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Preliminaries and Notations

V: real Hilbert space with scalar product (V, ‖ ‖V ). We are also given K closed
non empty subsets of V with K ⊂ V.

a(, ) : V ×V → R bilinear continuous and V. Elliptic from on V × V .
continue : ∃ c > 0 ∀u, v ∈ V |a(u, v)| ≤ c‖u‖V ‖v‖V .
ceorcive :∃ α > 0 ∀u, v ∈ V |a(u, v)| ≥ α‖u‖2

V .
V
′ : the dual space of V.

L : V −→ R continuous, linear functional.
In general we do not assume a(.) to be symmetric, since in some applications non-symmetric
bilinear forms may occur naturally.
j(.) : V −→ R̄ = R

⋃
{∞}is convex, lower semi-continuous and proper .
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Introduction

Numerous problems in Mechanics, Physics and Control Theory lead to the study of systems
of partial differential inequalities, the solution of which leans heavily on the techniques of so-
called variational inequalities(see [18]). In the last fifty years, variational inequalities have
become a useful tool in etide nonlinear problems in physics and mechanics. The theory
of variational inequalities were made from the results of unilateral problems obtained by
Signorini (see[1]) and Fichera(see [17]). The mathematical theory obtained by Stampacchia
(see [8]), Lions and Stampacchia (see [15]) and then developed by: Brézis (see [12]), (see
[13]), Stampacchia(see [11]), Lions(see [16]), Mosco (see[22]), Kinderlehrer (see [5]) and
Stampacchia (see [23]), and the approximation of variational inequalities are reminded, the
contributions Mosco (see[20]), Lions and Trémoliéres or Glowinski ([21]). The unilateral
contact of elastic bodies with or without friction often encountered in modélisation. In 1964,
that G.Fichera (see [9]). a pu résoudre ce probléme en utilisant quelques propriétés des
inéquations variationnelles elliptique. The mathematical study of problems contact began
in 1972, with the work of Duvaut and Lions, or there are results of existence and uniqueness
of several problems contact, but in the linear case. In this memory we present in the first
chapter. Useful mathematical preliminries. In second chapter we study the uniqueness
results for EVI of first kind and second kind. Next in the third chapter investigate an
abstract internal approximation of EVI first kind and second one. As au example we
use the Finite Element Method on a specefic, simplified obstacle problem. In the end we
conclude our work by a conclusion involiving the main result and some perspectives.
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Chapter 1

Mathematical preliminaries

1.1 Some functional spaces

We recall below some definitions,(see [3]) and theorems of classical functional analysis that
will be used in later later chapters, here all the functions considered are real-valued real,
let x ∈ Rn Ω over in R, K ⊂ Ω , m positive integer, α is an integer multiple,|α| =

∑n
i=1 α

then we define the differential operator:

Dα = Dα1
1 ......Dαi

n =
d|α|

dα1
x1 ....dαnxn

we denote by C(Ω),the space of continuous real functions on Ω,they say it is relatively K
, compact in Ω,if the adhesion of K,is a compact (closed and bounded) included in Ω was
noted byK ⊂⊂ Ω also be denoted by:

Cm = {v ∈ C(Ω) : Dα v ∈ C(Ω) for |α| 6 m}

called support of function v defined on Ω all closed

suppv = {x ∈ Ω, v(x) 6= 0}

we say that the function v is compactly supported in Ω, ifnotes : ssupv ⊂⊂ Ω

Cm = {v ∈ Cm(Ω) : v is a support compact in Ω}

C∞(Ω) =
∞⋂
m=0

Cm(Ω)
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we will denote by D(Ω) called the space of test function, space C∞0 indefinitely differentiable
functions with compact support in (Ω)with the topology of inductive limit as in the theory
of distributions of L. Schwarz we notes D′(Ω) the dual space of D (Ω), therefore the space
of continuous linear forms on D(Ω), D′(Ω) is called the space of distribution (or generalized
function) on (Ω), and is provided with the dual topology strong (fi −→ f in D′ if < f, ϕ >

∀ϕ ∈ D(Ω) ) ou < ., . > is the product of duality between D′(Ω) et D(Ω), for given by :

Lp(Ω) = {v mesurables on Ω , ‖v‖p = (

∫
Ω

|v|pdx)
1
p < ∞}

we recall that (Lp(Ω)), ‖‖p) a Banach space is separable, and for 1 < p < ∞ reflexive.

for p=2, space is a Hilbert space with the scalar product:

< u, v >=

∫
Ω

u(x)v(x)dx

we will identify the space L2 to its dual, for p =∞ we denote by:

L∞(Ω) = {v as measured on Ω; such as ‖v‖∞ = supessx∈Ω|v(x)| = inf{{C, |v(x)| 6 Ca, e x ∈ Ω}

reminder that ( L∞(Ω), ‖‖)∞ ), there is a space of banach, for all 1 < p <∞ one inequality
of holder : ∫

Ω

u(x) v(x)dx 6 ‖u‖p‖v‖p

Theorem 1 The space C∞0 (Ω) is dense in Lp(Ω) ∀ 1 < p < ∞. we say that X ↪→ Y , for
(X, ‖.‖X) and (Y, ‖.‖Y ) norms space, means X ⊂ Y with continuous injection, that is to
say there exists a constant C such that

‖u‖Y ≤ C‖u‖X ∀u ∈ X.

1.2 Sobolev spaces

1 ≤ p ≤ ∞, we have D(Ω) ↪→ Lp(Ω) ↪→ D′(Ω) We will define the Sobolev space(see [14])

Wm,p(Ω) = {v,Dαv ∈ Lp(Ω), for |α| ≤ m} ,

3



with the norm
‖v‖Wm,p =

(
Σ|α|≤m ‖Dαv‖pp

)1\p
if p ∈ [1,∞)

‖u‖Wm,p = max
|α|≤m

‖Dαv‖∞ ,

is a Banach space . We denote by Wm,p
0 (Ω) adherence of C∞0 in the space Wm,p(Ω); For all

p ∈ [1,∞) we have
Wm,p

0 (Ω) ↪→ Wm,p(Ω)p ↪→ Lp(Ω).

In the case p = 2 we use the notation

Hm(Ω) = Wm,p(Ω).

equipped with the scalar product

〈u, v〉2,m = Σ|α|≤m 〈Dαu,Dαv〉 .

The space Hm(Ω) is a Hilbert space. We also posed Hm
0 (Ω) = Wm,p

0 (Ω) the negative Sobolev
spaces are dual spaces of spaces Wm,p

0 (Ω)

W−m,p′
0 (Ω) = (Wm,p

0 (Ω))′ ,

with the norm
‖u‖

W−m,p
′

0 (Ω)
= sup

u∈Wm,p
0 (Ω)

〈u, v〉
‖u‖Wm,p

0 (Ω)

The space W−m,p′
0 (Ω) is Banach( separable and reflexive ,if 1 < p < ∞). Since D(Ω) is

dense in H1
0 (Ω), then we have H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

Theorem 2 Suppose that Ω satisfies the property of the cone and 1 ≤ p <∞. Then

1. C(Ω̄) ↪→ Wm,p
0 (Ω) with the dense injection.

2. ifmp ≥ n thenWm,p
0 (Ω) ↪→ Ck(Ω̄) whatever integer k with

mp− n
p
−1 ≤ k ≤ mp− n

p
.

1.3 Coercivity

Definition 3 a:H × H −→ R is called coercive if there exist a constant c > 0, such that
a(x, x) > c‖x‖2 for all x in H
(see [6])
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1.4 Strong convergence

Definition 4 A sequence {x} ⊂X in a normed space converges strongly to x ∈ Xif

‖xn − x‖ −→ 0 as n −→∞.
Notationally
limn−→∞ xn = x or xn −→ x Notice that this is just convergence in the norm of X, that
is, it is vergence as we normally think of it. The terminology “strong” is useful to avoid
confusion with the following other type of convergence.

1.5 Weak convergence

Definition 5 A sequence {x} ⊂ X in a normed space converges weakly to x ∈ X if for every
f ∈ x0 , we have that |f(xn)− f(x)| −→ 0 as n −→ ∞. That is, the sequence {f(xn} ⊂ F

converges to f(x) ∈ F .
Notationally,
xn −→ x, Strong and weak convergence are the same on nite-dimensional normed spaces,
which is why the distinction is not made in calculus. But they are not the same in general,
(see [7])

1.6 Convex

Definition 6 (Convexity of function) Let f be function f: I −→ R is called convex if :
∀x1, x2 ∈ X ∀t ∈ [0.1] .

f(tx1 + (1− t)x2) 6 tf(x1) + (1− t)f(x2).

Definition 7 (Convexity of set) all said C is convex if :
∀x1, x2 ∈ X ∀t ∈ [0.1] , tx1 + (1− t)x2 ∈ C

5



1.7 Stampacchia theorem

Theorem 8 (Stampacchia) Let H be a Hilbert space and let a(.,.) be a continuous and
coercive bilinear form on H . Let K be a closed and convex subset of H. Then given f ∈ H
there exists a unique u ∈ K such that
a(u, v -u) > (f, v - u), for all v ∈ K .
Proof. (see [14])

1.8 Riesz representation theorem

Theorem 9 Let H is a Hilbert space. For all F ∈ H ′(dual to H), there is a unique v ∈ H,
such that : f(v)= < u, v > ∀u ∈ H, more we have: ‖F‖H′ = ‖v‖h .(see [19])

1.9 Schauder theorem

Theorem 10 E is a Banach space and k ⊂ E convex and compact
then any continuous mapping, f : K −→ K, has a fixed point.
i.e.,∃ x ∈ K such that f(x)=x.
Proof. (see [4])

1.10 Contracting and strictly contracting

Definition 11 Let X space complet let ϕ : X −→ X be
contracting if :

‖ϕ(u)− ϕ(v)‖X 6 C‖u− v‖X ,∀u, v ∈ X and 0 6 C 6 1

Strictly contracting if :

‖ϕ(u)− ϕ(v)‖X 6 C‖u− v‖X ,∀u, v ∈ X and 0 6 C < 1

6



Theorem 12 Let X space complet let, ϕ : X −→ X be strictly contracting , then ϕ has a
unique fixed point x (thatisϕ(x) = x)

7



Chapter 2

Variational Inequalities

2.1 EVI of first kind

any inequality of the form

(P1)

{
a(u, v − u) ≥ L(v − u) ∀ v ∈ K

u ∈ K (2.1)

called a variational inequality of first kind, where K ⊂ V and a(, ) : V ×V → R bilinear.

2.1.1 Existence And Uniqueness Results For EVI of First Kind

Theorem 13 if a (.,.) bilinear form continuous coercive, on V × V and <.,.>, defines a
continuous linear form, on V −→ R and K closed convex in V.

then :
the problem(P1) has one and only one solution (by stampacchia)

Proof. Uniqueness

Let u1 and u2 be solution of (P1) , we have then

a(u1, v − u1) ≥ L(v − u1)∀v ∈ K, u1 ∈ K (2.2)

a(u2, v − u2) ≥ L(v − u2)∀v ∈ K, u2 ∈ K (2.3)

8



putting u1 for v in (2.2) , and u2 for v in (2.3) , we get :

a(u1, u2 − u1) ≥ L(u2 − u1) (2.4)

a(u2, u1 − u2) ≥ L(u1 − u2) (2.5)

by the add (2.4) and (2.5) we get:

a(u2 − u1, u1 − u2) ≥ 0

we using the coercivity of a ( , ):

−a(u2 − u1, u2 − u1) ≥ 0⇒ α‖u2 − u1‖2
V ≤ 0

wich proves u1 = u2 since α > 0

Proof. Existence

We will reduce the problem (P1), to fixed point problem.
By the Riesz representation there exist: (Au, v) = a(u, v) ∀u, v ∈ V and L(v) = (l, v)
∀v ∈ V .

(w, v − w) ≥ ρ(l, φ) + (u, φ)− ρa(u, φ) ∀ v ∈ K

admits a fixed point u=Tx −→ u solution for (P1) existence for all u ∈ K, ρ > 0is

(P1∗)

{
find u ∈ K (2.6)

(w, v − w) ≥ (Fρ,u, v − w) ∀ v ∈ K

(P1*)admits uniquensse solution w = PkFρ,u( according to the projection theorem w= Pk

Fρ,u there is unique in K [10])
T : u 7−→ w

(Fρ,u, φ) = ρ(l, φ) + (u, φ)− ρa(u, φ)

9



to prove that Tρ admits a fixed point, it suffices to prove that it is strictly contracting .

‖Tρ,u1 − Tρ,u2‖V 6 C ‖u1 − u2‖V for C < 1

‖w1 − w2‖V 6 C‖u1 − u2‖V

for C < 1

(w1, v − w1) > (Fρ,u1 , v − w1)

for v = w2

(w2, v − w2) > (Fρ,u2 , v − w1)for v = w1

(w1, w2 − w1)− (w2, w2 − w1) > (Fρ,u1 , w2 − w1)− (Fρ,u2 , w2 − w1)

(w1 − w2, w2 − w2) > (Fρ,u1 − Fρ,u2 , w2 − w1)

‖w2 − w1‖2
V 6 (Fρ,u2 − Fρ,u1 , w2 − w1)

‖w2 − w1‖2
V ≤ ‖Fρ,u2 − Fρ,u1‖V ‖w2 − w1‖V

‖w2 − w1‖V ≤ ‖Fρ,u1 − Fρ,u2‖V

(Fρ,u2 − Fρ,u1 , φ) = ρ(l, φ) + (u2, φ)− ρa(u2, φ)− ρ(l, φ)− (u1, φ) + ρa(u1, φ)

(Fρ,u2 − Fρ,u1 , φ) = (u2 − u1, φ)− ρa(u2 − u1, φ)

(Fρ,u2 − Fρ,u1 , φ) = (u2 − u1)− ρ A(u2 − u1, φ)

|(Fρ,u2−Fρ,u1 , φ), φ)| ≤ ‖I−ρA‖V ‖u2−u1‖V ‖φ‖V =⇒ ‖Fρ,u2−Fρ,u1‖V ≤ ‖I−ρA‖V ‖u2−u1‖V

if ‖I − ρA‖V < 1

‖(I − ρA)v‖2
V = ‖(I − ρA)v, (I − ρA)v)‖V

‖(I − ρA)v‖2
V = ‖v‖2

V − 2ρ(Av, v) + ρ2‖Av‖2
V

‖(I − ρA)v‖2
V 6 ‖v‖2 − 2ρα‖v‖2 + ρ2‖A‖2‖v‖2

V ≤ (1− 2ρα + ρ2‖A‖2
V )‖v‖2

V

(1− 2 ρ α + ρ2‖A‖2
V ) < 1 =⇒ 0 < ρ 6

2α

‖A‖2
V

10



for ρ ∈ ] 0, 2α
‖A‖2V

]

Tρ strictly contracting admis a fixed point Tρu = u , w = u

(u, v − u) > (Fρ,u, v − u) ∀u ∈ K

(u, v − u) > ρ(l, v − u) + (u, v − u)− ρa(u, v − u) =⇒ a(u, v − u) > L(v − u)

u is the solution of problem (P1).

2.2 EVI of Second Kind

Any inequality of the form

(P2)

{
a(u, v − u) + j(v)− j(u) ≥ L(v − u) ∀ v ∈ K (2.8)

u ∈ K

called a variational inequality of Second Kind, where j(.) : V −→ R.

2.2.1 Existence And Uniqueness Results For EVI of Second Kind

Theorem 14 If a (.,.) continuous coercive, on V × V and, that K the set is 6= φ and K
closed convex in V, and j(.) is semi-continuous convex function.

then:
the problem (P2) has one and only one solution

Proof. Uniqueness

Let u1 and u2 be tow solution of (P2),then we have

a(u1, v − u1) + j(v)− j(u1) > L(v − u1) ∀u1 ∈ V

a(u2, v − u2) + j(v)− j(u2) > L(v, u1 − u2) ∀u1 ∈ V

we putting u1 in v and u2 in v by the adde we take :

a(u, u2 − u1) + a(u2, u1 − u2 > 0

11



=⇒ −a(u1 − u2, u1 − u2 > 0

a(u1 − u2, u1 − u2 6 0 by the coercivity

α ‖ u1 − u2 ‖2
V6 a(u1 − u2, u1 − u2) 6 0

‖u1 − u2‖V = 0 =⇒ u1 = u2

Proof. Existence

For u ∈ V and ρ > 0 we associate a problem of typ (P2) defined as below:
(w,v-w)+ ρ j(v) − ρ j(w) ≥ ρ L(v − w)ρ− a(u, v − w) + (u, v − w)

(P2∗)

{
find w ∈ K (2.9)

a(w, v − w) + ρj(v)− ρj(w) ≥ (u, v − w) + ρL(v − w)− ρa(u, v − w)

fρ : u −→ w = fρ(u)

if fρ admits a fixed point u = Tx and, f(u) = u , ρ > 0 .

to prove that fρ admits a fixed point, it suffices to prove that it is strictly contracting
0 ≤ c < 1

‖fρ(u1)− fρ(u2‖V 6 c‖u1 − u2‖V ∀u1, u2 ∈ V

let w1 = fρ(u1) and w2 = fρ(u2) such that:

(w1, v − w1) + j(v)− j(w1) > (v − w1)− ρa(u1, v − w1) + (u1, v − w1)

for w2 = v : (w1, w2−w1)+j(w2)−j(w1) > (w2−w1)−ρa(u1, w2−w1)+(u1, w2−w1) (2.10)

forw1 = v : (w2, w1−w2)+j(w1)−j(w2) > (w1−w2)−ρa(u2, w1−w2)+(u2, w1−w2) (2.11)

adding 2.10 and 2.11 we have then :

(w1, w2−w1)+(w2, w1−w2) > −ρa(u1, w2−w1)−ρa(u2, w2−w1)+(u2, w2−w1)+(u2, w1−w2)

12



(w2 − w1, w1 − w2) > ρa(u1 − u2, w1 − w2)− (u1 − u2, w1 − w2)

−(w1 − w2, w2 − w1) > ρa(u1 − u2, w1 − w2)− (u1 − u2, w1 − w2)

‖w1 − w2‖2
V 6 (u1 − u2, w1 − w2)− ρa(u1 − u2, w1 − w2) (2.12)

we have
(u1 − u2, w1 − w2) 6 ‖u1 − u2‖V ‖w1 − w2‖V

a(u, v) = A(u, v)

a(u1 − u2, w1 − w2) = (A(u1 − u2), w1 − w2)

a(u1 − u2, w1 − w2) = ((u1 − u2)− ρA(u1 − u2), w1 − w2)

a(u1 − u2, w1 − w2) = ((I − ρA)(u1 − u2), w1 − w2) (2.13)

|(I − ρA)(u1 − u2), w1 − w2)| 6 ‖(I − ρA‖‖u1 − u2‖‖w1 − w2‖

with Compensation (2.13) in (2.12) we get:

‖w1 − w2‖V 6 ‖I − ρA‖V ‖u1 − u2‖V

if
‖I − ρA‖V 6 1

‖(I − ρA)v‖2
V = (I − ρA)v, (I − ρA)v)

‖(I − ρA)v‖2
V = ‖v‖2

V − 2ρ(Av, v) + ρ2‖A‖2
V ‖v‖2

V

‖(I − ρA)v‖2
V 6 (1− 2αρ+ ρ2‖A‖2

V )‖v‖2
V

(1− 2ρα + ρ2‖A‖2
V ) <=⇒ 0 < ρ 6

2α

‖A‖2
V

fρ strictly contracting ∃u ∈ V , fρ(u) = u for ρ ∈ ] 0, 2α
‖A‖2V

]

fρ(u) = w admis a fixed point w = u

(w, v − w) + (v)− (w) > ρL(v − w)− ρa(u, v − w) + (u, v − w)

(u, v − u) + (v)− (u) > ρL(v − u)− ρa(u, v − u) + (u, v − u)

a(u, v − u) + j(v)− j(u) ≥ L(v − u)

=⇒ u is the solution of problem (P2).
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Chapter 3

Numerical approximation of Variational
Inequalities

3.1 Internal approximation of EVI of first kind

3.1.1 The approximation of V and K

We are given a parameter h converging to 0 and a family (Vh)h of closed subspaces of V. (In
practice Vh are finite dimensional and the parameter h varies over a sequence). We are also
given a family (Kh)h of closed, convex, non-empty subsets of V with Kh ⊂ Vh ∀h (in general
we do not assume Kh ⊂ K) such that (Kh)h satisfies the following two conditions : (see [19])

• (i) If (vh)h is such that Vh ∈ Kh ∀h and (vh)h is bounded in V then the weak cluster
points of (vh)h belong to K.

• (ii) Assume there exist X⊂ V, X̄ = K and rh : Xh −→ V such that limh−→0 rhv = v

strongly inV, ∀v ∈ V

Remarques

1. If Kh ⊂ K ∀h then (i) is trivially satisfied because K is weakly closed

2. A useful variant of condition (ii), for rh is (ii) Assume . there exists a subset X ⊂ V

such that X̄ = K and rh : X −→ Vh with the property that for each v ∈ X, there
exists h0 = h0(v) with rhv ∈ Kh for all limh−→0 rhv = v strongly in V.

14



3.1.2 Approximation of (P1)

V real Hilbert space with scalar product not (Vh, ‖‖h) ,we are also given (Kh)h is closed,
convex ,non emply subsets of V with Kh ⊂ Vh .
a(, ) : V × V −→ R bilinaire, and L :V −→ R continue.
continue

∃c > 0,∀uh, vh ∈ Vh |a(uh, vh)| 6 c‖uh‖V ‖vh‖V

coercive
∃c > 0,∀uh, vh ∈ Vh |a(uh, vh)| > α‖vh‖2

V

(Ph1)

{
a(uh, vh − uh) ≥ L(vh − uh) ∀ vh ∈ Kh (3.1)

uh ∈ Kh

The problem (Ph1) has one and only one solution (by the theorem 13).

3.2 Convergence results

Theorem 15 With the above assumptions on K and (Kh)hwe have limh−→0 ‖uh− u‖V = 0

with uhthesolutionof (Ph1) and u the solution of (P1).

(1)Estimation for uh

We will now show that there exist constants C1 and C2 independent of h such that

‖uh‖2
V 6 C1‖uh‖V + C2,∀h (3.2)

Since uh is the solution of (Ph1) we have

a(uh, vh − uh > L(vh − uh),∀vh ∈ Kh (3.3)

a(uh, uh) 6 a(uh, vh)− L(vh − uh)

by coercivity we get :

α‖uh‖2
V 6 ‖A‖V ‖uh‖V ‖vh‖V + ‖L‖V (‖vh‖V + ‖uh‖V ), ∀vh ∈ Kh (3.4)

15



Let v0 ∈ X and vh = rhv0 ∈ Kh. By condition (ii) on Khwe have rhv0 −→ v0 strongly in V
and hence ‖vh‖V is uniformly bounded by a constant m. Hence (3.4) can be written as

‖uh‖2
V 6

1

α
((m‖A‖V + ‖L‖V )‖uh‖V + ‖L‖Vm) = C1‖uh‖V + C2

where C1= 1
α
(m‖A‖V +‖L‖V ) and C2 = m

α
‖L‖V implies

‖uh‖V 6 C (3.5)

Weak convergence of (uh)h

Relation (3.5) gives uh is uniformly bounded. Hence there exists a subsequence say uhi such
that uhi converges to u∗ weakly in V. By condition (i) on (Kh)h we have u∗ ∈ K. We will
prove that u∗ is a solution for (P1), We have:

a(uhi , uhi) 6 a(uhi , vhi)− L(vhi , uhi) ∀vhi ∈ Khi (3.6)

let v ∈ X and vhi = rhiv then (3.6) becomes

a(uhi , uhi) 6 a(uhi , rhiv)− L(rhiv, uhi) ∀rhiv ∈ Khi (3.7)

Since rhiv converges strongly to v and uhi to u∗ weakly as hi −→ 0 taking the limit in (3.7)
we get

lim
h−→0

inf a(uhi , uhi) 6 a(u∗, v)− L(v, u∗) ∀v ∈ X (3.8)

also we have

0 6 a(uhi − u∗, uhi − u∗) 6 a(uhi , uhi)− a(uhi , u
∗)− a(u∗, uhi) + a(u∗, u∗)

a(uhi , u
∗) + a(u∗, uhi)− a(u∗, u∗) 6 a(uhi , uhi)

by taking limit we obtain
a(u∗, u∗) 6 lim

hi−→0
inf a(uhi , uhi) (3.9)

from (3.8) and (3.9) we get

a(u∗, u∗) 6 lim
hi−→0

inf a(uhi , uhi) 6 a(u∗, v)− L(v, u∗) ∀ v ∈ X

therefore we have {
a(u∗, v − u∗) ≥ L(v − u∗) ∀ v ∈ X (3.10)

u∗ ∈ K

16



Since X is dense in K and a(.,.), L are continuous, we get from (3.10){
a(u∗, v − u∗) ≥ L(v − u∗) ∀ v ∈ K (3.11)

u∗ ∈ K

Hence u∗ is a solution of (P1). By Theorem (Lions− stampacchia) the solution for (P1)
is unique and hence u∗ = u is the unique solution,Hence u is the only cluster point of (uh)h

in the weak topology of V. Hence the whole {uh}h converges to u weakly.

Strong convergence

we have by coercivity of a(.,.)

0 6 α‖uh − u‖2
v 6 a(uh − u, uh − u) = a(uh, uh)− a(uh, u) + a(u, uh) + a(u, u) (3.12)

wher uh is the solution of (Ph1) and u is the solution of (P1). Since uh is the solution of
(Ph1) and rhv ∈ Kh for any v ∈ X, we get by (Ph1)

a(uh, uh) 6 a(uh, rhv)− L(rhv, uh) ∀v ∈ X (3.13)

Since limh−→0 uh =u weakly in V and limh−→0 rhv =v strongly in V (by condition (ii)) we
obtain, from (3.12), (3.13) and after taking the lim, that ∀ v ∈ X we have:

0 6 lim inf α‖uh − u‖2
V 6 α lim sup ‖uh − u‖2

V 6 a(u, v − u)− L(v − u) (3.14)

By density and continuity, (3.14) also holds ∀ v∈ K, then taking v = u in (3.14) we obtain
that

lim
h−→0

‖uh − u‖2
V = 0 (3.15)

3.3 Internal Approximation of EVI of Second Kind

3.3.1 Approximation of V

Given a real parameter h converging to 0 and a family (Vh)h of closed subspaces of V (in
practice we will take Vh to be finite dimensional and h to vary over a sequence), we assume
that (Vh)h satisfies.

• (i) there exists U ⊂V such that Ū = V and for each h, a map rh : U −→ Vh such that
limh−→0 rh v = v strongly in V, ∀v ∈ U.

17



3.3.2 Approximation of j(.)

We approximate the functional j(·) by (jh)h where for each h, jh satisfies{
jh : Vh −→ R̄ (3.16)

jh is convex, l, s, c and uniformly proper in h.

The family (jh)h is said to be uniformly proper in h if there exist λ ∈ V ∗ and µ ∈ R such
that

j(vh) > λ(vh) + µ ∀vh ∈ Vh,∀h (3.17)

Furthermore we assume that (jh)h satisfies

(ii) if vh −→ v weakly in V then

lim
h−→0

infjh(vh) > j(v)

(iii) limh−→0 jh(rhv) = j(v) ∀v ∈ U

Remarques

1. In all the applications we know, if j(·) is a continuous functional then it is always
possible to construct continuous jh satisfying(ii) and (iii)

2. In some cases we are fortunate enough to have jh(vh) = j(vh)∀vh∀h and then (ii) and
(iii) are trivially satisfied.

3.3.3 Approximation of (P2)

We approximate (P2) by

(Ph2)

{
a(uh, vh − uh) + jh(vh)− jh(uh) ≥ L(vh − uh) ∀ vh ∈ Vh (3.18)

uh ∈ Vh

the problem (Ph2) has one only solution (by theorem 14).
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3.3.4 Convergence results

Theorem 16 Under the above assumptions on (Vh)h and (jh)h we have{
lim
h−→0

‖uh − u‖V = 0 (3.19)

lim
h−→0

jh(uh) = j(u)

Ase in the proof of Theorem 15, we divide the proof into three parts.
(1) Estimation for uh
We will show that there exist positive constants C1 and C2 independent of h such that

‖uh‖2
V 6 C1‖uh‖V + C2 (3.20)

Since uh is the solution of (Ph2) we have By using relation (3.17) we get

α‖uh‖2
V + < λ, uh > +µ 6 ‖A‖‖uh‖‖vh‖V + |jh(vh)|+ ‖L‖V (‖vh‖V + ‖uh‖V )

α‖uh‖2
V 6 ‖λ‖V ‖uh‖V + |µ|+ ‖A‖V ‖uh‖V ‖vh‖V + |jh(vh)|+ ‖L‖V (‖vh‖V + ‖uh‖V ) (3.21)

Let v0 ∈ Uand vh = rhv0. By using condition (i) and (iii) there exists a constant m,
independent of h such that ‖vh‖v 6 m , and |jh(vh| 6 m. Therefore (3.21) can be written
as

‖uh‖2
V 6

1

α
(‖λ‖V + ‖A‖Vm+ ‖L‖V )‖uh‖V +

m

α
(1 + ‖L‖V ) +

|µ|
α

‖u‖2
V 6 C1‖uh‖V + C2

C1 =
1

α
(‖λ‖V + ‖A‖Vm+ ‖L‖V )

and
C2 =

m

α
(1 + ‖L‖V ) +

|µ|
α

and (3.20) implies
‖uh‖V 6 C ∀h (3.22)

where C is aconstant

(2) weak convergence of (uh)h

Relation (3.22) gives that uh is uniformly bounded. Therefore there exists a subsequence
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(uhi)hi such that uhi −→ uh weakly in V. Since uh is the solution of (Ph1) and rhv ∈ Vh∀h
and ∀v ∈ U we get:

a(uhi , uhi) + jhi(uhi) 6 a(uhi , rhiv) + jhi(rhiv)− L(rhiv − uhi) (3.23)

By condition (iii) and weak convergence of {uhi} we get :

lim
h−→0

inf [a(uhi , uhi) + jhi(uhi)] 6 a(u∗, v) + j(v)− L(v − u∗) ∀v ∈ U (3.24)

As in (3.9) and using condition (ii), we get :

a(u∗, u∗) + j(u∗) 6 lim
h−→0

inf [a(uhi , uhi) + jhi(uhi)] (3.25)

From (3.24), (3.25) and using the density of U we have

{
a(u∗, v−u

∗) + j(v)− j(u∗) ≥ L(v − u∗) ∀ v ∈ V (3.26)

u∗ ∈ V

This implies u∗ is a solution of (P2). Hence u∗ = u is the unique solution 3.26 of (P2) and
this shows that (uh) converges to u weakly.
(3) Strong convergence of (uh)h

We have by V -ellipticity of a(.,.) and by (p2h)

α‖uh − u‖2
V + jh(uh) 6 a(uh − u, uh − u) + jh(uh)

= a(uh, uh)− a(u, uh)− a(uh, u) + a(u, u) + jh(uh) 6

a(uh, rhv) + jh(rhv)− L(rhv − uh)− a(u, uh)− a(uh, u) + a(u, u) ∀v ∈ U (3.27)

The right hand side of inequality (3.27) tends to a(u, v - u) + j(v) - L(v - u) as h −→ 0

∀v ∈ U. Therefore we have

lim infh−→0jh(uh) 6 lim infh−→0[α‖uh − u‖2
V + jh(uh)] 6

6 lim suph−→0[α‖uh − u‖2
V + jh(uh)] 6

6 a(u, v − u) + j(v)− L(v − u) ∀v ∈ U (3.28)
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By density of U, (3.28) holds ∀v ∈ V. Replacing V by u in (3.28) and using condition (ii)
we obtain

j(u) 6 lim
h−→0

inf jh(uh) 6 lim
h−→0

sup [α‖uh − u‖2
V + jh(uh)] 6 j(u) (3.29)

this implies that
lim
h−→0

sup [α‖uh − u‖2
V + jh(uh)]− j(u) = 0

lim
h−→0

sup [α‖uh − u‖2
V ] + [ lim

h−→0

sup jh(uh)− j(u)] = 0

{
lim
h−→0

sup jh(uh) = j(u) (3.30)

lim
h−→0

inf jh(uh) = j(u)

by (3.29) and (3.30)implies we have :

lim
h−→0

sup jh(uh) = j(u)

and
lim
h−→0

sup ‖uh − u‖V = 0

this proves the theorem.

3.4 The continuous problem

The physical interpretation of this problem is the following: let an elastic membrane occupy
a region in the x1, x2 plane; this membrane is fixed along the boundary Γ of . When there
is no obstacle, from the theory of elasticity the vertical displacement u, obtained by applying
a vertical force F
C.P


− M u = f in Ω (3.31)

u|Γ = 0

u(x) > ψ(x)∀x ∈ Ω
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a(u, v) =
∫

Ω
5u5 v

L(v) =
∫

Ω
fv f ∈ L2(Ω)

f ∈ V ∗ = H−1(Ω) and v ∈ V
V = H1

0 (Ω)={v ∈ H1(Ω) : v|Γ = trace de v sure Γ = 0}
let ψ ∈ H1(Ω) ∩ C0(Ω̄) and ψ|Γ 6 0.
K = {v ∈ V, v > ψ ae on Ω}.

(V.P )

{
find u ∈ K (3.32)

a(u, v − u) > L(v − u)∀v ∈ K

Remarques

is given by the Dirichlet problem :{
− M u = f in Ω (3.33)

u|Γ = 0

Where f= F
t
, t being the tension. when there is an obstacle, we have a free boundary

problem and the displacement u satisfies the variational inequality (3.32) with being the
height of the obstacle. Similar EVI also occur.

3.5 Finite Element Approximations of (3.32)

Henceforth we shall assume that is a polygonal domain of R2. Consider a “ classical”
triangulation of ϕh , ϕhis a finite set of triangles T such that
T ⊂ Ω̄ ∀T ∈ ϕh , ∪ϕhT = Ω̄

T 0
1

⋂
T 0

2 = φ, ∀ T1, T2 ∈ ϕh and T1 6= T2

oreover ∀T1, T2 ∈ ϕh and T1 , T2, exactly one of the following conditions must hold

1. T 0
1

⋂
T 0

2 = φ.

2. T1 and T2 have only one common vertex.

22



3. T1 and T2 have only a whole common edge.

As usual h will be the length of the largest edge of the triangles in the triangulation.
From now on we restrict ourselves to piecewise linear and piecewise quadratic finite ele-
ment approximations.

3.5.1 Approximation of V and K

Pk:space of polynomials in x1 and x2 of degree less than or equal to k.

∑
h = {P ∈ Ω̄ :P is a vertex of T ∈ ϕh}

∑0
h = {P ∈

∑
h : P /∈ Γ}

∑′

h = {P ∈ Ω̄ : P is the mid point of an edge of T ∈ ϕh}

∑′0
h = {P ∈

∑′

h : P /∈ Γ}

∑1
h =

∑
h and

∑2
h =

∑
h

⋃∑′

h

We have tringle arbitrary illustrates some further notations associated with an arbitrary
triangle T. we have miT ∈

∑′

h,MiT ∈
∑

h. The centroid of the triangle T is denoted by GT .
The space v = H1

0 (Ω)is approximated by the family of subspaces (V k
h )h with k = 1 or 2 where

V k
h = {vh ∈ C0(Ω̄) : vh|Γ = 0 and vh|T ∈ Pk ∀ T ∈ ϕh} k = 1, 2

It is clear that V k
h are finite dimensional , It is then quite natural to approximate K by

Kk
h = {v ∈ V k

h : vh(p) > ψ(p) ∀P ∈ Σk
h } k = 1, 2

23



3.5.2 The approximate problems

For k = 1, 2 the approximate problems are defined by

(P k
1h)

{
a(ukh, vh − ukh) ≥ L(vh − ukh) ∀ vh ∈ Kk

h (3.34)

ukh ∈ Kk
h

(P k
1h) has a unique solution for k = 1 and 2.

3.6 convergence result

In other to simplify the convergence proof we shall assume in this section that let ψ ∈
H1(Ω) ∩ C0(Ω̄)and ψ 6 0 in a neighbourhood of Γ.

Trapezoidal Rule and Simpson’s Integral formula

we have triangle arbitrary , prove the following identities for any triangle T.∫
T

wdx =
meas.(T )

3

3∑
i=1

w(MiT ) ∀w ∈ P1. (3.35)

∫
T

wdx =
meas.(T )

3

3∑
i=1

w(miT ) ∀w ∈ P2. (3.36)

Theorem 17 Suppose that the angles of the triangles of ϕh are uniformly bounded below
by θ0 > 0 as h −→ 0; then for k = 1, 2

lim
h−→0

‖ukh − u‖H1
0 (Ω) = 0 (3.37)

where ukh and u are respectively the solutions of P k
1hand(3.32) .

In this proof we shall use the following density result to be proved later:

D(Ω)
⋂
K = K

To prove (3.37) we shall use Theorem 15 ; To do this we have to verify that the following
two properties hold (for k = 1, 2):
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• (i) If(vh)h is such that vh ∈ Kk
h ∀h and converges weakly to v as h −→ 0; then v ∈ K .

• (ii) There exists X, X̄ = K and rkh : X −→ Kk
h such that limh−→0 r

k
hv = v strongly in

V ∀v ∈ X

Verification of (i)

Using the notations of triangle arbitrary and considering φ ∈ D(Ω)with φ > 0, we define
φh by
φh =

∑
T∈ϕh φ(Gt)XT where XT is the characteristic function of T and GT is the centroid

of T. It is easy to see from the uniform continuity of φ that

lim
h−→0

φh = φ strongly in L∞(Ω) (3.38)

Then we approximate ψby ψh such that{
ψh ∈ C0(Ω̄), ψh|T ∈ Pk ∀ T ∈ ϕh (3.39)

ψh(p) = ψ(p) ∀P ∈ Σk
h

This function ψh satisfies

lim
h−→0

ψh = ψ strongly in L∞(Ω) (3.40)

Let us consider a sequence (vh)h, vh ∈ Kk
h ∀h such that

lim
h−→0

vh = v weakly in V.

then limh−→0 vh = v strongly in L2(Ω) which, using (3.38) and (3.40), implies that

lim
h−→0

∫
Ω

(vh − ψh)φhdx =

∫
Ω

(v − ψ)φdx (3.41)

actually since φh −→ φ strongly in L∞(Ω) the weak convergence of vh in L2(Ω) is enough
to prove (3.41). We have∫

Ω

(vh − ψh)φhdx =
∑
T∈ϕ

φ(Gt)

∫
T

(vh − ψh)dx (3.42)

From (3.35). (3.36) and the definition of ψh we obtain for all T ∈ ϕh.∫
Ω

(vh − ψh)dx =
meas.(T )

3

3∑
i=1

[vh(MiT )− ψh(MiT )] ifk = 1 (3.43)
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∫
Ω

(vh − ψh)dx =
meas.(T )

3

3∑
i=1

[vh(miT )− ψh(miT )] ifk = 2 (3.44)

(see [19])
Using the fact that φh > 0, the definition of Kk

hand the relations (3.43), (3.44) it follows
from (3.42) that ∫

Ω

(vh − ψh)φhdx > 0 ∀φ ∈ D(Ω), φ > 0. (3.45)

so that as h −→ 0 ∫
Ω

(v − ψ)φdx > 0 ∀φ ∈ D(Ω), φ > 0. (3.46)

which in turn implies v > ψ a.e. in Hence (i) is verified.

Verification of (ii).

From D(Ω)
⋂
K = K it is natural to take X = D

⋂
K.we define

rkh:H1
0 (Ω)

⋂
C0(Ω̄)−→ V k

h as the “ linear ” interpolation operator when k = 1 and “ quadratic”
interpolation operator when k = 1, i.e.{

rkhv ∈ V k
h ∀v ∈ H1

0 (Ω)
⋂

C0(Ω̄) (3.47)

(rkhv)(p) = v(p) ∀P ∈ Σk
h fork = 1, 2.

On the one hand it is known that under the assumptions made on ϕh in statement of
Theorem 17 , we have :

‖rkhv − v‖v 6 Chk‖v‖Hk+1(Ω) ∀v ∈ D(Ω) k = 1, 2. (3.48)

with C independent of h and v . This implies that

lim
h−→0

‖rkhv − v‖v = 0 ,∀v ∈ X k = 1, 2. (3.49)

on the other hand it is obvious that

rkhv ∈ Kk
h ∀v ∈ K

⋂
C0(Ω̄) (3.50)
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so that rkh ∈ V k
h and

Kk
h = {v ∈ V k

h : vh(p) > ψ(p) ∀P ∈ Σk
h }

v ∈ X = K
⋂
D

v(p) > ψ(p)

(rkhv)(p) > ψ(p)

if v ∈ X rkhv ∈ Kk
h for K=1,2 In conclusion with the above X and rkh , (ii) is satisfied.

Hence we have proved the Theorem 17.

Corollary 18 (see [19]) If v+ and v- denote the positive and the negative parts of v for v
∈ H1(Ω) (respectively H1

0 (Ω)) then the map v−→ {v+, v−} is continuous from
H1(Ω) −→ H1(Ω)×H1(Ω)(respectively H1(Ω) −→ H1(Ω)×H1(Ω) .also v−→ |v| is contin-
uous

Lemma 1 Under the assumptions we have D(Ω)
⋂
K = K

Proof

Let us prove the Lemma in two steps.
Step 1

Let us show that

℘ = {v ∈ K
⋂

C0(̄Ω) : v compact support in Ω} is dense in K. (3.51)

let v ∈ K , K ⊂ H1
0 (Ω)implies that exists a sequence {φh}h in D(Ω) such that

lim
h−→∞

φn = v strongly in V.

define vh by
vn = max(ψ, φ) (3.52)

so that
vn =

1

2
[(ψ + φh + |ψ − φn|)]
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Since v ∈ K, from Corollary 18 ,and relations (3.52) follows that

lim
n−→0

vn =
1

2
[(ψ + v + |ψ − v|)] = max(ψ, v) = v (3.53)

strongly in V
A From D(Ω)

⋂
K = K and (3.52) it follows that each vn has a compact support in Ω

vn ∈ K
⋂

C0(Ω̄) (3.54)

From (3.53) - (3.54) we obtain (3.51)

Step2

Let us show that
D(Ω)

⋂
℘ is dense ℘ (3.55)

This proves from Step 1, that D(Ω)
⋂

K is dense in K. Let ρn be a sequence of mollifiers .
ρh ∈ D(R2), ρn > 0 (3.56)∫
R2

ρn(y) = 1⋂
n=1

suppρn = {0}, {suppρn} is a decreasing sequence

Let v ∈ ℘. Let ṽ extension of v defined by
v(x) if x ∈ Ω

and 0 ifx /∈ Ω then ṽ ∈ H1(R2),let ṽn = ṽ ∗ ρni.e

ṽ(x) =

∫
R2

ρn(x− y)ṽ(y)dy (3.57)

then 
ṽn ∈ D(R2) (3.58)

supp ṽn ⊂ supp v + supp ρ
′

n

lim
n−→∞

ṽn = ṽ strongly in H1(R2)

Hence from (3.59) and (each vn has a compact support in Ω) we have
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supp(ṽn) ⊂ Ω for n large enough (3.59)
We also have (since supp (ṽ)is bounded)

lim ṽh = ṽ strongly in L∞(R2) (3.60)

Define vn = ṽ|Ω ,then (3.59)–(3.60) imply

{
vn ∈ D(Ω) (3.61)

lim
n−→∞

vn = v strongly in H1
0 (Ω)

⋂
C0(Ω̄)

v ∈ ℘ and ψ 6 0 in a neighbourhood of Γ imply that there exists a σ > 0 such that

v = 0, ψ 6 0 on Ωσ (3.62)

where Ωσ = {x ∈ Ω : d(x,Γ) < σ} From (3.60) and (3.62) it follows that ∀ξ > 0 there
exists an n0 = n0(ξ) such that{

v(x)− ξ 6 vn(x) 6 v(x) + ξ∀x ∈ Ω− Ωσ
2

(3.63)

vn(x) = v(x) = 0 forx ∈ Ωσ
2

Since Ω̄− Ωσ
2
is a compact subset of Ω̄ there exists a functions θ such that{

θ ∈ D(Ω) θ > 0 in Ω (3.64)

θ(x) = 1 ∀x ∈ Ω̄− Ω δ
2

finally define W ξ
n = vn + ξθ

Then from (3.61), (3.63) and (3.3.2) we have

wξn ∈ D(Ω)

lim
ξ−→0

= v strongly inH1
0 (Ω)

lim
n−→∞

= v strongly inH1
0 (Ω)

lim
n>n0(ξ)

= v strongly inH1
0 (Ω)

with wξn > v(x) > ψ(x)∀x ∈ Ω so step2 is proved.
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Conclusion

The result of this work we have estabished the existence and uniqueness results For EVI of
First Kind and second knd and the Internal approximation of EVI of first kind and secend
one. the main result we use Finite Element Approximations on an obstacle problem. As
perpectives are the use of FEM for:
- dynamical signorini problem without friction
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