
 

 

I. INTRODUCTION 

 
Abstract — The d efect d etection mechanism for e ddy c urrent 
non-destructive testing (NDT) probes is related to the interaction 
of i nduced e ddy c urrents i n t he metal t est s pecimen w ith f laws 
and the coupling of these interaction e ffects with the moving test 
probe. We review in this paper formulation of three dimensional 
eddy current problems in terms o f various magnetic and e lectric 
potentials in order to predict change in impedance of an absolute 
coil as i t scans t he m etal p late su rface al ong t he diagnostic 
direction for detection of flaws and than evaluate characterization 
of material using BFGS optimisation method.  
 
Keywords—Non-destructive t esting, N ormalized im pedance 
diagram, Inverse problem, BFGS method, Optimization 
 

Eddy current non destructive testing (NDT) of conducting 
materials is of importance in many domains of industry: 
energy production (nuclear plants), transportation 
(aeronautic), workpiece manufacturing, etc. This technique 
based on the analysis of changes in the impedance of one or 
more coils places near the workpiece to be tested, is used to 
detect and characterize possible flaw or anomalies in the 
workpiece.  

In recent years, with strong requirement for structural 
safety, eddy current testing has progressed to a quantitative 
detection stage[1]. Shapes and localisation of defects are 
required for the assessment of defect propagation and 
determination of critical flaws. Encouraging results were 
achieved for the reconstruction of a single crack in the case 
when the detecting probe scans just over the crack. 

 
 

 

 

 

 

 

 

 
 
 

A comparison between various diagnostic methods is 
shown in Fig.1 [2]. A typical eddy current problem is depicted 
in Fig.2. It consists of an eddy current region with nonzero 
conductivity CΩ  and a surrounding region free of eddy 
currents which may, however, contain source currents jΩ [3] 

 

Fig 2 : Eddy current non destructive 
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A number of approach already exists to model the 
interaction between the probe and the tested structure. The 
most general ones in complex geometries use the numerical 
methods. In this paper, we describe such a computational 
model that uses the finite element method for calculating 
eddy current probe signals due to cracks. In earlier studies, 
the calculations were performed for planar structures [1]  

 
II. FINITE ELEMENT METHOD FORMULATION 

 
The treatment of the eddy current problem is based on the 

solution of one or more differential equations derived from 
Maxwell’s equations under the general assumption that the 
displacement current density, in conducting media may be 
neglected for lower frequencies.[1][3] 

In three-dimensional eddy current problems, both the 
electric and the magnetic filed must be described in 
conductors, the electromagnetic field in this case can be 
derived from potentials using the magnetic vector potential and 
the electric scalar potential, while in eddy current-free regions 
it suffices to make into account the magnetic field only.  

The time-harmonic eddy current problem is expressed by: 
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Where J  the external current density, µ is the 
permeability, σ   is the conductivity of conductive materials 
and ω  is the angular frequency of the excitation source. The 
magnetic vector potential is not uniquely defined by the 
equations (1) and (2) when both filed J


and B


 are 

automatically forced to be solenoidal. To ensure the 
uniqueness of the potentials, we need to impose further 
requirements, i.e. the gauge conditions together with the 
correct selection of boundary conditions. 

There are several possible ways to treat the uniqueness of 
the magnetic vector potential. The most popular is the coulomb 
gauge: 

0=∇A


                                                                              (4) 
One of the effective and widely used methods of 

numerically computing eddy current fields in three dimensions 
is the finite element method. In this paper, nodal finite 
elements only are considered where the unknown scalar          
and /or vector functions, the potentials, are approximated by 
interpolating their values in the nodes of the finite elements 
[1].  

Using finite element Galerkine techniques, the Dirichlet 
boundary conditions require nodal potentials to be set to the 
known values. The Newman boundary conditions can be 
satisfied in a natural way. This is illustrated for the case of the 
magnetic vector potential and the electric scalar potential 
writing the Galerkin weak form of Equ.(1) And (2). With 
W


and W  denoting the weighting functions which coincide 
with the shape functions in a finite element realisation. Then 
(1) and (2) are replaced by: 
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Using the gauss’s theorem, (5) becomes: 
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Where S  is the surface which encloses V and n
 is the unit 

normal vector.[4]. After the two magnetic vector and the 
electric scalar potential are solved, we can calculate the 
impedance of the coil taken as follow: 

LjRZ ω+=                                                                (8) 
Where R  is the coil resistance and L is the coil inductance. 
 The resistance is linked with the dissipated energy P in the 

conductor in the form of: 
²/ IPR =                                                                (9) 

While the inductance is linked with the total stored energy 
W in the whole solution domain by: 

²/2 IWL =                                                                 (10) 
Where I is the external current density, P and W can be 

expressed by: 

Γ= ∫
Γ
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                                (11) 

Respectively. Here AjVE


ω−−∇= is the electric field 

intensity, AB


×∇=  is the magnetic flux density, µBH /


= is 
the magnetic field intensity, Γ  refers to the solution domain, 
and * denotes the complex conjugate operator.[4][5]. 
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Fig 3 representation of the 3D benchmark EC geometry 
 

 
We solve a benchmark model of eddy current testing [6]. 

We analyze eddy currents of a metal plate 
( )mm25.1140140 ××  with a crack ( )mm75.02.010 ××  as 
shown in Fig.1. Conductivity and relative permeability of the 
plate are mMS /1=σ and 1=rµ . An exciting coil with 140 
turns is placed above the crack. Inner and outer diameters of 
the coil are mmr 2.11 =  and mmr 2.32 = , the height of the 

coil is mmh 8.0= . The current of the coil is equivalent to 

AI c 140/1= and the work frequency is kHzfr 300= . The 
gap between the lower surface of the coils and the upper 
surface of the plate named lift-off ( )offliftl − distance is equal to 

mmL 5.0=  

TABLE 1 SPECIFICATION OF THE MODEL 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Item Value 

Co
nd

uc
tiv

e 
pl

at
e Plate conductivity 

 ]/[101 6 mS×  

Plate thickness ][25.1 mm  

Plate length ][140 mm  

Plate width ][140 mm  
 Frequency ][300 kHz  

Co
il

Coil inner radius 


 

][60.0 mm  

Coil outer radius ][60.1 mm  

Coil height ][80.0 mm  

Coil Lift-off ][50.0 mm  

Cr
ac

k

Crack width 


 

][2.0 mm  

Crack length ][10 mm  

Crack depth ][75.0 mm  
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The impedance change represented by the resistance and 
the reactance components in Figs. 4 and 5, is evaluated by 
subtracting the values obtained for the plate without 
rectangular-shape crack from the values obtained for the plate 
with crack. These parameters are calculated at frequencies of        
300 kHz for lift-offs of 0.5mm at different coil locations with 
a 1mm displacement step. A preconditioning technique, called 
the symmetric successive over-relaxation (SSOR) method is 
employed to minimize computation time and memory. 

In figure 6 we show decrease in relative error as function 
as iterations. She indicate that symmetric successive over-
relaxation (SSOR) method employed to solve electromagnetic 
equations converge to initial value equal to 910−=ε . 

The coil impedance jXRZ +=  is the typical of eddy 
current distribution in the material. In order to eliminate the 
influence of the electrical proprieties of the coil itself, the 
normalized impedance has been calculated: 

( ) 00 /- RRRRn =                                                   (12) 
  0/ XXX n =                                                                        (13) 
 

 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where nR is the normalized resistive component, and nX  
represent the normalized reactive component [2][6]. 
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Fig 4 Experimental and calculated resistance components 
as function as coil displacement 
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Fig 5 Experimental and calculated reactance components 
 as function as coil displacement 

 

Fig. 6 Relative error as function as number of iterations 
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Fig 7 Normalized resistance components as function as 
frequency 
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Fig 8 Normalized reactance components as function as 
frequency 
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On the one hand, we illustrate in Fig.7 variation of real part 
of normalized impedance as function as frequency and on the 
other hand, we illustrate in Fig.8 variation in imaginary part of 
normalized impedance versus frequency. 

We illustrate in figure 9 normalized impedance plane 
diagrams which consist to plot the real part as functions as the 
imaginary part of normalized impedance for thirteen values of 
frequency distributed between 100 Hz and 1MHz for three 
different depth defect values: at surface of conductive plate, at 
0.1 mm, and at 0.20 mm from a conductive plate surface as 
shown in Fig.9. We remark decreasing in values of the two 
parts of normalized impedance when distance 0d  increase.  

There is relationship between the coupling coefficient and 
the impedance diagram. This relationship is given 
by cXK −= 1² . 

Where K  is the coupling coefficient and cX , is the value 
of the reactance at the point where the normalized impedance 
curve, extrapolated to high frequency or conductivity, 
intersects the ordinate axis. 

In Fig 10, we show idealized real component as function as 
idealized imaginary component of impedance given as 
follows: 

2

2 1
1 K

KX
X

XX
X n

c

cn
nn

−+
=

−
−

=                                   (14)         

and  

 
2K

R
R n

nn =                                                     (15) 

The Lift-off influence is currently considered in eddy 
current non destructive testing method. As lift-off is increased 
the electromagnetic coupling between the probe and the test 
material decreases as there is greater flux leakage, and the size 
of the impedance diagram decreases.  

To determine Lift-off angle, we considered the parameter 
Lθ  given as: 

n

c
L R

X−
=

1tanθ                                                            (16) 

Figure 11 illustrate Lift-off angle as function as 
δ
r where 

r  represent the mean coil radius and δ  is the skin depth. 

In order to evaluate the limits of flaw detection we 
considered the notion of nR∆  and nX∆ where: 

( ) ( )flawedRUnflawedRR nnn -=∆                                     (17) 

( ) ( )flawedXUnflawedXX nnn -=∆                                   (18) 

We plot variation in normalize impedance components for 
four depth defect values: at surface of conductive plate,  at 
0.05 mm,0.10mm and at 0.15 mm from a plate surface as 
shown in figure 12 (for variation in imaginary parts) and  
figure 13 (for variation in imaginary parts) of normalized 
impedance. 
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Fig 9 Normalized impedance plane diagrams for different 
cracks depth 0d  
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Fig 10 Idealize Normalized impedance plane diagrams 

 

Fig.11 Lift off angle as function as  δ/r  
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Fig 14 Evolution of Magnetic permeability as function as 
iterations number 
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In order to characterize a conductive plate we need an 
objective function, which minimizes the mean-square 
difference between tentative predictions of the probe signals 
and the measurements. In this case the key’s function is 
variation in impedance showing as follows: 

2

1
∑

=

∆−∆=
n

i

i
meas

i ZZf                                         (19) 

Where n denote the number of measured points, and the 
superscript ""i is equivalent to the ( )thi observation point. 

If the agreement is unsatisfactory, then the problem is 
updated and a new prediction is made. The process continues 
through a number of iterations until predictions and 
observations match to within a reasonable tolerance. 

In Fig.14 we show evolution of objective function f as 
function as number of iterations equal to 100 iterations. We 
observe that the difference between calculated impedance and 
measured impedance decrease satisfying relation (19). 
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Fig 12 Variation in real parts of normalized impedance 
as function as frequency 
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Fig 13 Variation in imaginary parts of normalized impedance  
as function as frequency 
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Fig 14 Evolution of Objective function versus  
iterations number 
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Fig 15 Evolution of Magnetic permeability 
 as function as iterations number 
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Fig 16 Evolution of electric conductivity  
as function as iterations number 
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Magnetic permeability and electrical conductivity showing 
in Fig.15 and Fig.16 respectively meet to the optimum values. 

We remark a good agreement between obtained and 
expected parameters of the conductive material which is a 
benefit to BFGS optimization method. 

III. CONCLUSION 

The aim of this paper is to show three dimensional finite 
elements modelling and material characterization using BFGS 
optimization method by calculation magnitude impedance 
along a diagnostic direction and variation in normalized 
components such as normalized resistive components and 
normalized imaginary components as function as frequency for 
different depths crack.  

In the first, we obtained a good agreement between 
calculated impedance components and experimental data witch 
is considered as a validation of our theoretical results.  

Then, we calculate normalized impedance components as 
function as frequency and obtained normalized plane diagrams 
by showing effect of depths defect in non-destructive 
operation. 

After that, BFGS optimisation method is employed to 
characterize material proprieties such as magnetic permeability 
and electrical conductivity. 
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