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Abbreviations

e ODE : Ordinary differential equation.

e PDE : Partial differential equation.



Symbols

The set of natural numbers.

The set of real numbers.

The set of complex numbers.

Re(z) A real part of a complex number Z.

0; = 8‘?&_ Partial differentiation with respect to x;

0, = % The directional derivative along the outer normal v

LP(Q) Space of p-th integrable functions on €2 with respect to the Lebesgue measure
dx, for p € [1,400].

L>(9) Space of essentially bounded functions on 2.

H™(Q) Sobolev space of order m, for m € N

H; (Q) Space of functions in H' vanishing on the boundary

cm(Q) Space of m-times contimously differentiable functions on w, for m € N

H* Conjugate function of H.

Au=73"", % Laplacien of u

Il A norm associated with a scalar product.

(.,.) Scalar product.

D(Q) = C*(Q2) | Test functions space.
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Introduction

The von Karman plate model is a nonlinear "large deflection" elastic plate model,
analogue of the Kirchhoff model. However, it is assumed that the vertical deflection
is small in comparison with the lateral dimensions of the plate. This hypothesis (and
others) leads to a coupled pair of fourth-order, nonlinear partial differential equations for
the vertical displacement u and the Airy stress function v. One of the equations is elliptic
while the other is hyperbolic if rotational inertia is taken into account; otherwise, it is
parabolic. The coupling takes place through quadratic nonlinearities in the second-order
spatial derivatives of u and v. Transverse shear effects are not modeled. In the study of
the energy decay of the von Karman system, we are concerned with analyzing the rate at
which the energy dissipates over time and the influence of memory and time delay on the
stability of the system. The objective of studying the energy decay of the von Karman
system is twofold:

Stability Analysis: The energy decay analysis helps determine the stability and
long-term behavior of the system. By examining the rate at which the system’s energy
dissipates, one can assess whether the system tends to a stable equilibrium state or exhibits
unstable behavior. Understanding the stability properties of the von Karman system
is crucial for predicting and controlling the plate’s response under different loads and
boundary conditions.

System Optimization and Design: Analyzing the energy decay provides insights
into the efficiency and performance of thin plate structures. The rate at which the energy
dissipates can inform the design and optimization of plate-like structures to minimize en-

ergy losses, enhance stability, and improve overall structural integrity. By understanding
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how the energy decays in the system, engineers can make informed decisions regarding
material selection, structural configurations, and load-bearing capacities.

We study the energy decay of von Karman equations with, or without, rotational forces
inertia, with memory and discrete time delay. In the first chapter discuses some of the
previous concepts and knowledge of the energy method and types of time delay. In the
second chapter we consider the case of von Karman equations with rotational inertia,
infinite memory and hinged boundary conditions.This chapter is based on the paper [36].
In the third chapter we study the same problem as in the second chapter with constant
discrete time delay. In the last chapter we study the von Karman equations without
rotational inertia, with Dirichlet boundary conditions, finite memory and discret variable

time delay.This chapter is based on the paper [11].




Chapter 1

Preliminaries

1.1 The Spaces L* for p € [1,+]

We assume known the definition of (Lebesgue) measurable functions and of the space

L'(Q) of summable functions on €2, endowed with the norm defined by || f|l1 = [, |f(z)|dz.

Definition 1.1.1 The space of functions on 2 with summable functions p-th
powers is defined by

LP(Q,C) = {u measurable on (), with measurable on in C | |u|” € L'}

Let L*>(€2) be the space of measurable functions f such that

Ja > 0,mesE, = mes{z||f(z)| >a} =0

This is a normed space with norm || ||« = inf{a | mes(E,) = 0}

see(]2])

Theorem 1.1 — Young’s Inequality with a Parameter

Let a and b two non-negative real numbers. For all A > 0

1 2 Ap2
&béﬁ& +§b

Proof. Suppose that a and b are in [0, 00[, and A > 0. We know that (a — Ab)? > 0.

As a result
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2Xab < a® + \?0? = ab < %bz + %az m

Lemma 1.1.1 — Modified Young’s Inequality

Let a,6 >0, € >0, p,g > 1, %—i—%:l.

Then
caP el Tpe
ab < — +
p q
If p=q =2, we result that
b < ca? N b?
a PRN— JE—
- 2 2e

1.2 Holder Inequality and the Completeness of L”

For f € LP(Q) and g € L” () with real numbers p and p’ satisfying 1 < p < oo and
1/p+1/p’ =1, we have the inequality
Jo L F(@)g(w) | do < [fo |f(@)[Pda]" - [, |g(2)[” da] /7",

This inequality can be generalized by considering real numbers p; > 1 such that the

sum of thier inverses euquals 1:

Vi€ L, [o Lf;(x)|de < TI[( [, | f51P7)M/P7)

see(]2])

1.3 (Lebesgue’s) Dominated Convergence Theorem

Let (f,,) be a sequence of measurable functions on measure space (S, 3, u).
Suppose that (f,) convergences pointwise to a function f an is dominated by some
Lebesgue integral function g, i.e. |f,(x)| < g(z) VYn and Vz € S.

Then, f is Lebesgue integrable, and

10
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1.4 Sobolev Spaces and Embedding Theorems

Definition 1.4.1 Let Q be an open subset of R”. Form € Nand 1 < p < 400,
the Sobolev space denoted by W™P(Q2) consists of the functions in LP(€2) whose
partial derivatives up to order m, in the sense of distributions, can be identified
with function in LP(Q).

For these derivatives, we set & = (v, ......,an)and | a |= SV o;. Moreover, we use
the notation

D% = % the definition above can now be written as

WmP(Q) = {u € LP(Q) Va € N", |a] < m = D*u € L*()}

see(]2]).

Remark 1.4.1

e For p = 2, the notation W™?(Q) is generally replaced by H™(1Q).

e When © = RN we can use the Fourier transform & — u(€) of a function u

in L?(RY) to give the following equivalent definition :

WmARYN) = H™(RY)={u € L*(RV)[¢ — (1 + [¢]*) 20(¢) € L*(RY)}.

Proposition 1.4.1. The space W™P(Q2) endowed with the norm defined by

[Zog\a|gm HDQUHIEP(Q)]I/Z) if 1<p<+oo
[ullwme) = |
maxo<|a|<m || DU () if p = 400.

is a Banach space. For p € [1,+o0], this space is uniformly convex and there fore a

reflexive space. The space H™ endowed with the inner product.

Definition 1.4.2 Let Q be an open subset of RY, either bounded or not. We
let W5"P(€2) denote the closure of the space D(Q) in W™?(Q) for the norm ||. ||,
In general, finding an intrinsic characterization of the functions in W;™?(Q) is not

obvious and depends strongly on the structure of . When = RY, a method

11
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involving truncation and regularizzation allows us to show the following result.

Proposition 1.4.2. The space D(RY) is dense in W™P(RY), so that

W (RY) = g (RY)

1.5 Sobolev Embeddings for W"?(R")

1.5.1 Definition of Functional Spaces

Given an integer j > 0, we define the family of spaces C’g (RY) by setting

Cy(R") = {u € C/(R") | Va € N", | a |< j, 3Ka, | D@ul|o < Ko}
For a positive real number )\, the subspace CZ”\(R”) consist of the functions in C’Z (R™)
such that if || < j, then
ACun, V2, y € R™, | DWu(z) — DDu(y) |< Con | 2 —y |

see(]2])

1.5.2 Sobolev Embedding Theorem

Definition 1.5.1 Let X and Y be two normed spaces. We say that X is
embedded in Y if there exists a contiunous injection ¢ from X to Y, that is an

injection 7 and a constant C' > 0 such that
Vee X |i(z)lly < Cllflx-

we denote the embedding by X — Y.
We call the embedding compact if the operator ¢ is compact, that is, if it maps a
bounded subet of X to a relatively compact subset of Y. We denote the compact

embedding by

X =Y

12
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T

heorem 1.2

For p > 1 and m € N, we have :

e If N > mp and p > 1, then for every ¢ satisfying p < g < Np/(N — mp), we
have W™P(RY) < L4(RY). More precisely, under the given condition, there

exits a constant C such that

Vo € WmPRY), [lolly < Cllellwmse
e If p=1, we have WNH(RY) — Cy(RY).

o If N = mp and p > 1, then for every ¢ satisfying p < ¢ < oo, we have

e (RN) < LI(RN),

o If mp> N, N/p ¢ N, and j satisfies (j — 1)p < N < jp, then

0<A<j—N/p= WmPRY) — C" RN,

If mp>NeNandm >j=N/p+1, then WmP(RY) — C;an/p—l,,\(RN)

e If p > N, then we have
0 < )\ S 1 — N/p — lep(RN) (SN C£7A(RN>

see(]2])

T

heorem 1.3

Given a Lipschitz open set €2, we have:

e (1) If N > mp, then W™P(Q) — L4 for every ¢ < Np/(N — mp).

e (2) If N = mp, then W™P(Q) — L% for every ¢ < oo. If p = 1, then

WML < Cy(Q)

e (3) If mp > N with N/p ¢ N and if j satisfies (j—1)p < N < jp, then we have

13
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WmP(Q) < C* 7 MNQ), YA < j — N/p.

e If N/pe Nandm > j = N/p+1, then W™P(Q) — C?_(N/p)_l’A(Q) for every

A<1

see(]2]).

T

heorem 1.4

Let ©2 be a bounded Lipschitz open subset of R”, where N > 1. If N > mp, then
the embedding W™P(Q) — LI(2) is compact for ¢ < Np/(N — mp)

see([2]).

Corollary 1.5.1. For any bounded Lipschitz open subset 2 of RN we have

Wi(Q) —. LY(Q)

1.5.3 Trace theorem

The trace operator can be defined for functions in the Sobolev space W™P((2), with
1 < p < oo see the section below for possible extensions of the trace to other spaces. Let
Q2 C R” for n € N be a bounded domain with lipschitz boundary. Then there exists a

bounded linear trace operator
T s WMP(Q) — Tl Wm==1/pp(9Q).

The operator T;, extends the classical normal traces in the sense that

T = (uloq, Ontt]aq, ..., 0" Lulsq) for all u € W™P(Q) N C™ ().
Finally, the space W;""(Q), the completion of C2°(€2) in the W™?(Q) norm can be char-
acterized as the kernel of T,, i.e.

Wy (Q) = {u € W™P(Q)|T,,u = 0}

see(]2]).

14
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Theorem 1.5 — Generalized Green’s Formula

Let Q be a class C' open subset of R". Let U be element of W'?(Q) and let
¢ € D(R™); then

Jo VU () - p(x)dx + [, U(z)divp(z)de = [,, ToU(s)e(s) - ii(s)do(s).

In this formula, do(s) is the superficial density on 0f), 7 is the outwar-pointing
unit normal to 0%, the terms VU(z) - p(z) and ¢(s) - 7i(s) are inner products of
vectors in R™, and the divergence of ¢ is defined to be divp(z) = Y"1 | 0;(v;)(x)

see([2]).

Lemma 1.5.1 — Gronwall Inequality

We assume that v € C([0.T],R) T €]0, o[, satisfies the differential inequality

u < a(t)u+b(t) on (0,7,
for some a,b € L'(0,T). Then u satisfies the primitive estimate
u(t) < eA®u(0) + fot b(s)eAW=AE)ds, vt € [0, 7]

where we have defined the primitive function A(t) := fg a(s)ds

see([3]).

1.6 Differential Equations with Delay: Brief Overview

Hereditary systems are characterized by the dependence of the state of the system on a
period or a certain moment in the past. Such systems are often modeled by introducing
functions with delayed arguments into partial differential equations (PDEs). Let u =
u(z,t) be the unknown function and w be the function with time delay. Then, we have

several different possibilities:

1. PDEs with constant delay (or, usually, PDEs with delay) contain a function w of

15
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the form w = u(x,t — 7), where 7 > 0 is the constant delay time;

2. PDEs with proportional delay contain a function w of the form w = u(z, gt), where

q is the scaling parameter, 0 < ¢ < 1;

3. PDEs with variable delay contain a function w of the form w = u(z,t — 7(t)), where

7(t) > 0 is the variable delay][1].

Remark 1.6.1

Delays of types (1), (2), or (3) can also occur in the argument z.

Remark 1.6.2

If there is no dependence on x, one can easily have similar items for delay ordinary

differential equations (ODEs)

In more complex cases, the variable delay can depend either on the spatial coordinate,
i.e., be spatially anisotropic, 7 = 7(x), or on both spatial and time arguments, T = 7(x, t),

or even on both arguments and the desired solution, 7 = 7(z,t, u).

1.7 PDEs with Spatially Anisotropic Time Delay

By saying a PDE with spatially anisotropic time delay (briefly, a PDE with anisotropic
time delay) we mean a functional-differential equation that, in addition to the desired
function u(x,t), also contains a delayed function of the form w(z,t7(x)), where 7(z) is a
given positive function, and partial derivatives of u with respect to x and t. PDEs with
an anisotropic time delay can model delay systems in anisotropic and inhomogeneous
media, in which the signal propagation speed depends on the chosen direction or varies at
different points of the medium. For example, in medicine, this can be differences in the

rate of transmission of a nerve impulse in healthy and sick tissues of the human body.

16
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1.8 An Example on the Effect of Time Delays

This example is concerned with the effect of time delays in boundary feedback stabilization
schemas for wave equations. The question to be adddressed is whether such delay can
destabilize a system which is uniformly asymptotically stable in the absence of delays.

Consider the problem:

(P) w(0,6)=0, t>0...(2)

ur(1,t) = —kue(1,¢), >0 ........ (3)

where a > 0 and k& > 0. The question to treated is the effect on stability of (1)-(3) of a
time delay in the right side of (3) when k& > 0.

On multiplying (1) by u;, we easily derive that

E'(t) = —2a fol uldr — ku2(1,t) < 0.

The energy functional associated to problem (p) is defined as

B(t) =1 [ (u? +u? + a*u?)dx

The spectrum can be exhibited by setting u = e“*¢(x). The eigen-values w and eigen-

functions ¢ are then determined by problem (p)

The eigenvalues are the solutions of

17



CHAPTER 1. PRELIMINARIES

2erta) _ (k—1w—a (6)
(k+1lDw+a

If a=0and k # 1, (5) can be solved explicitly to yield

Re(w) = 1 log |Z—jr}| < 0.

When a = 0 and k& = 1, all solutions of (1)-(3) can be shown to vanish identically for
t > 2. When a # 0 the solution ¢, of (5) can be shown to lie in a half-plane Re¢ < a <0

and to satisfy |Imw,| — +oo.
Now let € > 0 and suppose the boundary condition (3) is replaced by

ur(1,t) = —kuy(1,t — ), t>¢e ...(7)

We have the following results (see [5])

Let L = e~2*. The system (1), (2), (7) has the following stability properties:

e fO<k< 8;3, for each € > 0 there exists §(¢) > 0 such that the spectrum of the

system lies in Re(w) < —f.
o If k= (1—-L)/(1+ L), for each € > 0 the spectrum lies in Re(w) < 0, but there

is a countably dense set M in (0, 00) such that for each € in M there is a sequence

{wn,} in the spectrum such that

lim Re(w,) =0

n—o0

o If k> (1—L)/(1+ L), there is dense open set D in (0, 00) such that for each € in

D the system admits exponentially unstable solution.

18
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1.9 Energy Method

Consider a dynamical system defined on the set Q x R, where u(z,t) is the solution.

Let E denote the energy of the system, which is of the form

E(t) = / [y Uy, ug, .. )dx >0, Vt > 0.
Q

There are two common properties of E:

dFE
1. If i 0, then E is called conserved and the system is conservative.

E
2. If s < 0, then F is called dissipated and the system is dissipative.

Exemplel: Consider the problem (wave problem)

Ut — Ugpy = 0 in ]O,L[XR+
uw(0,t) =u(L,t)=0, t>0

u(z,0) = ug(x), ug(z,0)=wuy(z), in 0, L]

The functional energy of this system defined by

is conserved.

Indeed, using the wave equation and the boundary conditions we get

dE L L L
— = / [Up iy + Uptiy] dr = / [Up Uy + Ugllyy] dT = / [Ug Uty — Ugplly] da:—ir[utux]ﬁig =0.
dt 0 0 0 ——

=0

19
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Exemple2: Consider the problem (diffusion problem)

Up — Uge = 0 1n |0, L[xRT
uw(0,t) =u(L,t)=0, t>0 -

u(z,0) = ug(x) in J0, L]

The functional energy of this system defined by

is dissipated.

Indeed, using the diffusion equation and the boundary conditions we get

dE L L L
— = / Uyl dT = —/ UgpthydT + Uty )"=5 = —/ (um)2 dz < 0.
dt 0 0 — 0

The stability of a system generally refers to its ability to return to its initial state when
an external disturbance ceases. The Lyapunov stability theorem defines the stability of
a system in terms of energy, the biggest advantage of which is that the stability can be

determined without the need to solve the motion equation of the system.

If the system is dissipative, then the energy is decreasing. In order to study the

stability of the system, it is interesting to know the decay rate of this energy.

O System stability is said to be strong if

lim E(t) = 0.
t—ro0
O System stability is said to be exponential (or uniform) if

E'Cl,CQ >0 E(t) < eXp(—CQt), Yt > 0.

20
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O

1.

The Legendre tranformation is a very useful mathematical tool: it transforms functions

on

projective duality and tangential coordinates in algebraic geometry and the construction

of dual Banach spaces in analysis. They are often encountered in physics (for example,

System stability is said to be polynomial if

dep, 0 >0 E(t) <ct™®, Vit >0.

10 Legendre Transformation

a vector space to functions on the dual space. Legendre transformations are related to

in the definition of thermodynamic quantities).

Definition 1.10.1 Let y = f(z) be a convex function, f”(z) > 0.
The Legendre transformation of the function f is a new function g of a new variable
p which is constructed in the following way (Figure 1.1). We draw the graph of f

in the x,y plane. Let p be a given number. Consider the

¥
} f(x)

g(p)

x(p)

Figure 1.1: Legendre transformation

straight line y = pz. We take the point x = z(p) at which the curve is farthest from
the straight line in the vertical direction: for each p the function px— f(z) = F(p, x)
has a maximun with respect to z at the point z(p). Now we define g(p) = F(p, z(p)).

The point z(p) is defined by the extremal condition %—5 =0, i.e., f'(xr) = p. Since

21
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f is convex, the point z(p) is unique, see(|16]).

Exemples:

o Let f(x) = 2® Then F(p,x) = pr —2?, z(p) = 3p, g(p) = 39"

B
)

e Let f(z) =% Then g(p) = &, where (1) + (%) =1

Definition 1.10.2 Two functions, f and g, which are the Legendre transforms
of one another are called dual in the sense of Young.
By definition of the Legendre tranform, F(z,p) = pxr — f(z) is less than or equal

to g(p) for any x and p. From this we have Young’s inequality:

pr < f(z) + g(p).

Example: If f(z) = 322, then g(p) = $p* and we obtain the well-known inequality

1,.2 1,2
pr < 5x° + 5p° for all z and p.

Definition 1.10.3 Let f(x) be a real valued function defined on the interval

I =la,b]. fissaid to be convex if for every x1, 25 € [a,b] and X € [0, 1],
fQx1 4+ (1= Nzo) < Af(21) + (1= A) f(z2).

A function is said to be strictly convex if the inequality is strict for x; # x».

Theorem 1.6 — Jensen’s Inequality

Let ¢ : R — R be a convex function. For any bounded open subset {2 of R™ and

any nonnegative function f € L*(€), we have

O(—5 Jo f(@)dr) < —— [ o(f(x))dx

see|4].

22



Chapter 2

Energy Decay Rate for Nonlinear von

Karman Equations with Memory

2.1 Introduction

von Karman equations describe vibrations of nonlinear plates with large deflection, having
many applicaion in physics, control theory science, viscoelasticity, aerodynamic and so on.
As useful equation comming from the real world, nonlinear von Karmén equations have
attracted many researchers attention and we refer the reader to |9, 16] an the references
therein for more information about the equation. In this chapter, we consider a nonlinear

von Karman equation with infinite memory, subject to the hinged boundary condition:

w + A% — YAy — [u, 0] — [ g(t — s)A%u(s)ds + f(u) =0 in Q x [0, +o0)
A?v + [u,u] =0 in Q x [0, +00)
u=Au=0,v="29=0 in 0 x [0, 4+00)
| uw(z, —t) = uo(z,t), ue(x, —t) = puo(z, 1) in  x [0, +00)
(2.1)

where u = u(z,t) represents the displacement of a plate, Q@ C R? is a bounded domain
with smooth boundary 0f2, v is the unit outward normal vector along the boundary,

~ > 0, the memory kernel g is positive, f(u) represents a source term, and [u,v] is the

23



CHAPTER 2. ENERGY DECAY RATE FOR NONLINEAR VON
KARMAN EQUATIONS WITH MEMORY

Von Karman bracket defined by [u, v] = Uy, Vyy + UyyVss — 2Usgy Uy

Hypotheses

i) The memory kernel function g satisfies:

g :10,00) — (0, 00) is a non-increasing and locally absolutely continuous function

satisfying
g'(t) < =&(t)g(t),£(t) > 0,&(t) <0,vt >0,

and 1 — [Z g(s)ds =1 > 0.

In addition, we have
meas(X) = 0, where ¥ := {s > 0: ¢'(s) = 0}, (2.2)

and [°&(s)ds = oo,

ii) The nonlinear function f satisfies:

feCHR), | f'(t) |< Co(1+ | t ), Vt € R (with constants Cy > 0 and p > 0), and

tf(t) = CoF(t) > 0,¥t € R (2.3)

with a constant Cy > 0, where F(t) := [} f(s)ds.

Definition 2.1.1 Let (.,.) and |.|| denote the inner product and the norm of
the element in L*(Q) respectively. For a Hilbert space X, L(R* X) is a X -valued

function space equipped with the norm

HUHQ’X = o+oo g(S) (u($)7 U(S))de

set V=HNH?Vi={ue H}Q) :u=Au=0on 00}

Then, we define the phase spaces

H =V x Hg(Q) x Ly(R*, V) with [|(u, ug, n)[17, = [|Aul* + [[Vo]* + [[n][5,v-

H' = Vi x V' x L(RT, Vi) with || (u, ug, )| = [|Aull* + [[VA0||* + |[n][7, V1.
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Lemma 2.1.1

Let u, p,v € H?(Q2). If at least one of them belongs to H3(2), then

If o = o(u) := —(A%) u, u], then

I[w, ]| < Chllullm2l|@llwaee < Collul3:, with constant Cy, Cy > 0. (2.5)

We refer the to [9] for proofs of the above lamma.

We follow Dafermos [6], we define, n = n'(x, s) = u(x,t) — u(x,t — s). Then (2.1) trans-

forms into the system:

( Uy + I uy — yAuy — [u,v] — [7° g(s)A%nds + f(u) =0 in Q x [0, +00)
A% + [u,u] = 0,1 + 1 = uy in Q x [0, +00) (26)
u=Au=0v=2=0n=Ap=0 in 90 x [0, +00)

L u(,0) = uo(x), uy(x,0) = w(x),n°(x,5) = no(, 5) in Q x [0, +00)

here no(z, s) == ug(x) — ug(x,s), and [ :== 1 — [;* g(s)ds (positive by hypothesis).

Proof. Let n =n'(z,s) =u(x,t) —u(r,t —s) ,and 2 =1t — s :

ne = ug(z,t) — ug(z, 2) = ug(w, t) — % X % = uy(x,t) — %
o o ou 9z _ Ou(z,z)
Ns = US(x7t) - us{xaz) =9 8 — oz

then ns +n, = w(x, t),

n°(z, s) = u(z,0) — u(z, —s) = ug(z,0) — ug(x, s) = up(x) — uo(x, s) = mo(z, )
and A%t (z,s) = A%u(z,t) — A%u(z,t —s), 2=t —s=s=t—zand ds = —dz
[' gt — 8)A%u(s)ds = [° g(2)A%u(t — 2)dz = [° g(s)A%u(t — s)ds

A2u(t — s) = A2u(t) — A2n(s),
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then fo $)A*u(t—s)ds = [° g(s)A%u(t)ds— [J° g(s)A%'(s)ds = ([, g(s)ds)A%u(t) —
J22 g(s) A%t (s)ds. 0
Now, we state a well posedness result about problem (2.1), which can be proved with

the arguments in [14].

Proposition 2.1.1. (Well-Posedness) Let T > 0 , for every zq = (ug,u1,m0) € H, the
problem (2.6) has a unique weak solution z = (u, u;,n) € C([0,T]; H). For each t € (0,7,
the mapping zyp —— z(¢) is continuous in H. If furthermore z; € H', then z has higher

regularity
u € L>(0,T;Vi),u € L=(0,T;V), n € L*(0,T; L;(R*, V1)).

Corollary 2.1.1. Define the energy functional of the nonlinear von Karman system by

1) = Yol + LIAul? + 31Vl + HIS0lR + 3 [ o(s)|Anlds + J, Pl
Noticing v = —(A%) " u, u], we have
vl|? U,
HIESTCD Y75 0 WPV PR O Y O

in view of (2.6). Hence

1 [t~

= An'(s)||*ds <0 2.7
=5 gl < 27)
the energy is decreasing.

Proof. Let the system (2.6)

U + LA Uy — VAU — — 7 g(s)A%nds + f(u) = in Q x [0, +00)

A% + [u,u] = 0,1 + 1y = uy in Q x [0, +00)

u:Au:O,U:%:O,n:Anzo in 00 x [0, +00)
L u(w,0) = uo(x), uy(x,0) = w(x),n°(x, 5) = no(, 5) in Q x [0, +00)
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We multiply the first equation by u; and integrate over {2 we get :

fQ ugtdr + lfQ A%uudr — 7fQ Augudr — fQ w, v]updr + fQ fo s)A*nds)usddr +
Jo f(w)udz = 0.

) 02y _ _ 19,2
e (1) Simplification of fQ U urdr @ We use o (uf) = 2ty = Uy = 5 5;U;

then [, upwde =3 [, Zulde = 2{1|ju|*}

e (2) Simplification of [, A®uu,dx : using the Green’s formula and the boundary
conditions we get
Jo A%u-wde = [, A(Aw)wdr = [, Aulwdx + [, On(Au)udo — [, Aud,udo =

fQ AuAu,dzx.

e (3) Simplification of fﬂ Augupdr using the Green’s formula and the boundary con-

ditions we get

fQ Auttutdx = faﬂ 8nuttutd0 - fQ VuttVutda: = — fQ VuttVutdx

= —1/22 [ (Vu)?dx = —1/22 || Vu,|*.

e (4) Simplification of [, [u, v]udx:

Jolu, v]ude = [, [u, uJvdz, using

d

Sl ] = [u, w] + [ug, u) = 2[u, uy]

[, ue] = 5 g [u, ]

then [, [u, v]udz = [, 3L u, ulvdz,

using the equation A%v = —[u, u]
then
Jolu, vwdr = =1 [ L(A%v)vdr = -1 [ A?vvde =

—% fag &LAvtvdo—l—% f@ﬂ Avtﬁnvda—% fQ AvAvdr = —i% fQ(Av)Qda: = —}l%HAUHQ.
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e (5) Simplification of [, fo s)A?ndsusdz: using Fubini lemma and integration by

parts and Gronwall inequality, we get

fQ fo s)A%ndsuydr = fQ fo s)Anuydsdr = fo f A?nuydxds

Jo A%nude = [, OnAnuydo — [, AnVuydo + [, AnAude,

given that Au, = An, + An,, we have

I5" a(s) Jo APnugdads = [° g(s) [o AnAwdads = [° g(s) [o An(Ane + An,)dads

= fooo fQ Aﬁﬁmdﬂﬁdﬁfooo fQ AnAnsdrds = %fooo (s) tHAnHst—i— fo ”AWH%ZS

=12 [ g(s)||Anllds + L[g(s) | An||2]ge — L [ '(s)[| Anl[>ds

=35 Jo 9(s)lAnlPds — 5[5~ g'(s)]| An|*ds
e (6) Simplification of [, f(u)udx:

= r)

aff _ dIf du _ f(y) .y, then

dt du  dt

Jo fu)wde = [, % dFdx— & o F(u)dzx

Then we have, by using (1)-(5) and (6) :
Jo uwwdr + 1 [ APuyudr — v [ Augude — [ [u, v]ude
— [ f (s)APnds)ud + [, f(u)ude

= & l5luel?l + 51 Au)?] + Z3IIVuel?] +

alGI AL+ 55 57 ()| AnllPds — 5[5 g/ ()| Anlds + g [, F(u)dz = 0.
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Therefore

fQ Uttutdﬁﬂ +1 fQ AQUttutdx - fQ Auttutdm

— Jolus vz = [ (J°., o(8)N2nds)udd + [ f(u)uidz = &[5l + 4 Au?

+ 3 IVul P11 + 5 [ g(s) |1 AnllPds + [, F(u)dx] = 5 [;” ¢'(s)]|An||*ds < 0
— 4F(t) <0.

[
Now we present the energy decay rates. Write h(t) = [, g(s)ds.
Theorem 2.1
When the initial datum satifies [ h(s)||Aug(s)||?ds < oo, the energy of (2.6) has

the estimate

with a positive constant C.

To derive the energy decay rate, we introduce some auxiliary functions and give some

estimates about them. Define

o(t) = (u(t), u(t)) +~v(Vu(t), Vu(t)),
—(f5"y s)ds,u(t)) —v( [y g s)ds, Vuy(t)),
R(t) = fo h(s)||Au(t — s)||2ds.

A simple calculation yields that for ¢ > 0,

— at fo s)[|[Au(t — s) |2d8 = fo di(HAu(t - S)H )ds

= Jo" ) g (1Au(t = 9)*)ds = = [~ g(s)([|Aut = 5)[[*)ds + h(0) | Au(®)]|*
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< Jo 9)IAu)|* = 3l Au(t — s) — Au(t)[?|ds + h(0) ]| Au(t)|
Jo gl Aut)|P=3llAu(t—s)—Au(t)|*]ds = =3 [~ g(s) | An'(s)[*ds+ [ g(s)[| Au(t)||*ds

= =5y 9(s)1An"(s)[*ds + R(0) [ Au(t)||*.

This gives

R(t) < _%/OOO g(s)| A (s)|ds + 2h(0)[Au(t)[?, Vi > 0. (2.8)

Lemma 2.1.2

For any constant €3 > 0, we have

() < fluell® + A Vel |* = ] Aul* = [|Av]]* = (u, £(u)) + es]| Au]]®

L[> g(s)?
des Jo o Js(s)

ds/ Js(s)||Anl*ds, ¥Vt =0
0

Here and in the sequel, Js(s) := dg(s) — ¢'(s), for § > 0.

Proof. By the definition of ¢, and using the first equation in (2.6) and Young’s Inequality

With a Parameter shows

@'(t) = gro(t) = (ue(t), ue(t)) + (u(t), uee(t) +7(Vue(t), Vue(t)) +4(Vult), Vue(t))

= Jue(O* + AN Vull* + (ult), wa(t)) + ¥ (Vu(t), Vuu(t))

= w1 + VI Vurl* + (u(t), —1A%u + [u, o] = [~ g(s)A%nds — f(u))

30



CHAPTER 2. ENERGY DECAY RATE FOR NONLINEAR VON
KARMAN EQUATIONS WITH MEMORY

+ (u, =yAuy) + y(Vu(t), Vuy(t))

= [lwe@)I* + Vel * + (u(t), 1A%+ [u, 0] = [;7 g(s)A%nds — f(u)).

From ([u,v],u) = ([u, u],v) = —(A%v,v) = —||Av|?, we have

& (8) = el + | Vel = 1 Al — [ %02 = ([ g(s) Ands, Aut)) — (u, ().
Using Holder inequality:

(Jo~ g(s)Ands, Au(t)) < || [;~ g(s)Ands||]| Aull,

then

— 4€3||f0 \/ Ands”z + 63||AU”2 = des fQ 00 gjs(s \/ AndS Qd.T +

E3IIAUI|2

< JoUyT 555ds)(J5° Jo(s)Ands)d + es]| Aul 2

<t dsfo Js(3)||An||2ds + e3||Aul|?

de3 Js(s

and therefore

(1) < fluel® + A Vue|* = U Aul* = [ Av][* = (u, f(u)) + es]| Aul|?

L [0 gl sds [ J5(s) || An||ds, Vi = 0.

463 0 Js(s)

Lemma 2.1.3

For any positive constants eg, ..., €g, and ¢ > 0, we have
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Ly [T :
"< (—+—+1+— d Jss)||An||“d
V< ot 1) [ G [ danlas +

(€al + ces + ces) || Aul* — (/ 9(s)ds — ezg(0))]|u]|* —
0

e+ ) /Ooo g()An|Pds — (11 - 1) — )| Vel* (210)

In the sequel, ¢ > 0 denotes a generic constant.

Proof. Using the first equation in (2.6) again, we deduce

=(Js"y s)ds,u) — (J;" g s)ds, uy(t)) —
fo s)Vnk(s)ds, Vu(t fo s)ds, Vug(t)) =
— (fooo 9(s)(ug —ns)ds, u(t) — (f;" 9 s)ds, —IA%u+yAuy + [u,v] — [7 g(s)A*nds —
fo ) (Vuy — Vns)ds, Vu(t Y(J5 g s)ds, Vuy(t)) =

= Jo 9(8)(ur = m,we)ds — [ g(s) (' (), —IA%u + [u,v] — [ g(7) Andr — f(u))ds
=7 J57 9(s)(Vuy — Vg, Vu(t))ds

_ / "o %) = ([ oty . i “aoands, [ o(5) )

-~ -~ -~

11 12 Id

# (L oms, 1) = 57 o) Vulds = [ o)l
0
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+/ g(s)(ns,ut)ds—l—’y/ g(8)(Vn', Vuy)ds.

-~ -~

I5 I6
Next, we estimate [;,1 < i < 6, respectively. First,

=1(J,"y s)ds, Au(t)) < leq||Aul|* + 464 Jo Sy~ 9(s)Antds)?dx

< legl| Al + 1 [o(f57 D52V TsAntds)*de

< egl|| Au)? + L [ 5 gs [ J5(s)]| An'(s)]|2ds,

dey Js(s)

and

—(J g(s)nds, [u, o))

< J5" a(s)nds|[I[w, vl < cllullll ;™ g(s)nds|l  (Cauchy — Schwarz)

< clAullll [y~ g(s)nds|| < ces[|Aul* + =[] f;™ g(s)nds|?

< el AulP4as [T G5 ds [ Ts(s)|In'(s)|Pds < ces| AulP435 [

For I3, we have

Iy = || [;° g(s)Ands||* = [o([s" 9(s)Ands)*dx

< Jy7 9Bl ds [57 Js(s)]| A ()] ds.

foco Js(s)

1An" (s)[|*ds.

Using the growth assumption of f, Sobolev embedding theorem, and boundedness of the

energy, we know that ||f(u)|| can be bounded by ||Aul; 3C > 0; || f(u)|| < C||Aull.

Indeed || f(u)]| < ¢f|Aul
flw) = £0) = [y f'@)dt, [f(w)] < [o 1 @)]dt
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ulpHl
+ 5] < allul + [P = @7 = folf(u)Pde <

< oo fy U+ [tP)dt = collul + B

co Jo(lul + [ulP*1)2de = || f(u)|* < co o [ul[L + [ul]*dz.

We know that H?(Q) — C%(€), then u € HZ(Q) = u € C°(Q) =>| u(x) |
< sUp,eq | u(z) [ cte = (14 |uf?) < 14 (sup,eq |ul)? < .

L ()* < cllull® = [If(u)]| < cl|Au].

Hence, Iy = ( [y~ g(s)nds, f(u)) < || [~ g(s)nds| | ()]

then Iy < cf| f5~ g(s)nds|[|Aul| < ces||Aul® + 35 || [5™ g(s)nds|* <

ces|| Aul|? + - (5)2d5f0 J5(s)]|An||2ds.

deg Js(s)

Finally, let us estimate I5 and I;.

= 7 9(8) (s, u)ds = [3° g(s)E(n,ue)ds = — [[7 g'(s)(n, we)ds < — [5° g/ (9)Inl||wl|ds <
—1= Jo (s )HA77|!2d3—67\|UtH 9 = =35 [y~ ' ()| Anl*ds + e7g(0 )HUtH2
’yfo (s)(VnL(s), Vuy(t)) (integration by parts)
Is = v9(s)(Vn(s), Vu ()| =7 Jo 9 '(s), Vur)ds < = [~ g' () IV [ Vuellds <

esl Vel + = (5 =g/ ()| V' [l ds)? Sesuw (/=g ¢ (8)||Vnf||ds)? <
es]| V|2 — 20 [ —g/(s) || Vit |2ds.

4deg

U

Proof. (Theorem 2.1 ). Put L(t) = ME(t) 4+ e1¢(t) + eat(t) + kR(t),

with positive constants M, €1, €2, k to be specifed later.

Combining (2.7)-(2.10) and (2.3) together, we obtain

L'(t) = ME'(t) + e1¢/(t) + ex¥(t) + £R'(t) < F(f; 9’(8)||Ant($)ll2d8)] +

€1 [ (el P41V =] Awl® = [| Av][2 = (u, f(u)+esl|Aul®+55 [o~ Tigds Jo Js(s) |1 Anl*ds)]+

(5 + 1% + 1+ 12) [ Lhds [ Ty | Anl2ds + (eal + ces + ces) | Aull> — ([;° g(s)ds —

4es

erg(O))lluell® = (75 + “2) J;~ 9/ ()1 An]Pds — (v(L = 1) =€) | Vel )] +

=5 Jy ()1 A7 (s)|[Pds + h(0)[| Au(t)[|?)

34



CHAPTER 2. ENERGY DECAY RATE FOR NONLINEAR VON
KARMAN EQUATIONS WITH MEMORY

g S)NAn ()* = = 57 Js(s)|Anl[Pds+ [ g(s)[| An'(s)||*ds such that Js(s) = dg(s) —
9'(s)
then L'(t) < [(—4 + 2 + M) e+ 2+ 2 tat f;'; )Gs) [~ Js(s)||Anl*ds +
(Y — & — 29005 — 5] [ g(s)|An"(s)[2ds + (1 — €2 [5° g(s)ds + e2e2g(0))|ue(t)]|* —

e1]|Av(t)||> + (—ler + e1€3 + exeql + ceres + cezeq + 2h(0)K) || Au(t) || — e1Co [, F(u)dz +

1y = (Y1 = 1) = es)ea[[Vuu (1)

where Gs := [° Zf;(s

We will choose suitable positive constants €1, ..., g and k, d, M such that

€1 — 62/ g(s)ds + e7e29(0) < 0 (2.11)
0
— ley + €361 + €469l + ceseq + ceacg + 2h(0)r < 0 (2.12)

(____—)5_g<o (2.13)

M €9 €2Cg(0>’)/ €1 l€2 C€og C€a
_ 2 ey 2 “a 2.14
St e T e T Tae et )00 < (2.14)
€177 — (’}/(1 — l) — 68)62 <0 (215)

To the end, we first take e, > 0 fixed. Second, take €7, ¢; and eg small enough such that
(2.11) and (2.15) are satisfied. Then take €3, €4, €5, €6, & small enough such that (2.12)

holds. For (2.13) and (2.14) to be true, we take M, satisfying §; < % < 09, Where

€2 e2cg(0)y
de7 + deg

51 = €2 + 6209 )Y +O( 6)G57 52 - %+

de7
and the symbol C(e,...,€5) is self-evident. The existence of such M and 4 relies on
the observation: the assumption (2.2) ensures

9’(s) :
511_)() 69(8) 7 = 0, a.e. in (0, 00),

and so an application of Lebesgue’s dominated convergence theorem gives

5h_H>10(5G5 hrn fO Wd _0
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thus, 0; < d2 when § small enough.
Accordingly, we infer

L/(t) < _C<61a .o €8, M7 57 K)E(t)

Note that R(t) > 0, and ¢, ¢ can be bounded by E(t). We deduce that, Vt > 0,
[3 Cler, ooy €8, M, 8, K)E(s)ds < L(0) — L(t)

= L(0) = ME(t) — exp(t) — e29p(t) — wR(t) < C(M, €1, €2) E(0).

Thus [;° E(t)dt < C'(ey, ..., es, M, 6, k) E(0). Since

G(t+DE®) = (t+DE() + E(t) < E(),

it follows that (¢t + 1)E(t) — E(0) < [;~ E(s)ds. Therefore, E(t) < ;5.

36



Chapter 3

A General Stability Result for a von
Karman System with Infinite Memory

and Constant Discrete Time Delay

In this chapter we consider the following von Karman equations with memory and time
delay, which is the extention of study carred out in chapter 2 the case with constant time

delay.

(

i + A% — YAy — [u, 0] — [T g(t — s)A%u(s)ds + pug(a, t) + poug(z,t —7) + f(u) =0

inQXR+
A% = —[u,u] in QxR
(P) u=Au=0, v=0,0=0 on 002 xR,

u(z, —t) = up(z,t) on Q xR,

ur(z,0) = ug(x) in

\ ur(z, —t) = h(z,t) in Q2x]0, 7|

(3.1)

To treat the infinite memory (following [6]) and the discrete time delay (following [7], [8]),
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we introduce the following new auxiliary functions

77(55775; 8) = 77t(1’75) = U(.CC,t) o U(%,t - 5)7 (Q?,t,S) SRR R+ X R+

z(z,t,p) = wlz, t —p7), (7,t,p) € QA xRy x]0,1]
then we have

77;(3773) + 772(1773) = Ut(xat) in % R-ﬁ- X R-ﬁ-
n'(z,0) =0 in Q xR,

n°(z,s) = no(z, s) = ug(z,0) — u(x, —s) = ug(z) — u(xr,—s) in Q@ xR,

and
Tz(x,t, p) + 2,(x,t,p) =0 in Q xR, x]0,1]

2(z,t,0) = u(x,t) in QxR

2(x,0,p) = h(x,pr) in Q2x]0,1]

where Q0 C R? is a bounded with a sufficiently smooth boundary 99, p; and p, are
real numbers with p; > 0,7 > 0 respresents the constant time delay.

Then (P) transforms into the system

(

uy + I u — yAuy — [u, 0] + [° g(s)A%nds + paw (2, ) + poz(z,t,1) + f(u) =0
in 2 xR,
A?v = —[u,u] in QxR
ni(z,s) +ni(x,s) = ux,t) in Q@ xRy xRy
(P n¥x,0)=0 in QxRy, u=Au=0,v= % —0,n=An=0in 09 x [0, +00)
n°(z,s) = no(x, s) = up(x,0) — u(x, —s) = ug(z) — u(z,—s) in Q xR,
Tz (x,t, p) + 2,(x,t,p) =0 in Q xRy x]0,1]

2(x,t,0) = ug(z,t) in Q xR,

2(z,0,p) = h(z,pr) in Qx]0,1]
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3.1 Preliminaries

We present some notations and state the main result. Let A be the smallest positive

constant such that

Mlull* < [[Aul®, Vu € Hi (). (3.1)

Define the energy functional of the nonlinear von Karman equations with infinite memory

and time delay

E(t) = Hudl P+ 51 AulP+ 2 Ve 2+ Av]2+5 [ g(s) | Anl2ds+ [, F(u)da+22T [7]z(2,t,p)|2dp
Lemma 3.1.1

dE
Under the condition |us| < py, we have - < 0, thus the energy functional E(t) is

decreasing.

Proof. We multiply the first equation of the problem (P1) by u; and integrate over 2 we

have :

Jo uwwda+1 [ Nuyudr—y [ Auyupda— [ [u, v]uda+ [ ([ g(s)A%nds)uda+p [o u(z, t)uda+
pe fo 2(x,t, Dwda + [, f(u)udz = 0.

Then we have, by using (1)-(6) in chapter 2 :

Jo unuedz + 1 [ Auyupdr — 7y [ Augugdr — [ [u, v]ude

+ Jo (U5 g(s)A%nds)udz + [, f(u)ude

= glallwlll + Z531Au)?) + Z3 V] +

GlFIA0P + 55 f57 gl AnllPds — 5 [77 g ()| Anll*ds + § [, F(u)dz
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= —1 [quP(x, t)dx — pa [, 2(z,t, Dude.

Let us denote L(t) the functional

1 l ~ 1 1 [
L(t) = Slluell® + S l1Aul® + S| Va||* + < || Av]* + —/ 9(s)[|An|[*ds + / F(u)dz.
2 2 2 4 2 J, o

Then

dL(t) 1

— = —/ d(s)]|An||*ds —M1/u2($,t)dx—ﬂg/ z(x, t, Dupde.

Multiply by z and integrate over (0,1) the equation:

Tz(z,t, p) + 2,(z,t, p) =0, we get

T (1o 9 1 [t
- | = tLolPdo+= | = t,p)||*dp =0
sl tolPdo+5 [ st pldp o

then

o T [ 2 1 2 2
5(5/0 z(z, ¢, p)||I*dp) = §(|Iut|| — [J2(x, ¢, D7),

and

Tlus| d [
‘|52|£/0 |2(z, ¢, p)||Pdp = |M_22|<Hut|!2 — |lz(z, ¢, 1)]]?).

Using Cauchy-Schwarz and Young’s inequalities, we get

—,ug/ z(z, t, Dugdr < %Hz(m,t, D|* + @Hutw
Q

We have

d T,u d
pio= B0 Tl = [ ool
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i / W2 )i — / (.t D+ 2] g~ (e, 1))
(9] Q

|M2| |12 |12
< —pafJue P+ | 2w, 1)HQJFTHWHQJFT(HUJF—||Z(l’>7fa D) < —(p1— 2] ]Jue] .

Then E'(t) < 0 if and only if |pus| < .

]

To derive the energy decay rate, we introduce some auxiliary functions and give some

estimates about them. Define

p(t) = (u(t), ue(t)) +7(Vu(t), Vu(t))
fo s)ds, u(t fo s)ds, Vu(t))

R(t) = ;" h(s)[[Au(t — s)|*ds

= [ fo e 222 (x,t, p)dzdp.

A simple calculation yields that for ¢ > 0,

== Jy h(s) g ([Aut - 5)[*)ds
= fo s) (| Au( t—8)|| )ds + h(0)[| Au(t)[|*
< Jo 9(s)lllAu )H2 = zllAu(t — 5) = Au(t)[*]ds + h(0) | Au(t)|*
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This gives
R(t) < —1 [ g(s)[| An(s)|ds + 2h(0)[Au(t) |2, Vi >0

Lemma 3.1.2

For any constant €3 > 0, we have

/(1) < fluel* + A Vue|* = U Aul® = A7 = (u, f(u)) + €3]] Aul+

o0 S o0 k.l 2
L [y ds [ J5(s) | Anl2ds + ghsll Aulf? + L (1 1))+

kl/
sy | A 4+ F 2

Here and in the sequel, Js(s) := dg(s) — ¢'(s), for § >0

Proof. By the definition of ¢, and using the first equation in (3.2) and Young’s Inequality

with a Parameter and Cauchy Schwarz Inequality we have

() = Gro(t) = (ue(t), ue(t)) + (u(t), un(t) + ¥(Vuu(t), V(1)) + 4(Vult), Vuu(t))

= w7 + Vel + (u(t), un(t)) + 7(Vult), V(L))

= |Jue () |2+ Vue| |2+ (u(t), —IA2u+]u, v] fo (s)A%nds—pyug(z, 1) —poz(z, t, 1) — f(u))

+ (u, =yAuy) + 7 (Vu(t), Vu(t))
= we@®)I* + I Vuel* + (u(t), 1A% + [u,v] = [;7 g(s)A%nds — paue(z,t) — paz(z, 1, 1)
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— f(u).
From ([u,v],u) = ([u,u],v) = —(A%v,v) = —||Av||?

(1) = [luell® + I Vuel* = ] Awl® — [|A%0]* = (5~ g(s) Ands, Au(t)) — pa(u, ui(x, ) —
pa(u, 2(x, 1, 1)) = (u, f(u))

(fo~ g(s)Ands, Au(t)) < || [, g(s)Ands]||||Aul|  (Holder Inequality)

< 463 H fo AndSHQ + 63HAuH2 465 fQ oo g(s /Js5(s)Ands) 2d:13 + 63HAUH2

<o o 2 ds) ([ Js(s)A%nds)da + es]| Al

< 35 Jo (9(s))%ds [ | An]*ds + es]| Aul|?

deg

1
S 463 0 J5

5ds [ Js(s)[| An|Pds + e5]| Al

K 2
—po(u, 2(2,1,1)) < lulllpel |2z, DI < gpllull® + FE|l=(a t, D]? < gl Aull? +
1% 2
el |z, 1, 1)

k"|M1|2

—p (u, up) < g || Aulf® + |lu¢||* K'and k"positive constants

thus

(1) < fluell® + A Vue|* = U Aul* = [ Av][* = (u, f(u)) + es]| Aul]?

> g(s k' K’
+ia o 32 yds [y Js(s) || AnlPds+ g | Aul|*+ B |2, £, 1) [P+ gy | Al 2+ 222 a2

O
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Lemma 3.1.3

For any positive constants ey, ..., €19, and t > 0 we have

> g(s)?
J(;(s)

Y'(t) < (L+—+1+—+M+@)/
0

464 465 466 469 4610

ds/ T | An|Pds +
0

(€al + ce5 + ceg) || Aul* — (/ g(s)ds — €29(0) — pueo)lue* —
0

1 Ag(0
L 9(0)y
467 468

) /OOO g () An]*ds — (v(1 = 1) — &) [ Vuel|* + eropal2(z, 1, 1)]* (3.2)

Proof. ¢'(t) = ([, g s)ds,u)—( [ g s)ds, uy () —v( [, 9(s)Vni(s)ds, Vu(t))—
fO dS Vutt( ))
— (fooo 9(8)(up —ng)ds, uy(t fo s)ds, —IA%u+ vyAuy + [u, v] fo (s)A2nds —

(1) — poz(x,t,1) — f(u))
(S5 9(8)(Vuy — Vi, )ds, Vuy(t ([, g s)ds, Vug(t)) =

— fooo g(s)(ug — ns, uy)ds — fooog(s) nt(s), —I1A%u + [u, v] fo (T)A%ndr — pyug(z,t) —

N22<I7t7 1) - f(u))ds

— 9 J57 9(s)(Vu, — Vs, Vuy(t))ds
-y / o) (). 8%) — |

(& J/ (. J/ J/
-~ -~ ~~

11 [2 I3
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([ gtomds. )= I3 o) Wl — [ o)l

~~

Iy

o0

T / " () ey ) / " () (Vi Vur)ds / 9()(0(5), ue)ds +pi / " (), 2z, 1, 1))ds

-~ -~ -~ -~

Is Is I Is
Next, we estimate [;, 1 < i < 8, respectively. First,

=1(J,"y s)ds, Au(t)) < les|| Aul® + 35 L L5 g(s)Antds)?da

<leallAul® + 55 fof foo 9(s) \/_AntdS)de

< eal||Aul? + & [ L) ds [ T5(s) || An'(s)]|%ds,

dey Js(s)

and

—(f;7 g(s)nds, [u,v])

<15 g(snds | o)l < cllull| f; a(s)nds|| (Cauchy Schwarz)

< cl|Aull?|l J;~ g(s)nds|| < ces||Aull* + =1 [y~ g(s)nds]|

<l AulP+ [ Lhds [ Js(s)|n'(s)1%ds < cesl| AulP+.= [ Lhds [ J5(s)]| Ant(s)]ds.

For I3, we have

Iy = || [;° g(s)Ands||* = [o([s° 9(s)Ands)*dx

<[5 Shds [ Js(s) ]| A (s)|2ds.

Using the growth assumption of f, Sobolev embedding theorem, and boundedness of the

energy, we know that ||f(u)|| can be bounded by ||Au||. Hence,
= (Jo g(s)nds, f(w)) =< 1| [;~ g(s)nds][[|f ()]
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Proof that ||f(u)|| < c||Aul| :

f(0) =0,
flu) = £0) = [y f')dt [f(u)] <[5 f/(2)|dt
< Cofo( + [t)dt = coflul + ] < eollul + [uf ] = [ f@)]? = [y |f(w)Pde <

co Jo(lul + [ulP*1)2de = || f(u)|* < co o [ul[1 + [ul]*dz.

We know that H?(Q) — C%(Q) u € HZ(Q) = u € C°(Q) = u(z) |
< SuPyeq | u(z) [< cte = (1 + |ul’) <14 (sup,eq [u(2)])” < ¢

[f)? < e Jull* = [|f(w)]] < cllAul]

then I < || [;7 g(s)nds|[[|Aul| < cesl| Aull® + 3% | 5~ g(s)nds|* <
cegl| Aull® + 35 Sds J5 Js(s)l| An|ds.

deg J5 (s)

Finally, let us estimate Isand/g.

f() 7787“’15 dS - fo di(naut)ds - fo 77aUt f ||7I||||Ut||d3 <
~ig Jo 9 )HAUHQdS—E?HUtHQ (916" = =36 Jo 9'(8)|1A77H2d5+€79(0)\|ut“2

467 4er

=7 Ji 9()(V(s). V(1)) (integrate by parts)
Is = 79()(Va(s), Vul )5 = Ji= 6/ (5)(n(s), Vu)ds < — [ o/ () [V || Vs <
sl Va2 4+ 2 (i - @mvﬂwﬁ)SGﬂVWW + 2 V=96) ¢ NV ds)? <
MWMP”QA wmws

4eg

= fy (n(s),u)ds < Z?JH Jo7 g(s)n(s)ds|+ [ leolue|? < 2l [ 4 ) s fo Js(s)||Anl*ds+
| €| |2
oo g(s)?
= 2 J72 950l 2(, 1, )ds < il [ g(s)(s)ads (o, 1, 1)) < 22 [ 962 g

fo Ja(S)IIAn||2d8 + €ropial|z(, T, DI

then

46



CHAPTER 3. A GENERAL STABILITY RESULT FOR A VON
KARMAN SYSTEM WITH INFINITE MEMORY AND CONSTANT
DISCRETE TIME DELAY

ALy duzy [0 ds 2 Tl An||2ds +

456 4eg 4deqg

V() <G+ttt
(€4l + ces + 066 ||AU||2 fO dS — 679(0) — ,uleg)HutHQ —

(25 + 242 J5 9/ ()| AnlPds — (3(1 = 1) = &) [V + vopall (a2, 1)) =

A simple calculation yields that for ¢ > 0,

= Jq fo e P22 (x,t, p)dpdx

we've got z(x,t, p) = =z,(x,t,p)

') =y fol e P22z dpdr = 2 [, fol e ¥ 2zpdpdr = 2 fol e—QTﬂdisz(a;,t,p)d,oda: -

=L [ e 222 (@t p)lb— fy —2re P22 (1, p)dpda = L [,(22(x,¢,0) — e 22 (x, ¢, 1)) da —

—27

2 fQ fol 672”72’2(1', ta p)dpdl’ = %“utH2 — £ T ||Z(l’, tv 1)”2 -2 fQ fOl 672”’22(1‘7 tv p)dpd:v

€]0,1[ then e 27 < e 27"

—27

e —27 1
(1) < Hllwall® = == llz (e, t, DI = 2e727 [ [z, )17

Theorem 3.1

Under the conditions [;° h(s)||Au(s)||?ds < oo and |uz| < puy The energy of (P1)

has the estimate

with a positive constant C'.

Proof. Put
L(t) = ME(t) + e1p(t) + e2(t) + £ R(t) + €| p2| E(2)

with positive constants M, €y, €2, €, k to be specified later.
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L(t) = ME'(t) + e1¢/(t) + et/ (t) + kR () + €|ua|2/(t) < [(— A + 2y 2907y 4 (a |

dey deg 4e3
2t
2 S22 4 e 4 e (] [ T ()| AP+ (4 — 12 — 240 )5 - 5] [ g(s) | Arft(s)] s

+(e1—e€ [y~ g(s)ds+exerg(0)+ @ + pa€9)||uy (8)||2 — €1 || Av||* + (—le1 + €163+ eae4l + ceaes

+eeaes+2h(0)R) || Au(t) [P —e1Co fo, F(u)da+[ery—(v(1=1) —es)ea [ Ve (8) [+ 5z | v+

k! 2
o [l ” +

K % €e T
sl Aull? + (52 + 1o — <22 2,1, 1) = 2€|pnle ™ [5° [|2(2, ¢, 1)||*dp
where G5 = f > g(s ds We will choose suitable positive constants €1, ..., e and k,d, M
such that
00 € k?” 2
€1 — 62/ g(s)ds + e7e29(0) + |52| + €9 + 2'u1 <0 (3.3)
0
— l€1 + €3€1 + €4€2l + Cces€x + CeaEg + 2h(0)/€ -+ 25\ <0 (34)

(5 — 2 =290 " < (3.5)

€1 les  cey CEy  A1€a Aoy
( 2 + 467 468 ) + (463 * 464 + 465 teat 466 * 469 4610

)Gs) <0 (3.6)

ey — (Y1 —1) —eg)ea <0 (3.7)
elpgle™ K
€10/ 2] —— t (3.8)

To the end, we first take an e; > 0 fixed. Second, take €, e; and eg small enough such
that (3.3) and (3.7) are satisfied. Then take €3, €4, €5, €5, £ small enough such that (3.4)

holds. For (3.5) and (3.6) to be true, we take M, d satisfying & < & < &,, where
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€ e2¢cg(0)y
der + 4eg

(51 = £2 + 6269 il + 0(617 ) )Gé’ 52 25 -

der
and the symbol C(ey,...,€5) is self-evident. The existence of such M and ¢ relies on
the observation: the assumption (2.2) ensures

5g%(s) :
511_>0 5o o7y = Vs a.e. in (0, ),

and so an application of Lebesgue’s dominated convergence theorem gives

511_H}105G5 hm fO ﬁdS = 0

g’
thus, d; < d2 when ¢ small enough.

Accordingly, we infer

L,(t) < —C<€1, ..., €10, M, 5, K, E)E(t)

Note that R(t) > 0 and X(t) > 0, and 1, ¢ can be bounded by E(t).We deduce that,
Vt>0

I3 Cery . €10, M, 5, K, €) E(s)ds < L(0) — L(t)

= L(0) = ME(t) — ex0(t) — eatp(t) — nR(t) — X(t) < C(M, €1, €2) E(0).

Thus [;° E(t)dt < C'(ey, ..., €10, M, 6, 5, €) E(0). Since

L((t+1)E{) = (t+1)E(t)+ E(t) < E(t),

it follows that (¢t + 1)E(t) < JJE . Therefore, E(t) < ;5.
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Chapter 4

The von Karman equations with Finite

Memory and Discrete Time Delay

4.1 Setting of the Problem

The von Karman equations with finite memory and time-varying delay are formulated as

follows:

t
Uy + A u—[u, gb]—/ g(t—s)Au(s)ds+agus(z, t)+ajuy(z,t—7(t)) =0 in QxR (4.1)
0

A*¢p = —[u,u] in QxR,, (4.2)
u=08u=0, p=0,6=0 on 9 x (0,00), (4.3)
w(z,0) = up(z), u(z,0) =wui(z) on Q, (4.4)
w(z,t) = fo(x,t) in Q x (—7(0),0), (4.5)

where 0 C R? is a bounded domain with a suffciently smooth boundary 9Q,v =
(v1,15) is the outward unit normal vector to 02, ap and a; are real numbers with
ag > 0,7(t) > 0 represents the time-varying delay, and wg, u1, fo are given functions.

Rivera and Menzala [24] studied the von Karméan equations with rotational inertia and
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memory

Uy — hAuy + A%u — /tg(t — 5)A%u(s)ds = [u, ¢] in Q x (0, 00), (4.6)
0

under the usual condition —cog(t) < ¢'(t) < —c1g(t), 0 < ¢"(t) < cog(t) for some
¢i,i = 0,1,2. Later, Raposo and Santos 25| generalized the decay result of [24]. They
investigated the general decay of the solutions to the problem (4.6) under a more general

condition for g such as
g(t) < —=&(t)g(t), &(t) >0, () <0, vVt =0, (4.7)

where £ is a nonincreasing and positive function. Kang [26] improved the decay result
of |25] without imposing any restrictive asssumptions on the behavior of the relaxation
function at infinity. The author proved the general stability for problem (4.6) under the

condition

g'(t) < —H(g(1)), (4.8)

where H(0) = 0 and H is a non-negative, strictly increasing and strictly convex function
on (0,r], for some r > 0. When ay = a; = 0in (4.1) and the memory kernel ¢ satisfies (4.8),
Cavalcanti et al. [27] studied the decay rate of energy. Recently, Mustafa [28] established

the general decay for a viscoelastic wave equation under a more general condition

g'(t) < —&(t)H(g(t)). (4.9)

This is a more general condition than (4.7) and (4.8) The stability of the solution to a
viscoelastic wave equation when ¢ satisfies the condition (4.9) has been studied in [29, 31|
and the references thereien. Liu [32] investigated the general decay for a viscoelastic equa-
tion with time-varying delay under the condition |a;| < /1 — dag, where d is constant

such that 7/(t) < d < 1. For other related works, we refer the readers to [33, 34| and ref-
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erences therein. Inspired by these results, we prove the general decay result for problems
(4.1)-(4.5). We allow more relaxed condition for the memory kernel g and delay. Using
the multiplier method and some properties of convex function, we obtain an explicit decay

rate of the energy.

Remark 4.1.1

If £ is a convex function on [a,b], p : Q@ — [a,b] and ¢ are integrable function on

Q,q(x) >0, and [, g(x)dx = o > 0, then Jensen’s inequality states that

o+ / p(e)q(x)dr) < — / £(p(x)q(x))d. (4.10)

qo qo

For the relaxation function g, we assume the following hypotheses:

(Hy) g : R" — R* is a differentiable function such that

1-— /oo g(s)ds =1>0 (4.11)

(H3) There exists a positive function H € C*(R"), with H”(0) = H'(0) = 0, and H and
is a linear or it strictly increasing and strictly convex C? function on (0,k|, & < g(0), such
that

g'(t) < =E(t)H(g(t)), vt =0, (4.12)

where £ is a positive nonincreasing differentiable function. For the time-varying delay, we

assume that a C! function 7 satisfies
7(t) >0, 0<7'(t) <1, for t >0, (4.13)

and that ag and a; satisfy

]a1| < agy/1— T/(t>. (414)

As in [32, 33|, we introduce the following new function z(z, p,t) = w,(z,t — 7(t)p),

re, pe(0,1), t>0.
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Then problems (4.1)-(4.5) can be written as

¢

g + A%u — [u, ¢] — fo (t — 8)A%u(s)ds + agus(x,t) + a12(z,t,1) =0in Q x Ry,
T(t)Zt(x,p,t) (1 - T( )) ( ) =0 in Qx (07 1) X (07 OO>7
u = 0, = 8 —O on 02 x (0,00),

u(z,0) = ug(x), ut(x,O) = u1($) in Q, z(x,p,0) = folx,—7(0)p) in Qx (0,1).

(4.15)

Using the arguments of [32, 34|, we can be establish a well-posedness result.

Theorem 4.1

Let (4.13) and (4.14) be satisfied and g satisfies (H;). For uy(t) € HZ(Q), uy €

L3(Q), fo € L*(2x (0,1)) and T' > 0, the system (4.15) has a unique weak solution
ue C°%0,T); HE(Q)) N CH([0,T]; L*(2)), us € C([0,T); L*(Q2)).

The energy functional associatedd to problem (4.15) is defined as

t 1
B0) = glul+50- [ sl Aul+5 6000718015 [ [ Hop. o

(4.16)

where (g0u)(t) = [ g(t — s)|u(t) — u(s)||>ds and ¢ is positive constant satisfying
t 2

TOD e aor(t). (4.17)

ap(l —7'(t))

Note that the choice of ( is possible from assumption (4.15).

e

T

heorem 4.2

Assume that the hypotheses (4.11)-(4.14) hold. Then there exisit positive constants

ko and k; such that the energy functional satisfies

E(t) < kG k:o/g )ds) (4.18)

where G(t) = ftk SH—}(S)ds and G is strictly deceasing and convex on (0, k], with
lim G(t) = +o0.

t—0

23
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Lemma 4.1.1

Let (4.13) and (4.14) be satisfied and ¢ satisfies (H;). The energy satisfies

B0 < ~Collul w0+ [ [ o pt)dads)- 0 a4 (/00w 1),
(4.19)

for some positive constant Cj.

Proof. Taking the deivative of (g0JAw)(t), we can easily obtain
fo (t — s)(Au(s)

= =5 Jo 9(t = ) (|1 Au(t) — Au(s)|” — | Au(s)|* = [ Au(t)|?)ds
= 24 (g0Au)(t) + L(¢TAu)(t) + L [ g(t — s) L] Au(t)||?ds

,Aug())ds =[5 g(t — )L (Au(s), Au(t))ds

f; t—sds-fo (2)dz (using z =t — s)

Jiot—s diHAua)n?ds:fo gt = )ds | Au(t)] = 4 [ gls)dsl| Au(®) — L2 Au?
Ji 0t = $)(Au(s), Au(D)ds = ~5(gOAW) + 12 [ g(s)dsl| Au(t)]? — 42 Aul? +
§(g’DAu)(t).

Multiplying the first equation in (4.15) by u, and using the above identity, we get

4 Glluddl? + 31— [y g(s)ds)l|Aul® + 5 (90Au)(t) + F1|A6])

(4.20)
= —aollue||® — ar [, 2(x, 1, hupdr — L2 Aul® + L(gTA)(2).

Using the second equation in (4.15), we have

fo Jo 2(x, p,t)dwdp = — fo Jo 1 th 2z, p,t)2p(, p,t)dxdp = —5 [ [ . :t(tp 522 (@, p,t)dpdz

= = ;T(t)pHZ<ZII,1,t>H2—|— - ;-7-_(15)]0 HZ x,p,t)Hde

(4.21)

Using Young’s inequality (Lemma 1.1.1)

—al/Z(l’yl;t)UthfS lar[llz(z, L, )|l < 5= i H (z, LH)|* + —0||Ut||2- (4.22)
Q
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Combining (4.16), (4.20), (4.21) and (4.22), we find that

95 — 4 Wl + 51— [y g(s)ds) | Aul* + §(g0Au)(E) + LA + § [y f 22w, p,t)dwdp) =
—aollwsl® — a1 fy 2(w, 1, )wda — L2 Aul? + 3(g/DAu) (1) + — 5552 2, 1,1)*+
el — 2O 22 1) P < — (2 — 5l — (5206 — S 1
427;((;) fo Jo (@, p, t)dxdp — 9(t)||Au||2 + %(g’DAu)(t)

< —Co(J[uell? + [12(2, LI + fy fo 22(x, p, t)dxdp)) — L2 Aul]® + (¢'DAw) (),
(4.23)

T a2 s
such that Cy = rmn(7 — %(t)’ a 27((3)) _ ﬁ? éT((f)))'

From (4.13), (4.17) and (4.23), we obtain the desired inequality (4.19). This implies that

E(t) is nonincreasing,. O

For suitable choice of Ny, Ny > 0, let us define the perturbed energy by
L(t) = N1E(t) + NV (1), (4.24)

where () fQ uudx. We easily have the following. For N; > 0 large enough, there

exist positive constants a; and as such that oy E(t) < L(t) < asE(t), YVt >0
Lemma 4.1.2

Under the assumption (H;), the functional 1 (t) satisfies the estimate
, l 2a2 202 C(6
00 < 18l + (4 20 a2+ 20 e, 1+ S many0) - aol?
(4.25)
for any 0 < 0 < 1, where
< g%(s) :
C(0) = ds and x(t) =dg(t) —g¢'(t) >0 (4.26)
o X(s)

Proof. From (3.3), (4.11), (4.15) and Young’s inequality (lemma 4.1.1), we have

V() = lwl® + [ uau(t)de = ||u® — [, A%u(t)u(t)ds + [, fotg(t — 5)A%u(s)dsu(t)dx
+ [olu, dlu(t)de — ag [, w(t)u(t)dz — ay [, z(z, 1, t)u(t)dz.
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—ao oy ur(tu(t)de < aollu[|u())]| < Ztflul® + 2l < ZE[lull? + L Auf* = £)

—ay fy 2w, 1, Du(t)de < 2|20, 1,02 + 2 ful® < |2z, 14| + 4| Aul?

[y [y glt—s)A%u(s)dsu(t)dz = [} g(t—s) [, A%u(s)u(t)dads = [ g(t—s) [;, Au(s)Au(t)dwds
= [Lg(s)dsl Aul? + [ g(t — s)(Aus) — Ault), Au(t))ds

< [ g(s)dsNAul + 1 f gt — 5)(Au(s) — Au(t)dsl? + H Aul.

Using Cauchy-Schwarz inequality:

| Jy 9t = $)(Du(s) — Au(t)ds|? = [,([fy 9(t = 5)(Au(s) — Au(t)))*dsdz =

fg(fo A2 X (Au(s) — Au(t)))dsde < [, i 4 : ?ds Jo x(t = 5)(Au(s) — Au(t))*dsdz
C(6)(xOAw)(t) then

W) < = Aul? + (1 + Z58) fuel? + 2| 2(2, 1, 8)]1% + <2 (xOAw) (1) — | Ag|> O

Lemma 4.1.3

Assume that (H;) and (Hz) hold. Then for Ny, Ny > 0, the functional L satisfies

1
1
L(0) < ~Cullul+ew L0+ [ [ 2, pdadp | A0 +30-0 | SulP+ gD Au) ),
0 Q
(4.27)

where (] is some positive constant.

Proof. Combining (4.19), (4.24), (4.25), recalling that ¢'(t) = dg(t) — x(t), we obtain
L'(t) = ME'(t) + Nov'(t) < Ni(=Collluell? + [|2(z, 1O + fy fyy 2°(, p,t)dadp) —
9O At +2 (' OA) (£)) + Na (G| Al >+ (1420 e |2+ 22 |2 (2, 1, ) >+ S (xDAw) (£) -

IAGII2) < —(CoNi— (14 28)Ny) el |> — (CoNy — 22 No) | 2, 1, )| — (32 4 2980 ) | A2+

N (g'OAw)(t) — Nl A |]? + 2290 (xOAw) (1)

—(CoNy — <1+%>N2>||utu? — (CoNy = 2N (1,017 — (B2 + 298| Au2 +

20 (gOAw) (t) — Nof| Ag|2 — (5 — €% (xDAw) (1),

We first take N, large enough so that Ny > G(Il_l). From (4.12) and (4.26), we see that

0< ~g ()= dg(t) <o) - () = T < 1= LD g @)
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Therefore, by (4.11), (4.26) and (4.28), we get

0C(0) = (5/000 i((tt))ds < /000 g(s)ds =1—1.

Applying the Lebesgue dominated convergence theorem, we have §C(§) — 0 as § — 0.

1

Hence, there is 0 < 9 < 1 such that if & < dy, then w < g- Choosing N; large
enough so that
ZCL NQ 20, N2
Ny > 1 0 L
v mad (L) e

Choosing § = 53~ < do, therefore L'(t) < —=Ci([Jug|*+| 2(z, 1, 1) HQ—i-fo Jo 2% (x, p, t)dxdp+

1Av]%) + 3(1 = D] Aull* + F(9DAu)(2). O

Lemma 4.1.4

Under the assumption (H;), the functional k satisfies
1
K1) < 2(1 = DllAulf® - 5(9BA)(®), (4.29)

where k(t) = [J h(t — s)||Au(s)|]ds and h(t) = [ g

Proof. Using the Young’s inequality, (4.11) and h'(t) = —g(s), we find that
t) = Jo W (t=s)|| Au(s)|2ds+h(0) | Au(t)|* = — [; g(t—s)l|Aul*ds+ [ g(s)ds|| Au(t)||”
we know the following:
Va,b € R: (a* +b%) > L(a —b)?
then
[Au(s)]” + [[Au)])? — 3l Au(t) — Au(s)|]* > 0
Jo 9(t = ) Au(s)|? + | Au(®)|? = 5[ Ault) — Au(s)[*]ds > 0
for we conclude
— Jia(t — 9| du(s)|2ds < L g(t — )| Au(t) s — 3 [ gt 5)| Au(t) — Au(s) s
< 2 g(s)ds| Au(®)]2 - HgTAu)(@).
Consequently

H(t) <2 )" g(s)ds|| Au(t)|*—3(g0Au)(t) = K'(t) < 2(1-0)[[Au(t)|*~3(g0Au)(t) O
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Proof. of Theorem 4.2. From (4.16) and (4.27), there exist constants a3 and a4 such

that

L'(t) < —a3E(t) + as(gOAu)(t). (4.30)

Indeed,

U(t) < =Cilludll® + 22, LOI + fy foy 22, p,t)dadp + [ A0]?) + 3(1 = )| Aul]® +
H(gOAW(®) < —min(2C1, 2(C1,ACt, DE() + HgDAu)()

such that ag = min(2C4, 2(C1,4C, 1) and oy = %

First, we construct the functional F'(t) = L(t) + k(¢). It is nonnegative. From (4.16),
(4.27) and (4.29), we get F'(t) < —CyE(t), where Cy is some positive constant. Then, we

obtain Cy s)ds < F(0) — F(t) < F(0) = L(0). Therefore, we deduce that
0

/OO E(s)ds < o0. (4.31)

From (4.30), we define 0(t) by, for a constant 0 < n < 1,

0(t) = Jy [ Au(t) = Au(s)|?ds € (0,1).
Since H is strictly convex on (0.k|, then H(ax) < aH(z) where 0 < a < 1 and = € (0, kJ.
Using (4.10), (4.12), (4.19) and the fact that £ is a positive nonincreasing function and

0 <n <1, we find that

(90Aw)(t) = [y g(t — )| Au(t) — Aus)|*ds < fo D) — Au(s)|Pds
< 97715 JH (t(ts)s)>W||Au( ;() 2 g4 < ) J“O (= S)HtAZ (t)AU(S)HQdS)
< Ly [ LEAAOB oy < 1 = A=Su g
< H (_25%())'
(4.32)
Combining (4.30) and (4.32), we get
a 2E'(t

L'(t) < —azE(t) + fﬂ‘l(— : (t())). (4.33)

Denote the conjugate function of the strictly convex function H by H* using Legendre
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transformation, see [35], then

H*(s) = s(H')"!(s) = H((H')"'(s)) < s(H')"\(s), (4.34)

and H* satisfies the Young’s inequality, AB < H*(A) + H(B). Now, for ¢ < we

E(O)’

define the functional
R(t) := L(t)H'(eoE(t)) + E(t),

which is equivalent to E. Using (4.33) and (4.34) and the fact that H > 0, H' > 0 and
H"” > 0, we obtain

R(t) = (O H (eE()) + oE'(t) L) H" (0 E(t)) + E'(t) < L'(t) H' (e E(t))

< —osE() H' (B (1)) + 2 H'(eo E(t)) H (W) < —ay B(t) H' (e B (1)) +

% (e B H (e B(1)) — 220) < (a3 — ) E(1) H' (¢, B (1)) — 2410,

Then, multiplying by £(¢), we see that

20, E'(1)

ERR(1) < —(as — %x(twmﬂ'(ew(t» - (4.35)
We take ®(t) = £(t)R(t) + 2%E(zﬁ), which satisfies
A E(t) < ®(t) < dyE(1), (4.36)

for some dy,ds > 0. Consequently, with a suitable choice of €y, and using (4.35), (4.36)

and the fact that H'(¢) is strictly increasing function, we find that

®(t) = L (OR(E) + EBR(E) + 2420 < — (a3 — 924)E (1) E(t) H' (o E(1)) <
—ds{(t)p(t) H'(ds®(1)).

where d3 = (a3 — 60“4) > 0 and dy = £. A simple integration and a variable tansfor-

mation give

—d/(s da®(0
fO P S)H’(d4()I> d f() d‘s — fdf@(t) SH’ dS = dg fO \V/t 2 O (437)
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We take

k
t) - j;f sH%(s) ds
which is strictly decreasing function on (0,k|. From (4.37), we obtain

G(ds®(1)) fd4<I> sH’ fif(t sH’ > ds fo s)ds Vi >

Consequently, we deduce that ®(t) < 2-G~'(dy [y &(s)ds

Then E(t) < d1 =G (ds fo s)ds) such that k; = 37~ and ko = d3.
Remark 4.1.2
It has to be noted that, in case [~ &(s)ds = oo, Theorem 4.2 ensures lim E(t) = 0.
t—00

Moreover, the decay rate of E(t) driven by (4.18) is optimal in the sense that it is

consistent with the decay rate of g(¢) driven by (4.9).

Example

For H(s) = s, such that 1 < p < 2, where (4.9) is given by

g'(t) < =E(t)gP(1).

Then there are positive constants k, kg, k1 such that the decay rate of F is given by

ke ko Jo €()ds if p = 1

Fa(kop(p — 1) [ €(s)ds + K P)71 if 1 < p <2
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ABSTRACT

In our work, we focus on studying the stability of nonlinear elastic plates of von Karman
with memory and delay, using the energy method. Based on functional analysis
techniques, we investigate the behavior of the system’s energy. We show that this energy
is decreasing and then determine the rate or speed of convergence, providing us with
information about the system’s stability. Our research work addresses three distinct
problems. The first one concerns the study of energy decay for a von Karman plate
hinged at the boundary, with infinite memory. The second problem extends the first one
by adding a fixed time delay term. In both cases, the energy decays polynomially. The
third problem deals with the energy decay of a von Karman plate clamped at the
boundary, with finite memory and a variable time delay term. In this case, the system’s
energy decays exponentially. We observe that the type of boundary conditions and

memory have an influence on the rate of energy decay of the system and its stability.

Key words: von Karman plate, energy decay, stability, memory, time delay.

Réusmé

Dans notre travail, nous nous intéressons a 1I’étude de la stabilité des plaques élastiques
non linéaires de von Karman, avec mémoire et retard, en utilisant la méthode de
I’énergie. En nous appuyant sur des techniques d’analyse fonctionnelle, nous examinons
le comportement de I'énergie du systéme. Nous montrons que cette énergie décroit, puis
nous déterminons la vitesse ou le taux de convergence, ce qui nous fournit des
informations sur la stabilité du systéme. Notre travail de recherche aborde trois
problémes distincts. Le premier concerne I’étude de la décroissance de 1’énergie d’une

plaque de von Karman articulée sur le bord, avec une mémoire infinie. Le deuxiéme

61



CHAPTER 4. THE VON KARMAN EQUATIONS WITH FINITE
MEMORY AND DISCRETE TIME DELAY

probléme étend le premier en ajoutant un terme de retard temporel fixe. Dans les deux
cas, 1’énergie décroit de maniére polynomiale. Le troisiéme probléme traite la
décroissance de I'énergie d’une plaque de von Karman encastrée sur le bord, avec une
mémoire finie et un terme de retard temporel variable. Dans ce cas, 1’énergie du systéme
décroit de maniére exponentielle. Nous constatons que le type de conditions aux limites
et de mémoire a une influence sur la vitesse de décroissance de 1’énergie du systéme et sa

stabilité.

Mots clés: plaque de von Karman, décroissance de ’énergie, stabilité, mémoire, retard

temporel.

62



uadla

Osil gl e 4 pall iliiall ) il dulyo e S50 Ll
Jalail) s aladinly 48Ul 43y 5k alasinly | Al o5 SIAl @l gle s
o Jare 2aa o ddi A8l oda (o o Uil A8l o glu 8 Caas | )
Aaill )i e e sleay U g 3 Laa | (ablill Ay
oalads) Al Hay alats oY) Allsall 3 haaie Jilowe 4335 sl Ulee J gl
al) sl e Y 5803 e A8AD e dilea Gl S ()58 Aagieal 3L
oadad Gallall S 8 el e pali Adla) gk e (Y1 A g
" " sl e g gl Jane dill
Al e At GlalS () sh daiin 48U (oalids) A oy s 430D ALl
JSiy alkail) d8la addsi el s | e ey 5udlS 530505 SI0 as
oalis) Jaxe Ao i al 3 QI s 4aall lag i o of Jaadl | &l
o) i) 5 bl 48l

BOSIAN et A8l JMaaa) | e )S () o8 Ania dgalidall cilalgl)



Bibliography

[1] Andrei D. Polyanin and Vsevolod G. Sorokin, Exact Solutions of Reaction—Diffusion

PDEs with Anisotropic Time Delay, Mathematics (2023).

[2] Frangoise Demengel, Gilbert Demengel, Functional Spaces for the Theory of Elliptic

Partial Differential Equations Translated by Reinie, Springer (2012) .

[3] S. Salsa, Partial Differential Equations in Action: From Modelling to Theory, Springer

International Publishing, 3rd ed., (2016).

[4] XIANG GAO, MEERA SITHARAM, ADRIAN E. ROITBERG, BOUNDS ON THE
JENSEN GAP, AND IMPLICATIONS FOR MEAN-CONCENTRATED DISTRIBU-

TIONS, Australian Journal of Mathematical Analysis and Application, (2019).

[5] R. Datko, J. Lagnese and M. P. Polis, An Example on Effect of Time Delays in

Boundary Feedback Stabilzation of Wave Equation, STAM, (1986).

[6] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal.,
37 (1970), 297-308.

[7] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with
a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 5 (2006),

1561-1585.

[8] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or inter-

nal distributed delay, Diff. Integral Equa., 9-10 (2008), 935-958.

64



BIBLIOGRAPHY

[9] I. Chueshov, I. Lasiecka, Von Karman Evolution Equations: Well-Posedness and Long

Time Dynamics, Springer, Berlin, (2010).

[10] T.G. Ha, S.H. Park, Existence and decay results for a von Karman equation with

variable exponent nonlinearities, Math. Methods Appl. Sci. 44 (2021), 9475-9486.

[11] J.R. Kang, General decay for a von Karman equation with memory and time-varying

delay, Appl. Math. Lett. 122 (2021) 107537, 7 pp.

[12] J.R. Kang, Existence and blow-up of solutions for von Karman equations with time

delay and variable exponents, Appl. Math. Comput. 371 (2020) 124917, 15 pp.

[13] M.J. Lee, J.R. Kang, Blow-up results for a quasilinear von Karman equation of

memory type with acoustic boundary conditions, Appl. Math. Lett. 112 (2021) 106693,

7 pp-

[14] S.H. Park, Attractors for a von Karman equation with memory, Sci. China Math. 58

(2015) 2505-2516.

[15] S.H. Park, Stability of a von Karman equation with infinite memory, Acta Math. Sci.
37 (2017) 965-973.

[16] S.H. Park, A general decay result for a von Karman equation with memory and

acoustic boundary conditions, J. Appl. Anal. Comput. 12 (2022) 17-30.

[17] E.M. Bonotto, M.J.D. Nascimento, E.B. Santiago, Long-time behaviour for a non-
autonomous Klein—Gordon-szakharov system, J. Math. Anal. Appl. 506 (2) (2022)

125670, 42 pp.

[18] K.P. Jin, J. Liang, T.J. Xiao, Coupled second order evolution equations with fading

memory: Optimal energy decay rate, J. Differential Equations 257 (2014) 1501-1528.

[19] K.P. Jin, J. Liang, T.J. Xiao, Asymptotic behavior for coupled systems of second
order abstract evolution equations with one infinite memory, J. Math. Anal. Appl. 475

(2019) 554-575.

65



BIBLIOGRAPHY

[20] C. Li, J. Liang, T.J. Xiao, Long-term dynamical behavior of the wave model with
locally distributed frictional and viscoelastic damping, Commun. Nonlinear Sci. Numer.

Simul. 92 (2021) 105472, 1-22.

[21] Y.M. Qin, Z.Y. Ma, Global Well-Posedness and Asymptotic Behavior of the Solutions

to Non-Classical Thermo(Visco)Elastic Models, Springer, Singapore, (2016).

[22] Y.M. Qin, S.Y. Sheng, Global existence, asymptotic behavior and uniform attractor
for a non-autonomous Timoshenko system of type III with weak damping, Asymptot.

Anal. 125 (2021) 133-157.

[23] T.J. Xiao, J. Liang, Coupled second order semilinear evolution equations indirectly

damped via memory effects, J. Differential Equations 254 (5) (2013) 2128-2157.

[24] J.E.M. Rivera, G.P. Menzala, Decay rates of solutions to a von Karman system for

viscoelastic plates with memory, Quart. Appl. Math. LVII (1999) 181-200.

[25] C.A. Raposo, M.L. Santos, General decay to a von Karman system with memory,

Nonlinear Anal. 74 (2011) 937-945.

[26] J.R. Kang, A general stability for a von Karman system with memory, Bound. Value

Probl. 2015 (2015) 204.

[27] M. Cavalcanti, D.D. Andre, Cavalcanti, I. Lasiecka, X. Wang, Existence and sharp
decay rate estimates for a von Karman system with long memory, Nonlinear Anal. RWA

22 (2015) 289-306.

[28] M.I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Methods

Appl. Sci. 41 (2018) 192-204.

[29] M.I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math.

Anal. Appl. 457 (2018) 134-152.

[30] J.H. Hassan, S.A. Messaoudi, General decay rate for a class of weakly dissipative

second-order systems with memory, Math. Methods Appl. Sci. 42 (8) (2019) 2842-2853.

66



BIBLIOGRAPHY

[31] J.H. Hassan, S.A. Messaoudi, General decay results for a viscoelastic wave equation

with a variable exponent nonlinearity, Asymptotic Anal. (2021) 1-24.

[32] W.J. Liu, General decay of the solution for a viscoelastic wave equation with a time-

varying delay term in the internal feedback, J. Math. Physics. 54 (2013) 043504.

[33] S. Nicaise, C. Pignotti, Interior feedback stabilization of wave equations with time

dependent delay, Electron. J. Differ. Equ. 2011 (41) (2011) 1-20.

[34] B.W. Feng, General decay for a viscoelastic wave equation with strong time-depenent

delay, Boundary Value Probl. 2017 (2017) 57.

[35] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New
York, (1989).

[36] Ti-Jun Xiao and Rui-Han Zhou, Energy decay rate for a nonlinear von Karman

equation with memory, (2022), 0893-9659.

67



	Dedication
	Acknowledgements
	Abbreviations
	Symbols
	 Introduction
	Preliminaries
	The Spaces Lp for p[1,+] 
	Hölder Inequality and the Completeness of Lp
	(Lebesgue’s) Dominated Convergence Theorem 
	Sobolev Spaces and Embedding Theorems
	Sobolev Embeddings for Wm,p(Rn)
	Definition of Functional Spaces
	Sobolev Embedding Theorem
	Trace theorem

	Differential Equations with Delay: Brief Overview
	PDEs with Spatially Anisotropic Time Delay
	An Example on the Effect of Time Delays
	 Energy Method
	Legendre Transformation

	Energy Decay Rate for Nonlinear von Kármán Equations with Memory
	Introduction

	A General Stability Result for a von Kármán System with Infinite Memory and Constant Discrete Time Delay
	Preliminaries

	 The von Kármán equations with Finite Memory and Discrete Time Delay
	Setting of the Problem

	Abstract
	Bibliography

