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Abstract

Accretion is one of the mechanisms mainly responsible for the emergence of most things

in the universe. Almost all astronomical objects, from planets and stars to entire galaxies,

were formed through this process. In general, accreting matter forms a disk around a central

object due to the conservation of the materials angular momentum. The first goal of this

work is to study accretion disks, mainly protoplanetary disks, because they allow studying a

large number of physical processes that determine their development, and they also develop

due to viscosity and the transfer of angular momentum by the central star. The second major

goal is to provide analytical solutions to the equation for the evolution of a protoplanetary

disk and a planet, as well as to understand the effect of angular momentum on surface density

distribution without utilizing approximations. Based on the basic equations that govern the

temporal evolution of the surface density of the accretion disk, as well as the equation of the

co-evolution of the planet and the protoplanetary disk resulting from planet migration due to

the interaction of the tides with the disk, the disk is also subject to the planet’s tidal torque.

The second part of this equation represents the rate at which angular momentum per unit

mass is transferred from the planet to the disk. By applying conditions and approximations

that determine the surface density behavior more clearly in the two methods in each region,

we obtain analytical solutions to the equation for the evolution of a protoplanetary disk and

a planet, and the results were consistent with previous results.

Keywords: accretion, protoplanetary disk, surface density, angular momentum.
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General Introduction

General introduction

The progressive discovery of the Solar System and the diversity of the planets that

compose it has made it possible to place the Earth in a somewhat broader context.

The question of the formation of the planets then arose. Noting the quasi-coplanarity of the

orbits of the Solar system, Kant (1755) then Laplace (1796) introduced the concept of the

primitive solar nebula, the disk of matter from which the planets originated (Boué, G 2010).

In the 1940s, the accretion disk paradigm was introduced by (kuiper 1941) , noting that

mass transfer between two binary stars in contact could form a "ring" of matter around the

accreting star. Subsequently, the concept was taken up and extended by (Prendergast and

Burbidge 1968) to explain the characteristics of the binary X Cyg X2 and by (Lynden-Bell

1969) to justify the high luminosity of active galactic nuclei (AGNs). The basic idea of

accretion disks was proposed soon after the confirmation of quasars, and its classical picture

established at the beginning of the 1970s (Montesinos, M 2012)(Giovannelli, F., & Sabau-

Graziati, L 2016). One of the early models considered for compact X-rays sources using

accretion disks was due to (Pringle & Rees 1972). The accretion disk model grew in pop-

ularity and began to be recognized as the theory capable to describe important energetic

emissions observed in the Universe (Alecian, E 2013).

Accretion disks are the generic structures associated with compact objects (considered to be

black holes, Neutron stars, white dwarfs ) powered by matter accretion onto them (Kazanas,

D 2019). The angular momentum of gravitationally-interacting matter forms a centrifugal

barrier to the infall of that matter on to its center of mass. For gaseous matter this barrier

is believed to give rise to a gravitationally-bound disk structure. If the gas continues to

evolve by radiating its angular momentum and falling on to the center of mass, the system is

called an accretion disk (Mamatsashvili, G 2009). The accretion disk is a central element to

theories of star formation, interacting binaries, and Active Galactic Nuclei (AGN). In star

formation, the accretion disk is an intermediate stage between the initial condensation of a

diffuse cloud and a fully evolved solar system such as our own. In interacting binaries the

transfer of matter from one object to the other is governed by the rate of infall from the

accretion disk which is invariably formed. The disk is therefore dynamically important to

systems such as Cataclysmic Variables, Type I supernovae and the x-ray luminosity of Black

Holes (Giovannelli, F., & Sabau-Graziati, L 2016).

In astrophysics the term accretion is used to describe the process of acquiring matter, typ-

ically gaseous, by a massive body (Narayan, R., & Quataert, E. 2005). As a result of the
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General Introduction

infall, the gravitational energy is extracted. Its amount is roughly proportional to the ratio

of the mass and radius of the attracting object: M/R. It is clear that the more massive

and compact the object is, the larger amount of energy may be released. Accretion onto

compact objects is therefore an extremely important process in the astrophysical context, as

it transforms the gravitational energy into radiation in many of the most luminous classes

of objects in the universe (Sadowski, A 2011).

The spherically symmetric (zero angular momentum) accretion on a gravitating body is the

simplest case one can imagine. It was first studied by Bondi (1952) and is called the Bondi

accretion. It was shown that the solution describing such a process is unique and that the ow

becomes transonic crossing the critical (sonic) radius. It is currently accepted that Bondi-

type of accretion hardly occurs in the Universe because all potential sources of accreting

matter (e.g., gas clouds or stars) have non-zero angular momentum (Sadowski, A. 2011).

Accretion disks appear in many astrophysical objects. Protostellar clouds of molecular gas

create protoplanetary disks surrounding newly formed stars. Stars in close compact binary

systems transfer mass through accretion disks when they fill their Roche lobe or due to

strong stellar winds. Supermassive BHs in AGNs are believed to accrete cold matter from

their vicinity. According to the collapsar model, short γ-ray bursts accrete the ejecta at

super-critical rates shortly after the outbursts. Other examples of accretion disks in the

Universe may also be given. Accretion appears to be involved in most of the high-luminosity

phenomena in the universe (Sadowski, A. 2011).

Protoplanetary disks form through the gravitational collapse of their parental molecular

cloud cores in a process regulated by the balance of gravitational, magnetic, gas pressure

and rotational forces. After the dissipation of the protostellar envelope and the birth of a

central star (central stars), the surrounding protoplanetary disk continues to regulate the

inward radial transport of matter and the associated angular momentum transport outward,

and, therefore, forms a special class of accretion disks (Armitage, P. J. 2011).

Gravitational interactions between a planet and its protoplanetary disk change the planet’s

orbit, causing it to migrate toward or away from its star. Significant migration will have an

effect on the details and efficiency of planet formation (Chambers, J. E. 2009).

Through this work, we seek to theoretically study the evolution of the accretion disk to reach

results that are consistent with what astronomical observation produces, so we contribute

greatly to the knowledge, analysis, and interpretation of what is behind this observation,

and this is through identifying the protoplanetary disks and their evolution, how the process

xii



General Introduction

of planetary migration occurs, and the most important variables that control the evolution

of surface density and the change in angular momentum. The purpose of this research is

to better understand the processes that lead to star formation, their interaction with the

surrounding disk, and how this affects planet formation. In particular, we will focus on

studying the interactions between the protoplanetary disk and the planet. Therefore, we

decided that our study plan, which we will adopt in our thesis entitled (A theoretical study

of the physical phenomena around the protoplanetary disk, which includes a general intro-

duction to present the work and what we aim to achieve and five chapters to conclude with

a conclusion, will serve as a summary through which we show the various results reached.

We present the approach taken in this thesis, starting with a general introduction to the

process of star formation and a comprehensive definition of accretion disks, then explaining

the accretion process and what results from it in the universe from different models, but it

occurs in the same way regardless of the type of model, with a main focus on protoplanetary

disks and the interactions that occur. between the planet and the disk and an explanation

of the message structure in detail, which will be discussed in the following sections:

In the first chapter, we focus on the basics of cosmic phenomena in addition to an overview

of stars (their formation, evolution, and classifications). We explain accretion physically and

the ways matter is transferred between various cosmic phenomena. We also present the most

important models of accretion disks present in the universe. In the second chapter, we will

focus on the most important model, which is the protoplanetary disk, which we consider the

basis of our study. In it, we will present how planets (small and giant) are formed. We will

also conduct an extensive study on the migration of planets and their different forms. We

focus mainly on the gravitational interactions that occur between the planet and the disk.

The gravitational connection with the disk affects the size of the planets orbit and stimulates

or inhibits its orbital deviation, causing it to migrate toward or away from its star. In the

third chapter, we will focus on the basic factors for studying the evolution of the accretion

disk, the most important physical parameters that govern the evolution of a protoplanetary

disk, and calculating the surface density using the laws of conservation of mass and angular

momentum. We will also explain the behavior of the planet that it exercises in the disk,

which is the focus of the comparison that must be reached in our work. In the fourth and

fifth chapters, we will rely on two methods to discuss the behavior of surface density in

different regions of the protoplanetary disk, where we aim to obtain analytical solutions to

the equation for the evolution of a protoplanetary disk and a planet and to know the effect
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of angular momentum on the surface density distribution without using any approximations

to it based on the equation. The general rule that governs the temporal evolution of the

surface density of a viscous accretion disk, based also on the equation of co-evolution of the

planet and a protoplanetary disk resulting from the migration of the planet due to tidal

interaction with the disk, and the disk is also subject to the tidal torque of the planet, by

applying conditions, considerations, assumptions, as well as approximations, the behavior of

surface density is determined more clearly by the two methods in each region, and compar-

ing the results obtained theoretically, with other results previously found through numerical

calculation, we obtain results consistent with previous results (lin papalouzou 1986), and a

general conclusion in which we review what we have achieved with mention some aspirations

and horizons that we aspire to in the future.
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Chapter 1

Basic Concepts of accretion disks in several cosmic

phenomena

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 The compact star (compact object) . . . . . . . . . . . . . 6

1.4 Accretion disk . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 The physics of accretion . . . . . . . . . . . . . . . . . . . . 13

1.6 Accretion disks in the universe . . . . . . . . . . . . . . . . 16

1.1 Introduction
Accretion is a universal phenomenon that takes place in the vast majority of astrophysical

objects. The progress of ground-based and space-borne observational facilities has resulted in

the great amount of information on various accreting astrophysical objects, collected within

the last decades. The accretion is accompanied by the process of extensive energy release that

takes place on the surface of an accreting object and in various gaseous envelopes, accretion

disk, jets and other elements of the flow pattern (Giovannelli, F., & Sabau-Graziati, L 2016).

In this chapter, we will provide a step-by-step approach to the topic, beginning with stars

and how they form and develop and ending with compact organisms at the conclusion of

their life.

Then we present a general description of the properties of the disks that have been observed

surrounding compact bodies, as well as the basic physical mechanisms that control their

development. Finally, we provide with prototypes of accretion disks found in the universe.

1



chapter 1 Basic Concepts of accretion disks in several cosmic phenomena

1.2 The Stars

1.2.1 Formation of stars

Stars form alone and in groups, associations, and clusters (Pudritz 2002 and WardThomp-

son 2002). Recent work suggests that stars form by gravitational collapse of shock com-

pressed density fluctuations generated by the supersonic turbulence generally observed in

molecular clouds (Elmegreen 1993 ; Padoan & Nordlund 1999 ; Klessen, Heitsch, & Mac

Low 2000 ; Ostriker, Stone, & Gammie 2001 ; Mac Low & Klessen 2003). When the latter

is sufficiently massive (mass beyond a critical mass known as the Jeans mass, of the order of

a few solar masses, even if it depends on the configuration, the volume etc.), its self-gravity

initiates a collapse of the cloud on it self, which little by little fragments into decoupled

systems.

At the center of each fragment forms a pre-stellar core as temperature and pressure rise,

until the conditions necessary to ignite the fusion of hydrogen are reached. We then obtain

a protostar called "class 0".

During cloud collapse, the conservation of angular momentum prevents cloud contraction,

especially in the plane perpendicular to the cloud’s axis of rotation. This added to the radi-

ation pressure, which has arisen since the formation of the protostar, leads to the formation

of a torus around the central star in a few tens of thousands of years. This stage is called

"class I".

The gas torus is hot and there fore swollen, mainly from residual gravitational energy, but

also from the heating of the central protostar. In a few hundred thousand years, this torus

becomes a disk, as blackbody radiation carries energy through the surface. Due to the con-

servation of angular momentum which prevents rapid contraction in the plane perpendicular

to the axis of rotation, the torus flattens as it cools until it forms a disk (Williams et Cieza

2011). About a million years after the protostar formed, the thin disk is formed and the

protostar has become a T Tauri star (Class II object). After a few million years (typically

10 million years), the disk wears off and we are in the case of evolved T-Tauri stars or Class

III objects. These class names may seem strange, but they come primarily from the study

of spectra of young stars which exhibit different characteristics depending on the stage of

evolution of the star (Cossou, C.,2013).

Figure 1.1 summarizes the star formation, the different phases and in particular the charac-

teristics of the emission spectrum of these objects.
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Figure 1.1: Representation of the different stages of evolution of the stellar material [16].

1.2.2 Evolution of stars

The evolution of a star, or stellar evolution, designates all the phenomena ranging from the

formation to the death of a star. It can be broken down into several main phases including

the formation of the star, its stay on the main sequence and its final phase. During its

lifetime, a star emits particles and electromagnetic radiation (part of which in the form of

visible radiation) thanks to the energy released by the nuclear fusion reactions that occur

in the internal zones of the star. Most of the star’s existence is spent on the main sequence,

where it burns hydrogen to form helium. Once the core of the star is depleted in hydrogen,

it leaves the main sequence to evolve towards its final stage of evolution, leaving a compact

object: a white dwarf, a neutron star or even a black hole.

Evolutionary paths of different types of stars. The paths start on the main sequence and

end when there is no more nuclear fusion. The mass of a star is the determining factor in its

evolution. The more massive a star, the faster it consumes the hydrogen it contains because

the temperature is higher there due to the stronger compression of gravity. In the case of

stars of a few solar masses, when the core of the star no longer contains enough hydrogen, it

becomes a red giant. From then on, the star is doomed to form a planetary nebula, while the

core becomes a white dwarf. The most massive stars evolve towards the branches of giants

and supergiants and will end up in supernovae (Dommanget, J 1964).

3
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Figure 1.2: the life cycle of stars.

1.2.3 The classification of stars

To classify the stars, we use the Hertzsprung-Russel diagram (or HR diagram), which gives

us the spectral type of the stars according to the surface temperature and the luminosity of

this one. We can also notice that it gives us the color of the stars as well as their magnitude,

between which there is a relationship of proportionality. 90% of the stars are on the diag-

onal band of the graph, which is called the main sequence. They spend most of their lives

there. Stars outside this sequence are generally at the beginning or end of their life, during

so-called transitional phases: when they leave the main sequence, they become giants, then

white dwarfs ( Jung J 1971 ; Mayer & Macák 1973 ).

Figure 1.3: the Hertzsprung-Russel diagram (Credit NASA/Space Telescope Science Institute).

The Hertzsprung-Russell (HR) diagram, Shows the power (luminosity) as a function of tem-

perature (spectral class); The "absolute magnitude" ordinate is a logarithmic measure of the

4



chapter 1 Basic Concepts of accretion disks in several cosmic phenomena

power.

Most stars are on the main sequence Appendix A:

massive stars are hot and have high power (top left), but they are very rare. They have a

short life, a few million years. The core is hot enough and dense enough for the elements to

fuse down to iron. The iron core formed does not have enough energy for fusion or fission.

There is no energy source that keeps the core hot so that it can resist the forces of gravity.

These forces will lead to the star’s core collapsing in a second, turning it into a sphere of

neutrons (or even strange matter), releasing huge amounts of gravitational energy. As a

result, the outer layers of the star explode in the form of a supernova. These layers are

ejected at speeds of up to 10,000 km/s. while small stars have lower masses, are cool and

have low power (bottom right) , In stars with an initial mass less than eight times that of

the Sun, the loss of mass will cause the core to shrink to less 1.4 times the mass of the Sun.

This type of star has a mass less than 1.44 solar masses.

Giant stars are on (the upper right) of the diagram, they have a power a million times greater

than the Sun and live very little. They are so massive that after they remain without en-

ergy and their core collapses, their mass is times higher than the mass of the Sun. Gravity

exceeds the energy exerted by neutrons. The core continues to collapse until it is so dense

that gravitational forces prevent any emission, including light. In this case the star becomes

a black hole.

Spectral classification of stars

All series stars, i.e. stars in their basic stage of life, emit a lot of electromagnetic waves,

but these waves usually focus at specific parts of the spectrum, and the reason for this is

that the larger the stars, the higher their temperature, and they emit electromagnetic waves

of high frequencies, and thus their color appears close. It is blue, and because smaller stars

are less hot and generate electromagnetic radiation at low frequencies, their color is reddish.

Astronomers categorize stars into seven types based on their spectrum (Mora, A., Merín &

all 2001):
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Figure 1.4: Spectral classification of stars (Credit NASA/Space Telescope Science Institute).

Figure 1.5: Stellar luminosity classes (Credit NASA/Space Telescope Science Institute).

1.3 The compact star (compact object)
In astronomy, the term compact star (or compact object) refers collectively to (white

dwarfs, neutron stars, and black holes (Appendix A)). All compact objects have a high mass

relative to their radius, which gives them a very high density compared to ordinary atomic

matter.

Compact stars are often the extremities of stellar evolution and are in this respect also called

stellar remnants. The state and type of a stellar remnant depends primarily on the mass

of the star from which it formed. The ambiguous term compact star is often used when

the exact nature of the star is not known, but evidence suggests that it has a very small

radius compared to ordinary stars. A compact star that is not a black hole can be called a

degenerate star (Maurya, S ; Gupta, Y & Ray, S 2016).
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1.4 Accretion disk

1.4.1 General description of an accretion disk

A brief history of disk models

The basic idea of accretion disks was proposed soon after the confirmation of quasars, and

its classical picture established at the beginning of the 1970s.

When the gas infalls into the compact object, some of the binding gravitational energy of the

gas is released due the viscosity present in the accretion flow. The amount of gravitational

energy released during the operation is huge. This was first noted by (Zel’Dovich 1964),

(Zeldovich & Novikov 1967), and independently (Salpeter 1964). However, they considered

an isolated compact object converting gravitational energy into radiation during its collapse.

Under the same argumentation that gravitational energy can be converted into radiation

by viscous forces, Lynden-Bell proposed in 1969 that the energy source of quasars can be

explained by viscous accretion disks ( Armijo, M. M., 2012).

The accretion disk model grew in popularity and began to be recognized as the theory

capable to describe important energetic emissions observed in the Universe. It was in 1973

that Shakura & Sunyaev proposed a fundamental theory of accretion disks known as the

standard accretion disk model or simply the α-disk model. Around the 1980s, different

features of accretion disk were explored such as (i) Active disks, especially heated by viscous

friction. (ii) Passive disks, essentially heated by the radiation of the central star. The disks

can be distinguished according to the mass of the central star (which influences by the power

of the radiation, for example) and the state of activity of the disk. This leads to the following

observational classes:

(i) The T Tauri Stars (TTS). They are young, low-mass Class II stars. They have a

moderate accretion rate of approximately 10−9 to 10−6M⊙ year. The visible flux is

generally dominated by that of the star, while the disk is preponderant in the infrared

(Bertout et al, 1988).

(ii) The stars FU Orionis (FUOrs), which are considered to be T Tauri having experienced

an accretionary burst (Hartmann & Kenyon, 1996). They show high accretion rates of

10−5 to 10−4M⊙ yyear. The flux is dominated by that of the disk at all wavelengths.

(iii) The stars of Herbig Ae/Be(HAe/Be), of greater mass with a spectral type A to B,

present lines in emission. Some of them show an excess in infrared, which can be
7
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interpreted as evidence of a disk (Natta et al, 2001).

In 1980, he presented Paczyn’ski & Wiita a Polish doughnut disk consisting in an optically

thick torus. And later, when advection were recognized as an important ingredient, the slim

disk appeared (Abramowicz 1988), giving a new branch of accretion disk, where the advective

energy transport was included in the energy balance, producing super-Eddington accretion

rates. The importance of these advective models, called ADAFs (AdvectionDominated-

Accretion-Flows) grew up in the 1990s, and were developed by several authors (Narayan &

Yi 1994, Abramowicz & Lasota 1995).

All these models showed a good agreement with observations. Accretion disk is now the

accepted paradigm for describing a several energetic phenomena either on small scales, like

disks around Young stellar object (YSO), or Cataclysmic variable stars (CV) or on large

scales, like active galactic nuclei (AGNs) or quasars (Armijo, M. M., 2012).

Standard model: α-disk

The main idea of the αmodel was to describe a geometrically thin non-self gravitating

diskby hydrodynamical equations averaged over the disk thickness. Geometrically thin and

nonself-gravitating disk means that the scale of height of the disk H (thickness) is much

smaller than the radial distance r (i.e., H/r ≪ 1 ) and the mass of the disk Md is much

lower than the mass of the central object M∗ (i.e., Md ≪ M∗ ) So the disk’s gravitational

influence is negligible. The most important process governing the accretion of rotating mat-

ter is the action of viscous stress within the flow. The goal is to describe the motion of a

viscous compressible fluid with variable dynamic viscosity η. Viscous stresses drive accretion

by transporting angular momentum outward and mass inward; it’s also a way to transform

matter’s gravitational energy into heat, which is released towards the top and bottom of the

disk’s surface and radiated away.

The original standard disk model (the α-disk model) also supposes an optically thick accre-

tion disk and a turbulent fluid described by a viscous stress tensor which is proportional to

the total pressure. It is then parametrized as

τrϕ = αρc2s = −αP (1.1)

where α is a dimensionless constant, that can be fixed for values between zero (case when

accretion is halted) and close to one, and cs the sound speed of the flow (Armijo, M. M.,
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2012).

The main assumptions in the standard disk model can be summarized as follows:

• Gravitation is only determined by the central object (no self-gravity effect).

• The disk is geometrically thin. i.e., H/r ≪ 1

• The disk is steady. i.e., ∂/∂t ≡ 0

• The disk is axisymmetric i.e., ∂/∂ϕ ≡ 0

• Azimuthal motion dominates over radial motion i.e., vϕ ≫ rr

• Hydrostatic balance is assumed in the vertical direction

• The disk is optically thick in the vertical direction

• Viscous heat dissipation balance radiation output i.e., Q+ = Q−

• The rϕ component of the viscous stress tensor is assumed proportional to the pressure

i.e., τrϕ = −αP. All other components are zero

• There are no magnetic fields present in the disk

The Composition of the Disk

Accretion disks are composed of gas and dust grains (mainly composed of silicates), the

latter having an observed size ranging from tenths of a micrometer to a centimeter, rotating

around a central object such as a young star, a white dwarf, a neutron star or a black

hole. When the molecular cloud contracts to form a star due to the presence of angular

momentum, the contraction will not be fully spherical. While the central protostar grows

roughly spherical by18 accreting material from the envelope, the outer part of the cloud

tends to be mostly distributed into a disk due to the action of gravity and centrifugal forces.

In the presence of rotation, the least energy orbit is circular. The material located in the

disk rotates with a Keplerian motion around the central star V αR−1/2

The Keplerian angular velocity of a particle orbiting in the disk is given by ΩK = (GM/r3)
1/2

where G is the universal gravitational constant, M is the mass of the star and r is the distance

between the centre of the star and the particle. As a result, the angular velocity decreases

outwards, while the specific angular momentum that scales as h = r2Ω increases outwards

(the specific angular momentum is the angular momentum per unit of mass). If the disk is
9
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viscous, the inner parts that are rotating faster than the outer parts shear past the outer

parts. A transport of angular momentum is established from the inner part to the outer

part. According to (Lynden-Bell & Pringle, 1974), a simple energybalance shows that a

viscous disk can lower its energy by transporting mass towards lower radius and angular

momentum towards largr radius. The Keplerian disks ( Appendix A ) surrounding young

stars are therefore very likely accreting mass from the outer parts to the inner parts of the

disk, while angular momentum is evacuated towards the outer part of the disk.

However, since the gas in the disk has a non-zero viscosity, the radial layers of the disk "rub"

against each other and transform the mechanical energy into heat. The disk material then

gradually spirals towards the central object emitting heating radiation. We can therefore

see in accretion disks an efficient way to convert gravitational energy into thermal or radiant

energy. In practice, 10% of the mass energy of the gas can be converted by accretion

around a neutron star, a value which can rise to 40% around a black hole (Pringle 1981).

The observable physical amount of radiation produced in accretion disks is luminosity. As

photons carry momentum and can therefore exert pressure, there is a maximum possible

luminosity at which gravity is able to balance the outward pressure of radiation. The limit

for a stable and spherically symmetric accretion flow is given by the Eddington luminosity

LEdd .

Figure 1.6: Schematic view of disk formation during the collapse of a rotating spherical cloud.

1.4.2 Angular Momentum Transport

In many cases the accreting gas has a non-zero angular momentum and therefore can not

be accreted directly. Only if matter transfers its angular momentum to matter further out

in the disk, an inward transport of matter is possible. This principle of distributing as much
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angular momentum on as little as possible matter is the main definition of accretion (Asmus

2008 ; Balbus & al,2013). The result of this asymmetric behavior is, that almost all the mass

of a disk can be accreted, without an external torque removing the angular momentum.

Usually disks are subjects to gravitational, magnetorotational (MRI), purely hydrodynamical

and convective instabilities that, inturn, cause turbulence in disks which ensures outward

transport of angular momentum. This effect of turbulence can be characterized as turbulent

viscosity. The dual role of turbulence shall be mentioned. Firstly, it is responsible for outward

angular momentum transport, secondly, it provides a channel for conserving gravitational

energy, originating in mass falling onto the central object and transformed into thermal

energy.

Turbulent viscosity (Shakura-Sunyaev)

Temporal evolution of the disk is governed by the viscous stresses acting on the disk

material. These stresses are typically subsumed into a dimensionless parameter α that char-

acterizes the efficiency of angular momentum transport. (Shakura & Sunyaev 1973) devel-

oped the most commonly invoked prescription of this kind, proposing a turbulent kinematic

viscosity of the form

v = αvℓ (1.2)

which is the product of the turbulent velocity v and the size ℓ of the largest eddies in the

turbulent pattern. As turbulence is quickly dissipated by shocks in a highly supersonic flow,

the turbulent velocity is often taken to be roughly equal to the local sound speed of the

disk medium, cs. An upper limit to the size of the largest eddies that form can similarly be

argued to be roughly equal to the disk half-thickness H; hence

v = α
cs

2

Ω
(1.3)

where H =
cs
Ω

, We can now express the viscosity in terms of the disk parameters and hence

estimate the efficiency of angular momentum transport and thus mass accretion onto the

central star. It is also very obvious to estimate how large α should be to reproduce the

observed time scale of disk evolution. The viscous timescale can be expressed as

τ =
r2

v
=

(
h

r

)−2
1

αΩ
(1.4)
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Here, we can fill in 1Myr as the typical evolutionary timescale at 50AU. In addition, we

assume that the disks are indeed very thinand h/r ∼ 0.05. This yields an α of 0.02 (Dominik,

C, 2015; DeSouza, A & Basu, S 2017).

The magnetorotational instability (MRI )

One mechanism that may act as an effective α-viscosity is the magnetorotational instability

(MRI). (Balbus & Hawley,1991) have demonstrated that a weak magnetic field can make an

otherwise hydrodynamically stable disk become unstable to the MRI. Simulations in ideal

magnetohydrodynamics (MHD) find that the nonlinear outcome of MRI can amplify and

sustain turbulence that can then lead to angular momentum transport (Brandenburg et al.,

1995; Hawley et al., 1996). However, in a largely neutral medium (such as in a protostellar

disk) the ionization fraction must be large enough for the neutral-ion collision frequency to

be greater than the local epicyclic frequency.

Many studies have been performed to determine in which regions of protostellar disks the

MRI may be active (Sano et al., 2000; Fromang et al., 2002; Cleeves et al., 2013). For

example, (Igea & Glassgold,1999) find that the MRI can be active at distances greater than

5 AU from the central star, while (Cleeves et al. 2013) finds that the disk midplane is largely

inactive to the MRI after accounting for the effect of stellar winds and magnetic mirroring

of cosmic rays.

Figure 1.7: Two masses in orbit connected by a weak spring [7], [37].

The spring exerts tension force T resulting in a transfer of angular momentum from the inner
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mass mi to the outer mass mo . If the spring is weak, the transfer results in an instability as

mi loses angular momentum, drops through more rapidly rotating inner orbits, and moves

further ahead. The outer mass mo gains angular momentum, moves through slower outer

orbits, and drops further behind. The spring tension increases and the process runs away.

Gravitational instabilities

Gravitational torques may represent an alternative source for angular momentum transport

in cold and massive disks. Using self-consistent cooling, (Boley et al. 2006) showed that an α

prescription based on the gravitational instability agrees with the (Gammie 2001) description

very well, which assumes that the viscous heating is locally balanced by the cooling. (Cossins

et al. 2009) have also used smoothed particle hydrodynamics to show that these disks often

possess tightly wound spiral arms that can be approximated with a local treatment. Here

we consider a perturbation in an otherwise axisymmetric thin disk, which has the form of an

annulus of width r and increased local mass ∆m (e.g., the formation of a spiral arm). The

growth condition for a perturbation depends on whether its self-gravity is greater than the

tidal acceleration acting on it. That is,

G∆m

∆r2
∼ πGΣ >

GM∗

r2
∆r

r
(1.5)

A natural length scale thus emerges, in excess of which perturbations of this nature are

stabilized by their rotation,

∆r ∼ πGΣ

(
GM∗

r3

)−1

=
πGΣ

Ω2
(1.6)

Furthermore, with the assumption of vertical hydrostatic equilibrium, the disk self-gravity

is supported by gas pressure in the vertical direction. This additional constraint implies ∆r

must be at least larger than the disk half-thickness H, ∆r ≥ H = cs
Ω

the "Toomre Q" pa-

rameter, (Toomre 1964), originally formulated these arguments, summarizing the instability

criterion as:

Q ≡ csΩ

πGΣ
< 1 (1.7)
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1.5 The physics of accretion
Accretion of matter onto compact objects is perhaps the only mechanism that gives

sufficient energy to feed the most luminous objects in the Universe. Examples can be found

in different classes of narrow binary systems and nuclei of active galaxies and quasars. How

much energy can be produces by accretion, is shown by the following. The energy, ∆E,

released by a parcel of mass, ∆m, falling from infinity onto an object of mass M and radius

R, is given by ∆E =
GM∆m

R∗
. meaning that the power generated by mass accreting at a

rate Ṁ onto this object, We can also characterise the efficiency of any energetic process by

relating the energy released to the rest mass energy of the parcel of mass, such that ∆E =

η∆mc2, where η is the radiative efficiency. Similarly, in terms of luminosity,

L = ηṀc2 (1.8)

Nuclear fusion is one of the more efficient energetic processes in the universe, with an effi-

ciency of η = 0.007 for hydrogen fusion. If we rearrange the above equations in terms of η,

we find

η =
G

c2
M

R
(1.9)

the efficiency of accretion is directly related to the compactness, M/R∗, of the central object

R∗ where is radius of star Values of compactness and the associated radiative efficiencies for

four different compact objects are shown in table 1.1. The compactness for black holes was

calculated using the Schwarzschild radius, rs = 2GM
c2

, which defines the event horizon of a

non-rotating black hole. It is also pertinent to define the gravitational radius rG = 1/2rs,

which can be useful as a characteristic scale for any compact object of mass M. (Matthews,

J 2017)

Object M(M⊙) R∗ (R⊙) M⊙/R∗ (M⊙/R⊙) η
White Dwarf 0.8 0.01 79.4 1.6× 10−4

Neutron Star 1.4 1.4× 10−5 105 0.2
Black Hole 10 4.2× 10−6 2.4× 105 0.5

SMBH 109 4244 2.4× 105 0.5

Table 1.1: Approximate values of compactness and accretion efficiency for four different
compact objects with typical parameters. Here, R∗ for black holes is set to the event horizon
for a Schwarzschild black hole, SMBH stands for supermassive black hole [48].

14



chapter 1 Basic Concepts of accretion disks in several cosmic phenomena

1.5.1 Spherical Accretion

The simplest geometry one might propose for accretion would be one in which a central

mass accretes matter in a spherically symmetric manner. The process of spherical accretion

has come to be known as Bondi-Hoyle-Lyttleton accretion (Hoyle & Lyttleton, 1939; Bondi

& Hoyle 1944). In particular, Bondi (1952) studied spherically symmetric accretion onto a

point mass and derived. the Bondi radius, rB = GM
c2 s

, where cs = cs (rB) is the sound speed

as a function of radius.

1.5.2 Accretion Luminosity: The Eddington Limit

The mass M of the central object plays an important role in the nature of the accretion

disk, especially when considering the maximum luminosity allowed by the system. This

maximum luminosity is called the Eddington limit.

The luminosity that is released around an accreting source cannot be unlimited: with increas-

ing luminosity the radiation pressure increases, until this is so large that all matter that wants

to fall onto the compact object is blown away again. The radiation pressure works primarily

on electrons (Thomson scattering) and it is given by σT F/c, where σT = 6.65 × 10−25 cm2

is the Thomson cross section, F the outward flux (in erg s-1 cm2) and c the speed of light.

The radiation pressure pushed up electrons against the gravitational force, at the same time

electrons drag the protons with them due to Coulomb interaction, but the force of radiation

into protons is negligible next to electrons because the scattering-cross section of protons is

(me/mp)
2 ≃ 25× 10−8 smaller than for electrons.

Under this condition, accretion is only possible if the total gravitational attraction overcomes

the radiation outward force. The Eddington limit corresponds to the situation when these

quantities are equal. The gravitational force exercised from the central object of mass M

to a electron-proton pair is given by GM (me +mp)

r2
≃ Mmp

r2
, and must be equal to the

radiative force over one electron. Then we have

GMmp

r2
=

σT F

c
(1.10)

The flux F of the accreting source is related to his luminosity through, F/L4πr2. If that

quantity becomes zero, the maximum luminosity is reached. This defines the so-called Ed-
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dington limit:

LEdd =
4πGMmpc

σT

≃ 1.26× 1038 (M/M⊙) erg s
−1 (1.11)

with an associated Eddington accretion rate of

ṀEdd =
LEdd

ηc2
= 4πr

mpc

σT

= 9× 1016g · s−1 (r∗/1km) (1.12)

When accretion exceeds this limit, the associated luminosity will exceed LE, then the outward

pressure radiation overtakes gravitational attraction hence; accretion is halted (Armijo, M.

M 2012).

1.6 Accretion disks in the universe
Accretion disks are ubiquitous throughout the universe, found rotating about a wide ar-

ray of different objects including super massive black holes (AGN), white dwarves (dwarf

novae), neutron stars / stellar-mass black holes (x-ray binaries), and young stars (circum-

stellar or protoplanetary disks (PPDs)). While these disks exist across many orders of

magnitude in size-scale and energy, they all share a very general common origin: they form

as the result of gravitational collapse of a system that has net-angular-momentum. This

net-angularmomentum defines an axis about which the resulting system will rotate as the

matter in the disk structure accretes inwards towards the central objectAccretion disks are

flattened astronomical objects made of rapidly rotating gas which slowly spirals onto a cen-

tral gravitating body. The gravitational energy of infalling matter extracted in accretion

disks powers stellar binaries, active galactic nuclei, proto-planetary disks and some gamma-

ray bursts. The black hole accretion in quasars is the most powerful and efficient stationary

engine known in the universe.

1.6.1 Accretion Disks in X-ray binaries

Thanks to the efficient conversion of the accreting matter into radiative energy, Xray

binaries are the most powerful X-ray emitters in our Galaxy. These systems consist of two

interacting objects: a compact object, which can be a BH or a neutron star (NS), and a

non-degenerate secondary star (companion star). Owing to gravity, the matter accreted from

the companion star falls onto the compact object reaching X-ray energies. At some stages

of their evolution, depending on the physical parameters of the binary system, XRBs can
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transfer matter through two main processes (Frank et al., 1987):

• stellar wind During a particular evolutionary phase of the system the companion

star ejects part of its mass in the form of a stellar wind. A fraction of this outflow is

captured gravitationally by the compact object;

• Roche lobes outflow This can occur both if the star evolves and increase its radius

and if the system reduces its dimension. In both cases the system reaches a point

where the gravitational attraction of the compact object removes the outer layers of

the companion star.

It is known that the mechanism which leads the matter to leave the companion star and to

be accreted onto the compact object is determined by the mass of the companion star.

Based on this parameter, the X-ray binaries are classified as low-mass or high-mass X-ray

binaries (LMXBs and HMXBs, respectively) (Bassi, T 2020).

Figure 1.8: schematic view of high mass and low mass X-ray binaries. Each panel shows the
accretion modes in the different binary system, respectively by stellar wind and by Roche lobe
overflow via an accretion disk [20], [8].

In HMXBs, the companion star is a young massive star (M > M⊙) of spectral type O-B.

These systems are relatively young objects (∼ 107 years ) and they are mostly distributed

near the Galactic plane. The accretion onto the compact object occurs through a strong

stellar wind, which may be driven by absorption of UV photons from the companion or

X-ray heating. LMXBs, instead, are old systems (∼ 108−9 years ) mostly concentrated in

the Galactic central region and in globular clusters, in which the donor is a low mass star

(M ≤ 1M⊙ ). In this case the matter is transferred only through Roche lobe overflow and

accreted through an accretion disk.
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The HMXB family has two sub-classes, (i) the soft X-ray transients that can contain a NS

or a BH and exhibit quasi-periodic outbursts and (ii) the pulsars that contain a NS and emit

a bean of radiation along the axis of the magnetic field.

Many, if not all, black hole X-ray binaries go through periods during which they emit rela-

tivistic twin jets that propagate along the rotational axis of the compact object. They then

look like scaled down quasars and are thus often called microquasars. ( Bassi, T 2020)

Roche Lobe-Overflow

Roche lobe overflow is the process whereby one of the stars in a binary system, as a

consequence of its evolution, fills its critical potential lobe and starts to transfer matter to

the other star. One reason might be the expansion of the star due to nuclear evolution to

the point that material can escape its gravitational field through, the inner Lagrange point

Li. The other is shrinking of the orbit to the point where the companion star atmosphere

overfills its Roche lobe. The dynamics of the matter is then dominated by the gravitational

field of the accreting star. the matter flowing from L1 can form an accretion disk. This

problem assumes a circular Keplerian orbit for the binary, which indeed is very close to

reality in close binaries due to tidal circularization. In particular the potential ΦR contains

both gravity and centrifugal forces; this so-called Roche potential is given by:

ΦR(r) = − GM1

|r − r1|
− GM2

|r− r2|
− 1

2
(ω × r)2 (1.13)

where r1 and r2 are the distances to the centre of the stars of masses M1 and M2 and ω is

the angular velocity of the binary and is a vector normal to the orbital plane. The Roche’s

potential takes into account the gravitational attraction of each of the two stars as well as

the centrifugal force. (Figurel.17) shows some sections of the equipotential surfaces and the

surface representing the Roche potential for a binary system. The shape of the equipotential

surfaces and the dimension are determined by the masses ratio q = M2/M1 and the binary

separation a (Frank et al., 2002 ; Savcheva, A 2006).
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Figure 1.9: The Roche potential in a binary system for qM = M2/M1 = 0.25. The Lagrangian
points are marked, as are the locations of the individual and system centres of mass [27].

The matter moves inside these surfaces driven by the gravitational force of the nearest

star. The largest closed equipotential surface surrounding each star is the Roche lobe.

The points where the gravitational and centrifugal forces balance each other out, are called

Lagrangian points (L). The point at which the Roche lobes touch each other is the inner

Lagrangian point L1. During the system evolution one of the two stars may increase in

radius up to the point where the gravitational pull of the companion can remove the outer

layers of its envelope (Frank et al., 2002). Assuming that one of the two stars has evolved

so that its surface has filled its Roche lobe, the pressure gradient or any perturbation push

the gas through L1 into the Roche lobe of the second star just causing the accretion process.

Then, the mass transfer continues as long as the donor star fills the Roche lobe. We refer to

this kind of mass transfer as Roche lobe overflow.

In the context of semi-detached binary systems, the most important equipotential is

the dumbbell-shaped region enclosing both masses. Each of these enclosed regions is known

as the Roche lobe of the object. A good approximation for the size of the Roche lobe.
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Figure 1.10: a low-mass X-ray binary and cataclysmic variable .(Rob Hynes)(Credit NASA/Space
Telescope Science Institute).

1.6.2 Accretion disks in cataclysmic variables (CVs)

Cataclysmic variables are binary star systems consisting of a white dwarf ("primary")

and a normal star ("secondary", or "companion"). Typically, the CVs have sizes comparable

to the Earth-Moon system, and orbital periods of a few hours. When the outer layers of

the companion overflow the "Roche lobe", the companion loses matter through the first

Lagrangian point L1 of the rotating binary system. When the white dwarf is only weakly

magnetised, the matter forms an accretion disk around it and eventually reaches its surface.

"Dwarf novae" (DN) are CVs that show outbursts lasting for about a week and separated by

weeks to months of quiescence. U Gem is the prototype of dwarf novae. (Szkody, P & all

2002) The brightness in the visible light of U Gem increases 100-fold every 120 days or so,

and returns to the original level after a week or two. The DN phenomenon is due to a specific

accretion disk limit-cycle instability, tidal torques, and fluctuations in the masstransfer rate

from the secondary. The geometry of accretion is very different in magnetic CVs, where

accretion disks are either truncated or absent and accretion occurs along the magnetic field

lines. With respect to the character of the light curves one can distinguish dierent types of

CVs: (Kotko, I & Lasota, J 2012)

1.6.3 Novae

They show very large eruptions which are caused by the thermonuclear explosions of

hydrogen1 on the surface of white dwarf when the temperature of accreted material crosses29

reaches the ignition temperature and unstable hydrogen burning set in. The classical novae

erupt only once during their observational history while recurrent novae repeat the outburst
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at least one more time.

1) Dwarf Novae

Their outbursts are of lower amplitude than those in novae and occur much more often.

But the crucial difference is that the DN outbursts are the result of the thermal-viscous

instability in accretion disk. DN can be further divided into three subgroups depending

on the characteristic features observed in their light curves :

a) U Gem-type

They show only normal outbursts which show up in a quasi-periodic way. their

recurrence times may be as short as few days. Usually they appear every several

tens of days. With respect to their duration times normal outbursts may be

divided into narrow and wide. The distinction between them follows from the

observational comparisons not from the strict deffnition but one can adopt that

the narrow are these which last ∼ 1 − 5 days while wide ones are longer, up to

∼ 20 days.

b) SU UMa-type

All SU UMa stars have orbital periods below ∼ 2 hr (below the period gap). Their

light curves consist of normal outbursts and superoutbursts. Super-outbursts are

the eruptions which are usually brighter by ∼ 0.5− 1 than normal outbursts and

last times longer (Warner, 1995). The characteristic feature of superoutbursts,

which does not appear during normal outbursts, are the low-amplitude short-

period light variations called super-humps.

2) Z Cam-type

Z Cam stars are DN with very high mass transfer rates which are close to their critical

values. In their light curves there are periods of elevated brightness which is lower by

∼ 1 mag from the normal outburst maximum. Those periods may last for months or

even years and are called standstills. After the standstill Z Cam-type systems returns

to its low luminosity state.
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Figure 1.11: The Z Cam-type of white dwarf star (Credit NASA/Space Telescope Science Insti-
tute).

1.6.4 Accretion disks in Quasars and other active galactic nuclei (AGN)

Most galaxies have supermassive (millions to billions of solar masses) black holes at

their centres (nuclei). In AGN, the black hole accretion produces radiative power that

usually outshines its host galaxy. The accretion disk is surrounded by a hot corona which

contains clouds of gas. Fast moving clouds close to the disk produce broad lines and slow

moving clouds further away from the disk produce narrow lines in the AGN spectra. The

observational appearance of an AGN may be affected by the presence of a large outer dust

torus.

Classification of active galactic nuclei (Fabian, A 1999)

AGNs have been classified in several ways. Three important classes are:

(i) Seyfert galaxies, which have modest luminosities but tend to be the best studied be-

cause they are usually near us;

(ii) quasars, which are brighter than the host galaxy and are particularly numerous at a

redshift of when the Universe was about a third of its current age. Quasars are often

distant AGNs, with a point-like appearance in optics, with broad emission lines and

showing a very pronounced redshift. Their radiation does not generally have a thermal

origin, and the luminosity in the radio domain often exceeds that in optics by several

orders. of greatness. Their structure shows, in most cases, the presence of jets from

which the radio emission originates. Quasars are the most luminous objects known.
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(iii) Blazars. About 10% of quasars are radio-strong; the rest is radio-silent, but not silent.

Radio intensity is usually associated either directly with collimated relativistic flow or

jet, or with regions where a jet has collided with surrounding materials. A blazar is

seen when our line of sight is close to the direction of a jet.

Figure 1.12: The active galactic nuclei (AGN) (Credit NASA/Space Telescope Science Institute).

1.6.5 Accretion disks in gamma ray bursts (GRBs)

The most energetic explosions seen in the universe are gamma-ray bursts. They are

short, collimated flares of low-energy γ-rays with relativistic emission simultaneously also

at longer wavelengths (e.g., X-ray flashes, radio jets). Observations indicate that GRBs

are cosmological and followed by slowly fading afterglows. The duration of GRB prompt

emission can last from 0.01 - 2 seconds (short bursts) up to 2 - 500 seconds (long bursts) and

may be explained by merging compact objects or failed supernovae (collapsars), respectively.

Afterglows on the other hand are observed and monitored from a couple of days up to several

years. All evidence on the origin of the inner engines (i.e., mergers, collapses, pulsars) of

GRBs is deduced indirectly. Energetic requirements suggest, however, a similar configuration

of the end products: the formation of a solar-mass black hole surrounded by a massive debris

disk (∼ 0.1Msun ) with a huge accretion rate. The time scale of the burst is determined by

the accretion time of this disk. According to these time scales accretion disks in GRBs

are most likely hyper-accreting. This means, the temperatures and densities at the required

accretion rates are such, that neutrino production is switched on and the electrons are mildly

relativistic and degenerate. Generally, GRBs seem to show similarities to radio-loud AGN

and galactic microquasars, since all these systems eject strongly collimated, more or less

relativistic flows of matter and involve accretion onto a black hole ( Piran,T 2005).
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Figure 1.13: The gamma ray bursts (GRBs) (Credit NASA/Space Telescope Science Institute)

1.6.6 Accretion disks in young stellar objects (YSOs)

During star formation, the central part of a dense molecular cloud collapses to a proto-

star with a gaseous envelope that finally settles to a rotating proto-planetary accretion

disk. Sedimentation and self-gravity in such disks trigger the formation of planets and

planetary systems. Proto-stars are heavily embedded in surrounding gas and dust and for

this reason visible only in the infrared, millimetre or sub-millimetre wavelength bands. Most

of the material that goes into forming a star is accreted through a circumstellar disk and

in this process the proto-stellar system drives an energetic bipolar jet and outflow into

its surroundings. The least evolved protostars are surrounded by remnant protoplanetary

accretion disks.

Based on the spectral energy distribution in the infrared and visible light, YSOs are divided

into five classes (0-IV), associated with their evolutionary stages. Class 0 refers to collapsing

molecular clouds, proto-planetary disks exist in classes I-III, and class IV contains the zero-

age main-sequence star.(Beltrán, M & Wit,W 2016)
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Figure 1.14: The young stellar objects (YSOs) (Credit NASA/Space Telescope Science Institute)

1.6.7 The protoplanetary disks

Protoplanetary disks are the observational manifestation of the initial conditions for

planet formation. They can be defined as rotationally supported structures of gas (invari-

ably containing dust) that surround young, normally pre-main-sequence stars. Although

most observed disks have inferred masses that are a small fraction of the stellar mass, no

meaningful distinction can be drawn between physical processes in protoplanetary disks and

those that occur in the earlier, protostellar phase, in which both star and disk are accreting

rapidly. Similarly, a common set of processes operate, albeit to varying degrees, in disks

around brown dwarfs, Classical T Tauri stars (low-mass pre-main-sequence stars that are

actively accreting), and massive stars.

Around low-mass stars, protoplanetary disks are persistent; the typical lifetime of 106 years

(Haisch, Lada & Lada 2001) equates to thousands of dynamical times at 100 AU. Protoplan-

etary disks are nearly stable fluid configurations that evolve under the action of relatively

slow processes angular momentum transport, mass infall, and disk winds. These agents con-

trol both the secular evolution and the eruptive behavior observed in protoplanetary disks,

and set the overall environment within which planet formation occurs: the location of the

snow line, the mass and time available to form gas giants, the rate of migration, and so forth.

Moreover, in most models the evolution of the disk is linked to the presence of turbulence

within the disk gas, and the strength and nature of that turbulence controls the growth of

solids during the earliest phases of planet formation (Armitage 2010 ; Armitage , P. J 2011).
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Figure 1.15: The protoplanetary disks (Credit NASA/Space Telescope Science Institute).
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2.1 Introduction
Circumstellar disks provide the reservoirs of raw material and initial physical conditions

for the formation of nascent planetary systems. Studies of their structure and evolution

therefore hold the potential to reveal much about the planet formation process in all of its

most important stages: the growth of submicron-sized, primordial interstellar grains into

larger particles; the agglomeration of these particles into planetesimals; and the growth and

orbital evolution of these planetary embryos into the mature systems observed around our

own star and dozens of others.

Circumstellar disks pass through several discernible stages on their way to becoming plane-

tary systems. While the terminology describing these disks is a matter of some discussion,

we use the following terms to refer to the major stages of evolution of circumstellar disks:

protoplanetary disks retain a substantial and largely primordial reservoir of gas and dust,

massive enough to imply planet-forming potential.

transition disks have properties intermediate between protoplanetary and debris disks,

exhibiting substantial clearing of gas and dust from the system

debris disks have little or no gas, tenuous dust disks, and dust lifetimes shorter than the

age of the system, indicating that the disk is second-generation rather than primordial

This chapter focuses on the first stage of evolution, which necessarily include the epoch of
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planetesimal growth and giant planet formation as large planets must form before gas is

dissipated from the disk.

Protoplanetary disks around young stars are the birth sights of planetary systems like our

own. Disks represent the gaseous dusty matter left after the formation of their central stars.

The mass and luminosity of the star, initial disk mass and angular momentum, and gas

viscosity govern disk evolution and accretion. Protoplanetary disks are the cosmic nurseries

where microscopic dust grains grow into pebbles, planetesimals, and planets.

Gravitational interactions between a planet and its protoplanetary disk change the planets

orbit, causing the planet to migrate toward or away from its star. Migration rates are poorly

constrained for low-mass bodies but reasonably well understood for giant planets. In both

cases, significant migration will affect the details and efficiency of planet formation. If the

disk is turbulent, density fluctuations will excite orbital eccentricities and cause orbits to un-

dergo a random walk. Both processes are probably detrimental to planet formation. Planets

that forme arlyin the life time of a disk are likely to be lost, whereas late-forming planets

will survive and may undergo little migration.

2.2 The standard model of planet formation
At the Global models of planet formation can be thought of as big puzzles. The foun-

dations of the model of formation of the Solar System were laid in the 18th century by the

philosopher Emmanuel Kant (1755) then by the scientist Pierre Simon de Laplace (1796).

According to this scenario, the planets formed in a rotating disk of gas and dust around

the nascent sun (Chambers2004 ; Armitage2007a). Originally, this hypothesis was made to

explain the prograde and almost coplanar orbits of all the planets. Today such disks, called

protoplanetary disks, have been observed around young stars by the Hubble Space Telescope.

These direct observations also make it possible to constrain planetary formation models by

analyzing the composition of the disk, its temperature and its lifespan. In particular, the

characteristic time of survival of circumstellar disks around young stars is around 10 million

years, which means that planets form during this same period of time. We describe the

stages and processes of planetary formation as envisioned by the current paradigm. The

evolution in a given region of the disk progresses through these stages in order, but different

stages may take place concurrently in different regions of the disk.(Boué, G 2010 ; Raymond,

S. N & all ,2020)
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2.2.1 Protoplanetary Disks

Protoplanetary disks (PPDs) are rotating disks of circumstellar material (gas and dust)

that coexist with a nascent star during its formation and evolution resulting in a mature

planetary system like the Solar System. Supplying material to both the central protostar and

upcoming protoplanets, PPDs dictate the evolution of both. Therefore, studying the planet

forming regions in PPDs is crucial to understanding planet formation. The star formation

process naturally produces PPDs as illustrated by figure 2.1. Vast nebulae incubate cold

gases into dense filamentary structures which condense into warm cores. These cores of

concentrated prestellar material are initially shrouded by an optically thick envelope of dust

and gas. Under these conditions, the gravitational collapse of infalling materials conserves

the net angular momentum of its natal cloud by settling into a rotating disk of dust and gas

around the central protostar. The material remains in the disk as a reservoir for both star

and planetesimal formation lasting anywhere from ∼ 106 to > 107 years, thus imposing an

upper time limit on the formation of a planetary system (Li et al. 2014).

The structure of PPDs is an observationally tested design which holds for a majority of

disks around pre main sequence (PMS) stars. Angular momentum transport and stellar

irradiation fundamentally and energetically set the stage for PPD structure and dynamics.

Stellar accretion brings circumstellar material inward while photoevaporation depletes the

inner disk. Under these conditions, other evolutionary processes also interact with inner

disk material: protostellar outflows and jets (Herczeg et al. 2011, Banzatti et al. 2015a)

coupled with magnetohydrodynamic (MHD) winds (Ercolano and Pascucci 2017). A PPD

will evolve by accreting material on the central star or dynamic clearing by planet growth.

The relationship shared between PPDs and planets cannot yet be fully understood without

imposing constraints (Sanchez, M. A. 2021).
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Figure 2.1: Solar System formation [79].

where each stage represents, (a) Nebular cloud collapse initiating star formation. (b)

YSO material accretion and accumulation into a disk structure. (c) First stages of planet

formation in the PPD. (d) Planetesimals form and grow due to PPD evolution. (e) Complete

gas disk dissipation. (f) Final stage of planet formation (Sanchez, M. A. 2021).

Composition

The protoplanetary disk is mainly composed of gas, hydrogen and helium 99% in majority.

However, even if the dust represents only about 1% of the mass of the disk, it plays a role

at least as important as the gas itself. Functioning as a catalyst for certain reactions (eg the

formation of H2 ), dust is also an essential element of disk chemistry. At short wavelengths,

the dust grains dominate the opacity of the disk. At millimeter wave lengths In particular,

dust plays an essential role in heating gas. Indeed, it absorbs stellar radiation (∼ 1µm) and

re-emits thermal radiation at longer wavelength. The gas is also heated by the photoelectric

effect, produced by the interaction of UV radiation and the surface of the small grains.

When the density of the medium is high, the numerous collisions between the grains and the

molecules represent the main source of heating of the gas in the molecular layer. Composed

mainly of carbon and silicates, the grains of dust are less than 0.1µm in size in the youngest

objects and the interstellar medium (Draine, 2003). In the cold regions of the disk, the grains

are surrounded by a mantle of ice, resulting from the condensation of gases (Pericaud, J.

2016).
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In addition, dust is also responsible for the opacity of the disk, that is to say its ability to

let light through or not. A crucial parameter of protoplanetary disk models is the opacity

of the disk which represents the absorption of incident radiation by a cell of gas. The

latter depends mainly on the chemical composition of the dust except when the temperature

becomes sufficiently high for all of the dust to sublimate, generally beyond 1500 K (Pollack

et al., 1994), the opacity then being governed by the gas molecules (Cossou, C. 2013).

2.2.2 Formation of the telluric planets of the solar system

The formation of the planets of the solar system, from dust to their current size, would

have taken a few tens of millions of years and would have taken place in three major phases

(Kallenbach et al. 2000). First, gas and dust of the order of a micrometer form the pro-

toplanetary disk, and accumulate forming planetesimals of kilometer sizes revolving around

the proto-sun. Then, these planetesimals come together forming protoplanets. Eventually,

these protoplanets collide, forming the current planets of the solar system.

Formation of planetesimals

At the start of the formation of terrestrial planets. Dust grains aggregate together during

collisions, forming larger objects ranging in size from millimeters to centimeters (Weiden-

schilling 2000). These objects form chondrites by heating up in the solar nebula (Chambers

2010). In this nebula, the dust grains agglomerate with the chondrites forming a large cloud

which mixes strongly with the gases, and orbits together around the proto-sun (Kallenbach

et al. 2000). The movement of the components of this cloud is probably turbulent in the

protoplanetary disk. This turbulence influences gravitational instability and in turn limits

the direct formation of planetesimals. Despite the influence of turbulence, the particles stick

together by collisions forming planetesimals of kilometric sizes. This process occurs rapidly

on a timescale of a few thousand years to a few million years (Rubie et al. 2015, Chambers

2010, Laibe et al. 2008, Kallenbach et al. 2000). Mutual gravitational interactions increase

between large objects, resulting in the growth of large objects at the expense of small objects.

So planetesimals are the result of gravitational instabilities and collisions between particles,

which will come together forming protoplanets.
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Formation of protoplanets

After the formation of planetesimals, the speed and force of collisions between objects be-

come more important. This speed depends strongly on the size of the particles. Low velocity

collision results in coalescence, while high velocity collision promotes some fragmentation

(Chambers 2010). While the gravitational field of the object increases monotonically with

the size of the object, it is therefore necessary for the fragments to have a high speed to

escape. Otherwise, they will regroup with the parent particles. So, with the increase in the

size of the object, the fragmentation becomes limited.

However, the formation of planetary embryos from killometer-sized planetesimals in a pro-

toplanetary disk occurs in two consecutive steps. During the first stage, called "Runaway

growth", large planetesimals grow faster than small planetesimals and their mass ratio grows

exponentially during protoplanet formation (Kokubo and Ida 1995). At this stage of growth,

the random relocity of the planetesimals increases by the mutual gravitational interaction

which, in turn, gradually changes the orbit of the planetesimals. When the larger bodies

of the protoplanetary system become massive enough to control the velocity distribution of

the smaller planetesimals, the "Runaway" stage of growth stops (Chambers 2010). Thus, the

"Runaway" growth stage of planetesimal-protoplanetary systems results in a large number of

planetesimals and a small number of protoplanetaries. Due to the ineffectiveness of dynamic

friction and the increased rate of dispersal between planetesimals, the growth phase tran-

sitions from "Runaway" to the second "Oligarchic" growth stage. In this growth phase, the

protoplanets resulting from the "Runaway" growth phase dominate the neighboring smaller

planetesimals. Because of this, the protoplanets and planetesimals in the system begin to

interact with each other.

During the growth of the protoplanets during this phase, the dynamic friction decreases and

the orbit of the protoplanets moves away from the circular shape, which leads to stopping

the "Oligarchic" growth (Chambers 2010). Growth from planetesimals to protoplanets is

estimated at around 105−106 years (Wetherill and Stewart 1993, Kokubo and Ida 2000). At

the end of the "oligarchic" stage of growth, the Mars-sized protoplanets move in intersect-

ing orbits, collide and come together to form the planets of the solar system (Agnor et al.

1999, Kokubo and Genda 2010). This growth phase begins by drawing the swarm of smaller

planetesimals remaining into the system and forming larger objects. The eccentricities of

these embryos increase rapidly due to mutual gravitational disturbances between them, re-

sulting in an overlapping of their orbits which allows impacts between them (Chambers and
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Wetherill 1998). These impacts produce oscillations in the eccentricity and inclination which

prevent the isolation of the embryos (Qaddah, B. 2019).

2.2.3 Formation of the Giant-Planets

Giant planets might have rocky cores of 10-20 M Earth (Stevenson, D. J. 1982 ; Guillot

et al.,2004), that is significantly larger mass than our terrestrial planets. Therefore, the

formation and timescale differ very much within and beyond the snowline. terrestrial planet

formation is dominated by collisions of rocky objects and lasts presumeably for several million

years. Giant planet formation has to end when the gaseous circumstellar disk dissipates (3-

5 Myrs), therefore interestingly, gas-giants are believed to form faster than rocky planets.

There are two main giant planet formation scenarios: disk instability and core accretion.

Giant Planet Formation via Core Accretion

Beyond the ice line, the embryos can probably reach several times the mass of the Earth.

From 10 earth masses, the gravity of the embryo is sufficient to retain gas from the disk, and

constitute an envelope of hydrogen and helium. For this reason, these planetary embryos

are also called hearts (Dutrey, A. 2008).

The accretion of a significant layer of gas takes time: the pressure opposes the collapse of

the gas on the core. For several million years, accretion continues slowly: the more the core

acquires mass by accumulating solids, the more it is able to retain a large envelope of gas,

which cools slowly. The envelope should not be confused with the atmosphere of a planet: it

is much larger and less dense. A mini-disk surrounds the planet, through which it accretes

gas, like the star. This phase lasts several million years, which may be too long given the

lifespan of a disk. It can however be accelerated if the migration allows the solid core to

grow faster, by seeking new solids outside its now empty area of influence (ontmerle, T. and

all 2006 ; Papaloizou, J. C. B.and all 2007).

If the mass of the envelope reaches about 100 Earth masses, the pressure can no longer

sustain it, and the envelope collapses. All the available gas is then absorbed by the planet,

which quickly reaches the mass of Jupiter, or even exceeds it. As nothing (or almost) can

stop the collapse, we see that the quantity of gas available will determine the final mass of

the planet. However, we have seen that the gas density in the protoplanetary disk decreases

over time. This could explain Saturn’s relatively moderate mass: if it formed later than

Jupiter, there was less gas available. In addition, Saturn and Jupiter are enriched in heavy
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elements compared to the solar composition (and therefore to the initial proto-solar disk),

which could come from the fact that they were formed from a disk that had already lost a

good part of its gas (Gomes, R and all 2005).

If the critical mass for collapse is not reached before the disk of gas dissipates completely,

the planet will never become a gas giant, but will remain as a large core of rocks and ice of

a fifteen times the mass of the Earth, surrounded by a little hydrogen and helium. This is

probably what happened for Uranus and Neptune.

We should also mention an alternative to the core accretion model described above: gravita-

tional instability. According to this idea, certain parts of the disk collapse in on themselves

under the effect of their own gravity, like the molecular cloud which gave birth to the star.

The result of this rapid collapse would be a giant planet. However, it seems difficult that the

conditions of density and temperature are met in the disk for such a collapse to take place,

and it could not explain neither the enrichment of Jupiter and Saturn, nor the existence of

Uranus and Neptune. Most planetary scientists agree that gravitational instability probably

occurs only rarely, in the most distant parts of the disk, tens or even hundreds (of AU from

the star) (Tsiganis, K. and all, 2005).

Figure 2.2: It shows two different categories of planets. Terrestrial planets are small and dense
while giant planets are large, sparse, and surrounded by many satellites (Credit NASA/Space
Telescope Science Institute)

2.3 Planetary migration
A planet embedded in a disk of gas or small particles modifies the distribution of material

in its vicinity, causing the planets orbit to change. Gravitational interaction with a disk can
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excite or damp a planets orbital eccentricity and can also alter the size of the planets orbit,

causing the planet to migrate toward or away from its star. These changes can occur rapidly

on timescales much shorter than the time required to form a planet. The phenomenon

of planetary migration has been known for decades (Goldreich & Tremaine 1980, Lin &

Papaloizou1986).

The direction and rate of migration vary depending on the mass of the planet and the local

properties of the gas disk Type-I migration affects Earth-mass planets (with a mass less than

about 50M⊕ ), where the planet-disk interaction can be treated using linear approximations.

The resulting migration rate is proportional to the mass of the planet and the surface density

of the disk (Ward 1997). Type-II migration affects Jupiter-mass planets. Here, the planet

is massive enough to clear an annular gap in the disk a round its orbit, and the planet’s

motion be comestied to the viscous evolution of the disk (Ward 1997).

2.3.1 Resonant Torques

The total angular momentum exchange between disk and planet can be expressed as the

sum of the torques exerted at discrete resonances in the disk. These resonances correspond

to the points in the disk where the planet excites waves, which almost invariably take the

form of spiral density waves. In general, resonances occur when a characteristic frequency of

the planet matches a frequency in the disk. In a circular disk there are two important types

of resonance corotation and Lindblad resonances .

If the angular velocity of planet is Ωp and the angular velocity of disk Ω(R), the co-rotation

resonance is found where

Ω(R) = Ωp (2.1)

If the disk is Keplerian (i.e., if we neglect gas pressure and self-gravity), then the co-rotation

resonance is found at the planet’s orbital radius. The condition for Lindblad resonances is

similar: where the angular velocity of the gas Ω(R) and that of the angular velocity of planet

Ωp are related by

m [Ω(R)− Ωp] = ±k(R) m ∈ Z (2.2)

where m is mass of disk κ(R) is formally the epicyclic frequency (Papaloizou et al. 2007),

but in a Keplerian disk κ(R) = Ω(R) and the Lindblad resonances are found at radii

RL =

(
1± 1

m

)2/3

a (2.3)
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A circular Keplerian disk therefore has a single co-rotation resonance, and a "comb" of

Lindblad resonances that "pile up" close to the planet

Figure 2.3: Schematic diagram showing the motion of a parcel of gas and a planet in a reference
frame rotating at the average orbit al velocity of the gas Ω(R).

he gas (blue) undergoes small epicycles in the rotating frame owing to the eccentricity of its

orbit. The planet (red) moves at an angular velocity of Ωp −Ω(R) in the rotating frame. A

corotation resonance occurs when Ω(R) = Ωp. A Lindblad resonance occurs when the gas

undergoes an integer number of epicycles for every passage of the planet.

Spiral density waves are launched at Lindblad resonances, carrying angular momentum away

from the planet to other regions of the disk. The disk outside the planet’s orbit exerts a

negative torque on the planet, where as the disk inside the orbit exerts apositive torque. In

general, these torques are not equal. The outer Lindblad resonances lie closer to the planet

than do the inner ones, especially when pressure gradients in the disk are taken into account

(Papaloizou etal.2007). As a result, the outer torque is stronger, and the planet migrates

toward the star. Interactions can also be important at the corotation resonance Ω(R) = Ωp

where the gas and planet orbit at thes a merate. Forlow-mass planets, these torques are

typically too small to offset the differential Lindblad torque except in regions where there is

a strong surface density gradient (Papaloizouetal.2007).

2.3.2 Types of migrations

• Type I migration

Most studies of type-I migration have considered a vertically isothermal disk. Recently,

it has become apparent that migration changes substantially when radiative transfer

within the disk is taken in to account (Kley & Crida2008, Paardekooper & Mellema

36



chapter 2 Interactions (disk-planet)

2006). If the opacity of the disk is similar to that of interstellar dust, planets with

masses < 50M⊕ are likely to migrate outward owing to increased corotation-torques

(Kley &Crida2008). If the opacity is lower, owing to dust coagulation, migration will be

inward in the outer disk and outward in the inner disk (Paardekooper & Mellema2006),

possibly leading to a favored location for planets to form and survive.

Corotation torques and differential Lindblad torques are both altered in regions where

the surface density of the disk changes rapidly with distance from the star. A steep

surface density gradient will be present at the inner edge of the disk and also at the

inner edge of a dead zone. Outward migration is likely at each of these locations, even

if the over all migration trend is inward (Masset et al. 2006b, Morbidelli et al. 2008).

This is known as Type I migration and occurs on a short time scale relative to the

lifetime of the accretion disk.

Figure 2.4: shows the first type of migration.

37



chapter 2 Interactions (disk-planet)

• Type II migration

Type II migration occurs for massive planets with masses comparable to MJ or larger.

Because of angular momentum deposition in the disk, those planets open an annular

gap in the protoplanetary disk at the location of the planet where the density is

significantly reduced. In this case the migration speed is slowed down from the linear

rate because of the reduced mass available near the planet. During the migration

process the gap created by the planet will have to move with the planet through the

disk. Hence, it is often assumed that in an equilibrium situation the gap moves exactly

with the viscous accretion velocity of the disk, and that the planet is locked in the

middle of the gap to maintain torque equilibrium (Ward 1982, 1997; Lin & Papaloizou

1986).

Figure 2.5: shows the second type of migration.

• Type III migration

Between these two regimes, some interesting things happen. Planets with masses com-

parablento that of Saturn can undergo a third kind of migration in massive disks. In

this situation, the planet clears a partial gap in the disk. The remaining gas close to

the planet exerts a corotation torque that grows in proportion to the migration speed.

This can generate a positive feedback, leading to very rapid inward or outward migra-

tion (Masset & Papaloizou2003) Currently, it is unclear whether the conditions needed

to generate type-III migration are likely to occur in practice (DAngelo & Lubow2008).

Under certain conditions, this mode can lead to rapid inward migration (Masset and

Papaloizou 2003). Finally, when the mass of the planet becomes comparable to that

of the disk, the inertia of the planet begins to play a role in its migration and retard
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the variations in migration, normally governed by the evolution of the gas disk (Crida

and Morbidelli 2007).

Figure 2.6: shows the third type of migration.
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Evolution of a protoplanetary disk
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3.1 Introduction
In order to get insight into how viscosity acts to transport angular momentum outwards,

following (Lynden-Bell & Pringle 1974, Pringle 1981) and (Frank et al. 2002) , let us start

with the simplest model of accretion disk a thin gaseous disk rotating around a central

star with considerably larger mass M so that disk self-gravity can be neglected. We adopt

cylindrical polar coordinates (r, φ, z) with central star at the origin. The disk lies in the z = 0

plane. The thin disk approximation implies that the disk scale height H = cs/Ω, where again

cs is the sound speed and Ω is the angular velocity of disk rotation (this expression for H is

easily obtained from the vertical hydrostatic equilibrium) is much smaller than the distance

from the central star H/r << 1.

In protoplanetary disks, for example, this ratio istypically H/r ∼ 0.05 − 0.1 and in AGN

disks it is even smaller, H/r ∼ 0.001 − 0.01, so the condition for thin disk limit is more

or less satisfied. Many studies are limited just to this approximation, because it helps to

understand basic physical processes and instabilities, which can be then generalized to thick

disk. In this case basic hydrodynamic equations are integrated in the vertical direction to
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yield two dimensional equations. The disk is then characterized by its surface density Σ,

which is a mass per unit surface area of the disk, given by integrating the gas density in the

vertical z-direction. The thin disk approximation is equivalent to requiring that the sound

speed cs is much less than the rotation velocity rΩ(r), or the disk flow is strongly supersonic.

From this condition one can readily find that the rotation velocity is given by Kepler law

(Pringle 1981, Frank et al. 2002):

Ω(r) = ΩK(r) =

(
GM

r3

)1/2

. (3.1)

In this case a disk is said to be rotationally supported, i.e., gravity force exerted by

the central star is balanced by centrifugal force due to rotation. Because of the thin disk

approximation, the pressure gradients tum out to be much smaller than these two forces.

The disk being accreting implies that in addition to Keplerian velocity it also possesses

radial, or ’drift’ velocity vr directed to the central star. As will be clear below, this radial

velocity is much smaller than Keplerian velocity so the ordering vr ≪ cs ≪ rΩK holds and

is directly related to the viscosity parameter v implying that accretion takes place on time

scales longer than dynamical time Ω−1

Below is a list of all the variables describing the state of the disk, as well as the equation

for the evolution of the accretion disk. Based on the conservation of mass and angular

momentum, we then show the behavior of the planet’s angular momentum in PPD. Finally,

by following the various steps, we solve the evolution equation of a protoplanetary disk.

3.2 Accretion parameters governing disk structure
For deriving the general equations of disk structure, we follow the motion of an annulus

of the disk and use the vertically integrated form in all equations, i.e. the surface density

Σ instead of the physical density ρ Matter can flow into the annulus and out of it with a

velocity vr. We consider in the following an axisymmetric disk and assume that the surface

density can be written in the general form of Σ(r, t) which is an integral of the mass density

ρ(r, z) over the disk height z.

Σ(r, t) =

∫ ∞

−∞
ρ(r, z)dz (3.2)
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The state of the disk at time t and in the vicinity of point r is mainly described by a

characteristic temperature T (which is here the temperature at the equatorial plane z = 0

); its surface density Σ and its local accretion rate dM/dt.

Vertical disk structure

The vertical (z-direction) disk structure is found by solving the equation of hydrostatic

equilibrium
1

ρgas

∂P

∂z
=

∂

∂z

(
GM∗√
r2 + z2

)
(3.3)

If the disk is vertically thin (z ≪ r) and the gas temperature does not depend on z (i.e.

avertically isothermal disk), The above equation can be integrated to give the vertical density

structure,

ρgas(r, z) = ρc(r)e
−z2/(2H2

gas) (3.4)

where ρc(r) is the density at the disk midplane.

The half-height of the disk H

The gas scale height is

Hgas =

√
KTcr3

(µmpGM∗)
(3.5)

where Tc is the midplane gas temperature. When we deal with the vertical hydrostatic

equilibrium of the disk, we find:

H =
Cs

Ω
(3.6)

The angular velocity Ω

Assuming that the orbits of matter particles are circular and obey Kepler’s laws, we have

Ω =

(
GM

r3

)1/2

(3.7)

G the gravitaion constant.
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The pressure P

The total pressure P is broken down into gas pressure due to particles Pgas and radiation

pressure due to photons Prad We have:

P = Pgas + Prad =
ρ

µmp

KT +
1

3
aT 4 (3.8)

In these expressions: ρ is the average density in [gcm−3] ;T is the gas temperature; k is

Boltzmann’s constant; mp the mass of the proton; a is the radiation constant, it is a =

7.564.10−15cgs. We have:
(

K
mp

)
= 8.31434.107cgs

The speed of sound Cs

It is the speed of the adiabatic disturbances of density, we have:

Cs =

(
Γ1P

ρ

)1/2

(3.9)

Γ1 is a quantity which depends on β and which is 5/3 when β = 1 and 4/3 when β = 0. To

simplify, we ignore this constant and we set Γ1 = 1.

The pressure indicator β

The parameter β is conventionally defined as the ratio of the gas pressure to the total

pressure:

β =
Pgas

P
(3.10)

For β = 1, the gas pressure dominates and for β = 0, the radiation pressure.

The viscosity v

v is the kinematic viscosity, of turbulent origin, of the gas in [cm2S−1].

v =
2

3
αCSH (3.11)

α is a phenomenological parameter whose value is unknown.
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The accretion rate dM/dt

It is a local rate which therefore depends on r, it is ppsitive if the matter is accreted.

Ṁ = −2πrΣvr (3.12)

We Consider a geometrically axisymmetric accretion disk whose mass density is Σ(r, t). The

gas in the disk moves in circular orbits with the local Keplerian velocity

vφ(r) = r · Ω(r) (3.13)

where Ω(r) is the angular velocity at radius r. Circular orbits are considered because a

circular orbit at minimum energy for an angular momentum, and because the delay for

energy loss (via viscous "friction") is very rapidly than the delay for redistribution of the

angular momentum.

To clarify, "energy loss" means the conversion of roughly kinetic energy into random thermal

energy (i.e. heat), which then cools via radiative emissions. (i.e. the photons carry energy,

which we detect as disk luminosity). The kinetic energy basically, of course, comes from

the gravitational potential energy of the gas. In addition to its orbital motion, the mass in

the disk also flows slowly in the radial direction with velocity vr(r). A negative value of vr

implies a flux towards the central mass. This should not be confused with the slow deviation

of the inward radial velocity, vr(r) from the highly supersonic azimuthal velocity vφ(r).

3.3 The evolution of accretion disk
In order to determine how a disk evolves, we first consider mass and angular momentum

conservation in a thin annulus. We assume that the disk is axisymmetric, with surface

density Σ(R)

3.3.1 Conservation of mass

Accretion is a radial flow of gas, and we denote the radial velocity as vR(R); by convention,

positive vR is in the outward direction (accretion therefore has vR < 0 ). We then consider

an annulus at radius R with thickness ∆R. The rate of mass flow through the inner edge of

the annulus is

Ṁinner = 2πRΣ(R)vR(R) (3.14)
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and the rate of mass flow through the outer edge of the annulus is

Ṁouter = 2π(R + ∆R)Σ(R +∆R)vR(R +∆R) (3.15)

The difference between these two quantities is the rate of change of mass in the annulus, so

2πR∆R
∂Σ

∂t
= Ṁinner − Ṁouter (3.16)

and we can substitute to find

R
∂Σ

∂t
= −(R + ∆R)Σ(R +∆R)vR(R +∆R)− RΣ(R)vR(R)

∆R
(3.17)

We can then take the limit ∆R → 0 to find

R
∂Σ

∂t
+

∂

∂R
(RΣvR) = 0 (3.18)

which is the equation of mass continuity for a thin disk.

3.3.2 Conservation of angular momentum

If the orbital frequency is Ω(r) then the angular momentum per unit area is R2ΩΣ, and a

similar analysis yields a corresponding equation for the conservation of angular momentum

However, in this case we must consider the effects of torques on the annulus, so the equation

for angular momentum conservation becomes

R
∂

∂t

(
R2ΩΣ

)
+

∂

∂R

(
R2ΩRΣvR

)
=

1

2π

∂G

∂R
(3.19)

Here G(R) is the torque: it appears as a radial derivative, as we are interested only in the

differential torque across the annulus. (If the torque is constant across the annulus then

∂G/∂R = 0 and there is no net change in the angular momentum.)

At this point we can make little further progress without making some assumptions

about the origin of the torque G. The simplest assumption is to assume that the torques

are due to an ordinary fluid viscosity. in thatcase, the shearing nature of a Keplerian disk

will result in viscous torques between adjacent annuli (as they have different azimuthal
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velocities). The viscous torque G is therefore

G = 2πR · RνΣ · ∂G
∂R

R (3.20)

Here ν is the kinematic viscosity. The second term is the viscous force per unit lengh,

the first term comes from integrating around the anmulus, and the final factor of R is the

lever arm of the torque. The fact that G ∝ dΩ/dR reflects the fact that the viscous torque

is only nonzero if the disk has differential rotation. (If Ω is constant, the disk rotates as a

solid body and there are no viscous torques between adjacent annuli.)

∂

∂t

(
R2ΩΣ

)
+

1

R

∂

∂R

(
R3ΣvRΩ

)
=

1

R

∂

∂R

(
R3vΣ

∂Ω

∂R

)
(3.21)

which is the equation for angular momentum conservation in a viscous accretion disk. We

can then combine, we find

∂Σ

∂t
= − 1

R

∂

∂R

 1

∂

∂R
(R2Ω)

∂

∂R

(
R3νΣ

∂Ω

∂R

) (3.22)

3.4 Evolution equation of protoplanetary disk
The two equations (conservation of mass equation) (3.18) and (conservation of angular

momentum equation) (3.21) can be combined to give a single equation for the evolution of

surface density.( Appendex B )

This is the general equation governing the evolution of a viscous accretion disk with an

arbitrary rotation profile Ω(R) If we further assume that the disk is in Keplerian rotation

we can substitute Ω =
√
GM∗/R3 and find

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
νΣR1/2

)]
(3.23)

This equation is one of the key equations in the theory of accretion disks, its temporal

evolution being determined only by the kinematic viscosity ν. In general, ν is a function

of the local variables in the disk, which are Σ, r and t. Thus, this equation is a nonlinear

diffusion equation for Σ and the viscous evolution of accretion disks depends on the behavior
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of the viscosity ν.

We present models of giantplanet migration in evolving protoplanetary disks, where the

disks evolve to viscous transport of angular momentum by the central star. Planets migrate

due to tidal interaction with the disk(in the Type II migration regime), and the disk is also

subject to tidal torques from planets. The equation that describes the coupled evolution of

a protoplanetary disk and planet (Lin & Papaloizou 1986) is

∂Σ

∂t
=

1

R

∂

∂R

[
3R1/2 ∂

∂R

(
νΣR1/2

)
− 2ΛΣR3/2

(GM)1/2

]
(3.24)

Where Σ(R, t) is the disk surface density, t is time, R is cylindrical radius, ν is the kinematic

viscosity, and M is the stellar mass. The first term on the right hand side describes ordinary

viscous evolution of the disk (Lynden-Bell & Pringle 1974; Pringle 1981), and The second

term describe show the disk responds to the planejary torque.

Here Λ is the injection rate of angular momentum per unit mass into the disk. Following

(Trilling et al. 1998; Armitage et al 2002), for a planet of mass Mp = kM∗, k is the ratio

between the mass Mp of planet and that of the star, the shape of the torque distribution in

the two regions:

Λ(R) =


−k2GM∗

2R

(
R

∆p

)4

: R < a

k2GM∗

2R

(
a

∆ρ

)4

: R > a

(3.25)

where

∆p = max(H, |R− a|)

(∆p) is equal to the greater of H and |R− a| whereas H is the scale-height of the disk.

The prediction of the direction of migration by an analytical calculation is a bit difficult

because a precise calculation of the torque (torque) is necessary. But in our case we are

talking about massive planets, and we consider a geometrically stationary thin disk, with a

viscosity in the form η = s.rn, n < 2.

The rotating accretion disk is axisymmetric around a star of mass M∗. The specific angular

momentum transfer rate from the planet, of mass Mp = kM∗ to the disk is given by Λ(r).

To better understand angular momentum behavior, we consider the following steps. For

computational convenience, we introduced a set of dimensionless variables such that the

cylindrical radius x = R/a and the torque l(x) = a3/2√
GM

Λ(R) and for the following application,

we take a = 2.5H
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Figure 3.1: The torque in the region 1.

Figure 3.2: The torque in the region 2.

Torque describes the movement of a planet during it revolves around the star, and

knowing the stress that occurs to the planet from the side of the star and how this stress

affects the change of its orbit and its movement (approaching or moving away from the star)

We notice the following through the curve of angular momentum changes in terms of :

• In the first region (0 ≤ x ≤ 1), the angular momentum is initially zero and gradually

increases until it the minimum value (x = 1), after which the angular momentum

increases at both ends until it reaches a maximum and a minimum value at the planet.

• In the second region (1 ≤ x ≤ 2), the angular momentum gradually decreases until it

is negligible far from the planet.
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3.5 Solution the evolution equation for a ppd
To find the equation for the evolution of the surface density for a PPd, we will limit

ourselves to the steady state and start with equation (3.24)

R.
∂

∂t
Σ(R.t)︸ ︷︷ ︸
1

=
∂

∂R

[
3R1/2 ∂

∂R

(
η.Σ.R1/2

)]
︸ ︷︷ ︸

2

− 2

(GM)1/2
∂

∂R

[
Λ.Σ.R3/2

]
︸ ︷︷ ︸

3

we’ve got

Σ(R.t) = φ(R). exp(−λt) (3.26)

Performing the derivatives with respect to R we find

The first side:
∂

∂t
Σ(R.t) = −λ.φ(R). exp(−λt) (3.27)

where λ is a constant.

The second side :

3
∂

∂R

[
R1/2 ∂

∂R

(
η.Σ.R1/2

)]
= 3

∂

∂R

[
η′.φ(R).R + η.φ′(R).R +

1

2
η.φ(R)

]
exp(−λt)

= 3

[
η′′.φ(R).R + η′ (φ′(R).R + φ(R)) + η′.φ′(R).R

+ η (φ′′(R).R + φ′(R)) +
1

2
(η′.φ(R) + η.φ′(R))

]
exp(−λt)

(3.28)

The third side :

− 2

(GM)1/2
∂

∂R

[
Λ.Σ.R3/2

]
= − 2

(GM)1/2

[
Λ′φ(R).R3/2 + Λ

(
φ′(R).R3/2 +

3

2
φ(R).R1/2

)]
exp(−λt)

= − 2

(GM)1/2

[
Λ′φ(R).R3/2 + Λ.φ′(R).R3/2 +

3

2
.Λ.φ(R).R1/2

]
exp(−λt)

(3.29)

49



chapter 3 Evolution of a protoplanetary disk

Substituting equations (3.27), (3.28), and (3.29) into equation

−λ.R.φ(R). exp(−λt) = 3

[
η′′.φ(R).R + η′

(
φ′(R).R + φ(R)

)
+ η′.φ′(R).R

+ η

(
φ′′(R).R + φ′(R)

)
+

1

2

(
η′.φ(R) + η.φ′(R)

)]
exp(−λt)

2(
GM

)1/2

[
Λ′φ(R).R3/2 + Λ.φ′(R).R3/2 +

3

2
.Λ.φ(R).R1/2

]
exp(−λt) (3.30)

0 = 3η′′.φ(R).R2 +
9

2
η′.Rφ(R) + 6η′φ′(R).R2 +

9

2
ηRφ′(R)

+ 3η.φ′′(R).R2 − 2(
GM

)1/2
Λ′φ(R).R5/2

− 2(
GM

)1/2
Λ.φ′(R).R5/2 − 3(

GM

)1/2
Λ.φ(R).R3/2 + λ.R2.φ(R)

0 =
3η′′

3η.
.φ(R).R2 +

9η′

2.3η.
.Rφ(R) +

6η′

3η.
φ′(R).R2

+
9

2.3η
ηRφ′(R) + φ′′(R).R2 − 2(

GM

)1/2

3η.

Λ′φ(R).R5/2

− 2(
GM

)1/2

3η.

Λ.φ′(R).R5/2 − 3(
GM

)1/2

3η.

Λ.φ(R).R3/2 +
λ.

3η.
R2φ(R)

0 = R2φ′′(R) +

[
3

2
+

2η′

η
R− 2Λ√

GM3η
R3/2

]
Rφ′(R)

+

[
− Λ√

GMη
R3/2 − 2√

GM3η.
Λ′.R5/2 +

3η′

2η
R +

η′′

η
R2 +

λ.

3η.
R2

]
φ(R)

0 = φ′′(R) +

[
3

2R
+

2η′

η
− 2Λ√

GM3η
R1/2

]
φ′(R)

+

[
− Λ√

R
√
GMη

− 2√
GM3η.

Λ′.R1/2 +
3η′

2ηR
+

η′′

η
+

λ

3η

]
φ(R) (3.31)

or again, by posing

R = ax, φ(R) → u(x), η(R) → ν(x) (3.32)
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Where η(R) = SRn

We find

0 =
d2φ(R)

dR2
+

[
3

2R
+

2η′

η
− 2Λ√

GM3η
R1/2

]
dφ(R)

dR

+

[
− Λ√

R
√
GMη

− 2√
GM3η.

dΛ

dR
.R1/2 +

3

2R

dη

ηdR
+

d2η

ηdR2
+

λ

3η

]
φ(R)

0 =
d2u(x)

a2dx2
+

[
3

2ax
+

2dν

aνdx
− 2Λ

√
a√

GM3ν
x1/2

]
du(x)

adx

+

[
− Λ
√
a
√
x
√
GMν

− 2√
GM3ν.

dΛ

adx

√
a
√
x+

3dν

2a2xνdx
+

d2ν

a2νdx2
+

λ

3ν

]
u(x) (3.33)

multiply by a2

0 =
d2u(x)

dx2
+

[
3a

2x
+

2adν

νdx
− 2Λa2

√
a√

GM3ν
x1/2

]
du(x)

adx

+

[
− Λa2
√
a
√
x
√
GMν

− 2a2√
GM3ν.

dΛ

adx

√
a
√
x+

3a2dν

2a2xνdx
+

a2d2ν

a2νdx2
+

λa2

3ν

]
u(x)

0 =
d2u(x)

dx2
+

[
3

2x
+

2dν

νdx
− 2Λa

√
a√

GM3ν
x1/2

]
du(x)

dx

+

[
3

2xν

dν

dx
+

d2ν

νdx2
− Λa3/2

√
x
√
GMν

− 2a3/2
√
x√

GM3ν.

dΛ

dx
+

λa2

3ν

]
u(x)

0 =
d2u(x)

dx2
+

[
3

2x
+ 2

ν ′

ν
− 2Λa

√
a√

GM3ν
x1/2

]
du(x)

dx

+

[
3

2x

ν ′

ν
+

ν ′′

ν
− 2a3/2

√
x√

GM3ν.

dΛ

dx
− Λa3/2

√
x
√
GMν

+
λa2

3ν

]
u(x) (3.34)

we put

l(x) =
Λa3/2

(GM)1/2
(3.35)

λ = λa2 (3.36)

We get

0 =
u′′(x)

u(x)
+

(
3

2x
+ 2

ν ′(x)

ν(x)
− 2

√
x

3ν(x)
l (x)

)
u′(x)

u(x)

+

(
3

2x

ν ′(x)

ν(x)
+

ν ′′(x)

ν(x)
− 2

√
x

3ν(x)
l ′(x)− l (x)√

x.ν(x)
+

λ

3ν(x)

)
(3.37)
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3.6 Conclusion
Based on the basic equations (conservation of mass - conservation of angular momentum)

and as a result of the tidal interaction that occurs between the disk and the planet, the disk

is also subject to the tidal torque of the planet. We obtain the equation for the co-evolution

of the planet and the protoplanetary disk. The second term of this equation contains a

rate factor. Transfer of angular momentum. After deriving both sides of the equation and

changing the variable, we obtain the general solution to the differential equation for the

evolution of a protoplanetary disk and a planet.
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Chapter 4

Discussion of the surface density behavior in a(PPD):the

first method
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4.1 Introduction
The general approach involves studying the evolution of the protoplanetary disk and

planet. We will first find the general solution of the differential equation ( 3.37) .which will

lead us to the analytical solution of the surface density evolution.

0 =
u′′(x)

u(x)
+

(
3

2x
+ 2

ν ′(x)

ν(x)
− 2

√
x

3ν(x)
l (x)

)
u′(x)

u(x)
+(

3

2x

ν ′(x)

ν(x)
+

ν ′′(x)

ν(x)
− 2

√
x

3ν(x)
l ′(x)− l (x)√

x.ν(x)
+

λ

3ν(x)

)

The equation ( 3.37) has a generic form as

0 = u′′(x) + f1(x)u
′(x) + f0(x)u(x) (4.1)

where f0(x) and f1(x) are respectively given by
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f0(x) =
3

2x

ν ′

ν
+

ν ′′

ν
− l (x)√

x.ν
− 2

√
x

3ν
l ′(x) +

λ

3ν
(4.2)

f1(x) =
3

2x
+ 2

ν ′

ν
− 2

√
x

3ν(x)
l (x) (4.3)

In order to solve the equation (4.1) we put the change

u(x) =
w (x)

q (x)
(4.4)

After simplifications, it is traight forward and easy to get

w′′(x)

w (x)
+

(
f1(x)−

2q′(x)

q (x)

)
w′(x)

w (x)
+

[
f0(x)−

q′′(x)

q (x)
+ 2

(
q′(x)

q (x)

)2

− f1(x)
q′(x)

q (x)

]
= 0 (4.5)

By using

f1(x)− 2
q′(x)

q (x)
=

g

x
(4.6)

where g is a constant to be determined later. When we replace f1 in the last equation,

we can find q(x), that is to say

q (x) = exp

(
1

2

∫ x

f1 (θ) d θ − g

2
ln(x)

)
(4.7)

q′(x) =

(
f1(x)

2
− g

2x

)
q (x) (4.8)

q′′(x) =

[
f ′(x)

2
+

g

2x2
+

(
f1(x)

2
− g

2x

)2
]
q (x) (4.9)

then the equation (4.5) transforms to

0 = w′′(x) +
g

x
w′(x) +G (x)w (x) (4.10)

where g is a free transformation parameter that we will use for our convenience later and
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G (x) = f0(x)−
q′′(x)

q (x)
+ 2

(
q′(x)

q (x)

)2

− f1(x)
q′(x)

q (x)
(4.11)

or equivalently, after using the above expressions (4.7), (4.8), (4.9)

G (x) = f0(x)−
f ′
1 (x)

2
− f 2

1 (x)

4
+

g (g − 2)

4 x2
(4.12)

We substitute the expressions of f0(x) and f1(x)and f ′
1 (x)given above, we find

G (x) =
3

16x2
+

λ

3ν
− l (x)

3
√
x ν

−
√
x

3ν

d

d x
l (x)− x

9ν2
l 2(x) +

√
x

3

ν ′

ν
l (x) +

g (g − 2)

4x2
(4.13)

where the viscosity ν(x) = sxβ and replace λ/(3s) by k2

G (x) =
3

16x2
+

K2

xβ
+

g (g − 2)

4x2
− 1

3sxβ−1/2

d

dx
l (x)− l 2(x)

9s2x2β+1/2
+

(β − 1) l (x)

3sxβ+1/2
(4.14)

Now, to solve the above differential equation (4.11), we discard the terms containing the

torque l(x) and its derivative in (4.12), that is to say

0 =
d

dx
l (x) +

l 2(x)

3sxβ−1/2
− (β − 1)

x
l (x) (4.15)

This constraint has a twist advantage: the first is to have a freely expression of the torque

l(x) that responds to the physical situation in our consideration. The second advantage is a

purely mathematical issue that allows as to have analytically the solution of the differential

equation (4.11). Indeed,wehave from the constraint (4.15):

l (x) =
3Sxβ−1

3CS + 2
√
x

(4.16)

And

G (x) =
3

16 x2
+

K2

xβ
+

g(g − 2)

4x2
(4.17)

leading to get a simplified differential equation that governs ω(x) which is a Bessel’s

equation

0 = w′′(x) +
g

x
w′(x) +

(
3

16 x2
+

K2

xβ
+

4g(g − 2)

16x2

)
w (x) (4.18)
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0 = ω′′(x) +
g

x
ω′(x) + (

K2

xβ
+

3 + 4g(g − 2)

16x2
)ω(x) (4.19)

x2ω′′(x) + gxω′(x) + (k2x2−B +
3 + 4g(g − 2)

16
)ω(x) = 0 (4.20)

Its general solution is a linear combinaison of Bessel functions

w (x) = x
1
2
(1−g) [C1(k)Jp(ky) + C2(k)Yp(ky)] (4.21)

We get

u(x) =
w(x)

q(x)
= x(1−g)/2 exp(−1

2

∫ x

f 1(z)dz +
g

2
ln(x)) (C1(k)Jν(ky) + C2(k)Yν(ky))

u(x) =
x− 3

4
−β

3CS2

(
2

3
x+ cs

√
x

)
w (x) (4.22)

u(x) =
w (x)

q(x)
=

x− 5
4

3CS
l−1(x).x1/2(1−g) [C1(k)Jp(ky) + C2(k)Yp(ky)]

where k is an arbitrary mode of solution and β = 3/2 and y = 1
1−β/2

X1−β/2 = 4x1/4, p =

1
2(2−β)

= 1 and Jp(ky), Yp(ky) are the well known Bessel’s functions. The general solution

is the summation over all possible modes k, that is to say

Σ(x, t) =
x− 5

4
+ 1

2
(1−g)

3C S l (x)

∞∫
0

[C1(k)J1(ky) + C2(k)Y1(ky)] exp(−3sk2t)dk (4.23)

we will discuss the behavior of surface density in a protoplanetary disk. We made ap-

propriate considerations for each area (x < 1) and (x < 1) in order to better understand the

surface density behavior.

4.2 Calculation of surface density in the region (x < 1)
Starting with the general solution of the equation for the evolution of a protoplanetary disk

and a planet,

Σ(x, t) = F (x)

∫ ∞

0

[C1(k)J1(ky) + C2(k)Y1(Ky)] exp(−3Sk2t)dk (4.24)
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and beacause Y1(k y) diverge at zero, we discard it from the solution (4.2) Then in region

x < 1 we have

Σ (x, t) =
x−5/4

3CS
l−1(x).x1/2(1−g)

∫ ∞

0

C1(k)J1(ky) exp(−3Sk2t)dk (4.25)

At initial time t = 0, we have (knowing that y = 4x1/4)

Σ (x, 0) =
x−5/4

3CS
l−1(x).x1/2(1−g)

∫ ∞

0

C1(k)J1(4 k x1/4) dk

3CS. l (x) .x5/4 .x1/2(g−1) .Σ (x, 0) =

∫ ∞

0

C1(k).k
−1J1(4 k x1/4) kdk (4.26)

we put g = −3/2, then

3CS. l (x) .Σ (x, 0) =

∫ ∞

0

C1(k).k
−1J1(4 k x1/4) kdk (4.27)

or equivalently by substituting x by y

x =
(
y
4

)4
3CS. l ((

y

4
)4) .Σ

(
(
y

4
)4, 0

)
=

∫ ∞

0

C1(k).k
−1J1(k y) kdk (4.28)

If we consider at the initial time that the surface density is sharped at x = 1/2, that is

to say

Σ (x, 0) = Σ0δ (x− 1/2) (4.29)

then

3CS. l ((
y

4
)4) .δ

(
(
y

4
)4 − 1

2

)
=

∫ ∞

0

C1(k).k
−1J1(k y) kdk (4.30)
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By applying the inverse Hankel transform, we can extract the coefficient C1(k) as

C1(k).k
−1 = 3CS

∫ 4

0

l ((
y

4
)4) δ

(
(
y

4
)4 − 1

2

)
J1(k y) y dy

δ

(
(
y

4
)4 − 1

2

)
= 23/4 δ

(
y − 4(

1

2
)1/4
)

(4.31)

After integrating over y and using the properties of delta Dirac function, we get

C1(k).k
−1 = 3.23/4 CS.l

(
1

2

)
.J1(4k

(
1

2

)1/4

).4

(
1

2

)1/4

(4.32)

C1(k).k
−1 = Q CS.l

(
1

2

)
.J1(4k

(
1

2

)1/4

) (4.33)

Then the surface density, for x < 1, becomes

Σ (x, t) =

∫ ∞

0

x−5/4

3CS
l−1(x).x1/2(1−g) C1(k)J1(4 k x1/4) exp

(
−3Sk2t

)
dk

Σ (x, t) =
1

3CS
l−1(x)

∫ ∞

0

C1(k)J1(4 k x1/4) exp
(
−3Sk2t

)
dk (4.34)

After replacing C1(k) by its expression, we obtain

Σ (x, t) = Q.CS
1

3CS
l−1(x)

∫ ∞

0

l

(
1

2

)
J1(4k

(
1

2

)1/4

).J1(4 k x1/4) exp
(
−3Sk2t

)
kdk

Σ (x, t) =
Q l

(
1
2

)
3 l (x)

∫ ∞

0

J1(4k

(
1

2

)1/4

)J1(4 k x1/4) exp
(
−3Sk2t

)
kdk (4.35)

or by using the formula (Tanaka, T. (2011)):

∫ ∞

0

Jυ (ky
′) .Jυ (ky) exp(−3sk2t).k.dk =

1

6st
exp

(
−y2 + y′2

12st

)
Ip

(
yy′

6st

)
(4.36)
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Σ (x, t) =
Q l

(
1
2

)
3 l (x)

1

6St
exp

(
−16

(x)
1
2 + (1

2
)
1
2

12St (x)

)
I1

(
16

(x)
1
4 (1

2
)
1
4

6St (x)

)
(4.37)

Σ (x, t) =
Q l

(
1
2

)
3 l (x)

1

6St (x)
exp

(
−16

√
x+ (1

2
)
1
2

12St (x)

)
I1

(
16

(x)
1
4 (1

2
)
1
4

6St (x)

)
(4.38)

we put:

τ =
3St√

x
(2− β)2 =

3St

4
√
x

(4.39)

t (x) =
4
√
x

3S
τ (4.40)

3St = 4
√
x τ (4.41)

and by using the expression of the torque l(x),we get a more simplified expression, for

x < 1, of the surface density

l (x) =
3S

√
x

3CS + 2
√
x

(4.42)

l (
1

2
) =

3S
√

1/2

3CS + 2
√

1/2
(4.43)

l (1
2
)

l (x)
=

√
1/2√
x

3CS + 2
√
x

3CS + 2
√

1/2
(4.44)

=

√
1/2(

3CS + 2
√

1/2
) 3CS + 2

√
x√

x
(4.45)

So

Σ (x, t) =
Q l

(
1
2

)
3 l (x)

.
1

6St (x)
exp

(
−4

√
x+ (1

2
)
1
2

3St (x)

)
I1

(
8
(x)

1
4 (1

2
)
1
4

3St (x)

)
(4.46)

Σ (x, τ) =
Q
6

l
(
1
2

)
l (x)

.
1

4
√
x τ

exp

(
−1 +

√
2x

τ
√
2x

)
I1

(
2

3
4

1

τ.x
1
4

)
(4.47)

our model stands on a choice of the constantC and S,such that the torque l(x) ful fills

an acceptable behaviour
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CS = −2/3 (4.48)

S = 4/15 (4.49)

that is to say the torque l(x) has the following expression

l (x) =
3S

√
x

3CS + 2
√
x
=

4
√
x

5(−2 + 2
√
x)

(4.50)

Figure 4.1: The torque in the two regions.

shows the angular momentum behavior in the disk in the two regions (x < 1) and(x > 1).

identical to the angular momentum behavior used in previous studies (Lin and Papaloizeau

1986) and explained in Chapter Three (fig 3.1 and fig 3.2). We observe that the angular

momentum reaches its peak at the planet (x = 1) and vanishes at the edges of the disk away

from the planet.

The surface density in the region(x < 1) is given by

Σ (x, τ) =
Q
24

1(√
2− 1

) 1−√
x

x

1

τ
exp

(
−1 +

√
2x

τ
√
2x

)
I1

(
2

3
4

1

τ.x
1
4

)

Σ (x, τ) = W0
(1−

√
x)

x

1

τ
exp

(
−1 +

√
2x

τ
√
2x

)
I1

(
2

3
4

1

τ.x
1
4

)
Σ (x, τ)

W0

=
(1−

√
x)

x

1

τ
exp

(
−1 +

√
2x

τ
√
2x

)
I1

(
2

3
4

1

τ.x
1
4

)
(4.51)
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where W0 is the contstant

τ = 0.016

Σ (x, τ)

W0

= 62.5
(1−

√
x)

x
exp

(
−62.5

1 +
√
2x√

2x

)
I1

(
105.11

x
1
4

)
(4.52)

Figure 4.2: The surface density for x < 1 ; At (τ = 0.016).

τ = 0.032

Σ (x, τ)

W0

= 31.25
(1−

√
x)

x
exp

(
−31.25

1 +
√
2x√

2x

)
I1

(
52.56

x
1
4

)
(4.53)

Figure 4.3: The surface density for x < 1 ; At (τ = 0.032).
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τ = 0.064

Σ (x, τ)

W0

= 15.625
(1−

√
x)

x
exp

(
−15.625

1 +
√
2x√

2x

)
I1

(
26.278

x
1
4

)
(4.54)

Figure 4.4: The surface density for x < 1 ; At (τ = 0.064).

Figure 4.5: The surface density for x < 1 ; At (τ = 0.016, 0.032, 0.064).

These curves show the evolution of surface density as a function of x = R/a. We notice

that the surface density has different peaks at various periods of time (τ = 0.016, τ =

0.032, τ = 0.064). Surface density is more pronounced at peak x = 1/2.
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4.3 Calculation of surface density in the region (x > 1)
We restart from the general solution (4.1).with as before in the above subsection (g =

−3/2, CS = −2/3)

we take the modes of k

Σ(x, t)

F (x)
=

∫ ∞

0

[C1(k)J1(ky(x)) + C2(k)Y1(ky(x))] exp(−3Sk2t)dk

F (x) =
x− 5

4

3CS
l−1(x).x

1
2
(1−g), were

F (x) = − 1

2l (x)
(4.55)

Using the boundary condition at x = 1:Σ(x = 1, t) = 0 then

0 = [C1(k)J1(ky(1)) + C2(k)Y1(ky(1))]

C2(k) = −J1(ky(1))

Y1(ky(1))
C1(k)

C1(k)

Y1(ky(1))
= − C2(k)

J1(ky(1))
(4.56)

then

Σ(x, t)

F (x)
=

∫ ∞

0

C1(k)

Y1(ky(1))
[Y1(ky(1))J1(ky)− J1(ky(1))Y1(ky)] exp(−3Sk2t)dk (4.57)

then, after using that x = x(y) = (y
4
)4 and we assimilate the constant C1(k)

Y1(ky(1))
to a

novel constantC(k), the equation (4.57) becomes

Σ(x, t)

F (x)
≡

∫ ∞

0

C(k)

k
[Y1(ky(1))J1(ky)− J1(ky(1))Y1(ky)] exp(−3Sk2t)kdk (4.58)

Σ(x (y) , t)

F (x (y))
≡

∫ ∞

0

C(k) (J2
1 (ky(1)) + Y 2

1 (ky(1)))

k
(4.59)

[Y1(ky(1))J1(ky)− J1(ky(1))Y1(ky)]

J2
1 (ky(1)) + Y 2

1 (ky(1))
exp(−3Sk2t)kdk
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where U (k) = J2
1 (ky(1)) + Y 2

1 (ky(1))

Σ(x (y) , t)

F (x (y))
≡

∫ ∞

0

C(k)U (k)

k

[Y1(ky(1))J1(ky)− J1(ky(1))Y1(ky)]

U (k)

exp(−3Sk2t)kdk (4.60)

At t = 0, this expression becomes

Σ(x(y), 0)

F (x(y))
≡ M(y) =

∫ ∞

0

C(k)U (k)

k

[Y1(ky(1))J1(ky)− J1(ky(1))Y1(ky)]

U (k)
kdk (4.61)

By using the inverse Weber transform, we obtain

C(k) (J2
1 (ky(1)) + Y 2

1 (ky(1)))

k
=

∫ ∞

1

M(y) [Y1(ky(1))J1(ky)− J1(ky(1))Y1(ky)] ydy

(4.62)
C(k)

k
=

∫ ∞

1

M(y)

[
[Y1(ky(1))J1(ky)− J1(ky(1))Y1(ky)]

(J2
1 (ky(1)) + Y 2

1 (ky(1)))

]
ydy

(4.63)

or equivalently, following the definition of M(y)

C(k)

k
=

∫ ∞

1

Σ(x(y), 0)

F (x(y))

[
Y1(ky(1))J1(ky)− J1(ky(1))Y1(ky)

(J2
1 (ky(1)) + Y 2

1 (ky(1)))

]
ydy (4.64)

We assume that the surface density is more pronouced at initial time at the location

x = 3/2

Σ(
(y
4

)4
, 0) = Σ0δ

((y
4

)4
− 3

2

)
(4.65)

and that

δ

((y
4

)4
− 3

2

)
= 23/4δ

(
y − 4

(
3

2

)1/4
)

(4.66)

C(k)

k
=

Σ0.

F (3
2
)

[
Y1(ky(1))J1(k4

(
3
2

)1/4
)− J1(ky(1))Y1(k4

(
3
2

)1/4
)

(J2
1 (ky(1)) + Y 2

1 (ky(1)))

]
.23/4.4.

(
3

2

)1/4

C(k)

k
= A

Y1(ky(1))J1(k4
(
3
2

)1/4
)− J1(ky(1))Y1(4

(
3
2

)1/4
k)

(J2
1 (ky(1)) + Y 2

1 (ky(1)))
(4.67)
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then, knowing that y(1) = 4, we obtain

C(k)

k
= A

Y1(4k)J1(4
(
3
2

)1/4
k)− J1(4k)Y1(4

(
3
2

)1/4
k)

J2
1 (4k) + Y 2

1 (4k)
(4.68)

Now we replace the last coefficient C(k)/k in the formula ( 4.58 )

y(x) = 4x1/4 (4.69)

Σ(x, t)

F (x)
≡

∫ ∞

0

C(k)

k

[
Y1(4k)J1(4kx

1/4)− J1(4k)Y1(4kx
1/4)
]
exp(−3Sk2t)kdk

Σ(x, t)

F (x)
≡

∫ ∞

0

A

[
Y1(4k)J1(4

(
3
2

)1/4
k)− J1(4k)Y1(4

(
3
2

)1/4
k)

J2
1 (4k) + Y 2

1 (4k)

]
[
Y1(4k)J1(4kx

1/4)− J1(4k)Y1(4kx
1/4)
]
exp(−3Sk2t)kdk (4.70)

where : A =
Σ0

F (3
2
)
.23/4.4.

(
3

2

)1/4

Σ(x, t)

Σ0

=

∫ ∞

0

F (x)

F (3
2
)
.23/4.4.

(
3

2

)1/4

.

[
Y1(k)J1(

(
3
2

)1/4
k)− J1(k)Y1(

(
3
2

)1/4
k)

J2
1 (k) + Y 2

1 (k)

]
[
Y1(k)J1(kx

1/4)− J1(k)Y1(kx
1/4)
]
exp(−3Sk2t)kdk (4.71)

Σ(x, t)

Ω0

=

∫ ∞

0

F (x)

F (3
2
)

[
Y1(k)J1(

(
3
2

)1/4
k)− J1(k)Y1(

(
3
2

)1/4
k)

J2
1 (k) + Y 2

1 (k)

]
[
Y1(k)J1(kx

1/4)− J1(k)Y1(kx
1/4)
]
exp(−3Sk2t)kdk (4.72)

where Ω0 is the constant

With

F (x) =
x

−5
4

3CS
l−1(x).x

1
2
(1−g) (4.73)

If we take g = −3
2
,than

65



Chapter 4Discussion of the surface density behavior in a (PPD):the first method

F (x) =
1

3CS
l−1(x)

F (
3

2
) =

1

3CS
l−1(

3

2
) (4.74)

with as before

l (x) =
3Sxβ−1

3CS + 2
√
x

(4.75)

then (for β = 3
2
, 3CS = −2)

F (x)

F (3
2
)
=

l (3
2
)

l (x)
=

√
3
2√
x

3CS + 2
√
x

3CS + 2
√

3
2

=

√
3
2(√

3
2
− 1
)√x− 1√

x
(4.76)

we obtain the following expression of the surface density in the region x > 1

Σ(x, t)

Ω0

=

√
3
2(√

3
2
− 1
)√x− 1√

x

∫ ∞

0

[
Y1(k)J1(

(
3
2

)1/4
k)− J1(k)Y1(

(
3
2

)1/4
k)

J2
1 (k) + Y 2

1 (k)

]
[
Y1(k)J1(kx

1/4)− J1(k)Y1(kx
1/4)
]
exp(−3Sk2t)kdk (4.77)

Σ(x, τ)

Ω̂0

=

√
x− 1√
x

∫ ∞

0

[
Y1(k)J1(

(
3
2

)1/4
k)− J1(k)Y1(

(
3
2

)1/4
k)

J2
1 (k) + Y 2

1 (k)

]
[
Y1(k)J1(kx

1/4)− J1(k)Y1(kx
1/4)
]
exp(−4

√
x.τ.k2)kdk (4.78)
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τ = 0.016

Figure 4.6: The surface density for x > 1 ; At (τ = 0.016).

τ = 0.032

Figure 4.7: The surface density for x > 1 ; At (τ = 0.032).
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τ = 0.064

Figure 4.8: The surface density for x > 1 ; At (τ = 0.064).

Figure 4.9: The surface density for x > 1 ; At (τ = 0.016, 0.032, 0.064).

These curves show the evolution of surface density as a function of x = R/a. We notice

that the surface density has different peaks at various periods of time (τ = 0.016, τ =

0.032, τ = 0.064). Surface density is more pronounced at peak x = 3/2.
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4.4 Results and discussion
The dynamic interactions of stellars companions and planet are the importante among

of the many processes responsible for the formation of protoplanetary disks, and the grav-

itational interaction between the disk and the planet results in the exchange of angular

momentum and planet migration.

Figures (4.5) and (4.9) show how surface density changes near and far from the planet.

In the region (x < 1) we find that the surface density increases at the site (x = 1/2), and

as the time increases, the surface density decreases and decreases near the planet (Fig 4.5

) When the density of the protoplanetary disk surface decreases, the planet creates a large

gap as its mass increases and becomes gigantic and massive, the viscosity is also low in this

case, and a standard migration of (the second type) occurs. While the angular momentum

increases until it reaches a maximum and minimum value at (x = 1) in (Fig 4.1 ).

Our results are consistent with an approximation of (Lin and Papaloizeau 1986).

In the region (x > 1). the surface density behavior away from the planet is greater and more

pronounced at position (x = 3/2). In this case, the viscosity is large, and the gap becomes

less exhaustive and less resistant to gas, resulting in a separation of migration with respect

to disk development ( Fig 4.9 ), while angular momentum decreases at the disk’s ends away

from the planet ( Fig 4.1 ).

We demonstrated in both regions how planetary torque affects the surface density of the

disk by finding an analytical solution to the evolution equation of the disk and an embedded

protoplanet. And the results were satisfactory when compared to the previous results (Lin

and Papaloizeau 1986).

4.5 Conclusion
The planets are subject to a different torque that can cause them to migrate, and this

torque is caused by the gravitational interaction between the planet and the density waves

that power the Lindblad resonance in the disk.When the planet’s mass is sufficient, it will

create a gap in the disk. The formation of the gap terminates the accumulation process,

which is crucial in determining the system’s behavior, and we have described the behavior

of the surface density as the cause of the effect of planetary torque. The surface density of

the disk on the planet decreases until it is absent. while the angular momentum increases

and decreases in the ends of the disk away from the planet.
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We obtain the surface density of the protoplanetary disk by assuming that at the initial

time (t = 0), the surface density is more pronounced at a boundary value (x = 1/2) in the

region (x < 1) and at the value (x = 3/2) in the region(x > 1) and by applying the inverse

Hankel transform and Weber transform and using the Dirac delta properties as well as an

appropriate torque that achieves an acceptable behavior. Finally, we obtain the surface

density in both regions at the times τ = (0.016; 0.032; 0.064). When compared to (Lin and

Papaloizeau 1986), the results were satisfactory.
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Chapter 5

Discussion of the surface density behavior in a (PPD):

the second method

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Calculation of surface density . . . . . . . . . . . . . . . . . 71

5.3 Results and discussions . . . . . . . . . . . . . . . . . . . . 80

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Introduction
We will find the analytical solution in two regions based on the differential equation for the

evolution of a protoplanetary disk ( 3.37). At the initial time (t = 0), the surface density in

the region (x < 1) becomes Σ(x.t = 0) = uI , and the surface density in the region (x > 1)

becomes Σ(x.t = 0) = uII .In order to find these solutions, we will rely on changes and

transformations that are specific to each region.

5.2 Calculation of surface density
from the equation ( 3.37):

0 =
u′′(x)

u(x)
+

(
3

2x
+ 2

v′(x)

v(x)
− 2

√
x

3v(x)
l(x)

)
u′(x)

u(x)

+
3

2x

v′(x)

v(x)
+

v′′(x)

v(x)
− l(x)√

xv(x)
− 2

√
x

3v(x)
l′(x) +

λ

3v(x)
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We know

λ = λa2, v(x) = sxβ, s = S.aβ , β ≺ 2

λ

3v(x)
=

λa2

3Saβxβ
=

λ

3v(x)
, β − 2 ≺ 2

And so we write

0 =
u′′(x)

u(x)
+

(
3

2x
+ 2

v′(x)

v(x)
− 2

√
x

3v(x)
l(x)

)
u′(x)

u(x)
(5.1)

+
3

2x

v′(x)

v(x)
+

v′′(x)

v(x)
− l(x)√

xv(x)
− 2

√
x

3v(x)
l′(x) +

λ

3v(x)

5.2.1 In the region (R < a), (x < 1)

The equation (5.1) has a generic form as

0 = u′′(x) + f1(x)u
′(x) + f0(x)u(x) (5.2)

where f0(x) and f1(x) are respectively given by

f0 =
3

2x

v′(x)

v(x)
+

v′′(x)

v(x)
− l(x)√

xv(x)
− 2

√
x

3v(x)
l′(x) +

λ

3v(x)
(5.3)

f1 =
3

2x
+ 2

v′(x)

v(x)
− 2

√
x

3v(x)
l(x) (5.4)

To solve the equation (5.2) put the change

u(x) =
ω(x)

q(x)
(5.5)

After simplifications, it is traightforward and aisy to get

0 =
ω′′(x)

ω(x)
+

(
f1(x)−

2q′(x)

q(x)

)
ω′(x)

ω(x)
+

[
f0(x)−

q′′(x)

q(x)
+ 2

(
q′(x)

q(x)

)2

− f1(x)
q′(x)

q(x)

]
(5.6)

By using
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f1(x)−
2q′(x)

q(x)
=

g

x
(5.7)

where g is a constant to be determined later. When we replace f1 in the last equation,

we can find q(x), that is to say

q(x) = exp

(
1

2

∫ x

f1(θ)dθ −
g

2
ln(x)

)
(5.8)

q′(x) =

(
f1(x)

2
− g

2x

)
q(x) (5.9)

q′′(x) =

[(
f ′
1(x)

2
+

g

2x2

)
+

(
f1(x)

2
− g

2x

)2
]
q(x) (5.10)

then the equation (5.6) transforms to

0 = ω′′(x) +
g

x
ω′(x) +

[
f0(x)−

q′′(x)

q(x)
+ 2

(
q′(x)

q(x)

)2

− f1(x)
q′(x)

q(x)

]
ω(x) = 0 (5.11)

0 = ω′′(x) +
g

x
ω′(x) +G(x)ω(x) (5.12)

where g is a free transformation parameter that we will use for our convenience later and

G(x) = f0(x)−
q′′(x)

q(x)
+ 2

(
q′(x)

q(x)

)2

− f1(x)
q′(x)

q(x)
(5.13)

or equivalently, after using the formula (5.7), ( 5.8) we find

G(x) = f0(x)−
f ′
1(x)

2
− f 2

1 (x)

4
+

g(g − 2)

4x2
(5.14)

substitute the expressions of f0(x) and f1(x) and f ′
1(x) given above, we find

G(x) =
3

16x2
+

λ

3v(x)
− l(x)

3
√
xv(x)

−
√
x

3v(x)

d

dx
l(x)− x

9v2(x)
l2(x) +

√
x

3

v′(x)

v2(x)
l(x) +

g(g − 2)

4x2

(5.15)

Replace now the viscosity v(x) by Sxβ then:

G(x) =
3

16x2
+

λ

3Sxβ
+

g(g − 2)

4x2
− 1

3Sxβ−1/2

d

dx
l(x)− 1

9S2x2β−1
l2(x)+

(β − 1)

3Sxβ+1/2
l(x) (5.16)
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Now, to solve the above differential equation (5.11), we discard the terms containing the

torque l(x) in (5.15), that is to say:

0 =
d

dx
l(x) +

l2(x)

3Sxβ− 1
2

− (β − 1)

x
l(x) (5.17)

Indeed, we have from the constraint (5.17)

l(x) =
3Sxβ−1

3CS + 2
√
x

(5.18)

and

G(x) =
3

16x2
+

λ

3Sxβ
+

g(g − 1)

4x2
(5.19)

leading to get a simplified differential equation

0 = ω
′′
(x) +

g

x
ω

′
(x)

(
3

16x2
+

λ

3Sxβ
+

g(g − 1)

4x2

)
ω(x) (5.20)

For lightrning we put

λ

3S
= λs (5.21)

4g(g − 2) + 3

16
= Γ (5.22)

we get

0 = ω
′′
(x) +

g

x
ω

′
(x) +

(
Γ

x2
+

λs

xβ

)
ω(x) (5.23)

whose general solution is

ωI(x) = x

1− g

2

C1Jp

2
√
λs

2− β
x

1− β

2

+ C2Yp

2
√
λs

2− β
x

1− β

2

 (5.24)

p =

√
(1− g)2 − 4Γ

2− β
(5.25)

and Jp(X) and Yp(X) are the well known Bessel’s functions. Then the solution of the

surface density in the regionI (x < 1) is uI(x) = ω(x)/q(x) or

74



Chapter 5Discussion of the surface density behavior in a (PPD): The second method

uI(x) = x
1−s
2 exp

(
−1

2

∫ x

f1(z)dz +
g

2
ln(x)

)(
C1Jp

(
2
√
λs

2− β
x1−β/2

)
+ C2Yp

(
2
√
λs

2− β
x1−β/2

))
(5.26)

or after replacing f1(z) by its expression (5.1) and the torque by its expression (5.16),

we find:

uI(x) = x
1−s
2

(
C1Jp

(
2
√
λs

2− β
x1−β/2

)
+ C2Yp

(
2
√
λs

2− β
x1−β/2

))
exp

(
−1

2

∫ x( 3

2x
+ 2

v′(x)

v(x)
− 2

√
x

3v(x)
l(x)

)
dx

)
(5.27)

or

uI(x) = C1
x

−3
4
−β

3cs2

(
Jp

(
2
√
λs

2− β
x1−β/2

)
+

C2

C1

Yp

(
2
√
λs

2− β
x1−β/2

))(
2

3
x+ cs

√
x

)
(5.28)

As application make the following considerations

p =

√
(1− g)2 − 4Γ

2− β
= 1,

√
(1− g)2 − 4Γ =

4

3
,
C2

C1

= − 1

10
;
C1

S
= 300 (5.29)

S =
4

15
;CS = −2

3
; β =

2

3
;
2
√
λs

2− β
= 9;

√
λs = 6

The torque leading to the solution then becomes

l(x) =
3Sxβ−1

3CS + 2
√
x
=

3

2

Sx−1/3

√
x− 1

(5.30)

l(x) =
2

5

x−1/3

√
x− 1

which is the torque that we have obtained and presented it in ( figure 5.1) leading to the

solution

Σ(x.t = 0) = uI(x) (5.31)
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Figure 5.1: the torque l(x) in region I.

uI(x) = −100.x
−17
12 (x−

√
x)

(
J(1, 9x

2
3 − Y (1, 9x

2
3 )

10

)
(5.32)

which is the surface density in our model that we have obtained and presented it in (

figure 5.2)

Figure 5.2: The surface density in region I.

5.2.2 In the region (R > a),(x > 1)

The equation (5.1) has a generic form as

0 = f2(x)u
′′(x) + f1(x)u

′(x) + f0(x)u(x) (5.33)
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where

f0(x) =
3

2x

v′(x)

v(x)
+

v′′(x)

v(x)
− l(x)√

xη(x)
− 2

√
x

3v(x)
l′(x) +

1

3v(x)
(5.34)

f1(x) =
3

2x
+ 2

v′(x)

η(x)
− 2

√
x

3v(x)
l(x) (5.35)

f2(x) = 1 (5.36)

To solve the equation (5.32) put the change

u(x) = ω(x) exp

(
1

2

∫ x f1 (x
′)

f2 (x′)
dx′
)

(5.37)

we will transform this equation as

0 = ω′′(x) + F (x)ω(x) (5.38)

such as

F (x) =
f0(x)

f2(x)
− 1

4

(
f1(x)

f2(x)

)2

− 1

2

(
f1(x)

f2(x)

)′

(5.39)

that is to say

F (x) =
3

16x2
− l(x)

3
√
xv(x)

−
√
x

3v(x)
l′(x) +

λ

3v(x)
− x

9v2(x)
l2(x) +

v′(x)
√
x

3v2(x)
l(x) (5.40)

By replacing the viscosity v(x) = Sxβ in the last expression of F (x), we find

F (x) =
3

16x2
− 1

3Sxβ−1/2
l′(x) +

λ

3Sxβ
− 1

9S2x2β−1
l2(x) +

(β − 1)

3S · xβ+1/2
l(x) (5.41)

By using the same constraint on l(x) as in the region II

0 =
1

xβ−1/2
l′(x) +

1

3Sx2β−1
l2(x)− (β − 1)

S · xβ+1/2
l(x) (5.42)

We multiply by (xβ−1/2),We get it

0 = l′(x) +
1

3Sxβ−1/2
l2(x)− (β − 1)

x
l(x) (5.43)
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we find that

l(x) =
3Sxβ

2x3/2 + 3CSx
(5.44)

In this regionII, if we take β = 5/4, S = 2/3 and C = −0.97, the corresponding torque

expression is

l(x) =
2x5/4

2x3/2 − 1.94x
(5.45)

The torque from our model, which correspond to regionII is presented in the(Fig5.3)

Figure 5.3: The torque l(x) in region II.

The solution in regionII is then given by

ωII(x) =

√
R

a

(
K1J 2

3

(
4λ

√
2

3
(x)3/8

)
+K2Y2/3

(
4λ

√
2

3
(x)3/8

))
(5.46)

the global solution is then given by

uII(x) = ωII(x) exp

(
−1

2

∫ x( 3

2t
+ 2

v′(t)

v(t)
− 2

√
t

3v(t)
l(t)

)
dt

)
(5.47)

or

uII(x) = ωII(x) exp

(
3

4
log

(
1

x

)
+ log

(
1

v (x)

)
+

1

3

∫ √
t

v(t)
l(t)dt

)
(5.48)

= ωII(x) exp

(
3

4
log

(
1

x

)
+ log

(
1

v (x)

)
+

∫
1

2t− 1.94
√
t
dt)

)
= ωII(x) exp

(
log

(
1

x3/4

)
+ log

(
1

v (x)

)
+ log(1− 1.0309

√
x)

)
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we find the solution in this (region 2)

uII(x) =
3

2

(
1− 1.0309

√
x

x3/2

)(
K1J 2

3

(
4λ

√
2

3
x3/8

)
+K2Y2/3

(
4λ

√
2

3
x3/8

))
(5.49)

the constants K1 and K2 must satisfy the boundary conditions

uII(1) = 0 (5.50)

K1J 2
3

(
4λ

√
2

3

)
= −K2Y2/3
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where

Σ(x.t = 0) = uII(x) (5.53)

If we take λ = 5
6
K2 we obtain
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(5.54)

such that J 2
3

(
10
√
2

9

)
= 0.63209 For The mode K = 1 and for K1 < 0, the surface

density from our model, which correspond to regionII is presented in the figure 5.2.
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Figure 5.4: The surface density in region II.

5.3 Results and discussions
Figs (5.2) and (5.4). show the behavior of the surface density , this expected behavior

followed by the formation of a planet at(R = a) inside the disk. Through these curves, the

density is verylow near the planet (R = a), and it has a significant value away from the

planet, while the angular momentum reaches its maximum when (x = 1). That is when it

is close to the planet as shown by the (figures (5.1) and (5.3)).

The gap is dened as the region in which the surface density is less than of what it

would be if there were no planet in the disk. This figure from our results correspond the

approximation of (Lin and Papaloizeau 1986). The disks evolve as a result of the viscous

transport of angular momentum, which is represented by the shapes (fig5.1) and (fig 5.3) of

each region, which are identical to the angular momentum used in our studies (see Chapter

Three, Figures(3.1) and (3.2)). As in previous studies (Lin and Papaloizeau 1986).

5.4 Conclusion
The surface density of the protoplanetary disk was obtained using a set of changes and

transformations shown in each region, we found similar solutions in previous studies (Lin

and Papaloizeau 1986). What distinguishes our work is the solution of the surface density

equation for the protoplanetary disk without using an angular momentum approximation.

What the figures show in both regions demonstrates the validity of our work.
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General conclusion

In our work, we aim to study the theory and reach conclusions that are consistent with

what astronomical observation reveals by employing physical theories to explain cosmic

phenomena. We make significant contributions to providing more accurate results for accre-

tion processes. The latter is one of the most common processes in astrophysics, the term

scientists use to describe the flow of matter toward a gravitational object or toward the

center of mass of an extended system, and is responsible for the formation of many of the

structures we see around us.

Galaxies formed early in the universe as gas flowed in toward the center of gravitational po-

tential wells established by dark matter. Stars form inside galaxies even today as gas clouds

collapse and fragment under their own self-gravity and then grow by accreting surrounding

gas. Planets form as gas and rocks coalesce in the debris surrounding a new star. Perhaps

the most spectacular observational manifestations of accretion occur, however, when the

central object is a black hole. The accretion is accompanied by the process of extensive

energy release that takes place on the surface of an accreting object and in various gaseous

envelopes, accretion disk, jets and other elements of the flow pattern.

The results presented in this thesis attempt to provide some answers on the properties of

accretion disks, their geometries and their structures, more precisely the accretion processes

of protoplanetary disks.

As a result, we presented in the first part basic concepts of accretion disks in many cosmic

phenomena that can exist in various physical and astronomical systems.

The second chapter included protoplanetary disks around young stars are the birth sights

of planetary systems like our own. We showed that protoplanetary disks are also accretion

disks that are constantly feeding gas to their host stars. This process requires gas in the

disk to lose angular momentum, which is done through the outward angular momentum

transport caused by disk turbulence. The realization that disk-planet interactions lead to

the exchange of angular momentum between the planet and disk, leading to the possibility

of planetary migration and the shaping of the disk. Increased computing power, advances in

computational techniques, and continually developing observational advances over the last

several decades have allowed astronomers and physicists to develop increasingly sophisticated

models of planet formation. In the third chapter, we addressed the fundamental parameters

for studying the evolution of the accretion disk and calculating the surface density based on

mass and angular moment conservation laws, as well as solving the differential equation for
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the surface density of a protoplanetary disk. We discussed the behavior of surface density in

different regions of the protoplanetary disk in Chapters 4 and 5, and the analytical results

obtained were consistent with previous numerical results (lin paplouzou 1986).

What we have achieved in this work is a good starting point that prompted us to provide

suggestions and ideas that can open many horizons for future research work, including:

• Recalculating the surface density, if we assume that the surface density is more pro-

nounced at the initial time at the location x = 2/5, x = 8/5 . In the area (x < 1 and

x > 1).

• The effects of magnetic fields on disk formation and evolution.

• Accretion disk treatment based on the heat and energy conservation equations.
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The main sequence of stars

During the main sequence phase, the star is in hydrostatic equilibrium, it undergoes two

forces which oppose each other and keep it in equilibrium:

• on the one hand, the thermonuclear reactions which take place in the heart of the

star, which exert a radiative pressure which tends to make it increase in volume, which

involves a reduction in the temperature of the star.

• on the other hand the forces of gravity, which tend to make it contract and therefore

to increase the temperature of the star again.

These two forces in balance, maintain the nuclear reactions in the center of the star and

prevent any runaway of the heart of the star

When the core of the star reaches a temperature of the order of a million degrees, it becomes

the seat of thermonuclear reactions (fusion of deuterium, lithium and beryllium). At around

7 to 8 million degrees, the temperature is high enough for the hydrogen nuclei in the plasma,

the most common, to start fusing to give essentially helium 4He, following a nuclear fusion

reaction called the proton-proton cycle , with an overall efficiency equal to 64, 000 GJ.kg-1

(per kg of hydrogen).

If the temperature exceeds 18 million degrees, another chain of reactions becomes predomi-

nant: the carbon-nitrogen-oxygen cycle, or CNO cycle, the efficiency of which is much more

temperature-dependent than the proton-proton cycle. In the Sun, 2.5% of the energy is

generated by this cycle. But in more massive stars, the predominance of the CNO cycle has

major consequences on their structure.

Because the temperature and pressure conditions which allow the fusion of hydrogen are

only found in the core of stars, and because there is no convection between this core and the

envelope of the star (to bring new fuel to the core), the core is enriched in fusion products

(helium), which will slow down the fusion reactions. These fusion products are not waste
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because they will serve as nuclear fuel later. In fact, in the case of the Sun, only about 10%

of its hydrogen mass fuses into helium during the main sequence. Knowing that the Sun’s

luminosity is 3.9× 1026W and its mass is 1.99 × 1030kg, we can deduce that the lifetime of

a star like the Sun is about 10 billion d years on the main sequence. However, this lifespan

is highly dependent on the nuclear reactions that take place within the star: massive stars,

which contain much more hydrogen than the Sun, paradoxically have a much shorter main

sequence lifespan.

As it lives on the main sequence, the star must contract slightly to counter the effect of the

enrichment of its core in fusion products (the number of nuclei decreasing). This leads to a

slight increase over time in its luminosity.

The Black holes

Black holes have a mass of at least a few solar masses. They are born as a result of the

gravitational collapse of the remnant of massive stars (about ten solar masses and more,

initially). Indeed, when the combustion by the thermonuclear reactions in the heart of the

massive star ends, for lack of fuel, a supernova occurs. The latter can leave behind a heart

that continues to rapidly crumble.

Region of the Universe in irreversible gravitational collapse, whose gravitational field is so

intense that nothing, not even light, can come out of it. This region has a spherical boundary

called the horizon, or surface of the black hole, which light can pass through without being

able to exit. Thus, this region appears black. Such a field can be created by a body of high

density and of relatively small mass, equal to or less than that of the Sun, compressed in a

very small volume, or else by a body of low density and of very large mass.

Figure 5.5: A binary system black hole and a star.
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A black hole forms from a star when it, at the end of its life, becomes a supernova. Either

when its degeneracy pressure, which usually occurs very slowly, can no longer balance the

gravitational force proportionally increasing the mass of the nucleus. The latter then goes

from about ten thousand degrees to more than 800 million degrees. Its temperature increases

more than 80,000 times. When the nucleus is emptied of its energy, gravitation no longer

encounters obstacles. The nucleus then begins to compress again, to crush by its own weight.

Its gravitational force becomes so strong that the star will not stop at the stage of a neutron

star.

Thus the star can only collapse on itself, no more pressure can stop this catastrophic fall.

All the mass of the nucleus of the supernova is concentrated in the central point where the

density becomes infinite. A black hole is born. The stringy buoy that can be seen circling

the black hole is the gaseous remnant of the supernova. This material will eventually be

sucked into the black hole. And during the birth of a black hole lets escape along the axis of

rotation of the black hole two beams packed with energy: these are the gamma-ray bursts.

• Supermassive black holes:

Supermassive black holes have a mass between a few million and a few billion solar

masses. They are found at the center of galaxies and their presence sometimes causes

the appearance of jets and X-rays. The nuclei of galaxies which are thus brighter than

a simple superposition of stars are then called active nuclei of galaxies (Volonteri, M

2010).

• Intermediate black holes:

Intermediate black holes are newly discovered objects and have a mass between 100

and 10,000 solar masses. In the 1970s, intermediate-mass black holes were thought

to form in the cores of globular clusters, but there were no observations to support

this hypothesis. Observations in the 2000s showed the existence of ultra-bright X-ray

sources. These intermediate black holes could also result from the collapse of popula-

tion III stars: they are hypothetical populations of very massive stars (thousands of

solar masses) which would have formed at the beginning of the Universe, made up of

the most lighter: hydrogen or helium ( Coleman Miller, M & Colbert, E. 2004).

• primordial black holes:

Primordial black holes, also called micro black holes or quantum black holes, are said

to be very small in size. They would have formed during the Big Bang (hence the
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name primordial black hole), following the gravitational collapse of small overdensities

in the primordial universe (Khlopov, M. Y 2010).

The Neutron star

A neutron star is a star composed primarily of neutrons held together by gravitational

forces. Such objects are the compact residue resulting from the gravitational collapse of the

core of a massive star when it has exhausted its nuclear fuel, hence their name. This collapse

is accompanied by an explosion of the outer layers of the star, which are completely dislocated

and returned to the interstellar medium, a phenomenon called supernova. The compact

residue is a star only in name: it is no longer the site of nuclear reactions and its structure is

radically different from that of an ordinary star. Its density is indeed extraordinarily high, of

the order of 1015 grams (or one billion tons) per cubic centimeter, and its mass falls within a

very narrow range, around 1.4 times the mass of the Sun, corresponding to what is called the

Chandrasekhar mass. This mass occupies a very small volume, with a radius of only about

10 to 20 kilometers. At their birth, neutron stars have a very high rotation speed, several

tens of revolutions per second. They also have a very intense magnetic field, up to 1011 Tesla.

A neutron star located in a binary system can tear material from its companion star and

give rise to a pulsed or continuous emission in the field of X and gamma rays. Isolated and

without its pulsed emission, a neutron star is much more difficult to detect because only the

thermal emission from its surface is possibly detectable (Yakovlev,D & Pethick, C 2004).

Figure 5.6: The Neutron star.
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The white dwarf

A white dwarf, also called a degenerate dwarf, is a remnant of a stellar core composed

mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable

to that of the Sun, while its volume is comparable to that of the Earth. The low luminosity

of a white dwarf comes from the emission of stored thermal energy; no fusion takes place in

a white dwarf. White dwarfs are thought to be the final evolutionary state of stars that are

not high enough in mass to become a neutron star, about 10 solar masses. This includes

over 97% of the other stars in the Milky Way (Fontaine, G ;2001).

After the hydrogen-fusion period of a main-sequence star of low or supporting mass ends,

such a star will grow to a red giant during which time it melts helium for carbon and oxygen

in its nucleus by the triple-alpha process. If a red giant has insufficient mass to generate

the core temperatures needed to fuse carbon (about 1 billion K), an inert mass of carbon

and oxygen accumulates in its center. Once such a star has shed its outer layers and formed

a planetary nebula, it will leave behind a core, which is the remnant of the white dwarf.

Usually, white dwarfs are composed of carbon and oxygen (CO white dwarf). If the mass

of the progenitor is between 8 and 10.5 solar masses (M ⊙), the core temperature will be

sufficient to fuse carbon but not neon, in which case an oxygen-neon-magnesium white dwarf

(ONeMg or ONe) can form. Very low mass stars will not be able to fuse helium, therefore a

helium white dwarf can form by loss of mass in binary systems. A white dwarf is very hot

when it forms, but since it has no energy source, it will gradually cool down as it radiates

its energy. This means that its radiance, which initially has a high color temperature, will

decrease and redden over time. Over a very long period, a white dwarf will cool and its

matter will begin to crystallize, starting with the core. The star’s low temperature means

that it will no longer emit significant heat or light and will become a cold black dwarf.

Because the time it takes for a white dwarf to reach this state is calculated to be longer than

the current age of the universe (about 13.8 billion years).
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Figure 5.7: The white dwarf star.

The binary stars

A binary star is a star system made up of two stars orbiting their center of mass. For

each star, the other is its companion star. Recent research suggests that a large percentage

of stars are part of systems with at least two stars. Binary star systems are very important

in astrophysics because observing their mutual orbits allows their mass to be determined.

The masses of many individual stars can then be determined by extrapolations made from

observed binaries.

Binary stars are not the same as optical double stars, which appear to be close together

when viewed from Earth but cannot be held appreciably by gravity. Binary stars can either

be distinguished optically (visual binaries) or by indirect techniques, such as spectroscopy.

Systems consisting of more than two components, known as multiple stars. Components of

binary star systems can exchange mass, bringing their evolution to stages that single stars

cannot (Mathieu, R. D 1994).

Classifications by methods of observation

Binary stars are classified into four types according to their observable properties :

Visual binaries

A visual binary star is a binary star for which the angular separation between the two

components is large enough to allow them to be observed as a double star in a telescope.

The brightness of the two stars is also an important factor, as bright stars are more difficult

to separate due to their brightness than dimmer ones are. The brightest star in a visual
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binary is the primary star, and the dimmer is considered the secondary ( Fleming, T, Gioia,

I & Maccacaro 1989).

Spectroscopic binaries

A spectroscopic binary star is a binary star in which the separation between stars is usually

very small, and the orbital velocity very high. Unless the plane of the orbit happens to be

perpendicular to the line of sight, the orbital velocities will have components in the line of

sight and the observed radial velocity of the system varies periodically. In some spectroscopic

binaries, spectral lines from both stars are visible and the lines are alternately14 double and

single. Such a system is known as a doubled spectroscopic binary (often referred to as

"SB2"). In other systems, the spectrum of only one of the stars is seen and the lines in the

spectrum periodically shift blue, then red and back. These stars are known as spectroscopic

single-lined binaries ("SB1").

Eclipsing binaries

An eclipsing binary star is a binary star in which the orbital plane of the two stars lies

so close to the observer’s line of sight that the components experience mutual eclipses. In

case the binary is also a spectroscopic binary and the parallax of the system is known, the

binary is very valuable for stellar analysis.

Eclipsing binaries are variable stars, not because the light of individual components vary,

but because of eclipses. The light curve of an eclipsing binary is characterized by periods of

nearly constant light, with periodic drops in intensity. If one of the stars is larger than the

other, one will be obscured by a total eclipse while the other will be obscured by an annular

eclipse.

Astrometric binaries

An astrometric binary star is a binary star for which only one of the component stars can

be observed visually. The position of the visible star is detected and measured carefully to

have an oscillation, due to the influence of the gravity of its counterpart. Generally, this

type of measurement cannot be performed on nearby stars.
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Classifications by system configuration

Another classification is based on the distance of stars, relative to their dimensions:

Detached binaries stars

Detached binaries are a kind of binary stars where each component is in its Roche lobe,

i.e. the area where the gravitational pull of the star itself is greater than that of the other

component. The stars have no major effect on each other, and essentially evolve separately.

Most binaries belong to this class.

Figure 5.8: Detached binaries stars.

Semi-detached Binary Stars

These are called semi-detached binaries, where one of the rock components fills the lobe

of the binary star and the other does not. Gas from the surface of the lobe (donor) Roche

filler is transferred to the other, accreting star. Mass transfer dominates the evolution of

the system. In many cases, the incoming gas makes an accretion disk around the accretor.

Examples of this type are Binary X and Cataclysmic Variable Stars.

Figure 5.9: Semi-detached Binary Stars.
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A contact binary stars

A contact binary is a type of binary star in which both components of the binary fill

their Roche lobes. The upper part of the stellar atmospheres forms a common envelope that

surrounds the two stars. As the friction of the envelope brakes orbital motion, the stars may

eventually merge ( Mochnacki, S. W 1981).

Figure 5.10: A contact binary star.

Keplerian disks

Disks around compact objects (white dwarfs, neutron stars, and black holes) are of par-

ticular interest. They are often extremely luminous; indeed, manifested as quasars at the

centers of massive galaxies, they are some of the brightest objects in the universe. The dual

requirements of copious dissipational heating and outward angular momentum transport

suggest that the gas in the disks is highly turbulent.

It is assumed that the disk is very thin and resides in the equatorial plane of the system, as

dened by the axis of rotation of the central star, and that the mass (M∗) of the latter is much

greater than that of the central. star disk, and therefore the gravitational field αGM∗/r
2 For

a typical TTauri + disk star system, we have M∗ ≈ M⊙ and the mass of the disk ∼ 10−2M⊙,

so the approximation is justifiable. This geometric configuration is illustrated in the follow-

ing (Figure 1.13) which shows the system (star + disk) seen from the edge.

Assuming a stationary configuration (∂/∂t) and working in cylindrical coordinates (s, φ, z)

with the −z axis aligned with the axis of rotation, (in this paragraph s means the same thing

as r ) we assumes that the fluid elements orbit on circular paths, ie, u = uφ(s, z)ẽφ and the

disk is very thin (in the sense that its thickness h ≪ r ).

We can formulate the dynamics only in the equatorial plane by assuming invariance in
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z in the disk itself, which means that uφ only depends on s, and (∂/∂t) = 0. In such a

situation the dynamics limit to the s component of Euler’s equation, which in the absence of

an angular component reduces to an expression of balance between gravity and centrifugal

force:
GM∗

s2
=

u2
φ

s
≡ Ω2

s

from where we immediately derive the variation of the angular velocity as a function of the

cylindrical radius s :

Ωs =

(
GM∗

s8

)1/2

,
[
rads−1

]
This profile is plotted in the following (figure 1.13) The s−3/2 dependence is obviously the

one characterizing the Keplerian orbits. A concept that will become important later is that

of the radius of corotation, i.e. the radius (rc) for which the angular speed of rotation of the

disk is equal to that of the central star :

Ω (rc) = Ω∗ → rc =

(
GM∗

Ω2

)1/3

The position of this co-rotation ray is indicated in red on the following (figure 5.1) (Paul

Charbonneau 2015). The angular velocity of the disk is Ω > Ω∗ for s < rs and conversely

Ω < Ω∗ for s > rs

In general, the central star rotates much more slowly than the edge of the disk with which

it makes contact, and the radius of co-rotation is therefore found to be several r∗ from the

star.

Figure A.1: Geometry of the Keplerian disk, seen here from the edge.
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The central star of radius r∗ and mass M∗ rotates at angular velocity Ω∗. A disk of

thickness h occupies the equatorial plane, the rotational speed of the plasma being deter-

mined by the balance between gravity and centrifugal force. If the mass of the disk is much

smaller than that of the central object, the angular velocity in the disk varies in s−3/2. At

the co-rotation radius rc, the angular velocity of the disk is equal to that of the star (red

lines).
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Conservation of mass equation
∂Σ

∂t
+

1

R

∂

∂R
(RΣν

R
) = 0 (B.1)

Conservation of angular momentum equation
∂

∂t

(
R2ΩΣ

)
= − 1

R

∂

∂R
(R3Σν

R
Ω) +

1

R

∂

∂R
(R3υΣ

∂Ω

∂R
) (B.2)

The two equations (conservation of mass equation) and (conservation of angular mo-

mentum equation) can be combined to give a single equation for the evolution of surface

density.

From equation (B.1)

∂Σ

∂t
= − 1

R

∂

∂R
(RΣν

R
)

we put

h = R2Ω = R2

√
GM

R3
=

√
GMR

becomes the equation (B.2)

∂

∂t
(hΣ) = − 1

R

∂

∂R
(RΣν

R
h) +

1

R

∂

∂R
(R3υΣ

∂Ω

∂R
)

h
∂Σ

∂t
= − 1

R

[
h

∂

∂R
(RΣν

R
) + RΣν

R

∂h

∂R

]
− 3

√
GM

2R

∂

∂R

(
R3υΣR

−5
2

)
We swear on h
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∂Σ

∂t︸︷︷︸ = − 1

R

∂

∂R
(RΣν

R
)︸ ︷︷ ︸−RΣν

R

Rh

(
1

2

√
GMR

−1
2

)
− 3

√
GM

2hR

∂

∂R

(
R3υΣR−3R

1
2

)
∂Σ

∂t
+

1

R

∂

∂R
(RΣν

R
)︸ ︷︷ ︸ = 0

0 = −RΣν
R

√
GM

2Rh
R

−1
2 − 3

√
GM

2hR

∂

∂R

(
υΣR

1
2

)
multiply in

(
2Rh√
GM

)
:

RΣν
R
R

−1
2 = −3

∂

∂R

(
υΣR

1
2

)

multiply in
(√

R
)
:

RΣν
R
= −3

√
R

∂

∂R

(
υΣR

1
2

)

We substitute in the equation(B.1) :

∂Σ

∂t
= − 1

R

(
−3

√
R

∂

∂R
(υΣR

1
2 )

)
∂Σ

∂t
=

3

R

(√
R

∂

∂R
(υΣR

1
2 )

)
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Etude théorique des phénomènes physiques autour d’un disque proto-

planétaire

Résumé

L’accrétion est l’un des processus en grande partie responsables de l’émergence de la

plupart des choses dans l’univers. Presque tous les objets astronomiques, des planètes et

étoiles aux galaxies entières, ont été formés grâce à ce processus. En général, la matière qui

s’accréte forme un disque autour d’un corps central en raison de la conservation du moment

cinétique de la matière. Le premier objectif de ce travail est d’étudier les disques d’accrétion,

principalement les disques protoplanétaires, car ils permettent d’étudier un grand nombre de

processus physiques qui déterminent leur développement, et ils se développent également en

raison de la viscosité et du transfert de moment cinétique par l’étoile centrale. Le deuxième

objectif principal est d’obtenir des solutions analytiques à l’équation de l’évolution d’un

disque protoplanétaire et d’une planète, et de connaître l’effet du moment cinétique sur la

distribution de la densité de surface sans utiliser aucune approximation, sur la base des

équations de base qui régissent l’évolution temporelle de la densité surfacique du disque

d’accrétion, et également basée sur l’équation de la co-évolution de la planète et du disque.

Formation protoplanétaire résultant de la migration des planètes due à l’interaction des

marées avec le disque, et le disque est également soumis au couple de marée de la planète. Le

deuxième terme de cette équation contient le taux de transfert du moment cinétique par unité

de masse de la planète au disque. En appliquant des conditions et des approximations qui

déterminent plus clairement le comportement de la densité de surface dans les deux méthodes

dans chaque région, nous obtenons des solutions analytiques à l’équation de l’évolution d’un

disque protoplanétaire et d’une planète, et les résultats étaient cohérents avec les résultats

précédents.

Mots-clés : accrétion, disque protoplanétaire, densité surfacique, moment cinétique.
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