

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

university of KASDI Merbah Ouargla

Faculty of New Information Technologies and Communication Department of Informatique

Thesis submitted in partial fulfillment of the requirements for the degree of

Master

In: Industrial Computing

By: Hebbaz Yamina/ Bouhafs Rayan

Subject

Using machine learning techniques for

detecting Fake News

Sustained before the jury composed of:

Mr. ABDERRAHIM .M.E.A Prof Ouargla university President

Mrs. TOUMI .Ch MCB Ouargla university Examiner

Mr. MERABTI .H MCA Ouargla university Supervisor

Academic Year: 2022/2023

a

Dedication

Thank God

This enabled us to complete this step in our

academic journey The fruit of effort and

success, by His grace, I dedicate:

My great Mother, who never stop giving of herself in countless

ways,

To my dear father, may God have mercy

on him,

To my sisters, brothers, and all members of my

honorable family, My God protect them.

Yamina Hebbaz

b

Dedication

To my gift from God, and the great blessing in which I live, to those who

are unmatched by anything in the universe, to whom God has commanded us to

be righteous,

to those who have done so much, and who have given the irretrievable.

These words, my dear mother and father, I dedicate this effort to you,

because you have been the best support for me throughout my academic career.

Loyal friends, who never ceased to help, assist and support me in the most

difficult circumstances, wishing me success and prosperity.

To my loyal brothers and relatives my heart, respect and loyalty who stood

by me, and their good wishes for success, support and encouragement, enabled

me to pass stage of my life, I thank you very much, and a lot of respect.

Those who are happy with our success and saddened by our failure are dear

professors.

I would like to dedicate these words to you as an expression of the great

efforts you have made for me. You have the most beautiful rose-scented gift

bouquets

Bouhafes rayan

c

Acknowledgments

In the name of Allah, the Most Gracious and the Most

Merciful. All praises to Allah and His blessing for the

completion of this thesis.

We thank God for all the opportunities, trials, and strength that

have been seized We have to finish writing the note. We

suffered a lot during this process, not only From an academic

point of view, but also from a personal point of view.

First of all, we would like to extend our sincere thanks to our

supervisor Prof.

Dr.Hocine Merabti for his guidance, understanding and

patience.

We would also like to thank all the people whose assistance

marked a significant Milestone in the achievement

From the project wherever they are.

God bless everyone

I

Abstract

With the evolution of technology and the rise of social media, the proliferation of fake news

has speed across a wide range of media platforms. This proliferation poses a significant

challenge, exacerbated by the growing number of social media users and declining digital

literacy. Existing solutions for detecting fake news have short comings, with the complexity

of the task influenced by factors such as language type, news category and topic volatility.

Machine Learned (ML) and Natural Language Processor (NLP) techniques offer viable means

to address this issue by identifying patterns unique to fake news articles that are not present in

authentic news content.

This study deals with a classification-based approach for the automation of fake news

detection. Several methods were employed, including experimentation with different features

(Count-Vectorizer, Tf-Idf Vectorizer, Bag-of-Words) and machine learning models (SVM,

KNN, Random Forest, Naive Bayes, Decision Tree) to construct accurate detectors.

Experiments were conducted on a real-world dataset, LIAR, to evaluate the performance of

the models. The results showed that the SVM model using Tf-Idf Vectorizer features achieved

the highest accuracy at 92%. These findings highlight the potential of Machine Learning

models in the field of fake news detection, with a promising trajectory for further

advancements in the future.

Keywords: Machine Learning Algorithms, Natural Language Processing, Fake News

detection, Feature extraction, Classification.

II

 ملخص

ة عبر لكاذبمع تطور التكنولوجيا وظهور وسائل التواصل الاجتماعي، تسارعت وتيرة انتشار الأخبار ا

ايد عدد ته تزمجموعة واسعة من المنصات الإعلامية. ويشكل هذا الانتشار تحديًا كبيرًا، ويزيد من حد

 ف عنالية للكشمستخدمي وسائل التواصل الاجتماعي وتراجع المعرفة الرقمية. تنطوي الحلول الح

ر وتنوع لأخبااالأخبار المزيفة على أوجه قصور، حيث يتأثر تعقيد المهمة بعوامل مثل نوع اللغة وفئة

لتطبيق لمعالجة (وسائل قابلة لNLP(ومعالج اللغة الطبيعية)MLالمواضيع. توفر تقنيات التعلم الآلي)

لمحتوى د في االإخبارية المزيفة التي لا توجهذه المشكلة من خلال تحديد الأنماط الفريدة للمقالات

 الإخباري الحقيقي.

تتناول هذه الدراسة نهجًا قائمًا على التصنيف بهدف أتمتة الكشف عن الأخبار الكاذبة. تم استخدام العديد

-Count-Vectorizer،Tf-Idf Vectorizer،Bag-of)من الطرق، بما في ذلك تجربة ميزات مختلفة

Words التعلم الآلي)(ونماذجSVM ،KNN ،Random Forest ،Nive Bayesو ،Decision

Tree ،لبناء كاشفات دقيقة. أجُريت التجارب على مجموعة بيانات من العالم الحقيقي))LIAR لتقييم ،

حقق أعلى دقة Tf-Idf Vectorizerباستخدام ميزات SVMأداء النماذج. أظهرت النتائج أن نموذج

هذه النتائج إمكانات نماذج التعلّم الآلي في مجال الكشف عن الأخبار الكاذبة، مع %. تبُرز92بنسبة

 .وجود مسار واعد لتحقيق المزيد من التقدم في المستقبل

 مزيفة،ر الالأخبا اكتشاف خوارزميات التعلم الآلي، معالجة اللغات الطبيعية، الكلمات المفتاحية:

 التصنيف. ،اتاستخراج الميز

III

Table of Contents
Abstract ... I

 II ... ملخص

List of Figures ... V

List of Tables .. VI

Introduction ..1

Chapter I Fake News ..4

1. Introduction ..5

2. Fake news ...5

2.1. Definition ... 5

2.2. Fake news components ... 5

2.3. Fake news characteristics ... 6

2.4. How to detect a fake news ... 6

3. Analysis of News Content ...7

3.1. Knowledge-based approaches .. 7

3.2. Machine Learning Approach .. 8

3.3. Hybrid approaches ... 9

4. Advantages and limitations of fake news detection ..9

5. Fields of application for fake news .. 10

6. Conclusion .. 11

Chapter II Ml and NLP for fake news detection .. 12

1. Introduction .. 13

2. Machine Learning: .. 13

2.1. Machine Learning Techniques ... 13

2.2. Natural Language Processing (NLP) : ... 15

2.3. Text classification process .. 15

3. Conclusion .. 26

Chapter III .. 27

Implementation results .. 27

and discussion ... 27

1. Introduction .. 28

2. Work environment and tools.. 28

2.1. Programming language ... 28

2.2. Code editor... 28

2.3. Python libraries .. 29

3. System Architecture .. 30

3.1. Data preparation ... 31

3.2. Data splitting .. 37

3.3. Data representation ... 37

4. Results and discussion ... 39

IV

4.1. Results of classifiers with and without hyper parameter tuning ... 40

4.2. Results using features combination .. 43

4.3. Comparison ... 45

5. Conclusion .. 47

General Conclusion ... 48

Bibliography .. 51

V

List of Figures

figure II 1:Text classification process ... 15

figure II 2:Graphical representation of the SVM algorithm ... 20

figure II 3:Graphical representation of the Random forests 21

figure II 4:Graphical representation of the Decision Tree ... 24

figure III- 1:The global Architecture of our system………………………………………... 30

figure III- 2:Example of importing a data package.. 31

figure III- 3:Accuracy of algorithms with properties for extraction using hyper parameter.... 45

figure III- 4:accuracy of algorithms with properties for extraction using Default Initialization

 .. 46

VI

List of Tables
Table III 1: Example of removing lower case ... 32
Table III 2: Example of lemmatization ... 33
Table III 3: Example of removing punctuation ... 33
Table III 4: Example of converting numbers to word.. 34
Table III 5: Example of expanding in tractions ... 34
Table III 6: Example of removing links .. 35
Table III 7: Example of removing multiple spaces.. 35
Table III 8: Example of removing stop words... 36
Table III 9: Example of Replacing emojis with space ... 36
Table III 11: Performances of classifiers with and without Hyper parameter tuning.............. 41
Table III 12: Hyper parameters of all algorithms .. 42
Table III 13: Accuracy of algorithms using features combination ... 43
Table III 14: Hyper-parameters of algorithms using features combination 44

 Introduction

General Introduction

2

Introduction

The dissemination of false information, commonly known as fake news, has become a

major problem in recent years. Fake news is defined as news that is intentionally false or

misleading. It is often created to deceive people or to promote a particular agenda. The spread

of fake news can have a negative impact on society and various domains by influencing

individuals to make decisions based on inaccurate information.

There are a number of different techniques that can be used to detect fake news. One

common approach is to use Machine Learning (ML) techniques to identify patterns in fake

news articles [1]. Machine Learning techniques involve the extraction of relevant features

from data, which are then used by classification models to make predictions or categorize the

data. Machine learning algorithms can be trained on a dataset of known fake news articles and

can then be used to classify new articles as either fake or real.

Another approach to fake news detection is to use Natural Language Processing (NLP)

techniques. NLP techniques can be used to analyze the language used in an article to identify

features that are associated with fake news. For example, NLP techniques can be used to

identify articles that use sensationalized language, that make outlandish claims, or that are

poorly sourced [2].

Problematic

The main problematic of this thesis is that there is no single, perfect method for detecting

fake news. The problem is compounded by the fact that fake news is constantly evolving, as

creators find new ways to deceive people. However, we believe that the machine learning

approaches have the potential to be a valuable tool for detecting fake news. In the field of

Machine Learning, features extraction plays a crucial role as it involves identifying and

capturing relevant patterns and characteristics from data, which are subsequently utilized by

classification models to make accurate predictions or categorize instances effectively. In this

work, we aim to provide answers to the following questions: What is the difficulty of the

detection task? Do we really need all the existing features, or should we focus on a smaller set

of more representative features? Is there a trade-off between the discriminative power of the

features and their robustness to model variations? Is there a clear-connection between the

General Introduction

3

features or models used and the type of fake news they can detect? We hope that our work

will help to combat the spread of fake news and to make the internet a more reliable source of

information.

Objectives

In this thesis, we will explore the use of ML and NLP techniques to detect fake news. We

will first review the literature on fake news detection and discuss the different techniques that

have been used. We will then present and implement some models to fake news detection. In

particular, our purpose is to examine different methods in order to understand why certain

techniques and models exhibit higher performance, emphasizing their advantages and

limitations. This objective is accomplished mainly by means of experimentations on a known

fake news articles dataset LIAR [3] involving various models, features, and pre- processing

operations to improve accuracy.

We believe that the implemented models have the potential to be a valuable tool for

detecting fake news. Our goal is therefore to offer an accurate and efficient model which can

be easily applied to new articles. We hope that our work will help to combat the spread of

fake news and to make the internet a more reliable source of information.

Thesis Organization The structure of this thesis consists of three chapters, which are

organized as follows:

- In the initial chapter, the fundamental concepts and principles of fake news are

addressed;

- The second chapter focuses on the application of Machine Learning models and

Natural Language Processing techniques for the detection of fake news;

- The final chapter examines the results achieved by the implemented models

Chapter I

Fake News

Chapter I Fake News

5

1. Introduction

In recent years, several researchers have explored the field of fake news detection. Each of

them has approached the problem from a unique perspective and utilized various methods.

The objective of this chapter is to provide crucial and indispensable reminders that will help

comprehend the fundamental terms used in this thesis. Initially, we will cover all aspects of

fake news, including its characterization and components, followed by an examination of how

to analyze it.

2. Fake news

2.1. Definition

Fake news refers to false or misleading information presented as news, often with the

intention of deceiving the audience, manipulating public opinion, or generating revenue

through clicks and shares. It can be spread through various channels, such as social media,

websites, and even traditional media outlets. Although fake news has always been spread

throughout history, the term “fake news” was first used in the 1890s when sensational reports

in newspapers were common. Nevertheless, the term does not have a fixed definition and has

been applied broadly to any type of false information. It’s also been used by high-profile

people to apply to any news unfavorable to them [4].

2.2. Fake news components

Fake news incorporates various components, and here are some common typically found

[5]:

- Creator/Distributor: those responsible for creating and disseminating fake news

online can be individuals (human) or automated entities(non-human).

- Targeted Audience: fake news can target a wide range of individuals using various

digital platforms, including social media users. This audience can encompass

students, voters, parents, senior citizens, and others.

- News Content: The news content comprises both textual and multimedia elements,

such as headlines, body text, and accompanying media. It also includes intangible

aspects like the intended purpose, emotional tone, and underlying themes.

- Social Context: The social context refers to the environment in which news is shared

Chapter I Fake News

6

and circulated on the internet. Analyzing the social context involves studying user

behavior and network dynamics, examining how online users interact with news

content, and evaluating the ways in which news is shared online.

2.3. Fake news characteristics

Fake news often contains a number of common characteristics. These include:

- Sensationalism: Fake news stories are often designed to grab attention by being

sensational or outrageous.

- Click bait: Fake news stories often use click bait headlines that are designed to make

people click on them, even if the content of the story is not actually interesting or

informative.

- Misleading headlines: Fake news stories often have misleading headlines that do not

accurately reflect the content of the story.

- Unsubstantiated claims: Fake news stories often make unsubstantiated claims that are

not supported by evidence.

- Personal attacks: Fake news stories often contain personal attacks on individuals or

groups.

- Extreme language: Fake news stories often use extreme language that is designed to

evoke strong emotions, such as anger, fear, or outrage.

- Lack of author information: Fake news stories often do not include author

information, which makes it difficult to verify the accuracy of the information.

- Poor grammar and spelling: Fake news stories often have poor grammar and

spelling, which can be a sign that the story is not credible.

2.4. How to detect a fake news

- Number of comments: The number of comments on a news article can be an

indication of its engagement. However, it is important to note that fake news articles

can also generate a lot of comments.

- Sentiment of the comments: The sentiment of the comments on a news article can

be an indication of its veracity. For example, articles with a lot of negative comments

are more likely to be fake.

Chapter I Fake News

7

3. Analysis of News Content

This section focuses on methods and techniques for analyzing the content of news articles

to determine their authenticity and accuracy. It involves examining various aspects such as

language, writing style, sources, and factual accuracy to determine the credibility of the news.

Various approaches can be used for this purpose.

3.1. Knowledge-based approaches

Knowledge-based approaches utilize external sources of information and expert systems to

verify the facts and the claims made in news articles. These approaches aim to cross-reference

the information provided in the news with existing knowledge to identify inconsistencies or

falsehoods [6].

Here are some of the external sources of information that can be used by knowledge-based

approaches to fake news detection:

- Databases: Databases can store large amounts of information, such as historical

facts, scientific data, and demographic statistics. This information can be used to

verify the claims made in news articles.

- Expert knowledge: Experts in a particular field can provide valuable insights into

the accuracy of news articles. For example, a medical expert can help to verify the

claims made in a news article about a new medical study.

- Ontologies: Ontologies are formal representations of knowledge that can be used to

reason about the relationships between different concepts. For example, an ontology

can be used to reason about the relationship between a person, a place, and an event.

There are two main categories for knowledge-based methods which will be explained in

the following sections:

A. Human Oriented Fact Checking

In this approach, human fact-checkers manually investigate the claims made in news

articles by conducting research, consulting reliable sources, and verifying the information

through various means. For example, organizations like Snopes (www.snopes.com),

FactCheck.org (www.factcheck.org) and PolitiFact(https://www.politifact.com/) employ

teams of fact- checkers who analyze news content and debunk false or misleading claims [7,

8].

The downside here is that these solutions can be time-consuming and expensive to develop

http://www.politifact.com/)
http://www.politifact.com/)

Chapter I Fake News

8

and maintain. They can also be limited by the quality and quantity of the external knowledge

that is available [9].

B. Computational Oriented Fact Checking:

Computational-oriented fact-checking utilizes automated algorithms and computational

methods to assess the credibility of news articles. These methods often involve natural

language processing techniques, information retrieval, and statistical analysis to determine the

likelihood of misinformation. Examples of such approaches include Claim Buster system

(https://idir.uta.edu/claimbuster/) and Fact Mata system (https://factmata.com) [7, 10,11].

Computational oriented fact checking is a promising new approach to the problem of fake

news. It has the potential to be more efficient and scalable than traditional fact checking

methods, which are often limited by the time and resources available to journalists and fact-

checkers.

However, computational oriented fact checking is still under development, and it has some

limitations. For example, it can be difficult to develop models that are accurate and reliable,

and it can be difficult to identify all of the sources of information that are relevant to a

particular claim.

3.2. Machine Learning Approach

Based on patterns and features extracted from the news content, machine learning

approaches employ algorithms that learn from data to detect patterns and make predictions. In

the context of fake news detection, these models are trained on labeled datasets containing

both fake and legitimate news articles [12, 13, 14, 15].

There are a number of different machine learning algorithms that can be used for fake

news detection, including:

A. Classical Models

These are traditional machine learning algorithms that are trained on labelled datasets to

classify news articles as real or fake based on features like language patterns, source

credibility, and metadata. Example: Naive Bayes, Logistic Regression, Support Vector

Machines (SVM) and Random Forests which are commonly used classical models for fake

news detection.

B. Deep Learning:

Deep learning models, particularly neural networks, are used to develop more complex and

sophisticated models that can learn from large amounts of data to detect fake news. These

https://factmata.com/

Chapter I Fake News

9

models can learn complex representations from the text and capture intricate patterns.

Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and

transformer models like BERT and GPT have been employed for fake news detection tasks

[16, 17,18].

The best machine learning algorithm for fake news detection depends on the specific

dataset and the desired accuracy. In addition to machine learning algorithms, there are a

number of other features that can be used to detect fake news, such as:

 Stylistic features: These features include the use of certain words or phrases, the length

of sentences, and the overall tone of the article.

 Content features: These features include the factual accuracy of the article, the presence

of bias, and the use of sensationalized language.

 Social media features: These features include the number of shares, likes, and comments

on the article, as well as the sentiment of the comments.

By combining machine learning algorithms with other features or approaches, it is possible

to create more accurate and reliable fake news detection models.

3.3. Hybrid approaches

Hybrid approaches combine multiple methods or techniques to enhance the accuracy and

robustness of fake news detection systems. These approaches integrate knowledge-based

methods with machine learning or combine different machine learning techniques to achieve

better results. Some studies have proposed hybrid models that integrate both expert

knowledge and machine learning algorithms to improve the overall performance of fake news

detection systems [19, 20, 21]. As the problem of fake news continues to grow, it is likely that

we will see more and more hybrid approaches being developed and used.

4. Advantages and limitations of fake news detection

Here are some advantages and limitations of fake news detection in general:

Advantages

 Protects public opinion: Detecting and preventing the spread of fake news helps

maintain the integrity of public opinion and prevents the manipulation of people's beliefs and

emotions.

 Preserves credibility: By identifying and removing fake news, media outlets and social

Chapter I Fake News

10

media platforms can maintain their credibility and trustworthiness, ensuring that users receive

accurate and reliable information.

 Reduces harm: Fake news can have serious consequences, such as inciting violence,

spreading fear, or damaging reputations. Detecting and stopping the spread of fake news can

help minimize these negative effects.

 Encourages responsible journalism: The presence of effective fake news detection

systems can encourage journalists and content creators to be more responsible and adhere to

ethical standards, as they know that false information will likely be detected and removed.

Limitations

 False positives and negatives: No detection system is perfect, and there may be

instances where legitimate news is flagged as fake or vice versa. This can lead to the

suppression of valid information or the continued spread of misinformation.

 Difficulty in defining fake news: The line between fake news and biased or

opinionated reporting can be blurry. It can be challenging to create a detection system that

accurately distinguishes between the two without infringing on freedom of speech.

 Evolving tactics: As fake news detection systems improve, so do the tactics used by

those who create and spread fake news. This can make it difficult for detection systems to

keep up with the constantly changing landscape of misinformation.

 Potential for misuse: There is a risk that fake news detection systems could be misused

by governments or other entities to suppress dissenting opinions or control the flow of

information. This could lead to censorship and a lack of diverse perspectives in the public

sphere.

In summary, while fake news detection systems offer several advantages in combating the

spread of misinformation, they also face limitations and challenges that need to be addressed

to ensure their effectiveness and prevent potential misuse.

5. Fields of application for fake news

Fake news can have a negative impact on individuals, society, and businesses. It is

important to be aware of fake news and to be able to spot it. There are some of the fields

where fake news is often applied:

- Politics: Fake news is often used to influence elections and political campaigns. For

example, fake news stories were spread during the 2016 US presidential election that

claimed that Hillary Clinton was involved in a child sex ring. These stories were

Chapter I Fake News

11

widely shared on social media and may have influenced some voters to vote for

Donald Trump.

- Business: Fake news is often used to damage the reputation of businesses or to

promote the products or services of competitors. For example, fake news stories were

spread about a company that claimed that its products were dangerous or that it was

involved in illegal activities. These stories could lead to customers boycotting the

company or to investors selling their shares.

- Health: Fake news is often used to spread misinformation about health and medical

issues. For example, fake news stories have been spread that claim that vaccines cause

autism or that certain foods can cure cancer. These stories can lead to people making

harmful decisions about their health.

- Crime: Fake news is sometimes used to commit crimes, such as fraud or identity theft.

For example, fake news stories have been spread that claim that people can get free

money or that they can win a prize by providing their personal information. These

stories can lead to people being scammed or having their identities stolen.

- Society: Fake news can also have a negative impact on society as a whole. It can lead

to polarization, distrust, and violence. For example, fake news stories that were spread

during the 2016 US presidential election may have contributed to the violence that

erupted in some cities after the election.

6. Conclusion

The first chapter of our work serves as an introduction to the subject of our research, by

introducing: the basic concepts of fake news, its components and characteristics. Furthermore,

in the next chapter, we have explored various techniques and strategies employed for the

detection of these fake news, focusing on the most significant ones that are relevant to our

work.

Chapter II

Ml and NLP for

fake news detection

Chapter II ML and NLP for fake news detection

13

1. Introduction

Machine Learning (ML) and Natural Language Processing (NLP) play pivotal roles in the

detection of fake news. ML algorithms, such as classification, are employed to analyze

patterns and distinguish between genuine and deceptive information. NLP techniques enable

the extraction of meaningful insights from textual data, allowing algorithms to discern

linguistic cues indicative of misinformation. By leveraging ML models trained on large

datasets of both authentic and fabricated content, fake news detection systems can identify

suspicious articles based on linguistic features, and contextual information. The synergy

between ML and NLP empowers the development of robust and scalable solutions to combat

the proliferation of fake news across various digital platforms.

Given this in consideration, the primary focus of this chapter will be to introduce the

concept of Machine Learning in a broad sense, along with an exploration of their techniques

employed for the categorization of fake news.

2. Machine Learning:

Machine learning ML is a branch of artificial intelligence that enables systems to learn and

understand through algorithms. It revolves around the concept of training algorithms with

Data, allowing computers to make predictions and solve specific tasks without explicit

Programming.

ML plays a crucial role in the fight against fake news by offering an automated and

scalable approach to its detection. ML algorithms analyze the text of the news article, looking

for patterns in writing style, word choice, and usage of specific phrases commonly associated

with fake news. Beyond the text itself, the algorithms can examine the social media context of

the news, such as the source of the information, user engagement metrics (likes, shares), and

the overall sentiment surrounding the article. In some cases, the analysis might even extend to

the network of accounts sharing the news, identifying patterns of bots or coordinated

campaigns spreading misinformation. There are several categories of ML that are used in the

detection of fake news

2.1. Machine Learning Techniques

A. Supervised learning:

It entails providing computers with data and their corresponding desired outcomes,

enabling them to make predictions of new input data [22].

Chapter II ML and NLP for fake news detection

14

 Advantages:

- Supervised learning utilizes labeled datasets, providing precise information about

object classes.

- These algorithms excel at predicting outcomes based on previous experiences.

 Limitations:

- Complex tasks may prove challenging for these algorithms.

- Training the algorithm can be time-consuming due to the high computational

requirements.

B. Unsupervised Learning:

It entails feeding computers with data alone, without external guidance, and tasting them

with identifying meaningful patterns or structures, often through clustering techniques

[23,24].

 Advantages:

- Unsupervisedlearningalgorithmscanhandlecomplextasksthataredifficultforsupervised

Learning algorithms since they can work with unlabeled datasets.

- Unsupervised algorithms are advantageous for various tasks as obtaining unlabeled

datasets is often easier compared to acquiring labeled datasets.

 Limitations:

- The output of unsupervised algorithms may be less accurate because the datasets are

not Labeled, and the algorithms are not trained with exact output information.

- Working with unsupervised learning is more challenging as it involves working with

unlabeled datasets that do not have direct mappings to specific outputs.

C. Reinforcement learning:

It involves emulating the behavior of an agent, wherein a machine interacts with its

environment, learns from the consequences of its actions, and iteratively improves its behaviors

to maximize rewards [25].

 Advantages:

- Reinforcement learning is effective in solving complex real-world problems that are

challenging for conventional techniques.

- It enables the achievement of long-term results, as the agent learns to optimize its

behavior overtime.

 Limitations:

- RL algorithms may not be the best choice for simple problems that can be solved

using simpler methods.

Chapter II ML and NLP for fake news detection

15

- Implementing RL algorithms requires significant amounts of data and computational

resources.

2.2. Natural Language Processing (NLP) :

Natural Language Processing (NLP) is a subfield of Artificial Intelligence that equips

machines with the ability to understand and process human language. In the fight against fake

news, NLP plays a crucial role by enabling the analysis and understanding of textual content.

It also serves as a foundational layer for various techniques used in machine learning models

for detection. Text Preprocessing, Feature Extraction, Named Entity Recognition (NER), and

Semantic Analysis are some key NLP techniques used in fake news detection. In the next

subsection, we will explain some of these techniques that help to achieve this detection

purpose.

By leveraging NLP techniques for feature extraction and analysis, ML models can be

trained to identify patterns and characteristics often associated with fake news. However, it is

crucial to remember that NLP is just one piece of the puzzle. Combining NLP with human

expertise, fact-checking, and critical thinking remains essential for a comprehensive approach

to tackling the challenge of fake news.

2.3. Text classification process

figure II 1:Text classification process

Chapter II ML and NLP for fake news detection

16

2.3.1. Pre-processing

Pre-processing is a crucial step in text classification that involves transforming raw text data

into a format suitable for machine learning algorithms. The specific pre-processing steps applied

may vary depending on the characteristics of the text data and the requirements of the

classification task. Here are some common pre-processing steps in text classification:

 Tokenization: Splitting the text into individual words or tokens. This step essentially

breaks down the text into its basic units, which can be analyzed further.

 Lowercasing: Converting all text to lowercase. This ensures that words like "Hello" and

"hello" are treated the same way and don't create duplicate features.

 Removing punctuation: Stripping out any punctuation marks from the text. Punctuation

often doesn't add significant meaning in text classification tasks and can be safely

removed.

 Removing stop words: Stop words are common words that often occur frequently in

text but carry little semantic meaning (e.g., "the", "and", "is"). Removing these words can

reduce the dimensionality of the feature space and improve model efficiency.

 Stemming and Lemmatization: Stemming and lemmatization are techniques used to

reduce words to their root or base form. For example, "running", "runs", and "ran" might

all be reduced to the root word "run". Stemming is more heuristic-based and may result

in non-words, while lemmatization typically uses a vocabulary and morphological

analysis to return actual words.

 Handling contractions and abbreviations: Expanding contractions (e.g., "can't" to

"cannot") and abbreviations (e.g., "USB" to " Universal Serial Bus") can help standardize

the text and improve the model's ability to generalize.

 Normalization: Normalizing numbers, dates, URLs, and other special characters to a

standard format. This ensures consistent treatment of these elements across the dataset.

 Handling rare words and spelling corrections: Dealing with rare or misspelled words

can involve techniques such as replacing them with a special token, correcting spelling

errors, or removing them altogether.

The specific pre-processing steps used in our case will be discussed in detail in Chapter 3.

2.3.2. Feature Extraction and vectorization:

Feature extraction and vectorization are essential pre-processing steps in text classification,

as they transform raw text data into a format that machine learning algorithms can understand

and learn from. The choice of feature extraction and vectorization techniques depends on the

characteristics of the text data and the specific requirements of the classification task.

Chapter II ML and NLP for fake news detection

17

In feature extraction, we convert raw text data into numerical or categorical features that

can be used as input for machine learning algorithms. This step involves capturing the

important characteristics or patterns in the text data. Techniques for feature extraction include:

 Bag-of-Words (BoW): This technique represents a text document as a "bag" of its

individual words, disregarding grammar and word order. Each word is assigned a unique

index, and the vector representation of a document is created by counting the occurrences of

each word in that document. The resulting vector is typically a high-dimensional sparse

vector.

 The Term Frequency-Inverse Document Frequency (TF-IDF): is a technique for

Evaluating the relevance of a document to a term, taking into account two factors: the

Frequency of the word in the document (TF) and the number of documents containing This

word (IDF) in the studied corpus.

The formula to calculate the TF-IDF of a term in a document is given:

TF-IDF(t, d) = TF(t, d) × IDF(t) (2.1)

Where:

TF (t, d): represents the frequency of term (t) in document (d)

IDF (t): is calculated as follows:

IDF(t) = log (N / df (t, d)) (2.2)

Where:

N: is the total number of documents in the corpus

DF (t, d): is the number of documents containing the term (t).

Using this formula, the TF-IDF assigns a weight to each term in the document, taking into

account both its frequency in the document and its rarity in the entire corpus. Thus, terms that

appear frequently in a specific document but rarely in the entire corpus will have a high TF-

IDF Score, indicating their relative importance in that document.

TF-IDF is widely used for text vectorization, as it allows documents to be represented as

digital Vectors, where each dimension corresponds to a term and the value of the dimension is

the TF IDF score of the term in the document. This vector representation allows machine

learning Models to process text data efficiently [26].

 Count Vectorizer: The Count Vectorizer works by tokenizing the text documents into

individual words or tokens and then counting the occurrence of each word in each

Chapter II ML and NLP for fake news detection

18

document. It creates a matrix representation where each row represents a document,

and each column represents a unique word in the corpus. The cell values indicate the

frequency of the word in the respective document.

 Word Embeddings: Represent words as dense, lower-dimensional vectors in a

continuous vector space. Popular techniques include Word2Vec, GloVe, and fast Text.

 Topic Modeling: Identifies latent topics within a collection of documents and

represents documents in terms of their distribution over these topics.

 Character-level Features: Extracts features based on character n-grams, which can

capture morphological or syntactical patterns.

 Part-of-Speech (POS) Tagging: Identifies the grammatical categories (e.g., noun,

verb, adjective) of words in a sentence.

 Named Entity Recognition (NER): Identifies and classifies named entities (e.g.,

person names, organization names) in text data.

Once features are extracted, they need to be converted into a numerical vector format

suitable for input to machine learning algorithms. This process is known as vectorization.

Common techniques for vectorization include:

 One-Hot Encoding: Converts categorical features into binary vectors where each

feature is represented by a binary indicator variable.

 Count Vectorization: Represents text data as a matrix where each row corresponds to

a document and each column corresponds to a unique word, with cell values

representing the frequency of each word in the corresponding document.

 TF-IDF Vectorization: Converts text data into numerical vectors using TF-IDF

values instead of raw term frequencies.

 Word Embedding Lookup: Converts each word in a document to its corresponding

word embedding vector representation.

 Dimensionality Reduction: Techniques such as Principal Component Analysis (PCA)

or Singular Value Decomposition (SVD) can be applied to reduce the dimensionality

of feature vectors while preserving important information.

2.3.3. Algorithms

Different supervised learning classifiers are used for text classification. Here are some

commonly used basic models:

Chapter II ML and NLP for fake news detection

19

a) Naïve Bayse

Naive Bayes is a classification method that uses Bayes' theorem to calculate conditional

probabilities. In text classification, Naive Bayes is applied as follows: it aims to determine the

classification that maximizes the probability of observing the words within a document.

During The training phase, the classifier calculates the probabilities of a new document

belonging to a Specific category based on the proportion of training documents within that

category. Additionally, it calculates the probability of a given word appearing in a given text

that the text Belongs to a certain category. When classifying a new document, the method

calculates the Probabilities of it belonging to each category using Bayes' rule.

𝑃(𝐴 ∣ B) =
𝑃(𝐵∣A)×𝑃(𝐴)

𝑃(𝐵)
 (2.3)

Where:

 P(A∣B) is the posterior probability of hypothesis A given evidence B. This is the

probability we are interested in determining.

 P(B∣A) is the likelihood of evidence B given that hypothesis A is true.

 P(A) is the prior probability of hypothesis A, which is our belief about the probability

of A before considering evidence B.

 P(B) is the total probability of evidence B, often called the marginal likelihood or the

normalizing constant. It represents the probability of observing evidence B irrespective

of the truth of hypothesis A.

Bayes' rule, also known as Bayes' theorem, can be expressed using the following formula:

𝑃(𝑦 ∣ 𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑃(𝑦)×𝑃(𝑥1∣𝑦)×𝑃(𝑥2∣𝑦)×...×𝑃(𝑥𝑛∣𝑦)

𝑃(𝑥1)×𝑃(𝑥2)×...×𝑃(𝑥𝑛)
 (2.4)

 Where:

 P(y∣x1,x2,...,xn) is the posterior probability of class y given the features x1,x2,...,xn.

 P(y) is the prior probability of class y.

 P(xi∣y) is the likelihood of feature xi given class y.

 P(xi) is the probability of feature xi.

 x1,x2,...,xn are the features.

Chapter II ML and NLP for fake news detection

20

 Adventage:

- Classification using Naive Bayes Classifier (NBC) can be performed even with small

datasets, making it suitable when limited data is available for training.

- NBC does not require a large volume of data during the learning phase, which can be

beneficial in situations with limited data availability.

 Limitations:

- In cases where there is a high correlation between features, particularly in long

documents with a rich vocabulary that promotes dependencies between

descriptors, NBC may yield poor performance.

- NBC's performance may suffer when there are strong dependencies or

correlations between features, leading to less accurate classifications.

b) Support Vector Machines

Support Vector Machines (SVM) are classification algorithms designed to find an optimal

classifier that effectively separates data points and maximizes the margin between two

classes. This classifier is represented by a linear hyper plane. the hyper plane divides the data

points into two sets. The data points that are closest to the hyper plane, and crucial for

determining its position, are known as support vectors.

 Support vectors

 Hyper plane separator

figure II 2:Graphical representation of the SVM algorithm

Chapter II ML and NLP for fake news detection

21

 Advantage:

- SVMs perform well even when limited prior knowledge about the data is

available.

- SVMs scale relatively well to high-dimensional data, making them applicable

to large datasets

 Limitations:

- SVMs can have long training times, especially for large datasets, which can be

a drawback in time-sensitive applications.

- The final model, variable weights, and individual impact in SVMs can be

challenging to Understand and interpret, limiting the transparency of the model

.

c) Random Forests

Random Forests is an implementation of decision tree-based algorithms that enables

modelling of outcomes based on previous choices along different branches. By considering

multiple decision trees, it aims to make the optimal decision based on the subsequent results.

This Approach can be regarded as a form of anticipation, where the collective predictions of

multiple trees contribute to a more comprehensive and reliable outcome [27].

figure II 3:Graphical representation of the Random forests [28]

Chapter II ML and NLP for fake news detection

22

 Advantage:

- High Accuracy: Random Forest typically yields high prediction accuracy due

to its ensemble nature, which combines multiple decision trees. This ensemble

approach helps mitigate overfitting and improve generalization performance.

- Robust to Overfitting: Random Forest is less prone to overfitting compared to

individual decision trees. By aggregating predictions from multiple trees and

using techniques like bagging, it achieves better generalization on unseen data.

- Feature Importance Estimation: Random Forest provides a measure of feature

importance, aiding in feature selection and understanding the underlying

relationships in the data. This helps in identifying the most relevant features

for prediction.

 Limitations:

- Black Box Model: Random Forest is often considered a black box model,

making it less interpretable compared to simpler models like linear regression.

Understanding the internal workings of individual trees within the ensemble

can be challenging.

- Memory and Computational Resources: Training and tuning Random Forest

models can be computationally expensive, especially as the number of trees

and dataset size increase. This requires significant memory and computational

resources.

- Biased Towards Majority Classes: Random Forest tends to be biased towards

majority classes in imbalanced datasets, potentially leading to less accurate

predictions for minority classes. Techniques like class weights or resampling

may be needed to address this bias.

d) KNN (k-Nearest Neighbors)

KNN (k-Nearest Neighbors) is a classification algorithm that assigns new data points to

classes based on the majority of their neighboring data points. In the k-Nearest Neighbors

(KNN) algorithm, distances between data points are crucial for determining the "closeness" or

similarity between instances. Several distance metrics can be used in KNN, but the most

commonly used ones include:

 Euclidean Distance: This is the most common distance metric used in KNN. It

calculates the straight-line distance between two points in Euclidean space. For two

Chapter II ML and NLP for fake news detection

23

points P=(p1,p2,...,pn) and Q=(q1,q2,...,qn) in an n-dimensional space, the Euclidean

distance d is given by:

d(P,Q) = √∑ (𝑛
𝑖=1 𝑝𝑖 − 𝑞𝑗) 2 (2.5)

 Manhattan Distance (Taxicab or City Block Distance): This metric calculates the

distance between two points by summing the absolute differences of their coordinates.

For two points P=(p1,p2,...,pn) and Q=(q1,q2,...,qn), the Manhattan distance d is given

by:

d(P,Q) = ∑ ⃓𝑝𝑖 − 𝑞𝑖⃓𝑛
𝑖=1 (2.6)

 Minkowski Distance: This is a generalization of both Euclidean and Manhattan

distances. It calculates the distance between two points using the p-th root of the sum

of the absolute differences raised to the power of p. For two points P=(p1,p2,...,pn)

and Q=(q1,q2,...,qn), the Minkowski distance d with parameter p is given by:

d(P,Q) = (∑ 𝑛
𝑖=1 ⃓𝑝𝑖 − 𝑞𝑖⃓𝑝) 1

𝑝
 (2.7)

When p=2, it reduces to the Euclidean distance, and when p=1, it reduces to the

Manhattan distance.

 Advantage:

- Simple Implementation: KNN is straightforward to understand and implement,

making it a good choice for beginners and for quick prototyping of

classification tasks.

- No Training Phase: KNN is a lazy learner, meaning it doesn't explicitly train a

model during the training phase. Instead, it stores the entire training dataset

and makes predictions based on the closest instances during the testing phase.

This makes the training process very fast.

- Non-parametric Nature: KNN is a non-parametric algorithm, meaning it

makes no assumptions about the underlying distribution of the data. It can

perform well on datasets where the decision boundary is highly irregular or

nonlinear.

Chapter II ML and NLP for fake news detection

24

 Limitations:

- Computational Complexity: KNN can be computationally expensive, especially with

large datasets, as it requires calculating distances between the query instance and all Training

instances for each prediction.

- Choosing an Optimal K: Selecting the appropriate value of K (the number of neighbors to

consider) can be challenging and requires domain knowledge or tuning.

 Decision tree

A decision tree is a valuable tool used for classification problems, employing a structure

resembling a flow chart. Each internal node in the decision tree represents a condition or

"test" Based on an attribute, and the tree branches out accordingly. The leaf nodes of the tree

contain Class labels, which are determined after evaluating all the attributes. The path from

the root to a Leaf node represents a classification rule.

One remarkable aspect of decision trees is their ability to handle both categorical and

dependent Variables. They excel at identifying the most influential variables and effectively

depicting their Relationships. Decision trees play a significant role in generating new

variables and features, aiding data exploration, and making efficient predictions for the target

variable.

figure II 4:Graphical representation of the Decision Tree

Weather

Wind Humidity

sanny Rainy
Cloudy

Yes

Normal High Weak Stron
g

Yes No
Yes No

Chapter II ML and NLP for fake news detection

25

 Advantage:

- Interpretability: Decision Trees are highly interpretable models, making them

easy to understand and explain. Decision rules inferred from the tree structure

can provide insights into the decision-making process.

- No Assumptions about Data Distribution: Decision Trees make no

assumptions about the distribution of the data or the relationships between

features, unlike parametric models such as linear regression. They can handle

both numerical and categorical data without the need for extensive pre-

processing.

- Handles Non-linear Relationships: Decision Trees can capture non-linear

relationships between features and the target variable. They partition the

feature space into rectangular regions, allowing them to model complex

decision boundaries.

 Limitations:

 Interpretability: Decision Trees are highly interpretable models, making them easy to

understand and explain. Decision rules inferred from the tree structure can provide insights

into the decision-making process.

- No Assumptions about Data Distribution: Decision Trees make no

assumptions about the distribution of the data or the relationships between

features, unlike parametric models such as linear regression. They can handle

both numerical and categorical data without the need for extensive pre-

processing.

- Handles Non-linear Relationships: Decision Trees can capture non-linear

relationships between features and the target variable. They partition the

feature space into rectangular regions, allowing them to model complex

decision boundaries.

Chapter II ML and NLP for fake news detection

26

3. Conclusion

In this chapter, we have introduced the fundamental principles, methodologies, and

strategies for detecting and identifying fake news. Initially, we outlined the key phases

required for constructing an automated system for detecting fake news. Furthermore, we

thoroughly examined each phase, scrutinizing and delineating the various methods and

techniques devised and employed.

In the next chapter, we delineate, in a sequential manner, the approaches we have

implemented for this categorization task with the aim of enhancing and achieving higher

precision.

.

Chapter III

Implementation results

and discussion

Chapter III Implementation results and discussion

28

1. Introduction

The aim of our work is to explore the world of machine learning and natural language

processing by building a system for detecting and classifying fake news. The various

components of the architecture of our system are presented in this chapter.

2. Work environment and tools

2.1. Programming language

Python is a high-level, interpreted programming language with dynamic semantics. It is

widely Popular among a large community of developers and programmers. Python is known

for its simplicity and ease of learning, which contributes to reducing the cost of code

maintenance. The extensive collection of libraries, or packages, in Python, promotes code

modularity and reusability. Moreover, for most platforms, Python and its libraries are freely

available, both in Source code and precompiled binaries, and can be redistributed without any

charge.

2.2. Code editor

To build our system, we used the code editor PyCharm which is an Integrated

Development Environment (IDE) specifically designed for Python development. It provides a

comprehensive set of features and tools to enhance your coding experience, such as intelligent

code completion, syntax highlighting, debugging capabilities, version control integration, and

more. PyCharm Offers both free and paid versions, with the paid version offering additional

advanced features and support.

29

Chapter III Implementation results and discussion

2.3. Python libraries

Python has a rich ecosystem of libraries designed specifically for machine learning. Here

are Some popular Python libraries that we used in our work:

 NumPy: Provides the foundation for numerical computations essential for machine

learning algorithms.

 Pandas: Offers data structures and tools for data manipulation and analysis, crucial for

preparing and cleaning your dataset.

 NLTK: Natural Language Toolkit (NLTK) provides various functionalities for natural

language processing tasks.

 Re: The re module is used for regular expression matching operations.

 String: This library provides various string manipulation functions.

 Term color: This library is used for printing colored text in the terminal.

 Scikit-learn: is a machine learning library that provides tools for data preprocessing,

model selection, and evaluation.

 Matplotlib : It is a plotting library used for creating visualizations.

 Seaborn: Seaborn is a statistical data visualization library based on Matplotlib.

30

Chapter III Implementation results and discussion

3. System Architecture

The different stages of our system can be summarized by the following diagram:

figure III- 1:The global Architecture of our system

31

Chapter III Implementation results and discussion

3.1. Data preparation

A. Data collection

To assess the effectiveness of current evolving methods for categorizing fake news, we

used a dataset named LIAR consisting of original and manufactured articles [3].This dataset of

7,796 registered articles presents summary data pulled from a variety of contexts such as radio

and television interviews, press releases, campaign speeches, and more.

Each statement in the dataset is accompanied by annotations indicating its correctness,

title, and context [29].

figure III- 2:Example of importing a data package

32

Chapter III Implementation results and discussion

B. Data pre-processing

Data pre-processing is a crucial step in fake news detection, as it helps to clean and prepare

the data for analysis and model training. Here are some common pre-processing techniques

used in our system:

 Converting text to lowercase: By converting text to lowercase, you ensure that words

with different cases are treated as the same word, which helps in standardizing the text and

reducing the vocabulary size. This preprocessing step is commonly performed before

tokenization and other NLP tasks.

Table III 1: Example of removing lower case

Code

 Text = "Hello, World!"

 lowercase_text = text.lower()

 print(lowercase_text)

Results

hello, world!

 Tokenization: is used to tokenize the input text into a list of words. Each word in the

text becomes a separate token.

Original Sentence:

 Tokenization is an important step in natural language processing.

Tokens:

 ['Tokenization', 'is', 'an', 'important', 'step', 'in', 'natural', 'language', 'processing', '.']

 Lemmatization: This technique helps in reducing word variations and standardizing the

data. It converts words to their dictionary or canonical form.

33

Chapter III Implementation results and discussion

Table III 2: Example of lemmatization

Code

import nltk

from nltk.stem import WordNetLemmatizer

from nltk.tokenize import word_tokenize

 nltk.download('wordnet')

lemmatizer = WordNetLemmatizer()

text = "The cats are running and jumping in the garden."

tokens = word_tokenize(text) lemmatized_tokens =

[lemmatizer.lemmatize(token) for token in tokens]

print(lemmatized_tokens)

Result ['The', 'cat', 'are', 'running', 'and', 'jumping',

'in', 'the', 'garden', '.']

 Removing punctuation marks: punctuation marks such as periods, commas, question

marks, and exclamation marks often don’t carry significant meaning and can add noise to the

text data. Removing punctuation marks helps simplify the text and ensures that the subsequent

NLP tasks focus on the essential content of the text.

Table III 3: Example of removing punctuation

Code import string

Text = "Hello, World!"

punctuation_removed_text = text.translate (str.maketrans ("", "",

string.punctuation))

print (punctuation_removed_text)

Result Hello World

 Converting numbers to words: Converting numbers to words is a preprocessing step

that involves replacing numerical digits with their corresponding word representations in text

data. This transformation can be useful in natural language processing (NLP) tasks where the

numerical values are not relevant or need to be treated as words rather than numerical values.

34

Chapter III Implementation results and discussion

Table III 4: Example of converting numbers to word

Code import inflect

p = inflect.engine()

numbers = [123, 4567, 89012, 345678]

words = [p.number_to_words(num) for num in

numbers]

for num, word in zip(numbers, words):

 print(f"{num}: {word}")

Result 123: one hundred and twenty-three

4567: four thousand, five hundred and sixty-seven

89012: eighty-nine thousand and twelve

345678: three hundred and forty-five thousand,

six hundred and seventy-eight

 Expanding in tractions: refers to providing the full form or meaning of an abbreviated

word or phrase.

Table III 5: Example of expanding in tractions

Code def expand_abbreviations(text):

 abbreviations = { "btw": "by the way",

 "lol": "laugh out loud",

 "omg": "oh my god",

 "idk": "I don't know",

 "jk": "just kidding" }

words = text.split()

expanded_words = [abbreviations.get(word.lower(),word) for word in

words]

expanded_text = " ".join(expanded_words)

return expanded_text

abbreviated_text = "btw, idk what jk means. lol!"

expanded_text = expand_abbreviations(abbreviated_text)

print(expanded_text)

 Result

by the way, I don't know what just kidding means. laugh out loud!

35

Chapter III Implementation results and discussion

 Removing links: Removing links from text data is a common preprocessing step in NLP

tasks, especially when dealing with web content or social media data. Links often do not

contribute to the semantics of the text and can introduce noise or distractions in the analysis.

 Table III 6: Example of removing links

Code import re

 def remove_links (text):

 url_pattern= re.compile (r'https?://\S+|www\.\S+')
 text_without_links = url_pattern.sub('', text)

 return text_without_links

example_text = "Check out this website:

https://example.com for more information."

text_without_links = remove_links(example_text)

 print("Text without links:")

 print(text_without_links)

Result
Text without links:

Check out this website: for more information.

 Removing multiple spaces: by removing multiple spaces, ensure that the text data is

normalized and consistent, which can facilitate subsequent analysis or feature extraction steps.

Table III 7: Example of removing multiple spaces

Code import re

def remove_multiple_spaces(text):

 text = re.sub(r'\s+', ' ', text)

 return text.strip()

text_with_multiple_spaces = "This is an example with

multiple spaces."

cleaned_text = remove_multiple_spaces(text_with_multiple_spaces)

print("Cleaned text:", cleaned_text)

Result

Cleaned text: This is an example with multiple spaces.

36

Chapter III Implementation results and discussion

 Removing stop words: it used to eliminate common words that do not carry significant

meaning or contribute to the overall context. It can help reduce noise and improve the

efficiency of text analysis.

Table III 8: Example of removing stop words

Code stop_words = ["i", "me", "my", "myself", "we", "our", "ours", "ourselves",

"you", "your", "yours", "he", "she", "her", "hers", "herself", "it", "they", "them",

"their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that",

"these", "now"]

 def remove_stop_words(sentence):

 words = sentence.split()

 filtered_words = [word for word in words if word.lower() not in stop_words]

 return ' '.join(filtered_words)

 sentence = "This is a simple example sentence with some stop words that need to

be removed."

 filtered_sentence = remove_stop_words(sentence)

 print(filtered_sentence)

Result

simple example sentence stop words need removed.

 Removing the emoji: Emojis may not always convey meaningful information or may

introduce noise in the text analysis, so we've replaced them with spaces.

Table III 9: Example of Replacing emojis with space

Code import re

 emojis = [":)", ":(", ":D", "<3", ":P"]

 text = "I am feeling happy today! :) This is a great day. <3"

 for emoji in emojis:

 text = text.replace (emoji, "")

print (text)

Result I am feeling happy today! This is a

great day.

37

Chapter III Implementation results and discussion

3.2. Data splitting

During this step, the dataset is divided into two subsets: one for training and the other for

Testing. To achieve this, we suggest a split of 75% - 25%. This implies that 75% of the

dataset will be utilized for training the model, while the remaining 25% will be set aside for

testing and evaluation purposes.

3.3. Data representation

The data representation plays a crucial role in Capturing relevant information and enabling

effective analysis. Several data representation techniques can be employed, including Bag-of-

Words (BoW), Count Vectorization, and TF-IDF Vectorization, which We have explained in

the following:

1. TF-IDF Vectorization

TF-IDF (Term Frequency-Inverse Document Frequency) vectorization is a technique used

to Represent text data by assigning weights to words based on their frequency in a document

and Their occurrence across the corpus. It provides a more nuanced representation of the

importance of words in a document.

Example:

Text 1: "I love to eat pizza." Text 2: "I love to eat burgers."

 Step 1: Create a Vocabulary

The only words are: ["I", "love", "to", "eat", "pizza", "burgers"]

 Step 2: Calculate Term Frequency (TF)

Text 1 TF: [1, 1, 1, 1, 1,0]

Text 2 TF: [1, 1, 1, 1, 0,1]

 Step 3: Calculate Inverse Document Frequency (IDF)

I DF: [0, 0, 0, 0, log (2/2), log (2/2)] (assuming a corpus of two sentences)

 Step 4: Calculate TF-IDF

Calculate the TF-IDF by multiplying the term frequency with the inverse document

frequency for each word.

Text 1: TF-IDF: [0, 0, 0, 0, log (2/2), 0]

Text 2 TF-IDF: [0, 0, 0, 0, 0, log (2/2)]

38

Chapter III Implementation results and discussion

The TF-IDF vector representations capture the importance of words in each sentence.

Words that Appear frequently in a specific sentence but rarely in other sentences will have

higher TF-IDF Values, indicating their significance in distinguishing that particular sentence.

2. Count Vectorization:

Count vectorization represents text as a matrix of word counts. Each document is

converted into A vector that captures the occurrences of each word. It considers word

frequency, offering a More comprehensive understanding of word distribution compared to

bow.

Example:

Text 1: "I love to eat pizza." Text 2: "I love to eat burgers."

 Step 1: Create a Vocabulary

The only words are: ["I", "love", "to", "eat", "pizza", "burgers"]

 Step 2: Vectorization

Text 1: [1, 1, 1, 1, 1, 0]

Explanation: The count of each word in the vocabulary is [1, 1, 1, 1, 1, 0] for the words

["I", "love", "to", "eat", "pizza", "burgers"].

The word "pizza" and "burgers" have a count of 0 since they do not appear in Sentence 1.

Text 2: [1, 1, 1, 1, 0, 1]

Explanation: The count of each word in the vocabulary is [1, 1, 1, 1, 0, 1] for the words

["I", "love", "to", "eat", "pizza", "burgers"].

The word "pizza" has a count of 0 since it does not appear in Sentence 2.

3. Bag-of-Words:

The bag-of-words (BOW) model is a representation that turns arbitrary text into fixed-

length vectors by counting how many times each word appears.

Example:

Text 1: "I love to eat pizza." Text 2: "I love to eat burgers."

Text 3: "I love to eat pizza and burgers."

 Step 1: Determine the Vocabulary

The only words are: ["I", "love", "to", "eat", "pizza", "and", "burgers"]

39

Chapter III Implementation results and discussion

Text 1: [1, 1, 1, 1, 0, 0,0]

Text 2: [1, 1, 1, 1, 0, 0,1]

Text 2: [1, 1, 1, 1, 1, 1,1]

4. Results and discussion

The suggested machine learning algorithms necessitate user-defined initialization of

specific parameters (as outlined in Table 10). Within this framework, it becomes beneficial to

devise an experimental design or propose methodologies for identifying the optimal parameter

combinations automatically. Our approach involves exploring various techniques, including

hyper parameter selection methods, to determine the most suitable parameters for each

algorithm. Subsequently, we aim to compare the outcomes yielded by the default

configuration of each algorithm against those achieved through our proposed parameter

selection methodology.

Table III 10: Initialization parameters for Classifiers.

Classifiers Parameters

Random forests N_estimators == represented the number of forest trees

Max_depth ==is the depth of the tree

Min_sample_ split == represents the class nodes

upper Min_sample_leaf == are the leaves

KNN n_neighbors == number of neighbors in the voting process

p_values ==or probability value is, for a model

given statistic

Naive Bayes Alpha == probabilité a priori de différences classes

SVM Gamma == Gamma is a hyper parameter that we must

define before training the model. Gamma decides to

curvature we want in a decision limit

C == Cost of linear separability violation (it indicates to

SVM optimization to what extent we wish to avoid

to misclassify each training example).

Decision Tree

Criterion== The function used to measure the quality of a

split (e.g., Gini impurity or information gain).

Max Depth== The maximum depth of the tree.

Min Samples Split==The minimum number of samples

required to split an internal node.

40

Chapter III Implementation results and discussion

Min Samples Leaf== The minimum number of samples

required to be in a leaf node.

Max Features== The maximum number of features

considered for splitting a node.

4.1. Results of classifiers with and without hyper parameter tuning

Automatic hyper parameter optimization techniques, also known as hyper parameter

optimization, automate the process of selecting the best hyper parameters for machine

learning models. These techniques aim to find the optimal combination of hyper parameters

that maximize the performance of the model on a given dataset, lead to improved model

performance and reduced manual effort.

In this project, we perform grid search method to streamline the process of hyper

parameter tuning. Grid search is a hyper parameter tuning technique used to find the optimal

combination of hyper parameters for a machine learning model. It works by searching through

a predefined grid of hyper parameter values and evaluating the model's performance using

cross-validation. Here's how grid search works:

 Define Hyper parameter Grid: Specify a grid of hyper parameter values to search

through. Each hyper parameter will have a list of possible values to try.

 Define Evaluation Metric: Choose an evaluation metric to assess the performance of

the model for each combination of hyper parameters. Common evaluation metrics

include accuracy, precision, recall, F1-score, or area under the ROC curve (AUC).

 Cross-Validation: Split the training data into multiple folds. For each combination of

hyper parameters, train the model on k−1 folds and evaluate its performance on the

remaining fold. Repeat this process k times (where k is the number of folds) to ensure

that each fold is used as the validation set exactly once.

 Select Best Model: After evaluating the model's performance for all combinations of

hyper parameters, select the combination that yields the best performance according to

the chosen evaluation metric.

 Train Final Model: Once the best combination of hyper parameters is identified, train

the final model using the entire training dataset with these optimal hyper parameters.

41

Chapter III Implementation results and discussion

The table below (Table 10) seems to be showing the performance (in terms of accuracy) of

different machine learning models on different vectorization techniques (Tfidf Vectorizer,

CountVectorizer, and Bag of Words) with both default parameters and hyper parameter

tuning.

Table III 10: Performances of classifiers with and without Hyper parameter tuning

 Tfidf_vect Count_vect bow_vect

Default
parameter

Hyper
parametre

Default
Parameter

Hyper
Parameter

Default
Parameter

Hyper
Paramet

re

Knn 0.8234 0.8828 0.8067 0.8075 0.7981 0.8028

Naïve bayes 0.8907 0.8901 0.8707 0.8714 0.8687 0.8681

Svm 0.8780 0.9221 0.8860 0.9094 0.8854 0.9107

Decision

tree

0.7981 0.7841 0.7921 0.8061 0.7728 0.8048

Random

forest

0.8967 0.8947 0.8114 0.8841 0.8054 0.8807

By looking at the table above, the SVM model achieved the highest accuracy (0.9221) with

the Count_vect vectorizer and a specific hyper parameter setting. The Random Forest

model performed consistently well across different vectorizer and hyper parameter settings.

The Decision Tree generally had the lowest accuracy among the models compared.

The high accuracy of SVM can be attributed to its strong binary classification ability and

its Compatibility with TF-IDF. TF-IDF reduces the importance of common words while

Highlighting the importance of rare ones, enabling SVM to deal effectively with text-based

problems in high-dimensional spaces. The combination of SVM and TF-IDF improves its data

classification performance.

The choice of vectorizer and hyper parameter tuning can significantly impact the

performance of machine learning models for text classification.

The table only shows accuracy scores, which is one metric for evaluating model

performance. Other factors like precision, recall, and F1 score might also be important

depending on the application. So, the results might not generalize to other datasets or tasks.

It's important to compare different models and settings to find the best combination for

fake news detection task.

42

Chapter III Implementation results and discussion

The following table illustrates the different hyper parameter settings:

Table III 11: Hyper parameters of all algorithms

Model Best parameter

Count Tfidf BOW

Knn

 n_neighbors = 3

 weights= uniform

 algorithm=auto

 n_neighbors = 3

 weights=distance

 algorithm=auto

Naïve

bayes

 Alpha = 0.01

 Fit_prior=true

Svm

 Gamma= ‘scale’

 C = 10

 kernel=rbf

 Gamma= ‘auto’

 C = 10

 kernel=rbf

decision tree

 Max_depth = 10

 Criterion=gini

 Min_sample_ split =2

 Min_sample_leaf =1

Max_depth = 10

Criterion= gini

Min_sample_ split = 5

Min_sample_leaf =2

 Max_depth = 10

 Criterion= gini

 Min_sample_ split = 2

 Min_sample_leaf = 1

Random
forest

 N_estimators ==300

 Max_depth = 15

 N_estimators ==100

 Max_depth = 15

 N_estimators == 300

 Max_depth = 15

43

Chapter III Implementation results and discussion

4.2. Results using features combination

It is important to highlight that comparable results were attained by employing the

automatic hyper-parameter settings and Default Initialization. This symmetry can be

attributed to the combination of each pair of features. The table below (Table 12) presents the

obtained outcomes:

Table III 12: Accuracy of algorithms using features combination

 Tfidf+cont_vect Tfidf+bow_vect

Default
parameter

Hyper parametre Default
parameter

Hyper parametre

Knn 0.8161 0.8068 0.8187 0.8068

Naïve bayes 0.8194 0.8195 0.8194 0.8195

Svm 0.8474 0.8648 0.8647 0.8648

Decision tree 0.7748 0.7975 0.7748 0.7948

Random

forest

0.8674 0.8734 0.8640 0.8754

The table above includes a comparison of the performance of several models using a range

of different parameters, using Tfidf with Count_vect and bow_vect:

- SVM shows strong performance with a significant difference between the default settings

and after hyper parameter adjustment.

Naïve Bayes shows stability in performance regardless of the hyper parameter.

Random Forest shows superior performance, especially after hyper parameter tuning.

-Decision Tree also benefits from hyper parameter tuning.

- Knn shows a slight improvement after adjusting the hyper parameter.

Therefore, the control results depend on the nature of the data and its ability to be

improved, and the results may differ by choosing different hyper parameters.

44

Chapter III Implementation results and discussion

The following table illustrates the used hyper-parameters:

Table III 13: Hyper-parameters of algorithms using features combination

Model Best Par_tfidf+bow Best par_tfidf+cont

Knn

 n_neighbors = 9

 algorithm=auto

 n_neighbors = 9

 algorithm=auto

Naïve bayes

Alpha = 0.5

Fit_prior=false

Alpha = 0.5

Fit_prior=false

Svm Gamma= ‘scale’

 C = 1

 kernel=rbf

 Gamma= ‘scale’

 C = 1

 kernel=rbf

Decision tree

 Max_depth = 5

Criterion=gini

Min_sample_ split =2

Min_sample_leaf =1

 Max_depth = 5

Criterion=gini

Min_sample_ split =5

Min_sample_leaf =2

Random forest

N_estimators =100

Max_depth = none

Bootstrap=false

Criterion=gini

Min_sample_ split =5

Min_sample_leaf =1

N_estimators =500

Max_depth = none

Bootstrap=false

Criterion=entropy

Min_sample_ split =5

Min_sample_leaf =1

45

Chapter III Implementation results and discussion

4.3. Comparison

We will compare the accuracy of each applied algorithm with the properties using hyper-

parameters, as shown below.

 Accuracy of algorithms with properties for extraction using Hyper parameter

figure III- 3:Accuracy of algorithms with properties for extraction using hyper parameter

1- k-Nearest Neighbors (knn):

It is shown that knn performs well using the tf-idf transform (tfidf_vect) with a score of 0.88,

but slightly underperforms using the count (count_vect) and bag-of-words (bow_vect)

transforms. This indicates that the tf-idf conversion helped improve the performance of knn.

2-Naive Bayes: shows consistent performance across all types of transformations, and

delivers the highest accuracy using a tf-idf transformation of 0.89. This shows the

effectiveness of the Naive Bayes model in dealing with a variety of data transformations.

 3- Support Vector Machine (SVM):

shows superior performance with all types of transformation models, achieving the highest

accuracy scores among all models. This indicates the power of SVM in dealing with different

data transformations and its effectiveness in separating classes.

4-Decision Tree:

The results may indicate that Decision Tree has slightly lower performance compared to some

other models, especially using tf-idf and bag-of-words transformations. There may be a need

to modify model parameters to improve its performance.

0.7

0.75

0.8

0.85

0.9

0.95

knn naive bayes svm decision tree random forest

tfidf_vect

count_vect

bow_vect

tfidf+cont_vect

tfidf+bow_vect

Column1

0.
81

0.
87

0
.8

7

0.
91

0.
91

0.
78

0
.8

0

0.
88

0.
88

0.
81

0.
81 0.

81
0.

81

0.
86

0.
86

0.
80

0.
79

0.
87 0.

880
.8

8

0
.8

9
 0

.9
2

0
.8

1

0
.8

9

46

Chapter III Implementation results and discussion

 5-Random Forest:

 shows strong performance with all types of transformations, especially with tf-idf and

count transformations. Random Forest is a model that addresses the problems of random

increase and performance improvement.

In conclusion, the choice of model depends on several factors such as the type of data, the

size of the data, and the goal of the task. It is preferable to conduct a detailed analysis of the

individual characteristics and needs of the problem you are facing to make the appropriate

decision about the model to use.

 Accuracy of algorithms with properties for extraction using Default Initialization

figure III- 4:accuracy of algorithms with properties for extraction using Default Initialization

After analyzing the results, we note that :

 KNN (k-Nearest Neighbors):

 It is noted that the performance of KNN is similar using different representation techniques

(Vectors), with accuracy ranging between 80% and 82%. This indicates that the KNN model

is not significantly influenced by the method used to represent text.

 Naive Bayes:

Excellent performance is demonstrated using `tfidf_vect` with 89% accuracy. However, the

performance drops dramatically with `tfidf+cont_vect` and `tfidf+bow_vect` to 82%. This

indicates that using features such as `count_vect` and `bow_vect` does not effectively

contribute to improving the performance of Naive Bayes.

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

knn naive bayes svm decision
tree

random
forest

tfidf_vect

count_vect

bow_vect

tfidf+cont_vect

tfidf+bow_vect

0.
810.

78

0.
89

0.
89 0.

88

0.
79

0.77
0.

81

0.
860.

87

0
.8

5 0.
86

0.820.820
.8

2

0.89 0
.8

9

0
.8

0

0.90

47

Chapter III Implementation results and discussion

 SVM (Support Vector Machine):

 It is noted that SVM using `count_vect` and `bow_vect` has an accuracy of 89%, which is the

highest value in this table. This indicates that the SVM model makes significant use of the

representation of text using Bag of Words (`bow_vect`) and Frequency Count (`count_vect`)

representation.

 Decision Tree:

The Decision Tree model shows modest performance regardless of the technique used. The

accuracy level ranges between 77% and 80%. It seems that Decision Tree does not depend

much on the type of representation used.

 Random Forest:

 Random Forest shows excellent performance using `tfidf_vect` with 90% accuracy. This

indicates that representing text by Term Frequency-Inverse Document Frequency

(`tfidf_vect`) contributes significantly to improving the performance of this model. With other

techniques, a decrease in performance is shown due to the representation effect.

In general, it turns out that `tfidf_vect` repeatedly emerges as the best technique in most

models, especially in the case of Random Forest and Naive Bayes. However, performance can

vary depending on the nature of the data and the type of task, so it is preferable to choose the

optimal technique based on the project context and classification requirements.

5. Conclusion

 In this chapter, we outlined the technical framework of our fake news detection system,

exploring the tools and methodologies employed in its development. We highlighted the

importance of Python and its libraries, such as NLTK and Scikit-learn, in facilitating machine

learning tasks. Data preparation techniques, including preprocessing and representation

methods like TF-IDF Vectorization, were elucidated. Additionally, we evaluated various

machine learning algorithms, identifying optimal parameter settings and feature combinations

for fake news detection. Overall, this chapter underscores our commitment to leveraging

machine learning and natural language processing to combat fake news proliferation

effectively.

48

General Conclusion

General Conclusion

In conclusion, this research addressed the critical task of detecting fake news on social

media, using basic concepts and principles. The exploration phase included a comprehensive

review of existing methods for identifying fake news, with a particular focus on supervised

learning algorithms.

 Various machine learning algorithms, including Tfidf, Kent, and Bow features, were

considered for fake news detection. The research team opted for the Support Vector Machine

(SVM) as the primary method for detecting fake news.

 However, significant progress was demonstrated when using SVM with Tfidf features,

demonstrating its superiority over other combinations. This specific configuration, with finely

tuned hyper parameters, resulted in a remarkable accuracy rate of 92.21%. Hence, we

conclude that SVM emerges as the most effective algorithm for detecting fake news, due to its

strong capabilities in dealing with the complex nature of misinformation on social media

platforms. The success achieved with SVM underscores the importance of exploring and

refining machine learning models to adapt to the evolving challenges posed by fake news.

Future works

 Develop advanced machine learning models: More complex and sophisticated

models for detecting fake news should be explored and developed, including deep

learning and end-to-end learning techniques.

 Improving the quality and quantity of data: It is important to collect larger and

more diverse datasets to train models, while ensuring the quality and validity of the

data.

 Integrating information from multiple sources: The accuracy of fake news detection

can be improved by integrating information from multiple sources, such as social,

biological, and historical data.

 Developing continuous updating mechanisms: Mechanisms must be established to

update models and databases on a regular basis to keep pace with developments in

the spread of fake news and its changes.

 Enhance transparency and accountability: Transparent criteria should be established

to assess the performance of fake news detection models and ensure that

stakeholders are held accountable when needed.

51

Bibliography

Bibliography

[1] O'Brien, N. (2018). Machine learning for detection of fake news (Doctoral dissertation,

Massachusetts Institute of Technology).

[2] Oshikawa, R., Qian, J., & Wang, W. Y. (2018). A survey on natural language processing for fake

news detection. arXiv preprint arXiv:1811.00770.

[3] William Yang Wang, "Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News

Detection, to appear in Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (ACL 2017), short paper, Vancouver, BC, Canada, July 30-August 4, ACL.

(https://www.kaggle.com/datasets/csmalarkodi/liar-fake-news-dataset)

[4] Tandoc, E. C., Thomas, R. J., & Bishop, L. (2021). What is (fake) news? Analyzing news values

(and more) in fake stories. Media and Communication, 9 (1), 110-119.

 [5] Baarir, N. F., & Djeffal, A. (2021, February). Fake news detection using machine learning. In 2020

2nd International workshop on human-centric smart environments for health and well-being

(IHSH) (pp. 125-130). IEEE.

 [6] De Beer, D., & Matthee, M. (2021). Approaches to identify fake news: a systematic literature

review. Integrated Science in Digital Age 2020, 13-22.

[7] Guo, Z., Schlichtkrull, M., & Vlachos, A. (2022). A survey on automated fact-checking. Transactions

of the Association for Computational Linguistics, 10, 178-206.

[8] Vlachos, A., & Riedel, S. (2014, June). Fact checking: Task definition and dataset construction.

In Proceedings of the ACL 2014 workshop on language technologies and computational social

science (pp. 18-22).

[9] Ahmed, S., Hinkelmann, K., & Corradini, F. (2022). Combining machine learning with knowledge

engineering to detect fake news in social networks-a survey. arXiv preprint arXiv:2201.08032.

[10] Hassan, N., Zhang, G., Arslan, F., Caraballo, J., Jimenez, D., Gawsane, S., ... & Tremayne, M.

(2017). Claimbuster: The first-ever end-to-end fact-checking system. Proceedings of the VLDB

Endowment, 10(12), 1945-1948.

[11] Cazalens, S., Leblay, J., Lamarre, P., Manolescu, I., & Tannier, X. (2018). Computational fact

checking: a content management perspective. Proceedings of the VLDB Endowment

(PVLDB), 11(12), 2110-2113.

[12] Hakak, S., Alazab, M., Khan, S., Gadekallu, T. R., Maddikunta, P. K. R., & Khan, W. Z. (2021). An

ensemble machine learning approach through effective feature extraction to classify fake news. Future

Generation Computer Systems, 117, 47-58.

https://www.kaggle.com/datasets/csmalarkodi/liar-fake-news-dataset

52

Bibliography

[13] Mishra, S., Shukla, P., & Agarwal, R. (2022). Analyzing machine learning enabled fake news

detection techniques for diversified datasets. Wireless Communications and Mobile Computing, 2022,

1-18.

[14] Sarnovský, M., Maslej-Krešňáková, V., & Ivancová, K. (2022). Fake news detection related to the

covid-19 in slovak language using deep learning methods. Acta Polytechnica Hungarica, 19(2), 43-57.

[15] Manzoor, S. I., & Singla, J. (2019, April). Fake news detection using machine learning

approaches: A systematic review. In 2019 3rd international conference on trends in electronics and

informatics (ICOEI) (pp. 230-234). IEEE.

[16] Zhang, Q., Guo, Z., Zhu, Y., Vijayakumar, P., Castiglione, A., & Gupta, B. B. (2023). A deep

learning-based fast fake news detection model for cyber-physical social services. Pattern Recognition

Letters, 168, 31-38.

[17] Cherif, I. E. Deep Learning pour la prédiction des tremblements de terre.

[18] Harrag, F., & Djahli, M. K. (2022). Arabic fake news detection: A fact checking based deep

learning approach. Transactions on Asian and Low-Resource Language Information

Processing, 21(4), 1-34.

[19] Seddari, N., Derhab, A., Belaoued, M., Halboob, W., Al-Muhtadi, J., & Bouras, A. (2022). A hybrid

linguistic and knowledge-based analysis approach for fake news detection on social media. IEEE

Access, 10, 62097-62109.

[20] Karwa, R. R., & Gupta, S. R. (2022). Automated hybrid Deep Neural Network model for fake news

identification and classification in social networks. Journal of Integrated Science and

Technology, 10(2), 110-119.

[21] Okunoye, O. B., & Ibor, A. E. (2022). Hybrid fake news detection technique with genetic search

and deep learning. Computers and Electrical Engineering, 103, 108344.

[22] Tamene, A. Classification Automatique des documents textuels.

[23] Refonaa, J., Reddy, G., Shabu, S. J., Dhamodaran, S., & Antony, J. C. (2022). Fake News

Detection Using Machine Learning Approaches. Mathematical Statistician and Engineering

Applications, 71(3s2), 485-494.

[24] DJABALLAH, M. A. (2021). Système de prédiction de la consommation d’énergie basé Deep

Learning.

[25] Difani, F., & Merhabaoui, K. Machine Learning Based Model For Fake News Spreaders

Detection (Doctoral dissertation, UNIVERSITY OF KASDI MERBAH OUARGLA).

 [26] Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019).

Text classification algorithms: A survey. Information, 10(4), 150.

53

Bibliography

[27] Sirikulviriya, N., & Sinthupinyo, S. (2011, May). Integration of rules from a random forest.

In International Conference on Information and Electronics Engineering (Vol. 6, pp. 194-198).

 [28] Mohammed el mehdi Kadri-abdelmounaim SAGGAI, « breast detection using deep learning

»breast detection using deep learning.

[29] Rohera, D., Shethna, H., Patel, K., Thakker, U., Tanwar, S., Gupta, R., ... & Sharma, R. (2022). A

taxonomy of fake news classification techniques: Survey and implementation aspects. IEEE

Access, 10, 30367-30394.

	21021c017d4f45c1ada73d1534c363e416d72c50d681bdf9a07515fca225199f.pdf
	Abstract
	ملخص
	List of Figures
	figure III- 1:The global Architecture of our system………………………………………... 30
	List of Tables

	Introduction
	Chapter I Fake News
	1. Introduction
	2. Fake news
	2.1. Definition
	2.2. Fake news components
	2.3. Fake news characteristics
	2.4. How to detect a fake news

	3. Analysis of News Content
	3.1. Knowledge-based approaches
	3.2. Machine Learning Approach
	3.3. Hybrid approaches

	4. Advantages and limitations of fake news detection
	5. Fields of application for fake news
	6. Conclusion
	Chapter II
	Ml and NLP for fake news detection
	1. Introduction (1)
	2. Machine Learning:
	2.1. Machine Learning Techniques
	2.2. Natural Language Processing (NLP) :
	2.3. Text classification process

	3. Conclusion
	Chapter III
	Implementation results
	and discussion
	1. Introduction (2)
	2. Work environment and tools
	2.1. Programming language
	2.2. Code editor
	2.3. Python libraries

	3. System Architecture
	3.1. Data preparation
	3.2. Data splitting
	3.3. Data representation

	4. Results and discussion
	4.1. Results of classifiers with and without hyper parameter tuning
	4.2. Results using features combination
	4.3. Comparison

	5. Conclusion
	General Conclusion

	21021c017d4f45c1ada73d1534c363e416d72c50d681bdf9a07515fca225199f.pdf
	Bibliography

