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NotationsandConventions

Notations

• ∂i = ∂
∂xi

: Partial differentiation with respect to xi.

• Lp(Ω): Space of p-th integrable functions on Ω with respect to the Lebesgue

measure dx, for p ∈ [1,+∞[.

• L∞(Ω): Space of bounded functions on Ω.

• Hm(Ω): Sobolev space of order m, for m ∈ N.

• H1
0 (Ω): Space of functions in H1(Ω) vanishing on the boundary.

• ‖.‖V : The norm in the space V.

• ut = du
dt
, and utt = d2u

dt2
: they symbolize the derivatives of function u with respect to

time t.
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NOTATIONS AND CONVENTIONS NOTATIONS AND
CONVENTIONS

Conventions

• Latin indices {i, j, k} vary over the set {1, 2, 3}.

• Einstein summation convention is always used over repeated indices and expo-

nents, i.e. 

aibi =
3∑
i=1

aibi, XijYij =
3∑

i,j=1
XijYij,

aib
i =

3∑
i=1

aib
i, XijY

ij =
3∑

i,j=1
XijY

ij,

aibi =
3∑
i=1

aibi, X ijY ij =
3∑

i,j=1
X ijY ij,

aαbα =
2∑

α=1
aαbα, XαβYαβ =

2∑
α,β=1

XαβYαβ.

• Boldface letters denote vector-valued functions or tensor-valued functions and their

associated function spaces.

• L2(Ω) represent (L2(Ω))3.

• H1
0(Ω) represent (H1

0 (Ω))3.

• H2(Ω) ∩H1
0(Ω) represent (H2(Ω) ∩H1

0 (Ω))3.

• H1(Ω) and H2(Ω) represent (H1(Ω))3 and (H2(Ω))3, respectively.
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Introduction

Thermopiezoelectric systems are materials or devices that exhibit both thermoelec-

tric and piezoelectric effects. These systems have the ability to convert thermal energy

into electrical energy (thermoelectric effect) and mechanical deformation into electrical

energy (piezoelectric effect), or vice versa. Thermopiezoelectric systems find applications

in various fields, including energy harvesting, sensing, actuation, and control systems.

They can be used to convert waste heat into electricity, harvest energy from vibrations or

mechanical motions, or generate electrical signals based on mechanical or thermal stim-

uli. These systems offer the advantage of dual functionality, enabling the simultaneous

conversion of thermal and mechanical energy into electrical energy. To study the stability

of these systems, we are concerned with analyzing the rate at which the energy dissipates

over time. Also, we study the influence of time delay on the stability of the 1D-system.

Recall that time delays arise in many applications because, in most instances, physical,

chemical, biological, thermal, and economic phenomena naturally depend not only on the

vii



INTRODUCTION INTRODUCTION

present state but also on some past occurrences. In recent years, the control of PDEs

with time delay effects has become an active area of research. In many cases it was shown

that delay is a source of instability and even an arbitrarily small delay may destabilize a

system which is uniformly asymptotically stable in the absence of delay unless additional

conditions or control terms have been used. The stability issue of systems with delay is,

therefore, of theoretical and practical importance.

The first chapter recalled some results in the theory of linear operators and semi-

groups. In addition, some useful inequalities, the energy method and the notion of delay

and its relation to the stability of a system.

In the second chapter we presented the piezoelectric three-dimensional system with

dissipation term. Then we studied the existence and uniqueness by semigroup approach.

We presented the stability analysis carried out by Miara [17], by examining the decay

of energy using the energy method. Using these results, we investigated the stability

of the same system when adding a constant time delay. This is our first result. The

third chapter is based on the paper [6]. First, we adressed the well-posedness of a three-

dimensional thermopizoelectric system. We presented the existence and uniqueness using

the semigroup theory. Secondly, we examined the stability, the exponential decay, by using

Weyl’s theorem, the observability inequality and the decoupling method of Henry. Finally,

the fourth chapter focused on the stability study of thermopizoelectric one-dimensional

medium (rod) with time delay, we showed the exponential decay of energy using the

energy method, where we considered the system presented in Chapter 3 in one dimension

with Neumann-Neumann-Dirichlet boundary conditions. This is our second result. It’s

viii
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worth noting that article [12] helped us to complete this work.
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Chapter 1

Preliminaries
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1.1 Basic concepts

Definition 1.1.1 [2]
Let X be a Banach space. A one parameter family T (t), 0 ≤ t < ∞, of bounded
linear operators from X into X is a semigroup of a bounded linear operator on X
if
(i) T (0) = I, (I is the identity operator on X).
(ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0 (the semi group property).
A semigroup of bounded linear operators, T (t) is uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0

The linear operator A defined by

D(A) =
{
x ∈ X : lim

t→0

T (t)x− x
t

exists
}

and
Ax = lim

t→0

T (t)x− x
t

= d+T (t)x
dt

∣∣∣∣∣
t=0

for x ∈ D(A)

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.

Corollary 1.1.1 [2]
Let T (t) be a uniformly continuous semigroup of bounded linear operators. Then
a) There exists a constant w ≥ 0 such that ‖T (t)‖ ≤ exp(wt).
b) There exists a unique bounded linear operator A such that T (t) = exp(tA).
c) The operator A is the infinitesimal generator of T (t).
d) t→ T (t) is differentiable in norm and

dT (t)
dt

= AT (t) = T (t)A

Definition 1.1.2 [2]
A semigroup T (t), 0 ≤ t < ∞ of bounded linear operators on X is a strongly
continuous semigroup (C0 semi group) of bounded linear operators if

lim
t→0

T (t)x = x for every x ∈ X

2



Theorem 1.1.1 [2]
Let T (t) be a C0 semigroup. There exist constants w ≥ 0 and M ≥ 1 such that

‖T (t)‖ ≤M exp(wt) for 0 ≤ t <∞.

In particular case M=1 and w = 0, we have

Definition 1.1.3 [2]
The semigroup T (t) is called a contraction semigroup of class C0 if

‖T (t)‖L(X,X) ≤ 1 for all t ≥ 0,
where L(X,X) is Banach algebra of all linear continuous operators from X into
itself.

Definition 1.1.4 (resolvent and spectrum) [9]
Let A ∈ L(E). The resolvent set, denoted by ρ(A), is defined by

ρ(A) = {λ ∈ C : (λI − A) is bijective from E onto E} .

The spectrum of A, denoted by σ(A), is the complement of the resolvent set, i.e,
σ(A) = C\ρ(A).

3



Definition 1.1.5 [2] [13]
a) The point spectrum

σp(A) = {λ ∈ C : (λI − A) is not one-to-one } .

Thuse the point spectrum of A is precisely the set of all eigenvalues of A.
b) The continuous spectrum

σc(A) =
{
λ ∈ C : N(λI − A) = 0, R(λI − A) = X and R(λI − A) 6= X

}
.

c) The residual spectrum

σr(A) =
{
λ ∈ σ(A)�{σp(A) ∪ σc(A)} =

{
λ ∈ C : N(λI − A) = 0 and R(λI − A) 6= X

}
.

d) The discrete spectrum

The discrete spectrum of A, σd(A), is the set of all eigenvalues of A with finite
(algebraic) multiplicity and which are isolated points of σd(A).
e) The essential spectrum

σess(A) = σ(A)�σd(A).

Remark 1.1.1 The caracteristic property of the essential spectrum, is its robustness un-
der various perturbations (it is stable under relatively compact perturbation of A).

Theorem 1.1.2 (Weyl’s theorem) [11] [4]
Let A and B be unbounded self-adjoint operators in Hilbert space H, then

σess(A+B) = σess(A)

if B is compact.

Corollary 1.1.2 If σess(A+B) = σess(A) for all bounded self-adjoint operators A,
then (the self-adjoint) B is compact.

4



Theorem 1.1.3 ( Hille-Yosida) [2]
A linear (unbounded) operator A is the infinitesimal generator of a C0 semigroup
of contractions T (t), t ≥ 0 if and only if
(i) A is closed and D(A) is dense in X.
(ii) The resolvent set ρ(A) of A a contains R+ and for every λ > 0

‖R(λ,A)‖ ≤ 1
λ

R(λ,A) = (λI − A)−1 is called the resolvant operator.

Remark 1.1.2 R(λ,A) = (λI − A)−1 =
∫∞

0 exp(−λt)T (t)dt.

Definition 1.1.6 Let H be a Hilbert space. An unbounded linear operator A :
D(A) ⊂ H −→ H is said to be monotone (or −A is dissipative) if it satisfies

(Av, v) ≥ 0 ∀v ∈ D(A).

It is called maximal monotone if, in addition, R(I + A) = H, i.e.

∀f ∈ H ∃U ∈ D(A) such that U + AU = f .

Proposition 1.1.1 [9]
Let A be a maximal monotone operator. Then
(a) D(A) is dense in H,
(b) A is a closed operator,
(c) For every λ > 0, (I + λA) is bijective from D(A) onto H, (I + λA)−1 is a
bounded operator, and ‖(I + λA)−1‖L(H) ≤ 1.

5



Theorem 1.1.4 (Hille-Yosida). [9]
Let A be a maximal monotone operator. Then, given any U0 ∈ D(A) there exists a
unique function

U ∈ C1 ([0,+∞[;H) ∩ C0 ([0,+∞[;D(A))
satisfying 

dU

dt
+ AU = 0 on [0,+∞[,

U(0) = U0.

Moreover,

|U(t)| ≤
∣∣∣U0

∣∣∣ and
∣∣∣∣∣dUdt (t)

∣∣∣∣∣ = |AU | ≤
∣∣∣AU0

∣∣∣ ∀t ≥ 0.

Definition 1.1.7 [2]
Let X be a Banach space and let X∗ be its dual. We denote the value x∗ ∈ X∗ at
x ∈ X by 〈x∗, x〉 or 〈x, x∗〉. For every x ∈ X we define the duality set F (x) ⊆ X∗

by
F (x) =

{
(x∗ : x∗ ∈ X∗and 〈x, x∗〉 = ||x||2 = ||x∗||2)

}

Definition 1.1.8 [2]
A linear operator A is dissipaiive if for every x ∈ D(A) and x∗ ∈ F (x) such that
Re 〈Ax, x∗〉 ≤ 0.

Theorem 1.1.5 (Lumer-Phillips) [2]
Let A be a linear operator with dense domain D(A) in X.
(a) If A is dissipative and there is a λ0 > 0 such that the range, R(λ0I − A) of
(λ0I − A) is X, then A is the infinitesimal generator of a C0-semigroup of
contractions on X.
(b) If A is the infinitesimal generator of a C0- semigroup of contractions on X then
R(λI − A) = X for all λ > 0 and A is dissipative. Moreover, for every x ∈ D(A)
and every x∗ ∈ F (x), Re 〈Ax, x∗〉 ≤ 0 .

Corollary 1.1.3 Let A be a densely defined closed linear operator. If both A and
its adjoint operator A∗ are dissipative, then A is the infinitesimal generator of a
C0-semigroup of contractions on X.

6



Definition 1.1.9 [9]
A bounded operator A ∈ L(E,F ) is said to be compact if A(BE) has compact closure
in F (in the strong topology).
The set of all compact operators from E into F is denoted by K(E,F ). For simplicity
one writes K(E) = K(E,E).

Theorem 1.1.6 (Young Inequality) [9]
Let a and b be two non-negative real numbers. If p, q ∈]1,+∞[ with 1

P
+ 1

q
= 1, then

ab ≤ ap

p
+ bq

q

Remark 1.1.3 It is sometimes convenient to use the Young inequality in the form

ab ≤ εap + Cεb
q with Cε = ε/p−1/(p−1).

Theorem 1.1.7 (Poincare Inequality) [9]
Let Ω be a bounded domain in R3 bounded at least in one direction. There exists a
positive constant Cp such that, for every v ∈ H1

0 (Ω)

||v||L2(Ω) ≤ Cp||∇v||L2(Ω).

Theorem 1.1.8 (Korn Inequality with a Boundary Condition) [7]

Let Ω be a domain in R3 and Γ be a mesurable subset of boundary Γ such that area
(Γ) > 0. Given a vector field v = (vi) ∈ H1(Ω), suppose that

||ε(v)||2L2(Ω) = Σ3
i,j=1||εij(v)||2L2(Ω), where

εij(v) = 1
2 (∂vi/∂xj + ∂vj/∂xi) .

Then, there exists a positive constant Ck such that

||v||H1 ≤ Ck||ε(v)||L2(Ω),

for all v in H1(Ω) vanishing on Γ.

Theorem 1.1.9 (Cauchy-Schwarz inequality) [9]

Let H be a vector space with a scalar product (u, v), then forall u, v ∈ H.

|(u, v)| ≤ (u, u) 1
2 · (v, v) 1

2 .
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Lemma 1.1.1 [17]
We assine that u ∈ C([0, T ],R), T ∈ (0,∞), satisfies the differential inequality

d

dt
u ≤ a(t)u+ b(t) on (0, T )

for some a, b ∈ L1(0, T ). Then u satifies the pointwise estimate

u(t) ≤ exp(A(t))u(0) +
∫ t

0
b(s) exp(A(t)− A(s))ds,∀t ∈ [0, T ]

where
A(t) =

∫ t

0
a(s)ds.

1.2 Lyapunov stability method

In his famous doctoral dissertation in 1892, Aleksandr Mikhailovich Lyapunov developed
the stability theory of dynamical systems determined by nonlinear time-varying or-
dinary differential equations. In doing so, he formulated his concepts of stability and
instability and he developed two general methods for the stability analysis of an equilib-
rium: Lyapunov’s Direct Method, also called The Second Method of Lyapunov, and
The Indirect Method of Lyapunov, also called The First Method. The former involves
the existence of scalar-valued auxiliary functions of the state space (called Lyapunov func-
tions) to ascertain the stability properties of an equilibrium, whereas the latter seeks to
deduce the stability properties of an equilibrium of a system described by a nonlinear
differential equation from the stability properties of its linearization. In the process of
discovering The First Method, Lyapunov established some important stability results for
linear systems (involving the Lyapunov Matrix Equation). For more details see [1].

1.2.1 Lyapunov’s Direct Method (for local stability)

Given a system dx

dt
= f(x), with f continuous, and for some region R around the origin

(specifically an open subset of Rn containing the origin), if we can produce a scalar,
continuously-differentiable function V (x), such that

V (x) > 0, ∀x ∈ R\{0}, V (0) = 0, and

·
V (x) = d

dt
V (x) = ∂V

∂x

∂x

∂t
= ∂V

∂x
f(x) ≤ 0, ∀x ∈ R\{0}, d

dt
V (0) = 0,

then the origin (x = 0) is stable in the sense of Lyapunov.

8



If, additionally, we have

d

dt
V (x) = ∂V

∂x
f(x) < 0, ∀x ∈ R\{0},

then the origin is (locally) asymptotically stable. And if we have

d

dt
V (x) = ∂V

∂x
f(x) ≤ −αV (x), ∀x ∈ R\{0},

for some α > 0, then the origin is (locally) exponentially stable.

1.2.2 Lyapunov Theorems for Stability

The relations between Lyapunov functions and the stability of systems are made
precise in a number of theorems in Lyapunov’s direct method. Such theorems usually
have local and global versions. The local versions are concerned with stability properties
in the neighborhood of equilibrium point and usually involve a locally positive definite
function. For more details see [10].

Definition 1.2.1 If, in a ball BRO
, the function V (x) is positive definite and has

continuous partial derivatives, and if its time derivative along any state trajectory
of the system is negative semi-definite, i.e.,

·
V (x) ≤ 0

then V (x) is said to be a Lyapunov function for the system.

Theorem 1.2.1 (Local Stability). If, in a ball BRO
, there exists a scalar function

V (x) with continuous first partial derivatives such that

• V (x) is positive definite (locally in BRO
)

•
·
V (x) is negative semi-definite (locally in BRO

)

then the equilibrium point 0 is stable.
If, actually, the derivative

·
V (x) is locally negative definite in BRO

, then the sta-
bility is asymptotic.

9



Theorem 1.2.2 (Global Stability). Assume that there exists a scalar function V
of the state x, with continuous first order derivatives such that

• V (x) is positive definite

•
·
V (x) is negative definite

• V (x) −→∞ as ‖x‖ −→ ∞

then the equilibrium at the origin is globally asymptotically stable.

1.3 Energy Method

Consider a dynamical system defined on the set Ω× R+, where u(x, t) is the solution.

Let E denote the energy of the system, which is of the form

E(t) =
∫

Ω
f(u, ux, ut, . . .)dx ≥ 0, ∀t ≥ 0.

There are two common properties of E:

1. If dE
dt

= 0, then E is called conserved and the system is conservative.

2. If dE
dt
≤ 0, then E is called dissipated and the system is dissipative.

Example 1.3.1 Consider the problem (wave problem)
utt − uxx = 0 in ]0, L[×R+

u(0, t) = u(L, t) = 0 , t > 0
u(x, 0) = u0(x), ux(x, 0) = u1(x), in ]0, L[

.

The functional energy of this system defined by

E(t) = 1
2

∫ L

0

[
(ux)2 + (ut)2

]
dx

is conserved.
Indeed, using the wave equation and the boundary conditions we get

dE

dt
=
∫ L

0
[uxutx + ututt] dx =

∫ L

0
[uxutx + utuxx] dx =

∫ L

0
[uxutx − utxux] dx+[utux]x=L

x=0︸ ︷︷ ︸
=0

= 0.

10



Example 1.3.2 Consider the problem (diffusion problem)
ut − uxx = 0 in ]0, L[×R+

u(0, t) = u(L, t) = 0 , t > 0
u(x, 0) = u0(x) in ]0, L[

.

The functional energy of this system defined by

E(t) = 1
2

∫ L

0
(ux)2 dx

is dissipated.
Indeed, using the diffusion equation and the boundary conditions we get

dE

dt
=
∫ L

0
uxutxdx = −

∫ L

0
uxxutdx+ [utux]x=L

x=0︸ ︷︷ ︸
=0

= −
∫ L

0
(uxx)2 dx < 0.

The stability of a system generally refers to its ability to return to its initial state when
an external disturbance ceases. The Lyapunov stability theorem defines the stability of
a system in terms of energy, the biggest advantage of which is that the stability can be
determined without the need to solve the motion equation of the system.

If the system is dissipative, then the energy is decreasing. In order to study the
stability of the system, it is interesting to know the decay rate of this energy.

♦ System stability is said to be strong if

lim
t−→∞

E(t) = 0.

♦ System stability is said to be exponential (or uniform) if

∃c1, c2 > 0 : E(t) ≤ c1 exp(−c2t), ∀t ≥ 0.

♦ System stability is said to be polynomial if

∃c1, c2 > 0 : E(t) ≤ c1t
−c2 , ∀t > 0.

1.4 Time delay and stability

Time delay has two complementary, conterintuitive and almost contradicting facets. On
the one hand, delay is able to induce instabilities, bifurcations of periodic and more
complicated orbits, multi-stability and chaotic motion. On the other hand, delay can
suppress instabilities, stabilize unstable stationary or periodic states and may control

11



complex chaotic dynamics. Systems with delays arise in engineering, biology, physics,
operations research, and economics.

The first contribution in the study of the effect of the time delay on the stabilization
of the solution was made by Datko [15]. He considered the equation

utt − uxx + 2ut(x, t− τ) = 0, (x, t) ∈ (0, 1)× (0,+∞)

and showed that the presence of a time delay τ > 0 in the damping given by the
velocity term can destabilize the system. Also, Datko et al. [14] studied the problem{

utt − uxx + 2aut + a2ut = 0, (x, t) ∈ (0, 1)× (0,+∞)
u(0, t) = 0, ux(1, t) = −kut(1, t− τ), t ∈ (0,+∞) (1.1)

where the delay is acting on the boundary. They proved that for a > 0 and k ≥
1−e−2a

1+e−2a there exists a sequence of delay terms for which the solutions of (2.11) can not be
exponentially stable.

Time delay is also considered in thermoelastic problems. Racke [16] studied the system

{
utt(x, t)− auxx(x, t− τ1) + bθx(x, t) = 0, (x, t) ∈ (0, 1)× (0,+∞),
θt(x, t)− dθxx(x, t− τ2) + butx(x, t) = 0, (x, t) ∈ (0, 1)× (0,+∞), (1.2)

with two delay terms in the displacement and the temperature functions. He proved
the ill-posedness and the unstability of the system (1.2), for τ1 > 0 or τ2 > 0. However,
for τ1 = τ2 = 0, the system is exponentially stable. Mustafa and Kafini [12] considered
the following thermoelastic system with internal distributed delay in the temperature
function


autt(x, t)− duxx(x, t− τ1) + βθx(x, t) = 0, (x, t) ∈ (0, L)× (0,+∞),

bθt(x, t)− k1θxx(x, t)−
∫ τ2
τ1
k2(s)θxx(x, t− s)ds+ βutx(x, t) = 0, (x, t) ∈ (0, L)× (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ (0, L),
θx(x,−t) = f0(x, t), (x, t) ∈ (0, L)× (0, τ2),

and established the exponential stability of the solution provided that
∫ τ2
τ1
|k2(s)| ds

< k2

12



Chapter 2

Energy decay of piezoelectric system
with time delay

13



2.1 Piezoelectric system with dissipation term

The aim of this section is to study the influence of a dissipation term (γut) introduced
into the equilibrium equation of a piezoelectric system on its stability, using the energy
method. We begin by formulating the problem, then study the existence and uniqueness
of the solution, and finally the energy decay rate of the system.

2.1.1 Setting of the problem

Let Ω be a bounded open set of R3 with regular boundary Γ. Let Q be the domain
Ω×]0, T [, 0 < T < ∞, and Σ = Γ×]0, T [ its boundary. We consider a piezoelectric
body whose initial reference configuration (stress-free) is Ω, it is characterized by a mass
density ρ > 0 and a dissipation coefficient γ > 0. With applied mechanical volume forces
f = (fi) : Ω → R3 and electric charges g : Ω → R, this body undergoes a piezoelectric
displacement made of an elastic displacement u(x, t) = (ui(x, t)) : Q→ R3 and an electric
potential ϕ(x, t) : Q→ R given formally by the following evolution equations:

ρutt + γut − div T(u, ϕ) = f in Q,
− div D(u, ϕ) = g in Q,

u(x, 0) = u0(x),ut(x, 0) = u1(x) in Ω
u = ϕ = 0 on Σ

(2.1)

The stress tensor T = (T ij) and the electric displacement D = (Di) are related to u
and ϕ by the constitutive law given below.{

Tij(u, ϕ) = Cijklεkl(u) + ekij∂kϕ,

Di(u, ϕ) = −eiklεkl(u) + dij∂jϕ,
(2.2)

where the characteristics of the material consist in three tensors, namely:
The fourth-order elasticity tensor (Cijkl) is symmetric and positive definite, i.e.

Cijkl = Cjikl = Cklij = Cijkl

and there exists a positive constant αc > 0 such that

CijklXklXij ≥ αcXijXij, ∀Xij = Xji ∈ R.

The third-order coupling tensor (eijk) is partly symmetric, eijk = eikj.
The second-order dielectric tensor (dij) is symmetric and positive definite, i.e. dij = dji

and there exists a positive constant αd such that

dijXiXj ≥ αdXiXi, ∀Xi ∈ R.

14



The coefficients of the three tensors are assumed to satisfy
Cijkl(x) ∈ L∞(Ω), eijk(x) ∈ L∞(Ω), dij(x) ∈ L∞(Ω),

and for the sake of simplicity the mass density ρ is taken, in the sequel, equal to 1.

The functional framework

Let us consider the Hilbert space L2(Ω) endowed with the inner product

(u, v) =
∫

Ω
u(x)v(x)dx

and its corresponding norm
|u|2 =

∫
Ω
u(x)2dx

We also consider the Sobolev spaces H1(Ω) and H2(Ω) and we define the subspace of
H1(Ω), denoted by H1

0 (Ω), as the closure of C∞0 (Ω) in the strong topology of H1(Ω).
In L2(Ω),H1(Ω) and H2(Ω) we consider the following inner products and norms, respec-
tively:

(u,v)L2(Ω) =
3∑
j=1

(uj, vj), |u|2L2(Ω) =
3∑
j=1
|uj|2L2(Ω)

((u,v))H1(Ω) =
3∑
j=1

((uj, vj))H1(Ω), ||u||2H1(Ω) =
3∑
j=1
||uj||2H1(Ω)

((u,v))H2(Ω) =
3∑
j=1

((uj, vj))H2(Ω), ||u||2H2(Ω) =
3∑
j=1
||uj||2H2(Ω)

2.1.2 Existence and regularity

In this section we establish the existence and regularity of solutions to the evolution
system (2.1) using the semigroup approach . We study first the static problem with
applied volume forces f = (fi) : Ω→ R3 and electric charge g : Ω→ R

− div T(u, ϕ) = f in Ω,
− div D(u, ϕ) = g in Ω

u = ϕ = 0 on Γ.
(2.3)

Next, we express the elastic displacement u as a function u(ϕ). The evolution problem
(2.1) can be written as 

Ut(t) + LU(t) = 0 in Q,
U(0) = (u0,u1) in Ω,

U = 0 on Σ,
(2.4)

where U = (u,ut) the solution of the evolution problem and the operator L generates a
semigroup of contractions in an appropriate Hilbert space.
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Static problem

Multipling the first equation in (2.3) by a test function v = (vi) ∈ H1
0(Ω), then using

(2.2) and Green’s formula, we get

−
∫

Ω
div T(u, ϕ) · vdx =

∫
Ω
T ij(u, ϕ)∂ivjdx−

∫
Γ
T ij(u, ϕ)vjnidΓ,

=
∫

Ω
T ij(u, ϕ)εij(v)dx−

∫
Γ
T ij(u, ϕ)vjnidΓ,

=
∫

Ω
(Cijklεkl(u) + ekij∂kϕ)εij(v)dx−

∫
Γ
T ij(u, ϕ)vjnidΓ,

where n = (n1, n2, n3) denotes the unit normal vector pointing the exterior of the bound-
ary of Ω . We use the homogeneous Dirichlet boundary conditions. Similarly, multipling
the second equation in (2.3) by a test function ψ ∈ H1

0 (Ω), then using (2.2) and Green’s
formula we have

−
∫

Ω
div D(u, ϕ)ψdx =

∫
Ω
Di(u, ϕ)∂iψdx−

∫
Γ
Di(u, ϕ)ψnidΓ

=
∫

Ω
(−eiklεkl(u) + dij∂jϕ)∂iψdx−

∫
Γ
Di(u, ϕ)ψnidΓ.

Then 
−
∫

Ω
div T(u, ϕ) · vdx = c(u,v) + e(v, ϕ),

−
∫

Ω
div D(u, ϕ)ψdx = −e(u, ψ) + d(ϕ, ψ)

(2.5)

such that

c : (u,v) ∈ H1(Ω)×H1(Ω)→ R; c(u,v) =
∫

Ω
Cijklεkl(u)εij(v)dx,

e : v, ψ ∈ H1(Ω)×H1(Ω)→ R; e(v, ψ) =
∫

Ω
eijkεjk(v)∂iψdx,

d : ϕ, ψ ∈ H1(Ω)×H1(Ω)→ R; d(ϕ, ψ) =
∫

Ω
dij∂iϕ∂jψdx.

Theorem 2.1.1 We assume that the domain Ω has a Lipschitz boundary. For
applied force f ∈ L2(Ω) and g ∈ L2(Ω), the static problem (2.3) has a unique weak
solution (u, ϕ) ∈ H1

0(Ω) × H1
0 (Ω), by the Lax-Milgram lemma, which satisfies the

following identity :
c(u,v) + e(v, ϕ) =

∫
Ω

f · vdx, ∀v ∈ H1
0(Ω),

−e(u, ψ) + d(ϕ, ψ) =
∫

Ω
gψdx, ∀ψ ∈ H1

0 (Ω).

Moreover, this solution is a saddle-point of the static energy

1
2[c(v,v) + 2e(v, ψ)− d(ψ, ψ)]−

∫
Ω

(f · v− gψ)dx.
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Remark 2.1.1 The coerciveness of (Cijkl) and (dij), imply that the bilinear forms c(v,v)
and d(ψ, ψ) are norms equivalents to the classic norms on H1

0(Ω) and H1
0 (Ω), that is, there

exist positive constants C1, C2, C3 and C4 such that

C1||v||2H1
0(Ω) ≤ c(v,v) ≤ C2||v||2H1

0(Ω)

and
C3||ψ||2H1

0 (Ω) ≤ d(ψ, ψ) ≤ C4||ψ||2H1
0 (Ω).

Evolution problem - Semigroup approach

In this section, in addition to the symmetry and positivity conditions, it is assumed that
the coefficients Cijkl(x), eijk(x), dij(x) are in C1(Ω). Also, for simplicity, we suppose in the
problem (2.1) that f = g = 0.

Lemma 2.1.1 Let u ∈ H1
0(Ω) ∩H2(Ω) be given. The problem

(Pϕ(u))
{

Find ϕ ∈ H1
0 (Ω) such that

d(ϕ, ψ) = e(ψ,u) ∀ψ ∈ H1
0 (Ω)

admits one and only one solution by Lax-Milgram lemma.
Moreover, by regularity theory of elliptic equations, we have

ϕ ∈ H1
0 (Ω) ∩H2(Ω).

Let’s define the operators{
C : H1

0(Ω) ∩H2(Ω) −→ L2(Ω)
Cu = − ∂

∂xj

[
Cijkl ∂uk

∂xl

]
ei,{

E : H1
0 (Ω) ∩H2(Ω) −→ L2(Ω)
Eϕ = − ∂

∂xj

[
ekij ∂ϕ

∂xk

]
ei,

where e = (e1, e2, e3) is the canonical basis of R3,{
< : H1

0(Ω) ∩H2(Ω) −→ H1
0 (Ω) ∩H2(Ω)

ϕ = <u,{
A : D(A) = H1

0(Ω) ∩H2(Ω) ⊆ L2(Ω) −→ L2(Ω)
A = C + E<,

and 
L : X −→ X, where X = H1

0(Ω)× L2(Ω)

L =
[

0 −I
A γI

]
, where I is the identity operator and γ > 0.
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We define on a Hilbert space X = H1
0(Ω) ∩ L2(Ω) the scalar produit For U1 =

(
u1
w1

)
, U2 =

(
u2
w2

)
, ϕ1 = <u1, ϕ2 = <u2 :

(U1,U2)X = c(u1,u2) + d(ϕ1, ϕ2) + (w1,w2).

Lemma 2.1.2 The operator L satisfy the properties
- (LU,U)X ≥ 0 ∀U ∈ D(L) = (H1

0(Ω) ∩H2(Ω))×H1
0(Ω).

- Range (L+ I) = X.

Proof 2.1.1 L is a linear unbounded operator and D(L) = (H1
0(Ω) ∩H2(Ω))× L2(Ω).

Firstly, let U =
(

u
w

)
∈ D(L), ϕ = <u be the solution of (Pϕ(u)), and χ = <w be

the solution of (Pχ(w)), then LU =
(

−w
Au + γw

)
and

(LU,U)X = c(−w,u)+d(−<w,<u)+(Au+γw,w) = −c(w,u)+d(−<w,<u)+(Au,w)+γ (w,w)

= −c(w,u)− d(<w,<u) + (Cu,w) + (E<u,w) + γ (w,w)
= −c(w,u) + c(u,w)− d(χ, ϕ) + (Eϕ,w) + γ (w,w)
= −c(w,u) + c(u,w)− d(χ, ϕ) + e (ϕ,w) + γ (w,w) .

By choosing ψ = χ in (Pϕ(u)) and ψ = ϕ in (Pχ(w)), we get{
d(ϕ, χ) = e(χ,u)
d(χ, ϕ) = e(ϕ,w). (2.6)

Using the symmetry of the bilinear form c(., .), we have

(LU,U)X = γ (w,w) ≥ 0.

Secondly, we know prove that (L+ I) is surjective. Let G =
(

g1
g2

)
∈ X, the

problem {
Find U ∈ D(L)
LU + U = G (2.7)

is equivalent to the system
u ∈ H2(Ω) ∩H1

0(Ω), w ∈ H1
0(Ω) :

−w + u = g1
Au + (1 + γ) w = g2
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which implies that {
u ∈ H2(Ω) ∩H1

0(Ω)
Cu + E<u+ (1 + γ) u = (1 + γ) g1 + g2.

(2.8)

The variational formulation of (2.8) is
u ∈ H1

0(Ω), ϕ ∈ H1
0 (Ω) :

c(u,v) + e(ϕ,v) + (1 + γ) (u,v) = ((1 + γ) g1 + g2,v) , ∀v ∈ H1
0(Ω)

d(ϕ, ψ)− e(ψ,u) = 0, ∀ψ ∈ H1
0 (Ω).

(2.9)

Let Y =
(

u
ϕ

)
, Z =

(
v
ψ

)
belong to H1

0(Ω)×H1
0 (Ω). Define the bilinear form

Λ(Y,Z) = c(u,v) + e(ϕ,v) + d(ϕ, ψ)− e(ψ,u) + (1 + γ) (u,v)

and the linear form
z(Z) = ((1 + γ) g1 + g2,v) .

Then (2.9) is equivalent to the variational problem{
Find Y ∈ H1

0(Ω)×H1
0 (Ω) such

Λ(Y,Z) = z(Z), ∀Z ∈ H1
0(Ω)×H1

0 (Ω). (2.10)

It is easy to check that Λ(., .) is continuous and coercive and that z is continuous
in H1

0(Ω) × H1
0 (Ω). Then by the Lax-Milgram lemma we obtain that the problem (2.10)

admits a unique solution Y ∈ H1
0(Ω)×H1

0 (Ω). Consequently, there exists a unique solution

U =
(

u
w

)
, where w = u− g1, to the problem (2.7).

Theorem 2.1.2 Assume that u0 ∈ H2(Ω) ∩H1
0(Ω),u1 ∈ H1

0(Ω), then there exists
one and only one solution (u, ϕ) to the problem (2.1). Moreover,{

u ∈C([0,∞[; H2(Ω) ∩H1
0(Ω)) ∩ C1([0,∞[; H1

0(Ω)) ∩ C2([0,∞[; L2(Ω))
ϕ ∈ C1([0,∞[; H1

0(Ω)) .

Proof 2.1.2 We rewrite the problem (2.1) as a first order system:
∂u
∂t

= w
∂w
∂t

+Au + γw = 0
. (2.11)

Let us note by U =
(

u
w

)
, then (2.11) becomes

dU
dt

+ LU = 0
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where

L =
[

0 −I
A γI

]
.

Then we apply the Hille-Yosida theorem (1.1.4), by using the properties of the operator L
in lemma 2.1.2.

2.2 Exponential decay of the energy

We consider is this section the system (2.1) with f = g = 0. The energy functional E
associated with the weak solution of system (2.1) is

E(t) = 1
2[
∫

Ω
|ut|2dx+ c(u,u) + d(ϕ, ϕ)]

with initial condition

E(0) = 1
2[
∫

Ω
|u1|2dx+ c(u0,u0) + d(ϕ0, ϕ0)]

where ϕ0 ∈ H1
0 (Ω) is the unique weak solution to

d(ϕ0, ψ) = e(u0, ψ), ∀ψ ∈ H1
0 (Ω).

In the first equation of (2.5) with test function v = ut ∈ H1
0(Ω) and homogeneous

boundary conditions we get

−
∫

Ω
div T(u, ϕ) · utdx = c(u,ut) + e(ut, ϕ), (2.12)

and the second equation of (2.5) with test function ψ = ϕt ∈ H1
0 (Ω) we have

0 = −
∫

Ω
div D(ut, ϕt)ϕtdx = −e(ut, ϕ) + d(ϕ, ϕt). (2.13)

Using (2.12) and (2.13) then

−
∫

Ω
div T(u, ϕ) · utdx = c(u,ut) + d(ϕ, ϕt) = 1

2
d

dt
[c(u,u) + d(ϕ, ϕ)].

Multiplying the first equation of (2.1) by ut, integrating over Ω and using the equality
above, we have

1
2
d

dt

∫
Ω
|ut|2dx+ 1

2
d

dt
[c(u,u) + d(ϕ, ϕ)] = −γ

∫
Ω
|ut|2dx.
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Then
d

dt
E(t) = −γ

∫
Ω
|ut|2dx ≤ 0

We conclude that the energy of the piezoelectric system (2.1) is decreasing .

We introduce the functional

Λ(t) =
∫

Ω
ut · udx+ γ

2

∫
Ω
|u|2dx

with initial condition Λ(0) =
∫
Ω u1 · u0dx+ γ

2
∫

Ω |u|2dx.
We have

d

dt
Λ(t) =

∫
Ω

utt · udx+
∫

Ω
|ut|2dx+ γ

∫
Ω

ut · udx.

Multiplying the first equation of (2.1) by u and integrating over Ω we get∫
Ω

utt · udx =
∫

Ω
div T · udx− γ

∫
Ω

ut · udx.

Using 2.5)weget
∫
Ω utt · udx = −[c(u,u) + e(u, ϕ)]− γ

∫
Ω ut · udx.Then

d

dt
Λ(t) =

∫
Ω
|ut|2dx− [c(u,u) + e(u, ϕ)].

We prove the equivalence between the energy functional E and the function Λ(t) by
the following lemma.

Lemma 2.2.1 For any N large enough there exist two positive constants α1 =
α1(N,CK(Ω)) and α2 = α2(N, γ, CK(Ω)) such that

α1E(t) ≤ NE(t) + Λ(t) ≤ α2E(t)

Proof 2.2.1 . Step1. From the definition of E(t) and Λ(t) we have

NE(t) + Λ(t) = NE(t) +
∫

Ω
ut · udx+ γ

2

∫
Ω
|u|2dx.

Using Young’s inequality

|
∫

Ω
ut · udx| ≤

1
2

∫
Ω

(|ut|2 + |u|2)dx

we get

NE(t) + Λ(t) ≤ (N + 1)E(t) + γ + 1
2

∫
Ω
|u|2dx.

From Korn’s inequality we have

NE(t) + Λ(t) ≤ (N + 1)E(t) + (γ + 1
2 )CK(Ω)c(u,u).
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Then we conclude that there exists a positive constant α2 such that

NE(t) + Λ(t) ≤ α2E(t)
with α2 = N + 1 + (γ + 1)CK(Ω).

Step 2. We have ∫
Ω

ut · udx ≥ −
1
2

∫
Ω

(|ut|2 + |u|2)dx

then

NE(t) + Λ(t) = NE(t) +
∫

Ω
ut · udx+ γ

2

∫
Ω
|u|2dx ≥ NE(t) +

∫
Ω

ut · udx

≥ N

2 E(t)− 1
2

∫
Ω

(|ut|2 + |u|2)dx

≥ N − 1
2

∫
Ω
|ut|2dx+ N

2 [(c(u,u) + d(ϕ, ϕ))]− 1
2

∫
Ω
|u|2dx.

Using Korn’s inequality we get

NE(t) + Λ(t) ≥ N − 1
2

∫
Ω
|ut|2dx+ N − Ck(Ω)

2 c(u,u) + N

2 d(ϕ, ϕ).

Choosing N large enough, that is N > max{1, CK(Ω)}, and α1 = min{N−1
2 , N−Ck(Ω)

2 , N2 }
we conclude that

α1E(t) ≤ NE(t) + Λ(t).

First, we prove the exponential decay of the NE(t) + Λ(t).

Let φ(t) = NE(t) + Λ(t), from the above we get

d

dt
φ(t) = −Nγ

∫
Ω
|ut|2dx− [c(u,u) + d(ϕ, ϕ)] +

∫
Ω
|ut|2dx

= −(Nγ − 1)
∫

Ω
|ut|2dx− [c(u,u) + d(ϕ, ϕ)].

Thus, by choosing N > max(1, CK(Ω)), (we recall that the dissipation coefficient γ is
positive) we obtain

d

dt
φ(t) ≤ −inf{(Nγ − 1), 1}[

∫
Ω
|ut|2dx+ c(u,u) + d(ϕ, ϕ)]

≤ −2inf{(Nγ − 1), 1}E(t)

and therefore

d

dt
φ(t) ≤ −λ0E(t)
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where λ0 = 2inf{(Nγ − 1), 1} is a positive constant independent of t. It follows that

φ(t) ≤ φ(0) exp(−λ0

α2
t) ∀t ≥ 0

with φ(0) = NE(0) + Λ(0). Then

α1E(t) ≤ α2E(0) exp(−λ0

α2
t)

and therefore
E(t) ≤ β exp(−ζt)E(0)

where β = α2
α1

and ζ = λ0
α1
.

2.3 Piezoelectric System with time delay

We consider in this section the homogeneous case (f = g = 0) of the system (2.1) with
constant time delay. Then the system is defined as follows

utt + γut − div T(u, ϕ) + µut(x, t− τ) = 0, in Q,
− div D(u, ϕ) = 0, in Q,

u(x, 0) = u0(x),ut(x, 0) = u1(x), in Ω
u = 0, ϕ = 0 on Σ

ut(x, t− τ) = f0(x, t− τ), (x, t) ∈ Ω×]0, τ [,

(2.14)

where f0 is a history function defined in suitable functional space, and µ is a constant.

2.3.1 Study of the problem

Let’s define the following new variable

z(x, ρ, t) = ut(x, t− τρ) ρ ∈]0, 1[

where τ is a positive constant. Thus system (2.14) is equivalent to

utt + γut − div T(u, ϕ) + µz(x, 1, t) = 0, in Q,
− div D(u, ϕ) = 0, in Q,

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω×]0, 1[×]0, T [
z(x, 0, t) = ut(x, t) in Q,

u(x, 0) = u0(x),ut(x, 0) = u1(x), in Ω
u = ϕ = 0 on Σ

z(x, ρ, 0) = f0(x,−τρ), (x, ρ) ∈ Ω×]0, 1[.

(2.15)
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In the following, we consider (u, ϕ, z) to be a solution of system (2.15), and defined
the energy of (2.15) by

E(t) = 1
2(
∫

Ω
u2
tdx+ c(u,u) + d(ϕ, ϕ) + τ |µ|

∫
Ω

∫ 1

0
z2dρdx).

Proposition 2.3.1 Under the condition

|µ| < γ

the energy function E(t) is decreasing.

Proof 2.3.1 Let us note

F (t) = 1
2[
∫

Ω
u2
tdx+ c(u,u) + d(ϕ, ϕ)].

Then
E(t) = F (t) + 1

2τ |µ|
∫

Ω

∫ 1

0
z2dρdx

and
E ′(t) = F ′(t) + 1

2τ |µ|
d

dt

∫
Ω

∫ 1

0
z2dρdx.

We know from the previous section that

F ′(t) = −γ
∫

Ω
u2
tdx− µ

∫
Ω

ut · z(x, 1, t)dx

and from the equation, τzt(x, ρ, t) + zρ(x, ρ, t) = 0 we obtain

d

dt

∫
Ω

∫ 1

0
z2dρdx = 2

∫
Ω

∫ 1

0
zztdρdx = −2

τ

∫
Ω

∫ 1

0
zzρdρdx = −1

τ

∫
Ω

[z2(x, 1, t)− u2
t (x, t)]dx.

Then

E ′(t) = −γ
∫

Ω
u2
tdx− µ

∫
Ω

ut · z(x, 1, t)dx− |µ|2

∫
Ω

[z2(x, 1, t)− u2
t (x, t)]dx.

Using Cauchy-Schwarz and Young inequalities, we get

−µ
∫

Ω
ut · z(x, 1, t)dx ≤ |µ|2 [

∫
Ω

u2
tdx+

∫
Ω

z2(x, 1, t)dx].

Therefore
E ′(t) ≤ −(γ − |µ|)

∫
Ω

u2
t (x, t)dx.

Consequently, the energy is decreasing if and only if |µ| < γ.
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In order to justify the exponential decay of the energy E(t), we define de Lyapunov
functional Λ as follows

Λ(t) =
∫

Ω
ut · udx+ γ

2

∫
Ω
|u|2dx+ |µ|

∫
Ω

∫ 1

0
τ exp(−τρ)z2(x, ρ, t)dρdx.

Therefore

Λ′(t) =
∫

Ω
u2
tdx− (c(u,u) + d(ϕ, ϕ))− |µ|

∫
Ω

exp(−τ)z2(x, 1, t)dx+ |µ|
∫

Ω
u2
tdx

−|µ|τ
∫

Ω

∫ 1

0
exp(−τρ)z2dρdx

such that

(|µ|
∫

Ω

∫ 1

0
τ exp(−τρ)z2(x, ρ, τ)dρdx)′ = 2|µ|τ

∫
Ω

∫ 1

0
exp(−τρ)z · ztdρdx

= −2|µ|
∫

Ω

∫ 1

0
exp(−τρ)z · zρdρdx

= −|µ|
∫

Ω

∫ 1

0
exp(−τρ) ∂

∂ρ
z2dρdx

= −|µ|
∫

Ω
[exp(−τ)z2(x, 1, t)− z2(x, 0, t) + τ

∫ 1

0
exp(−τρ)z2dρ]dx.

Lemma 2.3.1 For any N large enough there exist two positive constants c1 =
max{(N + 1), (γ + 1)Ck} and c2 = min{N−1

2 , N−Ck

2 , N2 , c
∗} such that

c1E(t) ≤ NE(t) + Λ(t) ≤ c2E(t).

Proof 2.3.2 Te proof consists of two parts.
Part 1 : From the definition of E(t) and Λ(t) we have

NE(t) + Λ(t) = NE(t) +
∫

Ω
ut · udx+ γ

2

∫
Ω
|u|2dx+ |µ|

∫
Ω

∫ 1

0
τ exp(−τρ)z2(x, ρ, t)dρdx.

From Young inequality, we have

NE(t) + Λ(t) ≤ NE(t) + 1
2

∫
Ω

u2
tdx+ γ + 1

2

∫
Ω
|u|2dx+ |µ|

∫
Ω

∫ 1

0
τz2(x, ρ, t)dρdx.

Using Korn’s inequality, we get

NE(t) + Λ(t) ≤ NE(t) + 1
2

∫
Ω

u2
tdx+ γ + 1

2 Ckc(u,u) + |µ|
∫

Ω

∫ 1

0
τz2(x, ρ, t)dρdx

≤ (N + 1)E(t) + γ + 1
2 Ckc(u,u)

≤ c1E(t)

such that
c1 = max{(N + 1), (γ + 1)Ck}.
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Part 2 :

NE(t) + Λ(t) = NE(t) +
∫

Ω
ut · udx+ γ

2

∫
Ω
|u|2dx+ |µ|

∫
Ω

∫ 1

0
τ exp(−τρ)z2(x, ρ, t)dρdx

≥ NE(t) +
∫

Ω
ut · udx+ |µ|

∫
Ω

∫ 1

0
τ exp(−τρ)z2(x, ρ, t)dρdx.

Using the inequality ∫
Ω

ut · udx ≥ −
1
2

∫
Ω

(u2
t + u2)dx

then we have

NE(t)+Λ(t) ≥ N − 1
2

∫
Ω

u2
tdx+N2 (c(u,u)+d(ϕ, ϕ))−1

2

∫
Ω

u2dx+|µ|
∫

Ω

∫ 1

0
τ exp(−τρ)z2(x, ρ, t)dρdx.

Using Korn’s inequality, we obtain

NE(t) + Λ(t) ≥ N − 1
2

∫
Ω

u2
tdx+ N − Ck

2 c(u,u) + N

2 d(ϕ, ϕ) + c∗|µ|τ
∫

Ω

∫ 1

0
z2(x, ρ, t)dρdx

≥ c2E(t)

such that
0 < c∗ < exp(−τρ),
N > max{1, Ck}

and
c2 = min{N − 1

2 ,
N − Ck

2 ,
N

2 , c
∗}.

Theorem 2.3.1 There exist two positive constants α and β such that

E(t) ≤ β exp(−αt)E(0), ∀t ≥ 0.

Proof 2.3.3 Let φ(t) = NE(t) + Λ(t).
Then

φ′(t) = −N(γ − |µ|2 )
∫

Ω
u2
tdx−N

|µ|
2

∫
Ω

z2(x, 1, t)dx−Nµ
∫

Ω
ut · z(x, 1, t)dx+

∫
Ω

u2
tdx

−(c(u,u) + d(ϕ, ϕ))− |µ|
∫

Ω
exp(−τ)z2(x, 1, t)dx+ |µ|

∫
Ω

u2
tdx− |µ|τ

∫
Ω

∫ 1

0
exp(−τρ)z2dρdx.

Using Young inequality, we have

φ′(t) ≤ −N(γ − |µ|2 )
∫

Ω
u2
tdx−N

|µ|
2

∫
Ω

z2(x, 1, t)dx+ Nµ

2

∫
Ω

u2
tdx+ Nµ

2

∫
Ω

z2(x, 1, t)dx

+
∫

Ω
u2
tdx− (c(u,u) + d(ϕ, ϕ))− c∗|µ|

∫
Ω

z2(x, 1, t)dx+ |µ|
∫

Ω
u2
tdx− τ |µ|c∗

∫
Ω

∫ 1

0
z2dρdx

≤ −γ0

∫
Ω

u2
tdx− |µ|c∗

∫
Ω

z2(x, 1, t)dx− (c(u,u) + d(ϕ, ϕ))− τ |µ|c∗
∫

Ω

∫ 1

0
z2dρdx,
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such that
γ0 = N(γ − |µ|)− (1− |µ|) > 0.

Then

φ′(t) ≤ −inf{γ0, 1, c∗}(
∫

Ω
u2
tdx+ c(u,u) + d(ϕ, ϕ) + |µ|τ

∫
Ω

∫ 1

0
z2dρdx)

≤ −2inf{γ0, 1, c∗}E(t)
≤ −λ0E(t)

such that λ0 = 2inf{γ0, 1, c∗}.
Therefore

φ′(t) ≤ −λ0

c2
φ(t).

So that
φ(t) ≤ φ(0) exp(−λ0

c2
t).

Then
E(t) ≤ c1

c2
E(0) exp(−λ0

c2
t)

≤ βE(0) exp(−αt)

such that β = c1
c2

and α = λ0
c2
.
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Chapter 3

Energy decay of a
thermopiezoelectric system
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In this chapter, firstly we present the 3D model of our problem which represents the
effect of temperature on piezoelectric body. Secondly, we study the well-posedness of the
problem using a semigroup approach. Thirdly, we study the decay of the total energy
of the system. Using the equivalence between the exponential decay of the total energy
and an observability inequality. The idea is to apply a decoupling method introduced
by Henry et al.[5], which shows that the difference between the semigroup generated by
the thermopiezoelectric system and the decoupled system is compact in the energy space,
then we apply the Weyl’s theorem to conclude that the two semigroup have the same
stability properties.

3.1 Thermopiezoelectric 3D model

Let Ω be a bounded region in R3 with smooth boundary. We consider the thermopiezo-
electric model:

utt − divT(u, ϕ) + α∇θ = 0
divD(u, ϕ) = 0 in Ω× R+

θt −∆θ + βdiv(ut) = 0
u = 0, ϕ = 0, θ = 0, on ∂Ω× R+

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ0(x, 0) = θ0(x) in Ω.

(3.1)

We use the same notations as in Chapter 2, where u, ϕ and θ are the displacement
vector, the electric potential and the temperature variation respectively, α and β are
positive constants, T is the mechanical stress tensor and D is the electric displacement
vector already defined in (2.2) chapter 2.

3.1.1 Hypothesis I

We consider the same assumptions on the coefficients as in chapter 2. The fourth-order
elasticity tensor (Cijkl) is symmetric and positive definite, the third-order coupling
tensor (eijk) is partly symmetric, eijk = eikj, the second-order dielectric tensor (dij) is
symmetric and positive definite.

3.2 Well posedness: Functional setting

We use in this chapter some results of chapter 2.
Let us denote by X the set X = H1

0(Ω) × L2(Ω) × L2(Ω). We define on X the scalar
produit

For U1 =
(

u1,w1, θ1
)
, U2 =

(
u2,w2, θ2

)
, ϕ1 = <u1, ϕ2 = <u2 :

〈U1,U2〉X = c(u1,u2) + d(ϕ1, ϕ2) + (w1,w2) + α

β
(θ1, θ2).
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Equipped with this scalar product X is a Hilbert space.

The evolution problem (3.1) can be written as

d

dt
U(t) = AU(t), U(0) = U0

where U = (u,w, θ),U0 = (u0,u1, θ0) and the operator A : D(A) ⊂ X −→ X is given by

A(u,w, θ) = (w, div T(u,<u)− α∇θ,∆θ − β div(w))

for any (u,w, θ) ∈ D(A) with domain

D(A) =
{

(u,w, θ) ∈ X,u ∈ H2(Ω) ∩H1
0(Ω),w ∈ H1

0(Ω), θ ∈ H2(Ω) ∩H1
0 (Ω)

}
.

We can easily verify that the adjoint operator A∗ is given by

A∗(u,w, θ) = (−w,− div T(u,<u) + α∇θ,∆θ + β div(w))

with domain D(A∗) = D(A).

Lemma 3.2.1 Assume Hypothesis I and the above considerations.Then A and A∗
are dissipative operators, that is

a)〈A(u,w, θ), (u,w, θ)〉X ≤ 0 ∀(u,w, θ) ∈ D(A)

and
b)〈A∗(u,w, θ), (u,w, θ)〉X ≤ 0 ∀(u,w, θ) ∈ D(A∗).

Proof 3.2.1 Using lemma 2.1.1 we have for a given u,w ∈ H2(Ω)∩H1
0(Ω) there exist

unique ϕ = <u and ψ = <w in H2(Ω) ∩H1
0 (Ω) solutions of (Pϕ(u)) and (Pψ(w)) respec-

tively.

Let (u,w, θ) ∈ D(A). Then

〈A(u,w, θ), (u,w, θ)〉X =
= 〈(w, div T(u,<u)− α∇θ,∆θ − β div(w)), (u,w, θ)〉X
=
∫
Ω[div T(u,<u)− α∇θ] ·wdx+ c(w,u)

+d(<w,<u) + α
β

∫
Ω (∆θ − β div(w)) θdx.

From (2.5) chapter 2, we have∫
Ω

div T(u,<u) ·wdx = −c(u,w)− e(w,<w).

Using Green’s formula with boundary conditions, we get
α

β

∫
Ω

(∆θ − β div(w))θdx = −α
β

∫
Ω
|∇θ|2dx+ α

∫
Ω

w · ∇θdx.
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Therefore

〈A(u,v, θ), (u,v, θ)〉X = −e(w,<w) + d(<u,<w)− α

β

∫
Ω
|∇θ|2dx = −α

β

∫
Ω
|∇θ|2dx

which proves a). In the same way we can prove b).

Theorem 3.2.1 Under Hypothesis I and the above considerations we have:
a) The operator A is the infinitesimal generator of a C0- semigroup, {S(t)}t≥0 of
contractions in X.
b) For each U0 = (u0,u1, θ0) ∈ D(A) , the thermopiezoelectric system (3.1) has a
unique (strong) solution U = (u,w, θ) ∈ C([0,+∞),D(A)).

Proof 3.2.2 Clearly D(A) is dense in X because contains [C∞0 (Ω)]7. Furthermore, A
is a closed operator because an easy calculation shows that A∗∗ = A. Indeed, define the
linear bounded self adjoint operator Eθ on a Hilbert space X by Eθ(u,w, θ) = (0, 0,−∆θ).
Then we have

A+ Eθ = −A∗ − Eθ.
Therefore

A∗∗ = (−A− 2Eθ)∗ = −A∗ − 2E∗θ = A.
Using this information and the result that A and A∗ are dissipative, we apply corol-

lary 1.1.3 to deduce a). Using the theory of semigroups then b) follows from a).

3.3 Analyzing the system’s stability

In order to study stability, we demonstrate exponential decay of the total energy of the
system.
We know that the total energy E(t) associated with (3.1) is

E(t) = 1
2‖U‖

2
X = 1

2[
∫

Ω
|ut|2dx+ c(u,u) + d(ϕ, ϕ) + α

β

∫
Ω
|θ|2dx]

for all t ≥ 0 . It is easy to prove that E(t) satisfy

d

dt
E(t) = −α

β

∫
Ω
|∇θ|2dx ≤ 0

which indicates that E(t) is decreasing.
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3.3.1 Equivalence between the exponential decay as t → +∞
and an observability inequality

Hypothesis II (Conditon on the region Ω)

If Φ ∈ H1
0(Ω) is such that div T(Φ,<(Φ)) + γΦ = 0 in Ω

div Φ = 0 in Ω
(3.2)

for some γ ∈ R, then Φ = 0 in Ω̄, where the tensor T is defined in (2.2) chapter 2.

Theorem 3.3.1 Let Ω be a bounded region of R3 with smooth boundary. Assume
Hypotheses I and II. Then, there exist positive constants M and m such that

E(t) ≤ E(0) exp(−mt) ∀t > 0

if and only if there exist T > 0 and λ > 0 such that

||u0||2L2(Ω) + ||u1||2H−1(Ω) ≤ λ
∫ T

0
|| div Ψ(., t)||2H−1(Ω)dt (3.3)

holds for every solution Ψ(x, t) of the associated system
Ψtt − divT(Ψ,<(Ψ)) = 0 in Ω× (0,T)

Ψ = 0 on ∂Ω× (0,T)
Ψ(x, 0) = u0(x),Ψt(x, 0) = u1(x) in Ω.

(3.4)

In order to prove the observability inequality implies the exponential decay we use
the decoupling method to decouple our system into two problems. The first one a piezo-
electric problem with dissipative term and the second is a heat equation with a source
term. Following a similar strategy as the one used by G. Lebeau and E. Zuazua [8] we
obtain E(0) ≤ c1

∫ T
0
∫

Ω |∇θ|2dxdt for initial data in terms of the norm of the gradient of
temperature.

Remark 3.3.1 We define P ∈ L(L2(Ω),L2(Ω)) is the orthogonal projection from L2(Ω)
into the closed subspace S = {∇φ where φ ∈ H1

0 (Ω)} .

Clearly, P = ∇(∆−1) div, then Pv = ∇φ with φ ∈ H1
0 (Ω) if and only if ∆φ = div v

in Ω and φ ∈ H1
0 (Ω). This fact tells us that
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∫
Ω
Pv · vdx =

∫
Ω
∇φ · vdx = −

∫
Ω
φ div vdx

= −
∫

Ω
φ∆φdx =

∫
Ω
|∇φ|2dx

=
∫

Ω
|Pv|2dx.

(3.5)

We claim that
∫
Ω |Pv|2dx is equivalent to || div v||2H−1(Ω).

Decoupled system corresponding to system (3.1)

We are going to introduce the decoupling system associated to the problem (3.1), for
which we are able to prove exponential decay of energy. The idea is to use the method
suggested by Henry and all. [5] for thermoelastic system.

vtt − divT(v,<(v)) + αβPvt = 0 in Ω× (0,∞)
ηt −∆η + βdivvt = 0 in Ω× (0,∞)

v = 0, η = 0 on ∂Ω× (0,∞)
v(x, 0) = u0(x),vt(x, 0) = u1(x), η(x, 0) = θ0(x) in Ω.

(3.6)

This system can be written as an abstract Cauchy problem

d

dt
V(t) = BV(t), V(0) = V0

where V = (v,vt, η) and V(0) = (u0,u1, θ0)
and the operator B : D(B) ⊂ X −→ X is given by

B(v,vt, η) = (vt, divT(v,<(v))− αβPvt,∆η − β div(vt))

for any (v,vt, η) ∈ D(B) = D(A).

Under the same hypothesis of theorem 3.2.1, this system is also well posed in the
Hilbert space X. The operator B generate a semigroup {Sd(t)}t≥0.

Lemma 3.3.1 For any T > 0, the difference of the semigroups S(t) − Sd(t) is
compact from X into C([0, T ]; X).

Proof 3.3.1 see [6].

Remark 3.3.2 The result of this lemma asserts that the difference between the generators
of these two semigroups is compact, and by means of Weyl’s theorem 1.1.2 the essential
spectrum of these two operators is identical and consequently the stability of the system
associated with the operator A is equivalent to the stability of the system associated with
the operator B. Therefore, the stability of the system (3.1) is equivalent to the stability of
the system (3.6).
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To solve the decoupled system (3.6), we solve first the system
vtt − divT(v,<(v)) + αβPvt = 0 in Ω× (0,∞)

v = 0, on ∂Ω× (0,∞)
v(x, 0) = u0(x),vt(x, 0) = u1(x) in Ω.

(3.7)

Afterwords, we solve the scalar equation
ηt −∆η + β div vt = 0 in Ω× (0,∞)

η = 0 on ∂Ω× (0,∞)
η(x, 0) = θ0(x) in Ω.

(3.8)

The energy associated to the system (3.7) is

E2(t) = 1
2[
∫

Ω
|vt|2dx+ c(v,v) + d(<(v),<(v))]

and the energy associated to the problem (3.8) is

E3(t) = α

2β

∫
Ω
η2dx.

Proof 3.3.2 (of theorem 3.3.1) The idea of the proof is to use a similar strategy used
by G. Lebeau and E. Zuazua in [8] for linear thermoelasticity. We restrict ourselves to
proving the inequality that leads to the stability of our system. The proof of the reciprocal
inequality can be found in [6]. So we prove that the observability inequality (3.3) implies
the exponential decay of the total energy E(t) of problem (3.1).
Let Φ = Ψt. Then we derive with respect to t the problem (3.4), we get

Φtt − divT(Φ, R(Φ)) = 0 in Ω× (0,T)
Φ(x, 0) = Φ0(x) = u1(x) in Ω

Φt(x, 0) = Φ1(x) = divT(u0,<(u0)) in Ω
Φ = 0 on ∂Ω× (0,T).

(3.9)

Using (3.3) we obtain

||Φ0||2L2(Ω) + ||Φ1||2H−1(Ω) ≤ λ
∫ T

0
|| div Φ||2H−1(Ω)dt (3.10)

since
||Φ1||2H−1(Ω) = ||divT(u0,<(u0))||2H−1(Ω)

≥ C||u0||2H1
0(Ω)

(3.11)
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where C > 0. Then, it follows from (3.4) together with (3.5) that

||u1||2L2(Ω) + ||u0||2H1
0(Ω) ≤ C

∫ T

0
|| div Φ||2H−1(Ω)dt

≤ C
∫ T

0

∫
Ω
PΨt ·Ψtdxdt

(3.12)

for some positive constant C.

Let’s now decompose the solution v of the decoupled problem (3.6) into the sum of
two functions Ψ and Υ where Ψ is the solution of the problem (3.4) and Υ is the solution
of the problem

Υtt − div T(Υ,<(Υ)) = −αβPvt in Ω× (0, T )
Υ = 0 on ∂Ω× (0, T )

Υ(x, 0) = 0,Υt(x, 0) = 0 in Ω.
(3.13)

From (3.12) we get

E2(0) ≤ ||u1||2L2(Ω) + ||u0||2H1
0(Ω)

≤ C
∫ T

0
|| div Φ||2H−1(Ω)dt

= C
∫ T

0
|| div vt − div Υt||2H−1(Ω)dt

≤ 2C
∫ T

0
|| div vt||2H−1(Ω)dt+ 2C

∫ T

0
|| div Υt||2H−1(Ω)dt

≤ 2C
∫ T

0

∫
Ω
Pvt · vtdxdt+ 2C

∫ T

0
|| div Υt||2H−1(Ω)dt.

(3.14)

Next, we multiply (3.13) by Υt and integrate over Ω we obtain

1
2
d

dt
[
∫

Ω
|Υt|2dx+ c(Υ,Υ) + d(<(Υ),<(Υ))] = −αβ

∫
Ω
Pvt ·Υtdx ≤ αβ||Pvt||||Υt||.

Then we integrate over [0, T ] give us∫
Ω
|Υt|2dx+ c(Υ,Υ) + d(<(Υ),<(Υ)) ≤ 2αβ

∫ T

0
||Pvt||||Υt||ds. (3.15)

Here ||.|| denotes the norm in L2(Ω). and from (3.15) we obtain

||Υt||2L∞(0,T ;L2(Ω)) = sup0<t<T ||Υt||2L2(Ω)

≤ 2αβ
∫ T

0
||Pvt||||Υt||ds

≤ 2αβ||Υt||L∞(0,T ;L2(Ω))

∫ T

0
||Pvt||ds.

(3.16)
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Using Cauchy-Schwarz inequality, we get

||Υt||L∞(0,T ;L2(Ω)) ≤ 2αβ
√
T ||Pvt||L2(0,T ;L2(Ω)). (3.17)

Finally, using (3.5), (3.17) in (3.14) we get the estimate

E2(0) ≤ C
∫ T

0

∫
Ω
Pvt · vtdxdt. (3.18)

The semigroup property together with (3.18) implies the existence of positive constant
C > 0 and ω > 0 such that

E2(t) ≤ CE2(0) exp(−ωt) for any t ≥ 0.
Next, we consider the energy E3(t).

Using, from (3.6), the equation

ηt = ∆η − β div vt,

we have

d

dt
E3(t) = d

dt
[ α2β

∫
Ω
η2dx] = α

β

∫
Ω
ηηtdx ≤ −

α

β

∫
Ω
|∇η|2dx+ α

∫
Ω

vt · ∇ηdx.

Using Cauchy-Schwarz and Young inequalities, we get

α
∫

Ω
vt · ∇ηdx = α

β

∫
Ω

(βvt) · ∇ηdx ≤
α

β
‖βvt‖‖∇η‖ ≤

α

2β [β2‖vt‖2 + ‖∇η‖2] = αβ

2 ‖vt‖
2 + α

2β ‖∇η‖
2.

Then, using Poincare inequality, we get

d

dt
E3(t) ≤ − α

2β ‖∇η‖
2 + αβ

2 ‖vt‖
2

≤ − α

2β

∫
Ω
|∇η|2dx+ αβE2(t)

≤ − α

2βCp
||η||2 + αβE2(t)

≤ − 1
Cp
E3(t) + CE2(0) exp(−ωt).
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Using Gronwall’s inequality (lemma 1.1.1), we get

E3(t) ≤ E3(0) exp(− 1
Cp
t) + CE2(0) exp(−ωt)

≤ C(E3(0) + E2(0)) exp(−ω3t) for all t≥ 0.
(3.19)

Using the decay of E2(t) and E3(t) we conclude that the decoupled system ( 3.7), (3.8)
decays exponentially as t→ +∞ .
Let us note

E4(t) = E2(t) + E3(t).
Thus, E4(t) ≤ C4E4(0) exp(−ω4t) for all t ≥ 0. In particular, we can choose T > 0

suficiently large to obtain

E4(T ) ≤ γE4(0) for some 0 < γ < 1. (3.20)

By Lemma 3.3.1 we know the existence of a linear compact map K(t) : X→ X

K(t) = S(t)− Sd(t).
We write the solution of system (3.1) as

(u, θ) = (v, η) + (w, ψ)

where (v, η) solves the decoupled system (3.6) and

(w,wt, ψ) = K(t)(u0,u1, θ0)

where (u0,u1, θ0) is the initial data of problem (1.3). Therefore

(u,ut, θ) = S(t)(u0,u1, θ0)

and
(v,vt, η) = Sd(t)(u0,u1, θ0).

We have

||S(T )(u0,u1, θ0)||X ≤ ||Sd(T )(u0,u1, θ0)||X + ||K(T )(u0,u1, θ0)||X

where T > 0 is as in (3.20). Consequently

E(T ) ≤ E4(T ) + ||K(T )(u0,u1, θ0)||2X
≤ γE4(0) + ||K(T )(u0,u1, θ0)||2X
≤ γE(0) + ||K(T )(u0,u1, θ0)||2X.

(3.21)
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We have from the above

d

dt
E(t) = −α

β

∫
Ω
|∇θ|2dx ≤ 0 (3.22)

integration over [0, T ] give us

E(T ) = −α
β

∫ T

0

∫
Ω
|∇θ|2dxdt+ E(0)

≤ γE(0) + ||K(t)(u0,u1, θ0)||2X
(3.23)

then
E(0) ≤ 1

1− γ [α
β

∫ T

0

∫
Ω
|∇θ|2dxdt+ ||K(t)(u0,u1, θ0)||2X ].

We claim that
||K(t)(u0,u1, θ0)||2X ≤ C

∫ T

0

∫
Ω
|∇θ|2dxdt (3.24)

for the proof see [6].
We conclude

E(0) ≤ C
∫ T

0

∫
Ω
|∇θ|2dxdt (3.25)

for some positive constant C. It is well known that (3.25) together with (3.22) implies
the exponential decay of E(t). This proves that (3.3) implies the exponential decay in
Theorem 3.3.1.
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Chapter 4

Energy decay of thermopiezoelectric
rod with time delay
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In this chapter, we study the decay of the energy in Thermopiezoelectric rod with
time delay, the one-dimensional version of the system (3.1). We use the energy method
to prove the stability of the system.

4.1 Thermopiezoelectric Systems with time delay

We consider a Thermopiezoelectric 1D medium, a rod of lenght L, with time delay as-
sociated in the function θ, with initial data u0, u1, θ0 and history function h in suitable
function spaces. Here c, p, α, d, β, τ2 are positive constants, τ1 is a nonnegative constant
with τ1 < τ2, u is the displacement, θ is the temperature difference from a reference value,
φ is the electric potential, and k : [τ1, τ2] → R is a bounded function. Then the problem
is defined as follows



utt(x, t)− cuxx(x, t) + pφxx + αθx(x, t) = 0 in]0, L[×R+

puxx(x, t)− dφxx(x, t) = 0 in]0, L[×R+

θt(x, t)− θxx(x, t)−
∫ τ2

τ1
k(s)θxx(x, t− s)ds+ βutx(x, t) = 0 in]0, L[×R+

u(x, 0) = u0(x), ut(x, 0) = u1(x), φ(x, 0) = φ0(x), θ0(x, 0) = θ0(x), x ∈]0, L[
ux(0, t) = ux(L, t) = φx(0, t) = φx(L, t) = θ(0, t) = θ(L, t) = 0, ∀t ≥ 0

θx(x,−t) = h(x, t), (x, t) ∈]0, L[×]0, τ2[.

(4.1)

4.1.1 Study of the problem

Let us introduce the following new variable

z(x, ρ, s, t) = θx(x, t− ρs), (x, ρ, s, t) ∈]0, L[×]0, 1[×(τ1, τ2)× R+. (4.2)

Then, system (4.1) is equivalent to



utt(x, t)− cuxx(x, t) + pφxx + αθx(x, t) = 0 in]0, L[×R+

puxx(x, t)− dφxx(x, t) = 0 in]0, L[×R+

θt(x, t)− θxx(x, t)−
∫ τ2

τ1
k(s)zx(x, 1, s, t)ds+ βutx(x, t) = 0 in]0, L[×R+

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0, in]0, L[×]0, 1[×(τ1, τ2)× R+

z(x, 0, s, t) = θx(x, t) in]0, L[×(τ1, τ2)× R+

u(x, 0) = u0(x), ut(x, 0) = u1(x), φ(x, 0) = φ0(x), θ0(x, 0) = θ0(x), x ∈]0, L[
ux(0, t) = ux(L, t) = φx(0, t) = φx(L, t) = θ(0, t) = θ(L, t) = 0, ∀t ≥ 0

z(x, 1, s, 0) = h(x, s), (x, s) ∈]0, L[×]0, τ2[.

(4.3)
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We consider (u, φ, θ, z) to be a solution of system (4.3), and defined the energy of (4.3)
by

E(t) = 1
2

∫ L

0
(u2

t + (c− p2

d
)u2

x + α

β
θ2)dx+ 1

2

∫ L

0

∫ 1

0

∫ τ2

τ1
s(|k(s)|+ ξ)z2(x, ρ, s, t)dsdρdx

where ξ is positive constant.

Proposition 4.1.1 Under the conditions

(c− p2

d
) > 0,∫ τ2

τ1
|k(s)|ds < β

α

and ∫ τ2

τ1
|k(s)|ds+ ξ(τ2 − τ1) < α

β
.

The energy function E(t) is exponentially decaying.

Proof 4.1.1 We have

E ′(t) = −[α
β
− 1

2

∫ τ2

τ1
|k(s)|ds− ξ

2(τ2 − τ1)]
∫ L

0
θ2
xdx−

α

β

∫ L

0
θ2
xdx

+α
β

∫ L

0
θ
∫ τ2

τ1
|k(s)|zx(x, 1, s, t)dsdx−

1
2

∫ L

0

∫ τ2

τ1
(|k(s)|+ ξ)z2(x, 1, s, t)dsdx

such that ∫ L

0
θ
∫ τ2

τ1
|k(s)|zx(x, 1, s, t)dsdx =

∫ L

0
θ · d

dx
(
∫ τ2

τ1
|k(s)|z(x, 1, s, t)ds)dx

= −
∫ L

0
θx · (

∫ τ2

τ1
|k(s)|z(x, 1, s, t)ds)dx+ [θ ·

∫ τ2

τ1
|k(s)|z(x, 1, s, t)ds]L0

= −
∫ L

0
θx · (

∫ τ2

τ1
|k(s)|z(x, 1, s, t)ds)dx.

Then

E ′(t) = −[α
β
− 1

2

∫ τ2

τ1
|k(s)|ds− ξ

2(τ2 − τ1)]
∫ L

0
θ2
xdx−

α

β

∫ L

0
θ2
xdx

−α
β

∫ L

0
θx(
∫ τ2

τ1
|k(s)|z(x, 1, s, t)ds)dx− 1

2

∫ L

0

∫ τ2

τ1
(|k(s)|+ ξ)z2(x, 1, s, t)dsdx.
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Let

A(t) = −α
β

∫ L

0
θx(
∫ τ2

τ1
|k(s)|z(x, 1, s, t)ds)dx,B(t) = −1

2

∫ L

0

∫ τ2

τ1
|k(s)|z2(x, 1, s, t)dsdx

and H(x,t) =
∫ τ2

τ1
|k(s)|z(x, 1, s, t)ds.Then A(t) = −α

β

∫ L

0
θx(x, t)H(x, t)dx.

Using Cauchy-Schwarz and young inequalities, we get :

A(t) ≤ α

β
‖θx‖2 · ‖H‖2 ≤

α

2β [‖θx‖2
2 + ‖H‖2

2] (4.4)

and

|H(x, t)| ≤
∫ τ2

τ1
|k(s)||z(x, 1, s, t)|ds =

∫ τ2

τ1
(|k(s)|) 1

2 (|k(s)| 12 |z(x, 1, s, t)|)ds

≤ (
∫ τ2

τ1
|k(s)|ds) 1

2 (
∫ τ2

τ1
|k(s)||z(x, 1, s, t)|2ds) 1

2 .

Then
|H(x, t)|2 ≤ (

∫ τ2

τ1
|k(s)|ds)(

∫ τ2

τ1
|k(s)|z2(x, 1, s, t)ds) (4.5)

and

‖H‖2
2 =

∫ L

0
|H(x, t)|2dx ≤ (

∫ τ2

τ1
|k(s)|ds)

∫ L

0

∫ τ2

τ1
|k(s)|z2(x, 1, s, t)dsdx. (4.6)

Using (4.4) and (4.6) , we have

A(t) ≤ α

2β [‖θx‖2
2 + (

∫ τ2

τ1
|k(s)|ds)

∫ L

0

∫ τ2

τ1
|k(s)|z2(x, 1, s, t)dsdx].

Therefore

A(t) +B(t) ≤ α

2β ‖θx‖
2
2 + 1

2(α
β

∫ τ2

τ1
|k(s)|ds− 1)

∫ L

0

∫ τ2

τ1
|k(s)|z2(x, 1, s, t)dsdx

≤ α

2β ‖θx‖
2
2.

So, we have

E ′(t) ≤ −[α
β
− α

2β −
1
2

∫ τ2

τ1
|k(s)|ds− ξ

2(τ2 − τ1)]‖θx‖2
2 −

ξ

2

∫ L

0

∫ τ2

τ1
z2(x, 1, s, t)dsdx

≤ −1
2[α
β
−
∫ τ2

τ1
|k(s)|ds− ξ(τ2 − τ1)]‖θx‖2

2 −
ξ

2

∫ L

0

∫ τ2

τ1
z2(x, 1, s, t)dsdx.

Under the above assumptions, we get

E ′(t) ≤ 0
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which implies that the energy is decreasing.
Integrate the first equation in (4.3) between 0 and L and using boundary conditions,

we get

d2

dt2

∫ L

0
u(x, t)dx− c

∫ L

0
uxx(x, t)dx+ p

∫ L

0
φxx(x, t)dx+ α

∫ L

0
θx(x, t)dx = 0.

Using the second equation in (4.3) and the boundary conditions, we have

d2

dt2

∫ L

0
u(x, t)dx = (c− p2

d
)
∫ L

0
uxx(x, t)dx− α

∫ L

0
θx(x, t)dx

= (c− p2

d
)[ux(L, t)− ux(0, t)]− α[θ(L, t)− θ(0, t)]

= 0.

Then ∫ L

0
u(x, t)dx = at+ b

where a and b are constants to be determined by the initial conditions.
We have

b =
∫ L

0
u(x, 0)dx =

∫ L

0
u0(x)dx,

and
a = d

dt
(at+ b) = d

dt

∫ L

0
u(x, t)dx =

∫ L

0
ut(x, t)dx, ∀t.

In particular when t = 0, we have

a =
∫ L

0
ut(x, 0)dx =

∫ L

0
u1(x)dx.

Define
w(x, t) = u(x, t)− 1

L
(at+ b)

we have ∫ L

0
w(x, t)dx =

∫ L

0
u(x, t)dx− 1

L

∫ L

0
(at+ b)dx

=
∫ L

0
u(x, t)dx− (at+ b) = 0

and ∫ L

0
wt(x, t)dx =

∫ L

0
ut(x, t)dx−

∫ L

0

a

L
dx =

∫ L

0
ut(x, t)dx− a = 0.

Then ∫ L

0
w(x, t)dx =

∫ L

0
wt(x, t)dx = 0.

It is easy to verify that

wtt = utt , wtx = utx , wxx = uxx
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and {
wx(0, t) = ux(0, t)
wx(L, t) = ux(L, t)

w(x, 0) = u(x, 0)− b

L
= u0(x)− 1

L

∫ L

0
u0(x)dx

wt(x, 0) = ut(x, 0)− a

L
= u1(x)− 1

L

∫ L

0
u1(x)dx.

Then u and w verify the same equations and the same boundary conditions, but with
different initial conditions.
So (u, φ, θ, z) and (w, φ, θ, z) are solutions of the same problem (4.3) with different initial
conditions.
Thus the uniqueness of the solution to problem (4.3) requires that

∫ L
0 u0(x)dx =

∫ L
0 u1(x)dx =

0
with imply that ∫ L

0
ut(x, t)dx = 0. (4.7)

In order to prove the exponential decay of the energy, we know the Lyapunov functional
Λ and we prove that it is equivalent to the energy functional E. Let

Λ(t) = N1E(t) + F1(t) +N2F2(t) + F3(t)

such that
F1(t) =

∫ L

0
uutdx,

F2(t) = −
∫ L

0
θ(
∫ x

0
ut(y, t)dy)dx

and
F3(t) =

∫ L

0

∫ 1

0

∫ τ2

τ1
s exp(−sρ)(|k(s)|+ ξ)z2(x, ρ, s, t)dsdρdx

where N1 and N2 are positive constants to be determined.
Using Young and Poincare inequalities we obtain the following estimates.
Estimation of F ′1(t) :

F ′1(t) =
∫ L

0
u2
tdx+

∫ L

0
uuttdx

=
∫ L

0
u2
tdx+

∫ L

0
u(cuxx − pφxx − αθx)dx

=
∫ L

0
u2
tdx− (c− p2

d
)
∫ L

0
u2
xdx− α

∫ L

0
uθxdx

≤
∫ L

0
u2
tdx− (c− p2

d
)
∫ L

0
u2
xdx+ αε0Cp

∫ L

0
u2
xdx+ αCε0

∫ L

0
θ2
xdx,

where ε0, Cε0 are the Young constants and Cp the Poincare constant.
Estimation of F ′2(t) :
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F ′2(t) = −
∫ L

0
θt(
∫ x

0
ut(y, t)dy)dx−

∫ L

0
θ(
∫ x

0
ut(y, t)dy)dx.

Using (4.3) we get

F ′2(t) = −
∫ L

0
(θxx +

∫ τ2

τ1
|k(s)|zx(x, 1, s, t)ds− βuxt)

∫ x

0
utt(y, t)dydx

−
∫ L

0
θ
∫ x

0
((c− p2

d
)uxx − αθx)dydx

=
∫ L

0
θxutdx+

∫ L

0
ut

∫ τ2

τ1
|k(s)|z(x, 1, s, t)dsdx− β

∫ L

0
u2
tdx− (c− p2

d
)
∫ L

0
uxθdx

+α
∫ L

0
θ2dx.

Let
g(x, t) =

∫ τ2

τ1
|k(s)|z(x, 1, s, t)ds

by Holder inequality we get

|g(x, t)| ≤ (
∫ τ2

τ1
|k(s)|2ds) 1

2 (
∫ τ2

τ1
z2(x, 1, s, t)ds) 1

2 .

Then

‖g(x, t)‖2 =
∫ L

0
|g(x, t)|2dx ≤ (

∫ τ2

τ1
|k(s)|2ds)

∫ L

0
(
∫ τ2

τ1
z2(x, 1, s, t)ds)dx

≤ C
∫ L

0
(
∫ τ2

τ1
z2(x, 1, s, t)ds)dx.

Using Young inequality, we have

F ′2(t) ≤ −β
∫ L

0
u2
tdx+ (c− p2

d
)Cε1

∫ L

0
θ2dx+ (c− p2

d
)ε1

∫ L

0
u2
xdx+ Cε2

∫ L

0
θ2
xdx+ ε2

∫ L

0
u2
tdx

+ε3

∫ L

0
u2
tdx+ Cε3C

∫ L

0

∫ τ2

τ1
z2(x, 1, s, t)dsdx+ α

∫ L

0
θ2dx.

Using the Poincare inequality, we get

F ′2(t) ≤ (ε2 + ε3 − β)
∫ L

0
u2
tdx+ [αCp + Cε2 + Cp(c−

p2

d
)Cε1 ]

∫ L

0
θ2
xdx+ (c− p2

d
)ε1

∫ L

0
u2
xdx

+Cε3C
∫ L

0

∫ τ2

τ1
z2(x, 1, s, t)dsdx.

Estimation of F ′3(t) :
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F ′3(t) = 2
∫ L

0

∫ 1

0

∫ τ2

τ1
s exp(−sρ)(|k(s)|+ ξ)zztdsdρdx

= −2
∫ L

0

∫ 1

0

∫ τ2

τ1
exp(−sρ)(|k(s)|+ ξ)zzρdsdρdx

= −
∫ L

0

∫ τ2

τ1
(|k(s)|+ ξ)

∫ 1

0
exp(−sρ) ∂

∂ρ
z2dρdsdx

= −
∫ L

0

∫ τ2

τ1
(|k(s)|+ ξ)[exp(−s)z2(x, 1, s, t)− z2(x, 0, s, t) + s

∫ 1

0
exp(−sρ)z2dρ]dsdx

≤M3

∫ L

0
θ2
xdx− γ0

∫ L

0

∫ 1

0

∫ τ2

τ1
s(|k(s)|+ ξ)z2dsdρdx

such that γ0 = exp(−τ2) and M3 =
∫ τ2
τ1
|k(s)|ds+ ξ(τ2 − τ1) .

We conclude from the above and using Poincare inequality that

Λ′(t) = N1E
′(t) + F ′1(t) +N2F

′
2(t) + F ′3(t)

≤ −(N2m1 − 1)
∫ L

0
u2
tdx− (N1m2 −m3)

∫ L

0
θ2
xdx− (m0 − δ1)

∫ L

0
u2
xdx

−(N1ξ

2 −N2M2)
∫ L

0

∫ τ2

τ1
z2(x, 1, s, t)dsdx− γ0

∫ L

0

∫ 1

0

∫ τ2

τ1
s(|k(s)|+ ξ)z2dsdρdx

such that

m0 = (c− p2

d
)− αε0Cp,

δ1 = (c− p2

d
)ε1,

m1 = β − ε2 − ε3,

M1 = [α + (c− p2

d
)CpCε1 + Cε2 ],

m2 = α

2β −
1
2M3,

M2 = Cε3C,

m3 = M1N2 + αCε0 +M3.

We choose N2 large enough, ε2 and ε3 small enough such that

γ1 = (N2m1 − 1) > 0.
We choose N1 large enough such that

γ2 = (N1m2 −m3) > 0

and
γ4 = (N1ξ

2 −N2M2) > 0.
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We choose ε0 and δ1 small enough such that

γ3 = (m0 − δ1) > 0.

Then

Λ′(t) ≤ −γ1

∫ L

0
u2
tdx− γ2

∫ L

0
θ2
xdx− γ3

∫ L

0
u2
xdx− γ0

∫ L

0

∫ 1

0

∫ τ2

τ1
s(|k(s)|+ ξ)z2dsdρdx.

Using Poincare inequality we get

Λ′(t) ≤ −C ′E(t). (4.8)

We have

|Λ(t)−N1E(t)| ≤ |F1(t)|+N2|F2(t)|+ |F3(t)|

≤
∫ L

0
|uut|dx+N2

∫ L

0
θ(
∫ x

0
ut(s, t)ds)dx+

∫ L

0

∫ 1

0

∫ τ2

τ1
s exp(−sρ)(|k(s)|+ ξ)z2(x, ρ, s, t)dsdρdx.

Using Young and Poincare inequalities, we obtain

|Λ(t)−N1E(t)| ≤ C1

∫ L

0
(u2

x + u2
t + θ2)dx+

∫ L

0

∫ 1

0

∫ τ2

τ1
s(|k(s)|+ ξ)z2(x, ρ, s, t)dsdρdx

≤ C2E(t).

Therefore
Λ(t) v E(t). (4.9)

Hence, we conclude from (4.8) and (4.9) that

Λ′(t) ≤ −C ′′Λ(t).

Then
E(t) ≤ C3 exp(−C4t).
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Conclusion

In this master’s thesis, we started by studying the mathematical analysis (existence,
uniqueness) of a 3D piezoelectric evolution system with a damping term using semigroup
approach. We then investigated the stability of this system without delay and with con-
stant time delay using the energy method.
Next, we examined a 3D thermopiezoelectric evolution system. We analyzed the existence
and uniqueness of this system using the semigroup method. Subsequently, we explored
the exponential stability of this system using the observability inequality.
Finally, we considered the stability of a 1D thermopiezoelectric evolution system with a
time delay acted on the temperature equation. We demonstrated that the energy de-
creases exponentially using the energy method.

We can suggest some perspectives for this work :

� Energy decay of thermopiezoelectric thin structures (beam, plate, shallow, shell).

� Energy decay of thermoviscoelastic systems.

� Energy decay of piezoelectric systems with memory (finite - infinite) and delay.

� Energy decay of thermopiezoelectric systems with memory and delay.
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Abstract

The objective of this master’s thesis is to study the mathematical analysis of
selected mathematical systems originating from mechanics. Firstly, we focus on
the analysis of a piezoelectric system with damping, considering both non-delayed
and constant time-delay cases. Next, we examine a 3D thermopiezoelectric system,
studying its well-posedness and stability through the use of an observability
inequality. Lastly, we investigate the stability of a 1D thermopiezoelectric evolu-
tion system with a time delay applied to the temperature. We demonstrate the
exponential decay of energy using the energy method.

Keywords :
semigroups method , energy method, exponential decay, observability inequality,
thermopizoelectric, time delay.



Résumé

L’objectif de ce mémoire de master est d’étudier l’analyse mathématique de
certains systèmes mathématiques issus de la mécanique. Tout d’abord, nous nous
concentrons sur l’analyse d’un système piézoélectrique avec amortissement, en
considérant à la fois les cas sans retard et avec un retard temporel constant. Ensuite,
nous examinons un système thermopiézoélectrique en 3D, étudiant l’existence et
l’unicité du système à l’aide de la méthode des semi-groupes et sa stabilité grâce
à l’utilisation d’une inégalité d’observabilité. Enfin, nous étudions la stabilité d’un
système d’évolution thermopiézoélectrique 1D avec un retard temporel appliqué
à la température. Nous démontrons la décroissance exponentielle de l’énergie en
utilisant la méthode de l’énergie.

Mots clés :
méthode des semi-groupes, méthode de l’énergie, décroissance exponentielle, inéga-
lité d’observabilité, thermopiézoélectrique, retard temporel


