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Abstract

Estimation of Distribution Algorithms (EDAs) are a type of evolutionary algorithm that are good

at solving optimization problems. EDAs work by building a model of the best solutions found

so far and then using this model to generate new solutions. The main challenge with EDAs is

building a good model. This is especially hard for permutation problems.

We introduce a novel Estimation of Distribution Algorithm (EDA), the Position-Guided

Sampling EDA (PGS-EDA), tailored for permutation problems. PGS-EDA focuses on the po-

sitions of elements in the solution rather than the elements themselves. This makes PGS-EDA

better at solving permutation problems. We tested PGS-EDA on the Permutation Flow-Shop

Scheduling Problem (PFSP). Our results showed that PGS-EDA is good at solving the PFSP, es-

pecially for small and medium-sized problems. PGS-EDA outperformed other EDAs designed

for permutation problems on the PFSP, achieving the lowest Average Relative Percentage De-

viation (ARPD).

We also explored the use of Generative Adversarial Networks (GANs) in EDAs. GANs are

good at generating samples that look like the training data. However, they have not been well-

studied for permutation problems. To address this gap, we proposed a new EDA that uses GANs

to estimate the probabilistic model. We represent candidate solutions with one-hot matrices to

preserve important information during GAN training. We tested our proposed algorithm on two

permutation problems: the Traveling Salesman Problem (TSP) and the PFSP. Our results showed

that the algorithm can find the best solution in some cases and near-best solutions in others

Keywords: EvolutionaryAlgorithms, Estimation ofDistributionAlgorithms; TSP; Permutation-

based problems; Scheduling Problems; Deep Generative Models.



Résumé

Les algorithmes d’estimation de distribution (AED) sont un type d’algorithme évolutionnaire qui

est efficace pour résoudre des problèmes d’optimisation. Les EDAs fonctionnent en construisant

un modèle des meilleures solutions trouvées, puis en utilisant ce modèle pour générer de nou-

velles solutions. Le principal défi des EDAs est de construire un bon modèle. Cela est particuliè-

rement difficile pour les problèmes de permutation. Nous proposons un nouvel EDA appelé Al-

gorithme d’Estimation de Distribution avec Échantillonnage Guidé par la Position (PGS-EDA)

qui est spécialement conçu pour les problèmes de permutation. PGS-EDA se concentre sur les

positions des éléments dans la solution, plutôt que sur les éléments eux-mêmes. Cela rend PGS-

EDA plus efficace pour résoudre les problèmes de permutation. Nous avons testé PGS-EDA

sur le problème d’ordonnancement des ateliers en flux de permutation (PFSP). Nos résultats ont

montré que PGS-EDA est efficace pour résoudre le PFSP, en particulier pour les problèmes de

petite et moyenne taille. PGS-EDA a surpassé les autres EDAs conçus pour les problèmes de

permutation sur le PFSP, en obtenant les valeurs d’écart relatif moyen en pourcentage (ARPD).

Nous avons également exploré l’utilisation des réseaux adversaires génératifs (GANs) dans les

EDAs. Les GANs sont efficaces pour générer des échantillons qui ressemblent aux données d’en-

traînement. Cependant, ils n’ont pas été bien étudiés pour les problèmes de permutation. Pour

combler cette lacune, nous avons proposé un nouvel EDA qui utilise les GANs pour estimer le

modèle probabiliste. Nous représentons les solutions candidates par des matrices à chaud afin de

préserver les informations importantes pendant l’entraînement du GAN. Nous avons testé notre

algorithme proposé sur deux problèmes de permutation : le problème du voyageur de commerce

(TSP) et le PFSP. Nos résultats ont montré que l’algorithme peut trouver la meilleure solution

dans certains cas et des solutions proches de la meilleure dans d’autres.

Mots-clés: Algorithmes d’Estimation de la Distribution ; Problèmes basés sur les permu-

tations ; Problèmes d’ordonnancement ; Algorithmes évolutionnaires ; Modèles génératifs pro-

fonds.
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Chapter 1

General Introduction

This chapter provides an overview of the scope of this thesis, including the research questions

and a summary of the research publications produced during this research.

1.1 Context

Optimization in computer science refers to the procedure of determining the most ideal so-

lution(s) by considering particular criteria. Since many years ago, the study of optimization has

attracted a lot of interest among academics, largely because of the critical role it plays in a variety

of fields, including industrial, social, financial, and economic activities.

Combinatorial optimization is a branch of mathematical optimization that finds the best so-

lution from a limited set. Note that these potential solutions are discrete, meaning they can only

be represented as a graph, a vector, or a permutation. This thesis focuses on Problems in which

the solution is expressed as a permutation.

Permutation problems are very difficult to solve when the permutation size is large. In other

words, the search space of permutation problems is the set of all possible permutations of n items,

so if no constraint is assumed, the number of possible solutions is n!. This is because the search

space of solutions is exponential in n, meaning that the number of possible permutations grows

very quickly as n increases. For example, when n = 10, the search space of solutions is 3628800

permutations, and when n = 20, it is more than 2 × 1018 permutations. The work of Garey

and Johnson [2] showed that many permutation problems are NP-hard, meaning that they are

1



GENERAL INTRODUCTION

computationally intractable for all but very small instances.

Due to the nature and complexity of permutation problems, the exact methods are not prac-

ticable. The limitations of the exact methods encourage the operations research community

to suggest many metaheuristics to deal with these problems. Metaheuristics including Tabu

search (TS), Variable Neighbourhood search (VNS), Particle Swarm Optimization (PSO), Ge-

netic Algorithm (GA), Estimation of DistributionAlgorithms (EDA), SimulatedAnnealing (SA),

and Ant Colony Optimization (ACO) have proven their capacity to provide good solutions in a

reasonable time.

Model-based EvolutionaryAlgorithms (MBEAs) are a class of EvolutionaryAlgorithms (EAs)

that use machine learning models in the evolution process [3]. In this thesis, we are interested

in a type of MBEAs called Estimation of distribution Algorithms (EDAs), which use machine

learning techniques to build a probabilistic model of selected solutions and then use this model

to generate the next generation.

1.2 Motivation and Problematic

Lately, there has been increasing enthusiasm for employing various deep learning models

across diverse domains [4]. This interest reflects a recognition of the transformative potential of

these advanced machine learning techniques and a growing desire to leverage their capabilities

in addressing complex and diverse problems.

Integrating deep neural networks, particularly generative models, into Estimation of Distri-

bution Algorithms (EDAs) is a topic of notable interest within the context of optimization and

algorithmic strategies. This fusion marks a convergence between classical optimization methods

and cutting-edge machine learning techniques, holding the promise of reshaping the landscape

of optimization itself.

GANs and other deep generative models can generate new data, such as images, text, and

music. They can also solve problems that involve reordering or rearranging data, such as se-

quencing tasks and scheduling problems.

This passage is saying that generative models have the potential to change the way we solve

permutation problems. Traditional optimization methods for permutation problems can be com-

2



GENERAL INTRODUCTION

plex and inefficient. GANs and VAEs may offer a new approach to solving these problems that

is more efficient and flexible.

This Work focuses on answering the following research questions:

• How does the predominant node-sampling focus in estimation of distribution algorithms

(EDAs), particularly for permutation problems, impact algorithm performance concerning

the intricate element-position relationship?

• Howdoes arbitrary node-to-position assignment, in the absence of awell-establishedmethod,

affect EDA solutions for permutation problems?

• In what way deep generative deep learning models can play the role of learning and sam-

pling probabilistic models in EDAs?

• How can we exploit the capacity of deep generative models to estimate the distribution in

permutation space?

1.3 Objectives and Contributions

The primary objective of this study is to leverage the capabilities of estimation of distri-

bution algorithms (EDAs) and generative adversarial networks (GANs) to tackle the complex

challenges presented by permutation-based problems. These problems, characterized by the ar-

rangement of elements in sequences or arrangements, pose unique difficulties due to their com-

binatorial nature and the need to optimize the arrangement of elements according to specific

criteria. In this context, the main contributions of this thesis are:

• We provide a comprehensive overview of permutation-based problems, detailing their key

characteristics and common variants. By systematically categorizing these problems, we

lay the groundwork for understanding their complexity and exploring potential solution

approaches.

• Drawing inspiration from the success of GANs in continuous domains, we propose an

innovative fusion of GANs and EDAs tailored to permutation problems. This approach
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offers a novel perspective on probabilistic model building and sampling, enabling the in-

vestigation of GANs’ ability to learn and represent the intricate distributions inherent in

permutation spaces.

• We undertake a systematic exploration of various permutation representations duringGANs

training, aiming to evaluate their efficacy in capturing the underlying structure of permutation-

based problems. By experimenting with different encoding representation formats, we

seek to uncover insights into the effect of the representation on the algorithm performance.

• In response to the specific challenges posed by permutation-based problems, we intro-

duce the Position Guided Sampling Estimation of Distribution Algorithm (PGS-EDA).

This novel EDA adopts a position-guided sampling strategy, shifting the focus from indi-

vidual nodes to positions within permutations during the sampling phase. By prioritizing

positional information, PGS-EDA offers a targeted approach to addressing the unique con-

straints and objectives of permutation optimization.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 is divided into three parts. The first part (Section 2.2) introduces permutation-

based problems, a class of challenging optimization problems with real-world applications. This

section discusses the unique characteristics of each problem within this domain, providing valu-

able insights into their complexities.

The second part (Section 2.3) delves into the Estimation of Distribution Algorithms (EDAs),

a type of model-based evolutionary algorithm that is particularly well-suited for solving permu-

tation problems. This section provides a comprehensive taxonomy of EDAs, highlighting their

diverse aspects. It also focuses on EDAs that have been specifically fine-tuned for permutation

problems, setting the stage for understanding novel approaches to addressing these optimization

challenges.

The closing section (Section 3) explores the realm of generative deep learning models. It

begins with a broad overview of generative models, unraveling their architectural foundations.
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This section then delves into the intricate workings of two prominent generative models, Gen-

erative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), elucidating their

structural nuances.

Chapter 3 introduces GAN-EDA, a novel EDA-based GAN specifically designed for solv-

ing permutation problems. GAN-EDA leverages the power of Generative Adversarial Networks

(GANs) to learn a latent probabilistic model of the selected individuals, which is then used to

generate new individuals. GAN-EDAs also introduce an alternative permutation representation

using one-hot matrices. Additionally, this chapter proposes a hybrid variant of GAN-EDA that

incorporates a 2-opt local search algorithm. To evaluate the performance of our proposed algo-

rithm, comprehensive experiments were conducted on benchmark problems such as the Travel-

ing Salesman Problem (TSP) and Permutation Flow Shop Scheduling Problem (PFSP).

Chapter 4 introduces PGS-EDA, a pure EDA-based algorithm designed and tested for solv-

ing the Permutation Flow Shop Scheduling Problem (PFSP). The key innovation of PGS-EDA

is a new sampling method focusing on sampling positions rather than elements to generate new

individuals (permutations). Compared to state-of-the-art algorithms, this new approach has been

shown to improve the performance of PGS-EDA on the PFSP, especially for small and medium

instance sizes.

In chapter 5, as a conclusion, we summarize the key findings of our research, discuss the

overall conclusions drawn from our results, and outline potential avenues for future exploration.
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Chapter 2

Background and Literature Review

2.1 Introduction

Permutation problems form a subset of combinatorial optimization, where the arrangement

of elements matters significantly. These problems hold immense importance due to their rele-

vance in solving real-world challenges across various domains. From optimizing delivery routes

and scheduling manufacturing processes to arranging genetic sequences and data points, permu-

tation problems reflect the complexities of decision-making in a wide array of applications. The

importance of permutation problems lies in their intricacy, demanding innovative approaches

and creative solutions.

This chapter reviews three interconnected domains that are essential to the research presented

in this thesis: permutation problems, Estimation of Distribution Algorithms (EDAs). We begin

by exploring permutation problems, their real-world applications, their characteristics, and their

relevance to optimization. Next, we delve into EDAs, an evolutionary algorithm that has proven

effective in solving different optimization problems. This comprehensive review provides the

foundation for the research presented in this thesis, which aims to advance our understanding of

optimization and problem-solving by drawing insights from these domains.
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2.2 Permutation Problems

People frequently utilize permutations in real life due to their flexibility and utility in repre-

senting various needs. Permutations can be depicted in numerous distinct forms, such as sorted

sets of elements, collections of separate cycles, transpositions, matrices, and graphs. This multi-

tude of representation options results in their appearance across various problems. For example,

the assignment of n tasks to nworkers, where each worker takes only one task, can be interpreted

by a permutation.

Within the realm of combinatorial optimization, the concept of a ”permutation” pertains to

a specific set of n natural numbers, which typically range from 1 to n. The key characteristic

of these permutations is that each number is uniquely and mutually exclusive, ensuring that no

number within the set repeats. This exclusivity plays a fundamental role in the definition and

constraints of permutation-based problems. Formally, a permutation of a set S can be defined

as a bijective (one-to-one and onto) function that maps each element from the set S to another

element within the same set S. In the context of this dissertation, the set S is composed of n items

labeled with consecutive natural numbers 1, 2, ..., n. Permutations are specifically represented

using the conventional one-line notation, which involves depicting a permutation as an ordered

list derived from the set 1, 2, ..., n.Permutations are typically represented by symbols such as σ,

π, or τ , where σ(i) = j signifies that element j occupies position i. [5]. To prevent any potential

confusion in this dissertation, we use the terms permutation, solution, or individual for the same

meaning.

Permutation problems belong to a category of optimization problems that employ permuta-

tions as a means of representing solutions. These problems have been established as NP-hard, as

illustrated by Gareyte and Johnson [2]. The search space in permutation problems, often denoted

as Sn, contains all permutations of size n. So, in general, a permutation-based problem consists

of finding the best solution σ∗ to optimize the fitness function f , in which:

f(σ∗) < f(σ) ∀σ ∈ Sn (2.1)

Permutation-based problems encompass a wide range of challenges in which all possible

permutations of a set of elements define the solution space. This set is often denoted as (Pn)
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when dealing with a problem size of (n). Each permutation σ within (Pn) represents a distinct

arrangement or ordering of the elements.

The factorial expansion of the solution space reveals the intrinsic difficulty of permutation-

based issues. These issues become computationally difficult due to the exponential number of

possible solutions to investigate. The importance of permutation-based problems extends across

various fields, such as logistics, routing, and scheduling. They provide versatile models for

addressing real-world scenarios with intricate decision-making requirements.

The literature includes a wide range of permutation problems from different fields. In this

section, we will introduce four well-known problems: the traveling salesman problem (TSP) [6],

the permutation flow-shop scheduling problem (PFSP) [7], the quadratic assignment problem

(QAP) [8], and the linear ordering problem (LOP). All of these problems are combinatorial op-

timization problems whose solutions can be represented as permutations.

2.2.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) involves finding the shortest route to visit a set of n

distinct cities exactly once and then returning to the starting city. In this problem, a solution is

represented as a permutation σ of the cities, where σ(i) = j indicates that the i− th stage of the

tour visits city j.

For example, in a TSPwith four cities, a solution is represented by the permutation σ=3,2,4,1.

This tour departs from City 3, then proceeds to City 2, followed by City 4, and finally City 1

before returning to City 3.

The problem is formally described in the following manner: The objective function f is

defined in 2.2 as the sum of the distances between all pairs of cities in a given distance matrix

D = [di,j]n×n. The cities are traversed in the order determined by the permutation σ.

f(σ) =
n∑

i=2

dσ(i−1),σ(i) + dσ(n),σ(1) (2.2)

Given our assumption that the initial city in the tour is not predetermined, the Traveling

Salesman Problem (TSP) exhibits symmetrical solutions. This symmetry arises because every

tour can be depicted using 2n distinct permutations in symmetric scenarios, when di,j = dj,i for
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all i, j ∈ {1, 2, ..., n}. In the asymmetric scenarios, every tour is represented by n distinct permu-

tations. For example, solution σ1 = {1, 3, 2, 4} represents the same tour that σ2 = {4, 2, 3, 1},

because f(σ1) = f(σ2).

From the previous example, we can observe that the absolute position of elements in the

permutation is not affected in the fitness calculation. Additionally, if indices i and j are adjacent

in the permutation, they contribute equally to the objective function, regardless of their absolute

positions. It is important to note that each entry in the distance matrix D is defined by two cities.

In summary, we can conclude that the impact of an item σ(i) on the fitness function f is directly

influenced by its neighboring items: the previous item σ(i− 1) and the next item σ(i+ 1).

2.2.2 Permutation Flow-Shop Scheduling Problem (PFSP)

In the context of the Permutation Flow-Shop Scheduling Problem (PFSP), we are given n

jobs, J = {J1, J2, . . . , Jn}, and m machines, M = {M1,M2, . . . ,Mm}. Each job, Ji, consists

of a sequence of operations that must be processed on the machines in a specific order. The goal

of the PFSP is to find a permutation of the jobs that minimizes a specific objective function, such

as the makespan (the completion time of the last job on the last machine).

The PFSP is a challenging problem because there is a large number of possible permutations

of the jobs, and the completion time of each job depends on the order in which the jobs are

processed on each machine.

The PFSP is a complex problem, but it is also a very important problem. It has a wide range

of applications in real-world manufacturing and service industries[9, 10]. By standardizing the

problem and making some simplifying assumptions, it is possible to develop efficient algorithms

for solving the PFSP and finding good solutions to real-world problems.

To standardize PFSP, several standard assumptions are typically applied:

1. Simultaneous Start: All tasks commence processing at time zero synchronously.

2. Uninterrupted Machine Operation: Machines operate continuously without any inter-

ruptions during the scheduling process.

3. Sequential Processing: Tasks must adhere to a predefined processing sequence, follow-

ing a specific order.
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4. ExclusiveMachine TaskHandling: Eachmachine is capable of processing only one task

at any given moment, and vice versa. This exclusivity ensures that a machine is dedicated

to a single task during its processing.

These assumptions are not always realistic, but they are necessary to make the PFSP tractable

to solve. In real-world problems, there may be delays in the start of tasks, machines may break

down, and tasks may be interrupted [11]. It is important to note that variants of PFSP can in-

troduce additional complexities beyond the standard assumptions. For instance, variations may

include factors such as job release dates, machine breakdowns, or setup times between opera-

tions [9]. In a recent study, the consideration of controllable inspection times in the optimization

of two-machine flow-shop robotic cells was explored [12].

Figure 2.4 provides an illustrative example of the Permutation Flow-Shop Scheduling Prob-

lem featuring 5 jobs executed on 4 machines. This visual representation underscores the con-

sistent job order across all machines. In the context of the PFSP, it is imperative that the job

sequence remains consistent across all machines. Additionally, Figure 2.4 vividly illustrates the

stringent interdependency between operations within a job, where each operation must await

the completion of the preceding operation on the preceding machine. As a result, Figure 2.4

effectively captures the sequential execution of operations within each job, in full compliance

with the fundamental constraints of the PFSP. The X-axis is dedicated to representing process-

ing time. The Y-axis corresponds to the machines involved in the scheduling process. Finally,

the makespan point on the X-axis denotes the completion time of job 5 (last job) on machine

4 (last machine), symbolizing the total time required to successfully process all jobs within the

permutation.
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Figure 2.1: An example of PFSP.

Cσ〈i〉,j =



pσ〈i〉,j i = j = 1

pσ〈i〉,j + cσ〈i−1〉,j i > 1, j = 1

pσ〈i〉,j + cσ〈i〉,j−1 i = 1, j > 1

pσ〈i〉,j +max{cσ〈i−1〉,j, cσ〈i〉,j−1} i > 1, j > 1

(2.3)

Equation 2.3 provides the formula for calculating the completion time Cσ〈i〉,j for job σi on

machine j within the PFSP. The time required to process job Ji on machine Mk is denoted as

pi,k, with 1 ≤ i ≤ n and 1 ≤ k ≤ m. Let us go through the different scenarios defined by the

cases:

• When i = j = 1: This corresponds to the first job being scheduled on the first machine.

In this case, the completion time is simply the processing time pσ〈1〉,1.

• When i > 1 and j = 1: This represents a job being scheduled on the first machine, but it

is not the first job overall. The completion time is the sum of the processing time for

the current job pσ〈i〉,1 and the completion time of the previous job on the same machine

cσ〈i−1〉,1.

• When i = 1 and j > 1: This corresponds to the first job being scheduled on a machine

other than the first one. The completion time is the sum of the processing time for the cur-

rent job pσ〈1〉,j and the completion time of the previous job on the same machine cσ〈1〉,j−1.

• When i > 1 and j > 1: This represents a job being scheduled on a machine other than the
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first one, and it is not the first job overall. The completion time is the sum of the processing

time for the current job pσ〈i〉,j and the maximum value between the completion time of the

previous job on the same machine cσ〈i−1〉,j and the completion time of the current job on

the previous machine cσ〈i〉,j−1.

The determination of completion times in the Permutation Flow Shop Problem (PFSP) is

achieved by considering all possible combinations of jobs and machines from the preceding

scenarios.

The influence of element σ(i) on the fitness function f is computed based on the cumulative

completion times of all tasks scheduled prior to it, ranging from task 1 to task i−1, in addition to

the processing time of task i. Consequently, the contribution of element i to the fitness function

is intricately linked to the specific order in which the preceding i− 1 tasks are scheduled. This

interdependency highlights the critical role of sequencing in determining the overall fitness of

the solution.

2.2.3 Quadratic Assignment Problem

The QAP[8] is the problem of assigning a set of n facilities to a set of n locations, with a

cost function calculated according to the distance between locations and flow between facilities.

The solution of this problem is codified as a permutation σ of length n, where σi = j represents

the facility j is allocated to location j, for example, the solution 2,3,1,4, means that facility 2 is

assigned to location 1 and facility 3 is assigned to location 2, and so on. Typically, there are two

matrices n*nmatricesH = [hij] andD = [dij] represent respectively the flow between facilities

and distance between locations. The objective function can be defined as follows:

F (σ) =
n∑

i=1

n∑
j=1

hij × dσ(i)σ(j) (2.4)

The analysis of the fitness function shows that all possible pairings of items and their posi-

tions in the permutation are important for calculating the fitness value. As a result, the impact

of item (i) depends on the precise arrangement of the other items in the solution. The solution

quality is evaluated based on the absolute position of each facility. Relative to the absolute posi-

12



BACKGROUND AND LITERATURE REVIEW

tion of the other indices. As a consequence, the quadratic assignment problem (QAP) is unique

among the problems presented because it creates complex relationships between its items.

2.2.4 Linear Ordering Problem

In this permutation problem, we are given a square matrixM of size n×n. The objective is to

find a simultaneous permutation of rows and columns of M, where the sum of the super-diagonal

entries is maximized, so the solution is a permutation of length n, and the objective function is

formulated as follows:

F (σ) =
n∑

i=1

n∑
i=j

Mσiσj
(2.5)

It is clear from this problem that an index’s influence on the objective function depends on

the indices that come before and after it. In other words, the contribution of the element σ(i) is re-

lated to the previous elements (σ(1), . . . , σ(i−1) and the posterior elements (σ(i+1), . . . , σ(n).

However, this influence is unaffected by how these previous and following elements are specif-

ically arranged.

2.3 Evolutionary Algorithms

Evolutionary algorithms are population-basedmetaheuristics for optimization problems. The

basic idea behind EAs is inspired by natural evolution and uses their mechanisms, such as se-

lection, mutation, and crossover. This evolution across time leads to the survival of the fittest

individuals. To simulate this idea in computation, the community exprime the species as a pop-

ulation of individuals; each individual represents a possible solution to the problem. The tradi-

tional example of the EAs is the Genetic Algorithm (GAs) [13, 14], and they also include the

evolutionary programming (EP), the evolution strategy (ES), and the genetic programming (GP).

Regardless of the different techniques used in different EAs, most of them share the same frame-

work as given in figure 2.2.
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Start

Generate Initial population

Evaluate Fitness

Is Stopping
Criterion Met?

Selection

Reproduction

Update The
Population

Yes

No

Outputs

Figure 2.2: The general evolutionary algorithms flow.

The most cited example of EAs is Genetic Algorithms (GAs) [15]. In the reproduction phase,

GAs use a crossover (recombination) of two individuals (parents) to combine their genes. Then

a mutation operation is applied with a certain probability to the genes of some offspring, see

figure 2.3.
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Initial population

Select

Crossover

Mutation

Update population

Stopping criteria
 is met

Solution

Yes

No

Genetic Algorithm

Figure 2.3: A Flow chart for Genetic Algorithm.

• The initial population is a set of solutions to the problem, usually generated at random.

• The fitness of each individual is evaluated. This is a measure of how good the solution

is. There are many different ways to evaluate the fitness of an individual, depending on

the problem being solved. The algorithm repeats until a termination criterion is met. This

could be a maximum number of generations, a certain level of fitness, or a change in the

population.

• Individuals with a good fitness score are selected for reproduction. This is usually done
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using a selection operator, such as roulette wheel selection or tournament selection [14].

• The selected individuals produce offspring using crossover andmutation operators. Crossover

operators combine the genes of two parents to create a new offspring. Mutation operators

randomly change the genes of an individual.

• The offspring are evaluated and their fitness is determined.

• The least fit individuals in the population are replaced with the offspring. This ensures

that the population always contains a set of good solutions.

• The algorithm returns the individual with the highest fitness. This is the best solution

found by the algorithm.

2.4 Estimation of Distribution Algorithms

In 1996, a pioneering work by Muhlenbein et al [16] introduced the Estimation of Distribu-

tion Algorithm (EDAs) as a novel evolutionary algorithm (EA), sparking further investigations

by researchers like Larranaga et al. [17] and Pelikan[18]. EDAs can be seen as a variation of

genetic algorithms (GAs) that eliminates the need for crossover and mutation operations. In fact,

EDAs create a probabilistic model for the chosen fittest solutions in each generation, enabling

them to learn variable probability distributions. Once the probabilistic model is established,

EDAs use this model to sample new individuals and create the next population. This process

allows for guiding the algorithm in the search for promising areas. This process is iterated until

a predetermined stopping criterion is satisfied. The general pseudocode for EDAs is introduced

in Algorithm 1.
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Algorithm 1: EDAs pseudo code

Input:

Ps: Population size

Sels: Selection size

Output:

The best solution

1 P0 ← Generate Ps individuals uniformly at random;

2 t← 0;

3 while Stopping Criteria not satisfied do

4 Select Sels individuals from Pt;

5 Learn a probabilistic modelM from selected individuals;

6 SampleM to generate offspring;

7 Update the population Pt with new offspring;

8 t← t+ 1;

9 return The best solution in Pt;

Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithm that builds

a probabilistic model of the search space. This model is used to guide the search for the optimum

solution. Themodel is built by analyzing the features of the selected solutions. Multiple solutions

can share these features, and they can represent patterns of interactions between the problem

variables [15]. The model can then be used to sample new solutions that are likely to be good.

EDAs hold a distinct advantage over other evolutionary algorithms that do not employ prob-

abilistic models. Frequently, these algorithms struggle to address problems in which significant

interactions exist among the problem’s variables. EDAs can capture these interactions by build-

ing a probabilistic model of the search space [19]. This makes them more robust and scalable

than other evolutionary algorithms.
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Estimation of Distribution Algoritms

Figure 2.4: A Flow chart for EDAs.

2.4.1 A hands-on illustrative example of EDAs

In order to gain a deeper comprehension of EDAs process, we provide a manual simulation

of EDAs. The intent behind this example is to demonstrate the fundamental elements of the basic

EDA procedure and to foster a better understanding of how an EDA iteration progresses.

In this example, a simple EDA is used to solve OneMax problems. The OneMax problem

is a simple binary optimization problem where the goal is to find a binary string of maximum

length that consists of all ones. Each candidate solution (individual) is represented by a binary
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vector of fixed length n, where n > 0. The objective function can be formulated as follows:

f(x1, x2, . . . , xn) =
n∑

i=1

xi (2.6)

In this instance, we employ a population size of N = 6, and n = 5 binary variables per

solution. Truncation selection using a threshold τ = 50% is adopted to choose the subset of

the most promising solutions (i.e., the top 50% solutions). To model the probability distribu-

tion of these promising solutions, a probability vector is used, storing the likelihood of a ’1’ in

each position of the solution strings. This probability vector offers a swift and efficient method

for addressing the onemax problem and similar optimization challenges. It capitalizes on the

assumption of variable independence. To learn this probability vector, pi, representing the prob-

ability of a ’1’ at position i, is defined as the proportion of selected solutions containing a ’1’ in

that position. When generating a new binary string from this vector, a ’1’ is generated at position

i with a probability pi. For instance, if p3 = 0.6, a ’1’ is introduced at the third position of a new

candidate solution with a 60% likelihood. In each generation, N = 6 candidate solutions are

generated from the current model, shaping a new population of N = 6. The process is depicted

in figure 2.5.

Figure 2.5: EDAs example[1].

Positive results are evident from the first generation onward in this process. Compared to

the original population, the number of ’1’s in the new offspring population has increased sig-

nificantly, and multiple instances of the global optimal ’11111’ are present. In addition, the

probability of seeing a ’1’ in any given position has increased, thereby increasing the probabil-
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ity of producing the global optimum. As we progress to the second generation, the probability

vector becomes even more pronounced in favor of the global optimal solution. If the simula-

tion were to continue for one more generation, the probability vector would produce the global

optimal solution exclusively.

The above example demonstrates the most basic form of EDAs, which assumes a fixed prob-

abilistic model represented by a probability vector [18]. This makes it easy to learn about the

model, as there are no other models to choose from. However, this type of EDA is limited in its

capabilities.

There are other types of EDAs that allow for more complex probabilistic models that can

capture interactions between variables in a problem. These interactions can be learned automat-

ically on a case-by-case basis. This makes the modeling process more complex, but it can be

very valuable for solving more complex optimization problems.

2.4.2 EDAs taxonomy

Choosing and building the best probabilistic model for a specific optimization problem can

be challenging, as there are many different EDAs available with a variety of models and learning

algorithms. One way to make this selection is to consider the trade-off between the complexity

of the probabilistic model and the computational cost of storing and learning the model. The

complexity of the model is related to the number of variables in the problem [15, 3]. A more

complex model can capture more complex relationships between the variables, but it will also

be more computationally expensive to store and learn. The computational cost of storing and

learning the model is also related to the type of representation used for the variables. A discrete

representation, such as binary variables, is typically easier to store and learn than a continuous

representation, such as real-valued variables. Ultimately, the best EDA for a specific problem

will depend on the particular characteristics of the problem, such as the number of variables, the

type of representation, and the desired accuracy.

In this section, we classify EDAs based on the complexity of probabilistic models used to

represent the interaction between the variables of the problem.
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Univariate EDAs

In order to assess how candidate solutions are distributed within the decision space, consider-

ing variable correlation is a crucial aspect of themodeling process. One straightforward approach

involves utilizing univariate models, which assume that the decision variables are independent of

each other. Under this assumption, the probability distribution of a candidate solution, denoted

as x = (x1, x2, ..., xn), can be broken down into the product of individual variable probability

distributions:

p(x) = p(x1) ∗ p(x2) ∗ ... ∗ p(xn) (2.7)

Here, p(x) represents the probability distribution of the candidate solution x, and p(xi) sig-

nifies the probability distribution of the ith decision variable, denoted as xi. Such univariate

distribution models are employed in Evolutionary Distribution Algorithms (EDAs) and are re-

ferred to as univariate EDAs.

Univariate Evolutionary Distribution Algorithms (EDAs) such as UMDA [16], Population-

Based Incremental Learning (PBIL) [20], compact Genetic Algorithm (cGA) [21] are efficient

due to their separate univariate modeling. However, their performance can decline when signifi-

cant interactions between decision variables exist. Such interactions challenge the assumption of

variable independence, impacting the accuracy of these algorithms [3, 1]. This limitation has led

to the development of more complexmultivariate EDAs, which aim to capture interdependencies

among variables for better optimization outcomes.

Bivariate EDAs

Bivariate EDAs represent a set of EDAs when the models are learned to capture pair-wise

dependencies between variables. Equation 2.8 presents the conditional probability of this models

p(X) = p(Xi1|Xi2)p(Xi2|Xi3) · · · p(Xin−1|Xin)p(Xin) (2.8)

Here, p(X) represents the probability distribution of the candidate solutionX . Additionally,

p(Xij |Xij+1
) corresponds to the conditional probability distribution of variable Xij given vari-

ableXij+1
, while i1, i2, ..., in signifies a permutation of the decision variables. This model is also
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called tree-based model; in these models, the probability of a variable is limited to depending on

at most one other variable, namely its parent in the tree structure [1].

If each parent has exactly one child, the resulting tree model consists of a single chain of

dependencies, which is a special type called chaine model. The chain model is used in The

Mutual Information Maximizing Input Clustering (MIMIC) [22]. The dependency tree-based

EDAs [23] uses a tree model that assumes each parent can possess more than one child. The

Bivariate Marginal Distribution Algorithm (BMDA) [24] uses a set of disconnected trees as a

graphical model, which refers to the forest model.

Figure 2.6: Examples of tree-based models

Figure 2.6 illustrates examples of tree-based models, where each variable is represented by

a circle, and edges depict the dependencies between variables.

Multivariate EDAs

The conditional probability model in the previous section only considers pairwise interac-

tions between variables. However, it is important to note that some problems may involve more

complex interactions between the decision variables. This can limit the model’s ability to capture

these complexities. Additionally, the complexity of the probabilistic structure increases as the

number of dependencies between variables increases. This, in turn, increases the computational

effort required to find the most suitable structure for the given data points.

Multivariate dependencies are modeled through either directed acyclic graphs or undirected

graphs within multivariate models. In EDAs, two prominent models are used to represent this

model, stand out:
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• Bayesian networks, which are depicted as directed acyclic graphs where each node rep-

resents a variable, and each edge signifies a direct conditional dependence, figure 2.7.A.

Equation 2.9 formulate the joint probability distribution of the Bayesian network.

P (X) =
n∏

i=1

P (Xi|parents(Xi)) (2.9)

Where parents(Xi) represents the set of variables for which there exists an edge leading

intoXi, andP (Xi|parents(Xi)) denotes the conditional probability ofXi given parents(Xi).

Bayesian network-based EDAs includes [25, 26]

• Markov networks, which encompass undirected graphs for representing dependencies among

variables. However, it is important to note that sampling Markov networks presents a

greater challenge compared to sampling Bayesian networks. Put differently, when us-

ing Evolutionary Algorithms (EDAs) based on Bayesian networks, some of the complex-

ity shifts from the learning phase to the sampling phase of the probabilistic model. fig-

ure 2.7.B. Suggested algorithms in [27, 28, 29] are examples of EDAs based on Markov

network.

Figure 2.7: Diagram of probability models that represents multiple dependencies

Figure 2.7.C represents anothermodel used in ExtendedCompact Genetic Algorithm (ECGA) [30]

and The dependency-structure matrix genetic algorithm (DMSGA) [31] called Marginal Product
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Model. The Marginal Product Model divides variables into clusters, treating each cluster as one

variable. Initially assuming all variables are independent, it merges two clusters in each iteration

to improve the model [32, 15].

2.5 Estimation of distribution algorithms for permutation prob-

lems

In a wide range of real-world problems, permutations offer a versatile means of represent-

ing candidate solutions. For instance, in the Traveling Salesman Problem, cities are ordered to

find the shortest route. Similarly, job scheduling involves permuting tasks to optimize sched-

ules. Facility location problems explore permutations of potential locations for optimal resource

placement. Permutations are also used in network routing [33], game strategy, and various other

domains, providing a flexible approach to problem-solving and optimization.

The challenges of employing Estimation of Distribution Algorithms (EDAs) in permutation

problems primarily center around the representation, model building, and sampling aspects of

the algorithm. In permutation problems, the representation of solutions as permutations requires

specialized probabilistic models that respect the combinatorial nature of the problem space. De-

signing effective models that capture the dependencies and interactions between elements in

permutations can be complex. Furthermore, developing efficient sampling methods to generate

new candidate solutions based on these models is crucial. The challenge lies in balancing explo-

ration to discover diverse permutations and exploitation to converge toward optimal solutions.

Additionally, as the dimensionality of permutation problems increases, the computational com-

plexity of estimating and updating probability distributions escalates, making it imperative to

find computationally efficient solutions.

The literature contains numerous EDAs designed to tackle permutation-based problems, with

many of these solutions being adaptations of traditional EDAs originally developed for contin-

uous or discrete domains. Nevertheless, some EDAs have been explicitly designed to address

permutation problems [34].
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2.5.1 EDAs for continuous domains

The first category comprises a group of EDAs that originated from algorithms initially sug-

gested for solving problems in continuous domains. Bosman et al. introduced the continuous

Iterated Density Estimation Evolutionary Algorithm (IDEAs) [35] as an approach for addressing

permutation problems. Additionally, adaptations of these algorithms for permutation problems

include the UnivariateMarginal Distribution AlgorithmUMDAc [36], Mutual InformationMax-

imization for Input Clustering (MIMICc), and the Estimation of Gaussian Networks Algorithm

(EGNAc) [36], which were modified from their continuous domain.

All of the methods within this category are grounded in the Random Keys algorithm [35].

The Random Keys algorithm is a strategy used in optimization and combinatorial problems,

introduced in [37]. It involves encoding solutions as real-valued vectors and then transforming

those vectors into permutations.

Figure 2.8: Example of random Key representation

Figure 2.8 provides an example of the random key algorithm. In the Random Keys algo-

rithm, the transformation from a real-valued vector to a permutation involves sorting the values

within the vector in ascending order. This sorting process assigns a new order to the values,

effectively determining the positions of the elements in the resulting permutation. In simpler

terms, the position of each element in the permutation is determined by the relative magnitude of

its corresponding value in the sorted vector. This step is crucial in converting a continuous real-

valued representation into a discrete permutation, making it a fundamental part of the algorithm’s

operation

While the random key method is capable of producing a feasible permutation from any real-

valued vector through a ranking method, it has a significant drawback in terms of redundancy.

This technique can result in different vectors of real values producing the same permutation
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when ranked. [38, 34]. For example two different real-valued vectors (0.08, 0.74, 0.32, 0.54) and

(0.27, 0.85, 0.41, 0.62) leads to the same permutation σ = (1, 4, 3, 2). Another inefficiency of

this strategy arises from the requirement to repeatedly apply an ordering algorithm to transform

real-valued representations into corresponding permutations whenever an individual undergoes

evaluation [39].

Despite these disadvantages, random key algorithms can still be useful in specific scenarios,

and researchers continue to explore ways to mitigate these limitations or develop alternative

representations and techniques for EDAs tailored to combinatorial optimization problems.

2.5.2 EDAs for discrete domains

The second category of EDAs developed for permutation-based problems consists of meth-

ods initially designed for tackling problems represented as vectors of discrete values. To ensure

the generation of valid permutations, the sampling phase is typically modified, with the Proba-

bilistic Logic Sampling algorithm often employed for this purpose [40]. The adapted sampling

approach involves setting the probability of previously sampled values to 0 and normalizing the

probabilities of the remaining values to a cumulative total of 1.

Within this sampling approach, variables are assigned values in a sequential manner, adher-

ing to a predetermined ancestral order. To sample the ith variable, one must have previously

instantiated the (i − 1)th variables. However, to transform this process into one that yields a

permutation, specific adjustments are necessary. Achieving a permutation entails ensuring that

the i − th variable takes on values distinct from those instantiated by the preceding variables.

This is accomplished by setting the probabilities associated with previously sampled values to

0 when the i − th variable is being sampled. Simultaneously, the probabilities related to the

remaining values are recalibrated and normalized to sum to 1.

Even though this method produces permutations, it’s crucial to note that if we modify the

probabilities to make it easier to sample permutation individuals, the sampled solutions exhibit

a distortion of the information that was kept within the probabilistic model.

Based on this sampling strategy, many proposed algorithms are used to approach permutation-

based problems. The dependency-tree EDA (dtEDA)[41] proposed to solve QAP and have good

results. Bengoetxea et al. [42] adopted the sampling phase of EBNA [26], the Information
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Maximization for Input Clustering (MIMIC), and Univariate Marginal Distribution Algorithm

(UMDA) in [43] to ensure the generation of permutations.

2.5.3 EDAs tailored for permutation problems

As discussed above, in numerous real-world scenarios, solutions to critical problems involve

arranging elements in a particular order, often represented as permutations. These problems typ-

ically encompass some key types of features or constraints that EDAs must effectively capture.

The first type concerns the fixed position of a symbol within a permutation, while the second

type pertains to the specific order of symbols relative to one another. In certain problems like

the traveling salesman problem, the emphasis primarily lies on preserving the relative order of

elements. Conversely, in cases such as the quadratic assignment problem, both the relative order

and the precise positions of elements hold significance.

Another significant challenge that Evolutionary Distribution Algorithms (EDAs) encounter

when addressing permutation problems is the exclusivity mutual constraint imposed by the in-

herent nature of permutation representation. In these problems, the arrangement of elements in a

specific order is not only important but also comes with the constraint that each element can only

occupy one position, leading to the need for solutions that satisfy both the desired ordering and

the exclusivity of positions. This dual requirement adds a layer of complexity to the optimization

process, making it essential for EDAs to effectively handle both aspects in order to find optimal

solutions.

Many algorithms have been developed in recent years specifically to solve permutation-based

problems. IDEA Induced Chromosome Elements Exchanger (ICE) [?], is an algorithm that rep-

resents a modification of the IDEA method previously presented by the same authors in [35].

The IDEA can be used to solve permutation problems using the random key method. As dis-

cussed above, this strategy has some limitations such the redundancy. To address this challenge,

the ICE algorithm was introduced as a solution. Instead of relying on probabilistic sampling to

generate new solutions, ICE employs a tailored crossover operator that considers the variable

partition learned from the probabilistic model. When constructing a new individual from two

parent solutions, ICE randomly selects variable values from a parent within each block. It’s

important to note that in ICE, the probabilistic model isn’t directly utilized for generating new
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individuals; rather, only the information related to the variable partition is utilized.

Tsutsui et al [44]. introduced the Edge Histogram-Based Sampling Algorithm (EHBSA).

This innovative algorithm is centered around the concept of edges, which are connections be-

tween two nodes. The model created by EHBSA focuses on learning the interdependencies

among these edges and is represented using an Edge Histogram Matrix (EHM).In other words,

The algorithm constructs a probabilistic model (in this case EHM) aimed at capturing the rela-

tionships between index adjacencies within the chosen individuals at every generation. The EHM

is a matrix of size n× n, where n is the problem size. Each element eij in EHM represents the

number of edges between the node i and j. Equation 2.10 calculates the value of bias ε added

to each element in EHM to control the generation of new solutions, where N is the number of

selected individuals and Bratio is a constant defined by the authors.

ε =
2N

n− 1
Bratio (2.10)

.

To create a new solution, the authors of EHBSA provide two distinct sampling techniques:

EHBSA/WT (with template) and EHBSA/WO (without template). The EHBSA/WO sampling

method entails selecting the edge histogram matrix in an ordered manner, commencing from

position 0 with a randomly chosen node. Next, a roulette wheel is constructed for each row to

facilitate the sampling of a new node, akin to the Probabilistic Logic Sampling technique. The

process is outlined in Algorithm 2, which summarizes the EHM sampling without a template.

Algorithm 2: The pseudo code of EHBSA/WO [44]

1: Set the position counter p← 0.
2: Obtain the first node c[0] randomly from [0, L− 1].
3: Construct a roulette wheel vector rw[] from EHM t as rw[j]← etc[p],j for

j = 0, 1, . . . , L− 1.
4: Set to 0 previously sampled nodes in rw[] (rw[c[i]]← 0 for i = 0, 1, . . . , p).
5: Sample the next node c[p+ 1] with probability rw[x]/

∑L−1
j=0 rw[j] using roulette wheel

rw[].
6: Update the position counter p← p+ 1.
7: If p < L− 1, go to Step 3.
8: Obtain a new individual string c[].

The sampling with a template method utilizes a randomly selected parent individual from the
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preceding generation as a template. This template is then divided into more than two segments

(n > 2), with one segment chosen randomly for sampling, following the same strategy as the

previous method. The remaining (n−1) parts are copied into the offspring without any changes.

To validate the effectiveness of EHBSA the authors tested it on TSP. The obtained results

demonstrate that EHBSA/WT is more accurate than EHBSA/WO. In [45] is used to solve the

Vehicle Routing Problems (VRP). The authors expand upon EHBSA to address the PFSP by

introducing an asymmetrical edge histogram model [46, 47].

The same group of researchers introduced another histogram-based algorithm in their work [48],

known as the Node Histogram-Based Sampling Algorithm (NHBSA). It employs a probabilistic

model represented by a node histogram matrix (NHM). This NHM characterizes the distribu-

tion of nodes across the absolute positions within the selected individuals. To put it explicitly,

each element eij in NHM signifies the overall count of element j located at the (absolute) posi-

tion i within the selected individuals. In other words, it provides a representation of how nodes

are spread across different positions within a population. The value ε to add to NHM can be

calculated using the equation 2.11.

ε =
N

n
Bratio (2.11)

As a result, NHBSA offers both NHBSA/WO (without template) and NHBSA/WT (with

template) methods, mirroring the options available in EHBSA. In [49], the authors provide a

comparative study of various alternative sampling methods for NHBSA, including the substitu-

tion of the algorithm’s random sampling sequence with a sequential sampling sequence similar

to EHBSA. In the original paper, the authors apply the proposed NHBSA and EHBSA to solve

three permutation problems: TSP, PFSP, and QAP. The obtained results demonstrate that the

algorithm performance varies depending on the problem type. EHBSA excels in PFSP when

relative node sequencing matters, while NHBSA outperforms EHBSA when the absolute node

position within a string is crucial such as QAP. It is important to note that in all scenarios, the

sampling with the template version outperforms the sampling without a template.

Another category of EDAs is specifically tailored for solving permutation problems. These

algorithms focus on probability models that rank permutations, such as distance-based exponen-

tial models like the Mallows Model and Plackett-Luce’s Model [50].
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The Plackett-Luce probability model is a probabilistic model for ranking based on the work

of Plackett [51] and Luce [52]. Ceberio et al [53] proposed to introduce this ranking model in

EDA. The Plackett-Lucemodel is a rankingmodel that operates in stages. It breaks down the task

of creating a permutation of n items into n consecutive steps. Using a vector of scores denoted as

’w,’ in each of these stages, one item is chosen and placed in position i. This selection is made

probabilistically, taking into account the scores of the items that have not yet been assigned.

The proposed algorithm, Plackett-Luce EDA (PLEDA), was rigorously tested on two challeng-

ing permutation problems, the Linear Ordering Problem (LOP) and the Permutation Flow Shop

Scheduling Problem (PFSP). The comprehensive analysis of the obtained results revealed that

PLEDA exhibits remarkable effectiveness when applied to LOP. However, in the case of PFSP,

the algorithm did not perform competitively.

The Mallows model is a distance-based probabilistic model for ranking [54]. The Mallows

Model (MM) and Generalized Mallows Model (GMM) represent unimodal distributions that

assign probabilities to every permutation within the search space, and these probabilities are con-

tingent upon a distance function applied to permutations. The Kendall-τ distance is the prevalent

metric, and it quantifies the dissimilarity between two permutations, σ1 and σ2, by tallying the

total pairwise disagreements between them. In simpler terms, it measures the minimum number

of adjacent swaps required to transform σ1 into σ2.

Ceberio et al. propose the first EDA using the Mallows model (MM) in [55] under Kendall-τ

distance for permutation problems. Encouraged by the results of MM-EDA, especially on PFSP,

the authors took a further step and proposed the generalized Mallows model (GM) within the

context of EDA and abbreviated as GM-EDA [56]. GM-EDAwas applied to solve the PFSPwith

respect to the Total Flow Time (TFT) criterion, and it achieved noteworthy results. Particularly,

the hybrid version, HGM-EDA, combined with Variable Neighborhood Search (VNS), showed

exceptional performance.

In fact, other distance metrics between permutation can be used in EDAs-based Mallows

Models such as Hamming [57], Ulam [58] and Cayley [59]. In [57, 60] an MM-EDAs use

the hamming distance proposed to tackle the QAP. Cayley and Kendall’sτ are used in KMM-

EDA [61], where kernels ofMallowsmodels are proposed inside EDA. KMM-EDA outperforms

MM-EDA and GM-EDA in most 90 used benchmarks of QAP and PFSP. Furthermore, KMM-
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EDA when evaluated under the Cayley distance metric, achieves the most favorable outcomes

for both problems in regard to average fitness and computational time. In the research proposing

the use of MM and GM in the context of EDAs, it has been shown that the choice of distance

metric significantly affects the performance of the associated EDA [60, 62]. Ceberio et al. pub-

lished a review article that summarizes the relation between the three commonly used distances

Kendall’s-τ , Ulam, and Cayley, and the performance of the EDAs [62].

A RandomKey EDA (RK-EDA) suggested in [38] constructs a univariate distribution model

similar to UMDAc but with a user-defined variance. To address the redundancy issue associ-

ated with other random key-based EDAs, the generated RK vectors are rescaled and normalized

within the range of [0, 1]. In RK-EDA, a cooling rate parameter is introduced to control the bal-

ance between exploitation and exploration. This algorithm has been tested on various permuta-

tion problems and has demonstrated promising results in the Permutation Flow-Shop Scheduling

Problem (PFSP), both in terms of minimizing makespan [38] and total flow time [63].

2.6 Conclusion

In this chapter, we delved into the captivating world of permutation problems, a class of op-

timization challenges that encompasses a rich diversity of real-world applications. We explored

four prominent permutation problems: the Traveling Salesman Problem (TSP), the Permutation

Flow Shop Scheduling Problem (PFSP), the Quadratic Assignment Problem (QAP), and the Lin-

ear Ordering Problem (LOP). Each of these problems posed its unique set of complexities and

characteristics, pushing the boundaries of computational optimization.

Then, we navigated through the realm of Estimation of Distribution Algorithms (EDAs), par-

ticularly those tailored for permutation problems. We witnessed how these intelligent algorithms

leverage probabilistic models to capture the underlying structure of problem instances, guiding

the search for optimal or near-optimal solutions. Their remarkable ability to adapt and evolve

probability distributions allows them to excel in tackling complex permutation problems, often

outperforming traditional optimization methods.
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Chapter 3

Generative deep learning models

3.1 Introduction

In the past few decades, there has been a significant surge in artificial intelligence knowledge,

driven by the growing capabilities of computational systems and the availability of vast datasets

across various industries. Machine learning, a prominent branch of artificial intelligence, focuses

on refining algorithms to enhance computer and system learning capabilities. Traditionally, these

algorithms required manually provided features, a time-consuming and sometimes incomplete

process. However, representation learning, also known as feature learning, empowers systems to

automatically discover the necessary representations for tasks like feature detection and classi-

fication. In essence, representation learning translates input data into meaningful outputs. Deep

learning, a subset of representation learning, employs algorithms to model highly abstract con-

cepts within datasets through a layered graph of linear and nonlinear transformations. See 3.1

for an illustrative depiction of these concepts in the hierarchical structure.

3.2 Deep Neural Networks

Deep learning, with its ability to uncover intricate patterns and hierarchies within data, has

played a pivotal role in numerous artificial intelligence breakthroughs. Its core principle revolves

around the construction of neural networks withmultiple layers, allowing it to learn and represent

data at various levels of abstraction automatically. These deep neural networks, characterized
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Figure 3.1: A diagram illustrating the hierarchical relationship between deep learning as a subset

of representation learning, which in turn is a subset of machine learning, used across various AI

approaches.

by their complex architectures and interconnected layers, have demonstrated exceptional per-

formance in tasks like image recognition, natural language processing, and even autonomous

decision-making.

The perceptron serves as a foundational unit in neural networks, characterized by a straight-

forward yet crucial mathematical model. In its essence, a perceptron computes a weighted sum

of its input values and applies an activation function to produce an output. Mathematically, this

can be represented as follows:

Output = Activation

(∑
i

Weighti · Inputi + Bias

)
(3.1)

Each Inputi represents an input feature, and Weighti signifies the weight associated with

that input. The bias term (Bias) allows the perceptron to account for any inherent offset or bias

in the data. The activation function introduces non-linearity, enabling the perceptron to capture

complex relationships within the data.

Consider a fully connected neural network, as illustrated in Figure 3.2. This network com-

prises multiple layers, including an input layer, three hidden layers, and an output layer. Each

layer consists of interconnected perceptrons, and they collectively form the neural network ar-

chitecture. Input data, typically represented as a vector, is fed into the input layer, where each

perceptron processes the input using the perceptron formula 3.1 mentioned earlier. The output
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from one layer becomes the input to the next layer, allowing the network to learn and model intri-

cate patterns and representations in the data. Deep neural networks, such as this example, have

shown remarkable prowess in various machine learning tasks, thanks to their ability to lever-

age the foundational concept of the perceptron for extracting meaningful insights from complex

datasets.

Input Layer � �� Hidden Layer � �� Hidden Layer � �� Hidden Layer � �� Output Layer � �³

Figure 3.2: An example of deep neural network.

This chapter explores two fundamental pillars of deep learning: discriminative and genera-

tive models. These two paradigms represent distinct approaches within the realm of deep neural

networks. Discriminative models, such as convolutional neural networks (CNNs) [64] and re-

current neural networks (RNNs) [65], excel in classification and regression tasks, focusing on

learning decision boundaries to make accurate predictions. On the other hand, generative mod-

els, including Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs),

delve into the art of data creation, generating new samples that mimic real-world data distri-

butions. Our examination of these models encompasses their architectures, training strategies,

applications, and the exciting prospects they offer in shaping the future of artificial intelligence.
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3.3 Discrimintive Models

In this section, we delve into the discriminative deep learning models, a pivotal component

of contemporary artificial intelligence research. Discriminative deep learning models are engi-

neered to excel in classification and regression tasks, boasting a capacity to learn intricate pat-

terns and relationships from data. Leveraging neural network architectures with multiple layers,

these models play a central role in various domains, from computer vision and natural language

processing to biomedical research. Through supervised learning techniques and rigorous opti-

mization, they uncover discriminative features, enabling precise classification and regression.

This section provides an in-depth exploration of discriminative deep learning methodologies,

their applications, and insights into their evolving role in the ever-expanding landscape of arti-

ficial intelligence.

The training of discriminative deep learning models involves optimizing their parameters to

learn the decision boundary or regression function that maps input data to corresponding target

labels. This optimization process is rooted in mathematical concepts and techniques. For clas-

sification tasks, the model seeks to estimate the conditional probability distribution P (Y |X),

where Y represents the class label, and X denotes the input features.

The choice of loss function depends on the specific task and can include cross-entropy loss for

classification or mean squared error (MSE) for regression. During training, input data is fed for-

ward through the network, and the model’s predictions are compared to the ground truth labels.

Backpropagation is then used to compute gradients of the loss with respect to the model parame-

ters, enabling iterative updates through optimization algorithms like stochastic gradient descent

(SGD) or variants such as Adam [66] or RMSprop [67]. This mathematical optimization pro-

cess continues until convergence, resulting in a trained discriminative model that can accurately

make predictions on new, unseen data. The interplay between the mathematical framework and

supervised learning techniques underpins the training of discriminative deep learning models,

making them powerful tools for various classification and regression tasks.
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3.4 Generative Models

One fascinating area within deep learning is Generative Deep Learning, which extends the

capabilities of deep neural networks to create entirely new data samples that resemble real-

world examples. This field includes notable innovations such as Generative Adversarial Net-

works (GANs) [68] and Variational Autoencoders (VAEs) [69].

Generative models represent a rapidly evolving field within computer vision research. These

models serve as the foundation for unsupervised learning, addressing scenarios where training

data, denoted as ∼ pdata(x), originates from an obscure data-generating distribution. The core

essence of generative models lies in their ability to produce new data samples, ∼ pmodel(x),

that mimic the distribution of the original data. The ultimate objective of any generative model

is to generate data samples (pmodel(x)) that closely resemble the training data (pdata(x)). This

alignment is best elucidated through a training objective, which seeks to minimize the disparity

between the generated data (pmodel(x)) and the genuine training data (pdata(x)). This alignment

between pmodel(x) and pdata(x) is the fundamental goal that underlies the training process of gen-

erative models.

3.4.1 Variational Auto-encoders

Autoencoders (AEs) represent a widely embraced category within the realm of generative

models, renowned for their capacity to reduce the dimensionality of high-dimensional data through

the use of compact neural networks, all while preserving a significant portion of the original in-

formation. At the heart of any autoencoder lies a dual-network architecture, comprising encoder

and decoder networks. The encoder, a series of interconnected layers, plays a pivotal role in tak-

ing the input data and compressing it into a reduced-dimensional representation, often referred

to as a ”bottleneck”. On the other hand, the decoder assumes the task of reconstructing the input

data from this bottleneck representation. Figure 3.3 presents a simple example of an autoencoder,

where both the encoder and the decoder are fully connected feedforward networks.

The encoder, represented by the function Fenc, maps input data X (comprising n features)

to a lower-dimensional representation known as the latent space (Z). This latent space often

has fewer dimensions than the original data, capturing essential data patterns and features. The
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Figure 3.3: Illustrative example of an Autoencoder

encoder generally consists of one or more neural network layers, which can be fully connected

or adopt various layer types, such as convolutional or recurrent layers. Conversely, the decoder

(Fdec) takes the latent representation Z and reconstructs it back into the original data space, gen-

erating X ′. Autoencoders are trained by minimizing a chosen loss function that measures the

dissimilarity between the input data (X) and the reconstructed data (X ′). The primary objective

is to achieve accurate reconstruction while learning meaningful data representations within the

latent space. Training typically employs backpropagation and gradient descent-based optimiza-

tion algorithms. This autoencoder framework offers versatility and finds application in diverse

areas, including dimensionality reduction, data denoising, and feature learning.

In the following discussion, we delve into one remarkable subclass of autoencoders known

as Variational Autoencoders (VAEs), which introduce a probabilistic twist to the traditional au-

toencoder framework, imbuing it with the capacity for efficient generative modeling and data

synthesis.

As shown in Figure 3.4, VAE shares the same architecture as the traditional autoencoder.

Variational Autoencoders (VAEs) enhance the capabilities of a conventional Autoencoder (AE)

by introducing a Bayesian component that effectively learns the parameters associated with the
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probability distribution of the data. The primary distinction between an AE and a VAE lies

in their core objectives: an AE focuses on learning a compact representation of the input data

and its subsequent reconstruction to match the given input. In contrast, a VAE operates as a

Bayesian model, where it learns not only the compressed representation derived from the AE

but also constructs the parameters that characterize the underlying data distribution. This unique

characteristic enables a VAE to sample from this distribution and generate entirely new input data

samples. As a result, the VAE assumes the role of a generative model, capable of creating novel

data samples. Conversely, an AE primarily excels in data reconstruction without possessing a

straightforward generative interpretation [70]. Indeed, the VAE takes a distinct approach by

endeavoring to learn the distributions of latent variables through the utilization of mean values

and their associated variances. This is in sharp contrast to the traditional autoencoders, which

primarily focus on learning deterministic mappings.

µ

σ

sample

x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

input output

Encoder Decoder

Figure 3.4: Illustrative example of a Variational Autoencoder

In summary, the encoder processes each input and encodes it into two vectors that collectively

define a multivariate normal distribution within the latent space:

• µ - representing the mean point of the distribution.

• σ - indicating the logarithm of the variance for each dimension.

38



GENERATIVE DEEP LEARNING MODELS

The Reparameterization Trick, essential in Variational Autoencoders (VAEs), simplifies the

handling of stochastic latent variables. In VAEs, the encoder produces parameters µ and σ that

describe a distribution. Instead of directly sampling from this distribution, a fixed Gaussian ε is

sampled. Then, µ and σ are used to transform ε into z through z = µ+σε. This process ensures

that z adheres to the desired distribution. The advantage lies in the determinism of the transfor-

mation, allowing gradients to propagate during training. Subsequently, the decoder employs z

to generate data samples, rendering VAEs proficient in learning meaningful representations and

generating novel data based on the learned distributions [71].

3.4.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have emerged as a pivotal breakthrough in the

field of generative deep learning models and artificial intelligence and introduced by Goodfellow

et al. in 2014 [72]. GANs have revolutionized the way we approach generative tasks, including

image generation, style transfer, and data augmentation.

GANs, in particular, have gained significant attention for their ability to generate highly

realistic and diverse data, ranging from lifelike images to text and audio. The core idea behind

GANs involves the interplay between two neural networks: a generator that creates data samples

and a discriminator that evaluates their authenticity. Through this adversarial training process,

GANs have become indispensable in fields like computer vision, where they have enabled the

generation of synthetic imagery indistinguishable from real photographs.

As depicted in Figure 3.5, GANs are models that typically combine two deep neural networks

together, discriminator D and a generator G. The two models are trained in an adversarial

manner.

The generator plays the role of a creative craftsman. Beginning with a blank canvas of ran-

dom noise, it undergoes a transformative process through neural network layers, crafting data

samples that strive to capture the essence of real data from a given dataset. Over time, this gen-

erator refines its artistry to the point where its creations become nearly indistinguishable from

authentic data, aspiring to achieve the pinnacle of realism.

On the other side of the GANs dynamic equation is the discriminator, akin to a discerning

judge. It meticulously scrutinizes every data sample, whether generated by the craftsman-like
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generator or originating from the real dataset. The discriminator’s mission is to identify even the

subtlest deviations or hints of inauthenticity. As training progresses, this astute critic becomes

increasingly proficient at distinguishing between genuine and generated data, providing valuable

feedback for both its own improvement and that of the generator.

The term ”adversarial” pertains to a scenario in which the discriminator and the generator

engage in a competitive process to achieve their individual objectives. Together, through the

mechanism of adversarial training, the generator and discriminator engage in a continuous cycle

of improvement. The generator strives to outperform the discriminator by producing data that

is increasingly convincing, while the discriminator sharpens its discerning eye. This perpetual

competition drives GANs toward a point of equilibrium where the generated data emerges as an

impeccable mimicry of real data—a testament to the collaborative interplay between these two

neural networks at the heart of GANs groundbreaking success.

Real /
Fake

Real 
Data

Fake
Data

Z

Update  G weights

Update  D weights

Discriminator
D

Generator      
G

Figure 3.5: GANs architecture

Theminimax objective function for a Generative Adversarial Network (GAN) is written as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(x)))] (3.2)

The discriminator learns to optimize its objective function in such a way that it aims for a value of

1 (indicating a real instance) forD(x) and a value of 0 (indicating a fake instance) forD(G(z)).

The objective of the generator is to minimize its loss function, striving to make the value

of D(G(z)) as close as possible to 1. The generator aims to minimize the following objective
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function:

V (D,G) = Ez∼pz(z)[log(1−D(G(z)))] (3.3)

In this equation, Ez∼pz(z) represents the expectation over the generator’s noise input z. The

generator’s objective is to minimize this function by producing data (G(z)) that is convincing

enough to make the discriminator’s (D) response (D(G(z)) as close to 1 as possible. In other

words, the generator strives to create data so realistically that the discriminator is nearly certain

it’s real.

The discriminator’s primary objective is to maximize an objective function, such that it be-

comes proficient at distinguishing real data (D(x)) from fake data (D(G(z)). This objective is

mathematically represented as:

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(x)))] (3.4)

In this equation, Ex∼pdata(x) represents the expectation over real data, Ez∼pz(z) represents the

expectation over the generator’s noise input.

The discriminator’s objective function formulated in the equation 3.4, denoted as V (D,G),

is designed to train the discriminator network (D) to become a discerning judge. It evaluates two

types of data: real data (x) sampled from the real dataset (training data) and fake data (G(z))

generated by the generator network (G). The goal is to maximize this function.

The first term, Ex∼pdata(x)[log(D(x))], encourages the discriminator to assign high values

(close to 1) to real data in order to correctly identify it as genuine.

The second term, Ez∼pz(z)[log(1 − D(G(x)))], motivates the discriminator to assign low

values (close to 0) to fake data generated by the generator. This term captures the discriminator’s

ability to distinguish between real and fake data.

As the generator and discriminator engage in this adversarial game, they iteratively refine

their strategies. The ultimate aspiration is to attain a state of Nash equilibrium, where neither

player can enhance their situation by altering their strategy. Within the context of GANs, this

equilibrium denotes that the generated data closely resembles real data, rendering it exceedingly

challenging for the discriminator to distinguish between the two.

In practical terms, GANs persist in this competitive training process until they reach a stable
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state where the generator produces data that is indistinguishable from real examples. This con-

vergence marks the success of GANs, as they have acquired the capacity to generate data that

faithfully mirrors the distribution of real-world data, unleashing a realm of possibilities across a

spectrum of applications.

Ever since the advent of GANs, numerous variants have emerged, expanding upon the foun-

dational concept of the original GAN framework. These variations can be broadly categorized

into two classes: one that focuses on optimizing architecture, such as CGAN [73], DCGAN [74],

and infoGAN [75]. The other concentrates on refining objective functions, such as Unrolled

GAN [76], Least-Square GAN [77], EBGAN [78], WGAN [79].

3.5 Conclusion

In this chapter, the focus is shifted toward the exciting domain of generative deep models.

Specifically, we explored the Variational Autoencoder (VAE) and Generative Adversarial Net-

works (GANs) in the context of permutation problems. These generative deep models have

emerged as powerful tools for addressing the challenges posed by permutation problems. VAEs

have shown promise in capturing the latent structure of permutations, enabling efficient gen-

eration and exploration of solution spaces. GANs, with their adversarial training mechanism,

have opened doors to creating diverse and realistic permutations, providing fresh perspectives

on optimization.
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Chapter 4

Introducing Generative Adversarial

Networks On Estimation of Distribution

Algorithms

4.1 Introduction

Evolutionary algorithms (EAs) are a powerful class of optimization algorithms that mimic

the natural process of evolution to find optimal solutions to complex problems. Estimation of

distribution algorithms (EDAs) are a subset of EAs that build and sample probabilistic models of

promising solutions at each generation. EDAs have been shown to be effective in solving a wide

range of optimization problems [18], including permutation-based problems [34, 38], which are

problems where the order of the elements in a set matters.

Generative adversarial networks (GANs) are a type of machine learning model that can be

used to generate new data samples that match the distribution of a training dataset. GANs have

been used in a variety of applications, including computer vision [80], natural language pro-

cessing [81], and optimization. GANs have been used to estimate the probabilistic model in the

field of evolutionary multiobjective optimization [82]. Motivated by this success of GANs, we

propose to introduce GANs in EDAs to solve permutation-based problems. The next section

introduces the proposed algorithm then we present the results of the experiments conducted. Fi-

nally, we end this chapter with a conclusion that contains the main results and some perspectives.
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In this chapter, we propose a novel integration of GANs into EDAs to tackle permutation-

based problems. In this paradigm, GANs are used to replace the traditional probabilistic model

building and sampling phases within EDAs. We also introduce an alternative individual repre-

sentation technique, which transforms permutations into one-hot matrices.

To evaluate the performance of our proposed algorithm, we use two permutation-based prob-

lems: the traveling salesman problem (TSP) and the permutation flowshop scheduling problem

(PFSP). The experimental results show that the proposed algorithm outperforms several state-

of-the-art EDAs on both problems.

We conclude by discussing the key findings of this work and outlining future research direc-

tions.

4.2 Related work

Asmentioned in section 2.5.3, specific EDAs are designed for permutation problems. For ex-

ample, Mallows and Plackett-Luce models have been introduced for permutation-encoded solu-

tions [55, 83, 53]. Notable algorithms, such as theGeneralizedMallows-EDA [83], PlackettLuce-

EDA [53], Edge Histogram-Based Sampling Algorithm (EHBSA) [84], and Node Histogram-

Based Sampling Algorithm (NHBSA) [48], have shown efficacy in solving permutation prob-

lems.

On the contrary, a limited number of research papers have explored the integration of Gener-

ative Adversarial Networks (GANs) into Estimation of Distribution Algorithms (EDAs). In one

such study, detailed in [85], the author proposed the incorporation of GANs within EDA frame-

works, although these experiments were conducted on various combinatorial problems that did

not involve permutations. Regrettably, the outcomes of these experiments, as reported by the

author, fell short of achieving the optimal results.

Another notable endeavor to employ GANs within Evolutionary Algorithms (EAs) is doc-

umented in [86], where the authors devised a strategy that combines GANs with a Genetic Al-

gorithm (GA) and applied it to the Permutation Flow-shop Scheduling Problem (PFSP). In this

research, the genetic algorithm retained its role as the primary component, with the GAN serving

a supplementary purpose. Specifically, the GAN was employed to enhance the genetic algo-
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rithm’s performance by aiding it in circumventing local optima and diversifying the population

through the introduction of generated samples. The author of this study asserted that the hybrid

GAN-GA approach yielded superior outcomes compared to traditional genetic algorithms.

4.3 Proposed GAN-EDA Algorithm

Our proposed algorithm, GAN-EDA, simulates the traditional EDA framework. The algo-

rithm begins by randomly generating an initial population. Selected individuals are then normal-

ized between [0, 1] and labeled as real data. GAN-EDA trains the models to mimic the distri-

bution of the selected individuals and subsequently uses the trained generator model to produce

new individuals (see Algorithm 3). This process is repeated in each iteration of the algorithm. In

essence, the generator creates an implicit probabilistic model of the dataset during the training

phase (using selected individuals) and generates a new population during the sampling phase.

Algorithm 3: Pseudocode of the Proposed GAN-EDA Algorithm

1 Generate the initial population;

2 while Termination criteria are not met do

3 Select promising individuals and normalize their genes between [0, 1];

4 Train the GAN using the selected individuals;

5 Generate new samples using the trained generator;

6 Apply random keys to obtain individuals;

7 Replace the old population with the new individuals;

8 end

We employ the generator to generate a collection of offspring categorized as fake data. Sub-

sequently, the discriminator is trained on both real and fake data, with the objective of distin-

guishing between them. The generator is then adjusted based on the generated samples, with its

input being a random vector drawn from a normal distribution.

In each generation, the selected individuals form the training dataset (real data). To train the

discriminator, we normalize the permutation vectors before feeding them to the discriminator.

The generator cannot directly produce a permutation due to its output being a vector of real

values. To obtain a permutation, we use the traditional Random Keys algorithm, ranking the

positions of the generated values. We train the GAN for a specified number of epochs, and
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Figure 4.1: General scheme of GAN-EDA

afterward, we use the generator to create the next generation, repeating this process as needed.

An overview of the algorithm’s workflow is depicted in Figure 4.1.

To improve the performance of GAN-EDA, we introduce a hybrid variant called HGAN-

EDA.HGAN-EDA incorporates the 2-opt local search algorithm to refine the solutions generated

by GAN-EDA. The 2-opt algorithm is a powerful heuristic that iteratively swaps pairs of edges

in a solution tour to reduce the overall tour length or cost [87].

In the context of the 2-opt local search algorithm (See algorithm 4), the primary objective is to

explore the neighborhood of the current solution in search of an improved solution. Should such

an improved solution be encountered, it promptly replaces the existing solution, and the search

process continues. Conversely, if no better solution is found within the local neighborhood, it

implies that a local optimum has been reached.

Algorithm 5 presents the swap neighborhood structure used in the 2-opt algorithm.
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Algorithm 4: Two-Opt Algorithm

Input: tour: A list representing the TSP tour

Output: tour: A new shorter TSP tour

1 improved← true;

2 while improved do

3 improved← false;

4 best_distance← calculateTotalDistance(tour);

5 for i← 1 to length(tour)− 2 do

6 for j ← i+ 1 to length(tour)− 1 do

7 new_tour← twoOptSwap(tour, i, j);

8 new_distance← calculateTotalDistance(new_tour);

9 if new_distance < best_distance then

10 tour← new_tour;

11 best_distance← new_distance;

12 improved← true;

13 end

14 end

15 end

16 end

17 return tour;
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Algorithm 5: 2-Opt Swap Procedure

Input: route: A list representing the route, v1, v2: Indices of vertices to swap

Output: new_route: A new route with vertices swapped

1 new_route← [];

2 for i← 0 to v1 do

3 append(new_route, route[i])

4 end

5 for i← v2 to v1 + 1 step −1 do

6 append(new_route, route[i])

7 end

8 for i← v2 + 1 to length(route)− 1 do

9 append(new_route, route[i]) . Take route[v2+1] to route[end] and add them in

order

10 end

11 return new_route;

In the experimental setup, we adopt the first-improvement principle. This means that upon

discovering the first superior solution during the search within the neighborhood, we promptly

accept and implement it as the replacement for the current solution. This approach ensures that

the local search algorithm efficiently navigates through the solution space, making immediate

improvements whenever possible, thereby facilitating the quest for optimal or near-optimal so-

lutions.

4.3.1 Experimental

In this section, we examine the outcomes of the proposed algorithm on specific TSP in-

stances. To achieve this, we have employed a discriminator and a generator, both featuring a

Multilayer Perceptron architecture with two hidden layers. Notably, the output layer of the gen-

erator and the input layer of the discriminator share the same size, which corresponds to the size

of the individuals. The used parameter settings for the GAN are detailed in Table 4.1.
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Table 4.1: Parameters for Both the Proposed Algorithm and the GANs Models.

Parameter Value

Maximum number of generations 100

Population size 500

Selection size 50

Number of epochs 50

Discriminator hidden layers 2

Generator hidden layers 2

Learning rate 1e-3

Activation function (output layer of D) Sigmoid

Activation function (output layer of G) Tanh

Activation function in hidden layers Relu

Batch size 32

Table 4.2: Comparison of Results Achieved by the Proposed Algorithm with the Best-Known

Solutions.

Benchmark Problem size Best known With 2-opt Without 2-opt

gr17 17 2085 2128.2 2808.8

bayes29 29 2020 2806.4 4389.8

fri26 26 937 1110 1334.6

DANTZIG42 42 699 929.2 1327.4

In Table 4.2, we can observe the best-known solution values for various benchmarks, along

with the results achieved by our proposed algorithm with and without the 2-opt local search

method. The benchmarks of TSP instances included are gr17, bayes29, fri26, and DANTZIG42.

Figure 4.2, provides a visual representation of the experiment results, offering a comprehensive

view of how our proposed algorithm performs compared to the best-known solutions across

different benchmarks.

It is noteworthy that our proposed algorithm features two variants: one utilizing a 2-opt
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Figure 4.2: Experiments result for the used benchmarks and the best known solutions

local search method and the other without it. Upon analyzing the results, it becomes evident

that incorporating the 2-opt algorithm leads to superior solution quality for all the benchmarks

studied.

Without the 2-opt local search method, our proposed algorithm still delivers competitive

results when compared to the best-known solutions. While the solutions obtained in this variant

are not as superior as those with the 2-opt optimization, they demonstrate the algorithm’s (in fact

the trained generator) capability to produce high-quality. This aspect is particularly significant,

as it suggests that the proposed algorithm’s initial solutions are already close to optimal, and

applying additional local search methods can further refine them. The results obtained without

2-opt showcase the algorithm’s inherent strength in generating quality solutions, making it a

versatile and robust tool for addressing a wide range of permutation-based problem

These results signify the effectiveness of the 2-opt local search method within our proposed

algorithm. It demonstrates how optimizing the solutions obtained from the initial algorithm run

can lead to substantial improvements in solution quality. These findings underscore the impor-

tance of considering and incorporating the hybridization of EDAs with local search techniques

when tackling complex optimization challenges.
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4.4 An alternative individual representation for GAN-EDA

4.4.1 Proposal

In this section, we will comprehensively explore our proposed algorithm, covering every step

from how individuals are represented to the method of generating offspring.

4.4.2 Representation of individuals

A common way to represent a permutation is as a vector of discrete numbers, with each num-

ber denoting a unique position within the permutation. For example, the permutation σ(2, 3, 1, 4)

can be represented as the vector [2,3,1,4]. However, this representation is not suitable for training

GANs, because GANs require real-valued inputs and outputs.

One way to transform a permutation into a real-valued vector is to use a one-hot matrix. A

one-hot matrix is a binary matrix of (n ∗n) where each row represents a possible value and each

column represents a position in the permutation. The only non-zero element in each row is the

element that corresponds to the value at that position in the permutation.

For example, the permutation σ(2, 3, 1, 4) can be represented by the following one-hot ma-

trix:

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

In this matrix, the first row represents the position of the number 2 in the permutation, the

second row represents the position of the number 3 in the permutation, and so on.

This representation offers an advantage over the natural permutation representation by re-

taining all information pertaining to the permutation, including the order of its elements

In our proposed algorithm, we use one-hot matrices to represent the individuals (permuta-

tions) in the population. This allows us to train a GAN to generate one-hot matrices, which we

can then convert back to permutations using a simple decoding rule.
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4.4.3 Proposed algorithm

The main idea behind the suggested method is depicted in Figure 4.3. The initial population

and GANweights are randomly initialized. Next, a group of individuals is selected based on their

fitness. These selected individuals are transformed into matrices using the individual represen-

tation method described earlier. The transformed individuals into one-hot matrix are labeled as

real data and utilized to train the GANs, alongside generated data from the generator, which is

considered fake data. Once the generator is adequately trained, it is employed to generate the

next generation after a specified number of epochs.

Algorithm 6: The proposed Algorithm

1 P0 ← create M individuals at random;

2 for gen← 0 tomaxgeneration do

3 Selected set← Select N < M best solutions;

4 Real Data← Transform Selected set to matrices;

5 Train the GAN with Real Data (Matrices);

6 Offspring← GenerateM new offspring by updated Generator;

7 Pi+1 ← Update Pi;

After a certain number of epochs, a collection of matrices that mimic the distribution of the

training matrices are generated using the trained generator. Subsequently, we apply the reverse

operation to obtain new individuals from these generated matrices.

4.4.4 Offspring reproduction strategy

The offspring generation is exclusively handled by the generator. The generator takes a ran-

dom input z, sampled from a normal distribution, and transforms it into a matrix L with dimen-

sions RN∗N . In this matrix, each row represents a vector of probabilities for obtaining a number

in each position. For example, if the first row of the generated matrix is (0.25, 0.73, 0.41, 0.29),

it corresponds to the one-hot matrix (0, 1, 0, 0). Subsequently, we apply the inverse operation of

individual representation to derive offspring from this matrix. Finally, we utilize the same 2-opt

algorithm used in HGAN-EDA to further enhance the obtained results.
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Figure 4.3: General scheme of the GAN-EDA with one-hot matrix representation

4.4.5 Experiments and results

4.4.6 Experiments

To evaluate our proposed algorithm, we conducted a series of experiments using small in-

stances of two widely recognized permutation problems: the Traveling Salesman Problem (TSP)

53



INTRODUCING GENERATIVE ADVERSARIAL NETWORKS ON ESTIMATION OF

DISTRIBUTION ALGORITHMS

instances from TSPLIB[88] and the Permutation Flow Shop Scheduling Problem (PFSP) in-

stances from Eric Taillard’s benchmarks[89].

Problem Used instances

TSP fri26, bays29, gr17, gr21, gr24

PFSP 20×5-1, 20×5-2 , 20×10-1, 20×10-2

We have implemented the GAN models with the Pytorch library and integrated the evolu-

tionary operations of EDA) using the DEAP library[90]. Table 5.2 outlines the parameters for

the GANs that were determined as the best through experimentation.

Parameter Value

Epochs 50

Discriminator hidden layers 1

Generator hidden layers 2

Learning rate 1e-3

Generator output activation function Tanh

Discriminator output activation function Sigmoid

Hidden layers activation function Relu

Batch size 32

Table 4.3: Model Architectures and Parameter Settings

4.4.7 Results and discussion

This section showcases the experimental outcomes of the algorithm under consideration. In

Table 4.4, we present the minimum, maximum, and average values resulting from ten separate

runs of the proposed algorithm for each selected instance. Any values shown in bold signify the

most optimal known solution.

The results in Table 4.4 reveal the strong performance of our method. It effectively produces

optimal solutions in 3 out of 5 Traveling Salesman Problem (TSP) benchmark instances, ap-

proaching optimality in the others. While its performance in the Permutation FlowShop Schedul-

ing Problem (PFSP) benchmarks is slightly less competitive, it remains acceptable.
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Problem Selected instance Best known Min Max Mean

fri26 937 937 1019 977

TSP bays29 2020 2034 2104 2065

gr17 2085 2090 2142 2101.1

gr21 2707 2707 2801 2755

gr24 1272 1272 1346 1305.6

tai20-5-0 1278 1297 1307 1297.9

tai20-5-1 1359 1367 1395 1380.9

PFSP tai20-10-0 1582 1654 1709 1683.1

tai20-10-1 1659 1740 1781 1762

Table 4.4: The Results of Experiments

Instances Random key representation Matrix representation

Without 2-opt With 2-opt

fri26 1334.6 1110 937

bays29 4386.8 2806.4 2034

gr17 2808.6 2128.4 2090

gr21 5491.6 3555.5 2707

gr24 / / 1272

Table 4.5: Comparing Results between Random Key Representation and Matrix Representation

Table 4.5 compares outecomes of our proposed algorithm, using the one-hot matrix represen-

tation, with our previous work with random key coding of permutations, considering both 2-opt

and non-2-opt variants. The results indicate that our new algorithm significantly outperforms

the prior method in all TSP instances. This suggests the potential of our approach for address-

ing a broad range of TSP instances, making it a promising solution for real-world optimization

challenges.

The comparison of the results shown in Table 4.5 demonstrates that the matrix representation

of permutations enhances the information captured by the GANs from the population distribu-

tion. This is likely due to the fact that the matrix representation preserves more information

about the permutation than the natural representation, such as the order of the elements in the

permutation.

Nonetheless, the matrix representation’s drawback lies in its extensive computational time,

mainly due to the substantial number of parameters that need to be trained in the GANs. This is

because the matrix representation requires a larger number of parameters to represent the same
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amount of information as the natural representation.

Despite this disadvantage, we believe that the benefits of using the matrix representation

outweigh the costs. The matrix representation allows us to train GANs to generate better permu-

tations, which can lead to improved performance on optimization problems.

4.5 Conclusion

In this chapter, we proposed a novel estimation of distribution algorithm (EDA) based on

generative adversarial networks (GANs) for solving permutation-based problems. The primary

challenge of an EDA lies in its approach to modeling the best solutions found in each generation.

In our study, we harnessed the capabilities of a GAN for this purpose, as GANs excel in modeling

in continuous spaces. However, the utilization of GANs to learn and generate permutations

remains a largely uncharted territory.

We introduced a novel methodology for training a GAN using a set of permutations and

subsequently leveraging it to generate fresh permutations that guide the optimization process.

The experiments conducted in this research aimed to assess the GAN’s capability to generate

samples that exhibit similar characteristics to the input permutations and effectively utilize them

in the optimization process. The results obtained for the benchmark problems are not satisfactory

when using a permutation representation, but they show promise when we employ the matrix

representation. However, further exploration is warranted, particularly regarding the number of

permutations utilized to train the GAN.

One limitation of our proposed GAN-EDA is the significant execution time, particularly for

the matrix representation, due to the larger model architecture. However, our focus is on the

ability of GANs to capture the distribution over permutation space, rather than on algorithm

complexity or execution time.

We intend to evaluate our proposed method on larger instance sets and examine a number

of GAN variants. In future research. Furthermore, we are contemplating the implementation of

variational autoencoders (VAEs) within EDAs as a probabilistic model estimator.

Overall, our proposed algorithm is a promising new approach to solving permutation-based

problems. We believe that further research in this area has the potential to lead to significant
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advances in the field of optimization.
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Chapter 5

An Estimation of Distribution Algorithm

for Permutation Flow Shop Scheduling

Problem

5.1 Introduction

In recent years, numerous specialized algorithms have emerged to tackle permutation-based

problems. Notably, Tsutsui et al. introduced the Edge Histogram-Based Sampling Algorithm

(EHBSA) [44]. This innovative algorithm models the interdependence of edges using an edge

histogram matrix. It features two key sampling methods: EHBSA/WO (without template) and

EHBSA/WT (with template), providing distinct strategies for generating new individuals.

Similarly, the Node Histogram-Based Sampling Algorithm (NHBSA) [48], also proposed

by Tsutsui and colleagues, employs a node histogram matrix to capture the distribution of nodes

across absolute positions in selected individuals. NHBSA offers versatility by supporting the

same two sampling techniques found in EHBSA. These algorithms have already been discussed

in detail in the previous chapter.

However, this approach can present challenges because the relationships between elements

and their positions play a vital role in the algorithm’s performance. Additionally, there is cur-

rently no established method for assigning a node to a specific position, often leading to sequen-

tial or random assignments. Surprisingly, to our knowledge, no existing EDA for permutation
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problems has effectively tackled this issue.

Several existing algorithms designed for permutation-based problems primarily concentrate

on sampling nodes instead of positions. This method, however, poses significant challenges, as

the interactions between positions and elements play a vital role in the algorithm’s performance.

Furthermore, there is currently no standardized technique for mapping a node to a particular

position. Surprisingly, to date, there are no known EDAs designed specifically for permutation

problems that adequately address this operation.

The Permutation Flow-Shop Scheduling Problem (PFSP) has attracted considerable interest

in the research community due to its wide range of applications in manufacturing, production

planning, textiles, and logistics [10, 91].

The objective of PFSP is to schedule a given set of jobs on a set of machines, aiming to min-

imize a specific performance metric. Among the various performance measures, the makespan

is the most commonly employed [11, 92]. Makespan refers to the total time required to com-

plete all jobs across all machines, making it an important parameter in the context of PFSP. The

problem has been extensively researched and is commonly used as a benchmark for assessing

the effectiveness of optimization algorithms [11, 63].

Minimizing themakespan in PFSP has been addressed through variousmethodologies. Exact

algorithms, such as the branch and bound algorithm [93, 94], have been applied, but their effec-

tiveness diminishes as the problem scales due to the NP-hard nature of PFSP. Consequently,

heuristic and metaheuristic methods have emerged as prominent approaches to tackle this com-

putational challenge. Several heuristic algorithms have been proposed to provide approximate

solutions for PFSP [95, 96, 97, 98].

Furthermore, the realm of combinatorial optimization has witnessed the advent of meta-

heuristic techniques, which offer a diverse set of strategies for PFSP. These include genetic algo-

rithms [99, 100], simulated annealing [101], estimation of distribution algorithms [56, 102, 38],

and particle swarm optimization [103, 104]. Notably, in [105], a parallel metaheuristic approach

was specifically crafted to address the challenges posed by PFSP.

In this chapter, we introduce a novel EDA designed for solving permutation-based problems,

with a specific focus on the Permutation Flow-Shop Scheduling Problem (PFSP). Our proposed

algorithm, known as PGS-EDA, incorporates a unique sampling technique. This innovative
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sampling method is a key contribution of this work, allowing for a more profound exploitation

of the information captured by the probabilistic model. The sampling process is guided by a

sequence vector (SV) created during the modeling phase, ensuring that each element is assigned

to a particular position based on its order within the SV. This guided approach empowers the

algorithm to efficiently explore the search space by exploiting the valuable information within

the model.

Moreover, our proposal employs a dynamic updating mechanism to adapt the distribution

model as the search progresses. This dynamic adjustment enables the algorithm to strike a

balance between exploration and exploitation, resulting in effective and efficient optimization.

Through a comprehensive set of experiments on benchmark instances of the PFSP, we demon-

strate that the proposed PGS-EDA consistently discovers high-quality solutions and surpasses

the performance of existing state-of-the-art algorithms.

5.2 Problem Definition

Designing an EDA becomes particularly challenging when working with permutation repre-

sentations due to the mutual exclusivity constraint, which enforces that each element can only

appear once in a permutation (P (σ : σ(i) = σ(j))) = 0 for all i 6= j) [106, 34]. This

constraint poses a significant hurdle in creating effective algorithms for solving permutation

problems, necessitating unique approaches to modeling and sampling [34]. Researchers have

responded to this challenge by adapting EDAs, originally designed for continuous or discrete

domains, into specialized methods tailored to address permutation problems.

The primary goal of the Permutation Flow-Shop Scheduling Problem (PFSP) is to determine

the optimal job permutation that minimizes the makespan or total flow time. In this work we are

interested in the makespan criterion, which is defined as the completion time of the last job on

the last machine (Cn,m), and can be mathematically expressed using the following equations:

Cmax = Cn,m (5.1)
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Or

Cmax = max {Cn,m−1, Cn−1,m}+ Pn,m (5.2)

The makespan is calculated by summing the processing time of the last operation of the final

job on the last machine (denoted as Pn,m) with the maximum value among the completion time

of the preceding job on the same machine (cσ〈n−1〉,m) and the completion time of the current job

on the machine used in the previous operation (cσ〈n〉,m−1).

Algorithm 7:Makespan Calculating

Input: Permutation σ = [σ1, . . . , σn]

Processing time matrix P of size n×m

Output: Makespan Cmax

1 Initialize the completion time matrix C with zeros of size (n+ 1)× (m+ 1);

2 for j = 1 to n do

3 for i = 1 tom do

4 C[j, i]←Max(C[j − 1, i], C[j, i− 1]) + P [σj−1, i− 1];

5 Cmax ← C[n,m];

6 return Cmax

Algorithm 7 describes how to calculate the makespan for a specific solution (permutation).

This algorithm initializes a completion time matrix (C) and iterates through the elements, pro-

gressively calculating the makespan Cmax. In essence, it efficiently determines the optimal job

arrangement that minimizes the makespan, a crucial objective in PFSP.

5.3 The Proposed PGS-EDA Algorithm

In this section, we provide a comprehensive overview of our proposed algorithm. The dis-

cussion commences with an explanation of individual representation and initialization. Subse-

quently, we introduce our novel approach to modeling and sampling. Finally, we delve into the

details of population evolution across generations.

The proposed PGS-EDA algorithm follows the fundamental EDA framework outlined in

Section 2.4. The algorithm’s high-level steps are summarized in Algorithm 8.

61



AN ESTIMATION OF DISTRIBUTION ALGORITHM FOR PERMUTATION FLOW

SHOP SCHEDULING PROBLEM

Algorithm 8: PGS-EDA

Input:

Pops: Population size

Sels: Selection size

Output:

The best solution

1 P0 ← Generate Pops individuals at random;

2 t← 0;

3 while Stopping Criteria not satisfied do

4 Select Sels fittest individuals from Pt;

5 Construct matrix modelM using Sels;

6 FromM extract the sequence vector SV;

7 Sampling Pops individuals fromM according to SV;

8 Update the population Pt with new individuals;

9 t← t+ 1;

10 return The best solution in Pt;

5.3.1 Population initialization and solution representation

In evolutionary algorithms, random initialization is a frequently utilized technique for creat-

ing the initial population in evolutionary algorithms. This method involves generating the initial

population in a random and uniform manner to ensure diversity, as suggested by previous re-

search [107]. In our study, individuals are depicted as job permutations, each representing a

unique job arrangement. When scheduling tasks, jobs are assigned to machines in the sequence

determined by the permutation.

5.3.2 Modeling

In each generation, individuals are chosen based on their fitness, with each individual repre-

sented by a permutation σi as defined in Equation (5.3):

σi = (σi(1), σi(2), σi(3), ..., σi(n)) (5.3)
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Where n signifies the problem size, the proposed algorithm constructs a probabilistic model

that characterizes the frequency with which a specific element occurs at a particular position

across the entire population. In simpler terms, it quantifies how often the element i is positioned

at location j.

The model takes the form of a matrix denoted asM , consisting of n² elements. It is defined

by the following equation:

mij =
k∑

i=1

αij + ε (5.4)

Here, k represents the size of the selected individuals, and αij is a function for counting the

occurrences of elements, which is defined as:

αij = 1 if σi = j, (5.5)

Additionally, ε serves as a user-defined constant. It plays a pivotal role in the algorithm dur-

ing the sampling phase by enhancing numerical stability while preventing mathematical compli-

cations when dealing with zero-valued elements.

Hence, we can represent our model (M) as a square matrix with dimensions n×n, described

as follows:

M =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann


Incorporating the addition of ε to all elements of M:

M =


a11 + ε a12 + ε . . . a1n + ε

a21 + ε a22 + ε . . . a2n + ε
...

...
. . .

...

an1 + ε an2 + ε . . . ann + ε


The derivation of the sequence vector (SV) from the matrix model (M ) is a crucial step in
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the algorithm, as it guides the subsequent sampling process. The SV is a vector of size n, where

n is the number of elements in the matrix model. The SV represents an element permutation,

where the elements are ordered according to their frequency of appearance at the same position

across all individuals.

To derive the SV , the algorithm first identifies the element with the highest frequency in

a given position among the chosen individuals. Subsequently, this element is positioned at the

relevant location in the SV . This pattern is repeated for each element in the matrix model,

guaranteeing that the most prevalent elements at each position are situated at the start of the SV .

The SV is a powerful tool for guiding the sampling process, as it ensures that the most

important elements are more likely to be selected for the offspring. This can lead to a significant

improvement in the performance of the algorithm.

Here is an example of how the SV can be extracted from the matrix model. Let P (k) denote

the population at generation k.

P (k) =



0 1 3 2 4 5

2 1 0 3 3 5

4 2 5 1 0 3

5 2 1 4 3 0

1 0 5 4 3 2

1 2 4 0 5 4


Thematrix modelM(k) is updated at each generation to reflect the current state of the popula-

tion. This is done by considering how often each element appears at each position in the strings

within the population. A small value, ε ( in this example ε = 0.4) is added to all elements

of the matrix. The matrix model is then used to sample positions for the offspring in the next
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generation.

M(k) =



1.4 1.4 1.4 1.4 1.4 1.4

2.4 2.4 1.4 1.4 0.4 0.4

1.4 3.4 0.4 1.4 0.4 1.4

0.4 0.4 1.4 1.4 3.4 1.4

1.4 0.4 1.4 2.4 1.4 1.4

1.4 0.4 2.4 0.4 1.4 2.4


The sequence vector SV can be extracted from the matrix M. In this example, the SV will

be (2,3,1,4,5,0) since the element 2 is repeated three times at position 2, therefore, it is assigned

to the first position in the SV . The element 3 is repeated thrice at position 5. so it is placed at

the second slot in the SV , and so on. The element 0 appears only once in each position.

5.3.3 Sampling

Unlike other algorithms such as NHBSA, EHBSA, or UMDA, which follow a sequential el-

ement selection process. Diverging from the conventional approach that proceeds linearly From

the initial position to the final position, our suggested method uses a distinctive path. Instead of

focusing on selecting elements for positions, we prioritize the positions themselves.

Central to our algorithm is the Sequence Vector (SV), which dictates the ranking in which

elements will be positioned in the new individual. During the sampling process, we draw ele-

ments from the SV and decide the most suitable position for each one. Our goal is to enhance

the organization of items inside the individual by allocating places depending on their ranking

in SV. You can find the detailed sampling algorithm in Algorithm 9. This approach allows us to

potentially enhance the quality of the offspring arrangement compared to traditional methods.
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Algorithm 9: The proposed algorithm for position sampling

Input: M : The matrix model, SV : The sequence vector

Output: Off : Offspring

1 SV ←Sawp(SV , n/10); // Apply n/10 swap operations to SV

2 for element e in SV do

3 PV ← Normalize M[e] ; // The column e

4 p← Sample position from PV ;

5 Off [p]← e ;

6 M [p]← 0; // The row p

7 end

8 return Off ;

Algorithm 9 proposes a new method for offspring generation (sampling) using both a matrix

modelM and a sequence vector SV . It is designed to promote optimal element arrangement in

the offspring while maintaining diversity.

The algorithm begins by creating a new offspring variable, Off, which represents the structure

of the resulting offspring. The offspring can be initially empty or may contain default values.

This critical initialization is performed in line 3 of the algorithm.

Next, the sequence vector SV ’s element e is iterated over by the method. This iterative loop

structure, shown in line 4, demonstrates the algorithm’s flexibility in handling a variety of input

sequences. To enhance diversification, n/10 swap operations are applied to the solution vector

SV . The algorithm then computes a probability vector, PV, for each element e. A normalizing

procedure is used to the matching line of the matrix model M in order to generate this vector.

This normalization makes sure the vector PV has a proper probability distribution since all of

its values must add up to 1.

Next, from the probability vector PV , we sample a position p. This is done using a roulette

wheel mechanism, where each index inPV is chosen according to its assigned probability. In the

subsequent step, the algorithm assigns the element e to the sampled position p within the new

individual. This operation holds the key to determining the precise placement of the element

within the offspring structure.

Simultaneously, the algorithm ensures the dynamic update of the matrix model M . More
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specifically, it enforces a value of 0 at the position p that was sampled withinM . This dynamic

updating approach ensures that once a position is selected in one iteration, it cannot be cho-

sen again in subsequent iterations. This mechanism upholds the crucial requirement of mutual

exclusivity, a fundamental characteristic of permutations.

The algorithm iterates over all elements in the sequence vector SV, repeatedly sampling,

assigning, and updating each element. This ensures that all elements are processed comprehen-

sively. The iterative loop continues until all elements have been addressed. Upon completing

the iteration, The algorithm produces the resulting offspring, denoted asOff , where nodes from

the sequence vector are organized according to the positions sampled during the process.

To sum up, PGS-EDA uses probabilistic assignments given by the matrix model M to ef-

ficiently assign items from the sequence vector SV to locations inside the offspring Off . Po-

sitions are sampled, and the matrix model is updated dynamically throughout this process to

guarantee that every element is positioned uniquely within its offspring while respecting the

probability distribution defined byM .

5.3.4 Population update Strategy

The replacement strategy in an evolutionary algorithm plays a crucial role in determining

how offspring are integrated into the current population.

We propose a replacement strategy in this context where an offspring becomes part of the

population if its fitness is greater than the fitness of the weakest individual in the current genera-

tion. This mechanism guarantees that only the most highly suited solutions are integrated into the

new generation, ultimately improving its overall quality as evolution progresses. Additionally, it

ensures that no identical individuals are introduced, preserving diversity within the population.

This strategy effectively balances exploitation and exploration. It gradually replaces less fit

individuals with stronger ones, propelling the population’s evolution towards good solutions.
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5.4 Experiments and Results

5.4.1 Experiments

To demonstrate the efficacy of our proposed algorithm, we conducted a series of experiments

using a comprehensive set of 45 Permutation Flow-Shop Scheduling Problem (PFSP) instances

obtained from Taillard’s benchmark [89]. These selected instances were organized into nine

distinct sets based on their size, which is defined by the number of jobs and the number of

machines. The sets are as follows:

Jobs Machines

20 5

20 10

20 20

50 5

50 10

50 20

100 5

100 10

100 20

Table 5.1: Selected Instances Organized by Size

For each size category, we specifically chose the first five instances for analysis.

In this study, we conducted a comparative analysis of our proposed method against some ex-

isting pure EDAs developed for permutation problems. These included UnivariateMarginal Dis-

tribution (UMDA)[36], Edge Histogram-Based Sampling Algorithm (EHBSA)[44], Random-

Key Estimation of Distribution Algorithm (RK-EDA)[38], Generalized Mallows EDAs (GM-

EDA)[56], and Node Histogram-Based Sampling Algorithm (NHBSA) [48].

Our comparative study includes exclusively pure Estimation ofDistributionAlgorithms (EDAs),

excluding any hybrid algorithms like HGM-EDA [56]. Our implementation covers PGS-EDA,

EHBSA, NHBSA, and UMDA in Python, while the GM-EDA and RK-EDA codes are publicly

available on the authors’ GitHub repositories. The experiment parameters, detailed in Table 5.2,

apply consistently to all algorithms. We determined the stopping criterion as 1000n2 fitness

evaluations, a common choice across many studies [55, 38, 34].

Additionally, for PGS-EDA, ε was experimentally set to 0.002, and a total of n/10 inter-
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Table 5.2: The algorithm’s parameters.

Parameter Value

Population size 10n
Selection size n
Termination condition 1000n² FEs
Number of runs 10

change operations between two elements in SV were performed before the sampling phase.

These parameters were chosen to ensure a fair and uniform experimental setup.

Throughout the comparative analysis of the various algorithms, we adhered to the parameters

recommended by their respective authors. An important consideration is that both NHBSA and

EHBSA utilized a sampling approach without template. The parameters for RK-EDA were di-

rectly adopted from the author’s guidelines in [38]. It is worth mentioning that a variety of EDA

variants employ models based on probability distance rankings, which can vary depending on

the chosen distance function. In our evaluation, we specifically selected GM-EDAs employing

the Kendall-τ distance [62, 108].

In our experiments, every algorithm under consideration was executed 10 times for each

instance to ensure the robustness and reliability of the results. To evaluate their performance,

we employed the Average Relative Percentage Deviation (ARPD) metric, which is defined as

follows:

ARPD =
1

10

10∑
i=1

(
Foundi −Best

Best
∗ 100

)
(5.6)

Here, Foundi represents the result obtained by the method in the i-th run, and Best de-

notes the best-known value for the respective instance used in the experiment. ARPD allows us

to quantify the algorithm’s performance relative to the best-known solution, with lower ARPD

values indicating better performance. This metric helps provide a standardized measure for com-

paring different algorithms across various instances and scenarios.

5.4.2 Results and Discussion

For a more comprehensive understanding of algorithm behavior, we categorized the Taillard

benchmark instances into three distinct groups: small instances comprising 20 jobs, medium
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instances involving 50 jobs, and large instances featuring 100 jobs, all across 5, 10, and 20

machines.

Bayesian Performance Analysis (BPA) [109] is a powerful statistical tool for rigorously eval-

uating experimental results and uncovering the associated uncertainties. It plays a pivotal role

in understanding the comparative performance of different algorithms.

The first critical step in the BPA process is to translate raw results into rankings for each

specific test instance. This provides a structured basis for comparison. Next, BPA leverages

the probabilistic realm by drawing samples from the posterior probability distribution of the

Plackett-Luce model. This model is meticulously designed for handling rankings, making it an

ideal choice for BPA. These drawn samples encompass the weights assigned to the algorithms

and reflect the possible scenarios. The sampled weights are then used to assess the probability

of each algorithm achieving success. In other words, BPA generates a probabilistic measure

that quantifies each algorithm’s likelihood of outperforming others. This procedure results in a

thorough and detailed comprehension of the comparative effectiveness of the algorithms being

examined, taking into account both the ranking of results and the corresponding uncertainty.[61,

109].

The ARPD outcomes for individual algorithms across the selected 20 job instances are de-

tailed in Table 5.3. Notably, the most impressive results, highlighted in bold, underscore our

proposed algorithm’s exceptional performance. Specifically, our algorithm secures the top po-

sition for the minimum ARPD value in an impressive 11 out of 15 small instances considered.

The next most successful contender, GM-EDA, outperforms other methods in approximately

13.33% of instances, closely followed by RK-EDA and NHBSA, each excelling in 6.33% of

cases. Notably, the UMDA also delivers commendable results, especially when compared to the

EHBSA.

To provide a more comprehensive overview, we calculated the mean ARPD value across all

15 cases for eachmethod. In this regard, PGS-EDA emerges as a standout performer, showcasing

its consistent effectiveness by maintaining the lowest average value. This outcome is a strong

indicator of PGS-EDA’s remarkable ability to consistently generate high-quality solutions across

diverse instances.
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Table 5.3: The ARPD (Average Relative Deviation Percentage) values obtained for instances

involving 20 jobs and different configurations of 5, 10, and 20 machines.

Machines Instance PGS-EDA RK-EDA NHBSA EHBSA GM-EDA UMDA

5 1 1.486 0.310 1.486 1.267 0.000 1.502

5 2 0.250 0.470 0.423 0.4415 0.412 1.530

5 3 1.267 0.832 1.794 3.977 1.378 3.5426

5 4 0.699 1.067 0.699 2.088 0.765 1.297

5 5 0.622 0.800 1.116 1.197 0.622 1.262

10 1 0.982 2.243 1.150 3.893 1.245 2.863

10 2 1.048 1.952 1.115 4.110 1.326 3.640

10 3 1.537 2.152 1.744 5.41 1.684 5.404

10 4 1.328 1.494 1.531 4.208 1.291 2.818

10 5 1.279 1.458 1.747 5.454 1.797 4.756

20 1 0.959 2.137 1.406 2.873 1.684 3.854

20 2 1.083 1.623 1.471 3.200 1.666 3.352

20 3 0.741 1.874 1.216 3.723 1.818 2.665

20 4 0.890 1.363 1.174 3.193 1.529 2.744

20 5 0.816 1.379 1.322 3.963 1.580 2.385

Mean 1.097 1.410 2.984 3.260 1.253 2.907

Figure 5.1 presents a visual representation of the posterior probability distribution, indicat-

ing the likelihood of each algorithm taking the top position. The black dots represent the ob-

served empirical probabilities. Notably, PGS-EDA consistently exhibits the highest probability

of achieving the top position, frequently reaching around 0.8. Following the Bayesian analy-

sis results, NHBSA emerges as the second-strongest contender, with GM-EDA and RK-EDA

closely behind, each with probabilities hovering around 0.3.
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Figure 5.1: The Probability of the Considered Algorithms Achieving the Best Performance on

Instances with 20 Jobs

Table 5.4 provides a detailed overview of ARPD results across instances with 50 jobs, with

the most favorable ARPD values highlighted in bold. PGS-EDA emerges as the top-performing

algorithm, consistently achieving the lowest ARPD values in nine instances. RK-EDA follows

as the second most successful algorithm, outperforming others in four instances. GM-EDA se-

cures the third spot, delivering strong results across multiple cases. UMDA and NHBSA also

demonstrate favorable performance relative to EHBSA.

The precision of node (job) positioning significantly influences the makespan in the Permu-

tation Flow-Shop Scheduling Problem (PFSP). The success of algorithms like PGS-EDA, RK-

EDA, UMDA, and NHBSA can be attributed to their adept utilization of node-position sampling

techniques, effectively optimizing solutions for specific instances.
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Table 5.4: The ARPD (Average Relative Deviation Percentage) values obtained for instances

involving 50 jobs and different configurations of 5, 10, and 20 machines.

Machines Instance PGS-EDA RK-EDA NHBSA EHBSA GM-EDA UMDA

5 1 0.000 0.0954 0.055 1.189 0.359 0.220

5 2 0.656 0.197 0.366 2.194 0.688 2.183

5 3 0.347 0.148 0.076 1.900 0.209 0.763

5 4 0.308 0.843 0.367 2.988 0.654 1.768

5 5 0.034 0.034 0.034 1.847 0.034 0.838

10 1 2.466 3.246 3.365 8.710 1.355 3.295

10 2 1.943 1.894 3.692 9.576 1.804 3.613

10 3 2.263 1.662 3.509 10.391 1.710 3.690

10 4 1.109 1.354 1.409 9.839 1.174 3.253

10 5 1.781 1.791 2.106 10.521 1.791 4.377

20 1 1.762 1.809 3.788 10.699 2.918 3.669

20 2 2.566 3.343 4.411 11.551 4.209 5.289

20 3 2.390 3.189 5.697 12.108 3.966 4.929

20 4 1.820 1.755 3.336 10.621 2.494 3.587

20 5 2.417 1.756 2.486 9.982 2.825 4.709

Mean 1.456 1.539 2.213 7.607 1.754 3.078

Ourmethod often performswell within various instances, exceeding othermethods in 8 out of

15 cases and effectively minimizing makespan. Remarkably, it attains optimal solutions across

all 10 runs for the 50×5 instance, which has an ARPD of 0.000. This highlights its superiority

in scenarios with fewer machines. Meanwhile, the RK-EDA algorithm outperforms ours in 4

instances.

PGS-EDA outperforms all other algorithms on average, with the lowest mean ARPD value

of 1.456 across the 50 job instances. RK-EDA, GM-EDA, NHBSA, and UMDA follow with

mean ARPD values of 1.539, 1.754, 2.213, and 3.078, respectively. EHBSA has the highest

mean ARPD value at 7.607, indicating that it may struggle to find near-optimal solutions on
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average.

Figure 5.2 shows the posterior distribution of probabilities for each algorithm, specifically

focusing on their likelihood of being the top-performing solution. The black dots scattered across

the chart represent the empirical probabilities for these algorithms.

PGS-EDA consistently emerges as the best, with the highest probability of obtaining the

top position, sometimes exceeding 70%. On average, it maintains an impressive probability of

around 0.4, reaffirming its superior performance across various problem instances. RK-EDA

and GM-EDA closely follow PGS-EDA, occupying the second and third positions, respectively.

Their probabilities are around 0.3 and 0.2. Their competitive performance further highlights the

dynamic nature of the field, with these three algorithms consistently outperforming the rest in

the pursuit of optimal solutions.

PGS-EDA UMDA RK-EDA GM-EDA NHBSA EHBSA
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 5.2: The Probability of the Considered Algorithms Achieving the Best Performance on

Instances with 50 Jobs

The benchmark results for Taillard’s 100-job instances are presented in Table 5.5. Notably,

in instances with 5 machines, ARPD values for PGS-EDA, RK-EDA, GM-EDA, and NHBSA

exhibit minimal variation. Specifically, RK-EDA achieves the lowest ARPD value in three out

of five instances, while PGS-EDA and NHBSA each secure one instance with the minimum

value.

This consistency suggests that, with a small number of machines, there is no statistically

significant disparity among these top four algorithms. In essence, the performance differences

between these algorithms could reasonably be attributed to random variations, and there isn’t
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compelling evidence to assert the superiority of one algorithm over another in this particular

scenario.

Table 5.5: The ARPD (Average Relative Deviation Percentage) values obtained for instances

involving 100 jobs and different configurations of 5, 10, and 20 machines.

Machines Instance PGS-EDA RK-EDA NHBSA EHBSA GM-EDA UMDA

5 1 0.032 0.014 0.028 0.709 0.032 0.190

5 2 0.288 0.398 0.360 1.319 0.335 0.598

5 3 0.206 0.102 0.502 2.035 0.372 1.023

5 4 0.165 0.155 0.197 1.804 0.241 0.597

5 5 0.059 0.057 0.047 2.066 0.085 0.604

10 1 1.018 0.519 1.057 7.383 1.019 4.523

10 2 1.009 0.736 1.916 8.104 0.646 3.047

10 3 0.982 0.246 1.409 6.059 0.077 5.512

10 4 2.469 0.694 2.538 7.572 1.179 5.289

10 5 1.309 0.554 1.877 8.247 0.846 4.322

20 1 2.816 1.749 4.740 11.191 2.083 7.397

20 2 2.371 0.903 4.718 12.770 1.560 6.851

20 3 4.710 0.848 4.408 11.376 1.788 8.523

20 4 3.843 0.998 3.659 11.718 1.665 7.980

20 5 4.861 1.655 4.496 10.749 2.005 8.659

Mean 1.742 0.641 2.130 6.874 0.929 4.341

Within the subgroup of cases involving 10 machines, we see a minor decline in the effi-

ciency of PGS-EDA and NHBSA when compared to RK-EDA and GM-EDA. It is important to

mention that despite this decline, PGS-EDA and NHBSA continue to be effective concerning

ARPD. Within this particular situation, RK-EDA demonstrates superior performance compared

to the other approaches in three out of the five occurrences, highlighting its usefulness. GM-

EDA demonstrates superior performance by achieving the lowest ARPD among the other two

examples.
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However, as the number of machines increases, RK-EDA takes the lead by outperforming

all other algorithms, securing the minimum ARPD in all five instances of 100×20. GM-EDA

follows as the second most successful algorithm, surpassing PGS-EDA and NHBSA in this con-

text. When considering the average ARPD value, PGS-EDA ranks third with a value of 1.471,

while RK-EDA and GM-EDA attain significantly lower values of 0.624 and 0.954, respectively.

These research results underscore the need to take into account the particular characteristics of

a problem and the possible influence of variable parameters, such as the number of machines,

while assessing and choosing suitable methods to tackle permutation problems.

The outcomes of the Bayesian Performance Analysis (BPA) for 100-job instances, indicating

the likelihood of each algorithm being the top performer, are depicted in Figure 5.3. These results

suggest that RK-EDA has the highest probability of emerging as the top-performing algorithm,

with an empirical probability of approximately 0.8. In a closely trailing position, we find GM-

EDA and PSG-EDA, both boasting a probability of around 0.4.

PGS-EDA UMDA RK-EDA GM-EDA NHBSA EHBSA
0.0

0.2

0.4

0.6

0.8

Figure 5.3: The Probability of the Considered Algorithms Achieving the Best Performance on

Instances with 100 Jobs

In summary of our statistical analysis, a Bayesian performance analysis was carried out to

assess the performance of all the algorithms on instances featuring 20, 50, and 100 jobs. The

findings, as presented in Figure 5.4, indicate that PGS-EDA is the front-runner, possessing a

probability of victory surpassing 50%. Following closely, we have RK-EDA as the second-best

algorithm, with GM-EDA and NHBSA occupying the subsequent positions. The rest of the

algorithms exhibit lower probabilities, all falling below the 0.05% mark.
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PGS-EDA UMDA RK-EDA GM-EDA NHBSA EHBSA
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Figure 5.4: The Probability of the Considered Algorithms Achieving the Best Performance on

all Selected Instances.

Figure 5.5 offers helpful information into the probabilities of each method getting positions

between the top two and top three algorithms, as evaluated via Bayesian performance analysis

across all instances featuring all instances of 20, 50, and 100 jobs. These results effectively

reinforce our earlier observations, highlighting the robust performance of PGS-EDA and RK-

EDA, which emerge as the most probable contenders for the top two positions. This further

reinforces their effectiveness in addressing problems of this nature. Moreover, when expanding

the scope to the top three algorithms, PGS-EDA retains its high confidence level, with RK-EDA

and GM-EDA following closely behind. It’s worth noting that NHBSA also demonstrates a

noteworthy probability of approximately 0.4 for securing a place among the top three algorithms,

further emphasizing its competitiveness in this context.

PGS-EDA UMDA RK-EDA GM-EDA NHBSA EHBSA
0.0

0.1
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0.3

0.4

0.5
Top: 2

PGS-EDA UMDA RK-EDA GM-EDA NHBSA EHBSA
0.0

0.2

0.4

0.6

0.8
Top: 3

Figure 5.5: The probability of every algorithm obtaining a position within the top two and top

three rankings
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Bayesian performance analysis of the considered algorithms on permutation-based problems

with 20, 50, and 100 jobs reveals that PGS-EDA has the highest probability of being the top

performer, followed by RK-EDA. This supports the authors’ claim that RK-EDA is well-suited

for large-scale problems. GM-EDA and NHBSA also have competitive probabilities of being

ranked in the top three. The other algorithms have lower probabilities of being ranked in the top

positions. These results highlight the importance of algorithm selection based on the specific

problem characteristics and parameter variations and the effectiveness of PGS-EDA and RK-

EDA for addressing permutation-based problems.

Regarding processing time, GM-EDA demonstrates superior performance compared to all

other algorithms, including PGS-EDA. This disparity in performance can be attributed to the

efficiency of GM-EDA’s implementation and its optimization strategies. Conversely, other al-

gorithms, including PGS-EDA, share a comparable processing time, as they may utilize similar

sampling processes or computational methodologies.

Although our approach has shown promising results in solving the Permutation Flow-Shop

Scheduling Problem (PFSP), it is crucial to recognize the limitations of our work. The efficacy of

our method may diminish with larger problem sizes, and broadening our research to encompass

more types of problem situations would enhance the universality of our conclusions. Moreover,

it is important to acknowledge that the effectiveness of PGS-EDA can alter when utilized in other

problem categories or distinct problem size.

5.5 Conclusion

In summary, we’ve presented an Estimation of Distribution Algorithm (EDA) tailored for

permutation problems. Our EDA employs a unique approach that combines matrix modeling

and sequence vectors to allocate positions to nodes intelligently. This strategy utilizes probabil-

ity information from the matrix model and element weight rankings in the sequence vector for

effective position assignment.

The effectiveness of our EDA was thoroughly tested using Taillard’s benchmark examples

for the Permutation Flow-Shop Scheduling Problem (PFSP). Our findings provide clear proof

of the success of our suggested algorithm in tackling the PFSP. The results we obtained on
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Taillard’s benchmark instances show that our algorithm performs comparably to state-of-the-

art methods when it comes to the quality of the solutions it produces. By clearly demonstrating

its amazing skill in properly exploring and exploiting the solution space, our algorithm either

surpassed current state-of-the-art solutions or achieved equivalent results.

We recommend several avenues for further research to overcome the limitations of our pro-

posal and guide future investigations. One compelling direction involves conducting compar-

ative studies with a variety of state-of-the-art algorithms, addressing a diverse set of permuta-

tion problems, including the Traveling Salesman Problem (TSP), Quadratic Assignment Prob-

lem (QAP), and Linear Ordering Problem (LOP). This would result in a more complete and

reliable evaluation of our method’s performance.

Moreover, an exciting prospect lies in developing hybrid algorithms that integrate local

search methods. This integration has the potential to enhance both the performance and scal-

ability of our algorithm significantly. Techniques like Variable Neighborhood Search (VNS)

could be explored to augment our algorithm’s capabilities further.
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Chapter 6

General Conclusion

This chapter summarizes the key contributions and conclusions of the thesis and offers gen-

eral directions for future research. Additionally, a list of resulting publications is provided.

6.1 Conclusions

This thesis explores the potential of novel algorithms based on Estimation of Distribution Al-

gorithms (EDAs) and Generative Adversarial Networks (GANs) for solving permutation prob-

lems. Permutation problems are a class of optimization challenges with diverse real-world ap-

plications, such as scheduling, routing, and assignment problems. In the last years, GANs have

great success in mimicking data distribution of continuous and discrete domains, but not in per-

mutations, and it has not been investigated in permutation space.

In Chapter 2, we offer a detailed overview of permutation problems and EDAs. We discuss

the unique characteristics of permutation problems and their complexities. We also introduce

EDAs as a powerful class of evolutionary algorithms that are well-suited for solving many op-

timization problems. We present a taxonomy of EDAs and discuss specific variants that have

been tailored for permutation problems. The chapter also highlighted the potential of genera-

tive deep learning models, especially Generative Adversarial Networks (GANs) and Variational

Autoencoders (VAEs).

In Chapter 3, we introduce GAN-EDA, a novel EDA-based GAN specifically designed for

solving permutation problems. GAN-EDA harnesses the power of GANs to learn a latent prob-
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abilistic model of selected individuals, which is then used to generate new individuals. We

also introduce a novel permutation representation using one-hot matrices. We also implement a

hybrid version of GAN-EDA that incorporates a 2-opt local search algorithm. Experimental re-

sults on the Traveling Salesman Problem (TSP) and Permutation Flow Shop Scheduling Problem

(PFSP) benchmarks demonstrate that GAN-EDA achieves good results.

In Chapter 4, we introduce PGS-EDA, a pure EDA-based algorithm for solving the PFSP.

PGS-EDA distinguishes itself through its novel sampling approach, which focuses on sampling

positions rather than elements to generate new individuals. This innovative technique demon-

strates impressive performance, especially for small and medium instance sizes, when compared

to existing state-of-the-art algorithms.

Overall, our work has demonstrated the promise of EDAs and GANs for solving permutation

problems. We believe that our proposed algorithms can be used as a foundation for developing

even more effective and efficient algorithms for solving this important class of optimization

problems.

In addition to the contributions mentioned above, our work has also shed light on the follow-

ing aspects of using EDAs and GANs for solving permutation problems:

• EDAs that are specifically designed for permutation problems are more effective than

EDAs that are generalized from continuous or discrete domains.

• Our research highlights that there is no universally superior algorithm that consistently

outperforms state-of-the-art methods across all permutation problems. This means differ-

ent problems may require tailored algorithms or combinations of techniques to achieve

optimal results.

• EDAs and GANs can be used to learn complex relationships between the different com-

ponents of a permutation.

• Alternative permutation representations, such as one-hot matrices, can improve the per-

formance of EDAs and GANs on permutation problems.

• Hybrid algorithms that combine EDAs with local search algorithms can further improve

the performance of EDAs on permutation problems.
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6.2 Future work

This thesis has explored the potential of estimation of distribution algorithms (EDAs) and

generative adversarial networks (GANs) for solving permutation problems. While our proposed

algorithms have achieved promising results, there are still many opportunities for further explo-

ration and improvement.

Here are some specific future directions that we believe have the potential to lead to signifi-

cant advancements:

• DiversifyingGANvariants: Our current GAN-EDA algorithm uses vanilla GANs. How-

ever, many other GANvariants have been developed in recent years, eachwith its strengths

and weaknesses. Exploring the use of alternative GAN variants in EDA-based algorithms

could lead to significant performance improvements.

• Incorporating variational autoencoders (VAEs): VAEs are another type of generative

model that has shown great promise for a variety of tasks. VAEs can learn complex la-

tent representations of data, which could be beneficial for solving permutation problems.

Investigating how VAEs can be incorporated into EDA-based algorithms is a promising

area for future research.

• Expanding to other combinatorial problems: EDAs and GANs are not limited to per-

mutation problems. In principle, they can be applied to a wide range of combinatorial

optimization problems. We encourage researchers to explore the use of EDAs and GANs

for solving other types of combinatorial problems, such as quadratic assignment problems

and vehicle routing problems.

• Solving real-world problems: Permutation problems arise in a wide range of real-world

applications. By exploring how EDAs and GANs can be harnessed to solve real-world

problems involving permutations, we can pave the way for practical solutions in areas

such as scheduling, logistics, and data analysis.

• Hybridizing with local search: Local search algorithms such as VNS are powerful tools

for solving combinatorial optimization problems. In our cases, hybridizing PGS-EDAwith
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local search algorithms can lead to significant performance improvements, especially for

large instances.

We believe that the future of EDA-based algorithms andGANs for solving permutation problems

is very bright. By exploring the directions outlined above, we can make significant progress

toward developing more effective and efficient algorithms for solving this important class of

optimization problems.

6.3 Publications

During the period of this research, a number of research publications were published that

contributed to certain chapters of the thesis. The publications are listed as follows :

6.3.1 Referred journals

• Sami Lemtenneche, Abdallah Bensayah, and Abdelhakim Cheriet. An estimation of dis-

tribution algorithm for permutation flow-shop scheduling problem. Systems, 11(8):389,

2023.

6.3.2 Conference communications

• Sami Lemtenneche, Abdelhakim Cheriet, and Bensayah Abdellah. Permutation-based op-

timization using a generative adversarial network. In Proceedings of the Genetic and Evo-

lutionary Computation Conference Companion, GECCO ’21, page 159–160, New York,

NY, USA, 2021. Association for Computing Machinery

• Sami Lemtenneche, Abdelhakim Cheriet, and Abdallah Bensayah. Introducing generative

adversarial networks on estimation of distribution algorithm to solve permutation-based

problems. In 2022 International Symposium on iNnovative Informatics of Biskra (ISNIB),

pages 1–5, 2022.
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