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Abstract

Our study focuses on the existence and blow-up of solutions to the partial dif-
ferential equation with elastic and viscous terms and variable exponents, In the
first chapter, we covered some essential definitions, theorems, and inequalities
that will be needed in the second and third chapters, as for the second chap-
ter we studied the existence of the solution using the faedo-Galerkin method
and proved its uniqueness through various methods. In the final chapter, we
examined the energy associated with this equation and found that when the
time reaches a critical point, a blow-up occurs.

Key words : Sobolev space, Blow-up , variable exponents, local existence.



Notation

Q) : bounded domain in R?

Vu : gradient of u.

Au : Laplacien of u.

D (€2) : space of infinity differentiable functions with compact support in €.

D'(2) : distribution space.

Ck(Q) : space of functions k-times continuously differentiable in €.

LP(Q)) : space of functions p-th power integrated on measure of dx.
1

1= (fol£17)"

WP = {u e LP(Q),Vu € LP(Q)}.

H: Hilbert space.

HY () = Wy*(Q).

1/2
Il = (Jo Sic v (@) [2de + fo Xy s 1050 (@) 2da)
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Introduction

In recent decades, viscoelastic wave equations with acoustic boundary conditions have
garnered significant attention from many researchers. It is well-known that viscoelastic
materials exhibit memory effects, where their mechanical response is influenced by the
history of the materials themselves. Mathematically, these damping effects are modeled
using integro-differential operators. Consequently, differential equations that incorporate
memory effects have become a vibrant area of research in recent years. We can mention
some works |7, 8, 10, 13, 27, 28, 2|.

In this work see [41] , we show the details of local existence and the blow up result of
viscoelastic wave equation:

t
uy — Au +/ g(t — s)Au(s)ds + alu| ™™ 2u, = blulP™ 2y, in Q x (0,7) (1)
0

with the boundary condition:

u:%zo, in 09 x (0, 00) (2)
and the initial condition:
u(z,0) = ug(x), u(x,0)=wu(z), in Q. (3)

where 0 < T < oo and 2 is a bounded domain in R™, n > 2, with a smooth boundary
0} = I', v is the unit outer normal to 0f). a,b are two no-negative constants. ¢ is a
positive nonincreasing function defined on R, . (ug,u1,) are the initial data belonging to
a suitable function space. The exponents p(.) and m(.) is given measurable functions on
Q) satisfying:

2<r <r(@) <y < oo, (4)
with
ry = ess inf r(z), re = esssupr(x),
zEN rEQ

we also assume that r(.) be log-continuous in 2 such that

C

——  with |z —y| <9, 5
log|z — y| | | )

V(z,y) € %, |r(z) —r(y)l <

where C' >0, 0 <4 < 1. In [30] Messaoudi studied the following equation

Uy + A%u A+ w2y = [P 2, in Q% (0,7) (6)

8
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with the boundary condition:

u:%zo, in 99 x (0, 00) (7)
and the initial condition:
u(z,0) = ug(x), u(x,0)=wui(z), in Q. (8)

Messaoudi established an existence result and showed that the solution continues to exist
globally if m > p, and blows up in finite time if m < p and the initial energy is negative.
Santos and Junior in [38] studied the following system:

(utt+A2u:O, in 2 x (0, c0),
u:%:O, on I’y x (0, 00),
—u+ [} gi(t — s)Bru(s)ds =0, on Iy x (0,00), (9)
% + fot go(t — 8)Pau(s)ds =0, on I'y x (0, 00),
\u(O,x) =uo(z), w(0,z)=wu(x), inQ,
where
fiu=Au+ (1 —-p)Biu and fou = %ﬂu + (1= p) Gg;u
with

2 2
Biu = 201 09Uyy — Vilyy — ViUy,  and  Bou = (14 — V) Ugy + 112 (Uyy — Ugy) -

Liu and Sun in [27] considered the equation
t
uy — Au + a(t)/ g(t — s)Au(s)ds = 0, in Q x (0, 00)
0

with a homogeneous Dirichlet condition on a portion of the boundary and acoustic bound-
ary conditions on the rest of the boundary. The authors established a general decay result,
which depends on the behavior of both a and g, by using the perturbed energy functional
technique. Cavalcanti et al. [11] considered the equation

¢
|| Puge — Au — Ay + / g(t — s)Au(s)ds — yAu, = 0, in  x (0, 00)
0

subject to Dirichlet boundary conditions. Taking 0 < p < % ifn>3orp>0ifn=1,2
and assuming that the kernel g decays exponentially, the authors obtained global existence
of solutions in the case v > 0. They also proved that the energy decays exponentially
when v > 0. Messaoudi et al in [31] showed the existence and blow-up of solutions for
the nonlinear damped wave equation with variable exponents: :

wy — Au A+ aluy ™ %0, = blulPY 2, e tel0,T),
with the boundary condition

u(z,t) =0, on 02 x (0,T)
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and the initial condition
u(z,0) = ug, w(x,0) =1wuy in Q,

where a, b are positive constants and the exponents m() and p() are given measurable
functions. They proved that the solution with negative initial energy blows up in finite
time. Messaoudi and Talahmeh in [32] studied the blow-up in solutions of a quasilinear
wave equation with variable exponent nonlinearities:

uy — div (|Vu["V72Vu) +a lue| ™ uy = bluPO 20 in Q x (0,7).

They obtained the blow-up result for the solutions with negative initial energy and for
certain solutions with positive energy. However, to our knowledge, there is no blow-up
result of solutions for the viscoelastic hyperbolic equations with variable exponents. We
prove a finite time blow-up result of solutions with positive initial energy for the problem
(1)-(3).

For p(-) and m(-) are constants, Messaoudi in [33] considered the following viscoelastic
wave equation with a nonlinear damping;:

t
gy — Au + / g(t — 8)Au(s)ds + |ug|" 2wy = [u|P2u, in Qx(0,00).
0
He showed a blow-up result of solutions with negative initial energy and p > m. The
body of this thesis is organized as follows:

e In chapter 1, we present some notations and material needed for our work.

e In chapter 2, we show the local existence of weak solutions by using Faedo-Galerkin
method.

e In chapter 3, we state and prove a blow-up result of solutions for the problem (1)-(3)
when the initial energy lies in positive as well as nonpositive.



Chapter 1

Preliminary

In this chapter, we give some basic definitions, theorems, lemmas, and inequalities that
will be useful in the work see ( [9], [14], [17], [19], [20], [36], [41]).

1.1 Banach Spaces and Banach fixed-point theorem

We first review some basic facts from calculus in the most important class of linear spaces
the "Banach spaces".

Definition 1.1.1 A Banach space is a complete normed linear space X. Its dual space
X' is the linear space of all continuous linear functional f : X — R.

Proposition 1.1.2 X' equipped with the norm

1/l = sup {|f (w)] : fJullxy <1},

1s also a Banach space.

Definition 1.1.3 Let X be a Banach space, and let (uy,)
u, converges strongly to u in X if and only if

nen be a sequence in X. Then

T [, — ully = 0.

and this is denoted by u, — u, or lim u, = u.
n—~oo

Definition 1.1.4 A sequence (u,,) in X is weakly convergent to u if and only if

lim f (un) = f (u),

n—aoQ

for every f € X and this is denoted by

11
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1.1.1 Banach fixed-point theorem

Definition 1.1.5 Let (X,d) be a Banach space. Then a map T : X — X is called a
contraction mapping on X if there exists q € [0,1) such that

1T(z) = T(y)lx <dllz —yllx,

for all x,y in X.

Theorem 1.1.6 Let (X,d) be a non-empty complete metric space with a contraction
mapping T : X — X. Then T admits a unique fired-point z* in X (i.e. T(z*) = x*).
Furthermore, x* can be found as follows:
start with an arbitrary element 2%n X and define a sequence {x,} by x, = T(x,_1).
Then x, — x*.

The Mean Value Theorem
In the next two theorems a and b are real numbers such that a < b.

Theorem 1.1.7 (Rolle’s theorem)
Suppose that f € C([a,b],R) is differentiable on (a,b). If f(a) = f(b), then there is some
€ € (a,b) such that f'(§) = 0.

Theorem 1.1.8 (mean value theorem)
if f € C(|a,b],R) is differentiable on (a, b), then there is some £ € (a,b) such that

f(b) = fla) + f(§)(b—a).

1.2  Hilbert spaces

1.2.1 Definitions and Elementary Properties

Definition 1.2.1 Let H be a vector space. A scalar product (u, v) is a bilinear form on
H x H with values in R (i.e., a map from H x H to R that is linear in both variables)
such that

(u, v) = (v, w) ¥V u, v € H (symmetry),

(u, u)> 0V u € H (positive),

(u, u) # 0 u # 0 (definite).

Let us recall that a scalar product satisfies the Cauchy Schwarz inequality

[(u,0)|< (u, ) ?(0,0)"%, Vu,v e H.

[It is sometimes useful to keep in mind that the proof of the Cauchy Schwarz in-equality
does not require the assumption (u, u) # 0Vu # 0.] It follows from the Cauchy Schwarz
imequality that the quantity

lull = (u,w)"?

is norm arising from scalar products. Indeed, we have
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lu+v]* = (u+v,u+v) = [lul* + (u,v) + (0,u) + [[of|* < Jull® + 2[Jull[[o] + 0],

and thus ||u + v|| < ||u|| + ||v]| let us recall the classical parallelogram law:

2 2

a—>
2

a+b
2

1
= §(HGH2+HbHQ), Va,be H.

1.3 Functional spaces

1.3.1 The L? spaces

Definition 1.3.1 Let 1 < p < oo, and let 2 be an open domain in R™, n € N*. Define
the standard Lebesgue space LP (), by

LP(Q) = {f : Q — R is measurable; / |f ()| dx < oo}.
Q

with the norm

mquéu@wmﬁ. (L1)

Definition 1.3.2 We define L>(Q2) by:

L>®(Q) ={f: Q — Rf is measurable and exists the constant C' such that || f(x)| < ¢ a.e on Q}

equipped with the norm

[f ]|z = inf{C; |[f(2)[| < C a.e on O}

Theorem 1.3.3 (LP(Q), ||||p> (L), ]1.]l,) are a Banach spaces.

Remark 1.3.4 In particularly, when p =2, L*(Q) equipped with the inner product

(ﬁwgz/ﬂ@g@M%

15 a Hilbert space.
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1.3.2 Sobolev spaces
Definition 1.3.5 For k€ N and 1 <p < oo . We define the Sobolev space

WP (Q) = {u € LP(Q), D*u € LP(Q)Va € N" with|a| < k},

equipped with the norm

1
lullep = (3 IDull) .1 <p < oo

i<k

[l 00 = max || Do

where D% is the a-th weak derivative of u which is defined as

| u@prot@) = <11 [ v, vp € o (@),

la] = a1 + ... + a,, and

dlely,

v = Dau = —-—
0 xy...0%x,

The space W2 (Q) is denoted by H* (), which is a Hilbert space with respect to the inner
product

(u UHk:/ZDa (z)dz,Yu,v € H*(Q)

a<k

Definition 1.3.6 [20] We denote by WiP(Q) the closure of C°(Q) in W5P(Q)

The Sobolev Space W?(I)
[9]Let T = (a, b) be an open interval, possibly unbounded, and let p € R with 1 < p < 0.

Definition 1.3.7 The Sobolev space WHP(I)! is defined to be

WP (I) = {u € LP(I);3p € LP(I) such that /W’ = —/W Vi € Ccl([)}
1

I

We set

HY(I) =WY(I)|.

Notation 1.3.8 The space WYP(I) is equipped with the norm

[ullwrr = llullze + [[u'l|e |
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or sometimes, if 1 <p< 0o, with the equivalent norm (||ull}, + [[«/|[?,)*?. The space H*
15 equipped with the scalar product

b
I /! !/ _ !/

) H! — ) ) -
(u,v)gr = (u,v) g2 + (u',0") 2 /(uv+uv)

and with the associated norm

lullrr (= JlullZe + Il'l172)"2

The Sobolev Spaces WP

Definition 1.3.9 Given an integer m > 2 and a real number 1 < p < oo we define by
induction the space

WmP(I) =u € W™ (I);u' € W™ HP(I).

We also set

H™(1) = W"2(D),

It is easily shown that w € W™P(I) if and only if there exist m functions gi,¢z,... ,
gm € LP(I) such that

/ w Dl — (_1)]-/%0 Vo € O%(I),  Vj=1,2..m,
1 1

where D¢ denotes the j th derivative of ¢ when u € W™P(I) we may thus consider the
successive derivatives of u : u' = gy, (u') = go,... , up to order m. They are denoted by
Du, D*u, . . . , D™u. The space W™P(I) is equipped with the norm

lllwmnry = llully + Y 1 Dully,

a=1

and the space H™(I) is equipped with the scalar product

(u,v)gm = (u,v)r2 + Z(Do‘u, D)2 = /uv + Z /Dau D%v.
I iy

a=1

The Space W,

Definition 1.3.10 Given 1 < p < oo, denote by Wy *(I) the closure of C(I) in W'»(I)'°
. Set

Hy (1) = Wy *(I).

space Wol’p(]) is equipped with the norm of WYP(I) | and the spaceH; is equipped with the
scalar product of H'.

The space Wol’p(f) is a separable Banach space. Moreover, it is reflexive for p > 1. H}
The space is a separable Hilbert space.

Theorem 1.3.11 . Let u € W'(I). Then u € Wy (I) if and only if u =0 on 91.
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1.4 Some inequalities

Theorem 1.4.1 (Cauchy-Schwarz inequality) Let u, v e L*(Q) and, then uv € L'(Q)
and

[uvlls < ulla]|v]]2,

Theorem 1.4.2 (Hélder’s inequality) Let f € LP and g € LP with 1 < p < oo,
so, f.g € L' and

/ Fal< 1l llgl -

Theorem 1.4.3 (Young’s inequality) Let 1 < p < co. then a, b > 0, Then for any
€ > 0, we have

ab < ed? + C’eb”/

where C, = —. Forp= p' =2, we have

p'(ep)”

b2
ab < ea® + —.
4e

1.4.1 Some results about Sobolev spaces

In this Section, we list a few pertinent qualities that Sobolev space-related functions
benefit from without providing any supporting evidence

Theorem 1.4.4 (Trace theorem) Let Q) be a bounded open set with Lipchitz continuous
boundary and let s > 1/2 .

1.There exists a unique linear continuous map ~yo: H*(Q) — H*"Y2(0Q) such that
v = v|aq for each v € H*(Q) N C°(Q)

2. There exists a linear continuous map Rq : H*~/2(0Q) — H*(Q)such thaty, o Ry¢ = ¢
for each ¢ € H*V/2(08)). Analogous results also hold true if we consider the trace s
over a Lipschitz continuous subset >, of the boundary (02)

The so-called poincaré inequality is a crucial finding that will be widely applied in the
sequel.

Theorem 1.4.5 (Poincaré inequality )
We suppose that I is bounded .
Then there ezists a constant C' (depends on |I|) such that

lullwrr < Cllulle,  Yu € Wo"(1)

In other words ,on WP (I)the quantity ||u'||L» is a norm equivalent to the norm of W .
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Lemma 1.4.6 (Sobolev poincaré inequality) Let q be a number with

2n
n—2

2<g<oo,(n=1,2),2<¢g< (n>3),

then there ezists a constant Cs = Cs(2, q) such that

lullg < el Vulla, for ue Hy(Q)

Theorem 1.4.7 (Sobolev embedding theorem ) Assume that Q is a (bounded or un-
bounded) open set of R? with a Lipschitz continuous boundary. Then the following con-
tinuous embedding hold:

LIf1 < p<d, thenW*P(Q) C L* with Px = dp/(d — sp).

2.1f sp = d, then W*P(Q) C L? for any q such that p < ¢ < o0

3. If sp > d, then W*P(Q) C C°(Q)

Lemma 1.4.8 (Korn’s inequality) Let ) be an open, connected domain in n-dimensional
Euclidean space R™, n > 2. Let H*(Q)) be the Sobolev space of all vector fields v =
(vt..v™)on Q that, along with their (first) weak derivatives, lie in the Lebesque space
LY(Q).

Then there is a constant C' > 0, known as the Korn constant of (), such that, for all
v e HY(Q)

ol ) < C/Q Z (Il @)1 + [I(es0) (2)]%) dz

t,j=1

where e denotes the symmetrized gradient given by

1 . )
€V = 5(61'?]] + (9]-1)’).

Lemma 1.4.9 ([4] Gronwall inequality) Let C > 0,u(t) and y(t) be continuous non
negative functions defined for 0 <t < oo satisfying the inequality

u(t) < C+ /tu(s)y(s)ds, 0<t<oo

then

u(t) < Cexp(/Jy(s)ds), 0<t<o

1.4.2 Green’s formula

Proposition 1.4.10 Let Q be an open subset of RY, with a Lipschitz boundary. Then for
all u, v € HY(Q), we have

ou ov
- i , =1,....d.
[)<8$ZU -+ 9 U)dl‘ /dQ ’yo(u)”yo('u)nlds’ 7 , ,d

L

where n; 1s the i-th component of the outward normal vector n
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1.5 Logarithmic Holder Continuity

In this section we introduce the most important condition on the exponent in the study
of variable exponent spaces, the log-Hélder continuity condition.

Definition 1.5.1 We say that the function o : Q — R is locally log-Holder continuous
on 2 if there exists Cy > 0 such that

4
e+1/lz+yl)’

() —a)I< 1

for all x,y € 2 we say that « satisfies the log-Holder decay condition if there exist a,, €
R and constant Cy > 0 such that

&

Cag|< —22
) = 0=l gt v T

for all x € ) we say that « is globally log-H6lder continuous in €2 if it is locally log-Hélder
continuous and satisfies the log-Hélder decay condition.

The constant C} and C5 are called the local log-Hé6lder constant and the log-Hélder decay
constant, respectively. The maximum max{C}, Cy} is just called the log-Ho6lder constant
of a.

1.6 Spaces with variable exponents

In this section,we provide some preliminary facts about Lebesgue space with variable
exponent. Let p : Q@ — [1,00] be a measurable function. we introduce the Lebesgue
space with a variable exponent p(.).

1.6.1 LU WPl spaces
We define the space

C*(Q) = { continuous function p(.) : @ — R, such that 2 < p~ < p" < oo}

where

p~ = min,gp(z) and p* = maz,qp(x) |

We define the Lebesgue space with variable exponent

PO = {u : 1 — R measurable : /|u(x)\p(””)dx} ,
0

endowed with Luxembourg norm :

. u\x
iy = imr{e >0, [ 122 <1,
Q
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The space (LPX(Q), ||.|l,()) is a reflexive Banach space, uniformly convex and its dual
space is isomorphic to (LI0(Q), ||.|l4)) where

1 1
ORI

and

W (@) = {u € D(Q), [Vule (@)},

with the norm

lull= o)+ Veullpe), w € WHE(Q).

Remark 1.6.1 We denote by Wy "™ (Q) the closure of C° in W@ (Q).

1.6.2 LP(0,T; X)spaces

Definition 1.6.2 Let X be a Banach space, denote by LP(0,T; X) the space of measurable
functions

f:0,T[— X
such that
T 1
| U@ dt = 1< .
If p=o00

£l oo .)= sup [[F(#)llx,
t€]0,T']

Theorem 1.6.3 The space LP(0,T; X) is a Banach space.

Lemma 1.6.4 Let f€ LP(0,T;X) and % € LP(0,T7;X),(1 <p < o0) then, the function
f is continuous from [0,T] to X.i.e.f € C*(0,T; X)

1.7 Results in spaces with exponents variable

Lemma 1.7.1 [22] If p is a measurable function on Q satisfying (4), then the embedding
HY Q) LPO(Q) is continuous and compact . Therefore, there exist positive constant B
satisfying

lullpy< BlIVullgg, — for e Hy(Q) (1.2)
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Lemma 1.7.2 [22]If p is a measurable function on Q satisfying (4) ,then for a.e.x €
Q,we have

||u||p(.)§ 1 if and only if pp(,)(u) <1,

and

min 3 [Jull50), ull5) p < ppey(w) < masq flull5e) flull) o (1.3)
(7 1150 (7 1150

for any u € LPO(Q) with py)(u) = [, |ul/@dz.
Conditions on the function g in the problem (1) — (3)
Let g:[0,00) — (0,00) be a nonicreasing and differentiable function satisfying

g(0) >0, 1—/ g(s)ds =L >0, (1.4)
0
and
g(s)ds < —=——— 1.5
|| st < g (15)

By using the direct calculation, we get
t
/ ot — $)(Vuls), Vuu(t))ds =
0

- SITuOI5(6 o Va0 ~ 55 {00 VO = ([ ae)aIVaF}. (16)

where

(goVu)(t):/O ot — $)|[Vu(t) — Vu(s)|2ds | (1.7)




Chapter 2

Existence of weak solution

2.1 Existence of solution

In this chapter, we study the local existence of solution of the problem (1)-(3) by using
Faedo-Galerkin method.

2.1.1 Part1l

We consider the following problem:

(wy — Au + fot g(t — 5)Au(s)ds + a|us| ™™~ 2u, = h(w, 1),

u(z,t) =0, on o0 x (0,7), (2.1)

\u(xao) :uO(x>7ut(x70) :ul(x)a n Q7
where a>0 is a constant.

Theorem 2.1.1 Suppose that (1.4) hold and h € L*(2 x (0,T)), the exponent m(x)
satisfies (5). Then, for every (ug,u) € HY(Q)) x L*(2), the problem (2.1) has a unique
local solution for some T > 0

we L¥((0,T); Hy((Q)),  u, € L=((0,T); L*(2)) N L™O(Q x (0,T)).
Proof. Let {v;}5° be an orthonormal basis of H}(S2), with
—Av; = \v; in Q,v; =0 on 01,

and define the finite-dimensional subspace Vi, = span{vi...v}, we have ||v;|| = 1, we
define

ub(z,t) = ch-(t)vi, (2.2)

21
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where uk(x,t) is a solution of the following approzimate problem
/Quft(:v,t)vi(a:)dm + /Q Vuk (z, 1)V (z)de — /Q /tg(t — 5)Vu(z, s)Vu;(z)dsdz
0
+a/ﬂ]uf(a:,t)]m(x)Quf(x,t)vi(x)dx (2.3)

= /Qh(a:, t)vi(z)dz,

ub(2,0) = up ub(z,0) = u¥ Vi=1,.., k. (2.4)
we have .
up(x,t) = Y ci(t)ui,
i=1
where i
up = Z(uo,vi)vl — ug in Hy(Q)
i=1
and .
ub = Z(ul,vi)vi — uy in L*(Q),
i=1
respectively.

By the standard theory of ODE the system (2.3)-(2.4) admits a local solution in [0, 1),
0 <ty < T for an arbitrary T" > 0. Next, we have to prove that t, = T, Vk > 1
;multiplying equation (2,3) by c,(t) we obtain

/uft(x t)vs(z)c ()dx+/Vu (z,t)Vov;(x dx—// (t — 8)Vu(w, s) Vv (z)ci(t)dsdx
+a/ |k (z,£) ™28 (2, t)vs ()¢, (t) da
_ /Q B, £)s (), (1) dz.

and summing with respect to v, we get

k

/uft(x t)Zv,( )ci( d:z:+/Vu x t)VZvi(x)c;(t)dx—

1=1 i=1
// (t — s)Vu(z, S)VZ i(z )c;(t)dsdx—l—a/ [uf ()™ 2uk (2, 1) Zvl
0

k

= /Q h(z,t) Z vi(x)c(t)d,

=1



2.1. EXISTENCE OF SOLUTION 23

SO

/Quft(x,t)uf(x,t)dx+/Vuk(x,t)Vuf(x,t)dx—/Q/o g(t — 5)Vu(z, s)Vul (z,t)dsdx
a uF (e, O™ 208 (2, ) uF (o

+a [ fub@ 01" 0t @ ke, 0o

:/Qh(:v,t)uf(x,t)dx,

then, the equation (1.6) implies

— /0 g(t — s)(Vu(s) - Vu(t))ds =

+ 3oITuOIF =5 0 V0 + 3 7 { oo V0 - ([ alois) Ivul}. @5

By using (2.5), we obtain

/ ok (2, ) (z, £)d + /Q Vb (z, ) Vit (z, £)dz — / / (t - $)Vu(z, s) Vi (, ) dsda

+a/ [l (2, 8) |20k (2, )l (2, 1) da
/h(x tyul(z,t)dz,
Q
then

s | wtae s 35 [ ViR S [ 19O - 300 v+
1d

5%{(Qovuk)(t)— /Og(s)ds /QHVuk(t)H2 +a/9\uf(a:,t)\m(x)dx

/Qh(x tyuFda,

2dt /]ut|dx+ 1—/ ds /|Vu )|2dz + (g o Vu)( +a/]ut ast]"””

2.6)
= __ Vu 24 o VuF + x. tuFdz.
g /H O + (9 )(t) /Qh< s Huid

Integrating (2.6) over (0,t) and using initial condition, we get
t t
/|u 2dx + ( 1—/ s)ds) /|Vu )|?dx + (g o Vu*)(t) —I—a/ /|uf(a:,t)|m(x)dsdx
0o Ja
1
/|u ?dr + = /|Vu ]da:—l—// (x,t)u dxds—/ 5g(5)/|Vu(t)|2dxds
0 Q

+/0 2(g o VuF)(t)ds,



2.1. EXISTENCE OF SOLUTION 24

by (1.4), we get

1.4)
1 k|2 1 ko (2 ' k 1 k(|2
— [ |uil*dz + = [ |Vu"(0)]*dz + h(z,t)yu;dzds — [ =g(s) | |[Vu"(t)|*dzds
2 Ja 2 Ja 0 Ja 0 2 Q
¢

1 1 1 t
+/ —(g o VuF)(t)ds < —/ |u’f|2d:c+—/ ]Vuk(O)Ide—l—/ /h(a:,t)u,’fdxds,
0 2 2 Ja 2 Ja 0 Ja
using young’s inequality, we obtain
1 1 t
—/ |u]f|2dx+—/ |Vuk(0)|2da7—|—/ /h(z,t)ufdxds
2 Ja 2 Ja 0o Jo
1 k|2 1 k() (2 1 k 2 ' 2
< — | [uffde + = [ |[Vu®(0)|°dx + - luy (z, s)|*dxds + |h(z, s)|*dxds
2 Ja 2 Ja 4 Jo Ja 0 Jo

1
<C+ ZLSUP/ lul (z,t)|?de, vt € [0, tx)
Q

then, we have
(sup Jo lut(t)Pde < C,

sup [, [Vu*(t)?dz < C, (2.7)

\af(fk fQ [uk(z, s)|™ @ dxds < C.

So we arrive at

ti
sup/ |u,’f(t)|2d:)s+supl/ |Vuk(t)|2dx+a/ / [uk (z,s)|™@dzds < C,
0 Q o Ja
then the solution can be extended to (0,T) and we obtain

(u*) is a bounded sequence in L°°((0,T); HL(S2)),
(u¥) is a bounded sequence in L>((0,T); L*(Q)) N L™ (Q x (0,T)),

hence, there exist a sub-sequence (ut) of (uF) such that

ut — w weak star in L=((0,T); H (),
ul — uy weak star in L>=((0,T); L*(Q)) N L™(Q2 x (0,T)),

on the other hand, from Lions lemma, we deduce that u € C((0,T); L*(Q)). Since (u}') is

bounded in L™(2 x (0,T)). then [uf|™®)=2ul" is a bounded in [0S (Q x (0,7)) similar
as in [33], we have

m(.)
|uf|m(x)_2uf s |ut|m(ac)—2ut weakly in LmO-1 (Q % (O,T)),

t
/(uttv + VuVu — / g(t — 5)Vu(s)Vuds + alu,| ™ 2uw)de = / hvdzx,
Q 0 Q

which gives

t
Uy — Au — / g(t — 8)Au(s) + alu, ™ @2y, = h in D'(2 x (0,7)),
0
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2.1.2 Part 2
Lemma 2.1.2 For z € Q and p(.) satisfying
2<p <p(x) <ps <
the function q(s) = b|s|P®~2s is differentiable and |¢'(s)| = b|p(z) — 1||s|P® 2.
Theorem 2.1.3 Suppose that (1.4) hold and m(z) satisfies (4) and p(x) satisfying

2(n—1)

>3
— N2

2<p <plx) <ps <

then, for every (ug,u) € Hy(Q) x L*(Q) , problem has s a unique local solution for some
T > 0.

u € C([0,T]; H (), uy € C([0,T); L*()) N L™Y(Q x (0,T)),

2n

Proof. let v € L™ ((0,t); H}(Q)). Since 2(P;, — 1) < 2(P, — 2) < 5 then

n —

la(v) 2= |b|2/ﬂ|v\2@<f>—1>dxg |b[2{/ﬂ|v\2(p1_1)dx+/ﬂ|v\2(p2_1)dx} <00, (28)

so we have

a(v) € I2((0,T); I3(©) € LX) x (0,T)).
From Theorem (2.1.1), for each v € L*>((0,T); H}(2)) there exists a unique

ue L=((0,T); Hy(Q),  u, € L=((0,T); L* () N L™O(Q x (0,T))),
satisfying the nonlinear problem

(g — Au+ fot g(t — s)Au(s)ds + a|u,|™ ™~ 2u, = q(v) in Qx(0,7)

u(z,t) =0, on o2 x (0,7), (2.9)

L u(7,0) = up(z), us(z,0) = ur (), in Q,
we define a map H : X; — X; by H(v) = u, where

Xi = C((0, T Hy (2)) N C([0, T]; L*(2)),
equipped with the norm

ol :max{/Q|wt(t)|2da:—|—/Ql]Vw(t)|2dx}, (2.10)

multiplying equation (2.9) by u; and integration over 2 get

t
/uttutd:z—/Auutdx+// g(t—s)Au(s)utdsd:H—/a|ut|m(x)_2ututd:v:/q(v)utdm,
Q Q aJo Q Q
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(1.6) ,we obtain
¢
/uttutdx—/Auutdm—F// g(t—s)Au(s)utdsdx—I—/a|ut|m(””)_2ututdx
Q Q aJo Q
/q(v)utdx,
Q
implies
1
2dt/’t| d:z:—l— /|Vu| dz + g /||Vu ]dx—§(g o Vu)(t)
tslwevao - ([ o) 190} +a [ o
:/q(v)utd:c,
Q
integration over (0,¢) and using initial condition, we obtain
/ /\u| do ++ /\Vu\ dx + /HVu H?dm_l( o Vu)(t) + 11{( o Vu)(t)
o L2 ), 2dt g g 2t \V

/g(s)ds /Q||Vu(t)||2 +a/0 /Q|ut|m<~”c>dxds
[ [ st

then

%/ﬂ || 2da + %(1 - ( /Otg(s)ds)> /Q |Vu(t)|*ds + %(g o Vu)(t) — %/Ot(g’ o Vu)(s)ds,

t t
—l—%/ g(s)/|Vu(s)|2dx+a/ /\ut(s)]m(”‘“)d:cds,
0
1
2/ 2dx + - /\Vuo\Q—i—b/ /\v\p(x 2vuy(s)dads,
Q

1
applying young inequality ab < iaQ + —b?, obtain
€

1
| / [0 20uy(s)da| < 5 / us(3)|2der + = / o]0,
Q 4 Q € Jo
by (2.8), we obtain
¢ 200+ L [ (2@ -1
— | |w(s)|°dz+ = [ |v| dz,
4 Q € Q
1
< E/|Ut(8)|2dx—|——{/ |U|2(p1—1)+/ ’U|2(p2—1)}7
4: [e) € Q Q

(2.11)
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using poincaré inequality |u|< ¢|Vul

we get
€ 1
Z/|Ut(3)|2dl'+—{/ |U|2(p1—1)+/ |U|2(pg—1)}7
= E/ ‘ut(S)PdﬂU-i—%{/ !VvP(pl“Jr/ \VU|2<p1—2>}7

O e T e R L e R E)
Q 4 Q

by (1.4), we get

(Lo vu)n) 20
—%(g’ o Vu)(s)ds >0 (2.13)
\% fot g(s) [, |[Vu(s)|*dzds > 0.
So by (2.13), we obtain
%(g o Vu)(t) — %(g’ o Vu)(s)ds + %/0 g(s) /Q (Vu(s)|*dxds > 0, (2.14)

by (2.11)and (2.14) ,we get

1 l 1 1 !
—/ |ut]2dm+—/ |Vu(t)|?dr < —/u%dm—l——/ |Vu0|2+b/ /|v|p(’”)_21}utdxds,
2 Ja 2 Ja 2 Ja 2 Ja 0 Jo

(2.15)

and by(2.12) (2.15), we get

/|ut| dx + - /|Vu )|?d,
T T
<= / 2dr + = /|Vu0| dx + /|ut t)|*dw &2 {/ ||Vv||2(p1_1)ds—l—/ ||Vv||2(p1_2)ds},
2 Ja 0 0

using (2.10), we get [, [Vu(t)|* < ||u||XT

so we obtain

| z
—sup/ |ut]2dx+—sup/ |Vu(t)|2dz,

1 2 cbT ’ 2(p1-1) 2(p1—2)
<= 5 da:+ ]Vu0| dx + —sup |ut Pdr + —— " w5, ds + |v\ ds
Q 0

216
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multiplying equation (2.16) by 4, we find

QSup/ |ut|2dx+28up/ ||Vu(t)||2dx—estup/ lug (t) | de,
Q Q Q
4c bT
gz/ufdwrz/ Vuo[2dz + =5
Q Q el

(2.10) we get

2(p1—1 2(p2—1
{0130 Vs + o] 32 Vas},

Julfy, <2 [ ffdo+2 [ Vu(®)Pde + {3 + ol ),
Q Q

4e.b

such that Cy =
el

for M > 0 large and T > 0, then we suppose ||v||x, < M so that

M2
/u?daz—%/ (Vg |*de < —
0 0 4

and T sufficiently small so that

1
T= Se, (i)

then,

M? 1
2 2(p1—-1) 2(p1—-1)
H u ||XT§ 7 +Co 200(M2p174M2p274) {MXT + MXT } (2'17)

so we have
| u %, < M

this shows that H : B(M,T) — B(M,T) where
B(M,T) ={w € C([0,T]; Hy())  w; € C([0,T); L*(2))  such that  |jw||x,< M}.

Next, we verify that H is contraction.for this purpose,let H(v;) = u; and H(ve) = us
and set u = ug — uy then satisfies

(wy — Au+ fg g(t — 5)Au(s)ds + aluy ™™ 2w, — alug ™ 2uy, = blvi[P@20; — blue[P@ 20y, in Q x [0,7],

u(z,t) =0, on 00 x (0,7,

L u(z,0) = 0,u(x,0) =0, in Q,
(2.18)
multiplying equation (2.18) by u; and integrating over €2 x [0, 7] we get

t
/uttutdx—/Auut+// g(t—S)Au(s)utds—i—/a|u1t|m($)_2u1tut—/a|u2t|m(“’")_2u2tut
Q Q QJo Q Q

:/b\vl\p(”)2v1ut—/b\v2|p(x)2v2ut,
Q Q
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the same calculation of (2.11) and u; = uy; — ugy

%/Q|ut|2d$+%<1—< /Otg(s)ds>> /QHVu(t)H?dx—l—%(goVu)(t)—%/Ot(g’oVu)(s)ds—i—

(2.19)
5 | o [ Ivutolas.as
a t e (8) 2014 (8) — |ne ()™ 200, (8)) (ugs(8) — wog(8))dwds
+/O/Qr< (s)] () — luz(s) (5)) (une(s) — uze(s))dads,
_ /0 /Q g(0r) — q(vs)uy(s)daeds, (2.20)

where ¢(v) = b|v|P®~2v, and by (1.4) and (2.23),we arrive at

/|ut| de + - /||Vu )Pdx < // v1) — q(va)ue(s)dazds

q(v1) — q(va)
[v1 — vy

/Q|Q(v1)—Q(vz)llut(S)ldﬂczAICJ’(&?)HUII%(S)IM

two, using inequality the young

, )
| @llluids < § [ uPde+ 55 [ @
Q Q

we have |¢/(s)| = b|p(z) — 1]|3\p(‘”)_2 and p(z) < ps so

)
3 | luPds+ 55 [10@FPds <5 [ fus)Pde+ P20 / 262 o
Q
2
using (2.8) from &, and using holder inequality, suppose p = — and ¢ =
n
) b
° / e+ T [ (e 2,

/|u e+ P02 LY (g /|g|"<p1 Dir) /m”m Viz) 4]

using poincaré inequality

o b —1)2 ,
/'“t( s + 22 (o) /|f|”“ Jdu)’? /|£|“<p2 dr) 3]

1 _ _
< [ hupar+ EE L gy 2 [ e D 4 e o2

using mean value theorem so = ¢ (e)with v = vy — vy
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1
we have by (2.10) [, |VE(#)|* < —[I€]|%,., and we have [|£][x, < M so

5 | s+ o Co gy 2 [ ) wg 202 + ) v 202 |

2
1)2C.
< §/ﬂ|ut(s)|2dx+(p;LT_g<M2(m 2+ M) |72,

(2.17), obtain

AV (py — 1)2C.T
< =222

(M2P1=2) 1 pf2e2=2)) || o [ (2.21)

the same of
| H) [P<afv|?

since
4% (po — 1)2C. T

(M2(p1—2) + M2(p2—2)) <1,
(SLpQ -1

SO
a <1

we have H(v) ||?’< a || v || and @ < 1 so H is a contraction mapping then, Banach fixed
point theorem infer that H has a unique v € B(M,T) satisfying H(u) = u. obviously, it
is a solution of (1)-(3). m

2.2 Uniqueness of solution

2.2.1 part1l

Suppose that (2.1) has two solutions v and z then w = u — z satisfies

(wy — Aw + fot g(t — s)Aw(s)ds + alu,|™ @2y, — a|z,|™® =2z = 0,

Jw(x,t) =0, on 92 x (0,7, (2.22)

w(z,0) = 0,w(x,0) =0, in €,

multiply equation (2.22) by w; and integrate over 2 to get

t
/wttwtdx—/ Awwtd:c+// g(t—s)Aw(s)wtdsdx—i-/ a\utlm(’:)%twtdx—/ a|zt]m(x)’22twtd$:0,
Q Q aJo Q Q

by(1.6) we get

¢
/wttwtdx—/Awwtdx—// g(t—s)Vw(s)thdsdx—i—/a|ut|m($)_2utwtdx
Q Q aJo Q

— / a]zt\m(x)_tawtda: =0,
Q
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—
1d
2 dt
1d ' 2 2 m(z)—2 m(z)—2
. m( g(s)ds> IVw)|2de + | ViwPde + [ alu|™ @ 2uwde — | a|z]™@ 22w, =0,
0 Q Q Q Q

and w; = u; — z; obtain

[ e+ 5a0) [ IVw@)Fds = 500 Tu)®) + 5500 Tu)0),

1d 2 ' 2 1 2
M{/ﬂ jwifdr+ (1 /0 o(s)ds ) /Q [Vu(®)]?dr +go Vu() } + Lot /Q |V(t)|2dz,
1 /
= —a/Q ( | | @) 20, — |zt|m(w)_2zt) ( w(t) — zt(t)> dr + 5(9 o Vw)(t),
from the inequality
|at|m(x)72at — |bt|m(z)72bt)(at(t) — bt(t)) 2 0, (223)

we get
g | Py — 2™ 2) (we () — 2(8)) > 0,

in the problem (2.1) from initial condition we have (u(x,0), z(z,0)) = (uo(z), up(x))and(u(z,0), z:(x,
(ui(x),uy(x)), this means that w(z,0) = w(z,0) = 0, then we get

[ (®F + v (o)dz =0
Q
with [ = (1 — f(fg(s)ds), this gives w =0 a.e u = 2.

2.2.2 pat 2

Proof. Suppose that (1)-(3) have two solution u and z. then w = u — z satisfies
(wy — Aw + f(f g(t — 8)Aw(s)ds + a|u,| "™ 2u; — a|z | @22, = blu|P@ 2y — blz|P®) 22,

w(z,t) =0, on 092 x (0,T),

(w(x,0) = 0,w(x,0) =0, in Q,
(2.24)
multiply equation (2.24) by w; and integrate over {2 to get

¢
/wttwtda:—/Awwtdx+// g(t—s)Aw(s)wtdsda:+/a!ut|m(’”)zutwtdx
Q Q o Jo Q
—/a|zt|m(z)_2ztwtdx
Q

:/b\u]p(x)_zuwtda:—/b]z\p(x)_sztd:c,
Q Q
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by(1.6) we have

t
/wttwtdx—/Awwtd:E+// g(t—s)Aw(s)wtdsd:E—i—/a|ut|m(x)_2utwtdx,
Q Q QJo Q
—/a!zt|m(x)zztwtdx,
Q
:/b|u|p(‘”)_2uwtdx—/b|z]p($)_2zwtdx,
Q Q

-
1
2 _
337 | e+ 5a0) [ IVulo)Pde = 550 Vo),
1d 1d ,
+5artgo vl - 3 ([ oo)is) [ Ivuteia
—|—/ |Vw\2dx+/a|ut]m(:”)_2utwtd:r—/a|zt|m(’”)_22twt,
Q Q Q
:/b|u|p($)_2uwtd:1:—/b|z|p(x)_2,zwtdx.
0 Q
So

s [ude (1= [Cgas) [ IvuitiPar+ g0 vutn) + o0 [ 17w

ta /Q <|ut|m($)_2ut - |zt|m<x>—2zt) ( wa(t) — zt(t)> dz — %(g' o Vw)(1),

By integration over (0,t) we obtain

1 1 ¢
:—/wtdx+—<1—/ s)ds) /Hw 2z + goVw() / /Hw VI[P dzds,
2 Q 2 0
t
1 !
+a// (!ut|m(x)_2ut — |zt|m(x)_2zt> (ut(t) — zt(t)> drds — =(g' o Vw)(s)ds,
QJ0 2

¢
:// (b|u|p(x)_2udx—b|z|p($)_2z> wydzds,
aJo

by using Gronwall’s inequality, we obtain

[ o) + (9wt / [t + (vt yazas

such that v = [,,(Jw,(t)]> + [Vw(t)|*)dx

in the problem (1)-(3) from the initial conditions we have u(z,0) = uy and w;(z,0) = uy

and u, z solutions of the problem then we have w = u — z = w(0) = 0 , it means that

0,

/Q (o (O) + [Veo(0) )
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so, we obtain
/ (lwe(®) + [ Vw()P)de
Q

thus, w = 0, the proof is completed. m

33



Chapter 3

BLOW-UP RESULT

In this chapter we show that the solution for the problem (1)-(3) blow-up in finite time
when the initial energy lies in positive as non-positive.

3.1 Some fundamental lemmas

Lemma 3.1.1 Let u solution of the problem (1)-(3), then the modified energy functional
of the this problem is :

1
I*

¢ w(t)|P@)
B@) = 5l + 50— [ a6)nITul + (g0 vaye) —b [ MOE e 5y

2

Proof. First, multiplying the equation (1) by u,; and integrating over {2 we obtain

t
/uttutdx—/Auutdm—F// g(t—s)Au(s)utdsdx—I—/a|ut|m(”")_2ututdx
Q Q 2Jo Q

:/b|u\p(’3)2uutdx, (3.2)
Q
SO
¢

/uttutdx—/Auutdx—l—// g(t—s)Au(s)utdsdl‘—l—/a|ut|m(’”)_2ututdx

Q Q aJo Q

:/b|u|p(x)_2uutd1:,

)

—

1d 1d ¢
éaHw(t)H2+§£HVu(t)H2+/Q/0 g(t—S)Au(s)utdsdx—l—/galut\m(x)

p(z)
_bi/—“b' 9 1.
dt Jo p(x)
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by (1.6) we obtain

1d
thn w0 ol [ [ ot = autpudsd + [ aluf .

dt Q p(x) ’
implies
@) P2 L )P+ L g0 V@) |2 = L5 0 Va) )
th b th 2 2 ’
1d K )
e _ m(x)
+5{eovon ([ swas) 1va} + [ e,
:b—/ ’u‘p(x)diE
dt .,
[ ]

Lemma 3.1.2 The energy E(t) is nonincreasing for all t > 0.
Proof. By (3.4) we conclude that

1 1
B0 = ~a [ Ju)"dz = o Tult)|? + 55 o Vu) < 0,for
Q

as, we have

®|* <o,

__fo

45 ol o)) <0,

// alu, ™™ < 0.

t)|| Vu(t)

and

However (3.5) and (3.6) show that E'(t Vi>0 m
Now, we set
B 1 1 1 1 1
B1 max{l, T ,(E> } Al (bB;fl)plf27E1 = (5 — E)A%,
and we define the functional G by:
G(t) = Ey — E(1),

where the constant Fy € (E(0), ) will be chosen later.
Lemma 3.1.3 The functional G is increasing.

, we obtain

/|ut |mac

Proof. We derivative the functional G in (

G'(t) = 't

35

(3.3)

(3.5)

(3.6)
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Lemma 3.1.4 suppose that (1.4) hold and the exponents p(x) and m(z) satisfy condi-
tion(5) .assume further that

EO0)<E  and A < A0)=L2||Vu| < B,

then there exists a constant Ay > Ajsuch that
L|Vu@®)|*> 23,  t>0 (3.9)

and

/Q lu(t)[P@dxz > Bt >0 (3.10)
Proof. Using (1.4), we find that for 0 < A\(t) < B;*

L Y B 10|
B) = 50 = [ sV~ [ 95—,

we have —— > —L g0
p(z) p1

1 /t 2 / Ju(t)[")
—(1— [ g(s)ds)||Vu(@)||"—b | ———dx,
5 i (s)ds)||[Vu(t)] o)
L b
> IV - - [ fult)rd,
2 P1 Ja
then by using the equation (1.3), we find
L b
—|Vu(t 2——/utp(m)dx,
5 IVu@)l . Q|()|
L b
> IO~ 2 ma{ @)1 IO, |

using (1.2)

SITuOIF = - mar{ ol ol
> S IV~ - mas{ (BIVu(t)|). (BIVa(t)])}

using lemma the (3.1.4) we obtain

AP = L3||Vu(t)||?*
Bpl
= MO = B [Vu(t)|”
2

B
= (F)p”\(?ﬁ)p1 = B[ Vu(t)[”

2

= BIAWP = (B Vu(t)])",
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SITult))? = - max{ (BIVu(t)"), (BIVu(t)]™)}

1 b
= ZA%(t) — ~ max {B’fl)\pl, Bf?Ap2},
2 b1
we have —p; > —py = — max p; > — max p,; we obtain
1 b
SA2(t) — - max {B{’l AP, BP? Am}
2 P1

1 b
= —N(t) — =B\t
S0 = B ()

= FA), (3.11)

where A(t) = L1[|Vu(t)||. It is easy to verify that f(A(¢)) has a maximum at A; > 0, and
the maximum value is f(A;) = Ej. from the definition of f(\(¢))

FINE) = 32%0) = - BEA(

b
FO0) = A= ZpBpr
1
=\ —bBI !
= A1 — B AP 2)
then,
f'(A) = A1 = bBY AP,
we can show that
fiAt) >0,A € (0,\)
F'Mt) <0,X € (A, +00),
which implies that

f(A) = is strictly increasing in(0, A;)
f(A) = is strictly decreasing in(\y, +00),
E, = f()\l),there exists a positive constant Ay € (A1, 00) such that

y(3.11),we see that f(A(0)) < E(0) = f(\).It implies that A(0) >

because F(0
E 1
A1) t he strictly increasing and Ay € (Aj,+00) the strictly decreas-

) <
f(A2) = E(0).b
Ag,sinceA(0) € (0
ing .
Now ,to show (3.9), we suppose on the contrary that
N (to) = L||Vulto)|I*< A3,
for some to > 0.then there exists t; > 0 such that A\; < A(t;) = L2|Vu(t)|< Ay
1
(A(t1) = Lz|[Vu(ty)[|)and
L|[Vu(t) [P < A3
= L2 [[Vulto)l|< X
= L2|[Vu(ty)]|< X,
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38

using (3.11) , we obtain E(t1) > f(A(t1)) and we have to f(A2) < f(A1) and f(A(t1)) >

f(A1) so f(A(t1)) > f(A2) = E(0) consequently

E(t) = f(Mt)) > f(A2) = E(0),

which contradicts E(t) < E(0), for all ¢ € (0,7"). hence(3.9) holds, so E(t) < E(0) and

O O 110
B() = 50 = [ sl Vuf b [ 05—

b

L
> Livuo)? 2 [
Q
So,
- B()
1 t
f;—§u-—/'<>dQHVu<n2+b/“W o
L
S_E”VU ®)))* + /]u t)[P@de,
—

ﬁ/mt |p(”’)dx
p
>b/’“ )

u—A 9(s)ds) [ Vut)|? - E(2),

l\DI»—

then (3.9) we have L||Vu(t)||*> A2 and E(0) = f(\2)

30— [ a6V~ B
> 2 |Vu)| - £(0)

1., 1,
> EAZ—E(O)—§)\2_JC()\2)

then,

1
5)\5 — (X2
1, 1 b
= 5)\3 - 5)\3(75) + p—le A (L)
— LB (),

P1

the proof is completed. m

(3.12)
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Lemma 3.1.5 Suppose that p(z) is a measurable function on Q satisfying(4). Then there
exists a positive constant C; = max{1, B} such that

Pty (1) < CrlIVu(t) P41y (w)), (3.13)
Jor any u € HYQ) and 2 < s < py.

Lemma 3.1.6 Suppose the conditions of lemma (3.1.4) hold. Then there exists a positive
constantCy ,which depends on b,L and C4,such that

s

Poty () < Co(=G(t) = Jus(t)P+pp() (w), (3.14)

for any v € H} () and 2 < s < p;.
proof. Form (3.10).

[l = Brog:
Q
and the relation Ay > A\, we find that

BY' AR > BPT AT

we have By = max{1, L%, (%)%} 50

B 1 1.»
BYNY = max{1, =, ()21 = AP ()7,

2

and we have p; > 2 so

N ()2 >

)

S| =
Sk

and from it we find
A2
Bfl )\11'1 bl 7

which implies

B = (5= >0
<G =0 [ o (315)
(3.7) and (3.1) we have
G(t) = By — E(t), (3.16)

implies

1

; w(t)|P@)
mn:ﬁa—ywwW—§u—Ag@mmwwww—§@°VMW+?AL%% "



3.1. SOME FUNDAMENTAL LEMMAS

1t’s clear that

w(t)[P@)
SITUOIP < B2 - G0 - Slu@P=5 (g0 vae) +5 [ g

p()

as By < By and —%(g o Vu)(t) <0 we get
! 2
LIVl
1 1 Ju(t) )
< By — G(t) — ~|ug(t)P—= a7
< By, —G(t) 2]ut(z€)] 2(goVu)(t) + b/Q (@) dx

1 b
< B = G(0) ~ 3lu)|+ [ Jut)ptds,
2 1 Ja
1 1 .
then (3.15) , By < (5 — —)b [ llu(®) [P dz obtain
D1

1 b

B = Glt) = 5lue@P+ [ fult)ds
b1 Ja

1 1 1 1

< —G(t) — = ||ug(t 2+———+—b/ u(t) ]! dx
() = 3l = -+ = [ futo]
1

(1) — D)o u(t) P,

VAN

Inserting (3.17) into (3.13), with (3.14) holds.
As a special case , we obtain the following.

Corollary 3.1.7 Let the assumption in lemma (3.1.4) be satisfied then we get

lue(@®)1l;, < Ca(=G(#) = Nu@) P+ )17,

for any v € H} () and 2 < s < p;.

Lemma 3.1.8 Let the assumption in lemma (3.1.4) be satisfied. Then we have

0< G(0) £ Glt) < -y (w)

Proof. We have of (3.7)

B~ (0P =501 = [ a(s)a9)Va)| - 500 Va(o)

Ey < Ey and by (3.12), we obtain

B (0P =501 = [ a(s)an)Va = 3(g0 V(o)

[
< By — 5 IVu()P,

40

(3.17)

(3.18)



3.1. SOME FUNDAMENTAL LEMMAS 41
by using (3.9), we get
! 2 Ly
Ey = SIVu@)” < By = 543,
2 2
as —Ag < —M\; obtain
1 1
E — 5)\% < F 5)\%,
‘ 1 1
in (3.15), we have By = (= — —)A? so0
2 m;m
1 1 1 1
Bl —-XN=(——)\ -2\
1~ 5N (2 p1) 17 5N
1
=——XN <0 Vt>0, (3.19)
b1

because G(t) is increasing function, then we have
0<G0)<G(t), Vt>0

we remind that

G(t) = B, — E(t),

and
¢ w(t)|P®
() = bl = 50~ [ oIVl ~ o0 Tu)e) + %d
vt u(t)
u(t)|P\*
de > 0,
by (3.19) we have
B~ gl = 51~ [ 9(s)as)[Vuo)]f - (g0 Vu)(t) <o

then from the last inequality, we get
)P
iy <o [ O,
o px)

and

1o
p(x) —

1
Y4 7
SO

p(x)
b / WP gy < 2 / [u(®)Pdz, V>0,
o px) P1 Ja

the proof is completed m
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Lemma 3.1.9 Let the assumption in lemma (3.1.4) be satisfied. then we have, for some
Cs; >0,
Pp() () > Csllu(t)[|b:.

By lemma (3.1.9) and the Sobolev embedding LP*(Q2) < L™2(£2), we obtain the following
lemma.

Lemma 3.1.10 Let the assumption of lemma (3.1.4) hold and mq < py, then we get, for
some Cy > 0,

m2

/Q ()™ da < Calpyy () 5 + poy () 52). (3.20)

3.2 blow up main theorem

and my <

Theorem 3.2.1 suppose that the exponents p(x) and m(x) satisfy condition (5)
(3) blows up

p1, assume that g satisfies (1.4) and (1.5). Then the solution of problem (1)-
in finite time of
1—-L

— " VE, and M < L3||Vug|< B7L
pl(p1_2)) 1 1 H 0”— 1

E0) < (1

Proof. Let us define
F(t) = G'77(t) + e(u(t), u(1)),
where € > 0 to be chosen later and
pPL—2 pr—me
2p1 " pi(mg —1)77

0 < 0 < min{ (3.21)

we have
F(t) = G7o(t) + e(u(t), ui(t)),
we have
e(u(t), us(t))" = ellul*+e(u, us),

and from the equation (1)
Uy = Au — /tg(t — 5)Au(s)ds — alu|™® 2wy + b|ulP® 2.
0
So
(s =~ Vult) e | gt — $)(Vuls), Vu(t))ds

_a€/|ut(t)|m(x)2ut<t>U(t)d.§L’—|—b€/|u(t)‘p($)d$’
@ Q

e(u(t), w(t))" = €llut(lf)||2—~€||VU(15)||2+€/0 g(t = 5)(Vu(s), Vu(t))ds

— ae/‘ut(t)‘m(x)—2ut(t)u(t)dx + b€/|u<t)’p(x)dx.
Q@ Q
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We obtain

F'(t) = (1=0)G7 ()G (t) + EIIUt(lf)\|2—~€||VU(75)||2+~€/0 g(t = 5)(Vu(s), Vu(t))ds

(3.22)
—ae/\ut () da:—i—be/\u (t)|P@ da
We estimate [) g(t — s)(Vu(s), Vu(t))ds,
/o g(t —s)(Vu(s), Vu(t))ds
- /0 gt — 5)(Vuls) — Vu(t) + Vu(t), Vu(t)),
then
/ ot — 5)(Vuls) — Vu(t) + Vu(t), Vu(?))
:/ (1—s) Vu(t), Vu(t)) +/0 ot — 8)(Vu(t), Vu(t))ds
=/ (1 — ) <wim+Agu—wwwmma
the equation (1.7) and young’s inequality (ab < 1 a2 + $b%), we obtain
/ g(t —s) Vu(t), Vu(t)) + /0 gt — s)[[Vu(t)|*ds
>/ (t—s)( Vu(t), Vu(t))
> (1 2pl(l_qy/ o(s)as| Va2V igovuye, (329
combining (3.23) and (3.22), we get
F'(t) > (1 = 0)G ()G (t) + eflus(t)]]*—e] Vu(t) ||
el = o) [ oI VatP- g0 v
—ae/Q|ut(t)|m(x)_2ut(t)u(t)d$+be/ﬂ|u(t)|p(x)da:. (3.24)

from (3.7) we have

ep1(1 —€)G(t) = ep1(1 — e1) By — ep1(1 — €1) E(2),
and then (3.1) we have

— (1 =) B) = = (1 = ) )] = (1 = )51 = [ o)) V(o)

Ju(t) P

ep1(1 — eﬂ%(g o Vu)(t) + epr(1 — el)b/Q
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Adding ep; (1 — €1) By to the equation (3.24) becomes:
F'(t) > (1= 0)G7 ()G (1) + ellus () |*—el Vu(t)|[*+e(1 —

ep1(1 €1)

1 ' 2
=) [ sV

+ epy 1—61)E2 —€p1(1—€1)E2 (gOVU)< )
/|u )@=y, dx+be/|u ()P (3.25)
We have
1 9 1 t 9
epi(1 =€) w®)lI” +epi(l — )5 (1 = [ g(s)ds)|Vu(®)]"+ (3.26)
0
1 Ju(t) P
1—¢)= t)—epi(1—€)b | ———d
(1= 1)5(g 0 Vu)(t) —em(1 —enp [ 0L
Adding (3.26) the equation (3.25) becomes:

F'(t) > (1= 0)G7 ()G (1) + ellus ()"~ Vu(t) [ +e(1 1;))/ g(s)ds||Vu(t)|?

2p1(

+epi(1—€)Ey —epr(1 —€)Ey — €p1< )(g o Vu)(t) — ae/|ut @)=2y, (t)u(t)dx
wbe [ [P e + e (1 - e1>§||ut<t>||2

- (1 =gl + (1 = )51 - [ ge)as)| Tuo)?

—en(i=eg(i - [ gt >ds>||w<t>||2+ep1<1—eo%(govu)(t) —epi(1— e1)5(g0 Vu)(1)

p
—em(1—e) / Ju®) " | (3.27)
by using (1.7) and (3.27), obtaln

F'(t) > (1—0)G ()G (t) + (1 + M)||ut(t)|]2+ep1(l —e)G(t)

2
pl(l — 61) t 1 2
+ e{(T - 11— /0 g(s)ds) — mg(s)ds}HVu(t)H —ep1(1 —€1) By
— a6/|ut(t)u(t)dx + beey |u(t)|p(x)d:17, (3.28)
by (1.4) : L=1— [3g(s)ds > 0= ( = Ji g(s)ds > 0, we obtain
P1 1
(5~ DL- 2—pl<1 ~ L) >0, (3.29)

from (3.29) and Ay > Ay, it is easy to find that there exist €} > 0 and7}, > 0 such that for
0<e <€ and t < Ty,

1

)
- L- 2p1(1 —€)

(- ppg > ()

pi(l—e) 1
(=) gy .

2 2p1(1 —€)

(1 L)},
(3.30)



3.2. BLOW UP MAIN THEOREM

by
b1 1
- (G —0L—5,0-1)
E(0) < (1 — - E = P1 A < F,
O <= —ar® PL b
and
(1l —¢€) 1 J 1
o )L -———(1-1L 2oL —(1-1L
L ! piL v

we can take ¢; > 0 sufficiently small and E, € (E(0), E}) such that

p1<1—€1) ]_
( 2 _1)L_2p1(1—61)

piL

(1-1L)
/\% Z (]_ — 61)E2,

by (3.31) we get

1(1—ep) 1
pl-a) 1
2 p1L2p1(1 —c) A2 (1—e)Es >0,
using (1.4) =1- fo s)ds > 0= ( fo s)ds > 0, we obtain
(M —1)(1 - fgg(s)d 1= fo
7 pi(1 )\ — (1 =€)l >0,
by (3.30)
{(@ - 1)1 - fotg(s)ds — m Jg(s)ds} ,
7 A >
{(M —1)(1 = Jy g(s)ds) - o — ) Otg(s)ds})\2
pL i

by (3.9) obtain

(P 00— (o)) = ot fratels)

p1L

1(1 - 61) t 1 .
(p— -1 - fo g(s)ds) — ——— |, 9(s)ds
L||Vu(t)||2{ 2 2p1(1 —€) }

piL

45

(3.31)

(3.32)
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Are the same

(PEF - Fo(o)s) - o fratelds)

Vu(t)|? ,
IVa(o)] m

the inequality (3.32) rewritten as follows

p1<1 — 61) t 1 t 2
{EEF -0 [t = s [ s }ITut =1 = )2 > 0
(3.33)
inserting (3.33) into (3.28) ,we get

Pl(l - 61)

F'(t) > (1 —0)G7(t)G'(t) + (1 + 5

>Mﬁm%wmvfnaw+&ﬁémmmmm_

ac / (OO 2, (Du(tdz,  for ¢ 1o, (3.34)
Q

m(fv)

by inequality the young ab < ap + 1bq such that p = m(x),q =

/wmww w<——/m (O ds + 2 t/m )" d
Q

multiply by 7 and using the inequality ab < % + %bQ obtain

1 —1 _ _m(@)

/lut(t)lm(x)_1U(t)d$ < _/ () d + 2 /77 PO fuy (8P, Wy > 0.
Q my Jao ma Q
(3.35)
By taking n so that
m(x)
R = 56

for a large constant 3 to be specified later, and substituting in (3.35)

/M@W“%@M
Q

< i / Bkm(x)Ga(m(z)q)@)|u<t)|m(z)dx + Mgﬂ(lg”ut@)‘m(w).
mq mo

by (3.8) we obtain

/m )" (t)d (3.36)

ml

arne

G ()G (b). (3.37)

1—my
o [ e s < U [ oo,
Q Q

my
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by (1.3) we have G(t)™ < max{G™)1(t), G(™=}

1—mq

el KO TOTTE
1—-mq

Sﬁ

my

max{G"(ml’l)(t),G"(mrl)(t)} /Q [u(t)"@ da

by using (3.18) we find

51—m1 o(mi—1) o(ma—1) m(z)
o maX{G t),G (t)}/9|u(t)| dx

< pr-mcy
S T

by (3.18) obtain

617m10 o (my— o (ma— ’"2
Tl4maX{G( D(E), 70D (1) () (1) 71+ py () 1)

ﬁl_mlc4 b (m1—1) b (ma—1) my ma
< - — Py (w)) TV (—pyy (1)) yu)rr 4 pyey(w) Pr),
o plppo( ) (plppo( ) }(pp<>( ) Pp()(w) 71)

m2

max { GO (1), GTD(E) (g () # -+ iy () 7).

max {(

by holder inequality, we get

pmCy b o(mi—1) b o(ma—1) T o
o ma ()7 o () () g () )

< pr-mey
S T
b o(mz— i o(ma— —=
(p_l)a(mﬂ)(pp(.)(U) (2 mDHD gy ()7 )}’
from 2 < my; < my < p1,we obtain
m m m

max{o(m — 1) + 2 o(my — 1) + 2, o(my — 1) + X, o(my — 1) + -2} = o(mg — 1) + —2,

h 4! J4! P pl

by the inequality (3.38), we have s = mg + op1(ms — 1) < py

1
- /Q L) GBI 1) (1) (1))
< plmmcy

my

mo

b o(mi— o(mp—1)+21 o(mi—1)+122
maX{<p_1) D) (py () " TITR ) ()T TR,
b o(meo— o(mgo—1)+ o(ma—1)+22
) m2=) ()" gy ()Y “)}’

and by lemma (3.14) we get

— [ B (s

< gy max{(ﬁ)a(mrl), (ﬂ)”(mlfl)}(g Cz( —G(t) - \Ut(t)\%rpp(.)(u))

my b1 D1
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SO

1 —miT m(xr)— m(x
_/51 (@) B(m(z) 1)(t)|u(t)| @) o
mi1 Ja

< P man {7 (L0} (20000~ (O e (1)

y4 ’ 4!

and from the last inequality

1 —mi\T mix)— mlx
_/51 (@) GEmE 1) (4) | (1) iy
mA Q

< 2P e (Lm0, (Lm0} (Ge) = P+, ())

my D1 p1

from it we get

1-m(z) ~yo(m(z)—1) ¢ m(r)d
— [ Otz

< G5B (=G () — [Jue(t) [P +ppc) (), (3.39)
where 20,C b b
Cr — 2Ly a e O’(ml—l))7 7 \o(ma—1)) :
== x{<p1> () }

by equation (3.19) we have

pi(l—e)

F'(t) > (1—0)G7(t)G'(t) + (1 + 5

a1 = )G6) + bees [ a0 -
0
af/|Ut(75)|m(1’)_2ut(t)u(t)dx,
Q
and using the equation (3.36) obtain

F1) 2 (1= 0)G 06/ (0) + e(1+ Py Prem (- e)6(0) +beer [ ulo) -

2
(m2 —1)8
arns

(e [ BTG ) ()" ) + G S 1),

by using (3.39) obtain

(1) 2 (1- GO0 + (1 + P D) ()2 ey (1 - )60) + beey [ putoraa-

(ma —1)8

ane

ae(CsB ™™ (=G (t) — [Jur(t) I +pp(y (u) + G ()G (1)),

and by (1.1) obtain

e = DB iocr () + o1 + acyp + Py

e(p1(1 — €1) + aCsB " ™)G(t) + €(bey — aC’g,ﬂl_ml)pp(.)(u) for t>Tp.

F(t)2[(1-0) -
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First, we take g > 0 large enough such that
be; — (10551_7”1 > 0,
then f is fixed, we select ¢ > 0 small enough so that

(mg — 1)ef -
mo

0, G (Ty) + 6/ u(To)u(To)dz > 0,
Q

(1-0)—
and we have G'(t) > 0 from then obtain
F'(t) = Clue)IP+u®)}+G(@),  for ¢t =T (3.40)
Here and in the sequel ,C denotes a generic positive constant. Hence , we find that
F'(t) > F(Ty) > 0 for  t>1T.
on the other hand, using the similar arguments in Massaoudi et al, we have
Fro(t) < C(lu(OIP+u@®) [2+G@®),  for  t=T. (3.41)

Indeed ,we first note that from the embedding LP*(Q2) — L?*(2)

< lu@[+[u@)ll< Cllu@)lp+u@).ll,

/Q w(t)uy(t)dz

-2 1
21—0)  2(1=0)

using young inequality with = 1,we obtain

1

2

< Cllu®)ll 5" Hlu@)ll = < Clu@)llr™ +lu@)d®)-

/Q u(t)u(t)de

2
By exploiting (3.21) and Corollary (3.1.7), for s = . < p1, we find that
— 20

/QU(??)Ut(t)dw < Ol +G ),
using (3.40) and (3.41) obtain
F'(t) > CFT=(t),  fort>T, (3.42)
by (3.42) obtain
/ t F()F 7= (t) > / t C, (3.43)

1
Using the fact that v'u" = ?U”H + ¢, then (3.43) became
n
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l—-0" —0 —0 l1—0
SO
. . —oC't —oC'T,
FEe(t) SFe (D) + (7)==
Then
—o —o O'Ct UCT(]
FE5(t) < FE5(Ty) - (7o) + T2,
we obtain
1 S 1
i - Ct Ty’
F1=5 (t) FI—U(TO)—(U )+JC 0
l1—0 l1—0
SO
Fi% (t) > =
=T oCt oCTy’
FI?U(TO>_(1—J)+ 1—0

consequently, the solution of problem (1)-(3) blow up in finite time

1_CT 1_ o
<7270 L LTy,

T*
- (Co o Co

which established the proof of main theorem. m
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