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ABSTRACT: An interesting approach of diffraction can be made with the help of mode conversion. We show 
here that it clearly simplifies the study of transverse and axial field distributions in apertured systems. We will 
present the main results of the study. 
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1. Introduction 
Kogelnik [1] introduced the mode conversion concept. It is based on a change, in the same 
symmetry configuration, of an expansion basis of the field at a given reference infinite plane. 
The study of the field transformation and propagation, in the case of paths free of apertures, 
needs only the knowledge of three parameters that are the radius of the beam w , the radius of 
curvature R  and the Gouy phase ψ . The two former parameters are related to the complex 
beam parameter q , while the latter is simply reached by the use of the generalized Gouy 
phase [2], [3]. Recently, we suggested the mode conversion method as a means for treating 
diffraction phenomenon [4]. An alternative model for the study of diffraction in the apertured 
systems by using mode conversion has then been proposed [4]. The mode conversion, in this 
case, must simply be limited to the aperture area. For determining the field transformation, 
this approach requires the calculation of a fourth important element that is: the coupling 
coefficient [1, 4]. 
In the case of cylindrical symmetry, coupling coefficients involve integrals composed of a 
product of two generalized Laguerre polynomials [5-6], an exponential function and a power 
function lx . The generalized Laguerre polynomial )( xuLl

n  are characterized by three 

parameters that are the order n , the weight l  and the scaling multiplier u . We consider here 
conversion modes in the case where the azimuthal number is given by l=0. 

Using mode conversion means that we need neither Huygens-Fresnel diffraction integral nor 
Collins integral [7] for dealing with diffraction. This approach can be useful in different 
symmetries. We have developed a technique for the calculation of the derived integral of 
oscillating functions. This method of integration leads rapidly to accurate results [4, 8]. It is 
proved that quad-double arithmetic recurrence formula allows computing round-trips 
operators faster than any adaptative numerical integrator with the same accuracy [8]. 
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2. Theory and numerical results 

Mode conversion has been introduced by Kogelnik [1] at an infinite plane. In the case of 
cylindrical symmetry, normalized Laguerre Gauss modes can be written as [1]: 
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ϕ,r  are cylindrical coordinates, l
pL  the generalized Laguerre polynomials, j  the complex 

number such as 12 −=j , and k  the wave number; R  and w  are the phase front radius and 

the spot size respectively. 

Consider the injection of a mode lpTEM  coming from a first optical system into a second 

one. The incoming mode lpTEM  will excite a set of modes of the second system with fields 

plpllp TEMC . Mode conversion then takes place. For orthogonality reasons pllpC  reduces to 

lppC , . 

At an aperture of radius 0a , we make a slight change in the integral given by Kogelnik [1] 

where we change the infinite upper limit to 0a  and we get the new coupling coefficients at a 
diaphragm location for 0=l  [4] 
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Where the defined parameters are given by 

 2

2'
w

=α  (3a)  

 2

2'
w

=β  (3b)  

 ⎟
⎠
⎞

⎜
⎝
⎛ −++=

RR
jk

ww
Q 11

2
11' 22  (3c)  

With the new defined variable 2
0

2

a
r

X = , the coupling coefficients are given by 
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We notice that the integrand oscillates because not only the complex term )exp( XQ−  but 
also regarding the two Laguerre polynomials. This integration of oscillating functions requires 
consequently a particular attention. Quadrature conventional organising principle is Taylor 
expansion but it is useless because it converges very slowly once the integrand oscillates 
rapidly. Standard technique of dealing with high oscillation is to make it disappear by 
reducing the subintervals but it takes too much time in computation. We then have, using 
recurrence formula technique [4], proposed an efficient and very fast method for the 
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integration that leads to coupling coefficients.We give below some results obtained in the case 
of the infinite plane of Kogelnik and also for apretured systems. 
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Fig. 1. Superposition of transverse intensity patterns at the reference plane 

134.1,93.0 −== msmmw  and 149.1,88.0 −== msmmw . 
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Fig. 2. Superposition of transverse field distributions at an aperture of radius mma 5.00 = . 

156.0,47.0 −== msmmw and 145.9,11.0 −== msmmw . 
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3. Conclusion 
We have proposed an alternative approach for the study of apertured ABCD optical systems. 
We use the ABCD formalism in regions free of apertures and we make a mode conversion at 
each aperture. For the considered cylindrical symmetry, the mode conversion means a choice 
of a new Laguerre Gauss basis that efficiently realizes the Kirchhoff condition. The mode 
conversion involves coupling coefficients that depend of oscillating integrals. We have 
proposed a handy integrator of high performance for the integration over a finite interval of 
oscillatory integrals using recurrence formula. 
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