

UNIVERSITE KASDI MERBAH OUARGLA

Faculté des Mathématiques et des Sciences de la Matière

DEPARTEMENT DE MATHEMATIQUES

MASTER

Spécialité : Mathématiques

Option : Modélisation et Analyse Numérique

Par :Merabet Amira

Thème

Analyse asymptotique des coques en flexion. Approche de l'énergie.

Soutenu publiquement le : 26/05/2016

Devant le jury composé de :

- Meflah Mabrouk M.C(B). Université KASDI Merbah- Ouargla Président
- Ghezal Abdrazak M.C(B). Universié KASDI Merbah- Ouargla Examinateur
- Bensayah Abdallah M.C(B). Université KASDI Merbah- Ouargla Examinateur
- Chacha A. djamal Pr Université KASDI Merbah- Ouargla Rapporteur

Année universitaire :2016/2017

Dédicaces

Je dédie ce modeste travail à ma chère mère, A mon cher père qui m'ont toujours soutenu, Qui m'ont aide à affronter les difficultés, A mes fraires YACINE,REDOUANE,HAROUN et M.SAYAH, mes sœurs AICHA et MARWA,mon neveu AHMED et manièce RIM. A toutes la famille MERABET, BEN ABDSSADEK et BENHAMA A mon encadreur CHACHA A.DJAMEL. A mes amies proches NASSIMA, WARDA, ISRA, ZINEB, CHAÏMA, DJAMILA, SABAH, MANAL, IMENE et tous les amies de promos mathèmatiques A tous. Je dédie ce modeste travail exceptionnellement à mon fiancé BENHAMA YOUCEF

Remerciements

Avant toute considération, je remercie le Grand Dieu le tout puissant qui, m'a aidé pour achever ce travail.

Je tiens à exprimer ma vive reconnaissance à M^{*r*} *Chacha Ahmed Djamel*, Professeur à université de Kasdi Merbah Ouargla, pour avoir accepté de diriger ces travaux. Je le remercie infiniment pour avoir toujours été présent par ses conseils, ses encouragements et sa gentillesse. Je voudrai aussi le remercier pour sa disponibilité et du temps consacré à mon travail de m'avoir fait bénéficier tout au long de ce travail.

J'adresse mes plus vifs remerciements et j'exprime ma profonde gratitude à M^r **Mabrouk Maflah** et**Ghazal Abd Elkader**, M.A.Université de Kasdi Merbah Ouargla, lequel m'ont fait le grand honneur d'accepter la présidence de mes jurys de thèse.

Je remercie aussi toute personne de prés ou de loin a contribué à la finalisation de ce travail.

Table des matières

Dédicace i								
Re	Remerciements ii							
Notations et conventions v								
1	ÉLASTICITÉ NON LINÉAIRE SUR UNE COQUE MINCE							
	1.1	Élasticité non linéaire 3D	5					
	1.2	Lois de comportement des matériaux élastiques	6					
	1.3	Problème variationnel	7					
	1.4	Géométrie d'une coque mince	9					
2	2 LA JUSTIFICATION D'UN MODÈLE DE COQUES NON LINÉAIRE EN FLEXIO PAR DÉVELOPPEMENT ASYMPTOTIQUE DE L'ÉNERGIE 1							
	2.1	Formulation du problème tridimensionnel	12					
	2.2	Position du problème en coordonnées curvilignes						
	2.3	3 Mise à l'échelle						
		2.3.1 Passage au domaine fixe	15					
	2.4	2.4 Procédure du développement asymptotique						
		2.4.1 Calcul des termes du développement asymptotique de l'énergie	20					
	2.5	2.5 Modèle en flexion non linéaire						
	2.6	.6 Résolution des premiers problèmes variationnels						
		2.6.1 Problèmes sans forces extérieures	24					

Conclusion

Annexe

27 28

Notations

On utilise les conventions de notations suivantes : les indices ou exposants latins prennent leurs valeurs dans l'ensemble 1, 2, 3 tandis que les indices grecs prennent, à l'exception de ε , leurs valeurs dans l'ensembles 1, 2. La convention de sommation par rapport aux indices et posants répétés est adaptée.

- \blacktriangleright *I*₃ : La matrice unitaire d'ordre 3.
- \blacktriangleright *I_d* : L'application identité.
- ► δ_{ij} : Le symbole de Kroneker $\delta_{ij} = \begin{cases} 1 \sin i = j \\ 0 \sin i \neq j \end{cases}$.
- $\blacktriangleright \Omega$: Domaine (ouvert borné connexe de frontière Lipschitzienne) de \mathbb{R}^3 .
- $\blacktriangleright \sigma$: second tenseur (d'ordre 2) des contraintes de Piola-Kirchhoff .
- ► *E* :tenseur des déformation de Green-Lagrange $E(u) = \frac{1}{2}(\nabla u + \nabla u^T + \nabla u \cdot \nabla u^T)$.
- \succ *F^T*, *detF*, *cofF* : transposé de *F*, déterminant de *F*, matrice des cofacteurs de *F*.
- ► $A = (A_{ijkl}), S = (S_{ijkl})$: tenseur d'ordre 4 de rigidité, de souplesse.
- $\blacktriangleright \omega$: domaine (ouvert borné connexe de frontière Lipschitzienne) de \mathbb{R}^2 .
- ►*S* la surface moyenne de Ω .

► (a_1, a_2, a_3) : $(resp(a^1, a^2, a^3))$ base covariante (resp. contravariante) associée à la surface moyenne *S*.

► (g_1, g_2, g_3) :(resp (g^1, g^2, g^3)) base covariante (resp. contravariante) associée à Ω .

► $a_{\alpha\beta}, b_{\alpha\beta}$: composantes covariantes du tenseur métrique et du tenseur de courbure associées à *S*.

► g_{ij} :(resp g^{ij}) composantes covariantes (resp. contravariantes) du tenseur métrique associée à Ω .

▶ $\Gamma^{\rho*}_{\alpha\beta}$: symboles de Christoffel bidimentionnels.

► Γ_{ij}^k : symboles de Christoffel tridimensionnels.

► $v_{i||j} = \partial_j v_i - \Gamma_{ij}^k v_k$: dérivée covariante de v.

INTRODUCTION GÉNÉRALE

Une coque mince est une structure tridimensionnelle caractérisée par épaisseur très petite par rapport aux autres dimensions caractéristiques. Autrement dit, c'est une surface plongée dans l'espace admettant une petite épaisseur. Ce type de structure apparait d'une façon naturelle dans la nature (feuilles d'arbres,...), dans le corps humain (artères,branches,...). Aussi dans les constructions courantes(pont,toitures,...)et dans la conception industrielle(aile d'avion, carrosserie d'automobile, barebrise, turbines, pièces mécaniques,...).

Grâce à la courbure de la surface moyenne, ces structures qui sont légères résistent mieux aux sllicitations et aux efforts subit. La faible épaisseur de ces structures est exploitée dans la modélisation des coques 3D par des modèles 2D posés sur la surface moyenne. L'avantage direct de cette modélisation est rencontré dans l'analyse numérique par éléments finis. Si on utilise les structures 3D, les calculs peuvent échoués(phénomène de verrouillage). Par contre, si on utilise les approximations 2D de ces structures les résultats sont meilleur. Cependant, il faut signaler que les problèmes de la modélisation par éléments finis dequelques structures minces 2D peut tomber en défaut.

La méthode utilisée dans ce mémoire pour l'approximation ou le passage $3D \rightarrow 2D$ est la méthode des développement asymptotiques formels.

Le travail de mémoire est composé de deux chapitres.

Dans le premier chapitre, on donne quelques rappels sur l'élasticité non linéaire tridimensionnelle non homogène et anisotrope.

Dans le second chapitre, on présente l'analyse asymptotique d'une coque non linéairement élastique non homogène et anisotrope en utilisant la déformation de la coque comme inconnue du problème, et à la fin en annexe, on présente quelques éléments sur la notion d'anisotropie.

Chapitre 1

ÉLASTICITÉ NON LINÉAIRE SUR UNE COQUE MINCE

1.1 Élasticité non linéaire 3D

Soit Ω un ouvert borné connexe de \mathbb{R}^3 de frontière $\Gamma = \partial \Omega$ suffisamment régulière et soit $\overline{\Omega}$ l'adhérence de Ω dans \mathbb{R}^3 . Dans toute la suite, l'ensemble $\overline{\Omega}$ représentera le volume occupé par un corps matériel au repos "etat non déformé" et sera appelé *configuration de référence*. lorsque l'on travaillera sur Ω , on dira que l'on adopte la description *Lagrangienne*. Le corps matériel est encastré sur une partie de sa frontière $\Gamma_0 \subset \Gamma$ (mes(Γ_0) > 0) et est soumis à des forces surfacique *h* sur Γ_1 ($\Gamma_0 \cap \Gamma_1 = \emptyset$), et volumique *f* sur Ω . Sous l'action de ces forces le corps matériel, va se déformer dans l'espace. Le point matériel initialement situé en *x* vient occuper une nouvelle position $y = \varphi(x)$.

L'application $\varphi : \overline{\Omega} \to \mathbb{R}^3$ s'appelle une déformation du corps (configuration de référence). L'ensemble $\varphi(\Omega)$ s'appelle *La configuration déformée* correspondante. Lorsque l'on travaillera sur $\varphi(\Omega)$ en termes de la variable *y*, on dira que l'on adopte la description *Eulérienne*. Du point de vue mathématique le passage de l'une à l'autre description n'est qu'un changement de variable.

Propriétés de l'application φ :

1. φ suffisamment régulière (afin que ce que l'on ècrit ait un sens).

2. φ injective sur Ω (de façon à interdire l'interpénétration de la matière).

3. φ préservant l'orientation de l'espace (det $\nabla \varphi(x) > 0$, $\forall x \in \overline{\Omega}$).

(voir Ciarlet P.G. [2])

A toute déformation φ , nous associons un déplacement u, qui est le champ de vecteurs $u : \overline{\Omega} \to \mathbb{R}^3$ défini par la relation :

$$\varphi = I_d + u. \tag{1.1}$$

Il est clair que, écrire les équations en déformation ou en déplacement est totalement équivalent, mais les déformations ont un caractère plus intrinsèque que les déplacement en mécanique des solides. Notons par $\overline{\Omega^{\varphi}} = \varphi(\overline{\Omega})$ sa frontière $\Gamma_0^{\varphi} = \varphi(\Gamma_0)$, $\Gamma_1^{\varphi} = \varphi(\Gamma_1)$, et $F : \overline{\Omega} \to M_3^+$ le gradient de la déformation φ , $F = \nabla \varphi = I_3 + \nabla u$. On dit que la déformation est admissible si elle vérifie : $\varphi(x) = x$, $\forall x \in \Gamma_0$.

Nous supposons que le corps occuppant la configuration déformée $\overline{\Omega^{\varphi}}$ est soumise à deux types de forces appliquées, forces appliquées de volume, correspondant à un champ de vecteurs $f^{\varphi} : \Omega^{\varphi} \longrightarrow \mathbb{R}^3$ et forces appliquées de surfaces définies sur une portion $\Gamma_1^{\varphi} = \varphi(\Gamma_1)$ de la frontière Γ^{φ} , correspondant à un champ de vecteurs $h^{\varphi} : \Gamma_1^{\varphi} \longrightarrow \mathbb{R}^3$.

Si φ est une déformation dérivable au point $x \in \overline{\Omega}$, le tenseur des déformations de Cauchy-Green à droite $C = \nabla \varphi^T \cdot \nabla \varphi$, apparaît en formant la quantité :

$$|\varphi(x+\delta x)-\varphi(x)|^2 = \delta x^T \nabla \varphi^T(x) \nabla \varphi(x) \delta x + o(|\delta x|^2), x, x+\delta x \in \overline{\Omega},$$
(1.2)

il joue un rôle fondamental en théorie de l'élasticité.

On dit que φ est une déformation rigide, si $\nabla \varphi(x) = Q$, $\forall x \in \overline{\Omega}$, telle que Q est une matrice orthogonale et det Q > 0, on a alors $C = I_3$ dans $\overline{\Omega}$ (théorème1.1.2, Ciarlet P.G [3]).

Introduisons enfin le tenseur des déformations de Green-Saint-Venant *E* (voir Ciarlet P.G[2])

$$E(u) = \frac{1}{2}(C - I_3) = \frac{1}{2} \left(\nabla u + \nabla u^T + \nabla u \cdot \nabla u^T \right), \qquad (1.3)$$

mésurant l'écart entre une déformation donnée et une déformation rigide. Le tenseur *E* est symétrique $E_{ij} = E_{ji}$, il est non linéaire.

1.2 Lois de comportement des matériaux élastiques

Les lois de comportement expriment les relations qui existent entre le second tenseur de Piola-Kirchhoff σ et le tenseur des déformations de Green Saint-Venant *E*, ces relations dépendent de la nature du matériau.

On suppose dans toute la suite que l'ensemble $\overline{\Omega}$ dans la configuration de référence est occupé par un matériau élastique.

Définition 1. On dit qu'un matériau est élastique si en tout point $x \in \overline{\Omega}$, le second tenseur de Piola-Kirchhoff σ est une fonction de x et le tenseur des déformations de Green Saint-Venant *E*.

En première approximation, on peut chercher des lois de comportement dans lesquelles la relation entre σ et *E* est linéaire, (voir[2]) :

$$\sigma(x) = A(x) : E(u), \forall x \in \Omega,$$
(1.4)

où : *A* désigne le tenseur d'ordre 4 de rigidité du matériau. Son inverse, le tenseur de souplesse *S*.■

1.3 Problème variationnel

Soit Ω un domaine de \mathbb{R}^3 , de frontière Lipschitzienne Γ . On considère un corps élastique, encastré sur une partie de sa frontière $\Gamma_0 \subset \Gamma$, dont la configuration de référence est $\overline{\Omega}$. Il est soumis à des forces de volume de densité $f = (f_i) : \Omega \to \mathbb{R}^3$ et à des forces de surface de densité $h = (h_i) : \Gamma_1 \to \mathbb{R}^3$, $\Gamma_1 = \Gamma / \Gamma_0$

A chaque déformation φ , on associe l'énergie $J(\varphi)$ différence entre l'énergie interne $I(\varphi)$ et le travail $l(\varphi)$ des forces extérieures.

$$J(\varphi) = I(\varphi) - l(\varphi). \tag{1.5}$$

Pour un matériau élastique non homogène et anisotrope, l'énergie interne $I(\varphi)$ s'exprime comme l'intégrale sur Ω d'une densité d'énergie $W(x, \nabla \varphi)$ (énergie de déformation) dépendant de la variable d'espace et du gradient de la déformation.

$$I(\varphi) = \int_{\Omega} W(x, \nabla \varphi) \, dx.$$

L'expression de W dépend du type de matériau qui constitue Ω . Si on considère un matériau non homogène et anisotrope et tel que la configuration de référence est naturelle, la densité d'énergie W est de la forme

$$W(x,F) = \frac{1}{2} A(x) : E(F).E(F),$$

tel que *E* est le tenseur de déformation

$$E(F) = \frac{1}{2} \left(F^T \cdot F - I_3 \right),$$

et A est le tenseur de rigidité du matériau d'ordre 4.

Si la coque est soumise à des forces mortes volumiques f et à des forces mortes surfaciques h sur la partie Γ_1 du bord, le travail des forces extérieures s'exprime également sous une forme intégrale sur la configuration de référence.

$$l(\varphi) = \int_{\Omega} f.\varphi \, dx + \int_{\Gamma_1} h.\varphi \, da.$$

Un état d'équilibre est alors décrit comme un minimiseur φ sur un espace de déformations admissibles de la fonctionnelle $J(\Psi)$.

$$J(\varphi) = \inf_{\Psi} J(\Psi).$$

L'existence de solutions à ce problème de minimisation est établie, si *W* vérifie certaines conditions de croissance, de coercivité et de quasi-convexité. La polyconvexité implique la quasi-convexité. Dans ce cadre, Ball. J. M [1] a prouvé l'existence de solutions pour un solide hyperélastique homogène, telque

$$W(F) = \frac{\lambda}{2} (trE(F))^{2} + \mu tr(E^{2}(F)) + o(|E(F)|^{2}),$$

et les coefficients λ et μ sont les coefficients de Lamé du matériau, et de choisir

$$W(F) \rightarrow +\infty \text{ si det}(F) \rightarrow 0^+.$$

 $W(F) = +\infty \text{ si det}(F) \le 0.$

Par la suite, on s'intéresse à des solides élastiques de type non homogènes et anisotropes, pour lesquels la densité d'énergie *W* n'est pas quasi-convexe (voir Pantz. O [4]) et les problèmes d'existence ou de non existence sont encore largement ouverts.

Une coque mince est une surface plongée dans l'espace qui admet une petite épaisseur. Physiquement, le problème posé est celui de trouver la déformation φ qui minimise l'énérgie J sur Ω dans un espace fonctionnel approprié, on profite alors de la structure de la coque pour se placer dans un système de coordonnées curvilignes plus adapté pour étudier le comportement asymptotique de la déformation φ^{ε} quand l'épaisseur de la coque tend vers 0.

1.4 Géométrie d'une coque mince

Nous commençons par définir une surface régulière et les formes fondamentales associé à cette surface, pour plus de détail on renvoie à Ciarlet. P. G.[2].

Soit ω un ouvert borné connexe de \mathbb{R}^2 , de frontière Lipschitzienne γ . On note un point $x = (x_{\alpha})$ de $\overline{\omega}$. Soit $\theta \in C^3(\overline{\omega}, \mathbb{R}^3)$ une application injective telle que les deux vecteurs $a_{\alpha} = \partial_{\alpha}\theta$ soient linéairement indépendants en tout point de $\overline{\omega}$. Les vecteurs a_{α} forment la base covariante du plan tangent à la surface $S = \theta(\overline{\omega})$. On définit le vecteur normal unitaire en tout point de la surface moyenne S par $a_3 = \frac{a_{1\Lambda}a_2}{|a_{1\Lambda}a_2|}$, les trois vecteurs de la base a_{α} sont linéairements indépendantes, alors det $a_{\alpha\beta} > 0$. On définit la base contravariante associée (a^{β}) par $a^{\beta}.a_{\alpha} = \delta_{\alpha\beta}$ et on la complète par le vecteur a^3 défini par $a^3 = a_3$. De plus, en tout point de S, la première forme fondamentale (le tenseur métrique) de composantes covariantes $a_{\alpha\beta}$ ou de composantes covariantes $b_{\alpha\beta}^{\alpha}$ et les symboles de Christoffel bidimensionnels $\Gamma_{\alpha\beta}^{\rho*}$ sont donnés par :

$$a_{\alpha\beta} = a_{\alpha}.a_{\beta}, a^{\alpha\beta} = a^{\alpha}.a^{\beta} \tag{1.6}$$

$$b_{\alpha\beta} = -(\partial_{\alpha}a_{3}).a^{\beta}, b_{\alpha}^{\beta} = a^{\beta\sigma}.b_{\sigma\alpha}$$
(1.7)

$$\Gamma^{\rho*}_{\alpha\beta} = \Gamma^{\rho*}_{\beta\alpha} = a^{\rho} \cdot \partial_{\alpha} a_{\beta}$$
(1.8)

L'élément d'aire de *S* est $\sqrt{a}dx$, où

$$a = \det\left(a_{\alpha\beta}\right), a > 0. \tag{1.9}$$

La surface *S* étant définie, précisons maintenant l'idée intuitive qu'une coque est une surface à laquelle on a ajouté de l'épaisseur. Pour tout $\varepsilon > 0$, on définit les ensembles

$$\Omega^{\varepsilon} = \omega \times \left] -\varepsilon, +\varepsilon \right[, \Gamma^{\varepsilon}_{+} = \omega \times \left\{ +\varepsilon \right\}, \Gamma^{\varepsilon}_{-} = \omega \times \left\{ -\varepsilon \right\}, \Gamma^{\varepsilon} = \gamma \times \left[-\varepsilon, +\varepsilon \right], \tag{1.10}$$

et une application injective (c'est le cas lorsque ε est petit, [3]) $\Theta^{\varepsilon} : \overline{\Omega^{\varepsilon}} \to \mathbb{R}^3$ par :

$$\forall x^{\varepsilon} = (x_1, x_2, x_3^{\varepsilon}) \in \overline{\Omega^{\varepsilon}}, \Theta^{\varepsilon}(x^{\varepsilon}) = \theta(x_1, x_2) + x_3^{\varepsilon} a_3(x_1, x_2) \in \widehat{\Omega^{\varepsilon}} = \Theta^{\varepsilon} \left(\overline{\Omega^{\varepsilon}}\right).$$
(1.11)

Pour ε suffisamment petit, les trois vecteurs définis par $g_i^{\varepsilon} = \partial_i^{\varepsilon} \Theta^{\varepsilon}$ sont linéairement indépendants et définissent une base covariante en tout point de $\overline{\Omega^{\varepsilon}}$. La base contravariante associée $(g^{i,\varepsilon})$ est définie par $g_i^{\varepsilon}.g^{j,\varepsilon} = \delta_{ij}$. On définit alors les composantes covariantes $g_{ij}^{\varepsilon} = g_i^{\varepsilon}.g_j^{\varepsilon}$ et contravariantes $g^{ij,\varepsilon} = g^{i,\varepsilon}.g^{j,\varepsilon}$ du tenseur métrique, les trois vecteurs de la base (g_i^{ε}) sont linéairement indpendants, alors det $(g_{ij}^{\varepsilon} > 0)$. On définit l'élément de volume $\sqrt{g^{\varepsilon}}dx^{\varepsilon}$ et l'élément de surface det $(\nabla \Theta^{\varepsilon}) || (\nabla \Theta^{\varepsilon})^{-T} .n || dS^{\varepsilon}$ où $g^{\varepsilon} = \det(g_{ij}^{\varepsilon})$, ainsi que les symboles de Christoffel tridimensionnels $\Gamma_{ij}^{p,\varepsilon} = g^{p,\varepsilon}.\partial_j^{\varepsilon}g_i^{\varepsilon} =$ $\Gamma_{ji}^{p,\varepsilon}$. Pour l'application Θ^{ε} définie précédemment, $\Gamma_{\alpha3}^{3,\varepsilon} = \Gamma_{33}^{p,\varepsilon} = 0$

Dans toute la suite, on utilise la convention de notation suivante : les notations comportant un chapeau sont exprimées dans un système de coordonnées cartésiennes, celles sans chapeau étant exprimées dans un système de coordonnées curvilignes.

La coque, dont la configuration de référence est $\overline{\Omega^{\varepsilon}} = \Theta^{\varepsilon} (\overline{\Omega^{\varepsilon}})$, est encastrée sur la partie $\widehat{\Gamma_{0}^{\varepsilon}} = \Theta^{\varepsilon} (\Gamma_{0}^{\varepsilon})$ où $\Gamma_{0}^{\varepsilon} = \gamma_{0} \times [-\varepsilon, +\varepsilon]$, $\gamma_{0} \subset \gamma$ de longueur non nulle, de sa surface latérale $\widehat{\Gamma^{\varepsilon}} = \Theta^{\varepsilon} (\Gamma^{\varepsilon})$. Sur ses faces supérieure $\widehat{\Gamma_{+}^{\varepsilon}} = \Theta^{\varepsilon} (\Gamma_{+}^{\varepsilon})$, et inférieure $\widehat{\Gamma_{-}^{\varepsilon}} = \Theta^{\varepsilon} (\Gamma_{-}^{\varepsilon})$, elle est soumise à des forces de surface notées $\widehat{h^{\varepsilon}} \in (L^{2} (\widehat{\Gamma_{+}^{\varepsilon}} \cup \widehat{\Gamma_{-}^{\varepsilon}}))^{3}$ et à des forces de volume $\widehat{f^{\varepsilon}} \in (L^{2} (\widehat{\Omega^{\varepsilon}}))^{3}$. Sous l'action de ces forces, la coque subit un déplacement noté $\widehat{u^{\varepsilon}}$: $\overline{\Omega^{\varepsilon}} \to \mathbb{R}^{3}$. Le champ de déformation associée est $\widehat{\varphi^{\varepsilon}} = I_{3} + \widehat{u^{\varepsilon}}$. En notant $\widehat{\sigma^{\varepsilon}}$ le second tenseur des contraintes de Piola -Kirchhoff et $\widehat{E^{\varepsilon}}$ le tenseur des déformations de Green Saint-Venant.

Chapitre 2

LA JUSTIFICATION D'UN MODÈLE DE COQUES NON LINÉAIRE EN FLEXION PAR DÉVELOPPEMENT ASYMPTOTIQUE DE L'ÉNERGIE

On considère une coque élastique mince d'épaisseur 2ε est petite par rapport à ses autres longueurs caractéristques, de surface moyenne S ($S = \theta(\overline{\omega})$, ω est un ouvert de \mathbb{R}^2 , $\theta \in C^3(\omega, \mathbb{R}^3)$), constituée d'un matériau élastique non homogène et anisotrope, la coque soumise à des forces de volume et de surface. Le problème variationnel donné sur cette coque en coordonnées curvilignes posé sur un ouvert dépendent de ε .

L'objectif de l'analyse asymptotique est de connaître le comportement de la solution lorsque ε tend vers zéro. Pour cela il est important de poser le problème sur un domaine indépendant de ε , on associe a toute fonction, une fonction "mise à l'échelle" sur le domaine fixe. On suppose ensuite que les données liées à la géométrie admettent un développement limité autour de la surface moyenne de la coque, et que la défomation "mise à l'échelle" admet un développement asymptotique commence par l'ordre zéro.

2.1 Formulation du problème tridimensionnel

On considère une coque $\widehat{\Omega^{\varepsilon}} = \Theta^{\varepsilon}(\Omega^{\varepsilon})$ de surface moyenne $S = \theta(\overline{\omega})$, (ω est un ouvert borné connexe de \mathbb{R}^2 de frontière γ , $\theta \in C^3(\overline{\omega}, \mathbb{R}^3)$) et d'épaisseur $2\varepsilon > 0(\varepsilon$ est petit), constituée d'un matériau élastique non homogène et anisotrope. la coque est soumise à des forces mortes volumique $\widehat{f^{\varepsilon}}$ et à des forces mortes surfacique $\widehat{h^{\varepsilon}}$ sur les faces supérieure et inférieure $\widehat{\Gamma^{\varepsilon}_+}$ et $\widehat{\Gamma^{\varepsilon}_-}$ et encastré sur la partie $\widehat{\Gamma^{\varepsilon}_0}$ ($\widehat{\Gamma^{\varepsilon}_0} = \gamma_0 \times [-1,+1] \gamma_0 \subset \gamma$), aussi la coque subit un champ de déplacement noté par $\widehat{u^{\varepsilon}}$, le champ de déformation associée est

$$\widehat{\varphi^{\varepsilon}} = I_d + \widehat{u^{\varepsilon}}.$$
(2.1)

En notant $\widehat{E^{\epsilon}}$ est le tenseur des déformations de Green-Saint-Venant. L'espace des déformations admissibles est :

$$A_{d}\left(\widehat{\Omega^{\varepsilon}}\right) = \left\{\widehat{\Psi^{\varepsilon}} \in \left(W^{1,4}\left(\widehat{\Omega^{\varepsilon}}\right)\right)^{3}, \ \widehat{\Psi^{\varepsilon}} \text{ est injective sur } \widehat{\Omega^{\varepsilon}}, \ \det\left(\widehat{\nabla^{\varepsilon}} \ \widehat{\Psi^{\varepsilon}}\right) > 0 \\ \operatorname{dans} \widehat{\Omega^{\varepsilon}}, \ \widehat{\Psi^{\varepsilon}} = I_{d} \ \operatorname{sur} \widehat{\Gamma_{0}^{\varepsilon}}\right\}.$$
(2.2)

On peut associer à toute déformation $\widehat{\Psi^{\varepsilon}}$ l'énergie

$$\widehat{J^{\varepsilon}}\left(\widehat{\Psi^{\varepsilon}}\right) = \widehat{I^{\varepsilon}}\left(\widehat{\Psi^{\varepsilon}}\right) - \widehat{l^{\varepsilon}}\left(\widehat{\Psi^{\varepsilon}}\right).$$
(2.3)

La forme linéaire $\widehat{l^\varepsilon}$ est le travail des forces extérieures

$$\widehat{l^{\varepsilon}}\left(\widehat{\Psi^{\varepsilon}}\right) = \int_{\widehat{\Omega^{\varepsilon}}} \widehat{f^{\varepsilon}}.\widehat{\Psi^{\varepsilon}}d\widehat{x^{\varepsilon}} + \int_{\widehat{\Gamma^{\varepsilon}_{+}}\cup\widehat{\Gamma^{\varepsilon}_{-}}} \widehat{h^{\varepsilon}}.\widehat{\Psi^{\varepsilon}}d\widehat{S^{\varepsilon}}, \qquad (2.4)$$

tandis que $\widehat{I^{\varepsilon}}\big(\widehat{\Psi^{\varepsilon}}\big)$ est l'énergie interne

$$\widehat{I^{\varepsilon}}\left(\widehat{\Psi^{\varepsilon}}\right) = \int_{\widehat{\Omega^{\varepsilon}}} \widehat{W^{\varepsilon}}\left(\widehat{x^{\varepsilon}}, \widehat{\nabla^{\varepsilon}}\widehat{\Psi^{\varepsilon}}\right) d\widehat{x^{\varepsilon}}.$$
(2.5)

Pour un matériau élastique non homogène et anisotrope, la densité d'énergie interne $\widehat{W^{\varepsilon}}$ est de la forme

$$\widehat{W^{\varepsilon}}\left(\widehat{x^{\varepsilon}},F\right) = \frac{1}{2} \widehat{A^{\varepsilon}_{ijkl}}\left(\widehat{x^{\varepsilon}}\right) \widehat{E^{\varepsilon}_{ij}}(F) \widehat{E^{\varepsilon}_{kl}}(F) \text{ pour } F \text{ matrice } 3 \times 3, \qquad (2.6)$$

où

$$\widehat{E^{\varepsilon}}(F) = \frac{1}{2} \Big[F^T . F - I_3 \Big], \qquad (2.7)$$

 $\widehat{A^{\varepsilon}} = \left(\widehat{A^{\varepsilon}_{ijkl}} \right)$ est le tenseur de rigidité vérifie

$$\begin{cases} \widehat{A_{ijkl}^{\varepsilon}} \in L^{\infty}\left(\widehat{\Omega^{\varepsilon}}\right) \\ \widehat{A_{ijkl}^{\varepsilon}} = \widehat{A_{jikl}^{\varepsilon}} = \widehat{A_{klij}^{\varepsilon}} = \widehat{A_{klji}^{\varepsilon}} \\ \exists c > 0, \widehat{A_{ijkl}^{\varepsilon}} \widehat{\tau_{kl}^{\varepsilon}} \widehat{\tau_{ij}^{\varepsilon}} \ge c \widehat{\tau_{ij}^{\varepsilon}} \widehat{\tau_{ij}^{\varepsilon}}, \forall \widehat{\tau_{ij}^{\varepsilon}} = \widehat{\tau_{ji}^{\varepsilon}} \end{cases}$$
(2.8)

Plus précisément, on a

$$\widehat{W^{\varepsilon}}\left(\widehat{x^{\varepsilon}},\widehat{\nabla^{\varepsilon}}\widehat{\Psi^{\varepsilon}}\right) = \frac{1}{2} \, \widehat{A^{\varepsilon}_{ijkl}} \, \widehat{E^{\varepsilon}_{ij}}\left(\widehat{\Psi^{\varepsilon}}\right) \widehat{E^{\varepsilon}_{kl}}\left(\widehat{\Psi^{\varepsilon}}\right),$$

où

$$\widehat{E^{\varepsilon}}\left(\widehat{\Psi^{\varepsilon}}\right) = \frac{1}{2} \left[\left(\widehat{\nabla^{\varepsilon}}\widehat{\Psi^{\varepsilon}}\right)^{T} \cdot \left(\widehat{\nabla^{\varepsilon}}\widehat{\Psi^{\varepsilon}}\right) - I_{3} \right].$$
(2.9)

L'état d'équilibre de la coque d'épaisseur 2ε est décrit comme étant la solution du problème :

$$\widehat{P^{\varepsilon}}\left(\widehat{\Omega^{\varepsilon}}\right) \begin{cases} \operatorname{Trouver}\widehat{\varphi^{\varepsilon}} \in A_{d}\left(\widehat{\Omega^{\varepsilon}}\right), \text{tel que} \\ \widehat{J^{\varepsilon}}\left(\widehat{\varphi^{\varepsilon}}\right) = \inf_{\widehat{\Psi^{\varepsilon}} \in A_{d}\left(\widehat{\Omega^{\varepsilon}}\right)} \widehat{J^{\varepsilon}}\left(\widehat{\Psi^{\varepsilon}}\right) \end{cases}$$
(2.10)

Dans le cas général, il n'existe pas de solution $\widehat{\varphi^{\varepsilon}}$ au problème variationnel présenté. Ceci tient entre autre au fait que la fonctionnelle énergie $\widehat{J^{\varepsilon}}$ n'est pas semi continue inférieure faible pour la topologie $W^{1,4}(\widehat{\Omega^{\varepsilon}}; \mathbb{R}^3)$.

2.2 Position du problème en coordonnées curvilignes

Le problème précédent donné sur cette coque en coordonnées cartésiennes, étant mal adapté à l'étude des coques, alors on réécrit le problème en coordonnées curvilinéaires. Les vecteurs de base covariantes et contravariantes et les symboles de Christoffel associées, le tenseur métrique et le tenseur de courbure de la coque $\widehat{\Omega^{\varepsilon}}$ et de la surface moyenne *S* sont données dans la section 1.3(chapitre 1), le problème précédent est donné en coordonnées curvilinéaires par

$$P^{\varepsilon}(\Omega^{\varepsilon}) \begin{cases} \operatorname{Trouver} \varphi^{\varepsilon} \in A_{d}(\Omega^{\varepsilon}), \text{tel que} \\ J^{\varepsilon}(\varphi^{\varepsilon}) = \inf_{\Psi^{\varepsilon} \in A_{d}(\Omega^{\varepsilon})} J^{\varepsilon}(\Psi^{\varepsilon}) \end{cases}$$
(2.11)

où

$$J^{\varepsilon}(\Psi^{\varepsilon}) = I^{\varepsilon}(\Psi^{\varepsilon}) - l^{\varepsilon}(\Psi^{\varepsilon}), \qquad (2.12)$$

$$I^{\varepsilon}(\Psi^{\varepsilon}) = \frac{1}{2} \int_{\Omega^{\varepsilon}} \sqrt{g^{\varepsilon}(x^{\varepsilon})} A^{ijkl,\varepsilon}(x^{\varepsilon}) E^{\varepsilon}_{i||j}(\Psi^{\varepsilon}) E^{\varepsilon}_{k||l}(\Psi^{\varepsilon}) dx^{\varepsilon}, \qquad (2.13)$$

$$l^{\varepsilon}(\Psi^{\varepsilon}) = \int_{\Omega^{\varepsilon}} \sqrt{g^{\varepsilon}(x^{\varepsilon})} f^{i,\varepsilon} \Psi_{i}^{\varepsilon} dx^{\varepsilon} + \int_{\Gamma_{+}^{\varepsilon} \cup \Gamma_{-}^{\varepsilon}} \sqrt{g^{\varepsilon}(x^{\varepsilon})} h^{i,\varepsilon} \Psi_{i}^{\varepsilon} dS^{\varepsilon}, \qquad (2.14)$$

$$E_{i||j}^{\varepsilon}(\Psi^{\varepsilon}) = \frac{1}{2} \left(g^{ms,\varepsilon} \Psi_{m||i}^{\varepsilon} \Psi_{s||j}^{\varepsilon} - g_{ij}^{\varepsilon} \right)$$
(2.15)

$$v_{i||j}^{\varepsilon} = \partial_{j}^{\varepsilon} v_{i}^{\varepsilon} - \Gamma_{ij}^{k,\varepsilon} v_{k}^{\varepsilon} (\text{dérivée covariante de } v^{\varepsilon}), \qquad (2.16)$$

$$A_{d}(\Omega^{\varepsilon}) = \left\{ \Psi^{\varepsilon} \in \left(W^{1,4}(\Omega^{\varepsilon}) \right)^{3}, \Psi^{\varepsilon} \text{ est injective sur } \Omega^{\varepsilon}, \det \left(\nabla^{\varepsilon} \Psi^{\varepsilon} \right) > 0 \\ \operatorname{dans} \Omega^{\varepsilon}, \Psi^{\varepsilon} = \Theta^{\varepsilon} = \theta + x_{3}^{\varepsilon} a_{3} \operatorname{sur} \Gamma_{0}^{\varepsilon} \right\}.$$
(2.17)

tels que

$$\widehat{x^{\varepsilon}} = \Theta^{\varepsilon}(x^{\varepsilon}), \forall x^{\varepsilon} \in \Omega^{\varepsilon},$$
(2.18)

$$f^{\varepsilon}(x^{\varepsilon}) = \widehat{f^{\varepsilon}}\left(\widehat{x^{\varepsilon}}\right) = \widehat{f^{\varepsilon}} \circ \Theta^{\varepsilon}(x^{\varepsilon}) = f^{i,\varepsilon}(x^{\varepsilon})g_{i}^{\varepsilon}(x^{\varepsilon}), \forall x^{\varepsilon} \in \Omega^{\varepsilon},$$
(2.19)

$$h^{\varepsilon}(x^{\varepsilon}) = \widehat{h^{\varepsilon}}\left(\widehat{x^{\varepsilon}}\right) = \widehat{h^{\varepsilon}} \circ \Theta^{\varepsilon}(x^{\varepsilon}) = h^{i,\varepsilon}(x^{\varepsilon})g_{i}^{\varepsilon}(x^{\varepsilon}), \forall x^{\varepsilon} \in \Gamma_{+}^{\varepsilon} \cup \Gamma_{-}^{\varepsilon},$$
(2.20)

$$\Psi^{\varepsilon}(x^{\varepsilon}) = \widehat{\Psi^{\varepsilon}}\left(\widehat{x^{\varepsilon}}\right) = \widehat{\Psi^{\varepsilon}} \circ \Theta^{\varepsilon}(x^{\varepsilon}) = \Psi^{\varepsilon}_{i}(x^{\varepsilon})g^{i,\varepsilon}(x^{\varepsilon}), \forall x^{\varepsilon} \in \Omega^{\varepsilon},$$
(2.21)

$$A^{\varepsilon}(x^{\varepsilon}) = \widehat{A^{\varepsilon}}\left(\widehat{x^{\varepsilon}}\right) = \widehat{A^{\varepsilon}} \circ \Theta^{\varepsilon}(x^{\varepsilon}) = A^{ijkl,\varepsilon}(x^{\varepsilon})g_{i}^{\varepsilon}(x^{\varepsilon})g_{j}^{\varepsilon}(x^{\varepsilon})g_{k}^{\varepsilon}(x^{\varepsilon})g_{l}^{\varepsilon}(x^{\varepsilon}), \forall x^{\varepsilon} \in \Omega^{\varepsilon}, \quad (2.22)$$

tels que $A^{\varepsilon} = (A^{ijkl,\varepsilon})$ vérifie :

$$\begin{cases}
A^{ijkl,\varepsilon} (x^{\varepsilon}) \in L^{\infty} (\Omega^{\varepsilon}) \\
A^{ijkl,\varepsilon} = A^{jikl,\varepsilon} = A^{klij,\varepsilon} = A^{klji,\varepsilon} \\
\exists C > 0, A^{ijkl,\varepsilon} \tau_{ij} \tau_{kl} \ge C \tau_{ij} \tau_{ij}, \, \forall \tau_{ij} = \tau_{ji}
\end{cases}$$
(2.23)

2.3 Mise à l'échelle

2.3.1 Passage au domaine fixe

Les solutions φ^{ε} du problème tridimensionnel sont définies sur un ouvert Ω^{ε} dépendant de ε . Afin de réaliser une analyse asymptotique, il est utile d'effectuer un changement d'échelle afin de se ramener à un domaine fixe. On définit les ensembles suivants $\Omega = \omega \times]-1,+1[$ ainsi que $\Gamma = \gamma \times [-1,+1], \Gamma_0 = \gamma_0 \times [-1,+1]$ et $\Gamma_{\pm} = \gamma \times \{\pm 1\}$. On note $x = (x_i)$ un point de $\overline{\Omega}$ et on pose $\partial_i = \frac{\partial}{\partial x_i}$.

On construit l'application bijective π^{ε} de $\overline{\Omega}$ dans $\overline{\Omega^{\varepsilon}}$ définie par :

$$\pi^{\varepsilon}: x = (x_1, x_2, x_3) \in \overline{\Omega} \to \pi^{\varepsilon}(x) = x^{\varepsilon} = (x_1, x_2, \varepsilon x_3) \in \overline{\Omega^{\varepsilon}},$$
(2.24)

d'où : $\partial_{\alpha}^{\varepsilon} = \partial_{\alpha}$ et $\partial_{3}^{\varepsilon} = \frac{1}{\varepsilon}\partial_{3}$.

A toute fonction k^{ε} définie sur Ω^{ε} , on associe la fonction "mises à l'échelle" définie sur Ω par

$$k^{\varepsilon}(x^{\varepsilon}) = k(\varepsilon)(x), x^{\varepsilon} \in \Omega^{\varepsilon}, x \in \Omega,$$
(2.25)

on définit ainsi les fonctions

$$\begin{split} \varphi(\varepsilon)(x) &= \varphi^{\varepsilon}(x^{\varepsilon}), \ f^{i}(\varepsilon)(x) = f^{i,\varepsilon}(x^{\varepsilon}), \\ A^{ijkl}(\varepsilon)(x) &= A^{ijkl,\varepsilon}(x^{\varepsilon}), \ g(\varepsilon)(x) = g^{\varepsilon}(x^{\varepsilon}), \\ g^{i}(\varepsilon)(x) &= g^{i,\varepsilon}(x^{\varepsilon}), \ g_{i}(\varepsilon)(x) = g^{\varepsilon}_{i}(x^{\varepsilon}), \\ E_{i||j}(\varepsilon)(\varphi(\varepsilon)) &= E^{\varepsilon}_{i||j}(\varphi^{\varepsilon}), \ J(\varepsilon)(\Psi(\varepsilon)) = J^{\varepsilon}(\Psi^{\varepsilon}), \\ I(\varepsilon)(\Psi(\varepsilon)) &= I^{\varepsilon}(\Psi^{\varepsilon}), \ l(\varepsilon)(\Psi(\varepsilon)) = l^{\varepsilon}(\Psi^{\varepsilon}), \\ \Gamma^{k}_{ij}(\varepsilon)(x) &= \Gamma^{k,\varepsilon}_{ij}(x^{\varepsilon}), \forall x^{\varepsilon} \in \Omega^{\varepsilon} \text{ et } x \in \Omega, \\ h^{i}(\varepsilon)(x) &= h^{i,\varepsilon}(x^{\varepsilon}) \text{ pour } x^{\varepsilon} \in \Gamma^{\varepsilon}_{+} \cup \Gamma^{\varepsilon}_{-} \text{ et } x \in \Gamma_{+} \cup \Gamma_{-}. \end{split}$$

Le problème $P^{\varepsilon}(\Omega^{\varepsilon})$ est équivalent au problème suivant :

$$\begin{cases} \operatorname{Trouver}\varphi(\varepsilon) \in A_d(\Omega) \text{tel que} \\ J(\varepsilon)(\varphi(\varepsilon)) = \inf_{\Psi(\varepsilon) \in A_d(\Omega)} J(\varepsilon)(\Psi(\varepsilon)) \end{cases}$$
(2.26)

où l'éspace des déformations admissibles est

$$A_{d}(\Omega) = \left\{ \Psi(\varepsilon) \in \left(W^{1,4}(\Omega) \right)^{3}, \Psi(\varepsilon) \text{ est injective sur } \Omega, \det(\nabla(\varepsilon) \Psi(\varepsilon)) > 0 \\ \operatorname{dans} \Omega, \Psi(\varepsilon) = I_{d} \operatorname{sur} \Gamma_{0} \right\}.$$
(2.27)

et

$$J(\varepsilon)(\Psi(\varepsilon)) = I(\varepsilon)(\Psi(\varepsilon)) - l(\varepsilon)(\Psi(\varepsilon)), \qquad (2.28)$$

$$I(\varepsilon)(\Psi(\varepsilon)) = \varepsilon \frac{1}{2} \int_{\Omega} \sqrt{g(\varepsilon)(x)} A^{ijkl}(\varepsilon)(x) E_{i||j}(\varepsilon)(\Psi(\varepsilon)) E_{k||l}(\varepsilon)(\Psi(\varepsilon)) dx, \quad (2.29)$$

$$l(\varepsilon)(\Psi(\varepsilon)) = \varepsilon \int_{\Omega} \sqrt{g(\varepsilon)(x)} f^{i}(\varepsilon) \Psi_{i}(\varepsilon) dx + \int_{\Gamma_{+} \cup \Gamma_{-}} \sqrt{g(\varepsilon)(x)} h^{i}(\varepsilon) \Psi_{i}(\varepsilon) dS.$$
(2.30)

Nous supposons que le tenseur de rigidité défini sur $\omega \times]-1,+1[, A(\varepsilon)$ est indépendant de ε , c'est à dire qu'il existe un tenseur A indépendant de ε tel que :

$$\forall \varepsilon > 0, \forall x \in \overline{\Omega}, \ A^{\varepsilon}(x_1, x_2, \varepsilon x_3) = A(x).$$
(2.31)

Nous notons $A^{ijkl}(x)$ les composantes du tenseur A(x) sur la base $(g_i(\varepsilon)(x))$. Quand $A(\varepsilon)$ vérifie la condition (2.31), nous avons :

$$\begin{cases} A^{ijkl}(x) \in L^{\infty}(\Omega) \\ A^{ijkl}(x) = A^{jikl}(x) = A^{klij}(x) = A^{klji}(x) \\ \exists C > 0, \forall x \in \Omega, A^{ijkl}(x) \tau_{kl}\tau_{ij} \ge C \tau_{ij}\tau_{ij}, \forall \tau_{ij} = \tau_{ji} \end{cases}$$
(2.32)

Nous allons lors de l'analyse asymptotique identifier une loi de comportement limite.

Pour tout $x = (y, x_3) \in \overline{\Omega}$, nous pouvons décomposer A(x) sur la base

$$a_{i}(y).a_{j}(y).a_{k}(y).a_{l}(y)$$
.

Autrement dit, A(x) s'écrit

$$A(x) = A^{ijkl}(0) \ (x) \ a_i(y) \otimes a_j(y) \otimes a_k(y) \otimes a_l(y),$$
(2.33)

Nous définissons, pour $x = (y, x_3) \in \Omega$, un tenseur D(x) par

$$D(x) = D^{\alpha\beta\gamma\delta}(x) a_{\alpha}(y) \otimes a_{\beta}(y) \otimes a_{\gamma}(y) \otimes a_{\delta}(y),$$

où

$$D^{\alpha\beta\gamma\delta}(x) = A^{\alpha\beta\gamma\delta}(0)(x) - A^{\alpha\betai3}(0)(x) d_{ij}(x) A^{j3\gamma\delta}(0)(x), \qquad (2.34)$$

où $d(x) = (d_{ij}(x))$ est la matrice inverse de la matrice $(A^{i3j3}(0)(x))$.

2.4 Procédure du développement asymptotique

On note $P(\varepsilon)(\Omega)$ le problème consistant à déterminer $\varphi(\varepsilon)$ telle que

$$P(\Omega) \begin{cases} \text{Trouver} \varphi^{\varepsilon} \in A_d(\Omega), \text{tel que} \\ J^{\varepsilon}(\varphi) = \inf_{\Psi \in A_d(\Omega)} J(\Psi) \end{cases}$$
(2.35)

où l'éspace des déformations admissibles est

$$A_{d}(\Omega) = \left\{ \Psi(\varepsilon) \in \left(W^{1,4}(\Omega) \right)^{3}, \Psi(\varepsilon) \text{ est injective sur } \Omega, \det(\nabla(\varepsilon) \Psi(\varepsilon)) > 0 \\ \operatorname{dans} \Omega, \Psi(\varepsilon) = I_{d} \operatorname{sur} \Gamma_{0} \right\}.$$

Les données du problème $P(\varepsilon)(\Omega)$ liées de la géométrie de la coque admettent les développement en puissances de ε suivants

$$g(\varepsilon) = a + O(\varepsilon),$$

$$g_{\alpha}(\varepsilon) = a_{\alpha} + \varepsilon x_{3} \partial_{\alpha} a_{3} = a_{\alpha} - \varepsilon x_{3} b_{\alpha\sigma} a^{\sigma},$$

$$g_{ij}(\varepsilon) = a_{ij} + \sum_{k \in \mathbb{N}^*} (\varepsilon x_3)^k g_{ij}^k, \ g_{\alpha\beta}^1 = -2b_{\alpha\beta}$$

et $g_{i3}(\varepsilon) = \delta_{i3}, \ g_3(\varepsilon) = a_3,$
 $g^{ij}(\varepsilon) = a^{ij} + \sum_{k \in \mathbb{R}} \varepsilon x_3 g^{\alpha\beta,1} + O(\varepsilon^2), \ g^{\alpha\beta,1} = 2a^{\alpha\sigma} b_{\sigma}^{\beta}$
et $g^{i3}(\varepsilon) = \delta_{i3}, \ g^{\alpha}(\varepsilon) = g^{\alpha i}(\varepsilon) g_i(\varepsilon) = a^{\alpha} + \varepsilon x_3 g^{\alpha,1} + O(\varepsilon^2), \ g^{\alpha,1} = b_{\sigma}^{\alpha} a_{\sigma}.$
 $\Gamma_{ij}^k(\varepsilon)(x) = \Gamma_{ij}^{k,0} + \varepsilon x_3 \Gamma_{ij}^{k,1} + O(\varepsilon^2),$

 $\Gamma_{\alpha\beta}^{\gamma,0} = \Gamma_{\alpha\beta}^{\gamma*}, \ \Gamma_{\alpha\beta}^{3,0} = b_{\alpha\beta}, \ \Gamma_{\alpha3}^{\beta,0} = -b_{\alpha}^{\beta}, \ \Gamma_{i3}^{3,0} = \Gamma_{33}^{i,0} = 0, \ \Gamma_{\alpha\beta}^{\gamma,1} = -b_{\alpha}^{\gamma} b_{\alpha\beta}, \ \Gamma_{\alpha3}^{\gamma,1} = -b_{\alpha}^{\sigma} b_{\sigma\beta}, \ \Gamma_{\alpha3}^{\gamma,1} = -b_{\alpha}^{\sigma} b_{\sigma\beta}^{\gamma}, \ \Gamma_{i3}^{3,1} = \Gamma_{33}^{i,1} = 0.$

Tels que

$$b^{\sigma}_{\beta|\alpha} = \partial_{\alpha} b^{\sigma}_{\beta} + \Gamma^{\sigma*}_{\alpha\tau} b^{\tau}_{\beta} - \Gamma^{\tau*}_{\alpha\beta} b^{\sigma}_{\tau},$$

on pose

$$\sqrt{g(\varepsilon)}(x) = \sqrt{a(y)} + \sum_{i=1}^{+\infty} \left(\sqrt{g(\varepsilon)}\right)^i (x) \varepsilon^i, \ \forall x \in \Omega.$$

Nous postulons que le déformation $\varphi(\varepsilon)$ admet un développement asymptotique en puissances de ε sous la forme :

$$\varphi(\varepsilon) = \varphi^0 + \varepsilon \varphi^1 + \varepsilon^2 \varphi^2 + \dots$$
 (2.36)

Nous pouvons reformuler la suite des problèmes $P(\varepsilon)(\Omega)$ comme une suite de problèmes récursifs simples

Proposition 2.4.1 La solution $\varphi(\varepsilon) = \varphi^0 + \varepsilon \varphi^1 + \varepsilon^2 \varphi^2 + ...$ de la suite de problèmes $P(\varepsilon)$ est telle que

$$\varphi \in \bigcap_{n=-3}^{\infty} A_{d,n},$$

оù

$$A_{d,n+1} = \left\{ \Psi \in A_{d,n} : J^n(\Psi) = \inf_{\widetilde{\Psi} \in A_{d,n}} J^n(\widetilde{\Psi}) \right\},\$$

et

$$A_{d,-3} = \left\{ \Psi \in \left(W^{1,4} \left(\Omega; \mathbb{R}^3 \right) \right)^{\mathbb{N}} : \sum_n \Psi^n \varepsilon^n \in A_d \left(\Omega \right) \right\}.$$

On désigne par P_n le problème consistant à déterminer l'ensemble des minimiseurs de J^n sur $A_{d,n}$. Cette proposition signifie simplement que $\varphi(\varepsilon)$ est solution de la suite récursive des problèmes variationnels P_n .

Preuve. (D'après Pantz [4]) La démonstration s'effectue par récurrence. On note P_n la proposition

$$\varphi \in \bigcap_{p=-3}^{n} A_{d,p} = A_{d,n}$$

D'après le dévelopement de φ , P_{-3} est vraie. Il suffit donc de montrer que

$$P_n \Rightarrow P_{n+1}$$

Pour tout $\Psi \in A_{d,n}$,

$$J(\varepsilon)(\Psi) = \sum_{p=-3}^{n} J^{p}(\Psi) \ \varepsilon^{p} + \varepsilon^{n} \left(J^{n}(\Psi) + \varepsilon \sum_{p=0}^{\infty} J^{n+1+p}(\Psi) \ \varepsilon^{p} \right).$$
(2.37)

De plus, pour tout p < n, comme $\Psi \in A_{d,p+1}$,

$$J^{p}(\Psi) = \inf_{\widetilde{\Psi} \in A_{d,p}} J^{p}\left(\widetilde{\Psi}\right).$$
(2.38)

On pose

$$M^{n}(\varepsilon) = \sum_{p=-3}^{n} \inf_{\widetilde{\Psi} \in A_{d,p}} J^{p}(\widetilde{\Psi}) \varepsilon^{p}.$$

D'après (2.37) et (2.38), pour tout $\Psi \in A_{d,n}$,

$$J(\varepsilon)(\Psi) = M^{n}(\varepsilon) + \varepsilon^{n} \left(J^{n}(\Psi) + \varepsilon \sum_{p=0}^{\infty} J^{n+1+p}(\Psi) \varepsilon^{p} \right).$$
(2.39)

On rappelle que φ est défini par l'hypothèse 1. Supposons que P_n soit vraie. Dans ce cas, pour tout $\varepsilon > 0$,

$$J(\varepsilon)(\varphi) = \inf_{\Psi \in A_{d,n}} J(\varepsilon)(\Psi).$$

De (2.39), on déduit que pour tout $\varepsilon > 0$,

$$J^{n}(\varphi) + \varepsilon \sum_{p=0}^{\infty} J^{n+1+p}(\varphi) \ \varepsilon^{p} = \inf_{\Psi \in A_{d,n}} \left(J^{n}(\Psi) + \varepsilon \sum_{p=0}^{\infty} J^{n+1+p}(\Psi) \ \varepsilon^{p} \right).$$
(2.40)

Pour tout $\alpha > 0$, il existe $\Psi_{\alpha} \in A_{d,n}$ tel que

$$J^{n}(\Psi_{\alpha}) \leq \inf_{\Psi \in A_{d,n}} J^{n}(\Psi) + \alpha.$$

D'après (2.40) on a donc pour tout ε

$$\begin{split} J^{n}(\varphi) + \varepsilon \sum_{p=0}^{\infty} J^{n+1+p}(\varphi) \ \varepsilon^{p} &\leq \left(J^{n}(\Psi_{\alpha}) + \varepsilon \sum_{p=0}^{\infty} J^{n+1+p}(\Psi_{\alpha}) \ \varepsilon^{p} \right) \\ &\leq \inf_{\Psi \in A_{d,n}} J^{n}(\Psi) + \alpha + \varepsilon \left(\sum_{p=0}^{\infty} J^{n+1+p}(\Psi_{\alpha}) \ \varepsilon^{p} \right), \end{split}$$

et faisant tendre ε vers 0, il vient

$$J^{n}(\varphi) \leq \inf_{\Psi \in A_{d,n}} J^{n}(\Psi) + \alpha,$$

et

$$J^{n}(\varphi) \leq \inf_{\Psi \in A_{d,n}} J^{n}(\Psi),$$

c'est-à-dire, comme $\varphi \in A_{d,n}$

$$\varphi \in A_{d,n+1}$$
,

et P_{n+1} est vraie.

2.4.1 Calcul des termes du développement asymptotique de l'énergie

On rappelle que E^{ε} est le tenseur de déformation, que $E(\varepsilon)$ est défini par :

$$E(\varepsilon)(\Psi(\varepsilon)) = E^{\varepsilon}(\Psi^{\varepsilon})$$

et que

$$E\left(\varepsilon\right)\left(\Psi\left(\varepsilon\right)\right)=E\left(\varepsilon\right)\left(\Psi^{0}+\varepsilon\Psi^{1}+\ldots\right).$$

CHAPITRE 2. LA JUSTIFICATION D'UN MODÈLE DE COQUES NON LINÉAIRE EN FLEXION PAR DÉVELOPPEMENT ASYMPTOTIQUE DE L'ÉNERGIE

Les tenseurs de déformation

$$E_{3||3}^{-2}(\Psi) = \frac{1}{2} (a^{ij} \partial_3 \Psi_i^0 \partial_3 \Psi_j^0)$$

$$E_{3\parallel3}^{-1}(\Psi) = \frac{1}{2} \Big[a^{ij} (\partial_3 \Psi_i^0 \partial_3 \Psi_j^1 + \partial_3 \Psi_j^0 \partial_3 \Psi_i^1) - a^{ij} (\partial_3 \Psi_i^0 \Gamma_{j3}^{l,0} \Psi_l^0 + \partial_3 \Psi_j^0 \Gamma_{i3}^{k,0} \Psi_k^0) + x_3 g^{\gamma \delta,1} \partial_3 \Psi_{\gamma}^0 \partial_3 \Psi_{\delta}^0 \Big]$$

$$E_{3||3}^{0}(\Psi) = \frac{1}{2} \Big[a^{ij} \partial_3 \Psi_i^1 \partial_3 \Psi_j^1 - a^{ij} (\partial_3 \Psi_i^1 \Gamma_{j3}^{l,0} \Psi_l^0 + \partial_3 \Psi_j^1 \Gamma_{i3}^{k,0} \Psi_k^0) + \Psi_{\gamma||3}^0 \Psi_{\delta||3}^0 - 1 \Big]$$

$$\frac{1}{2} \Big[a^{ij} \Big[-x_3 (\partial_3 \Psi_i^1 \Gamma_{j3}^{l,1} \Psi_l^0 + \partial_3 \Psi_j^1 \Gamma_{i3}^{k,1} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^2 \Gamma_{j3}^{l,0} \Psi_l^0) + (\Gamma_{i3}^{k,0} \Psi_k^0 \Gamma_{j3}^{l,0} \Psi_l^1 + \Gamma_{i3}^{k,0} \Psi_k^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^2 \Gamma_{j3}^{l,0} \Psi_l^0) + (\Gamma_{i3}^{k,0} \Psi_k^0 \Gamma_{j3}^{l,0} \Psi_l^1 + \Gamma_{i3}^{k,0} \Psi_k^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^2 \Gamma_{j3}^{l,0} \Psi_l^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^2 \Gamma_{j3}^{l,0} \Psi_l^0) + (\Gamma_{i3}^{k,0} \Psi_k^0 \Gamma_{j3}^{l,0} \Psi_l^1 + \Gamma_{i3}^{k,0} \Psi_k^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^2 \Gamma_{j3}^{l,0} \Psi_l^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^2 \Gamma_{j3}^{l,0} \Psi_l^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{l,0} \Psi_k^0 + \partial_3 \Psi_i^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{i3}^{l,0} \Psi_k^0 + \partial_3 \Psi_i^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{j3}^{l,0} \Psi_k^0 + \partial_3 \Psi_j^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{j3}^{l,0} \Psi_k^0 + \partial_3 \Psi_j^1 \Gamma_{j3}^{l,0} \Psi_k^0 + \partial_3 \Psi_j^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^2 \Gamma_{j3}^{l,0} \Psi_k^0 + \partial_3 \Psi_j^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^1 \Gamma_{j3}^{l,0} \Psi_j^0 + \partial_3 \Psi_j^1 \Gamma_{j3}^{l,0} \Psi_k^0) - (\partial_3 \Psi_j^1 \Gamma_{j3}^{l,0} \Psi_j^0) - (\partial_3 \Psi_j^1 \Gamma_{j3}^{l,0}$$

$$E_{3\parallel3}^{2}(\Psi) = \frac{1}{2} \Big[a^{ij} \Big[(\partial_{3} \Psi_{i}^{1} \partial_{3} \Psi_{j}^{3} + \partial_{3} \Psi_{i}^{3} \partial_{3} \Psi_{j}^{1} + \partial_{3} \Psi_{i}^{2} \partial_{3} \Psi_{j}^{2}) - (\partial_{3} \Psi_{i}^{1} \Gamma_{i3}^{l,0} \Psi_{l}^{2} + \partial_{3} \Psi_{j}^{1} \Gamma_{i3}^{k,0} \Psi_{k}^{2}) + \Big] \Big]$$

$$\begin{split} & \frac{1}{2} \Big[a^{ij} \Big[-(\partial_3 \Psi_i^3 \Gamma_{i3}^{l,0} \Psi_l^0 + \partial_3 \Psi_j^3 \Gamma_{i3}^{k,0} \Psi_k^0 + \partial_3 \Psi_i^2 \Gamma_{j3}^{l,0} \Psi_l^1 + \partial_3 \Psi_j^2 \Gamma_{i3}^{k,0} \Psi_k^1) \Big] \Big] \\ & \quad + \frac{1}{2} \Big[a^{ij} \Big[\Gamma_{i3}^{k,0} \Psi_k^0 \Gamma_{j3}^{l,0} \Psi_l^2 + \Gamma_{i3}^{k,0} \Psi_k^2 \Gamma_{l,0}^{j,3} \Psi_l^0 + \Gamma_{i3}^{k,0} \Psi_k^1 \Gamma_{j3}^{l,0} \Psi_l^1 \Big] \Big] \\ & \quad + \frac{1}{2} \Big[a^{ij} \Big[-x_3 (\partial_3 \Psi_i^3 \Gamma_{j3}^{l,1} \Psi_l^1 + \partial_3 \Psi_j^1 \Gamma_{i3}^{k,1} \Psi_k^1 + \partial_3 \Psi_i^2 \Gamma_{j3}^{l,1} \Psi_l^0) + \partial_3 \Psi_j^2 \Gamma_{i3}^{k,1} \Psi_k^0 \Big] \Big] \\ & \quad \frac{1}{2} \Big[a^{ij} \Big[x_3 (\Gamma_{i3}^{k,0} \Psi_k^0 \Gamma_{j3}^{l,1} \Psi_l^1 + \Gamma_{i3}^{k,1} \Psi_k^1 \Gamma_{j3}^{l,0} \Psi_l^0 + \Gamma_{i3}^{k,0} \Psi_k^1 \Gamma_{j3}^{l,1} \Psi_l^0 + \Gamma_{i3}^{k,1} \Psi_k^0 \Gamma_{j3}^{l,0} \Psi_l^1) \Big] \Big] \end{split}$$

$$\frac{1}{2} \Big[a_{ij} \Big[-x_3^2 (\partial_3 \Psi_i^1 \Gamma_{j3}^{l,2} \Psi_l^0 + \partial_3 \Psi_j^1 \Gamma_{i3}^{k,2} \Psi_k^0 - \Gamma_{i3}^{k,0} \Psi_k^0 \Gamma_{j3}^{l,2} \Psi_l^0 - \Gamma_{i3}^{k,2} \Psi_k^0 \Gamma_{j3}^{l,0} \Psi_l^0 - \Gamma_{i3}^{k,1} \Psi_k^0 \Gamma_{j3}^{l,1}) \Psi_l^0 \Big] \Big] + \frac{1}{2} \Big[x_3 g^{\gamma \delta,1} \Big[(\partial_3 \Psi_{\gamma}^1 - \Gamma_{\gamma 3}^{k,0} \Psi_k^0) (\partial_3 \Psi_{\delta}^2 - \Gamma_{\delta 3}^{l,0} \Psi_l^1 - x_3 \Gamma_{\delta 3}^{l,1} \Psi_l^0) + (\partial_3 \Psi_{\gamma}^2 - \Gamma_{\gamma 3}^{k,0} \Psi_k^1 - x_3 \Gamma_{\gamma 3}^{k,1} \Psi_k^0) (\partial_3 \Psi_{\delta}^1 - \Gamma_{\delta 3}^{l,0} \Psi_l^0) \Big] \\ \frac{1}{2} \Big[x_3^2 g^{\gamma \delta,2} (\partial_3 \Psi_{\gamma}^1 - \Gamma_{\gamma 3}^{k,0} \Psi_k^0) (\partial_3 \Psi_{\delta}^1 - \Gamma_{\gamma 3}^{k,0} \Psi_k^0) (\partial_3 \Psi_{\delta}^1 - \Gamma_{\delta 3}^{l,0} \Psi_l^0) \Big]$$

$$E_{3||\beta}^{-1}(\Psi) = \frac{1}{2} \left[a^{ij} \partial_3 \Psi_i^0 (\partial_\beta \Psi_j^0 - \Gamma_{j\beta}^{i,0} \Psi_l^0) \right]$$
$$E_{3||\beta}^0(\Psi) = \frac{1}{2} \left[a^{ij} (\partial_3 \Psi_i^1 - \Gamma_{i3}^{k,0} \Psi_k^0) (\partial_\beta \Psi_j^0 - \Gamma_{j\beta}^{l,0} \Psi_l^0) \right]$$

$$\begin{split} E_{3\parallel\beta}^{1}(\Psi) &= \frac{1}{2} \Big[a^{ij} \Big[(\partial_{3}\Psi_{i}^{1} - \Gamma_{i3}^{k,0}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{j}^{1} - \Gamma_{j\beta}^{l,0}\Psi_{l}^{1} - x_{3}\Gamma_{j\beta}^{l,1}\Psi_{l}^{0}) + (\partial_{3}\Psi_{i}^{2} - \Gamma_{i3}^{k,0}\Psi_{k}^{1} - x_{3}\Gamma_{i3}^{k,1}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{j}^{0} - \Gamma_{i3}^{k,0}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{j}^{0} - \Gamma_{j\beta}^{k,0}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{j}^{0} - \Gamma_{j\beta}^{k,0}\Psi_{j}^{0}) (\partial_{\beta}\Psi_{j}^{0} - \Gamma_{j\beta}^{k,0}\Psi_{j}^{0})) (\partial_{\beta}\Psi_{j}^{0}$$

$$\begin{split} E_{3\parallel\beta}^{2}(\Psi) &= \frac{1}{2} \left[a^{ij} \left[(\partial_{3}\Psi_{i}^{1} - \Gamma_{i3}^{k,0}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{j}^{2} - \Gamma_{j\beta}^{l,0}\Psi_{l}^{2} - x_{3}\Gamma_{j\beta}^{l,1}\Psi_{l}^{1} - x_{3}^{2}\Gamma_{j\beta}^{l,2}\Psi_{l}^{0}) \right] \right] \\ &+ \frac{1}{2} \left[a^{ij} \left[(\partial_{3}\Psi_{i}^{2} - \Gamma_{i3}^{k,0}\Psi_{k}^{1} - x_{3}\Gamma_{i3}^{k,1}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{j}^{1} - \Gamma_{j\beta}^{l,0}\Psi_{l}^{1} - x_{3}\Gamma_{j\beta}^{l,1}\Psi_{l}^{0}) \right] \right] \\ &+ \frac{1}{2} \left[a^{ij} \left[(\partial_{3}\Psi_{i}^{3} - \Gamma_{\gamma3}^{k,0}\Psi_{k}^{2} - x_{3}\Gamma_{i3}^{k,1}\Psi_{k}^{1} - x_{3}^{2}\Gamma_{i3}^{k,2}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{j}^{0} - \Gamma_{j\beta}^{l,0}\Psi_{l}^{0}) \right] \right] \\ &+ \frac{1}{2} \left[x_{3}g^{\gamma\delta,1} \left[(\partial_{3}\Psi_{\gamma}^{1} - \Gamma_{\gamma3}^{k,0}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{\delta}^{1} - \Gamma_{\delta\beta}^{l,0}\Psi_{l}^{1} - x_{3}\Gamma_{\delta\beta}^{l,1}\Psi_{l}^{0}) \right] \right] \\ &+ \frac{1}{2} \left[x_{3}g^{\gamma\delta,1} \left[(\partial_{3}\Psi_{\gamma}^{2} - \Gamma_{\gamma3}^{k,0}\Psi_{k}^{1} - x_{3}\Gamma_{\gamma3}^{k,1}\Psi_{k}^{0}) (\partial_{\beta}\Psi_{\delta}^{0} - \Gamma_{\delta\beta}^{l,0}\Psi_{l}^{0}) \right] \right] \end{split}$$

$$+\frac{1}{2}x_{3}^{2}g^{\gamma\delta,2}(\partial_{3}\Psi_{\gamma}^{1}-\Gamma_{\gamma3}^{k,0}\Psi_{k}^{0})(\partial_{\beta}\Psi_{\delta}^{0}-\Gamma_{\delta\beta}^{l,0}\Psi_{l}^{0})$$
$$E_{\alpha\parallel\beta}^{0}(\Psi) = \frac{1}{2}\Big[a^{ij}(\partial_{\alpha}\Psi_{i}^{0}-\Gamma_{i\alpha}^{k,0}\Psi_{k}^{0}) - (\partial_{\beta}\Psi_{j}^{0}-\Gamma_{j\beta}^{l,0}\Psi_{l}^{0}) - a_{\alpha\beta}\Big]$$
$$E_{\alpha\parallel\beta}^{1}(\Psi) = \frac{1}{2}a^{ij}\Big[(\partial_{\alpha}\Psi_{i}^{0}-\Gamma_{j\alpha}^{k,0}\Psi_{k}^{0})(\partial_{\beta}\Psi_{j}^{1}-\Gamma_{j\beta}^{l,0}\Psi_{l}^{1}-x_{3}\Gamma_{j\beta}^{l,1}\Psi_{l}^{0})\Big]$$

CHAPITRE 2. LA JUSTIFICATION D'UN MODÈLE DE COQUES NON LINÉAIRE EN FLEXION PAR DÉVELOPPEMENT ASYMPTOTIQUE DE L'ÉNERGIE

$$\begin{split} &+ \frac{1}{2} a^{ij} \Big[(\partial_{\alpha} \Psi_{i}^{1} - \Gamma_{i\alpha}^{k,0} \Psi_{k}^{1} - x_{3} \Gamma_{i\alpha}^{k,1} \Psi_{k}^{0}) (\partial_{\beta} \Psi_{j}^{0} - \Gamma_{j\beta}^{l,0} \Psi_{l}^{0}) \Big] \\ &+ \frac{1}{2} \Big[x_{3} g^{\gamma \delta,1} (\partial_{\alpha} \Psi_{\gamma}^{0} - \Gamma_{\gamma \alpha}^{k,0} \Psi_{k}^{0}) (\partial_{\beta} \Psi_{\delta}^{0} - \Gamma_{\delta\beta}^{l,0} \Psi_{l}^{0}) - x_{3} g_{\alpha\beta}^{1} \Big] \\ E_{\alpha \parallel \beta}^{2} (\Psi) &= \frac{1}{2} a^{ij} (\partial_{\alpha} \Psi_{i}^{0} - \Gamma_{i\alpha}^{k,0} \Psi_{k}^{0}) (\partial_{\beta} \Psi_{j}^{2} - \Gamma_{j\beta}^{l,0} \Psi_{l}^{2} - x_{3} \Gamma_{j\beta}^{l,1} \Psi_{l}^{1} - x_{2} \Gamma_{j\beta}^{l,2} \Psi_{l}^{0}) \\ &+ \frac{1}{2} a^{ij} (\partial_{\alpha} \Psi_{i}^{1} - \Gamma_{i\alpha}^{k,0} \Psi_{k}^{1} - x_{3} \Gamma_{i\alpha}^{k,1} \Psi_{k}^{0}) (\partial_{\beta} \Psi_{j}^{1} \Gamma_{j\beta}^{l,0} \Psi_{l}^{1} - x_{3} \Gamma_{j\beta}^{l,1} \Psi_{l}^{0}) \\ &+ \frac{1}{2} a^{ij} (\partial_{\alpha} \Psi_{i}^{2} - \Gamma_{i\alpha}^{k,0} \Psi_{k}^{2} - x_{3} \Gamma_{i\alpha}^{k,2} \Psi_{k}^{0}) (\partial_{\beta} \Psi_{j}^{0} - \Gamma_{j\beta}^{l,0} \Psi_{l}^{0}) \\ &+ \frac{1}{2} x_{3} g^{\gamma \delta,1} (\partial_{\alpha} \Psi_{\gamma}^{0} - \Gamma_{\gamma \alpha}^{k,0} \Psi_{k}^{0}) (\partial_{\beta} \Psi_{\delta}^{1} - \Gamma_{\delta\beta}^{l,0} \Psi_{l}^{1} - x_{3} \Gamma_{\delta\beta}^{l,1} \Psi_{l}^{0}) \\ &+ \frac{1}{2} x_{3}^{2} g^{\gamma \delta,1} (\partial_{\alpha} \Psi_{\gamma}^{1} - \Gamma_{\gamma \alpha}^{k,0} \Psi_{k}^{1} - x_{3} \Gamma_{\beta \alpha}^{k,1} \Psi_{k}^{0}) (\partial_{\beta} \Psi_{\delta}^{0} - \Gamma_{\delta\beta}^{l,0} \Psi_{l}^{0}) \\ &+ \frac{1}{2} x_{3}^{2} g^{\gamma \delta,2} (\partial_{\alpha} \Psi_{\gamma}^{0} - \Gamma_{\gamma \alpha}^{k,0} \Psi_{k}^{0}) (\partial_{\beta} \Psi_{\delta}^{0} - \Gamma_{\delta\beta}^{l,0} \Psi_{l}^{0}) \\ \end{array}$$

$$\Psi_{3\parallel3}^{-2} = \partial_{3}\Psi_{3} \ \partial_{3}\Psi_{3}, \Psi_{3\parallel3}^{k} = 0 \text{ si } k \neq -2, \ \Psi_{i\parallel\alpha}^{l} = \Psi_{\alpha\parallel i}^{l} = 0 \text{ si } l \leq -2,$$
(2.41)
$$\Psi_{\alpha\parallel3}^{-1} = \partial_{3}\Psi_{\alpha}, \Psi_{i\parallel\alpha}^{-1} = 0, \Psi_{\alpha\parallel3}^{0} = -\Gamma_{3\alpha}^{\rho*}\Psi_{\rho}, \Psi_{i\parallel\alpha} = \partial_{\alpha}\Psi_{i} - \Gamma_{i\alpha}^{k}(0)\Psi_{k}, \Psi_{i\parallel j}^{l} = -\Gamma_{ij}^{k,l}\Psi_{k}, k > 0,$$
(2.42)

 $g^{ij,k}$, g^n_{ij} et $\Gamma^{k,l}_{ij}$ se trouvent dans les développements asymptotiques de $g^{ij}(\varepsilon)$, $g_{ij}(\varepsilon)$ et $\Gamma^k_{ij}(\varepsilon)$ respectivement.

2.5 Modèle en flexion non linéaire

On suppose qu'il existe deux fonctions $f^2 \in (L^2(\Omega))^3$ et $h^3 \in (L^2(\Gamma_+ \cup \Gamma_-))^3$ telles que :

$$f(\varepsilon)(x) = \varepsilon^2 f^2(x)$$
 pour tout $x \in \Omega$, (2.43)

$$h(\varepsilon)(x) = \varepsilon^3 h^3(x)$$
 pour tout $x \in \Gamma_+ \cup \Gamma_-$. (2.44)

lemme 1

Les fonctionnelles $I(\varepsilon)$, $l(\varepsilon)$ et $J(\varepsilon)$ admettent des développements asymptotiques en puissances de ε

$$\begin{cases} I(\varepsilon)(\Psi) = \sum_{n=-3}^{\infty} I^n(\Psi)\varepsilon^n \\ l(\varepsilon)(\Psi) = \sum_{n=3}^{\infty} l^n(\Psi)\varepsilon^n, \\ J(\varepsilon)(\Psi) = \sum_{n=-3}^{\infty} J^n(\Psi)\varepsilon^n \end{cases}$$
(2.45)

2.6 Résolution des premiers problèmes variationnels

Dans cette section, on résout les problèmes P_n pour *n* négatif. Les problèmes P_{-3} à P_2 sont indépendants des forces appliquées. On montre que les solutions de ces problèmes sont les éléments φ tels que

$$\partial_3 \varphi = 0. \tag{2.46}$$

2.6.1 Problèmes sans forces extérieures

Proposition 2.6.1

$$J^{-3}(\Psi) = \frac{1}{2} \int_{\Omega} \sqrt{a(y)} A^{3333}(0) E_{3\parallel 3}^{-2}(\Psi) E_{3\parallel 3}^{-2}(\Psi) dx.$$
(2.47)

Preuve. D'après la section précédente,

$$J^{-3}(\Psi) = \frac{1}{2} \int_{\Omega} \sqrt{a(y)} A^{ijkl}(0) E^{-2}_{i||j}(\Psi) E^{-2}_{k||l}(\Psi) dx,$$

d'après le lemme 24, seuls les termes $E_{3\parallel 3}^{-2}$ sont non nuls

$$E_{3\parallel3}^{-2}(\Psi) = \frac{1}{2} \Big(\partial_3 \Psi_3^0 \ \partial_3 \Psi_3^0 + a^{\alpha\beta}(y) \ \partial_3 \Psi_\alpha^0 \ \partial_3 \Psi_\beta^0 \Big).$$

On a donc

$$J^{-3}(\Psi) = \frac{1}{2} \int_{\Omega} \sqrt{a(y)} A^{3333}(0) E_{3\parallel 3}^{-2}(\Psi) E_{3\parallel 3}^{-2}(\Psi) dx,$$

d'où la conclusion.

Les éléments Ψ de $A_{d,-2}$ qui minimisent J^{-3} sont donc les éléments Ψ tels que

$$\partial_3 \Psi_3^0 \ \partial_3 \Psi_3^0 + a^{\alpha\beta}(y) \ \partial_3 \Psi_\alpha^0 \ \partial_3 \Psi_\beta^0 = 0, \tag{2.48}$$

alors

$$a^{3}(y) \ \partial_{3}\Psi_{3}^{0} \ \partial_{3}\Psi_{3}^{0} = 0 \Longrightarrow \ \partial_{3}\Psi_{3}^{0} = 0 \text{ sur } \Omega,$$

d'après (2.48) $\partial_3 \Psi_{\alpha} = 0$, alors

$$\partial_3 \Psi^0 = 0 \tag{2.49}$$

appartenant à

$$A_{d,-3} = \left\{ \Psi \in \left(W^{1,4} \left(\Omega; \mathbb{R}^3 \right) \right)^{\aleph} : \sum_n \Psi^n \varepsilon^n \in A_d \left(\Omega \right) \right\}.$$

C'est à dire

$$A_{d,-2} = \left\{ \Psi \in \left(W^{1,4}(\Omega; \mathbb{R}^3) \right)^{\aleph} : \partial_3 \Psi^0 = 0, \Psi^n = 0 \text{ et } \Psi^0 = I_d \text{ sur } \Gamma_0 \text{ , } n \ge 1 \right\}.$$
(2.50)

On vérifie aisément que pour tout $\Psi \in A_{d,-2}$,

$$E_{3\parallel3}^{-2}(\Psi) = E_{3\parallel3}^{-1}(\Psi) = E_{3\parallel\alpha}^{-1}(\Psi) = 0.$$

D'après les expressions de J^{-2} et J^{-1} , ceci implique

$$J^{-2} = 0, J^{-1} = 0$$
 et $J^{0} = 0$ sur $A_{d,-2}$.

Tout les éléments de $A_{d,-2}$ sont des minimoseurs de J^{-2} sur $A_{d,-2}$. En d'autre termes, $A_{d,-1} = A_{d,-2}$ de même, $A_{d,0} = A_{d,-1}$ (d'après la définition)

$$A_{d,0} = A_{d,-1} = A_{d,-2}.$$

$$J^{1} = \frac{1}{2} \int_{\Omega} \sqrt{a(y)} A^{ijkl,0} E_{i||j} 0(\Psi) E^{0}_{k||l}(\Psi) dx$$

inf J^1 est attaint si $E^0_{i\parallel j}(\Psi)=0 \forall i,j$

$$E_{3\parallel3}(\Psi) = \frac{1}{2} (a^{\gamma\delta} \Psi^0_{\gamma\parallel3} \Psi^0_{\delta\parallel3} + (\Psi^0_{3\parallel3})^2 - 1) = 0$$
$$\frac{1}{2} a^3 a^{\gamma\delta} \Psi^0_{\gamma\parallel3} \Psi^0_{\delta\parallel3} + a^3 [(\Psi^0_{3\parallel3})^2 - 1] = 0$$

CHAPITRE 2. LA JUSTIFICATION D'UN MODÈLE DE COQUES NON LINÉAIRE EN FLEXION PAR DÉVELOPPEMENT ASYMPTOTIQUE DE L'ÉNERGIE

$$\Psi_{3||3}^{0} = \pm 1$$

$$E_{\alpha||3}(\Psi) = \frac{1}{2} (a^{\gamma \delta} \Psi_{\gamma||\alpha}^{0} \Psi_{\delta||3}^{0} + \Psi_{3||\alpha}^{0} \Psi_{3||3}^{1}) = 0$$

$$a^{3} \Psi_{3||\alpha}^{0} \Psi_{3||3}^{1} = 0$$

$$\Psi_{3||\alpha}^{0} = 0 \text{ou} \Psi_{3||3}^{1} = 0$$

$$E_{\alpha\parallel\beta}(\Psi) = \frac{1}{2}(a^{\gamma\delta}\Psi^0_{\gamma\parallel\alpha}\Psi^0_{\delta\parallel\beta} + \Psi^0_{3\parallel\alpha}\Psi^1_{3\parallel\beta} - a_{\alpha\beta}) = 0$$

$$a^{3}\Psi_{3||\alpha}^{0}\Psi_{3||3}^{1} - a_{\alpha\beta} = 0$$
$$a^{3}\Psi_{3||\alpha}^{0}\Psi_{3||3}^{1} = a_{\alpha\beta}$$

$$J^{2}(\Psi^{0},\Psi^{1},\Psi^{2}) = \frac{1}{2} \int_{\Omega} \sqrt{a(y)} \Big[A^{ijkl,0}(E^{0}_{i||j}(\Psi)E^{1}_{k||l}(\Psi) + E^{1}_{i||j}(\Psi)E^{0}_{k||l}(\Psi)) + x_{3}A^{ijkl,1}E^{0}_{i||j}(\Psi)E^{0}_{k||l}(\Psi) \Big] dx$$
$$+ \frac{1}{2} \int_{\Omega} x_{3}\sqrt{g^{1}}A^{ijkl,0}E^{0}_{i||j}(\Psi)E^{0}_{k||l}(\Psi) dx$$

inf J^2 existe aussi lorsque $E^0_{i||j}(\Psi) = 0 \forall i, j$ On substitue (2.43) et (2.44) dans ($J(\varepsilon)$), on obtient à l'ordre ε^3

$$\begin{split} J^{3}(\Psi^{0},\Psi^{1},\Psi^{2},\Psi^{3}) &= \frac{1}{2} \int_{\Omega} \sqrt{a(y)} \Big[A^{ijkl,0}(E^{0}_{i||j}(\Psi)E^{2}_{k||l}(\Psi) + E^{1}_{i||j}(\Psi)E^{1}_{k||l}(\Psi) + E^{2}_{i||j}(\Psi)E^{0}_{k||l}(\Psi)) \Big] dx \\ &+ \frac{1}{2} \int_{\Omega} \sqrt{a(y)} \Big[x_{3}A^{ijkl,1}(E^{0}_{i||j}(\Psi)E^{1}_{k||l}(\Psi) + E^{1}_{i||j}(\Psi)E^{0}_{k||l}(\Psi)) + x_{3}^{2}A^{ijkl,2}E^{0}_{i||j}(\Psi)E^{0}_{k||l}(\Psi) \Big] dx \\ &+ \frac{1}{2} \int_{\Omega} \sqrt{g^{1}} \Big[x_{3}A^{ijkl,0}(E^{0}_{i||j}(\Psi)E^{1}_{k||l}(\Psi) + E^{1}_{i||j}(\Psi)E^{0}_{k||l}(\Psi)) + x_{3}^{2}A^{ijkl,1}E^{0}_{i||j}(\Psi)E^{0}_{k||l}(\Psi) \Big] dx \\ &+ \frac{1}{2} \int_{\Omega} x_{3}^{2} \sqrt{g^{2}}A^{ijkl,0}E^{0}_{i||j}(\Psi)E^{0}_{k||l}(\Psi) dx - \int_{\Omega} \sqrt{a(y)}f^{i}\Psi^{0}_{i}dx - \int_{\Gamma_{+}\cup\Gamma_{-}} \sqrt{a(y)}h^{i}\Psi^{0}_{i}ds \end{split}$$

Conclusion

Dans ce travail, on effectue l'analyse asymptotique d'un modèle tridimensionnel de coques non linéairement élastiques, constituées d'un matériau non homogène et anisotrope. On choisit la déformation de la coque comme inconnue du problème de minimisation de la fonctionnelle de l'énergie, et on applique la méthode des développements asymptotiques formels, avec l'épaisseur de la coque comme petit paramètre. On obtient :

Dans le cas ou l'éspace de déformations inextensionnelles n'est pas réduit à 0 et si les forces appliquées de volume sont d'ordre 2 et que les forces appliquées de surface sont d'ordre 3,d'après la méthode des développements asymptotiques formels,on obtient les ordres successifs des tensseurs de déformations de l'energie *J*.

L'étude des premiers termes de ces développements montre que φ^0 le premier élément du développement asymptotique de $\varphi(\varepsilon)$ est indépendant de x_3 .

Vue le temps limité (3 moins et demi), le travail n'a pas été achevé. Reste à déterminer le problème bidimensionnel en exploitant le fonctionnelle J^3

Annexe

Régularité du domaine (ou de la frontière)

Cetraines propriétés des espaces de Sobolev nécessitent certains degré de régularité de la frontière $\partial \Omega$ du domaine Ω .

Définition 2.6.1 Soit Ω un ouvert borné de \mathbb{R}^N , et soit V un espace fonctionnel défini sur \mathbb{R}^{N-1} . On dit que $\partial\Omega$ est de classe V si pour tout point $x_0 \in \partial\Omega$ il existe un réel r > 0 et une fonction $g \in V$ tel que (à un changement de système de coordonnées si nécessaire) :

$$\Omega \cap B(x_0, r) = \{x \in B(x_0, r) / x_N > g(x_1, \dots, x_{N-1})\}$$

$$B(x_0, r) = \left\{ x \in \mathbb{R}^N / ||x - x_0|| < r \right\}.$$

On dit que Ω est un domaine lipschitzien si V est un espace des fonctions lipschitziennes.

On dit que Ω est un domaine de classe C^m si V est un espace des fonctions de classe C^m .

Il convient de préciser les notions "anisotropie" et "non homogène", qui sont très pertinents pour le type de problèmes aux limites issus de l'élasticité à étudier. A cet effet, supposons que nous voulons mesurer les propriétés d'un milieu élastique donné à l'aide d'un système donné de coordonnées.

Loi de Hook généralisée

La définition d'un matériau anisotrope trouve son origine dans la loi de Hook généralisée qui établie les relations constitutives du matériau. Ce sont les relations entre le tenseur des contraintes et le tenseur des déformations. Cette loi s'exprime sous la forme

$$\sigma = Ae \text{ ou } e = S\sigma$$

avec $\sigma = (\sigma_{ij})$ est le tenseur des déformations, $e = (e_{ij})$ est le tenseur des contraintes, $A = (A^{ijkl})$ est la matrice de rigidité et $S = (S^{ijkl})$ est la matrice de souplesse avec $S = A^{-1}$. Ces éléments vérifients les relations de symétrie suivantes :

$$\sigma_{ij} = \sigma_{ji}, \ e_{ij} = e_{ji}$$

$$A^{ijkl} = A^{jikl} = A^{klij} = A^{ijlk}$$

$$S^{ijkl} = S^{jikl} = S^{klij} = S^{ijlk}$$

Profitons de ces relations de symétrie afin de simplifier la loi de Hook comme suivant.

Utilisons dans la suite des notations contractées :

$$\sigma_{11} = \Sigma_1, \ \sigma_{22} = \Sigma_2, \ \sigma_{33} = \Sigma_3, \ \sigma_{23} = \sigma_{32} = \Sigma_4, \ \sigma_{31} = \sigma_{13} = \Sigma_5, \ \sigma_{12} = \sigma_{21} = \Sigma_6, \\ e_{11} = E_1, \ e_{22} = E_2, \ e_{33} = E_3, \ e_{23} = e_{32} = \frac{1}{2}E_4, \ e_{13} = e_{31} = \frac{1}{2}E_5, \ e_{21} = e_{12} = \frac{1}{2}E_6.$$

En utilisant ces notations contractées, la loi de comportement $\sigma = Ae$ se transforme en une relation plus simple qui est

$$\Sigma = BE$$

avec $\Sigma = (\Sigma_I), E = (E_I), B = (B^{IJ})$ est une matrice 6×6 symétrique

La relation entre les éléments de la matrice $A = (A^{ijkl})$ est les éléments de la matrice $B = (B^{IJ})$ est déterminée par les relations suivantes :

$$ij (ou kl) \quad \longleftrightarrow \quad I (ou J)$$

$$11 \quad \longleftrightarrow \quad 1$$

$$22 \quad \longleftrightarrow \quad 2$$

$$33 \quad \longleftrightarrow \quad 3$$

$$23 \text{ ou } 32 \quad \longleftrightarrow \quad 4$$

$$13 \text{ ou } 31 \quad \longleftrightarrow \quad 5$$

$$21 \text{ ou } 12 \quad \longleftrightarrow \quad 6$$

Ces relations peuvent être écrites sous une forme plus condensée :

$$I = \begin{cases} i & si & i = j \\ 9 - i - j & si & i \neq j \end{cases}$$

$$J = \begin{cases} k & si \ k = l \\ 9 - k - l & si \ k \neq l \end{cases}$$

De même la relation $e = S\sigma$ peut être transformée en une relation plus simple sous la forme $E = C\Sigma$.

L'énergie de déformation du matériau est définie par

$$W = \frac{1}{2}\sigma^T e = \frac{1}{2}e^T A e = \frac{1}{2}\sigma^T S \sigma = \frac{1}{2}E^T B E = \frac{1}{2}\Sigma^T C \Sigma.$$

Pourque l'énergie de déformation soit positive il faut que les matrices *A*, *S*, *B* et *C* soient définies positives.

Matériau non homogène : On dit qu'un matériau est non homogène si les propriétés du matériau sont fonctions de l'emplacement du système de coordonnées.

Anisotropie : c'est la tendance d'un matériau à réagir différemment aux contraintes appliquées dans des directions différentes. Autrement dit, si nous trouvons que les propriétés du matériau sont fonctions de l'orientation du système de coordonnées on dit que le matériau est anisotrope (on dit aussi **triclinique**).

Il est donc possible d'avoir les quatre combinaisons suivantes de corps élastiques : «isotrope et homogène », « anisotrope et homogène », « isotrope et non homogène» et « anisotrope et non homogènes ».

Un milieu élastique anisotrope dépend de 21 paramètres indépendants (les coefficients élastiques).

Plans de symétrie

Les matrices de rigidité et de souplesse (de type 6x6) contiennent (chacune) 21 constantes élastiques indépendantes. Ce nombre peut être réduit si le matériau possède des plans de symétrie matériel.

Soit $O = (O_{ij})_{1 \le i,j \le}$ une transformation (matrice) orthogonale ($OO^T = O^T O = I$). Il transforme le système de coordonné X en X^* via la relation $X^* = OX$ ($X_i^* = O_{ij}X_j$). Alors les coefficients élastiques $A^{ijkl,*}$ dans le nouveau système de coordonné sont donnés par la relation

$$A^{ijkl,*} = O_{ip}O_{jq}O_{kr}O_{ls}A^{pqrs}.$$

Quand $A^{ijkl,*} = A^{ijkl}$, c'est à dire

$$A^{ijkl} = O_{ip}O_{jq}O_{kr}O_{ls}A^{pqrs}, (2.51)$$

on dit que le matériau possède une symétrie par rapport à O.

Un exemple de matrice de rotation pour laquelle la symétrie précédente est satisfaite est

	[-1	0	0]
<i>O</i> =	0	-1	0	=-I.
	0	0	-1]

Dans ce cas on dit que le matériau anisotrope possède une symétrie d'inversion centrale.

On remarque que tous les matéraux élastiques anisotropes possède cette symétrie d'inversion centrale.

Les cas extrèmes de matériaux élastiques anisotropes sont les matériaux tricliniques et les matériaux isotropes. Le matériau triclinique ne possède pas de symétrie rotationnelle (rotational symmetry) ou plan de symétrie de réflexion (refletion symmetry). Par contre le matériau isotrope possède une infinité de symétrie rotationnelle et plan de symétrie de réflexion. Pour un matériau isotrope les coefficients A^{ijkl} sont définis par

$$A^{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right)$$
(2.52)

où λ et μ sont les coefficients de Lamé, $\lambda > 0$, $\mu > 0$, tels que :

$$\lambda = \frac{E v}{(1+v)(1-2v)}; \ \mu = \frac{E}{2(1+v)}, \tag{2.53}$$

où les constantes *E* (module de Young) et *v* (coefficient de Poisson) vérifient les inégalités : E > 0, $0 < v < \frac{1}{2}$.

Les coefficients (2.52) vérifient la relation (2.51) pour toute matrice orthogonale O.

Théorème 2.6.2 Si un matériau élastique anisotrope possède une symétrie matériel par rapport à la matrice orthogonale O, il possède aussi une symétrie matériel par rapport à $O^T = O^{-1}$.

Ce théorème indique que si un matériau possède une symétrie par rapport à X_3 d'une rotation d'angle θ , il possède aussi une symétrie par rapport à X_3 d'une rotation d'angle ($-\theta$).

Théorème 2.6.3 Si un matériau élastique anisotrope possède une symétrie matériel par rapport aux matrices orthogonales O' et O'', il possède aussi une symétrie matériel par rapport à O = O'O''.

Ce théorème indique que si un matériau possède des plans de symétrie en $\theta = 0$ et $\theta = \theta_0$ alors il possède aussi des plans de symétrie en $\theta = -\theta_0$ et $\theta = 2\theta_0$. En général, le matériau possède des plan de symétrie en $\theta = k\theta_0$, k un entier positif ou négatif quelconque.

Matériaux monocliniques

Le premier type de matériaux qui sont définis par moins de 21 paramètres indépendants sont les matériaux monocliniques, ils dépendent de *13 coefficients indépendants* et contiennent un plan de symétrie élastique (xoy par exemple). Leur matrice élastique sont décrites par les 3 types

ftbpF5.1889in2.866in0inFigure **Type1** : plan de symétrie en $X_3 = 0$ (c-à-d, $\psi = \frac{\pi}{2}$)

$$B1 = \begin{bmatrix} B_{11} & B_{12} & B_{13} & 0 & 0 & B_{16} \\ B_{22} & B_{23} & 0 & 0 & B_{26} \\ & & B_{33} & 0 & 0 & B_{36} \\ & & & B_{44} & B_{45} & 0 \\ Sym. & & B_{55} & 0 \\ & & & & B_{66} \end{bmatrix}$$

Type2 : plan de symétrie en $X_2 = 0$ (c-à-d, $\theta = \frac{\pi}{2}$ ou $\psi = 0$)

$$B2 = \begin{bmatrix} B_{11} & B_{12} & B_{13} & 0 & B_{15} & 0 \\ & B_{22} & B_{23} & 0 & B_{25} & 0 \\ & & B_{33} & 0 & B_{35} & 0 \\ & & & B_{44} & 0 & B_{46} \\ & Sym. & & B_{55} & 0 \\ & & & & & B_{66} \end{bmatrix}$$

Type : plan de symétrie en $X_1 = 0$ (c-à-d, $\theta = 0$)

$$B3 = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} & 0 & 0 \\ & B_{22} & B_{23} & B_{24} & 0 & 0 \\ & & B_{33} & B_{34} & 0 & 0 \\ & & & B_{44} & 0 & 0 \\ & & & & B_{55} & B_{56} \\ & & & & & & B_{66} \end{bmatrix}$$

• Matériaux orthotropiques

Ce sont des matériaux plus simples qui contiennent 9 *coefficients indépendants*, ils admettent 3 plans de symétrie élastique $\theta = 0$, $\theta = \frac{\pi}{2}$ et $\psi = \frac{\pi}{2}$ (par exemple : xoy, xoz et yoz). Leur matrice élastique sont décrites par

$$B = \begin{bmatrix} B_{11} & B_{12} & B_{13} & 0 & 0 & 0 \\ & B_{22} & B_{23} & 0 & 0 & 0 \\ & & B_{33} & 0 & 0 & 0 \\ & & & B_{44} & 0 & 0 \\ & & & & B_{55} & 0 \\ & & & & & B_{66} \end{bmatrix}$$

Matériaux trigonales : Ils admettent 3 plans de symétrie en $\theta = 0$, $\theta = \frac{\pi}{3}$ et $\theta = -\frac{\pi}{3}$. Le nombre de coefficients indépendants est 6. Leur matrices sont représentées sous la forme :

$$B = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} & 0 & 0 \\ & B_{11} & B_{13} & -B_{14} & 0 & 0 \\ & & B_{33} & 0 & 0 & 0 \\ & & & B_{44} & 0 & 0 \\ & & & & & B_{44} & 0 \\ & & & & & & \frac{1}{2}(B_{11} - B_{12}) \end{bmatrix}$$

Matériaux tétragonales : Ils admettents cinq plans de symétrie en $\theta = 0$, $-\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}$ et $\psi = \frac{\pi}{2}$.Le nombre de coefficients indépendants est 6. Leur matrices sont représentées sous la forme :

$$B = \begin{bmatrix} B_{11} & B_{12} & B_{13} & 0 & 0 & 0 \\ & B_{11} & B_{13} & 0 & 0 & 0 \\ & & B_{33} & 0 & 0 & 0 \\ & & & B_{44} & 0 & 0 \\ & & & & B_{44} & 0 \\ & & & & & B_{66} \end{bmatrix}$$

Matériaux hexagonales : . Les plans de symétrie sont le plan $X_3 = 0$ et tout plan contenant l'axe X_3 . L'axe X_3 est un axe de symétrie.Le nombre de coefficients indépendants est 5. Leur matrices sont représentées sous la forme :

$$B = \begin{bmatrix} B_{11} & B_{12} & B_{13} & 0 & 0 & 0 \\ & B_{11} & B_{13} & 0 & 0 & 0 \\ & & B_{33} & 0 & 0 & 0 \\ & & & B_{44} & 0 & 0 \\ & & & & B_{44} & 0 \\ & & & & & \frac{1}{2}(B_{11} - B_{12}) \end{bmatrix}$$

Matériaux cubiques : . Ils admettent 9 plans de symétrie. Leur normales sont sur les 3 axes de coordonnées et sur les plans de coordonnées faisant un angle de $\frac{\pi}{4}$ avec les axes de coordonnées. Le nombre de coefficients indépendants est **3**. Leur matrices sont représentées sous la forme :

$$B = \begin{bmatrix} B_{11} & B_{12} & B_{12} & 0 & 0 & 0 \\ & B_{11} & B_{12} & 0 & 0 & 0 \\ & & B_{11} & 0 & 0 & 0 \\ & & & B_{44} & 0 & 0 \\ & & & & B_{44} & 0 \\ & & & & & B_{44} & 0 \end{bmatrix}$$

Matériaux isotropes : Tout plan est un plan de symétrie. Le nombre de coefficients indépendants est 3. Leur matrices sont représentées sous la forme :

$$B = \begin{bmatrix} B_{11} & B_{12} & B_{12} & 0 & 0 & 0 \\ & B_{11} & B_{12} & 0 & 0 & 0 \\ & & B_{11} & 0 & 0 & 0 \\ & & \frac{1}{2}(B_{11} - B_{12}) & 0 & 0 \\ & & & \frac{1}{2}(B_{11} - B_{12}) & 0 \\ & & & & \frac{1}{2}(B_{11} - B_{12}) \end{bmatrix} = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ & & \lambda + 2\mu & 0 & 0 & 0 \\ & & & \mu & 0 & 0 \\ & & & & & \mu & 0 \\ & & & & & & \mu \end{bmatrix}, \text{ où } \lambda \text{ et } \mu \text{ sont les constantes de Lamé.}$$

Theoréme de Ball. J. M :

soitΩ un domaine dans $\Re e^3$ et $\widehat{W} : \Omega \times M^3 \to \Re e$ fonction d'énergie interne vérifier les propriétés suivantes :

a) polyconvexe :pour tout $x \in \Omega$ il exist une fonction convexe $W(x,.): M^3 \times M^3 \times [0, +\infty[\rightarrow \Re e \text{ tel que}]$

$$W(x, F, CofF, detF) = \widehat{W}(x, F)$$
 pour tout $F \in M^3$

la fonction $W(.,F,H,\delta)$ est mesurable pour tout $(F,H,\delta) \in M^3 \times M^3 \times]0,+\infty[$

- b) $\lim_{det F \to 0^+} \widehat{W}(x, F) = +\infty$ pour $x \in \Omega$
- c) coercive : sioent α , β , p, q, r des constantes tels que

$$\alpha \ge 0, p \ge 2, q \ge \frac{p}{p-1}, r > 1$$

$$\widehat{W}(x,F) \ge \alpha \left(||F||^p + ||CofF||^q + (detF)' \right) + \beta$$
pour tout $x \in \Omega \text{et}F \in M_1^3$

soit $\Gamma = \Gamma_0 \cup \Gamma_1$ une partition da-mesurable de la frontière $\Gamma de \Omega$ avec $\Gamma_0 > 0$, et soit $\varphi_0 : \Gamma_0 \to \Re e^3$ fonction mesurable tel que

$$\Phi := \left\{ \psi \in W^{1,p}(\Omega); Cof \nabla \psi \in L^{q}(\Omega); det \nabla \psi \in L^{r}(\Omega), \psi = \varphi_{0} \text{da-a.e.on}\Gamma_{0}; det \nabla \psi > 0 \text{a.e.dans} \right\}$$

est

so t $f \in L^{p}(\Omega)$, $h \in L^{\sigma}(\Gamma_{1})$ et

$$L: \psi \in W^{1,p}(\omega) \to L(\psi) := \int_{\Omega} f \cdot \psi dx + \int_{\Gamma_1} h \cdot \psi da$$

une forme linéaire continue

soit

$$J(\psi) = \int_{\Omega} \widehat{W}(x, \nabla \psi(x)) \, dx - L(\psi)$$

avec $\inf_{\psi \in \Phi} J(\psi) < +\infty$

Alors il existe aux moins une fonction φ tel que $\varphi \in \Phi$ et $J(\varphi) = \inf_{\psi \in \Phi} J(\psi)$

Bibliographie

- BALL. J. M, [1976 /77]: Convexity conditions and existence therems in nonlinear elesticity, Arch. Rational Mech. Anal. 63(4),p.337-403.
- [2] CIARLET P. G, [2000]: Mathematical Elasticity, Volume 3, Theory of shells, North Holland, Amesterdam.
- [3] HAIM. BREZIS, [1999] : Analyse fonctionnelles, Théorie et applications, Dunod, Paris.
- [4] PANTZ. O, [2001] : Quelques problèmes de modélisation enélasticité non linéaire, Thèse de doctorat, Université Paris 6.
- [5] Miloudi.Madjda,[2006] : Analyse asymptotique des coques minces non linéairement élastiques, mémoire de majistére, Université ouargla.
- [6] Omri Rand and Vladimir Rovenski, Analytical Methods in Anisotropic Elasticity, Birkhäuser, 2005.
- [7] T.C.T. TING. Anisotropic Elasticity Theory and Applications, OXFORD UNIVER-SITY PRESS, 1996.

<u>Résumé</u>

Dans ce travail, on effectue l'analyse asymptotique d'un modèle tridimensionnel de coques non linéairement élastiques, constituées d'un matériau non homogène et anisotrope. On choisit la déformation de la coque comme inconnue du problème de minimisation de la fonctionnelle de l'énergie, et on applique la méthode des développements asymptotiques formels, avec l'épaisseur de la coque comme petit paramètre, et on faisant des hypothèses sur les forces appliquées et selon la propriété de la variété associée des déformations inextensionnelles admissibles, on trouve le modèle bidimensionnel non linéaire de coque non homogène anisotrope en flexion.

Mots-clefs: Analyse asymptotique, Modèle de coque, Elasticité non linéaire.

في هذا ال عمل نطبق التحليل المقارب على مسألة المرونة غير الخطية لنموذج ثلاثي البعد لجسم منحني مرن غير خطي مركب من مادة غير متجانسة ومتباينة الخواص حيث نختار التشويه كمجهول لمسألة البحث عن العنصر الأصغر لدالة الطاقة و بوضع فرضيات على القوى وهذا وفقا للخصائص المتعلقة بصنف التشوه غير القابل للتمديد نجد نموذج لجسم منحني (en flexion).

ملخص

Abstract

In this work, we consider the asyptotic analysis of a threedimensional model of nonlinearly elastic shells, constituted by a non homogeneous and anisotropic material. We choose the deformation ofthe shell as unknown of the problem ofminimization of the functional of the shellas small parameter and making appropriate assumptions on the applied forces and on the properties of the associated manifold of admissible inextensionnels displacements. We find the nonlinear bidimensional model of the flexural sells.

Key-words Asymtotic analysis, shell model, nonlinear elasticity.