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Abstract— Modeling of physical phenomena has 

contributed significantly in research. In fact; several 
investigation and results have been found basing on Modeling. In 
this work, we proposed a model to generate an 
electromyographic (EMG) signal detected on the surface of the 
muscle. Nowadays, surface EMG (SEMG) signal is used in many 
clinical applications due to its easier detection technique which is 
non invasive. Information carried by this signal is referred to its 
generation mechanism and muscle properties. In this paper, the 
model is based on multi-layer planar analytical model proposed 
in last few years by Farina which allows just the simulation of 
single fiber action potential (SFAP). We have generalized this 
model to get motor unit action potential (MUAP) which is the 
base of the simulated SEMG signal.            

   Key word— Modeling, Surface electromyography, Motor unit 
action potential, Single Fiber Action Potential.  

I. INTRODUCTION 

USCLES consist of long cells named fibers. Fibers which 
are innervated by the same α-motoneuron via the 
peripheral nervous system constitute what we call motor 

unit (MU). The MU is the functional element of the muscular 
contraction. Depending on the required force, MUs are 
recruited in order to produce the needed force [1][2].  When 
the nervous impulse reaches the neuro-muscular junction 
(NMJ) of the fiber, an intra muscular action potential (IAP) is 
generated and propagates towards tendons junction with a 
conduction velocity (CV). The IAP represents a depolarization 
of the potential action of fiber which was polarized negatively 
at rest. This propagation of the IAP along the fiber creates a 
current flow around the fiber that can penetrate the fat and 
skin layers and reach the surface. Due to the conductivity of 
the medium around fibers (conductor volume), this electric 
activity can be detected at the surface using suitable electrodes 
[3]. The electric activity in the muscle medium is governed by 
the Poison’s equation (presence of current) and by Laplace’s 
equation when current is null, case of the fat and skin layers. 
The muscle medium is anisotropic because the conductivity in 
direction of fiber is bigger than the conductivity in the other 
directions, this anisotropy makes the Poison’s equation 
difficult to solve. Dario et al [4][5] have presented an analytic 
solution for mentioned equations to find the action potential of 
single fiber at the surface (SFAP). This result of the action  
potential was considered as response of a linear and invariant 
time system (LITS) exited by the current accompanying the 
IAP. The IAP was mathematically modeled for the first time 
by Rosenfalk [6].The LITS is represented by the transfer 
function of the conductor volume in cascade with the transfer 
function of the detection system.  

 
In this work, we will not repeat the mathematic method to get 
the SFAP as it describe in details in [4]; but we focus on how 
SEMG signal which is generated from many MUs can be 
obtained in case of isometric contraction . The mechanism of 
recruitment of MUs in relation with the contraction level, their 
firing rates and their number; will be the object of this work. 
Some results of SEMG signals will be presented and 
discussed.        

II. SEMG GENERATION MODEL  

Several SEMG models have been proposed for many purposes  
[7-10].The generation of the SEMG signals adopted in this 
work is based, on the one hand, on the modeling of the fiber 
action potential proposed by Farina et all [4] [5] and, on the 
other hand, on the structure of the muscle model adapted to 
the abductor pollicis muscle according to Disselhorst-Klug’s 
work [11] in case of the MU morphology in which fibers 
overlap all muscle territory (model 2) and on the work of 
Stashuk [7] in which MU is considered as cylinder (model 1) . 
The model of the muscle is depicted in the figure 1. Most 
anatomical and physiological parameters have taken from 
literature (Table I).  
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Fig.1. Planar multi layer model of muscle. 
 

Fibers of each MU are parallel and can be distributed 
randomly (uniform probability density function) either in a 
cylinder (model 1) of radius RMU depending on the size of 
the MU or in all muscle territory i.e. one MU territory 
occupies most parts of the muscle (model 2).  
In isomeric muscular contraction, such muscle produces the 
same force during a period of time. To maintain this force, 
recruited MUs have to be activated continuously via the α-
motoneuron by train of impulses. The resulting action 
potential in this case is called the motor unit action potential 
train (MUAPTs). Each MU has a firing rate that depends on 
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the contraction level indicated by the percentage of the 
maximum voluntary contraction (MVC).  Figure 2 represents 
six MAUPTs for six different MUs. MUs are different in 
many characteristics namely are: 

• The size i.e. the number of fibers that constitute it. It is 
from 600 to 1000 fibers uniformly random distributed 
over the MUs. 

• The conduction velocity. MUs have CV equals 3.5± 0.5 
m/S, normally distributed. 

•  The radius which depends on the number of fibers to 
keep the density of fibers in muscle constant (232/mm-2). 
This is in case of the cylindrical form of MU (model 1). 
In the other case i.e. fibers of a MU overlap all muscle 
territory (model 2); MUs differ from each other in 
occupied zone.  

• The depth of MU in case of model 1and the position of 
fibers in the model 2. 

• The position of innervations zone (zone contains the 
NMJ of different fibers) which is more a less in the 
middle of fibers, but change position from MU to 
another.  

• The tendon limits. Fibers that constitute a MU have not 
the same length. Limits are uniformly distributed in a 
tendon zone which equals to 1 mm. but each MU has 
their proper limits.  

• The firing rate which depends on the contraction level 
and on the size of the MU. 

 
TABLE I 

PARAMETERS VALUE USED IN SIMULATION    

Description                           Value 

 
Number of MUs in muscle                                              29 
The maximum depth of muscle (mm)                               8 
Length muscle (mm)                                                       50           
Density of fibers muscle (fibers mm-2)                          232 

Number of fibers in MUs (fibers /MU)                 800±200 
Thickness of skin layer (mm)                                          0.5   
Thickness of fat   layer (mm)                                          1.5      
Tendon zones widths of muscle (mm) TRm=TLm         2.5    
Innervation zone width of muscle (mm) Wim                 2.5 
Innervation zone width of MUs (mm) IZ                        0.5 
Tendon zones widths of  MU (mm)                                   1 
Conductivity of muscle (Ω-1m-1)                               0.2574 
Conductivity of fat (Ω-1m-1)                                         0.045 
Conductivity of skin (Ω-1m-1)                                        0.01 
Conduction velocity in single MU (ms-1)                 3.5±0.5 
Firing rate of MUs (Hz)                                                 5-30 
Standard deviation STF (%of firing rate)                         10 
Radius of circular electrode (mm)                                  0.25       
Inter-electrode distance IED (mm)                                  2.5 
Filter location center Ze (mm)                                          15 
Sampling frequency (Hz)                                              4096 
 
 

 
The detection at the surface is performed using spatial filters 2 
D. There are many different spatial filters that allow getting 
selective signal in order to be easier for interpretation. The 

theoretical aspect of the spatial filters has been studied by 
Reucher [12][13]. Here is, in bellow, examples of spatial 
filters. Values are the linked weighs to electrodes.    
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These are the masks of the single differential, the double 
differential (DD), the normal double differential (NDD) and, 
the IB2 filters respectively.  
The simulated SEMG signals represent isometric contractions 
for different contraction levels. These signals are the 
contribution of all recruited MUs which obey the Hennman 
principle [14-16].The principle states that recruitment of MUs 
within a muscle proceeds from small MUs to large ones. In 
other words, MUs are recruited in orderly sequence, from 
those that produce the smallest forces to those that exert the 
largest forces [17].  
It is known that a force level is reached by the nervous system 
which adjusts two terms, the MUs number (MUN) that will be 
recruited and the modulation of their coding rate. 
This mechanism of recruitment is very complicated and 
change from muscle to muscle [2]. From many studies, the 
firing rate of recruited MUs increases with increasing of force 
level [1][17]. Once a MU is recruited…smaller MUs discharge 
at a higher firing rate that large ones. According to the 
Kukulka’s work [18], about the abductor pollicis muscle, table 
II has been proposed to indicate the relationship between the 
contraction levels and the recruited MUN with their 
corresponding firing rate range. 
Our simulations are based on the general approach of the rate 
coding organization which indicates that the low-threshold 
MUs attain higher firing rates than later recruited MUs [15]. 
Once a MU has been recruited, its firing rate will increase 
with increasing force. The new recruited MUs take the lower 
firing rate as function of their corresponding size. For the third 
level, (15 %MVC) 16 MUs have to be recruited with a firing 
rate ranges from 5—12 Hz, the first recruited MU (the 
smallest one which was recruited at 5%MVC) fires at 12Hz 
and the last recruited MU fires at 5Hz. Sixteen firing rates are 
generated randomly (uniform law) from 5 to 12Hz and 
attributed to MUs as function of their size from the largest 
(last recruited) to the smallest one (early recruited). The firing 
rate of each MU has a standard derivation of 10% (STF) 
around its mean value with uniform law. All MUs (29 MUs) 
are recruited at 50%MVC. 
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TABLE II 
RECRUITED MUS AND THEIR FIRING RATE AS FUNCTION OF 

CONTRACTION LEVEL.    
 

MVC (%) MUN Firing rate 
(Hz) 

5 8 5—8  

10 12 5—10  

15 16 5—12  

20 18 5—15  

25 22 5—17  

30 25 5—20   

35 26 5—25  

40 27 5—28  

45 28 5—29  

50 29 5—30  
 

 
Fig.2. SEMG signal with its MUAPTs for six different MUs detected by the 
NDD detection filter. 
 

III. RESULTS OF SIMULATION  

The model is governed by several and different parameters, 
consequently; results can be also many and different. In this 
section, some results are presented to show the usefulness of 
the SEMG generation model. Figure 3 and 4 represent 
examples of SEMG signal detected by NDD filter in both 
configurations (model 1 and model 2). Three contraction 
levels have been adopted in these examples of simulation 
which are 10, 25 and 25% MVC. In front of each signal, the 
power density spectral (PSD) is depicted. As we can note from 
figures, the SEMG signal has low band frequency. The PSD is 
very similar to the PSD of real signals; furthermore, these 
PSDs are correlated like it was found by researcher concerning 
real signals. We note a small difference between the two PSDs 
in the two models. Indeed; the PSD in the model 2 is slightly    
larger than the PSD in the model 1. This is due the 

concentration of fibers in a cylinder (model 1) which make a 
crisp (narrow) MUAP in time domain that leads to a large 
PSD in frequency domain. The energy associated to SEMG 
signal is dependant of the contraction level. Signals have more 
energy when the contraction level is important. Signals in the 
model 1 have more energy than signals simulated in model 2. 
This is due to the distribution of fibers in both models; there 
are more fibers near to the surface in model 2 than those of the 
model 1.    
The effect of the interelectrode distance (IED) of the detection 
filter on the morphology of the SEMG signal is shown in the 
figure 5.  This morphology is investigated via some classical 
parameters which are: 
 

• RMS root mean square. 
• ARV average rectified value. 
• MDF median frequency. 
• MNF mean frequency. 

 
 

Fig.3. SEMG signals with corresponding PSD in case of fibers overlap all 
muscle territory (model 2). (a) an a1) SEMG with its PSD at 10% MVC. (b) 
and b1) SEMG with its PSD at 25% MVC. (c) and c1)SEMG signal with its 

PSD at 50% MVC. 

 
 

Fig.4. SEMG signals with corresponding PSD in case of cylindrical MU 
(model 1). (a) and (a1) SEMG with its PSD at 10% MVC. (b) and (b1) SEMG 

with its PSD at 25% MVC. (c) and (c1)SEMG signal with its PSD at 50% 
MVC. 
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From figure 5 (a), both ARV and RMS increase when the IED 
increase in both models. This result means that each time the 
IED increase, the conductor volume increase and more fibers 
are contributed to the detection at the surface. The figure 5 (b) 
indicates that the MDF and the MNF decrease when the IED 
increase. This is in both models and due to the widening of the 
MUAP when the conductor volume increases by increasing of 
the IED. Both results in figure 5 were confirmed by 
researchers of the domain.   
 

 
 

Fig.5. Behavior of indicated parameters of the DD detection SEMG signal as 
function of the interelectrode IED for both model 1 and model 2. (a) Average 

rectified value (ARV) and root mean square (RMS). (b) Median frequency 
(MDF) and mean frequency (MNF). 

 
 

Our generation SEMG model permits us also to simulate a 
muscular or neural disorder (disease). In clinical applications, 
SEMG signal can be a good indicator about the state of a 
given muscle (healthy or ill). Figure 6 shows an example of 
simulation of a muscular disorder that many patients suffer 
from it. It is the Duchene disease that manifests by loss of 
muscle fibers due to biological anomaly.   This result 
represents progressive loss of muscle fibers in different MUs. 
Signals are normalized to the maximum negative peak of the 
original signal (no loss of muscle fibers, 0% i.e. healthy 
subject). The reduced number of muscle fibers belonging to 
one MU decreases the amplitude of peaks. With progressive of 
the loss of muscle fibers, the single peaks become more and 
more difficult to recognize in the signal. Figure 7 represents 
the RMS of the different SEMG signals, already simulated, 
with respect to the percentage of loss muscle fibers. RMS 
decreases linearly with the increase of the loss of muscle 
fibers. The present result can be exploited by clinicians, so 
they may ask patient to exercise a force from a given muscle 
and compare its SEMG signal with of healthy muscle. Of 
course each muscle has their proper characteristics. Clinicians 
should also know these characteristics in order to identify such 
disorder.      

 

 
Fig.6. Normalized NDD detection SEMG signals to the max peak of the 

original signal (no loss muscle fibers i.e. 0%) as function of percentage of loss 
muscle fibers related to the maximum number of fibers of the original signal. 

Original signal is at 10% MVC contraction level (model 1). 
 

 
Fig.7. Root mean square RMS of SEMG signals (Fig. 6) as function of 

percentage of loss muscle fibers related to the number of fibers of signal 
without loss fibers. 

 

IV. CONCLUSION  

In this paper, a model to generate SEMG signal has been 
presented. The modeling taken in accounts most anatomical 
and physiological muscular parameters. Two configurations of 
MU morphology have been considered. The mechanism of 
recruitment of MU is also considered to generate voluntary 
isometric contraction. The SEMG signals are very similar to 
those found by many researchers. In this paper, some results 
concerning the behavior of the SEMG signal according to the 
detection filters, to the contraction levels, to the interelectrode 
distance and to the muscular disorder were presented. This 
modeling has precious utility and will permits us to study and 
investigate many aspect of the SEMG applications such as the 
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decomposition, the detection of the neuro-disorder muscular, 
the estimation of the force from SEMG signal, the control of 
prostheses and the discovery in biology and physiology 
discipline.           
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