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ABSTRACT

The impact of fractional derivatives on the depth of the p-n junction is significant

in the realm of semiconductor physics. Through numerical simulations, it has been

observed that adjusting the values of parameters such as α and β influences the

diffusion rate and depth of the p-n junction crossing. Specifically, an increase in

the value of parameter β leads to faster diffusion and deeper p-n junction crossing,

while an increase in parameter α results in slower diffusion and shallower p-n

junction crossing. These findings highlight the crucial role of fractional derivatives

in understanding the formation and characteristics of the p-n junction,

emphasizing their importance in semiconductor device design and optimization.

Keywords: Fractional diffusion equation, Fractional derivative, Caputo Fabrizio

Fractional derivative, P-N junction.
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Chapter 1

Introduction

Fractional calculus has attracted considerable interest in recent years

because of its broad applications across various scientific and engineering

disciplines. It has notably been employed in physics to successfully

model a variety of physical processes (1)(2).

Interconnections p-n are fundamentally crucial in the design and

manufacturing of modern electronic, devices such as transistors, diodes,

and solar cells. Improving and understanding the performance of these

interconnections requires a thorough examination of numerous physical

and engineering factors that influence them. Among these factors, the

role of fractional calculus stands out as an effective mathematical tool

in analyzing complex non-traditional phenomena.

The doping process involves adding specific impurities to pure semi-

conductor material to increase its electrical conductivity by boosting

the density of charge carriers, namely electrons and holes. This results

in two types of doped semiconductors: N-type and P-type, depend-

ing on the type of impurities added, which serve as the basic building

blocks for most electronic devices. Doping methods are divided into

two principal techniques: thermal diffusion and ion implantation. By

employing these methods, semiconductor properties can be controlled,

their efficiency enhanced, and the scope of their applications expanded

in advanced electronic devices (3).

In this memorandum, we investigate the effect of fractional deriva-

tives on junction depth by modeling anomalous diffusion using fractional

diffusion equations and simulating experimental diffusion profiles.

We completed this according to a research plan that included an

introduction and three chapters, along with a conclusion for the study.
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Chapter One: Introduction to Fractional Derivatives: Riemann-Liouville,

Jumarie, Caputo and Caputo Fabrizo.

Chapter Two: In this chapter, we delved into Semiconductors and

their properties, starting with generalities about the classification of

materials into insulators, conductors, and semiconductors. We also dis-

cussed intrinsic and extrinsic semiconductors, both negatively n and

positively p doped.

Chapter Three: This chapter encompasses modeling anomalous dif-

fusion using fractional diffusion equations and simulating experimental

diffusion profiles, followed by their discussion.

In conclusion, we summarized the most significant findings obtained.
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Chapter 2

Some Fundamental Aspects of
Fractional Calculus

2.1 Introduction:

Fractional calculus (FC) represents a distinguished extension of classical

calculus, boasting a venerable history spanning over three centuries. Its

inception can be traced back to a significant correspondence between

Leibniz and L’Hospital in 1695. In that pivotal year, Leibniz penned

a letter to L’Hospital posing the fundamental query: ”Can the concept

of derivatives, traditionally defined for integer orders, be generalized

to accommodate non-integer orders?” L’Hospital, intrigued by this in-

quiry, responded with another probing question: ”What if the order

were (1/2)?” Leibniz’s reply, dated September 30, 1695, prophesied: ”It

will lead to a paradox, from which one day useful consequences will be

drawn.” This seminal exchange marks the precise birth of fractional cal-

culus.

The exploration of fractional derivatives, often referred to as semi-

derivatives, became an enduring subject in the ensuing decades. Ini-

tially the domain of Europe’s foremost mathematical minds, fractional

calculus gradually garnered attention and reverence. Euler, in 1730,

pondered: ”When n is a positive integer and f is a function of x, de-

noted as f = f(x), the ratio of dnf to dxn can always be expressed

algebraically. But what manner of ratio can be derived if n is a fraction

(4).
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2.2 The basic function of calculus

2.2.1 Gamma function

The Gamma function is defined by:

Γ(x) =

∫ ∞

0

xn−1 exp(−x)dx;n ≻ 0 x ∈ R (2.1)

Γ(x) is called Euler’s Gamma function( or Euler’s integral of the

second kind) (5).

2.2.1.1 Gamma function properties:

Among the properties of the gamma function:

Sequential feature:

Γ(x) = xΓ(x)∀x ̸= 0 (2.2)

Sequence property: If it was n a positive integer so:

Γ(n+ 1) = n! (2.3)

Repeat feature:

Γ(n)Γ(n+
1

2
) = 21−2n

√
πΓ(2n) (2.4)

Γ(n+
1

2
) =

1× 3× 5× · · · × (2n− 1)

2n
√
π (2.5)

Γ(−n+
1

2
) =

(−1)n2n
√
π

1× 3× 5× · · · × (2n− 1)
n = 1, 2, 3 · ·· (2.6)

Γ(n)Γ(1− n) =
π

sin(nπ)
(2.7)

Notation:
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1. Can’t find Γ(n) if it was n a negative integer.

2.

Γ(
1

2
) =

√
π (2.8)

2.2.2 Beta function

The Beta function is defined by (5):

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx (2.9)

2.2.2.1 Beta function properties:

Among the properties of the beta function:

B(p, q) = B(q, p) (2.10)

B(p+ 1, q) =
p

p+ q
B(p, q) (2.11)

B(p, q + 1) =
q

p+ q
B(p, q) (2.12)

B(p, q) = B(p+ 1, q) +B(p, q + 1) (2.13)

B(p, q) = 2

∫ π
2

0

cos2p−1(θ) sin2q−1(θ)dθ (2.14)

B(p, q) =

∫ π
2

0

tp−1

(1 + t)p+q
dt (2.15)

The reationship of the gamma function to the beta function:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
(2.16)
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2.2.3 The Mittag-Leffler function

The Mittag-Leffer Function was introduced by Gosta Mittag-Leffer in

1903. The one-parameter Mittag-Leffer function is denoted by Eα(t
α)

and defined by following series (6)(7)(8)(9):

Eα(z) =
∞∑
k=0

zk

Γ(1 + αk)
, (z ∈ C,Re(α) ≻ 0) (2.17)

is named as the one parameter Mittag-Leffler function.

The integral representation of the Mittag-Leffler function is

Eα(z) =
1

2π

∫
C

tα−1et

tα − z
dt, (z ∈ C,Re(α) ≻ 0). (2.18)

Here the path of the integral C is a loop which starts and ends at

−∞ and encloses the circles of disk |t| ≤ |z|1/α

in positive sense:|arg(t)| ≤ π on C.

The two parameter Mittag-Leffler function was defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(β + αk)
, (z, β ∈ C,Re(α) ≻ 0) (2.19)

Here,

Eα,1(z) = Eα(z) = ez (z ∈ C,Re(α) ≻ 0) (2.20)

E1,2(z) =
ez − 1

z
, E2,2(z) =

Sinh(
√
z)√

z
. (2.21)

and the corresponding integral representation of the two parameter

Mittag-Leffler function is

Eα(z) =
1

2π

∫
C

tα−1et

tα − z
dt, (z ∈ C,Re(α) ≻ 0). (2.22)

where the contour C is already defined.

2.2.3.1 Some Properties Mittag-Leffler Function

We rewrite the Mittag-Leffler (6)(7)(8) function in the following form

by an infinite series

6



Eα(at
α) = 1 +

atα

Γ(1 + α)
+

a2t2α

Γ(1 + 2α)
+

a3t3α

Γ(1 + 3α)
+ .......... (2.23)

2.2.4 Hepergeometric function

The hepergeometric function has many intersting properties and is used

to solve various mathematical and physical problems. It is particularly

used in solving differential equations, analyzing special functions and

probability theory. Different types of hepergeometric function and the

generalize d (Gaussian ) hepergeometric function which correspond to

different parameter restrictions. Each of these types of hepergeometric

functions has its own specific properties applications (10).

pFq(ai, bi; z) =

∏q
j−1 Γ(bj)∏p
j−1 Γ(ai)

∞∑
k=0

∏p
j−1 Γ(ai+k)∏q
j−1 Γ(bj+k)

zk

k!
(2.24)

d

dz
·p Fq(ai, bi; z) =

∏q
j−1 Γ(ai)∏p
j−1 Γ(bj)

·p Fq(ai + 1, bi + 1, z) (2.25)

2.2.4.1 Hepergeometric function properties:

1. The function 1F1(a, b; z) is a generalization of the exponential func-

tion for b = a

1F1(a, a; z) =
Γ(a)

Γ(a)

∞∑
k=0

Γ(a+ k)

Γ(a+ k)

zk

k!
=

∞∑
k=0

zk

k!
= ez (2.26)

2. When compared to the correponding property of the Mittag Leffer

function we obtain

1F1(a, a; z) = E1,1(z) (2.27)

3. Other interesting properties of the confluent hypergeometric func-

tion.

1F1(a, a; 0) = 1 (2.28)

d

dz
·1 F1(a, b; z) =

a

b
·1 F1(a+ 1, b+ 1; z) (2.29)
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2.2.5 Complementary error function

The complementary error function is a bin-defined nodal function (11).

erfc(z) =
2√
π

∫ ∞

z

f(x)e−t2dt (2.30)

with

erfc(−∞) = 2 (2.31)

erfc(0) = 1 (2.32)

erfc(+∞) = 0 (2.33)

2.3 Laplace transform

The Laplace transform method is an extremly useful tool for the analysis

of linear (fractional or classical) initial value problems. In particular, it

allws us to replace a differntial equation (12).

2.3.1 Definition:

Let f : [0,∞] → Rbe given. The function F defined by

F (s) := Lf(s) :=

∫ ∞

0

f(x)e−sxdx (2.34)

Is called the Laplace transform of f whenever the integral exists.

We cite the most impotant rules for Laplace transforms.

1. (a) If f3(x) = a1f1 + a2f2 with arbitrary real constants a1 and a2

Lf3(s) = a1Lf1(s) + a2Lf2(s) (2.35)

( Linearity of the Laplace

transform).

(b) If f3 is the convolution of f1 and f2,

f3(x) =

∫ x

0

f1(x− t)f2(t)dt, (2.36)

Then

Lf3(s) = Lf1(s) + Lf2(s) (2.37)

8



(the convolution theorem). In other words: The convolution

in the original domain corresponds to the usual product in the

Laplace domain.

(c) If f3(x) =
∫ x

0 f1(t)dt then we have for s > max{0, s0}

f3(s) =
1

s
f1(s) (2.38)

(the integration theorem)

(d) Let m ∈ N . If f3 = Dmf1 is the m derivative of f1 then

f3(s) = smf1(s)−
m∑
k=1

sm−kf
(k−1)
1 (0) (2.39)

(the differentiation theorem)

(e) Let a > 0 and f3(x) = f1(ax). Then

Lf3(s) =
1

a
Lf1(

s

a
) (2.40)

(f) Let a ∈ R and f3(x) = exp(−ax)f1(x).Then

Lf3(s) =
1

a
Lf1(s+ a) (2.41)

(g) Let m ∈ N and f3 = xmf1(x). Then

Lf3(s) = (−1)m
dm

dxm
Lf1(s) (2.42)

(h) Let f3(s) =
f1(x)

x
. Then

Lf3(x) =

∫ ∞

s

Lf1(σ)dσ, (2.43)

(i) Let a ∈ R and

f3(x) =

{
0forx ≺ a,

f1(x− a)forx ≥ a.

}
(2.44)

2.3.2 The inverse Laplace transform:

The inverse Laplace transform is a mathematical operation that takes a

function in the Laplace domain (i.e., a function of the complex variable

9



s) and returns a function in the time domain (i.e., a function of the

variable t). It essentially reverses the process of the Laplace transform

(13):

If {Lf(t)} = F (s), then the inverse Laplace transform of F (s) is

f(t) = L−1 {F (s)} =
1

2πi

∫ γ+i∞

γ−i∞
estF (s)ds (2.45)

where γ is a real number greater than the real part of all singularities

of F (s), and γ− i∞ and γ+ i∞ are two paths parallel to the imaginary

axis in the complex plane. The integral is taken along a contour that

encloses all singularities of F (s).

The inverse transform L−1 is a linear operator:

L−1 {F (s) +G(s)} = L−1 {F (s)}+ L−1 {G(s)} (2.46)

and

L−1 {cF (s)} = cL−1 {F (s)} (2.47)

for any constant c.

2.4 Fractional derivative

2.4.1 Riemann-Liouville fractional derivative:

2.4.1.1 Definition:

The notion of the Riemann-Liouville fractional derivative is a signifi-

cant advancement in fractional calculus, building upon the foundational

work laid by Leibniz and L’Hospital. Introduced by Bernhard Riemann

and Joseph Liouville, this derivative provides a powerful framework for

extending the concept of differentiation to non-integer orders.

The Riemann-Liouville fractional derivative, denoted byDαf(x), where

α is a real number, is defined as (14):

Dαf(x) =
1

Γ(m− α)

dm

dtm

∫ x

a

(t− τ)m−α−1f(τ)dτ (2.48)

10



This derivative captures the memory effect inherent in fractional cal-

culus, allowing for the characterization of systems with long-range de-

pendence and fractal-like behaviors. It finds applications in various fields

such as physics, engineering, and signal processing, where traditional

integer-order derivatives may fall short in describing complex phenom-

ena.

The Riemann-Liouville fractional derivative serves as a cornerstone in

the development of fractional calculus, enabling a deeper understanding

and analysis of systems exhibiting fractional dynamics and fractional-

order differential equations.

2.4.1.2 Laplace transform of Riemann-Liouville fractional derivative:

The Laplace fractional derivative Riemann-Liouville transformation in-

volves converting a fractional derivative of a function into an integral in

the Laplace domain.

For a finction f(x), the Riemann-Liouville fractional derivative of

order α is defined as:

Dαf(x) = 1
Γ(m−α)

(
dm

dtm

) ∫ x

a (t− τ)m−α−1f(τ)dτ

where m− 1 ≺ α ≺ m, m is the smallest integer greater than α.

To transform this fractional derivative into the Laplace domain, we

use the Laplace transform {f(x)} = F (s), yielding:

L {Dαf(x)} = sαF (s)−
n−1∑
k=0

s(α−1)−kf (k)(0+) (2.49)

where fk (0+) represents the k-th derivative of f(x)evaluated at x =

0+.

2.4.2 Jumarie the fractional derivative:

2.4.2.1 Definition:

Among the various approaches to fractional calculus, the Jumarie frac-

tional derivative is one of the formulations proposed by Claude W. Ju-

marie, which has found applications in different areas.

11



The Jumarie fractional derivative of a function f(x), denoted as

Dαf(x), is defined as follows (15):

Dαf(x) =
1

Γ(1− α)

d

dt

∫ x

0

(x− t)−αf(t)dt (2.50)

This definition is similar to the Riemann-Liouville fractional deriva-

tive but with a different normalization factor and a different kernel func-

tion in the integral. The Jumarie fractional derivative can be interpreted

as a convolution of the function f(t) with a generalized kernel (x− t)−α.

One of the advantages of the Jumarie fractional derivative is its simplic-

ity and ease of use compared to other fractional derivative definitions.

However, like other fractional derivative definitions, its application re-

quires careful consideration of the properties and behaviors of the func-

tion being differentiated.

The Jumarie fractional derivative has been applied in various fields,

including the modeling of anomalous diffusion processes, fractional dif-

ferential equations, and the analysis of fractal structures, among others.

Its versatility and computational feasibility make it a valuable tool in

the study of systems exhibiting non-integer order dynamics.

2.4.2.2 Laplace transform of Jumarie fractional derivative:

The Laplace fractional derivative Jumarie transformation is another ap-

proach used in fractional calculus to handle fractional derivatives. This

transformation is based on the Jumarie fractional derivative, which is a

relatively recent development in the field.

The Jumarie fractional derivative of order α for a function f(t) is

defined as:

Dαf(x) =
1

Γ(1− α)

d

dt

∫ x

0

(x− t)−αf(t)dt (2.51)

The Laplace transform of the Jumarie fractional derivative Dαf(t) is

given by:

L {Dαf(x)} = sαF (s)−sα−1f(0)−sα−2f ′(0)−sα−3

2!
f ′′(0)−···−sα−n

n!
f (n−1)(0)

(2.52)
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where n− 1 ≺ α ≺ n, n is a positive integer, and f (k)(0) denotes the

k-th derivative of f(x) evaluated at t = 0.

2.4.3 Caputo the fractional derivative:

2.4.3.1 Definition:

Caputo’s fractional derivative is another important formulation in the

field of fractional calculus, named after the Italian mathematician Michel

Caputo. It’s a different approach compared to the Riemann-Liouville

fractional derivative and the Jumarie fractional derivative, offering cer-

tain advantages, especially in the context of solving initial value prob-

lems and differential equations.

The Caputo fractional derivative of a function f(x), with α > 0, is

defined as follows (16):

Dα
c f(x) =

1

Γ(n− α)

∫ x

0

(x− t)n−α−1f (n)(t)dt (2.53)

Where n − 1 < α < n and n is the smallest integer greater than α.

Here, f (n)(t) represents the n-th derivative of f(t) with respect to t.

The key difference between Caputo’s fractional derivative and the

Riemann-Liouville fractional derivative lies in the boundary conditions.

Caputo’s derivative takes into account the behavior of the function at t =

0, which is particularly useful for initial value problems. It’s especially

advantageous when dealing with fractional differential equations with

initial conditions, as it leads to well-posed initial value problems.

Caputo’s fractional derivative has found applications in various fields,

including viscoelasticity, anomalous diffusion, control theory, and more.

Its formulation provides a powerful tool for modeling and analyzing

systems with non-local or non-integer order dynamics, allowing for a

more accurate representation of real-world phenomena.

2.4.3.2 Laplace transform of Caputo fractional derivative :

The Laplace fractional derivative Caputo transformation is another method

used in fractional calculus to transform fractional derivatives into sim-

pler integral equations, particularly in the Laplace domain. Unlike the
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Riemann-Liouville transformation, the Caputo transformation involves

considering the fractional derivative in the Caputo sense, which is de-

fined in terms of a regular derivative.

For a function f(x), the Caputo fractional derivative of order α is

defined as:

Dα
c f(x) =

1

Γ(n− α)

∫ x

0

(x− t)n−α−1f (n)(t)dt (2.54)

where n− 1 ≺ α ≺ n

To transform this fractional derivative into the Laplace domain, we

use the Laplace transform {f(x)} = F (s), which gives:

L {Dα
xf(x)} = sαF (s)− s(α−1)

n−1∑
k=0

s−kf (k)(0+) (2.55)

where f (k)(0+)repersents the k-th derivative of f(t) evaluated at

t = 0+.

The Caputo transformation is often preferred in pactice because it

produces initial conditions in terms of the original function and its

derivatives, making it more suitable for physical problems where ini-

tial conditions are specified directly.

2.4.4 Caputo-Fabrizo the fractional derivative:

2.4.4.1 Definition:

The Caputo-Fabrizo fractional derivative of a function f(x), denoted as

aD
α
x , with Γ(0) = Γ(1) = 1, 0 ≺ α ≺ 1, is defined as follows (17):

aD
α
xf(x) =

Γ (α)

1− α

∫ x

0

exp(
−α(x− t)

1− α
)× f ′(t)dt (2.56)

2.4.4.2 Laplace transform of Caputo-Fabrizo fractional derivative:

The Laplace fractional derivative Fabrizo-Caputo transformation is a

method used in fractional calculus to transform fractional derivatives

into simpler integral aquations in the Laplace domain. It combines
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elements from both the Fabrizo and Caputo approaches to fractional

derivatives.

The Fabrizo-Caputo transformation combines these definitions to

transform a fractional derivative of order α into the Laplace domin:

L
{
Dα

fcf(x)
}
= sαF (s)− s(α−1)

m−1∑
k=0

s−kf (k)(0+) (2.57)

where f (k)(0+) represents the k-th derivative f(t) evaluted at t = 0+.

This transformation is useful in cases where the dynamics of a sys-

tem exhibit a mix of both Fabrizo and Caputo fractional behavior. It

provides a unified framework for analyzing such systems in the Laplace

domain.

2.5 Properties of fractional derivative:

Fractional derivatives possess several key properties that make them

useful in various applications (18):

2.5.1 Linearity:

Dα
x(λf(x) + σg(x)) = λDα

xf(x) + σDα
xg(x) (2.58)

2.5.2 The fractional derivative of a fractional integral of the

same degree:

aD
α
xI

α
a f(x) = f(x) (2.59)

2.5.3 Degrees of fractional derivation(real or complex) from

the quasi-group property are achieved only under cer-

tain conditions:

0D
α
x 0D

β
xf(x) =0 D

α+β
x f(x)/a = 0 (2.60)

aD
n
xaD

α
xf(x) =a D

n+α
x f(x)/n ∈ Nα ∈ R+ (2.61)
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When n ∈ N / α = n then aD
α
x becomes the same definition as the

classical derivation. For α = 0

aD
0
xf(x) = f(x) (2.62)

2.5.4 analysis

If f(x) is analytic at x, then aD
α
xf(x) is analytic at x.

2.6 The application fractional derivative:

2.6.1 Application of fractional calculus in the theory of vis-

coelasticity

The fractional derivatives method in viscoelasticity theory offers the ad-

vantage of deriving constitutive equations for the elastic complex mod-

ulus of viscoelastic materials using a limited number of experimentally

determined parameters. Moreover, this method has been applied in an-

alyzing the complex modulus and impedances of different viscoelastic

substance models (19).

2.6.2 Ultrasonic wave propagation in human cancellous bone

Fractional calculus is used to describe the viscous interactions between

fluids and solid structures. Reflection and transmission scattering op-

erators for a slab of cancellous bone were derived using Biot’s theory.

Experimental results were compared with theoretical predictions for slow

and fast waves transmitted through human cancellous bone samples(20).

2.6.3 Modeling of speech signals using fractional calculus

We present a novel approach for modeling speech signals using fractional

calculus. This approach is compared to Linear Predictive Coding (LPC),

which relies on integer-order models. Numerical simulations show that

using a few integrals of fractional orders as basis functions, the speech

signal can be modeled accurately (21).
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2.6.4 Effect Menory

Classic models of automous ordinary differential equations have no mem-

ory, because their solution does not depend on the previous instant. for

instance, if f(t;x0) is a solution of autmous first order ordinary differ-

ential equation with initial coundition x0 at t = 0, then we have the

flow property f(t + s;x0) = f(t; f(s;x0)), which means that the solu-

tion does not change by considering f(s;x0) as initial condition since

f(s;x0) belongs to the solution. Thus, given an initial value, the solu-

tion is uniquely determined for any point of domain. In general, this

assertion is not true for fractional differential equations. One way to

introduce the memory effect into a mathematical model is to change the

order of the derivative of a classical model so that it is non integer (22)

(23).

Let f be a real function defined in [0, t], t1, t2 ∈ [0, t] are such that

0 < t1 < t2, and H = (Jαf)(t2)− (Jαf)(t1) for α ∈ R+. From equalities

below, one can observe that the value of H depends on the entire range

of f over [0, t2] if α ̸= 1, whereas H depends only on the range of f over

[t1, t2] if α = 1:

H = (Jαf)(t2)− (Jαf)(t1)

= 1
Γ(α) [

∫ t2
0 (t2 − s)α−1 f(s)ds -

∫ t1
0 (t1 − s)α−1f(s)ds]

H =
1

Γ(α)
[

∫ t2

t1

(t2 − s)α−1f(s)ds−
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]f(s)ds

(2.63)

Note that if α = 1, then the second integral is canceled:

H =
1

Γ(α)

∫ t2

t1

(t2 − s)α−1f(s)ds =

∫ t2

t1

f(s)ds (2.64)

In contrast, the second integral is not canceled if α ̸= 1. From 2.63,

we can see that H depends on what happens in [0, t1] and [t1, t2]. Thus,

for α ̸= 1, H depends on the entire range of f over [0, t2]. Therefore,

the fractional integral in the interval [t1, t2] is not determined by itself,

it depends on what happaned before t1 which characterizes the memory

effect in process.
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2.7 Chapter(02) summary

Fractional calculus helps in calculating the rate of change in the value

of a specific variable with respect to another variable, facilitating the

understanding of function behavior, curves, and the analysis of natural,

economic, and engineering phenomena.

18



Chapter 3

Semiconductors and PN junction

3.1 Introduction:

Matter exists in three states: solid, liquid, and gas. The structural

composition of matter varies from one state to another depending on the

dominant bonding forces. Semiconductor materials are of paramount

importance due to their crucial role in electronic and optoelectronic

technologies. In this chapter, we shed light on these materials, their

types, and methods of doping.

3.2 Insulators, Conductors and Semiconductors

3.2.1 Insulator

3.2.1.1 Definition:

By definition, insulators are materials that prevent the passage of charge

or electricity. In other words, an electrical insulator is a material that

blocks the movement of electrons between atoms.

Furthermore, insulators also restrict the passage of heat and light.

Materials composed mainly of non-metals are typically the best electrical

insulators (24). Moving ahead, in a typical insulator, electrons cannot

move freely anywhere inside an insulating material. Why? Because

there is no overlapping between the valance and conduction bands of

the material. Refer to the above diagram for proper understanding.

As a result, there is a large forbidden gap between the layers of the

atomic structure of the insulators. Hence, due to high resistance and,
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Figure 3.1: Energy bands in Insulators

of course, a large forbidden gap, electrons can never move freely inside

an electrical insulator.

3.2.1.2 Properties of Insulators:

There are so many properties of insulators. However, at the equilibrium

condition, an insulating material shows the following properties.

1. They have high resistance and low conductivity.

2. The electric field inside isulators is zero.

3. Covalent bonds are strong, therefore, too hard to be broken.

4. They have high resistivity.

5. The temperature coefficient of resistance of an insulator is negative.

6. At the breakdown voltage, an insulator can become a conductor.
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3.2.1.3 Examples of Insulators:

Insulators are nothing but a barrier or a layer between the conductors

to keep the electrical current under control.

Well, what materials are good insulators? Here is the list of the top

10 examples of insulators that we proactively use in our day-to-day life.

Glass, Rubber, Oil, Air, Dry wood, Fiberglass, Quartz, Diamond,

Plastic Asphalt, etc.

3.2.2 Conductors

3.2.2.1 Definition:

A conductor, or electrical conductor, is a substance or material that

permits the flow of electricity. In a conductor, electrical charge carriers,

typically electrons or ions, move readily between atoms when voltage is

applied. Most metals, such as copper, are excellent conductors, whereas

nonmetals are poor conductors, also known as insulators (25).

3.2.2.2 Understading electrical conductors:

In general, conductivity refers to the ability of a substance to transmit

electricity or heat. A conductor facilitates the flow of electricity by

providing minimal resistance to the movement of electrons, resulting

in an electrical current. Common electrical conductors include metals,

metal alloys, electrolytes, and some nonmetals like graphite, as well

as certain liquids such as water. Pure elemental silver is one of the

best electrical conductors. Other effective electrical conductors include:

copper, steel, gold, silver, platinum, aluminum, brass

Human beings are also good conductors of electricity, which is why

touching someone experiencing an electric shock causes the toucher to

experience the same shock. In electrical and electronic systems, con-

ductors comprise solid metals molded into wires or etched onto printed

circuit boards.

3.2.2.3 Properties of conductors:

Important features of an electrical conductor include the following:
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1. It ensures free movement of electrons or ions through it.

2. It has a zero electric field inside, which permits the movement of

electrons or ions.

3. Outside the conductor, the electric field is perpendicular to the

conductor’s surface.

4. It has a zero charge density, ensuring that the positive and negative

charges cancel each other and free charges exist only on the surface.

In addition, conductors have low resistance and high thermal con-

ductivity. Further, a conductor placed in a magnetic field does not

store energy. Finally, both ends of the conductor are at the same

potential. Electricity flows through the conductor when the poten-

tial is changed at one end, which allows electrons to start flowing

from one end to another.

3.2.2.4 How conductors work?

In solid-state physics, band theory explains that solids possess a valence

band and a conduction band. For a material to conduct electricity,

there must be no energy gap between these bands. In conductors, the

valence and conduction bands overlap, enabling electrons to move freely

through the material with the application of minimal voltage. The outer

electrons in the valence band are loosely bound to the atoms, so when

voltage, an electromotive force, or thermal energy is applied, they be-

come excited and transition from the valence band to the conduction

band.

In the conduction band, these electrons can move freely anywhere,

resulting in an abundance of electrons in this band. These electrons

travel with a to-and-fro motion, rather than in a straight line. That’s

why their velocity is known as drift velocity. It is because of this drift

velocity that electrons collide with atoms of the material or other elec-

trons inside the conductor’s conduction band.

When there is a potential difference in the conductor across two

points, electrons flow from the point of lower potency to the point of

higher potency. Electrons and electricity flow in opposite directions. In

this situation, only a small resistance is offered by the conductor mate-

rial.
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Figure 3.2: Energy bands in Insulators

3.2.3 Semiconductors

3.2.3.1 Definition:

Semiconductors are materials which have a conductivity between con-

ductors (generally metals) and non-conductors or insulators (such as ce-

ramics). Semiconductors can be compounds, such as gallium arsenide,

or pure elements, such as germanium or silicon (26).

3.2.3.2 Electronic properties of Semiconductors:

Semiconductors can conduct electricity under preferable conditions or

circumstances. This unique property makes it an excellent material to

conduct electricity in a controlled manner as required.

Unlike conductors, the charge carriers in semiconductors arise only

because of external energy (thermal agitation). It causes a certain num-

ber of valence electrons to cross the energy gap and jump into the con-

duction band, leaving an equal amount of unoccupied energy states, i.e.,

holes. The conduction due to electrons and holes is equally important.

Resistivity: 10−5 to 106 Ωm

Conductivity: 105 to 10−6 mho/m

Temperature coefficient of resistance: Negative

Current flow: Due to electrons and holes
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Figure 3.3: Intrinsic Semiconductors

3.2.3.3 Examples of Semiconductors:

Gallium arsenide, germanium and silicon are some of the most commonly

used semiconductors. Silicon is used in electronic circuit fabrication, and

gallium arsenide is used in solar cells, laser diodes, etc.

3.2.3.4 Application of Semiconductors:

Let us now understand the uses of semiconductors in daily life. Semi-

conductors are used in almost all electronic devices. Without them, our

life would be much different.

Their reliability, compactness, low cost and controlled conduction of

electricity make them ideal to be used for various purposes in a wide

range of components and devices. Transistors, diodes, photosensors,

microcontrollers, integrated chips and much more are made up of semi-

conductors.

3.2.3.5 Types of Semiconductors:

Intrinsic Semiconductor: An intrinsic type of semiconductor material

is made to be very pure chemically. It is made up of only a single type

of element.

Germanium (Ge) and silicon (Si) are the most common types of

intrinsic semiconductor elements. They have four valence electrons
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(tetravalent). They are bound to the atom by a covalent bond at abso-

lute zero temperature.

When the temperature rises due to collisions, few electrons are un-

bounded and become free to move through the lattice, thus creating an

absence in its original position (hole). These free electrons and holes

contribute to the conduction of electricity in the semiconductor. The

negative and positive charge carriers are equal in number.

The thermal energy is capable of ionising a few atoms in the lattice,

and hence, their conductivity is less.

Energy Band Diagram of Intrinsic Semiconductor: The energy band

diagram of an intrinsic semiconductor is shown below. In intrinsic semi-

Figure 3.4: Energy Band Diagram of Intrinsic Semiconductor

conductors, current flows due to the motion of free electrons, as well as

holes. The total current is the sum of the electron current Ie due to

thermally generated electrons and the hole current Ih.

Total Current (I) = Ie + Ih

For an intrinsic semiconductor, at finite temperature, the probability

of electrons existing in a conduction band decreases exponentially with

an increasing band gap (Eg).

n = n0e
−Eg/2.kb.T (3.1)

Where,

Eg Energy band gap
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KB Boltzmann’s constants

Extrinsic Semiconductor: The conductivity of semiconductors can be

greatly improved by introducing a small number of suitable replacement

atoms called IMPURITIES. The process of adding impurity atoms to

the pure semiconductor is called DOPING. Usually, only 1 atom in 107

is replaced by a dopant atom in the doped semiconductor. An extrinsic

semiconductor can be further classified into types:

N-type Semiconductor

P-type Semiconductor

Figure 3.5: P-N Semiconductors

N-Type Semiconductor: Mainly due to electrons

Entirely neutral

I = Ih and nh⟩⟩ne

Majority – Electrons and Minority – Holes

When a pure semiconductor (silicon or germanium) is doped by pen-

tavalent impurity (P, As, Sb, Bi), then four electrons out of five valence

electrons bond with the four electrons of Ge or Si.

The fifth electron of the dopant is set free. Thus, the impurity atom

donates a free electron for conduction in the lattice and is called a

(Donar).
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Since the number of free electrons increases with the addition of an

impurity, the negative charge carriers increase. Hence, it is called an

n-type semiconductor.

Crystal as a whole is neutral, but the donor atom becomes an im-

mobile positive ion. As conduction is due to a large number of free

electrons, the electrons in the n-type semiconductor are the MAJOR-

ITY CARRIERS, and holes are the MINORITY CARRIERS.

P-Type Semiconductor: Mainly due to holes

Entirely neutral

I = Ih and nh⟩⟩ne

Majority – Holes and Minority – Electrons

When a pure semiconductor is doped with a trivalent impurity (B,

Al, In, Ga), then the three valence electrons of the impurity bond with

three of the four valence electrons of the semiconductor.

This leaves an absence of electron (hole) in the impurity. These

impurity atoms which are ready to accept bonded electrons are called

“Acceptors“.

With an increase in the number of impurities, holes (the positive

charge carriers) are increased. Hence, it is called a p-type semiconductor.

Crystal, as a whole, is neutral, but the acceptors become an immobile

negative ion. As conduction is due to a large number of holes, the holes

in the p-type semiconductor are MAJORITY CARRIERS, and electrons

are MINORITY CARRIERS.

3.2.3.6 The P-N Junction:

Definition: A P-N junction is an boundary between two semiconductor

material types, namely the p-type and the n-type, inside a semiconduc-

tor.

In a semiconductor, the P-N junction is created by the method of

doping. The p-side or the positive side of the semiconductor has an

excess of holes, and the n-side or the negative side has an excess of

electrons (27).

27



Formation of P-N Junction: When using different semiconductor mate-

rials to create a P-N junction, a grain boundary forms that can impede

electron movement by scattering electrons and holes. To address this, we

use doping. To illustrate doping, consider a thin p-type silicon semicon-

ductor sheet. Adding a small amount of pentavalent impurity converts

part of the p-type silicon to n-type silicon. This results in a sheet con-

taining both p-type and n-type regions, forming a P-N junction. After

forming this junction, two processes occur: diffusion and drift. Due to

the difference in the concentration of holes and electrons on either side

of the junction, holes from the p-side diffuse to the n-side, and electrons

from the n-side diffuse to the p-side, creating a diffusion current across

the junction.

Figure 3.6: P-N Junction

Also, when an electron diffuses from the n-side to the p-side, an

ionised donor is left behind on the n-side, which is immobile. As the

process goes on, a layer of positive charge is developed on the n-side of

the junction. Similarly, when a hole goes from the p-side to the n-side, an

ionized acceptor is left behind on the p-side, resulting in the formation

of a layer of negative charges in the p-side of the junction. This region

of positive charge and negative charge on either side of the junction is

termed as the depletion region. Due to this positive space charge region

on either side of the junction, an electric field with the direction from

a positive charge towards the negative charge is developed. Due to this

electric field, an electron on the p-side of the junction moves to the n-side

of the junction. This motion is termed the drift. Here, we see that the

direction of the drift current is opposite to that of the diffusion current.
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Applications of P-N Junction:

1. P-N junction can be used as a photodiode as is sensitive to the light

when the configuration of the diode is reverse-biased.

2. It can be used as a solar cell.

3. When is forward-biased, it can be used in LED lighting applica-

tions.

4. It is used as rectifier in many electric circuits and as a voltage-

controlled oscillator in varactors.

Method of Creating P-N Junction Structure: There are several avail-

able to create a P-N Junction structure, including dopant diffusion and

ion implantation(28)(29):

Diffusion method: In the diffusion-doping method, a dopant of n-

type or p-type is injected into a semiconductor of the opposite type

through thermal diffusion. This process effectively changes the doping

type and allows the creation of a junction with the desired depth for

efficient semiconductor device architectures.

Figure 3.7: illustrates the diffusion profile of the n-type dopant, C(x), as it varies

with depth within the p-type semiconductor.
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The background concentration of the p-type dopant remains con-

stant, and the junction depth, N-type dopant profile, p-type dopant

concentration

xj represents the point at which the concentrations of both types of

dopants become equal.

Ion implantation method: Ion implantation is a technique used in

materials science to alter the physical, chemical, and electrical properties

of solid bodies. This process is utilized in semiconductor manufacturing,

metal processing, and numerous other applications in materials science.

The ion implantation principle emerged as a means to produce P-N

junctions for optoelectronic devices in the late 1970s and 1980s early.

The principle of ion implantation relies on accelerating ions of the

material to be added within an electric field and then impacting them

onto the surface of the solid body. The impacting ions transfer energy

and momentum to the electrons and nuclei of the target material, lead-

ing to a change in the structural composition of the solid material due to

a series of collisions within the material. Typically, an ion implantation

Figure 3.8: A diagram illustrating the principle of ion implantation.
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device consists of an ion source, where the ions to be added are produced,

and a particle accelerator, which accelerates the ions within an electro-

static field to high-energy speeds. There’s also a target chamber, where

the ions collide with the target solid body. Often, the target surface is

connected to a device for detecting and determining the accumulated

charges from the implanted ions, enabling continuous measurement of

the given dose, thus allowing the process to be halted at the desired

dosage level.

Ion implantation technology will be utilized for doping elements in

semiconductor manufacturing. Based on this principle, ions of elements

such as boron, phosphorus, or arsenic are added from an ion source

composed of materials containing the corresponding elements, which are

of high purity. Consequently, semiconductors of either p-type or n-type

conductivity can be obtained (30).

3.3 Chapter(03) semmary

Semiconductors are valuable in electronics and technology, including

the manufacturing of electronic chips (such as silicon and germanium),

network devices, sensors, solar panels, and various other applications.

31



Chapter 4

The fractional study of the
space–time the of the diffusion
equation in a semi-infinite medium

4.1 The anomalous diffusion and its drawbacks:

Anomalous diffusion refers to a type of particle movement or spreading

that deviates from the typical behavior described by classical diffusion

models. Dopants and defects dramatically alter the electrical conduc-

tivity of semiconductors by introducing states in this gap, providing

charge carriers at much lower energies. Electrically active defects in

semiconductor crystals vary based on their energy states relative to the

band edges. Shallow defects have energy levels close to the band edges,

while deep defects typically reside in the middle third of the band gap.

However, this simple definition is no longer universally applicable. Deep

defects exhibit highly localized wave functions, whereas shallow-level

wave functions extend extensively. Hence, oxygen in GaN is considered

a deep defect despite its location within the conduction band (31).

The simplest types of defects in germanium are point defects, which

are classified into two types. Firstly, vacancies occur due to the absence

of a germanium atom from its position in the perfect crystalline lattice.

Secondly, interstitial defects involve a germanium atom being displaced

from its position and lodged in an intermediate site (30).
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4.2 Fractional diffusion equation:

The diffusion equation is widely acknowledged for its utility across vari-

ous domains in science and engineering. However, recent studies suggest

that the traditional diffusion equation falls short in accurately represent-

ing numerous real-world scenarios. One popular model for anomalous

diffusion is the fractional diffusion equation, Solutions to the fractional

diffusion equation spread at a faster rate than the classical diffusion

equation, and may exhibit asymmetry. However, the fundamental solu-

tions of these equations still exhibit useful scaling properties that make

them attractive for applications.

The classical diffusion equation

Dtc(x, t) = λD2
xc(x, t) (4.1)

where

c(x, t) is concentration or density;

x is a position;

t is a time; and

λ is the diffusion coefficient.

Anomalous diffusion manifests in diverse systems (32)(33) , with a

significant instance observed in the production of Chalcogenide amor-

phous semiconductor diodes via thermal diffusion methods (34). The

conventional diffusion equation falls short in accurately portraying this

phenomenon. To overcome this limitation, fractional diffusion mod-

els have been developed, utilizing fractional derivative operators in lieu

of traditional derivatives (35).The space–time-fractional diffusion equa-

tion offers a comprehensive depiction of anomalous diffusion, outlined

as follows(36):

Dα
t c(x, t) = λD2β

x c(x, t) (4.2)

where

The parameter λ represents the positive diffusion coefficient of an

n-type dopant as it diffuses through a material and dimensionless pa-

rameter;

α is the order of the time- fractional derivative;
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β is the order of the space-fractional derivative; and

0⟨α⟨1
0⟨β⟨1
The objective of this study is to address the space time-fractional dif-

fusion equation in the context of anomalous diffusion during p-n junction

formation, with the task of finding its solution.

An example of this occurs when x is defined as x = X/L, where X

represents the spatial position and L denotes a characteristic length,

like a shallow depth within the diffusion medium. Likewise, t can be

expressed as t = T/τ ,where T represents actual time and τ indicates

a characteristic time, symbolizing a short interval within the temporal

domain of the phenomenon being studied.

Our investigation focuses on the diffusion process within a semi-

infinite medium, particularly when x⟩0. In this scenario, the concentra-

tion at the surface remains constant at Cs. To move forward, our goal

is to develop a solution for the space–time fractional diffusion equation

that meets both the specified boundary condition and the initial condi-

tion:

c(x, 0) = 0, x⟩0
c(0, t) = Cs, t⟩0
We will solve the equation 4.2 using Laplace transformation, by tak-

ing and multiplying both sides of the equation by
∫∞
0 e−st:

∫∞
0 e−st[Dα

t c(x, t)] dt = λD2β
x

∫∞
0 e−stc(x,t)dt (4.3)

Subsequently

L[Dα
t c(x, t)] dt = λD2β

x C(x, s) (4.4)

sC(x, s)− c(x, 0)

s+ α(1− s)
= λD2β

x C(x, s) (4.5)

Based on the initial condition c(x, 0) = 0, 4.5 can be expressed as

follows:
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sC(x, s)

s+ α(1− s)
= λD2β

x C(x, s) (4.6)

When we put

φ(x, s) = Dβ
xC(x, s) (4.7)

4.6 can be reformulated as

Dβ
xφ(x, s) =

sC(x, s)

λ (s+ α(1− s))
(4.8)

The solutions to equations 4.7and 4.8 are represented in equation 4.9

using the Caputo-Fabrizo derivative:

C(x, s) = (1− β) (φ (x, s)− φ(0, s)) + βx
0φ (p, s) dp+ C (0, s) (4.9)

φ(x, s) =
sC(x, s)

λ (s+ α(1− s))
(C (x, s)− C(0, s))+

βs

λ (s+ α(1− s))

∫ x

0

C(p, s)dp+φ(0, s)

(4.10)

The first and second derivatives of the last two equations are

dC (x, s)

dx
= (1− β)

dφ (x, s)

dx
+ βφ (x, s) (4.11)

d2C (x, s)

dx2
= (1− β)

d2φ (x, s)

dx2
+ β

dφ (x, s)

dx
(4.12)

and

dφ (x, s)

dx
=

s (1− β)

λ (s+ α (1− s))

dC (x, s)

dx
+

βs

λ (s+ α (1− s))
C (x, s) (4.13)

d2φ (x, s)

dx2
=

s (1− β)

λ (s+ α (1− s))

d2C (x, s)

dx2
+

βs

λ (s+ α (1− s))

dC (x, s)

dx
(4.14)

By substituting equations 4.13 and 4.14 into equation 4.12:
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[
(1− β)2 s− λ (s+ α (1− s))

] d2C (x, s)

dx2
+2β (1− β) s

dC (x, s)

dx
+β2sC (x, s) = 0

(4.15)

Subsequently, the solution to 4.15 remains finite as x approaches

infinity, regardless of the values of α and β.

C (x, s) = A exp(− βs

(1− β) s+
√
λs (s+ α (1− s))

x) (4.16)

When applying the boundary condition, we note that

C (0, s) =

∫ ∞

0

e−stc(0, t)dt =
Cs

s
(4.17)

By considering 4.16, we derive the following result:

A =
Cs

s
(4.18)

The solution is expressed by the following equation:

C (x, s) =
Cs

s
exp(− βs

(1− β) s+
√
λs (s+ α (1− s))

x) (4.19)

Then

c (x, t) = L−1

[
Cs

s
exp(− βs

(1− β) s+
√
λs (s+ α (1− s))

x)

]
(4.20)

L−1 denoted the inverse Laplace transform.

When α = 1 and β = 1 (representing the standard case), we obtain

the following:

c (x, t) = L−1

[
Cs

s
exp(−

√
s

λ
x)

]
(4.21)

Referring to the Laplace transforms table (37), it indicates that the

function associated with its transform represented in 4.22 corresponds

to the complementary error function.
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c(x, t) = Cserfc(
x

2
√
λt

) (4.22)

which is the solution of the standard diffusion equation Dtc(x, t) =

λD2
xc(x, t) in a semi-infinite medium, with the given boundary condi-

tions (38)

4.3 Numerical simulation and results:

Simulation refers to recreating a process under artificially similar condi-

tions to natural ones. Here, we will simulate the spread of the junction

p-n using the numerical Gaver-Stehfest method to compute the inverse

Laplace transform.

Simulation is a method employed to obtain a numerical solution,

emphasizing computational aspects, whereas the analytical solution is

exact, devoid of approximations.

We utilized the Gaver–Stehfest numerical technique to calculate the

inverse Laplace transform of 4.20 in order to model diffusion-doping

profiles for generating p-n junctions, while exploring various degrees of

fractional derivation (α, β).

The resulting solution c(x, t) is expressed by the following equation

(39)(40),

c(x, t) =
ln 2

t

n=M∑
n=1

KnC(x,
n ln 2

t
) (4.23)

where

C(x, n ln 2
t ) = {c(x, t)} for s = n ln 2

t

The coefficients Kn rely entirely on the quantity of expansion terms,

M , which must be an even number. The formula for Kn is as follows:

Kn = (−1)n+M/2

min(n,M/2)∑
K=

(
n+1

2
2

)
KM/2 (2K)!

(L/2−K)! (K − 1)! (n−K)! (2K − n)!

(4.24)

37



Figure 4.1: Comparing the numerical solution with the analytical solution, where

α = 1 , β = 1, t = 18000, λ = 3.35× 10−3, and Cs = 1016

The parameter M denotes the quantity of terms employed in 4.23,

which should be an even integer and is usually determined via a trial-

and-error approach. In our simulation, we opted for M = 10.

To validate the accuracy of the outcomes obtained through this ap-

proach, we juxtaposed the simulation curve generated by the Gaver-

Stehfest numerical method with a curve derived from the analytical

solution presented in 4.22.

Here, it’s worth noting that using both our analytical and numeri-

cal approaches, we can describe the distribution of p-type dopant within

the background concentration of n-type dopant. Moreover, the resulting

curves will match precisely provided the conditions remain consistent,

including equal diffusion coefficients, background concentrations, and

initial and boundary conditions. In Figure 4.2 and Figure 4.3, we

present the n-type dopant profiles obtained from our numerical solu-

tion, along with the background concentration of p-type dopants and

the junction depth characterized by xj at various orders of fractional

derivation (α, β). The parameters used for these simulations are t =

18000, λ = 3.35 × 10−3, and Cs = 1016. It’s worth noting that simi-

larly, we can describe the profile of p-type dopants in the background

concentration of n-type dopants from both our analytical and numeri-
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Figure 4.2: N-type dopant profile, background concentration of p-type dopant, and

xj that characterizes the depth of junction with the parameters α = {0.4, 0.6, 0.8, 1},
β = 1, t = 18000, λ = 3.35× 10−3, and Cs = 1016

cal solutions. Under the same conditions of equal diffusion coefficients,

background concentrations, and boundary and initial conditions, these

curves will be identical.

The influence of the space-fractional derivative order, denoted by β,

on the dopant diffusion profile, is illustrated in Figure 4.3. Augmenting

β leads to a deceleration of the diffusion process, consequently reducing

the depth of the p-n junction.

In practice, the thermal diffusion process for doping the semiconduc-

tor to form a p-n junction typically occurs at relatively high tempera-

tures for a specific duration. Once the period is complete, the sample

is rapidly cooled by immersion in a cold medium like liquid nitrogen.

This process, known as quenching, effectively inhibits diffusion, fixing

dispersed particles in place and preserving the material’s microstructure.

Therefore, quenching allows the diffusion profile to be maintained at the

quenching moment, meaning the temporal evolution curve of concentra-

tion is fixed after this moment.

Hence, the concentration’s temporal evolution curves at a stationary

position of x = 15, both during the diffusion period of t = 18000 and fol-
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Figure 4.3: N-type dopant profile, background concentration of p-type dopant,

and xj that characterizes the depth of junction with the parameters β =

{0.4, 0.6, 0.8, 1} , α = 1, t = 18000, λ = 3.35× 10−3, and Cs = 1016

Figure 4.4: The temporal evolution of the concentration at a fixed x = 15 for

α = {0.4, 0.6, 0.8, 1} , β = 1
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Figure 4.5: The temporal evolution of the concentration at a fixed position x = 15

for α = 1, β = {0.4, 0.6, 0.8, 1}

lowing the quenching process, are depicted in Figure 4.4 and Figure 4.5,

respectively. On a microscopic scale, particles undergo normal diffusion

following a continuous and well-defined path. However, in anomalous

diffusion, particles exhibit irregular and non-local behavior. In semicon-

ductors, this deviation from normal diffusion is attributed to structural

factors, particularly the high density of vacancies and dislocation-like de-

fects. These structural irregularities disrupt particle flow, causing paths

to become discontinuous and irregular. Consequently, this alteration

affects the probability and type of jumps in the multiscale mean-free

path spectrum of particles, leading to anomalous diffusion during the

formation of the p-n junction.

Moreover, phenomena such as waiting times or memory effects influ-

ence the probability of particles making long or short jumps at each time

step. Increasing the time-order fractional derivative suggests a higher

probability of longer jumps, resulting in faster overall diffusion. Con-

versely, increasing the space-order fractional derivative implies a greater

likelihood of shorter jumps, leading to slower overall diffusion.

Regarding the impact of experimental conditions like ambient tem-
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perature or average doping concentration on these non-local effects and

fractional coefficients, it’s probable that these factors play a significant

role in altering the underlying dynamics. Temperature variations can

influence the mobility of dopant particles, potentially affecting the prob-

ability of long jumps and memory effects. Similarly, changes in the av-

erage doping concentration could influence particle interactions, thereby

affecting their diffusion behavior (41).

4.4 Chapter(04)summry

Fractional differentiation can have a significant impact on understanding

and analyzing the properties of the p-n junction, contributing to the

development of more efficient and precise electronic devices.
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Chapter 5

Conclusion

The effect of fractional derivatives on the depth of the p-n junction re-

flects progress in understanding and improving the characteristics of

semiconductor devices. Fractional derivatives, surpassing traditional

concepts of ordinary derivatives, provide more precise mathematical

tools for describing complex physical phenomena within the p-n junc-

tion.

We have found that fractional derivatives have played a crucial role

in numerical simulation processes, specifically leading to an increase in

the value of parameter α resulting in faster diffusion and deeper p-n

junction crossing. Conversely, an increase in parameter β led to slower

diffusion and shallower p-n junction crossing.

These results underscore the importance of fractional derivatives in

studying the formation of the p-n junction.
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