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Résumé

Dans cette étude, nous nous concentrons sur I'examen de 1'existence, de l'unicité et
de la stabilit¢ des solutions pour un systeme couplé d'équations différentielles
fractionnaires soumis a des conditions aux limites dans un espace de Banach. Pour
ce faire, nous utilisons une technique qui consiste a transformer notre probléme en
une recherche d'un point fixe pour des équations intégrales. Les résultats que nous
obtenons sont li¢s a la théorie du point fixe de Banach pour étudier 1'existence et
l'unicité des solutions, et ensuite, nous analysons la stabilit¢ d'Ulam-Hyers pour
notre probléme.

Mots clés : systeme couplé, équations différentielles fractionnaires, théorie du
point fixe

Abstract

In this study, we focus on investigating the existence, uniqueness, and stability of
solutions for a coupled system of fractional differential equations subject to
boundary conditions in a Banach space. To achieve this, we employ a technique
that involves transforming our problem into the search for a fixed point of integral
equations. The results we obtain are linked to Banach's fixed-point theory for
studying the existence and uniqueness of solutions, and subsequently, we analyze
Ulam-Hyers stability for our problem.
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Introduction

Fractional differential equations have garnered significant interest across various applica-
tion domains, including economics, signal processing, image recognition, optical systems,
aerodynamics, biophysics, materials science, mechanical systems, and control theory.

Most applied phenomena and processes can be modeled as coupled systems of classical
or non-integer order differential equations. Consequently, many researchers have focused
on establishing the existence theory of solutions for these systems. A substantial body of

literature is dedicated to this topic, including key studies such as [II, 2], 3, 14 [5, [6] [7].

Recently, Sudsutad and Tariboon [8] investigated the sufficient conditions for the exis-

tence of solutions for the following class with three-point integral boundary conditions:

CDhu(t) = K(to(t), te0:=]0,1],
u(0) = 0, (1) = g (v — s)u(t)ds,
Kamal Shah et al. [9] aimed to establish the existence theory for the following movable

type boundary value problem:

“Dhu(t) = K (t,v(t)), teO,
“DPu(t) = M (t,pu(t), teO,
p(0) = p(1) = [ p(t)at,
v(0) = v(1) = [ v(t)dt.
Inspired by the aforementioned work, this thesis aims to establish the existence and

uniqueness theory for the following movable type boundary value problem:



This study is focused on establishing the existence, uniqueness and stability of solutions

for a coupled system of fractional differential equations

MDEx(G) = f(3,%x(),¥(3). 3€0=[0.1]

(0.0.1)
DRyG) =96.x(),y6). 3€0=[0.1],
subjected with the following mixed boundary conditions
x(0) =0, x(1) = [y ¥(3)x(3)d(3).
(0.0.2)

y(0) =0, y(1)= [ v()y()d().

where f£DY, denote the standard Riemann-Liouville fractional derivatives of order 6, 1 <
01,00 < 2, f,g €C([0,1] x R% R).

This work is structured into three chapters:

The first chapter is dedicated to introducing the fundamental concepts and fractional
tools utilized throughout this study. We provide an overview of the essential notions and
preliminary properties associated with the two primary approaches of fractional differenti-
ation: the Riemann-Liouville and Caputo approaches.

In the second chapter, we focus on a coupled system of fractional differential equations
and establish results concerning their existence and uniqueness. These findings are derived
through the application of the Banach fixed-point theorem. We conclude this chapter with
an illustrative example.

The final chapter revisits the same coupled system of fractional differential equations
examined in Chapter 2. Here, we concentrate on proving the stability of solutions. Ulam-

Hyers type stability is checked. We conclude this chapter with another illustrative example.



Chapter 1

Preliminaries

In this chapter, we recall some basic results needed for our investigations. For more details,
see the following references [10] [TT], 12, 13| 14}, 15 17, 18], 19

1.1 Useful Functions

1.1.1 The Gamma Function

The Gamma function was first introduced by Swiss mathematician Leonhard Euler in the
18th century as a generalization of the factorial function to non-integer values. It was later
studied and extended by other mathematicians, including Adrien-Marie Legendre, who
gave it the name ”Gamma function.” This function plays a crucial role in various fields of
mathematics and physics due to its deep connections with factorials, integrals, and special

functions.

Definition 1.1.1 The Gamma function I'(2) is defined for complex numbers z with
a real part greater than zero (R(z) > 0) by the integral

[(z) = /OOO t*"le " dt. (1.1.1)

Example 1 .

e For any positive integer n, I'(n) = (n — 1)I.  This demonstrates how the Gamma

function extends the factorial function, which is only defined for non-negative integers.
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o (%) = /m. This is a remarkable result that connects the Gamma function to the

value of .

Characteristics

The Gamma function has several important properties:

1. Recurrence Relation: T'(z + 1) = zI'(z). This property is useful for evaluating the

Gamma function for arguments that differ by integers.

2. Analytic Continuation: Although initially defined only for R(z) > 0, the Gamma
function can be extended to all complex numbers except the non-positive integers,

where it has simple poles.

3. Euler’s Reflection Formula: For any z not a non-positive integer,

D()(1—2) = —

sin(7z) (1.1.2)

This formula establishes a deep connection between the Gamma function and trigono-

metric functions.

1.1.2 The Beta Function

The Beta function, also known as the Euler integral of the first kind, was first introduced
by the Swiss mathematician Leonhard Euler in the 18th century. It arose from his work on
integrals and was extensively studied in connection with the Gamma function. The Beta
function is significant in mathematics due to its applications in calculus, probability, and

the theory of special functions.

Definition 1.1.2 The Beta function, denoted as B(x,y), for real numbers x,y > 0,
is defined by the integral

B(z,y) = /01 N1 — )yt dt. (1.1.3)

This function serves as a continuous analogue of the binomial coefficients and can also

be expressed in terms of the Gamma function I as

B(z,y) = % (1.1.4)

9



Proposition 1.1.1 The Beta function possesses several important properties:

1. Symmetry: B(x,y) = B(y,x). This property reflects the symmetry of the function

with respect to its arguments.

2. Relation to Gamma Function: As previously mentioned, the Beta function can
be expressed in terms of the Gamma function, establishing a link between these two

fundamental functions in analysis.

3. Reduction Formula: For any positive integers m and n,
(m—1)l(n—1)!
(m+n-—1)

This illustrates the relationship between the Beta function and factorials, providing a

B(m,n) = (1.1.5)

combinatorial interpretation.

1.2 Fixed point

Definition 1.2.1 (Fized point)

Let T be an application of a set E in it itself. We call fized point of T any point
e € E such that T'(e) = e.

Theorem 1.1 (Banach contraction principle)

Let E be a complete metric space and let T : E — E be a contracting application,
i.e. there exists 0 < k < 1 such that d(Tx,Ty) < k(z,y),Vz,y € E. Then T admits
a single fixed point e € E.

1.3 Fractional integral

Definition 1.3.1 Let f : [a,b) — R be a continuous function on the interval |a,b)
where b € R. The n-th primitive (or n-th iterated integral) of f is defined as follows:

T f (1) :/tdtl /tl dtQ---/tnl F(ts) dby, = ﬁ/t(t—s)”_lf(s) ds forne N,

n—1

This formula is known as Cauchy’s formula for iterated integrals.

10



Definition 1.3.2
The Riemann-Liouville fractional integral of order a € R, of the continuous function
f :la,b) = R defined by

1

ToF(t) = m/ (t— 5)*1f(s)ds. (=00 <a<t<o0)

Example 2 Consider the function f(x) = (x — a)®, Then

aac—aﬁ:L mx— =Lt — a)Pdt.
Tie =) = 7 [ =07 = o

We get to
I%(x —a)’ = 0 LB+1) (x —a)Pt (1.3.1)

(B+1+a)

we can see that this is a generalization of the case o = 1 where we have

o TEED
"Za(x_a)/)7 _F(ﬁ+2)(x )ﬁ
([L’ _ a)B-H

B+1

Properties:
1. Zof(t) exists almost everywhere for ¢ € [a,b] if f € L'([a,b]) and a > 0.

2. For f € L'([a,b]), the Riemann-Liouville fractional integral has the property of a semi-

group:
TOLPf(1)] = TP f(t) = ZP[T2 f(1)] for o > 0,53 > 0. (1.3.2)

This holds almost everywhere for ¢ € [a, b].

3. For any function f € L'([a,b]), the fractional integral has the property of linearity, i.e.,

ToOF(t) + g(t) = AI*f(t) + I°g(t), a€R,, AeC. (1.3.3)

11



1.4 Fractional derivation in the sense of Rimann-
Liouville

Definition 1.4.1
Let f be a function that can be integrated on [a,b] and o €]n — 1, n[ with n € N*. We

call the fractional order a derivative of a function f in the sense of Riemann-Liouville
left and right is defined by :

D f(t) = ﬁ%/ﬂ (t —7)" " f(r)dr. (1.4.1)
and . o ,
Dy f(t) = m (—%) /t (1 — )" f(1)dr. (1.4.2)
respectively.

where n = [a] + 1 and [o] designates the integer part of the real number .

The relation between the fractional derivative and the ordinary derivative, we have:
D2, () = DT f (1)), (1.4.3)
and

Dy f(t) = (=D)" (L= f(1))- (1.4.4)

In particular , when a =n € N we get :

D f(t) = f™(t) and Dy f(t) = (—1)" ().

Example 3 1- The derivative of f(t) = (t — a)’ in the sense of Riemann-Liouville
Let o be non-integer and 0 <n —1 < a <n and § > —1 then we have :
1 d
Dt —a) = —— — t—r1)" g 1.4.
(1= = o [ (=7 (1.45)
After simple calculation we find:

LB+1)

e ey

(t — a)*@’o‘

12



Then

afy  \B _ F(B + 1) _ \B—«a
Dt — a) _—F(ﬁ—a—i—l)(t a)’~, (1.4.6)
For a =1.5 and g = 1.5 we have :
515 L(2.5)
DS = T - ['(2.5) (1.4.7)
2- The derivative of f(t) =C
fo o C —

For the demonstration it is enough to take 5 = 0.

1.5 Fractional derivation in the sense of Caputo

Definition 1.5.1 e
Let f a function such that %f € Li([a,b]) and o € |n — 1,n] with n € N*. The

fractional derivative of order « of f in the Caputo sense on the left and on the right
are defined by:

oD f(6) = o (n1_a> / (t — )" 0 () dr (15.1)
and
CDgﬁf(t) = —F((qzl—)na) /t (1 — t)"*aflf(")(T)dT (1.5.2)
respectively.

The relation between the fractional derivative and the ordinary:

D f(t) = (127D £)(1) (1.5.3)
and
Dy f(t) = (L7 D" f)(t) (1.5.4)
If « =n € N then:
“pr, = f™@) and °Dp = f™(1). (1.5.5)

13



- The fractional derivative operator is linear, let f and g betwo functions, for A and
€ R, then: D*(\f + pg) exists, and we have:

D*(Af + pg)(t) = AD f(t) + uDg(t) (1.5.6)

Example 4

1- The derivative of a constant function
“peC =0 (1.5.7)

2- The derivative of f(t) = (t — a)?

Let o be an integer and 0 <n —1 < a <n with f >n — 1, then we have

Lp+1)

A v ey

(t — a)ﬂ_o‘

1.6 The composition of a fractional derivative with a
fractional integral

Lemma 1.6.1 If D*f = 0, D* is fractional derivation in the sense of Rimann-
Liouville. Then

F&) = kit —a)tom, (1.6.1)

Where k; are constants

Proof. according to the definition, we have
(Daf)(t) =D Z" " f(t) = 0

So, first we have



and by the application of Z* we get

I
_

n

Z71(t) = p_ & I°((t — a)’]

<
Il
o

Taking into account the relationship (2.2), we will have

n—1

TR0 =X ey

Then using the classical derivation and the fact that

T(A+ 1)

Dn<t — a))‘ = m(t — a)’\*"
one finds
_ = F(] + 1) Jjtoa—n
f(®) _;C]T(j+1+oz—n)(t_a) :
|

Proposition 1.6.1 The fractional derivation and the classical derivation (integer
order) only switch that if f*)(a) =0 for all k =0,1,2,--- ,n —1

dn

L oo (1) = D). (162)
But
n n—1 ) a — q)k—a—n
pe (%f(t)) _ D (g — fF(k(: _)((’; - 73+ 5 (1.6.3)

k=0

15



Theorem 1.2
Let o, B >0 and n = [a] + 1,m =[] + 1 such that (n,m € N¥), then :

1. Ifa> B >0, then for f € L'([a,b]) equality:
DY (Zf)(t) =T P f(t) (1.6.4)
is true of almost everything about [a,b].

2. If there is a function o € L([a,b]) such that f = T%p then :
DYZf (1)) = f(b). (1.6.5)
is true of almost everything t € |a, b].

3. If the fractional derivative of order «, of a function f(t) is Integrable, then

n

o (D (1) = f(8) = D et —a) . (1.6.6)

J=1

where ¢; 1s constant

1.6.1 Properties of the fractional derivation in the sense of Ca-

puto
Theorem 1.3
Let « > 0 and n = [a] + 1 such that n € N* then the following equals
1.
“peTef = f (1.6.7)
2.
o (C o M)t~ a)f
LD f@) = f(t) - X (1.6.8)
k=0 ’

are true for almost everything t € [a,b].

16



Theorem 1.4 Let fand g be two functions whose fractional derivatives of Caputo
exist, for X and pu € R, then: “D¥(\f + pug) exists, and we have :

“DUNf(t) + ng(t)) = XD f(t) + X“D(t)

17




Chapter 2

Existence and uniqueness of solutions
for coupled system of fractional
differential equation

2.1 Introduction

In this chapter, we will study the existence and uniqueness of solutions for a coupled system

of fractional differential equations with boundary condition

RLDEx() = f(5.x(),¥(). 5€0=[0,1]
(2.1.1)
"DEy(G) =96,x(),y(3), 3€0=[0,1],
subjected with the following mixed boundary conditions
x(0) =0, x(1) = [y ¢(3)x(3)d(5),
(2.1.2)

y(0) =0, y(1)= [ v()y()d().

where #2DZ} denote the standard Riemann-Liouville fractional derivatives of order o1,
1 <o01,00<2, f,g€ C([O, 1] x ]RZ,R). To investigate the existence and uniqueness of a

solution to our problem, we will employ Banach’s fixed point theorem.

18



2.2 Integral equation

Lemma 2.2.1 Let h; € C([a,b],R). Then the pair (x,y) is a solution of the linear
version of the problem
([ BDRia(3) = (), 5€0=[01],
DY) = ha(3), 3€0=10,1],
(2.2.1)
2(0) =0, a(1) = [; ¥(3)2(3)d(3),
[ 9(0) =0, y(1) = f; ¥()y(6)dG),
if and only if
1 t 1 -1 1 o1
o) = g o= 9 e + 577 (] wal) - 12m()
F(f1> (2.2.2)
¥E) = figy oG = 9" ha()ds + 392—1(f01 $(5)9(a)d(3) — It ha(1)

Proof. (2.2.1) = (2.2.2)

Assume that the pair (x,y) is the solution of the system (2.2.1, Operating fractional

integrals Ij} and Ij? on the first and second fractional differential equations in system

(2.2.1]), respectively, we obtain

x(3) = I8 ha(3) + 13”71 + 327 (2.2.3)

Y(3) = I ha(3) + c33% " + ca3® > (2.2.4)

For 3 =0, we find co =0,¢, =0 .
Then the Equations (2.2.2) and (2.2.3) becomes

x(3) = I8 ha(3) + c132 ! (2.2.5)

y(3) = ISt ha(3) + cs3® ", (2.2.6)
By using second condition x(1) = fol ¥(3)x(3)d(3) and y(1) = fol ¥(3)y(3)d(3), we have

19



1

a=| P(3)x(3)d(3) — 12 ha(1) (2.2.7)

1

a= | b(3)y(3)d(3) — Ig2ha(1) (2.2.8)

We insert ¢; and ¢y into Equations (2.2.4) and (2.2.5), respectively, then we obtain the

following

o) = 1)+ 50 ([ vlox(one) — £

¥(3) = 1% hy(3) + 3 ( [ vtovaa - 10%(1))

(2.2.2) = (2.2.1)

we have

x(s) = 183 + 5 [ oo foﬂhl(l)) 22.)

y(3) =I5 ha(3) + 3% 1(/ ¥(3) Igihzu)) (2.2.10)

By using the Riemann-Liouville fractional derivative of order g; and g, on equations (2.2.9)

and (2.2.10) respectively, we obtain

MEDEx(3) = ha(3), (2.2.11)
REDEE = y(3)ha(5)- )

Now we verify that the integral equations satisfy the three conditions.

1. From equation (2.2.1), we find x(0) =0

2. For second condition

20



) = gt + 257 ([ o6l - )

1% h(1) + / B(G)X(G)d(G) — 18 k(1)

1
—/ ¥(3)x(5)d(5)
0
3. Similarly, we obtain y(0) = 0, y(1) = fol 1¥(3)y(3)d(3), Hence the proof is com-
pleted.
u

Lemma 2.2.2 Let f,g € C([O, 1] x RQ,R). Then the pair (x,y) is a solution of the
linear version of th problem

(DS a() = f(3.2(6),96), 3€O=[0.1]

"D y(3) = 9(3,2(3), ¥(3)), 3€O=10,1],
4 (2.2.12)

if and only if

2(3) = 1 JoG—5)2 7 f (s, @(s), y(s))ds + 3~

y3) = [3G — 5)2 (s, (5), y(s))ds + 3% ( oy ¥(3)y(3)d() — 12 f(1, =(1), y<1>>) .

2.3 Results about the existence of solutions

Further, the Banach space is defined by (Z, ||.||) with the norm ||x|| = max_cp[x|. Con-
sequently, U = Z x Z is a Banach space with norms denoted by ||(x,y)|| = ||x|| + ||y]]

In light of Lemma [2.2.2] the solution of system ([2.1.1)) and (2.1.2) is given as follows:

21



1

X(5) = oy s = 97 sx().y(9)ds
301y w6)x()d() — I (1, x(1), ¥(1)))
Y6) = rrgy i = 9% (s x(s) y(5))ds
r ! (L w846 - 1296 x(1).¥(1) )

Let Ky,Ky : U — U such that

Kalxy) = o Jols = 97 (s, x(s). y(s))ds

VS (f; BE)YG)AG) — 189G, x(1), y<1>>)

and K(x,y) = (Ki(x,y), Ka(x,y)). Thus, solutions of (2.1.1)) and (2.1.2)) are fixed points
of K.

We will set the following conditions:

(V) For all x,x,y,y € U and for every 3 € [0,1], 3L; > 0

1£(3,%(3),¥(3)) — f(3:%(3), ¥(3)| < Ly(|x — x| + [y — ¥])

(Vy) For all x,x,y,y € U and for every 3 € [0,1], 3L, > 0

19(3,%x(3),¥(3)) — 9(,%(3),¥(3))| < Ly(|x = %[+ [y — ¥])

(V3)
W] < Q

(V4) For some positive real numbers cf, dy, my, ¢4, d, and m,

1f(3, %), y(G))| < cplx| + dyly| +my,

22



19(3,%(3), y(3))] < cqlx| + dgly| +my.

Theorem 2.1 Under assumptions V3 and V4, and if the functions f,g : [0,1] xR —
R are continuous, then K(U) C U.

Proof. Let
QCf + Qdf
= n
O =Tt T9
me
@ =t 1)
_209 + 2d,
@ =T 51y ¢
2mg
U=t D)

We define B a closed subset of U:

B={(xy) elU:|xy)ll<r}

we have ||(x,y)|| < r implies ||x]| <r and |ly]| <,

we put

Q2 + Q4
1-Q1—Qs

r>

For arbitrary (x,y) € B, we have

23



K9] = (1215003060 527 [ wlom(oats) — 6870100, 50)|

< Igi1f(3:x(3), ¥()) |+z¢”‘1 /0 | (3)[1x(3) Id(z)+I§i|f(17X(1),Y(1)I)>

< 1AL x(1), y(1)] + / D)X + 1271, x(1), (1))
grél)/ola = 1G5,y s ++ [ 10 m (o))
< (1= 9 erlx(s)| + dily(s)] + my) ds -+ Q ma [x(5) / 1d(3
< 2(cy max,eo [X(s)| J;El;l;naxse[o,u ly(s)| +my) /01(1 _ 92145 + Q||
< 2eslixl J;?;H)YH +my) /01(1 _ s)e s + Qllx|

2tid a@:;} ) 4 G

2cr + 2d 2
< (M + )7“ mpr
I'(o1+1) I(or+1)

Ki(x,y)| < Qir+ Q> (2.3.1)

Then
IKi(x,y)|| < Qir+ Q2

Similarly,

1K (%, y)|| < Qst+ Q4 (2.3.2)

24



Therefore, from ([2.3.1]) and (2.3.2)), one has

1K, y)[| = [[(Ki(x,y), Ka(x,¥)) |
< [[Ki(x, y)I| + [ Ka(x, ¥l
<Oir+Qa+Q3r+ Qs <r

The proof is completed.

Theorem 2.2 Under assumptions (V1), (Va) (V3) and (V4) and if J < 1, then systems
and has a unique solution, with

2 2

J==——Lj+ =———
I'(o1+1) d ['(02+1)

Ly +20Q

Proof. From Theorem [2.1] we show that K(Z) C Z.

25



In the next stage, let us assume that x,X,y,y € 2 and for every 3 € [0, 1], let

L t o1—1 x(s s <
m/o (3 — )" f(s,x(s),y(s))d

+5Q1_1</0 »(3)x(3)d(3) — Ié’if(l,X(l),Y(l)))

ml./@ $) 7 f(5,%(s), 9(5))ds+

st ([ ot s,y )

: F(Ql)/(z’_s)gl Y (s, x(s),y(s)) — f(s,%(s),¥(s)))ds

Ki(x,y) - Ki(x,5)| =

/ Y (3)Ix(s) — XE)Id(s) + I F(1,x(1), ¥(1) = F(1,%(1), 3(1)))

<

r(m / (5= )2 (Ly(Ix(s) = %(5)| + [y(s) = ¥(s)]))ds

Qll/w )x(3) — %(3)|d(3)

+

F(Ql) /0 (1 — 3)@1 1(Lf(|X( ) (8)| + |y(8) — y(s)D)dS)

1
[(oy +1)

S Li(llx = x| +[ly = ¥I) + Qllx — x|

+L (Ilx =% + ly — ¥l

"T(or + 1)

2

= Ly(lx —x[|+ |y —¥||) + Qlx — X
L=+ ly - 31D + Qllx -

IN

yﬁ+QMx—ﬂ%r Lelly = ¥1

2 2
(e +1 ['(o1+1)

IN

= I — ¥l + S
T sy =yli+@ly -3l

IN

(
(o b+l +
(

F(Q12+ 1)Lf+Q) (”X—XH + Hy—y!l)- (2.3.3)
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Then
IKi(x,y) - Ka(%,5)]| < (ﬁm +Q) (Ix— =l + lly - 511

Similarly,

Kalx.y) = Ka(@ 9 < (Fyle - Q) (Il + Iy =5l)  (234)

Hence, from ({2.3.3) and (2.3.4)), one has

IK(x,y) ~ K(x,9) = ||(Kibx.y). Ka(x. ) — (Ki(x.9), Ka(%,9) H

= || K (x,y) — Ki(X, y)H + HK2<X, y) — K2(x,y)H
< (s + @ (===l + Iy = 1)

+ (g iyt @ (I ==l + lly =31)

2 2

< (55 0%+ 1 e+ 2 (=Xl +lly = 51)

Then

2 2
Kxy) - K&y <(— L+ —" L +2 (x—>-<+ ——>
IKGx¥) = Kx 9 < (g + o+ 2Q) (k= xl -+ Iy =1

where

2 2
J=—t Lijt— L,4+20<1

T(o1+1) 7 " T(o2+1)

Hence, K is a contraction, thus K has a unique fixed point, which implies that the concerned

system (0.0.1)) and (0.0.2)) has a unique solution. =
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2.4 Example

Example 5 We take the system :

RLDI®g(3) = 20 4 Larctan(a(3) + y(3)), 3€ O =10,1]

312025
RL7y1.22 2 4 ] El (24.1)
Dy = —z° — , 3€0=10,1],
subjected with the following mized boundary conditions
1 32
o0) =0, a(1) = [ T als)d)
0
(2.4.2)

v0 =0, o) = [ L),

sin(3) 1
G, 2(3),9(3)) = 2025 + — arctan((3) + 4(3))

B s |z |y
95, 2(), 9(3)) = exp(=2" =)+ {5 Ty e

After the calculation, we have

7G>0 3(6)) — £(6,3(6). 36))| = | = axctan(a(s) + y(3)) —  axctan(a(z) + ()
< ~(1e(a) — 20)| + |6)| - 5G))
bt



After the calculation, we have

2 2
J==——Lj+——=L,+2Q =0.2354
['(o1 +1) ! T2 +1)"7 “
As J = 0.2354 < 1. According to Theorem (2.2, it can be deduced that the system

(2.4.1)-(2.4.2) has a unique solution
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Chapter 3

The stability analysis of Ulam-Hyers
type

3.1 Introduction

In this chapter, we will study the stability of solutions for a coupled system of fractional

differential equations with boundary condition

D) = f(3,%x().y(), 3€0=[0,1]

(3.1.1)
MDEyG) =96.x(),yG), 3€0=10.1],
subjected with the following mixed boundary conditions
x(0) =0, x(1) = [ $(3)x(3)d(3).
(3.1.2)

y(0) =0, y(1)= [ v()y(:)d).

where RLD8+ denote the standard Riemann-Liouville fractional derivatives of order 6, and
1<p1,00<2and f,g €C([0,1] x R%R).
To investigate the stability of a solution to our problem, we will employ the definition

and theorem, which is defined as follows:

Definition 3.1.1 We say that the problem |3.1.1 and |3.1.4 is Ulam-Hyers stable if there
exists a real number Ky, K, > 0 such that for 1,1 > 0 and for each (z,y) solution to the
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problem

there exists a solution (x,y) to the problem|3.1.1 and|5.1.2 with

|2(2) — 2(2)| < Kye, (3.1.5)
19(2) — y(2)| < Kyeq, (3.1.6)

!

for all z € [a,b].

Definition 3.1.2 20/ If ; (i = 1,2,3,...,n) are eigenvalues of a matriz M of order
n X n, with spectral radius of p(M) defined by

p(M) = max{|5| fori=1,2,...,n}.

In addition, if p(M) < 1, then M converges to 0.

Theorem 3.1 [20)] For the two operators Sy,S2 : U — Z
IS1(2,y) — S1(Z, 9)|| < Qillz— & + Qlly — 3|
Sa(, y) — 52(Z, Y)l| < Qsllz— Zl| + Qully — ¥l (3.1.7)
V(z,y)(z,y) € U

and if the matrix

Q0 @,
M= [Qg QJ

goes to zero, Consequently, then the solutions of the system described by
x(3) = Si(z,9)(3),

y(3) = Sz v)(3),

are then determined to exhibit Hyers-Ulam-type stability.

(3.1.8)
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3.2 Integral equation

Lemma 3.2.1 Let f,g € C([O, 1] x R?, R). Then the pair (x, y) is a solution of the problem
given by

RLDO 2(3) = f(3,2(3),(3)), 3€O=]0,1]

RLDEy(3) = 9(3.2(3), ¥(3)), 3€ O =[0,1],
4 (3.2.1)

if and only if

o6) = oy 6= 90 sl ylo)ds + 5 () alos) ~ (a0, 90) ).

VO = prpy o= 9 gl a(e) o 5 (U EMEI0S) — 10 ala). ) )

3.3 Results regarding stability

Theorem 3.2 If the matrix # converges to 0 and assumptions Vi, Vo and V3 hold, then

the results of and are Hyers Ulam type stability
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Proof. Taking (x,y), (X,¥) € U and for every 3 € [0, 1], let

1
['(01)

+591_1(/0 »(3)x(3)d(3) — fgif(l,X(l),Y(l)))

F(l [ 6= o0, 306+

s ([ s - x50 )

/ (5— )21 (f(s,x(5), ¥(5)) — f(s,%(s), 5(5)))ds

Ky(x,y) - Ki(%,9)] = / (35— )L f(s,x(5), y(5))ds

= r(m)

< 1
~ | T(e1)

([ v - %10

+ m/o (1= )2 (Ly(|x(s) — x(s)] + [y(s) — y(3)|))ds>

1
I'(o1 + 1)

/ (35— )2 L (Ly(|x() — %()] + [y(5) — 7(5)]))ds

<

Le(lx = %[l + ly = ¥]) + Qlx — x|

1
I
+ Ly e =%l y = 91)

2
- Le(lx =x| + [y =¥l + Qllx —x
Mo+ 1) £l I+ ly =¥l +Ql |
2 2
< Ly + — x| + Lilly = ¥
- <F(g1+1) 7+ Q)lx—x OESRAR
< Qix — x| + Qafly — ¥ (3.3.1)
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2
Q=——L
A TS AR

2

Qy=o— L
T+ 1)

Similarly,

1K (x,y) — Ka(X,¥)|| < Qs]|x — x| +Qu4lly — ¥ (3.3.2)

So, from (33.1) and (3:3.2), we get

1K1 (x,y) — Ki(%,¥)|| < Qillx —x[| +Qafly - ¥l
(3.3.3)
IK2(x,y) — Kao(%,5)|| < Qslx — x[| + Qully - 7]

From (3.3.3)), we can get the matrix .#Z as follows:

Q1 Q
Q3 Q4

Because it is given that the matrix tends to zero, by the conclusion of Theorem the

solution of (3.1.1) and (3.1.2) is UH-type stable. m

o

3.4 Example

Example 6 We take the FBVP :

RLLSS o, _ |2(3) + y()] _
P = as(aty) w1 2SO0 )
REDTTY(E) = s sinlals) + y@)l), 5 €0 =[0,1]
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with

(3.4.2)

W) =2 <=0
After the calculation, we have
¥(3) < %
15,20, 9(3)) — (5. @(3), 5G))| = |5 22T 2(5) + 2(5)

2023([2(3) + y3)| + 1) 2033(a(3) 1 9la)] - 1)
L)) ) )
< 5023 (23 + 903)] + 1(203) + 3G) + 1

< 535 1206) + 9] — 2(6) + 96))
1

< 55 (1) = 2(6)| + 196)| - 6))
1
Lr= 2033

965:2(5), 36)) — 906,3(6), BG))| < 555 (1246) — 3(6)] + |36)| - 56)])

1
Ly=——
972000

9 = Ly +Q = 0.0506

(o1 +1)
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=————L; =0.00055
+

F(Ql 1)
Q=2 I 4+Q=00506
3_F(92+1) J -
Qu = 2 L, =0.0006115
4_F(92+1) o

M — 0.0506  0.00055
~10.0506 0.0006115

Upon performing the necessary computations, we find that the eigenvalues of the system
are determined to be 51 = 0.0512 and 3 = 0.0001. Consequently, it can be observed that
T(M) =0.0512 < 1. As a result, according to Theorem, we can conclude that the given

system, incorporating a delay term and corresponding to the specified fractional order, is

HU-stable.
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Conclusion

In this study, we established the existence, uniqueness, and stability of solutions for a cou-
pled system of fractional differential equations with boundary conditions. Using Banach’s
fixed-point theorems to prove the existence and uniqueness of solutions, we also demon-
strated that the solutions to the problem are stable. We rigorously proved our results and
provided illustrative examples to demonstrate their validity. Our research contributes to the
theoretical understanding of fractional differential equations, highlighting the effectiveness

of these mathematical tools in solving complex systems.
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