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I  

Abstract 
 

With the evolution of technology and the rise of social media, the proliferation of fake news 

has speed across a wide range of media platforms. This proliferation poses a significant 

challenge, exacerbated by the growing number of social media users and declining digital 

literacy. Existing solutions for detecting fake news have short comings, with the complexity 

of the task influenced by factors such as language type, news category and topic volatility. 

Machine Learned (ML) and Natural Language Processor (NLP) techniques offer viable means 

to address this issue by identifying patterns unique to fake news articles that are not present in 

authentic news content. 

This study deals with a classification-based approach for the automation of fake news 

detection. Several methods were employed, including experimentation with different features 

(Count-Vectorizer, Tf-Idf Vectorizer, Bag-of-Words) and machine learning models (SVM, 

KNN, Random Forest, Naive Bayes, Decision Tree) to construct accurate detectors. 

Experiments were conducted on a real-world dataset, LIAR, to evaluate the performance of 

the models. The results showed that the SVM model using Tf-Idf Vectorizer features achieved 

the highest accuracy at 92%. These findings highlight the potential of Machine Learning 

models in the field of fake news detection, with a promising trajectory for further 

advancements in the future. 

 

Keywords: Machine Learning Algorithms, Natural Language Processing, Fake News 

detection, Feature extraction, Classification. 
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 ملخص

 

ة عبر لكاذبمع تطور التكنولوجيا وظهور وسائل التواصل الاجتماعي، تسارعت وتيرة انتشار الأخبار ا

ايد عدد ته تزمجموعة واسعة من المنصات الإعلامية. ويشكل هذا الانتشار تحديًا كبيرًا، ويزيد من حد

 ف عنالية للكشمستخدمي وسائل التواصل الاجتماعي وتراجع المعرفة الرقمية. تنطوي الحلول الح

ر وتنوع لأخبااالأخبار المزيفة على أوجه قصور، حيث يتأثر تعقيد المهمة بعوامل مثل نوع اللغة وفئة 

لتطبيق لمعالجة ( وسائل قابلة لNLP( ومعالج اللغة الطبيعية )MLالمواضيع. توفر تقنيات التعلم الآلي )

لمحتوى د في االإخبارية المزيفة التي لا توجهذه المشكلة من خلال تحديد الأنماط الفريدة للمقالات 

 الإخباري الحقيقي.

تتناول هذه الدراسة نهجًا قائمًا على التصنيف بهدف أتمتة الكشف عن الأخبار الكاذبة. تم استخدام العديد 

-Count-Vectorizer،Tf-Idf Vectorizer،Bag-of)من الطرق، بما في ذلك تجربة ميزات مختلفة 

Words التعلم الآلي )( ونماذجSVM ،KNN ،Random Forest ،Nive Bayesو ،Decision 

Tree ،لبناء كاشفات دقيقة. أجُريت التجارب على مجموعة بيانات من العالم الحقيقي ))LIAR لتقييم ،

حقق أعلى دقة  Tf-Idf Vectorizerباستخدام ميزات  SVMأداء النماذج. أظهرت النتائج أن نموذج 

هذه النتائج إمكانات نماذج التعلّم الآلي في مجال الكشف عن الأخبار الكاذبة، مع  %. تبُرز92بنسبة 

 .وجود مسار واعد لتحقيق المزيد من التقدم في المستقبل

 

 مزيفة،ر الالأخبا اكتشاف خوارزميات التعلم الآلي، معالجة اللغات الطبيعية، الكلمات المفتاحية:

 التصنيف. ،اتاستخراج الميز
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Introduction 

The dissemination of false information, commonly known as fake news, has become a 

major problem in recent years. Fake news is defined as news that is intentionally false or 

misleading. It is often created to deceive people or to promote a particular agenda. The spread 

of fake news can have a negative impact on society and various domains by influencing 

individuals to make decisions based on inaccurate information. 

There are a number of different techniques that can be used to detect fake news. One 

common approach is to use Machine Learning (ML) techniques to identify patterns in fake 

news articles [1]. Machine Learning techniques involve the extraction of relevant features 

from data, which are then used by classification models to make predictions or categorize the 

data. Machine learning algorithms can be trained on a dataset of known fake news articles and 

can then be used to classify new articles as either fake or real. 

Another approach to fake news detection is to use Natural Language Processing (NLP) 

techniques. NLP techniques can be used to analyze the language used in an article to identify 

features that are associated with fake news. For example, NLP techniques can be used to 

identify articles that use sensationalized language, that make outlandish claims, or that are 

poorly sourced [2]. 

Problematic 

The main problematic of this thesis is that there is no single, perfect method for detecting 

fake news. The problem is compounded by the fact that fake news is constantly evolving, as 

creators find new ways to deceive people. However, we believe that the machine learning 

approaches have the potential to be a valuable tool for detecting fake news. In the field of 

Machine Learning, features extraction plays a crucial role as it involves identifying and 

capturing relevant patterns and characteristics from data, which are subsequently utilized by 

classification models to make accurate predictions or categorize instances effectively. In this 

work, we aim to provide answers to the following questions: What is the difficulty of the 

detection task? Do we really need all the existing features, or should we focus on a smaller set 

of more representative features? Is there a trade-off between the discriminative power of the 

features and their robustness to model variations? Is there a clear-connection between the 
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features or models used and the type of fake news they can detect? We hope that our work 

will help to combat the spread of fake news and to make the internet a more reliable source of 

information. 

Objectives 

In this thesis, we will explore the use of ML and NLP techniques to detect fake news. We 

will first review the literature on fake news detection and discuss the different techniques that 

have been used. We will then present and implement some models to fake news detection. In 

particular, our purpose is to examine different methods in order to understand why certain 

techniques and models exhibit higher performance, emphasizing their advantages and 

limitations. This objective is accomplished mainly by means of experimentations on a known 

fake news articles dataset LIAR [3] involving various models, features, and pre- processing 

operations to improve accuracy. 

We believe that the implemented models have the potential to be a valuable tool for 

detecting fake news. Our goal is therefore to offer an accurate and efficient model which can 

be easily applied to new articles. We hope that our work will help to combat the spread of 

fake news and to make the internet a more reliable source of information. 

Thesis Organization The structure of this thesis consists of three chapters, which are 

organized as follows: 

- In the initial chapter, the fundamental concepts and principles of fake news are 

addressed; 

- The second chapter focuses on the application of Machine Learning models and 

Natural Language Processing techniques for the detection of fake news; 

- The final chapter examines the results achieved by the implemented models 
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1. Introduction 

In recent years, several researchers have explored the field of fake news detection. Each of 

them has approached the problem from a unique perspective and utilized various methods. 

The objective of this chapter is to provide crucial and indispensable reminders that will help 

comprehend the fundamental terms used in this thesis. Initially, we will cover all aspects of 

fake news, including its characterization and components, followed by an examination of how 

to analyze it.  

2. Fake news 

2.1. Definition 

Fake news refers to false or misleading information presented as news, often with the 

intention of deceiving the audience, manipulating public opinion, or generating revenue 

through clicks and shares. It can be spread through various channels, such as social media, 

websites, and even traditional media outlets. Although fake news has always been spread 

throughout history, the term “fake news” was first used in the 1890s when sensational reports 

in newspapers were common. Nevertheless, the term does not have a fixed definition and has 

been applied broadly to any type of false information. It’s also been used by high-profile 

people to apply to any news unfavorable to them [4]. 

2.2. Fake news components 

Fake news incorporates various components, and here are some common typically found 

[5]: 

- Creator/Distributor: those responsible for creating and disseminating fake news 

online can be individuals (human) or automated entities(non-human).
 

- Targeted Audience: fake news can target a wide range of individuals using various 

digital platforms, including social media users. This audience can encompass 

students, voters, parents, senior citizens, and others.

 

- News Content: The news content comprises both textual and multimedia elements, 

such as headlines, body text, and accompanying media. It also includes intangible 

aspects like the intended purpose, emotional tone, and underlying themes.

 

- Social Context: The social context refers to the environment in which news is shared 
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and circulated on the internet. Analyzing the social context involves studying user 

behavior and network dynamics, examining how online users interact with news 

content, and evaluating the ways in which news is shared online.



2.3. Fake news characteristics 

Fake news often contains a number of common characteristics. These include: 

- Sensationalism: Fake news stories are often designed to grab attention by being 

sensational or outrageous.

- Click bait: Fake news stories often use click bait headlines that are designed to make 

people click on them, even if the content of the story is not actually interesting or 

informative.

- Misleading headlines: Fake news stories often have misleading headlines that do not 

accurately reflect the content of the story.

- Unsubstantiated claims: Fake news stories often make unsubstantiated claims that are 

not supported by evidence.

- Personal attacks: Fake news stories often contain personal attacks on individuals or 

groups.

- Extreme language: Fake news stories often use extreme language that is designed to 

evoke strong emotions, such as anger, fear, or outrage.

- Lack of author information: Fake news stories often do not include author 

information, which makes it difficult to verify the accuracy of the information.

- Poor grammar and spelling: Fake news stories often have poor grammar and 

spelling, which can be a sign that the story is not credible.

2.4. How to detect a fake news 

- Number of comments: The number of comments on a news article can be an 

indication of its engagement. However, it is important to note that fake news articles 

can also generate a lot of comments. 

- Sentiment of the comments: The sentiment of the comments on a news article can 

be an indication of its veracity. For example, articles with a lot of negative comments 

are more likely to be fake. 
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3. Analysis of News Content 

This section focuses on methods and techniques for analyzing the content of news articles 

to determine their authenticity and accuracy. It involves examining various aspects such as 

language, writing style, sources, and factual accuracy to determine the credibility of the news. 

Various approaches can be used for this purpose. 

3.1. Knowledge-based approaches 

Knowledge-based approaches utilize external sources of information and expert systems to 

verify the facts and the claims made in news articles. These approaches aim to cross-reference 

the information provided in the news with existing knowledge to identify inconsistencies or 

falsehoods [6]. 

Here are some of the external sources of information that can be used by knowledge-based 

approaches to fake news detection: 

 

- Databases: Databases can store large amounts of information, such as historical 

facts, scientific data, and demographic statistics. This information can be used to 

verify the claims made in news articles.

- Expert knowledge: Experts in a particular field can provide valuable insights into 

the accuracy of news articles. For example, a medical expert can help to verify the 

claims made in a news article about a new medical study.

- Ontologies: Ontologies are formal representations of knowledge that can be used to 

reason about the relationships between different concepts. For example, an ontology 

can be used to reason about the relationship between a person, a place, and an event.

There are two main categories for knowledge-based methods which will be explained in 

the following sections: 

A. Human Oriented Fact Checking 

In this approach, human fact-checkers manually investigate the claims made in news 

articles by conducting research, consulting reliable sources, and verifying the information 

through various means. For example, organizations like Snopes (www.snopes.com), 

FactCheck.org (www.factcheck.org) and PolitiFact(https://www.politifact.com/) employ 

teams of fact- checkers who analyze news content and debunk false or misleading claims [7, 

8]. 

The downside here is that these solutions can be time-consuming and expensive to develop 

http://www.politifact.com/)
http://www.politifact.com/)
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and maintain. They can also be limited by the quality and quantity of the external knowledge 

that is available [9]. 

B. Computational Oriented Fact Checking: 

Computational-oriented fact-checking utilizes automated algorithms and computational 

methods to assess the credibility of news articles. These methods often involve natural 

language processing techniques, information retrieval, and statistical analysis to determine the 

likelihood of misinformation. Examples of such approaches include Claim Buster system 

(https://idir.uta.edu/claimbuster/) and Fact Mata system (https://factmata.com) [7, 10,11]. 

Computational oriented fact checking is a promising new approach to the problem of fake 

news. It has the potential to be more efficient and scalable than traditional fact checking 

methods, which are often limited by the time and resources available to journalists and fact-

checkers. 

However, computational oriented fact checking is still under development, and it has some 

limitations. For example, it can be difficult to develop models that are accurate and reliable, 

and it can be difficult to identify all of the sources of information that are relevant to a 

particular claim. 

3.2.   Machine Learning Approach 

Based on patterns and features extracted from the news content, machine learning 

approaches employ algorithms that learn from data to detect patterns and make predictions. In 

the context of fake news detection, these models are trained on labeled datasets containing 

both fake and legitimate news articles [12, 13, 14, 15]. 

There are a number of different machine learning algorithms that can be used for fake 

news detection, including: 

A. Classical Models 

These are traditional machine learning algorithms that are trained on labelled datasets to 

classify news articles as real or fake based on features like language patterns, source 

credibility, and metadata. Example: Naive Bayes, Logistic Regression, Support Vector 

Machines (SVM) and Random Forests which are commonly used classical models for fake 

news detection. 

B. Deep Learning: 

Deep learning models, particularly neural networks, are used to develop more complex and 

sophisticated models that can learn from large amounts of data to detect fake news. These 

https://factmata.com/
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models can learn complex representations from the text and capture intricate patterns. 

Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and 

transformer models like BERT and GPT have been employed for fake news detection tasks 

[16, 17,18]. 

The best machine learning algorithm for fake news detection depends on the specific 

dataset and the desired accuracy. In addition to machine learning algorithms, there are a 

number of other features that can be used to detect fake news, such as: 

 Stylistic features: These features include the use of certain words or phrases, the length 

of sentences, and the overall tone of the article. 

 Content features: These features include the factual accuracy of the article, the presence 

of bias, and the use of sensationalized language. 

 

 Social media features: These features include the number of shares, likes, and comments 

on the article, as well as the sentiment of the comments. 

By combining machine learning algorithms with other features or approaches, it is possible 

to create more accurate and reliable fake news detection models. 

3.3.   Hybrid approaches 

Hybrid approaches combine multiple methods or techniques to enhance the accuracy and 

robustness of fake news detection systems. These approaches integrate knowledge-based 

methods with machine learning or combine different machine learning techniques to achieve 

better results. Some studies have proposed hybrid models that integrate both expert 

knowledge and machine learning algorithms to improve the overall performance of fake news 

detection systems [19, 20, 21]. As the problem of fake news continues to grow, it is likely that 

we will see more and more hybrid approaches being developed and used. 

 

4. Advantages and limitations of fake news detection 

Here are some advantages and limitations of fake news detection in general: 

Advantages 

 Protects public opinion: Detecting and preventing the spread of fake news helps 

maintain the integrity of public opinion and prevents the manipulation of people's beliefs and 

emotions. 

 Preserves credibility: By identifying and removing fake news, media outlets and social 



Chapter I    Fake News 

 
  

10 
 

media platforms can maintain their credibility and trustworthiness, ensuring that users receive 

accurate and reliable information. 

 Reduces harm: Fake news can have serious consequences, such as inciting violence, 

spreading fear, or damaging reputations. Detecting and stopping the spread of fake news can 

help minimize these negative effects. 

 Encourages responsible journalism: The presence of effective fake news detection 

systems can encourage journalists and content creators to be more responsible and adhere to 

ethical standards, as they know that false information will likely be detected and removed. 

 

Limitations 

 False positives and negatives: No detection system is perfect, and there may be 

instances where legitimate news is flagged as fake or vice versa. This can lead to the 

suppression of valid information or the continued spread of misinformation. 

 Difficulty in defining fake news: The line between fake news and biased or 

opinionated reporting can be blurry. It can be challenging to create a detection system that 

accurately distinguishes between the two without infringing on freedom of speech. 

 Evolving tactics: As fake news detection systems improve, so do the tactics used by 

those who create and spread fake news. This can make it difficult for detection systems to 

keep up with the constantly changing landscape of misinformation. 

 Potential for misuse: There is a risk that fake news detection systems could be misused 

by governments or other entities to suppress dissenting opinions or control the flow of 

information. This could lead to censorship and a lack of diverse perspectives in the public 

sphere. 

In summary, while fake news detection systems offer several advantages in combating the 

spread of misinformation, they also face limitations and challenges that need to be addressed 

to ensure their effectiveness and prevent potential misuse. 

 

5. Fields of application for fake news 

Fake news can have a negative impact on individuals, society, and businesses. It is 

important to be aware of fake news and to be able to spot it. There are some of the fields 

where fake news is often applied: 

- Politics: Fake news is often used to influence elections and political campaigns. For 

example, fake news stories were spread during the 2016 US presidential election that 

claimed that Hillary Clinton was involved in a child sex ring. These stories were 
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widely shared on social media and may have influenced some voters to vote for 

Donald Trump. 

- Business: Fake news is often used to damage the reputation of businesses or to 

promote the products or services of competitors. For example, fake news stories were 

spread about a company that claimed that its products were dangerous or that it was 

involved in illegal activities. These stories could lead to customers boycotting the 

company or to investors selling their shares. 

- Health: Fake news is often used to spread misinformation about health and medical 

issues. For example, fake news stories have been spread that claim that vaccines cause 

autism or that certain foods can cure cancer. These stories can lead to people making 

harmful decisions about their health. 

- Crime: Fake news is sometimes used to commit crimes, such as fraud or identity theft. 

For example, fake news stories have been spread that claim that people can get free 

money or that they can win a prize by providing their personal information. These 

stories can lead to people being scammed or having their identities stolen. 

- Society: Fake news can also have a negative impact on society as a whole. It can lead 

to polarization, distrust, and violence. For example, fake news stories that were spread 

during the 2016 US presidential election may have contributed to the violence that 

erupted in some cities after the election. 

 

6. Conclusion 

The first chapter of our work serves as an introduction to the subject of our research, by 

introducing: the basic concepts of fake news, its components and characteristics. Furthermore, 

in the next chapter, we have explored various techniques and strategies employed for the 

detection of these fake news, focusing on the most significant ones that are relevant to our 

work. 
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1. Introduction 

Machine Learning (ML) and Natural Language Processing (NLP) play pivotal roles in the 

detection of fake news. ML algorithms, such as classification, are employed to analyze 

patterns and distinguish between genuine and deceptive information. NLP techniques enable 

the extraction of meaningful insights from textual data, allowing algorithms to discern 

linguistic cues indicative of misinformation. By leveraging ML models trained on large 

datasets of both authentic and fabricated content, fake news detection systems can identify 

suspicious articles based on linguistic features, and contextual information. The synergy 

between ML and NLP empowers the development of robust and scalable solutions to combat 

the proliferation of fake news across various digital platforms. 

Given this in consideration, the primary focus of this chapter will be to introduce the 

concept of Machine Learning in a broad sense, along with an exploration of their techniques 

employed for the categorization of fake news. 

2. Machine Learning: 

Machine learning ML is a branch of artificial intelligence that enables systems to learn and 

understand through algorithms. It revolves around the concept of training algorithms with 

Data, allowing computers to make predictions and solve specific tasks without explicit 

Programming.  

ML plays a crucial role in the fight against fake news by offering an automated and 

scalable approach to its detection. ML algorithms analyze the text of the news article, looking 

for patterns in writing style, word choice, and usage of specific phrases commonly associated 

with fake news. Beyond the text itself, the algorithms can examine the social media context of 

the news, such as the source of the information, user engagement metrics (likes, shares), and 

the overall sentiment surrounding the article. In some cases, the analysis might even extend to 

the network of accounts sharing the news, identifying patterns of bots or coordinated 

campaigns spreading misinformation. There are several categories of ML that are used in the 

detection of fake news 

2.1.  Machine Learning Techniques 

A. Supervised learning: 

It entails providing computers with data and their corresponding desired outcomes, 

enabling them to make predictions of new input data [22]. 
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 Advantages: 

- Supervised learning utilizes labeled datasets, providing precise information about 

object classes.

- These algorithms excel at predicting outcomes based on previous experiences.

 Limitations: 

- Complex tasks may prove challenging for these algorithms. 

- Training the algorithm can be time-consuming due to the high computational 

requirements.

B. Unsupervised Learning: 

It entails feeding computers with data alone, without external guidance, and tasting them 

with identifying meaningful patterns or structures, often through clustering techniques 

[23,24]. 

 Advantages: 

- Unsupervisedlearningalgorithmscanhandlecomplextasksthataredifficultforsupervised 

Learning algorithms since they can work with unlabeled datasets.

- Unsupervised algorithms are advantageous for various tasks as obtaining unlabeled 

datasets is often easier compared to acquiring labeled datasets.

 Limitations: 

- The output of unsupervised algorithms may be less accurate because the datasets are 

not Labeled, and the algorithms are not trained with exact output information.

- Working with unsupervised learning is more challenging as it involves working with 

unlabeled datasets that do not have direct mappings to specific outputs.

C. Reinforcement learning: 

It involves emulating the behavior of an agent, wherein a machine interacts with its 

environment, learns from the consequences of its actions, and iteratively improves its behaviors 

to maximize rewards [25]. 

 Advantages: 

- Reinforcement learning is effective in solving complex real-world problems that are 

challenging for conventional techniques.

- It enables the achievement of long-term results, as the agent learns to optimize its 

behavior overtime. 

 Limitations: 

- RL algorithms may not be the best choice for simple problems that can be solved 

using simpler methods. 
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- Implementing RL algorithms requires significant amounts of data and computational 

resources. 

2.2. Natural Language Processing (NLP) : 

Natural Language Processing (NLP) is a subfield of Artificial Intelligence that equips 

machines with the ability to understand and process human language. In the fight against fake 

news, NLP plays a crucial role by enabling the analysis and understanding of textual content. 

It also serves as a foundational layer for various techniques used in machine learning models 

for detection. Text Preprocessing, Feature Extraction, Named Entity Recognition (NER), and 

Semantic Analysis are some key NLP techniques used in fake news detection. In the next 

subsection, we will explain some of these techniques that help to achieve this detection 

purpose. 

By leveraging NLP techniques for feature extraction and analysis, ML models can be 

trained to identify patterns and characteristics often associated with fake news. However, it is 

crucial to remember that NLP is just one piece of the puzzle. Combining NLP with human 

expertise, fact-checking, and critical thinking remains essential for a comprehensive approach 

to tackling the challenge of fake news. 

2.3. Text classification process 

 

figure II 1:Text classification process 
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2.3.1. Pre-processing 

Pre-processing is a crucial step in text classification that involves transforming raw text data 

into a format suitable for machine learning algorithms. The specific pre-processing steps applied 

may vary depending on the characteristics of the text data and the requirements of the 

classification task. Here are some common pre-processing steps in text classification: 

 Tokenization: Splitting the text into individual words or tokens. This step essentially 

breaks down the text into its basic units, which can be analyzed further. 

 Lowercasing: Converting all text to lowercase. This ensures that words like "Hello" and 

"hello" are treated the same way and don't create duplicate features. 

 Removing punctuation: Stripping out any punctuation marks from the text. Punctuation 

often doesn't add significant meaning in text classification tasks and can be safely 

removed. 

 Removing stop words: Stop words are common words that often occur frequently in 

text but carry little semantic meaning (e.g., "the", "and", "is"). Removing these words can 

reduce the dimensionality of the feature space and improve model efficiency. 

 Stemming and Lemmatization: Stemming and lemmatization are techniques used to 

reduce words to their root or base form. For example, "running", "runs", and "ran" might 

all be reduced to the root word "run". Stemming is more heuristic-based and may result 

in non-words, while lemmatization typically uses a vocabulary and morphological 

analysis to return actual words. 

 Handling contractions and abbreviations: Expanding contractions (e.g., "can't" to 

"cannot") and abbreviations (e.g., "USB" to " Universal Serial Bus") can help standardize 

the text and improve the model's ability to generalize. 

 Normalization: Normalizing numbers, dates, URLs, and other special characters to a 

standard format. This ensures consistent treatment of these elements across the dataset. 

 Handling rare words and spelling corrections: Dealing with rare or misspelled words 

can involve techniques such as replacing them with a special token, correcting spelling 

errors, or removing them altogether. 

The specific pre-processing steps used in our case will be discussed in detail in Chapter 3. 

2.3.2. Feature Extraction and vectorization: 

Feature extraction and vectorization are essential pre-processing steps in text classification, 

as they transform raw text data into a format that machine learning algorithms can understand 

and learn from. The choice of feature extraction and vectorization techniques depends on the 

characteristics of the text data and the specific requirements of the classification task. 
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In feature extraction, we convert raw text data into numerical or categorical features that 

can be used as input for machine learning algorithms. This step involves capturing the 

important characteristics or patterns in the text data. Techniques for feature extraction include: 

 Bag-of-Words (BoW): This technique represents a text document as a "bag" of its 

individual words, disregarding grammar and word order. Each word is assigned a unique 

index, and the vector representation of a document is created by counting the occurrences of 

each word in that document. The resulting vector is typically a high-dimensional sparse 

vector.

 The Term Frequency-Inverse Document Frequency (TF-IDF): is a technique for 

Evaluating the relevance of a document to a term, taking into account two factors: the 

Frequency of the word in the document (TF) and the number of documents containing This 

word (IDF) in the studied corpus.

The formula to calculate the TF-IDF of a term in a document is given: 

TF-IDF(t, d) = TF(t, d) × IDF(t)                                   (2.1) 

Where: 

 

TF (t, d): represents the frequency of term (t) in document (d) 

IDF (t): is calculated as follows: 

IDF(t) = log (N / df (t, d))                                  (2.2) 

Where: 

N: is the total number of documents in the corpus 

DF (t, d): is the number of documents containing the term (t). 

Using this formula, the TF-IDF assigns a weight to each term in the document, taking into 

account both its frequency in the document and its rarity in the entire corpus. Thus, terms that 

appear frequently in a specific document but rarely in the entire corpus will have a high TF-

IDF Score, indicating their relative importance in that document. 

TF-IDF is widely used for text vectorization, as it allows documents to be represented as 

digital Vectors, where each dimension corresponds to a term and the value of the dimension is 

the TF IDF score of the term in the document. This vector representation allows machine 

learning Models to process text data efficiently [26]. 

 Count Vectorizer: The Count Vectorizer works by tokenizing the text documents into 

individual words or tokens and then counting the occurrence of each word in each 
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document. It creates a matrix representation where each row represents a document, 

and each column represents a unique word in the corpus. The cell values indicate the 

frequency of the word in the respective document. 

 Word Embeddings: Represent words as dense, lower-dimensional vectors in a 

continuous vector space. Popular techniques include Word2Vec, GloVe, and fast Text. 

 Topic Modeling: Identifies latent topics within a collection of documents and 

represents documents in terms of their distribution over these topics. 

 Character-level Features: Extracts features based on character n-grams, which can 

capture morphological or syntactical patterns. 

 Part-of-Speech (POS) Tagging: Identifies the grammatical categories (e.g., noun, 

verb, adjective) of words in a sentence. 

 Named Entity Recognition (NER): Identifies and classifies named entities (e.g., 

person names, organization names) in text data. 

 

Once features are extracted, they need to be converted into a numerical vector format 

suitable for input to machine learning algorithms. This process is known as vectorization. 

Common techniques for vectorization include: 

 One-Hot Encoding: Converts categorical features into binary vectors where each 

feature is represented by a binary indicator variable. 

 Count Vectorization: Represents text data as a matrix where each row corresponds to 

a document and each column corresponds to a unique word, with cell values 

representing the frequency of each word in the corresponding document. 

 TF-IDF Vectorization: Converts text data into numerical vectors using TF-IDF 

values instead of raw term frequencies. 

 Word Embedding Lookup: Converts each word in a document to its corresponding 

word embedding vector representation. 

 Dimensionality Reduction: Techniques such as Principal Component Analysis (PCA) 

or Singular Value Decomposition (SVD) can be applied to reduce the dimensionality 

of feature vectors while preserving important information. 

 

2.3.3. Algorithms 

Different supervised learning classifiers are used for text classification. Here are some 

commonly used basic models: 
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a) Naïve Bayse 

Naive Bayes is a classification method that uses Bayes' theorem to calculate conditional 

probabilities. In text classification, Naive Bayes is applied as follows: it aims to determine the 

classification that maximizes the probability of observing the words within a document. 

During The training phase, the classifier calculates the probabilities of a new document 

belonging to a Specific category based on the proportion of training documents within that 

category. Additionally, it calculates the probability of a given word appearing in a given text 

that the text Belongs to a certain category. When classifying a new document, the method 

calculates the Probabilities of it belonging to each category using Bayes' rule. 

 

𝑃(𝐴 ∣ B) =
𝑃(𝐵∣A)×𝑃(𝐴)

𝑃(𝐵)
                                    (2.3) 

Where: 

 P(A∣B) is the posterior probability of hypothesis A given evidence B. This is the 

probability we are interested in determining. 

 P(B∣A) is the likelihood of evidence B given that hypothesis A is true. 

 P(A) is the prior probability of hypothesis A, which is our belief about the probability 

of A before considering evidence B. 

 P(B) is the total probability of evidence B, often called the marginal likelihood or the 

normalizing constant. It represents the probability of observing evidence B irrespective 

of the truth of hypothesis A. 

 

Bayes' rule, also known as Bayes' theorem, can be expressed using the following formula: 

 

𝑃(𝑦 ∣ 𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑃(𝑦)×𝑃(𝑥1∣𝑦)×𝑃(𝑥2∣𝑦)×...×𝑃(𝑥𝑛∣𝑦)

𝑃(𝑥1)×𝑃(𝑥2)×...×𝑃(𝑥𝑛)
                      (2.4) 

 Where: 

 P(y∣x1,x2,...,xn) is the posterior probability of class y given the features x1,x2,...,xn. 

 P(y) is the prior probability of class y. 

 P(xi∣y) is the likelihood of feature xi given class y. 

 P(xi) is the probability of feature xi. 

 x1,x2,...,xn are the features. 
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 Adventage: 

- Classification using Naive Bayes Classifier (NBC) can be performed even with small 

datasets, making it suitable when limited data is available for training. 

- NBC does not require a large volume of data during the learning phase, which can be 

beneficial in situations with limited data availability. 

 Limitations: 

- In cases where there is a high correlation between features, particularly in long 

documents with a rich vocabulary that promotes dependencies between 

descriptors, NBC may yield poor performance. 

- NBC's performance may suffer when there are strong dependencies or 

correlations between features, leading to less accurate classifications. 

 

b) Support Vector Machines 

Support Vector Machines (SVM) are classification algorithms designed to find an optimal 

classifier that effectively separates data points and maximizes the margin between two 

classes. This classifier is represented by a linear hyper plane. the hyper plane divides the data 

points into two sets. The data points that are closest to the hyper plane, and crucial for 

determining its position, are known as support vectors.  

 

 

 

 

   Support vectors 

 

 

 

 

 

 
   Hyper plane separator  

 

 

 

 

figure II 2:Graphical representation of the SVM algorithm 
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 Advantage: 

- SVMs perform well even when limited prior knowledge about the data is 

available. 

- SVMs scale relatively well to high-dimensional data, making them applicable 

to large datasets 

 Limitations: 

- SVMs can have long training times, especially for large datasets, which can be 

a drawback in time-sensitive applications. 

- The final model, variable weights, and individual impact in SVMs can be 

challenging to Understand and interpret, limiting the transparency of the model 

. 

 

c) Random Forests 

Random Forests is an implementation of decision tree-based algorithms that enables 

modelling of outcomes based on previous choices along different branches. By considering 

multiple decision trees, it aims to make the optimal decision based on the subsequent results. 

This Approach can be regarded as a form of anticipation, where the collective predictions of 

multiple trees contribute to a more comprehensive and reliable outcome [27]. 

 

 

  
 

figure II 3:Graphical representation of the Random forests [28] 
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 Advantage: 

- High Accuracy: Random Forest typically yields high prediction accuracy due 

to its ensemble nature, which combines multiple decision trees. This ensemble 

approach helps mitigate overfitting and improve generalization performance. 

- Robust to Overfitting: Random Forest is less prone to overfitting compared to 

individual decision trees. By aggregating predictions from multiple trees and 

using techniques like bagging, it achieves better generalization on unseen data. 

- Feature Importance Estimation: Random Forest provides a measure of feature 

importance, aiding in feature selection and understanding the underlying 

relationships in the data. This helps in identifying the most relevant features 

for prediction. 

 Limitations: 

- Black Box Model: Random Forest is often considered a black box model, 

making it less interpretable compared to simpler models like linear regression. 

Understanding the internal workings of individual trees within the ensemble 

can be challenging. 

- Memory and Computational Resources: Training and tuning Random Forest 

models can be computationally expensive, especially as the number of trees 

and dataset size increase. This requires significant memory and computational 

resources. 

- Biased Towards Majority Classes: Random Forest tends to be biased towards 

majority classes in imbalanced datasets, potentially leading to less accurate 

predictions for minority classes. Techniques like class weights or resampling 

may be needed to address this bias. 

 

d) KNN (k-Nearest Neighbors) 

KNN (k-Nearest Neighbors) is a classification algorithm that assigns new data points to 

classes based on the majority of their neighboring data points. In the k-Nearest Neighbors 

(KNN) algorithm, distances between data points are crucial for determining the "closeness" or 

similarity between instances. Several distance metrics can be used in KNN, but the most 

commonly used ones include:  

 

 

 Euclidean Distance: This is the most common distance metric used in KNN. It 

calculates the straight-line distance between two points in Euclidean space. For two 
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points P=(p1,p2,...,pn) and Q=(q1,q2,...,qn) in an n-dimensional space, the Euclidean 

distance d is given by: 

d(P,Q ) = √∑   (𝑛
𝑖=1 𝑝𝑖 − 𝑞𝑗  ) 2                                      (2.5) 

 

 Manhattan Distance (Taxicab or City Block Distance): This metric calculates the 

distance between two points by summing the absolute differences of their coordinates. 

For two points P=(p1,p2,...,pn) and Q=(q1,q2,...,qn), the Manhattan distance d is given 

by: 

d(P,Q ) = ∑ ⃓𝑝𝑖  − 𝑞𝑖⃓𝑛
𝑖=1                                       (2.6) 

 

 Minkowski Distance: This is a generalization of both Euclidean and Manhattan 

distances. It calculates the distance between two points using the p-th root of the sum 

of the absolute differences raised to the power of p. For two points P=(p1,p2,...,pn) 

and Q=(q1,q2,...,qn), the Minkowski distance d with parameter p is given by: 

d(P,Q ) = (∑  𝑛
𝑖=1 ⃓𝑝𝑖  − 𝑞𝑖⃓𝑝) 1

𝑝
                                    (2.7) 

 

When p=2, it reduces to the Euclidean distance, and when p=1, it reduces to the 

Manhattan distance. 

 
 Advantage: 

 
- Simple Implementation: KNN is straightforward to understand and implement, 

making it a good choice for beginners and for quick prototyping of 

classification tasks. 

- No Training Phase: KNN is a lazy learner, meaning it doesn't explicitly train a 

model during the training phase. Instead, it stores the entire training dataset 

and makes predictions based on the closest instances during the testing phase. 

This makes the training process very fast. 

- Non-parametric Nature: KNN is a non-parametric algorithm, meaning it 

makes no assumptions about the underlying distribution of the data. It can 

perform well on datasets where the decision boundary is highly irregular or 

nonlinear. 
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 Limitations: 

 
- Computational Complexity: KNN can be computationally expensive, especially with 

large datasets, as it requires calculating distances between the query instance and all Training 

instances for each prediction. 

- Choosing an Optimal K: Selecting the appropriate value of K (the number of neighbors to 

consider) can be challenging and requires domain knowledge or tuning. 

 Decision tree 

 
A decision tree is a valuable tool used for classification problems, employing a structure 

resembling a flow chart. Each internal node in the decision tree represents a condition or 

"test" Based on an attribute, and the tree branches out accordingly. The leaf nodes of the tree 

contain Class labels, which are determined after evaluating all the attributes. The path from 

the root to a Leaf node represents a classification rule. 

One remarkable aspect of decision trees is their ability to handle both categorical and 

dependent Variables. They excel at identifying the most influential variables and effectively 

depicting their Relationships. Decision trees play a significant role in generating new 

variables and features, aiding data exploration, and making efficient predictions for the target 

variable. 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

figure II 4:Graphical representation of the Decision Tree 
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 Advantage: 

 

- Interpretability: Decision Trees are highly interpretable models, making them 

easy to understand and explain. Decision rules inferred from the tree structure 

can provide insights into the decision-making process. 

- No Assumptions about Data Distribution: Decision Trees make no 

assumptions about the distribution of the data or the relationships between 

features, unlike parametric models such as linear regression. They can handle 

both numerical and categorical data without the need for extensive pre-

processing. 

- Handles Non-linear Relationships: Decision Trees can capture non-linear 

relationships between features and the target variable. They partition the 

feature space into rectangular regions, allowing them to model complex 

decision boundaries. 

 Limitations: 

  Interpretability: Decision Trees are highly interpretable models, making them easy to 

understand and explain. Decision rules inferred from the tree structure can provide insights 

into the decision-making process. 

- No Assumptions about Data Distribution: Decision Trees make no 

assumptions about the distribution of the data or the relationships between 

features, unlike parametric models such as linear regression. They can handle 

both numerical and categorical data without the need for extensive pre-

processing. 

- Handles Non-linear Relationships: Decision Trees can capture non-linear 

relationships between features and the target variable. They partition the 

feature space into rectangular regions, allowing them to model complex 

decision boundaries. 
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3. Conclusion 

 
In this chapter, we have introduced the fundamental principles, methodologies, and 

strategies for detecting and identifying fake news. Initially, we outlined the key phases 

required for constructing an automated system for detecting fake news. Furthermore, we 

thoroughly examined each phase, scrutinizing and delineating the various methods and 

techniques devised and employed. 

In the next chapter, we delineate, in a sequential manner, the approaches we have 

implemented for this categorization task with the aim of enhancing and achieving higher 

precision. 
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1. Introduction 

The aim of our work is to explore the world of machine learning and natural language 

processing by building a system for detecting and classifying fake news. The various 

components of the architecture of our system are presented in this chapter. 

2. Work environment and tools 

2.1. Programming language 

Python is a high-level, interpreted programming language with dynamic semantics. It is 

widely Popular among a large community of developers and programmers. Python is known 

for its simplicity and ease of learning, which contributes to reducing the cost of code 

maintenance. The extensive collection of libraries, or packages, in Python, promotes code 

modularity and reusability. Moreover, for most platforms, Python and its libraries are freely 

available, both in Source code and precompiled binaries, and can be redistributed without any 

charge. 

2.2. Code editor 

To build our system, we used the code editor PyCharm which is an Integrated 

Development Environment (IDE) specifically designed for Python development. It provides a 

comprehensive set of features and tools to enhance your coding experience, such as intelligent 

code completion, syntax highlighting, debugging capabilities, version control integration, and 

more. PyCharm Offers both free and paid versions, with the paid version offering additional 

advanced features and support. 
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2.3. Python libraries 

Python has a rich ecosystem of libraries designed specifically for machine learning. Here 

are Some popular Python libraries that we used in our work: 

 NumPy: Provides the foundation for numerical computations essential for machine 

learning algorithms. 

 Pandas: Offers data structures and tools for data manipulation and analysis, crucial for 

preparing and cleaning your dataset. 

 NLTK: Natural Language Toolkit (NLTK) provides various functionalities for natural 

language processing tasks. 

 Re: The re module is used for regular expression matching operations. 

 String: This library provides various string manipulation functions. 

 Term color: This library is used for printing colored text in the terminal. 

 Scikit-learn:  is a machine learning library that provides tools for data preprocessing, 

model selection, and evaluation. 

 Matplotlib : It is a plotting library used for creating visualizations. 

 Seaborn: Seaborn is a statistical data visualization library based on Matplotlib. 
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3. System Architecture 

The different stages of our system can be summarized by the following diagram: 

 

 
figure III- 1:The global Architecture of our system 
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3.1. Data preparation 

A. Data collection 

To assess the effectiveness of current evolving methods for categorizing fake news, we 

used a dataset named LIAR consisting of original and manufactured articles [3].This dataset of 

7,796 registered articles presents summary data pulled from a variety of contexts such as radio 

and television interviews, press releases, campaign speeches, and more. 

Each statement in the dataset is accompanied by annotations indicating its correctness, 

title, and context [29]. 

 

 
 

figure III- 2:Example of importing a data package 
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B. Data pre-processing 

Data pre-processing is a crucial step in fake news detection, as it helps to clean and prepare 

the data for analysis and model training. Here are some common pre-processing techniques 

used in our system: 

  Converting text to lowercase: By converting text to lowercase, you ensure that words 

with different cases are treated as the same word, which helps in standardizing the text and 

reducing the vocabulary size. This preprocessing step is commonly performed before 

tokenization and other NLP tasks.

Table III 1: Example of removing lower case 

 

Code 

 

 Text = "Hello, World!" 

 lowercase_text = text.lower() 

 

  print(lowercase_text) 

 

 

Results 

 

hello, world! 
 

 

  Tokenization: is used to tokenize the input text into a list of words. Each word in the 

text becomes a separate token. 

Original Sentence:  

                     Tokenization is an important step in natural language processing. 

Tokens:  

    ['Tokenization', 'is', 'an', 'important', 'step', 'in', 'natural', 'language', 'processing', '.'] 

  Lemmatization: This technique helps in reducing word variations and standardizing the 

data. It converts words to their dictionary or canonical form.
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Table III 2: Example of lemmatization 

 

 

 

 

 

Code 

import nltk 

from nltk.stem import WordNetLemmatizer  

from nltk.tokenize import word_tokenize 

 nltk.download('wordnet') 

 
lemmatizer = WordNetLemmatizer() 

text = "The cats are running and jumping in the garden." 

tokens = word_tokenize(text) lemmatized_tokens =       

[lemmatizer.lemmatize(token) for token in tokens] 

 
print(lemmatized_tokens) 

Result ['The', 'cat', 'are', 'running', 'and', 'jumping', 

'in', 'the', 'garden', '.'] 

 

  Removing punctuation marks: punctuation marks such as periods, commas, question 

marks, and exclamation marks often don’t carry significant meaning and can add noise to the 

text data. Removing punctuation marks helps simplify the text and ensures that the subsequent 

NLP tasks focus on the essential content of the text. 

Table III 3: Example of removing punctuation 

Code import string 

 
Text = "Hello, World!"  

punctuation_removed_text = text.translate (str.maketrans ("", "", 

string.punctuation)) 

print (punctuation_removed_text) 

Result Hello World 

 

  Converting numbers to words: Converting numbers to words is a preprocessing step 

that involves replacing numerical digits with their corresponding word representations in text 

data. This transformation can be useful in natural language processing (NLP) tasks where the 

numerical values are not relevant or need to be treated as words rather than numerical values.
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Table III 4: Example of converting numbers to word 

Code import inflect 

 

p = inflect.engine() 
 

numbers = [123, 4567, 89012, 345678] 

 
words = [p.number_to_words(num) for num in 

numbers] 

 
for num, word in zip(numbers, words): 

 print(f"{num}: {word}") 

Result 123: one hundred and twenty-three 

 
4567: four thousand, five hundred and sixty-seven 
 
89012: eighty-nine thousand and twelve 

 

345678: three hundred and forty-five thousand,  

six hundred and seventy-eight 
 

 

  Expanding in tractions: refers to providing the full form or meaning of an abbreviated 

word or phrase.

Table III 5: Example of expanding in tractions 

Code def expand_abbreviations(text): 

 abbreviations = { "btw": "by the way", 

                            "lol": "laugh out loud", 

                            "omg": "oh my god", 

                            "idk": "I don't know", 

                            "jk": "just kidding"    } 

words = text.split() 

expanded_words = [abbreviations.get(word.lower(),word) for word in 

words] 

expanded_text = " ".join(expanded_words) 

return expanded_text 

abbreviated_text = "btw, idk what jk means. lol!" 

expanded_text = expand_abbreviations(abbreviated_text) 

print(expanded_text) 

 

       Result 
 

by the way, I don't know what just kidding means. laugh out loud! 
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  Removing links: Removing links from text data is a common preprocessing step in NLP 

tasks, especially when dealing with web content or social media data. Links often do not 

contribute to the semantics of the text and can introduce noise or distractions in the analysis.  

 

                                     Table III 6: Example of removing links 

Code import re 

     def remove_links (text): 
     

    url_pattern= re.compile (r'https?://\S+|www\.\S+') 
    text_without_links = url_pattern.sub('', text) 

     
 return text_without_links 

 
example_text = "Check out this website:                  

https://example.com for more information." 
 

text_without_links = remove_links(example_text) 
 
 print("Text without links:") 

 print(text_without_links) 

Result  
Text without links:  

 

Check out this website:  for more information. 
 

 

  Removing multiple spaces: by removing multiple spaces, ensure that the text data is 

normalized and consistent, which can facilitate subsequent analysis or feature extraction steps.

 

Table III 7: Example of removing multiple spaces 

Code import re 

 

def remove_multiple_spaces(text): 

    text = re.sub(r'\s+', ' ', text) 

 return text.strip() 

 

text_with_multiple_spaces = "This   is   an   example          with   

multiple                                                           spaces." 

cleaned_text = remove_multiple_spaces(text_with_multiple_spaces) 

print("Cleaned text:", cleaned_text) 

 

Result 

 

Cleaned text: This is an example with multiple spaces. 
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  Removing stop words: it used to eliminate common words that do not carry significant 

meaning or contribute to the overall context. It can help reduce noise and improve the 

efficiency of text analysis.

 

Table III 8: Example of removing stop words 
 

Code stop_words = ["i", "me", "my", "myself", "we", "our", "ours", "ourselves", 

"you", "your", "yours", "he", "she", "her", "hers", "herself", "it", "they", "them", 

"their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", 

"these", "now"] 

 

 def remove_stop_words(sentence): 

  words = sentence.split() 

 filtered_words = [word for word in words if word.lower() not in stop_words] 

    return ' '.join(filtered_words) 

 

 sentence = "This is a simple example sentence with some stop words that need to 

be removed." 

 

 filtered_sentence = remove_stop_words(sentence) 

 print(filtered_sentence) 

 

 

Result 

 

simple example sentence stop words need removed. 

 
 

 Removing the emoji: Emojis may not always convey meaningful information or may 

introduce noise in the text analysis, so we've replaced them with spaces.  

Table III 9: Example of Replacing emojis with space 

Code import re 

    emojis = [":)", ":(", ":D", "<3", ":P"] 

 
    text = "I am feeling happy today! :) This is a great day. <3" 

 
    for emoji in emojis: 

    text = text.replace (emoji, "")  

print (text) 

Result I am feeling happy today! This is a 

great day. 
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3.2. Data splitting 

 
During this step, the dataset is divided into two subsets: one for training and the other for 

Testing. To achieve this, we suggest a split of 75% - 25%. This implies that 75% of the 

dataset will be utilized for training the model, while the remaining 25% will be set aside for 

testing and evaluation purposes. 

3.3. Data representation 

The data representation plays a crucial role in Capturing relevant information and enabling 

effective analysis. Several data representation techniques can be employed, including Bag-of-

Words (BoW), Count Vectorization, and TF-IDF Vectorization, which We have explained in 

the following: 

1. TF-IDF Vectorization 

TF-IDF (Term Frequency-Inverse Document Frequency) vectorization is a technique used 

to Represent text data by assigning weights to words based on their frequency in a document 

and Their occurrence across the corpus. It provides a more nuanced representation of the 

importance of words in a document. 

Example: 

Text 1: "I love to eat pizza." Text 2: "I love to eat burgers." 

 Step 1: Create a Vocabulary 

The only words are: ["I", "love", "to", "eat", "pizza", "burgers"] 

 
 Step 2: Calculate Term Frequency (TF) 

Text 1 TF: [1, 1, 1, 1, 1,0] 

Text 2 TF: [1, 1, 1, 1, 0,1] 

 
 Step 3: Calculate Inverse Document Frequency (IDF) 

I DF: [0, 0, 0, 0, log (2/2), log (2/2)] (assuming a corpus of two sentences) 

 
 Step 4: Calculate TF-IDF 

Calculate the TF-IDF by multiplying the term frequency with the inverse document 

frequency for each word. 

Text 1: TF-IDF: [0, 0, 0, 0, log (2/2), 0] 

Text 2 TF-IDF: [0, 0, 0, 0, 0, log (2/2)] 
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The TF-IDF vector representations capture the importance of words in each sentence. 

Words that Appear frequently in a specific sentence but rarely in other sentences will have 

higher TF-IDF Values, indicating their significance in distinguishing that particular sentence. 

2. Count Vectorization: 
 

Count vectorization represents text as a matrix of word counts. Each document is 

converted into A vector that captures the occurrences of each word. It considers word 

frequency, offering a More comprehensive understanding of word distribution compared to 

bow. 

 
 

Example: 

Text 1: "I love to eat pizza."           Text 2: "I love to eat burgers." 

 Step 1: Create a Vocabulary 

The only words are: ["I", "love", "to", "eat", "pizza", "burgers"] 

 
 Step 2: Vectorization 

Text 1: [1, 1, 1, 1, 1, 0] 

 
Explanation: The count of each word in the vocabulary is [1, 1, 1, 1, 1, 0] for the words 

["I", "love", "to", "eat", "pizza", "burgers"]. 

The word "pizza" and "burgers" have a count of 0 since they do not appear in Sentence 1. 

Text 2: [1, 1, 1, 1, 0, 1] 

Explanation: The count of each word in the vocabulary is [1, 1, 1, 1, 0, 1] for the words 

["I", "love", "to", "eat", "pizza", "burgers"]. 

The word "pizza" has a count of 0 since it does not appear in Sentence 2. 

 

3. Bag-of-Words: 

 

The bag-of-words (BOW) model is a representation that turns arbitrary text into fixed-

length vectors by counting how many times each word appears. 

 

Example: 

Text 1: "I love to eat pizza." Text 2: "I love to eat burgers." 

Text 3: "I love to eat pizza and burgers." 

 Step 1: Determine the Vocabulary 

The only words are: ["I", "love", "to", "eat", "pizza", "and", "burgers"]  
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Text 1: [1, 1, 1, 1, 0, 0,0] 

Text 2: [1, 1, 1, 1, 0, 0,1] 

Text 2: [1, 1, 1, 1, 1, 1,1] 

 

4. Results and discussion 

The suggested machine learning algorithms necessitate user-defined initialization of 

specific parameters (as outlined in Table 10). Within this framework, it becomes beneficial to 

devise an experimental design or propose methodologies for identifying the optimal parameter 

combinations automatically. Our approach involves exploring various techniques, including 

hyper parameter selection methods, to determine the most suitable parameters for each 

algorithm. Subsequently, we aim to compare the outcomes yielded by the default 

configuration of each algorithm against those achieved through our proposed parameter 

selection methodology. 

Table III 10: Initialization parameters for Classifiers. 

Classifiers Parameters 

Random forests N_estimators == represented the number of forest trees 

Max_depth ==is the depth of the tree 

Min_sample_ split == represents the class nodes 

upper Min_sample_leaf == are the leaves 

KNN n_neighbors == number of neighbors in the voting process 

p_values ==or probability value is, for a model 

given statistic 

Naive Bayes Alpha == probabilité a priori de différences classes 

SVM Gamma == Gamma is a hyper parameter that we must 

define before training the model. Gamma decides to 

curvature we want in a decision limit 

C == Cost of linear separability violation (it indicates to 

SVM optimization to what extent we wish to avoid 

to misclassify each training example). 

Decision Tree 

 

Criterion== The function used to measure the quality of a 

split (e.g., Gini impurity or information gain). 

Max Depth== The maximum depth of the tree. 

Min Samples Split==The minimum number of samples 

required to split an internal node. 
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Min Samples Leaf== The minimum number of samples 

required to be in a leaf node. 

Max Features== The maximum number of features 

considered for splitting a node. 

 

 

4.1. Results of classifiers with and without hyper parameter tuning 

Automatic hyper parameter optimization techniques, also known as hyper parameter 

optimization, automate the process of selecting the best hyper parameters for machine 

learning models. These techniques aim to find the optimal combination of hyper parameters 

that maximize the performance of the model on a given dataset, lead to improved model 

performance and reduced manual effort. 

In this project, we perform grid search method to streamline the process of hyper 

parameter tuning. Grid search is a hyper parameter tuning technique used to find the optimal 

combination of hyper parameters for a machine learning model. It works by searching through 

a predefined grid of hyper parameter values and evaluating the model's performance using 

cross-validation. Here's how grid search works: 

 Define Hyper parameter Grid: Specify a grid of hyper parameter values to search 

through. Each hyper parameter will have a list of possible values to try. 

 Define Evaluation Metric: Choose an evaluation metric to assess the performance of 

the model for each combination of hyper parameters. Common evaluation metrics 

include accuracy, precision, recall, F1-score, or area under the ROC curve (AUC). 

 Cross-Validation: Split the training data into multiple folds. For each combination of 

hyper parameters, train the model on k−1 folds and evaluate its performance on the 

remaining fold. Repeat this process k times (where k is the number of folds) to ensure 

that each fold is used as the validation set exactly once. 

 Select Best Model: After evaluating the model's performance for all combinations of 

hyper parameters, select the combination that yields the best performance according to 

the chosen evaluation metric. 

 Train Final Model: Once the best combination of hyper parameters is identified, train 

the final model using the entire training dataset with these optimal hyper parameters. 
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The table below (Table 10) seems to be showing the performance (in terms of accuracy) of 

different machine learning models on different vectorization techniques (Tfidf Vectorizer, 

CountVectorizer, and Bag of Words) with both default parameters and hyper parameter 

tuning. 

Table III 10: Performances of classifiers with and without Hyper parameter tuning 

 Tfidf_vect Count_vect bow_vect 

Default 
parameter 

Hyper 
parametre 

Default 
Parameter 

Hyper 
Parameter 

Default 
Parameter 

Hyper 
Paramet

re 

Knn 0.8234 0.8828 0.8067 0.8075 0.7981 0.8028 

Naïve bayes 0.8907 0.8901 0.8707 0.8714 0.8687 0.8681 

Svm 0.8780 0.9221 0.8860 0.9094 0.8854 0.9107 

Decision 

tree 

0.7981 0.7841 0.7921 0.8061 0.7728 0.8048 

Random 

forest 

0.8967 0.8947 0.8114 0.8841 0.8054 0.8807 

 

By looking at the table above, the SVM model achieved the highest accuracy (0.9221) with 

the Count_vect vectorizer and a specific hyper parameter setting. The Random Forest 

model performed consistently well across different vectorizer and hyper parameter settings. 

The Decision Tree generally had the lowest accuracy among the models compared. 

The high accuracy of SVM can be attributed to its strong binary classification ability and 

its Compatibility with TF-IDF. TF-IDF reduces the importance of common words while 

Highlighting the importance of rare ones, enabling SVM to deal effectively with text-based 

problems in high-dimensional spaces. The combination of SVM and TF-IDF improves its data 

classification performance. 

The choice of vectorizer and hyper parameter tuning can significantly impact the 

performance of machine learning models for text classification. 

The table only shows accuracy scores, which is one metric for evaluating model 

performance. Other factors like precision, recall, and F1 score might also be important 

depending on the application. So, the results might not generalize to other datasets or tasks. 

It's important to compare different models and settings to find the best combination for 

fake news detection task. 
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The following table illustrates the different hyper parameter settings: 

 

Table III 11: Hyper parameters of all algorithms 

Model                              Best parameter 

Count Tfidf BOW 

 

 

 

Knn 

 

 

                    n_neighbors = 3 

 

                     weights= uniform  

 

                      algorithm=auto 

 

  n_neighbors = 3 

 

  weights=distance 

 

  algorithm=auto  

 

 

Naïve 

bayes 

 
                                   Alpha = 0.01 
 

                                   Fit_prior=true 

 

 

Svm 

 

                       Gamma= ‘scale’  

 

                  C = 10 

 

                  kernel=rbf 

 

       Gamma= ‘auto’  

 

  C = 10 

 

  kernel=rbf 

 

 

 

decision tree 

 

   Max_depth = 10 
 

   Criterion=gini 

 

   Min_sample_ split =2 
 

   Min_sample_leaf =1 

 

 

Max_depth = 10 
 

Criterion= gini 

 

Min_sample_ split = 5 
 

Min_sample_leaf =2 

 

 
  Max_depth = 10 
 

  Criterion= gini 

 
  Min_sample_ split = 2 

 

  Min_sample_leaf = 1 

 

 
 

Random 
forest 

 
   N_estimators ==300 

 
   Max_depth = 15 

 
 N_estimators ==100 

 
 Max_depth = 15 

 

 N_estimators == 300 
 

 Max_depth = 15 
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4.2.   Results using features combination 

 
It is important to highlight that comparable results were attained by employing the 

automatic hyper-parameter settings and Default Initialization. This symmetry can be 

attributed to the combination of each pair of features. The table below (Table 12) presents the 

obtained outcomes: 

Table III 12: Accuracy of algorithms using features combination 

 Tfidf+cont_vect Tfidf+bow_vect 

Default 
parameter 

Hyper parametre Default 
parameter 

Hyper parametre 

Knn 0.8161 0.8068 0.8187 0.8068 

Naïve bayes 0.8194 0.8195 0.8194 0.8195 

Svm 0.8474 0.8648 0.8647 0.8648 

Decision tree 0.7748 0.7975 0.7748 0.7948 

Random 

forest 

0.8674 0.8734 0.8640 0.8754 

 
The table above includes a comparison of the performance of several models using a range 

of different parameters, using Tfidf with Count_vect and bow_vect: 

- SVM shows strong performance with a significant difference between the default settings 

and after hyper parameter adjustment. 

Naïve Bayes shows stability in performance regardless of the hyper parameter. 

Random Forest shows superior performance, especially after hyper parameter tuning. 

-Decision Tree also benefits from hyper parameter tuning. 

- Knn shows a slight improvement after adjusting the hyper parameter. 

 

Therefore, the control results depend on the nature of the data and its ability to be 

improved, and the results may differ by choosing different hyper parameters. 
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The following table illustrates the used hyper-parameters: 

Table III 13: Hyper-parameters of algorithms using features combination 

 

Model Best Par_tfidf+bow Best par_tfidf+cont 

 
 
Knn 

 

  n_neighbors = 9 

 

  algorithm=auto  

 

  

  n_neighbors = 9 

 

  algorithm=auto  

 

 
 
Naïve bayes 

 
Alpha = 0.5 

Fit_prior=false 

 

Alpha = 0.5 

Fit_prior=false 

Svm        Gamma= ‘scale’  

 

       C = 1 

 

       kernel=rbf 

 

      Gamma= ‘scale’  

 

 C = 1 

 

 kernel=rbf 

 

 

Decision tree 

 
     Max_depth = 5 

 
Criterion=gini 

 

Min_sample_ split =2 

 

Min_sample_leaf =1 

 

 

 
    Max_depth = 5 

 
Criterion=gini 

 

Min_sample_ split =5 

 
Min_sample_leaf =2 

 

Random forest 

 
N_estimators =100  

 

Max_depth = none 
 

Bootstrap=false 

 
Criterion=gini 

 

Min_sample_ split =5 
 

Min_sample_leaf =1 

 
N_estimators =500 

 
Max_depth = none 

 

Bootstrap=false 
 

Criterion=entropy 

 

Min_sample_ split =5 
 

Min_sample_leaf =1 
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4.3. Comparison 

We will compare the accuracy of each applied algorithm with the properties using hyper- 

parameters, as shown below. 

 Accuracy of algorithms with properties for extraction using Hyper parameter 

 

figure III- 3:Accuracy of algorithms with properties for extraction using hyper parameter 

 

1- k-Nearest Neighbors (knn): 

It is shown that knn performs well using the tf-idf transform (tfidf_vect) with a score of 0.88, 

but slightly underperforms using the count (count_vect) and bag-of-words (bow_vect) 

transforms. This indicates that the tf-idf conversion helped improve the performance of knn. 

2-Naive Bayes: shows consistent performance across all types of transformations, and 

delivers the highest accuracy using a tf-idf transformation of 0.89. This shows the 

effectiveness of the Naive Bayes model in dealing with a variety of data transformations.  

      3- Support Vector Machine (SVM): 

shows superior performance with all types of transformation models, achieving the highest 

accuracy scores among all models. This indicates the power of SVM in dealing with different 

data transformations and its effectiveness in separating classes. 

4-Decision Tree: 

The results may indicate that Decision Tree has slightly lower performance compared to some 

other models, especially using tf-idf and bag-of-words transformations. There may be a need 

to modify model parameters to improve its performance. 
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      5-Random Forest: 

      shows strong performance with all types of transformations, especially with tf-idf and 

count transformations. Random Forest is a model that addresses the problems of random 

increase and performance improvement. 

In conclusion, the choice of model depends on several factors such as the type of data, the 

size of the data, and the goal of the task. It is preferable to conduct a detailed analysis of the 

individual characteristics and needs of the problem you are facing to make the appropriate 

decision about the model to use. 

 

 Accuracy of algorithms with properties for extraction using Default Initialization 

 

figure III- 4:accuracy of algorithms with properties for extraction using Default Initialization 

After analyzing the results, we note that : 

 KNN (k-Nearest Neighbors): 

 It is noted that the performance of KNN is similar using different representation techniques 

(Vectors), with accuracy ranging between 80% and 82%. This indicates that the KNN model 

is not significantly influenced by the method used to represent text. 

 Naive Bayes: 

Excellent performance is demonstrated using `tfidf_vect` with 89% accuracy. However, the 

performance drops dramatically with `tfidf+cont_vect` and `tfidf+bow_vect` to 82%. This 

indicates that using features such as `count_vect` and `bow_vect` does not effectively 

contribute to improving the performance of Naive Bayes. 
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 SVM (Support Vector Machine): 

 It is noted that SVM using `count_vect` and `bow_vect` has an accuracy of 89%, which is the 

highest value in this table. This indicates that the SVM model makes significant use of the 

representation of text using Bag of Words (`bow_vect`) and Frequency Count (`count_vect`) 

representation. 

 Decision Tree: 

The Decision Tree model shows modest performance regardless of the technique used. The 

accuracy level ranges between 77% and 80%. It seems that Decision Tree does not depend 

much on the type of representation used. 

 Random Forest: 

 Random Forest shows excellent performance using `tfidf_vect` with 90% accuracy. This 

indicates that representing text by Term Frequency-Inverse Document Frequency 

(`tfidf_vect`) contributes significantly to improving the performance of this model. With other 

techniques, a decrease in performance is shown due to the representation effect. 

 

In general, it turns out that `tfidf_vect` repeatedly emerges as the best technique in most 

models, especially in the case of Random Forest and Naive Bayes. However, performance can 

vary depending on the nature of the data and the type of task, so it is preferable to choose the 

optimal technique based on the project context and classification requirements. 

 

5. Conclusion 

 
    In this chapter, we outlined the technical framework of our fake news detection system, 

exploring the tools and methodologies employed in its development. We highlighted the 

importance of Python and its libraries, such as NLTK and Scikit-learn, in facilitating machine 

learning tasks. Data preparation techniques, including preprocessing and representation 

methods like TF-IDF Vectorization, were elucidated. Additionally, we evaluated various 

machine learning algorithms, identifying optimal parameter settings and feature combinations 

for fake news detection. Overall, this chapter underscores our commitment to leveraging 

machine learning and natural language processing to combat fake news proliferation 

effectively. 

 

 



48 

General Conclusion 

 
  

 

 

General Conclusion 

In conclusion, this research addressed the critical task of detecting fake news on social 

media, using basic concepts and principles. The exploration phase included a comprehensive 

review of existing methods for identifying fake news, with a particular focus on supervised 

learning algorithms. 

     Various machine learning algorithms, including Tfidf, Kent, and Bow features, were 

considered for fake news detection. The research team opted for the Support Vector Machine 

(SVM) as the primary method for detecting fake news. 

      However, significant progress was demonstrated when using SVM with Tfidf features, 

demonstrating its superiority over other combinations. This specific configuration, with finely 

tuned hyper parameters, resulted in a remarkable accuracy rate of 92.21%. Hence, we 

conclude that SVM emerges as the most effective algorithm for detecting fake news, due to its 

strong capabilities in dealing with the complex nature of misinformation on social media 

platforms. The success achieved with SVM underscores the importance of exploring and 

refining machine learning models to adapt to the evolving challenges posed by fake news. 

Future works 

 Develop advanced machine learning models: More complex and sophisticated 

models for detecting fake news should be explored and developed, including deep 

learning and end-to-end learning techniques. 

 Improving the quality and quantity of data: It is important to collect larger and 

more diverse datasets to train models, while ensuring the quality and validity of the 

data. 

 

 Integrating information from multiple sources: The accuracy of fake news detection 

can be improved by integrating information from multiple sources, such as social, 

biological, and historical data. 

 

 Developing continuous updating mechanisms: Mechanisms must be established to 

update models and databases on a regular basis to keep pace with developments in 

the spread of fake news and its changes. 

 

 Enhance transparency and accountability: Transparent criteria should be established 

to assess the performance of fake news detection models and ensure that 

stakeholders are held accountable when needed. 
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