical methods more convenient in 
solving non-convex DED problems, artificial intelligent 
techniques, such as the gradient-type Hopfield neural 
networks, have also been employed to solve DED problems for 
units with ramping rate limit and spinning reserve constraint 
[15]. However, an unsuitable transfer function adopted in the 
Hopfield model may suffer from excessive numerical iterations, 
resulting in huge calculations [16]. 

 
To overcome these drawbacks, we have attempt to 

construct and implement a HANN, which employs a linear 

* IRECOM laboratory, Faculty of Engineering, Djilali Liabes University, Sidi Bel Abbes. 

Prohibited Zone Dynamic Economic Dispatch 
Solution Using a Hybrid Artificial Neural Network 

F. Benhamida*              A.  Bendaoud *                            K. Medles *                   A. Tilmatine* 

D IC
EO'11

242



  

transfer function for the Hopfield neural network (HNN) 
model. The proposed method in this paper solves the 
constrained DED in power system. The feasibility of the 
proposed method was demonstrated for two power systems 
[17], respectively, as compared with the FEP, the IFEP and 
PSO in terms of solution quality and computation efficiency. 

 

II. II. PROBLEM DESCRIPTION 
The ED is one subproblem of the unit commitment (UC) 

problem. It is a nonlinear programming optimization one. 
Practically, while the scheduled combination units at each 
specific period of operation are listed, the ED planning must 
perform the optimal generation dispatch among the operating 
units to satisfy the system load demand, spinning reserve 
capacity, and practical operation constraints of generators that 
include the ramp rate limit and the prohibited operating zone 
[13]. 

A. Practical Operation Constraints of Generator 
For convenience in solving the ED problem, the unit 

generation output is usually assumed to be adjusted smoothly 
and instantaneously. Practically, the operating range of all 
online units is restricted by their ramp rate limits for forcing the 
units operation continually between two adjacent specific 
operation periods [3], [4]. In addition, the prohibited operating 
zones in the input-output curve of generator are due to steam 
valve operation or vibration in a shaft bearing. Because it is 
difficult to determine the prohibited zone by actual 
performance testing or operating records, the best economy is 
achieved by avoiding operation in areas that are in actual 
operation. Hence, the two constraints of generator operation 
must be taken into account to achieve true economic 
operation. 
1) Ramp Rate Limit: According to [5], [18], and [19], the 
inequality constraints due to ramp rate limits for unit 
generation changes are given as follow: 
 

1 upt t
i i iP P R−− ≤                      

(1) 
1t t down

i i iP P R− − ≤                                                                 
(2) 

1,..., and 1,...,i N t T= =  
 
Where Pi

t is output power at interval t, and Pi
t-1 is the previous 

output power. Ri
up is the upramp limit of the i-th generator at 

period t, (MW/time-period); and Ri
down is the downramp limit 

of the i-th generator (MW/time period). 
2) Prohibited Operating Zone: References [4], [13], and [18] 
have shown the input-output performance curve for a typical 
thermal unit with many valve points. These valve points 
generate many prohibited zones. In practical operation, 
adjusting the generation output Pi of a unit must avoid unit 
operation in the prohibited zones. Fig. 1 shows the input– 
output performance curve for a typical thermal unit with 

Prohibited Zone. The feasible operating zones of unit can be 
described as follows: 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  shows the input– output performance curve for a typical thermal unit 
with Prohibited Zone. 
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Where ni is the number of prohibited zones of the ith 
generator. ,

l
i jP , ,

u
i jP are the lower and upper power output of 

the prohibited zones j of the ith generator, respectively. 
 

B. Objective Function 
The objective of ED is to simultaneously minimize the 

generation cost rate and to meet the load demand of a power 
system over some appropriate period while satisfying various 
constraints. To combine the above two constraints into a ED 
problem, the constrained optimization problem at specific 
operating interval can be modified as 
                                                            

2

1 1 1 1
min ( ) ( )

T N T N
t t t t

T i i i i i i i
t i t i

F F P a b P c P
= = = =

= = + +∑∑ ∑∑          

(4)  

where TF is the total generation cost; ( )t t
i iF P is the generation 

cost function  of  ith generator at period t , which is usually 
expressed as a quadratic polynomial; ai, bi, and ci  are the cost 
coefficients of the i-th generator;  t

iP  is the power output of 
the ith generator and N is the number of generators committed 
to the operating system, T is the total periods of operation.  
Subject to the following constraints 
i) power balance 

1

N t t t
ii

P D L
=
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(5) 

where Dt is the load demand at period t and Lt is the total 
transmission losses of same period, which is a function of the 
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unit power outputs that can be represented using the B-
coefficients: 
 

0 001 1 1i j i

N N Nt t t t
ij ii j i

L P B P B P B
= = =

= + +∑ ∑ ∑             (6) 

 
where B, B0 and  B are the loss-coefficient matrix,  the loss-
coefficient vector and the loss constant, respectively. 
(ii) System spinning reserve constraints 
 

( )max
1

min , , 1, 2,...,
N upt t

i i ii
P P R SR t T

=
 − ≥ =  ∑       

(7) 
 

ii) generator operation constraints 
min 1 max 1max( , )    min( , )t down t t up

i i i i i i iP P R P P P R− −− ≤ ≤ +     

(8) 

where Pi
min and Pi

max are the minimum and maximum outputs 
of the ith generator respectively.  
The generation output Pi

t must fall in the feasible operating 
zones of unit i by satisfying the constraint described by Eq. 3. 

III. AN ENHANCED HNN APPLIED TO ED  
The continuous model of the HNN is based on continuous 

output variables, and the transfer function is a continuous and 
monotonically increasing function of the input  Ui. The model is 
a mutual coupling neural network and of non-hierarchical 
structure. The dynamic characteristic of each neuron can be 
described by the following differential equation: 
 

, 1

Ni
i ij jj

dU I T V
dt =

= + ∑                                              

(9)  
 
where Ui is the total input of neuron i; Vi is the output of 
neuron i; Tij is the interconnection conductance from the output 
of neuron j to the input of neuron i; Tii  is the self-connection 
conductance of neuron i and Ii is the external input to neuron i. 
It should be noted here that t’ is not representing real time, it is 
a dimensionless variable.  

To avoid the problems resulting from curve saturation, a 
linear model is used to describe the transfer function.  
The energy function of the continuous Hopfield model can be 
defined as:  
 

1 1 1

1
2

N N N
ij i j i ii j i

E T V V I V
= = =

= − −∑ ∑ ∑                          

(10) 
 
In the computation process the model state always moves in 

such a way that energy function gradually reduces and 
converges to a minimum [20]. 

A. Mapping of ED  into the  Hopfield model 
To solve the ED problem using the Hopfield method, energy 

function including both power mismatch, Pm and total fuel cost 
F is defined as follows: 

 

( )( ) ( )
2

2
1 12 2

N N
i i i i i ii i

A BE D L P a b P c P
= =

= + − + + +∑ ∑   

2.
2 2m T
A BP F= +                            

(11) 
Where the positive weighting factors A and B introduce the 
relative importance of their respective associated terms. 
We  represent the power output value Pi using the output Vi of 
neuron i with a linear function described as follows: 
 

max min minmin
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      (12) 

where Umin and Umax are the minimum and maximum input of 
neurons. 
 
Comparing  the energy function Eq.11 with  the Hopfield 
energy function Eq.10, we get  
 
Tii = − A − B . ci                                                                                            (13) 
Tij = − A                                                                               
(14) 
Ii = A (D + L) – B (bi /2)                                                      
(15) 

 
At this stage the transmission losses L can be neglected and 

reconsidered later in the next section. 
Substituting Eq.13, Eq.14 and Eq.15 into Eq.8, the dynamic 
equation becomes, 
 

' ( 2)( )i m i idU dt AP B dF dP= −                                       
(16) 
with 

1

N
m ii

P D P
=

= − ∑  

 
Substituting Eq.12 in Eq.16 the dynamic equation becomes: 

( ) ( )( ),
1 22 2i m i i i i idU dt AP B b c K U K= − + +              (17) 

with ( ) ( )max min
1 max mini i iK P P U U= − −  and min

2 1 mini i iK P K U= −  

Solving Eq.17 for the neuron’s input function 

( )( ) ( ),
3,

4 3 4 3( ) (0) iK t
i i i i i iU t U K K e K K= + −                  

(18) 
with 3 1i i iK Bc K= −  and  ( )4 22i m i i iK AP B b Bc K= − −                                             

From Eq.12, the neuron’s output function Pi(
,t ) is obtained as 
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( )
( )( ) 3

,

'
1 2

( ) 2 2

. (0) 2 2 i

i AB m i i

K t
i i i AB m i i

P t K P b c

K U K K P b c e

= − +

+ + − −
           

(19) 
with  KAB = A B  
The second term in Eq.19 decays exponentially and finally 
becomes vanishingly small. Eventually setting t’ = ∞ gives,     
 

( )( ) 2 2i AB m i iP K P b c∞ = −                                               
(20) 
 
Here ( )iP ∞ is the final output of neuron i and represents the 
optimal generation level of unit i, which is the required 
solution. 
Back substituting of Eq.20 in Eq.19, give a more simple formula 
for the generation function:  
 

( ) ,
3,( ) ( ) (0 ) ( ) iK t

i i i iP t P P P e= ∞ + − ∞                               
(21) 
 
where (0)iP  is obtained from Eq.19 by letting t’= 0, to give: 
 

2 1(0) (0)i i i iP K K U= +                                                       
(22) 
 
Using the power mismatch definition and Eq.20 we obtain: 
 

( ) ( )( ) ( )( )1 1
1 2 1 1N N

m i i AB ii i
P D b c K c

= =
= + +∑ ∑          

(23) 
 
Equations Eq.20 through Eq.23 constitute the Hopfield model 
for the ED problem. A non iterative direct computation 
process is, therefore, possible.  

IV. INCLUSION OF TRANSMISSION LOSSES USING A HYBRID 
ARTIFICIAL NEURAL NETWORK 

For each time period t, a dichotomy solution method for 
solving the ED including transmission losses combined to the 
HNN is proposed in the following steps: 
Step 1: initialization of the interval search [D3  D1], where D3 is 
the power demand at period t and D1 is a maximum forecast of 
power demand plus losses at the same period t. 
ε : a pre-specified tolerance.  
Initialize the iteration counter k =1.  
D3 

k = D ; 
D2 

k = D1 
k. 

Step 2: Determine the optimal generators’ power outputs 
, 1,...,iP i N=  using the HNN algorithm, by neglecting losses 

and setting the power demand as D k = D2 
k ; 

Step 3: Calculate the transmission losses Lk for the current 
iteration k using Eq.6; 
Step 4: if D1

k -D3
k < ε , stop otherwise go to step 5; 

Step 5: if D2
k-Lk < D, update D3 and D2 for the next iteration as 

follows: 
D3

k+1 = D2
k 

D2
k+1=D2

k + ( D1
k - D2

k ) /2;  
Replace k by k+1 and go to step 2; 
Step 6: if D2

k-Lk > D, update D1 and D2 for the next iteration as 
follows: 
D1

k+1=D2
k ,      and         D2

k+1=D2
k - ( D2

k – D3
k ) /2;  

Replace k by k+1 and go to step 2. 

V. A NOVEL STRATEGY FOR PROHIBITED ZONE PROBLEM 
To prevent the units with prohibited zones from falling in 

those zones during the dispatching process, we propose a 
novel strategy. In the strategy, we introduce an medium 
production point, ,

M
i jP , for the jth prohibited zone of unit i. The 

corresponding incremental cost, ,
M
i jλ , is defined by: 

 
( ), , , , ,( ) ( )M u l u l

i j i i j i i j i j i jF P F P P Pλ  = − −                   

(24) 
 
For each period t, a minimum and maximum outputs Pi

min,t and 
Pi

max,t of the ith generator is allowed due to the ramp rate limit, 
as follow:  
 

min, min 1max( , ) t t down
i i i iP P P R−= −               

(25) 
max, max 1min( , )t t up

i i i iP P P R−= +             
(26) 
 
The three possible cases of the prohibited cases with respect to 
the minimum and maximum allowed outputs are given in Fig. 
2. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The three possible cases of prohibited zones with respect to the 
minimum and maximum generator’s outputs 

For the quadratic fuel cost functions, the incremental cost ,
M
i jλ  

is actually equal to the average cost of the prohibited zone. The 
medium point divides the prohibited zone into a left and a right 
prohibited subzones. 
 
Case 1: The prohibited zone is within the minimum and 
maximum generator’s outputs of the period t. 

1 
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Dispatch unit i with generation level at or above ,
u

i jP if the 

system incremental cost exceeds ,
M
i jλ , by setting min,

,
t u

i i jP P= . 
Conversely, dispatch unit i with generation level at or below 

,
l

i jP , if the system incremental cost is less than ,
M
i jλ , by setting 

max,
,

t l
i i jP P= . 

Case 2: The minimum generator’s outputs allowed of the 
period t exceeds the lower bound of the prohibited zone. 
Dispatch unit i by setting min,

,
t u

i i jP P= . 
Case 3: The maximum generator’s outputs allowed of the 
period t is less than the upper bound of the prohibited zone. 
Dispatch unit i by setting max,

,
t l

i i jP P= . 
When a unit operates in one of its prohibited zones, the idea of 
this strategy is to force the unit either to escape from the left 
subzone and go toward the lower bound of that zone or to 
escape from the right subzone and go toward the upper bound 
of that zone. 

VI. COMPUTATIONAL PROCEDURES 
Based on the employment of the strategy mentioned above, the 
computational steps for the proposed approach for solving the 
constrained DED with 24-hour dispatch intervals (one day) are 
summarized as follows: 
Step 0: Specify the generation for all units, at interval t-1.  
Step 1: At interval t, specify the lower and upper bound 
generation power of each unit using Eq.25 and Eq.26, to 
satisfy the ramp rate limit. Pick the hourly power demand Dt. 
Apply the algorithm of section 3, based on HNN model to 
determine the optimal generation for all units without 
considering transmission losses and the prohibited zones.  
Step 2: Apply the hybrid algorithm HANN of section 3, to 
adjust the optimal generation of step 1for all units, to include 
transmission losses. 
Step 3: If no unit falls in the prohibited zone, the optimal 
generation obtained in Step 2 is the solution, go to Step 5; 
otherwise, go to Step 4. 
Step 4: Apply the strategy of section 5 to escape from the 
prohibited zones, and redispatch the units having generation 
falling in the prohibited zone. 
Step 5: Let t=t+1 and if t ≦24, then go to Step 1. Otherwise, 
Terminate the computation. 

VII. NUMERICAL EXAMPLES AND RESULTS  
To validate the efficiency of the proposed hybrid HANN method, 
a 6-thermal units power systems was tested. In this example, the 
ramp rate limits and prohibited zones of units were taken into 
account in practical application, so the proposed HANN method 
can be compared with other methods. 
The results of the HANN algorithm method are compared with 
those obtained by the FEP and IFEP, and PSO algorithms in 
terms generation cost and average computational time for the 
6-units test system as shown in Table VII. Obviously, all 
methods have succeeded in finding the near optimum solution 
presented in [13] with a high probability of satisfying the 
equality and inequality constraints. The software was written in 

Matlab language and executed on a Pentium IV 1.8 personal 
computer with 256MB RAM. 
 
The 6-unit example: The system contains 6-thermal units, 26 
buses, and 46 transmission lines [19]. The characteristics of the 
six thermal units are given in Table I and Table II. Total power 
capacities were committed to meet the 24-hour load demands 
from 930 MW to 1263 MW that was shown in Table III. In 
normal operation of the system, the loss coefficients B matrices 
with the 100 MVA base capacity are given in [13]. 

 
TABLE I  

GENERATING UNIT CAPACITY AND COST COEFFICIENTS OF EXAMPLE 1 

Unit Pi
max Pi

min ai ($/h) bi ($/MWh) ci ($/MW2h) 
1 500 100  240 7.0   0.0070 
2 200 50 200 10.0 0.0095 
3 300 80 220 8.5   0.0090 
4 150   50 200 11.0 0.0090 
5 200 50 220 10.5 0.0080 
6 120 50 190 12.0 0.0075 

 
TABLE II  

RAMP RATE LIMITS AND PROHIBITED ZONES OF GENERATING UNITS OF 
EXAMPLE 1 

Unit Pi
0 up

iR (MW/h) down
iR  (MW/h) Prohibited zone (MW) 

1 340 80  120 [210 240] [350 380] 
2 134 50  90 [90 110] [140 160] 
3 240 65  100 [150 170] [210 240] 
4 90 50  90 [80 90] [110 120] 
5 110 50  90 [90 110] [140 150] 
6 52 50  90 [75 85] [100 105] 

 
TABLE III  

THE DAILY LOAD DEMAND (MW) OF EXAMPLE 1 

Hour 1 2 3 4 5 6 7 8 9 10 
Load 955 942 935 930 935 963 989 1023 1126 1150 
Hour 11 12 13 14 15 16 17 18 19 20 
Load 1201 1235 1190 1251 1263 1250 1221 1202 1159 1092 
Hour 21 22 23 24 
Load 1023 984 975 960 
 

VIII. SIMULATION RESULTS 
The proposed HANN method was employed to test a 6-units 
study systems in the 24-hour constrained DED problem. The 
spinning reserve was requested to be greater than 5% of the 
load demand at each dispatch interval. At each interval, the 
convergence criteria considered is the unit generation 
constraints must be not violated. The loss coefficients B 
matrices are given in [19].  
The daily generation power that is generated by the proposed 
HANN method to meet the daily load demands was shown in 
Table (VI) for the 24-hours of a day. The generation cost is 
given in the last row of Table (VI).  
Table (V) summarized both the daily generation cost and 
computation efficiency of the proposed methods applied to two 
test system (6-units and 15-units).. 

 
TABLE IV 

 THE SOLUTION OF CASE 1 BY THE HANN METHOD OF CASE 1 
 

Unit Pi
0 1 2 3 4 5 6 7 8 9 10 11 12 

1 340,00 384,08 380,00 380,00 380,00 380,00 386,47 395,97 393,86 420,08 425,93 436,33 442,67 
2 134,00 125,11 122,30 120,12 118,90 120,12 126,87 133,87 132,32 160,00 160,00 163,61 168,28 
3 240,00 210,00 210,00 210,00 208,84 210,00 210,00 210,00 240,00 243,39 247,95 256,03 260,96 
4 90,00 76,50 73,54 71,24 69,95 71,24 78,36 80,00 90,00 104,50 109,06 120,00 122,07 
5 110,00 117,32 113,98 111,39 110,00 111,39 119,41 127,72 125,87 150,00 153,94 163,04 168,58 
6 52,00 50,00 50,00 50,00 50,00 50,00 50,00 50,00 50,00 58,74 64,21 73,91 85,00 
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Gen. Cost 8,004 7,827 7,745 7,679 7,745 8,114 8,558 9,047 10,716 11,091 11,920 12,569 
 

Unit 13 14 15 16 17 18 19 20 21 22 23 24 

1 433,73 446,58 449,28 446,33 441,65 436,57 428,23 419,61 393,86 394,02 390,51 385,57 
2 161,70 171,16 173,15 170,98 167,53 163,78 160,00 140,00 132,32 132,43 129,85 126,21 
3 254,01 264,01 266,10 263,82 260,17 256,22 249,73 240,00 240,00 210,00 210,00 210,00 
4 120,00 125,12 127,21 124,93 121,28 120,00 110,00 104,14 90,00 80,00 80,00 77,67 
5 160,77 172,01 174,37 171,79 167,69 163,24 155,95 140,00 125,87 126,01 122,94 118,62 
6 71,48 85,00 85,99 85,00 75,00 74,13 66,34 58,30 50,00 50,00 50,00 50,00 

Gen. Cost 11,696 12,873 13,103 12,854 12,336 11,940 11,252 10,047 9,047 8,466 8,301 8,072 
 
 

TABLE V  
THE SUMMARY OF THE DAILY GENERATION COST AND CPU TIME  

Method 
Total Generation Cost ($)  CPU time/interval 

6-Units 15-Units 6-Units 15-Units 
FEP 315,634 796,642 357.58 362.63 
IFEP 315,993 794,832 546.06 574.85 
PSO 314,782  774,131 2.27 3.31 

Hybrid HNN 313,579 759,796 1,52 2.22 
 

As can be seen, the simulation results given in Table IV and 
Table V showed that the proposed methods could obtain good 
solutions satisfying both the ramp rate limit, spinning reserve 
and the prohibited operating zones limit of generators. In a 
small-scale system as in the 6-units power system, though the 
advantage of HANN method was not very obvious, it could 
still have the fastest computation efficiency and the minimum 
daily total generation cost, as shown in Table V. The method 
was tested in a medium system of 15-units taken from [19], the 
advantage of the proposed HANN method was very obvious, 
and it could obtain both the fastest computation efficiency and 
the minimum daily total generation cost, as shown in Table V. 
Through the comparison simulations results, the FEP and IFEP 
[11] had almost the same solution qualities and total generation 
costs, and the PSO method [13]  has a best solution quality 
compared to the FEP and IFEP methods . 
However, the proposed HANN method always has the best 
solution quality with both the least total generation cost and 
the best efficiency. 

IX. DISCUSSION AND CONCLUSION 
The DED is a complex optimization problem, whose 
importance may increase as competition in power generation 
intensifies. The DED planning must perform the optimal 
generation dispatch at the minimum operating cost among the 
operating units to satisfy the system load demand, spinning 
reserve capacity, and practical operation constraints of 
generators that include the ramp rate limit and the prohibited 
operating zone. In this paper, we have successfully employed a 
HANN method to solve the constrained DED problem. The 
HANN algorithm has been demonstrated to have superior 
features, including high-quality solution and good computation 
efficiency. The results showed that the proposed HANN 
method was indeed capable of obtaining higher quality solution 
efficiently in constrained DED problems. 
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