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 الملخص

من نوع العوائق. قمنا  غيراتيةلهدف من هذه الأطروحة هو تكييف الطرق التكرارية للمتباينات المتا 

 تقدم النسخة   نجدي. صدفةة العوائق في سألمن ممتكافئتين ة لنسختين نتهيبتحليل طريقة العناصر الم

منظورًا جديدًا للمشكلة المستمرة من خلال التركيز على المساحة غير المقيدة لمجال الإزاحة  ةالثاني

  .ختراقوتقييد عدم الا تماس شعاع الدورانلاغرانج لفرض شرط ال عامليوالدوران. يتم استخدام اثنين من م

المستمرة  سائلمن المالحلول لكل  وحدانيةبالإضافة إلى ذلك، نقدم تقديرات خطأ مسبقة ونثبت وجود و

. متقاربةالمتغيرة،  المتراجحةة. علاوة على ذلك، فقد أثبتنا أن طريقة أوزاوا، التي تتعامل مع تقطعوالم

التلامس  سألةوالطريقة المقترحة مدعومة بأمثلة من الاختبارات العددية التي توضح فعاليتها في حل م

 .ةالأحادي الجانب بين الأصداف المرنة والأجسام الصلب

تحليل الخطأ القبلي, الطريقة  ,نتهيصدفة نجدي, العنصر الم ,مسألة التصادم : كلمات مفتاحية

 ية.راجعالت

Abstract 

The aim of this thesis is to adapt iterative methods for variational inequalities 

of obstacle-type. We analyze the finite element approach for two versions of an 

obstacle problem in a Naghdi shell, which was equivalent. The second version 

presents a novel perspective on the continuous problem by focusing on the 

unconstrained space of the displacement field and rotation. Two Lagrange 

multipliers are employed to enforce the tangency requirement on rotation and 

the inequality restriction. Additionally, we provide a priori error estimates and 

prove the existence and uniqueness of solutions for both continuous and discrete 

problems. Furthermore, we demonstrate that the Uzawa method, which deals 

with this variational inequality, exhibits even greater convergence. The suggested 

method is supported by example numerical tests, illustrating its efficacy in solving 

the problem of unilateral contact between elastic shells and rigid objects.  

 Key words : Contact problem, Naghdi shell, Finite element, a priori error 

analysis, iterative method. 
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Résumé 

L'objectif de cette thèse est d'adapter les méthodes itératives aux inégalités 

variationnelles de type obstacle. Nous analysons l'approche par éléments finis pour deux  

versions équivalentes d'un problème d'obstacle pour une coque de Naghdi.  La deuxième 

version présente une nouvelle perspective sur le problème continue en se concentrant sur 

l'espace relaxé  du champ de déplacement et de rotation. Deux multiplicateurs de Lagrange 

sont utilisés pour forcer la rotation d’ être tangentielle au plan tangent et la contrainte 

d'inégalité. De plus, nous fournissons des estimations d'erreur a priori et prouvons 

l'existence et l'unicité de solution pour le problèmes continue et discrete. De plus, nous 

démontrons que la méthode d'Uzawa, qui traite cette inégalité variationnelle, est 

convergente. La méthode proposée est suivie par des tests numériques, illustrant son 

efficacité pour résoudre le problème du contact unilatéral entre des coques élastiques et 

des objets rigides. 

Mots clés : Problème de contact, coque Naghdi, éléments finis, analyse d'erreurs  a 

priori, méthode itérative. 
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Notations

Throughout this thesis, we will use the following conventions:

ä ω: An open subset with boundary ∂ω of R2.

ä ω̄: The closure of ω.

ä δ: The dirac distribution.

ä S : Midsurface of the shell.

ä λ , µ: The homogeneous and isotropic material’s Lamé moduli that make up the shell,

respectively.

ä Γραβ : The Cristofel symbols of the surface.

ä E , ν : Coefficient of the young of material and Poisson ratio, respectivly.

ä W s,p(ω) : The Soboleve space with integer s ≥ 0, p ≥ 0.

ä ‖·‖s,p,ω and | · |s,p,ω: The Sobolev W s,p(ω,R`) typical norm and semi-norm, respectively,

where ` ∈ N.

11



LIST OF TABLES LIST OF TABLES

ä Ck(ω) :The space of functions over ω which are continuously differentiable k times.

ä D(ω) : The space of all indefinitely derivable function with compact support in (ω).

ä (·, ·)ω: The L2(ω)-inner product.

ä The estimate A ≤ C B is obtained using A . B, where C is a generic constant

independent of A and B.

ä B . A and A . B both hold when A ∼ B.

12



Introduction

Many numerical techniques have been developed and used recently to find approxi-

mations for variational inequalities. The theory of variational inequalities is a relatively

modern mathematical field that found its roots in Fichera’s paper [35], concerning uni-

lateral problems and further contributions by J.Lions and G. Stampacchia [53] [67].

Variational inequalities provide precise and concise descriptions for various phenomena,

often surpassing variational equalities in accuracy. According to [43], they have applica-

tions in a wide range of domains, such as control theory, flows through porous media,

lubrication theory, mechanics (contact between deformable elastic bodies), and financial

mathematics. This theory represents a crucial class of nonlinear problems with origins in

various sources, encompassing the realms of physical and mechanical phenomena [31] [42].

When it comes to approximating variational inequalities, we acknowledge the significant

contributions made by Mosco [55], Glowinski [69].

As a first model of variational inequality there exists obstacle problems which involv-

ing the interaction of stiff barriers with elastic solids, constitute a significant category

within free boundary problems, finding diverse applications from physics to finance. The

most common numerical methods for solving contact problems in general, and obstacle

problems in particular, are mathematical programming approaches and schemes based on
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CHAPTER 0. INTRODUCTION

penalty and Lagrange multiplier formulations. As a result, the discretization of obsta-

cle problems without constraints using the finite element technique, either in its primal

formulation or using Lagrange multipliers, has been a long-standing area of discussion.

The literature on the finite element approximation of such formulations is extensive, with

notable references including [45], [19], [34], [43],[40], [20].

Variational inequalities in thin structures with state restrictions, particularly thin shells,

have received little attention in academia. which is the main motivation of this thesis.

A thin shell is defined as a three-dimensional entity where the thickness dimension is sig-

nificantly smaller than the other dimensions. Renowned for their efficiency in supporting

loads over extensive areas with minimal material usage, these structures indeed demon-

strate their effectiveness. Shells, with their diverse configurations, play a pivotal role in

various elastic structures, including bodies and ship hulls,etc. As evidenced in natural

examples like the eggshell.

In engineering applications, shell structures serve many purposes, spanning aerospace, au-

tomotive, civil and naval engineering. The shared objective across these fields is to design

thin structures for optimal lightness, minimal material usage, safety assurance, and when

applicable, aesthetically pleasing designs (see Figure 1).

Figure 1: Bosjes Chapel (Steyn Studio) in south africa

A continuum shell formulation is a mathematical framework used in computational me-

chanics to model thin structures, like shells or membranes. It is a simple method of
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CHAPTER 0. INTRODUCTION

representing and analysing material behaviour. Shells are often used to model materials

like fabrics, see figure 2, where thickness is much smaller compared to other dimensions.

Figure 2: Sleeves: stiffness increases from right to left [28]

Mathematical modelling and numerical analysis of three-dimensional elastic body

problems are well-established. However, when dealing with thin structures like shells,

numerical methods well-suited to the three-dimensional case encounter challenges due to

the relatively small thickness parameter. It is natural to contemplate replacing the three-

dimensional models with two-dimensional models placed on the hull’s average surface,

mostly for computational costs. Pioneers of this approach include Kirchhoff in 1876 and

Love in 1934. The derivation of hull models is a longstanding subject that saw extensive

development in the 1950 in the Soviet Union and the United States in the 1960 and 1970,

with a strong resurgence of interest in France following the work of Sanchez-Palencia on

1989. Under sufficiently small loads, the shell deforms according to the usual laws of

three-dimensional elasticity.

Shell theories can be categorized into two main families of : Koiter family [49], which

builds upon the work of Kirchhoff-Love. Koiter developed a two-dimensional model based

on certain hypotheses about applied forces and the stress tensor, with the unknown being

the displacement of the points on the midsurface, which provides an approximation of the

displacement of the hull points.

The second family of the shell theory is that of Reissner family, derived from the work

of the Cosserat brothers [29] on surfaces, which addresses problems ranging from thin to

thick shells. This method was predominantly developed by Naghdi [56], [57].

In the context of this theory, the problem’s unknowns are the displacement of points on

15



CHAPTER 0. INTRODUCTION

the average surface and the rotation of the normal to that same surface. The inclusion of

the latter unknown allows for the consideration of transverse shear deformations in the

thickness. The mathematical analysis of the Naghdi model was carried out for the first

time by Coutris on 1978 then improved by Ciarlet and Miara on 1994.

In this thesis we concentrate on the latter family, the Naghdi shell model which has

the following variational form:

Find U = (u, r) ∈ V such that a(U, V ) = L(V ), ∀V = (v, s) ∈ V ,

where

V =
{
V = (v, s) ∈ H1(ω,R3)×H1(ω,R3) | s · a3 = 0 in ω, v|γ0 = s|γ0 = 0

}
,

To solve numerical problems in shell theory, the choice of iterative methods is es-

sential, especially for addressing complex geometries, material behaviors, and boundary

conditions. These methods encompass:

• Nonlinear Solvers: like Newton’s method or its variants.

• Linearization Techniques:to utilize linear iterative solvers such as conjugate gradient

or GMRES.

• Preconditioning: like the Schur complement preconditioner.

These some methods empower researchers and engineers to tackle computational chal-

lenges in shell theory, facilitating accurate simulations of complex shell structures.

In this thesis we are interested application of an iterative methods for the unilateral

contact of shell with an obstacle on which it is clamped. In this context, we are ex-

amining the Naghdi’s shell model in the free-basis formulation, as introduced by Blouza

[15] and further refined by Blouza and Le Dret [11]. This formulation is based on the

notion of using Cartesian coordinates for the unknowns, which facilitates the treatment

of the shell’s interaction with an obstruction in numerical execution. This formulation

demonstrates the capability to handle shells with a W 2,∞ midsurface, thus allowing for

16



CHAPTER 0. INTRODUCTION

curvature discontinuities, as opposed to C3 in the classical formalism, see[26]. Relying on

Naghdi model, we present a contact model with a rigid body based on the fundamental

laws of elasticity. In contrast to membrane contacts, one significant problem here consists

of the shell is predominantly modelled by its midsurface, whereas the contact occurs on a

piece of the shell’s physical surface. Nonetheless, by defining the physical surface appro-

priately, we establish a mathematically reasonable and mechanically realistic model. The

resultant system is equivalent to a double mixed problem, combining variational equalities

and inequalities. Similar systems have been addressed in [20] and [65].

Let the relaxed functions space: X = H1
γ0(ω)3 × H1

γ0(ω)3, and M = H1
γ0(ω)3. Thus the

variational problem of the contact Naghdi is:

Find (U, ψ, λ) ∈ X×M× Λ such that :

a(U, V ) + b(V, ψ)− c(V, λ) = L(V ), ∀V ∈ X

b(U, χ) = 0, ∀χ ∈M

c(U, µ− λ) ≥ 〈Φ, µ− λ〉 . ∀µ ∈ Λ

where the cone of nonnegative distributions in the dual space of H1
γ0(ω):

Λ = {µ ∈M′; ∀σ ∈M, σ ≥ 0, 〈σ, µ〉 ≥ 0},

The objectives of this thesis:

Firstly, we aim to revisit the derivation of the contact problem model associated with the

Naghdi model, which detailled in first time in [5]. Secondly, we present and analyze new

several variational problems, outlining the necessary assumptions for their well-posedness.

Another important component of our study is the examination of the finite element ap-

proximation of two similar formulations of a Naghdi shell contact problem, as reported

in [47]. The first formulation, known as the reduced problem, includes a variational in-

equality and a variational equality. The second formulation, referred to as the entire

problem, includes a variational inequality and two variational equalities. The latter is

a new formulation of the continuous problem defined on the unconstrained space of the

displacement field and rotation. To enforce the tangency requirement on the rotation

(a state constraint) and the inequality constraint, two multipliers called Lagrange are

17



CHAPTER 0. INTRODUCTION

used. We suggest a non-conforming approximation to the reduced problem, inspired by

[43]. Simultaneously, we explore a conforming finite element approximation of the whole

issue by inserting elementwise P3 bubble functions into P1 elements to approximate the

displacement field. This addition is necessary to ensure a discrete stability estimate (see

Theorem 3.1 in [43] and Lemma 4.10 below). We prove the existence and uniqueness of

solutions for both continuous and discrete problems and develop an apriori error estimate.

Furthermore, we show that the iterative methods: Uzawa algorithme converges with this

variational inequality. While its convergence speed is slow, we choose it for its ease of

implementation and low memory requirements.

Finally, we validate and illustrate our approach through numerical tests.

The initial phase of numerical modeling requires a quantitative representation of the ac-

tual geological scenario. Following this, due to the complexity of solving the governing

equations directly, discretization and numerical methods are applied to approximate these

equations. This process includes breaking down the problem into manageable elements,

and algorithms executed on computers are employed to calculate the approximate solu-

tions. The concluding step involves interpreting the obtained solutions to derive mean-

ingful insights or conclusions. See figure 3 below.

The outline of the thesis, excluding the introduction, consists of five chapters.

• Basic Concepts of Surface Theory: This chapter is crucial for understanding various

expressions used in the theory of thin shells. In addition, we review the Naghdi

model’s formulation and key features. Furthermore, it derivates the mathemati-

cal framework for the contact problem, presents many variational problems, and

specifies the assumptions required for their well-posedness.

• New Constrained Continuous problem of a Contact Naghdi Shell Model: This part

introduces a new constrained continuous problem for a contact Naghdi shell model,

demonstrating its well-posedness using perturbation techniques. The convergence

of the solution from the perturbed problem to the original one is also proven.

• Approximation of the Contacts model using the finite element approach: This chap-
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CHAPTER 0. INTRODUCTION

Figure 3: Steps in numerical modeling

ter discusses how to approximate the contact model using the finite element ap-

proach for both reduced and full contact problems. Both situations provide evidence

of a priori inaccuracy.

• Double Saddle Point and Their Application with appropriate iterative methods:

This chapter discusses the double saddle point and its application with an appro-

priate iterative method for problem resolution.

• Uzawa Method for solving the approximate problem: Finally, to solve the approxi-

mate problem, we propose the Uzawa method, considered as a projection technique.

These five chapters cover various stages of the thesis, ranging from theoretical foun-

dations to numerical methods and resolution techniques, providing a comprehensive ap-

proach to addressing the contact problem in the context of thin shells.
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Chapter 1

Geometrical preliminaries

When an elastic body is exposed to applied forces and proper boundary conditions,

nonlinear or linearized three-dimensional elasticity equations can be used to describe it.

These equations simplify the three-dimensional elasticity equations based on shell thick-

ness. It is normal to consider replacing three-dimensional models with two-dimensional

models placed on the shell’s midsurface for computational cost concerns. For further de-

tails, see [15], [12], and [51].

In this chapter we will first review several key concepts in differential geometry of surfaces

that are relevant to the thesis’s theory of usable surfaces. In the second part, we define the

shell and its reference configuration as the set of points in R3 that are within a distance

≤ ε from a specified surface in R3. Next, we show both undeformed and deformed shells,

i.e. shells before and after applying forces. As an example, consider the linear Naghdi

shell model and its several formulations. The existence and uniqueness of solutions to the

linear Naghdi shell equations are demonstrated using a fundamental Korn inequality on
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1.1. THE DIFFERENTIAL GEOMETRY OF SURFACES CHAPTER 1.

a surface and an infinitesimal stiff displacement lemma.

1.1 The differential geometry of surfaces

Greek indices and exponents take values in {1, 2}, whereas Latin indices and exponents

take values in {1, 2, 3}. Except as otherwise noted, we follow the Einstein summation

convention.

Let there be given a mapping ϕ ∈ W 2,∞(ω,R3) such that:

aα(x) = ∂αϕ(x) = ∂ϕ

∂xα
(x)

are linearly independent at all point x of ω.

The vectors a1 and a2 represent the plane that is tangent to the surface S at any point

p = ϕ(x), denoted as TpS.The vector a3 represents the unit normal as specified by

a3(x) = a1(x) ∧ a2(x)
|a1(x) ∧ a2(x)|

The triplet (a1, a2, a3) denotes the covariant local basis at point ϕ(x), and (a1, a2, a3)

denote the contravariant basis which defined by the relation: ai · aj = δji , where: δ
j
i =

1 if i = j

0 if i 6= j

In particular,

a3(x) = a3(x)

The surface’s first fundamental form can be expressed in covariant components as

aαβ = aα · aβ

The contravariant components of the metric are given in [8] by:

aαβ = aα · aβ = (aαβ)−1 = 1
a

 a22 −a12

−a12 a11
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where a(x) = |a1(x) ∧ a2(x)|2 = det(aαβ) = a11a22 − (a12)2 such that the area of the

midsurface in the chart ϕ is represented by
√
a(x). Likewise, the length component `

on the boundary ∂ω is expressed as √aαβςαςβ, with the usual summation convention for

repeated indices and coefficients, where (ς1, ς2) are the covariant coordinates of the unit

vector tangent to ∂ω.

We further introduce the components of the second fundamental form

bαβ = a3 · ∂βaα = −aα · ∂βa3.

The mixed components are specified as

bβα = aβρbρα.

Finally the surfac with the Christoffel symbols Γραβ takes the form

Γραβ = Γρβα = aρ · ∂βaα = −∂βaρ · aα.

The Christoffel symbols are used to calculate the covariant derivative vectors for surface

tensors: 

∂βaα = Γραβaρ + bαβa3.

∂βa
α = −Γαβρaρ + bαβa3.

∂βa3 = ∂βa
3 = −bβρaρ = −bρβaρ.

1.2 Geometry of shell

The canonical orthogonal basis of R3 is denoted by (e1, e2, e3). We define the reference

configuration of a shell ω as a bounded connected domain in R2 with a Lipschitz boundary

∂ω.

Consider a shell that has a midsurface S = ϕ(ω̄) where:

ϕ : ω̄ ⊂ R2 −→ S ⊂ R3

x = (x1, x2) 7−→ ϕ(x)

22
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Figure 1.1: A geometry of thin shell and the function ϕ.

an injective mapping, considered to be sufficiently regular (at least C1 class on ω̄). The

figure (1.1) illustrates that every point on the midsurface is regular.

In the context of shell problems, there equations are not expressed on the surface in

three dimensions but are brought back to the reference domain ω. The function ϕ called

the shape function, contains the parameterization that links the reference domain to the

three-dimensional shell. The equations are written on the reference domain using several

entities of differential geometry, see examples in figures (1.2) and (1.3).

Figure 1.2: Parameterization of the shape function (A hyperbolic paraboloid ).

Now we can define undeformed shell, or the reference configuration of a shell with a

midsurface S and thickness ε,which is a subset of R3 such that :

C̄ =
{
φ(x, z) = ϕ(x) + za3(x), x ∈ ω̄ and − 1

2ε ≤ z ≤ 1
2ε
}
.
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Figure 1.3: Parameterization of the shape function (A cylinder ).

and the function ε : ω → R∗+ defines the measurement of thickness of the shell. The shell

is considered thin if ε(x) is modest in comparison to the midsurface’s smallest radius of

curvature and external dimensions.

The shell deforms when it is under the action of these following loads,

1. Clamped on the part ∂S0 = ϕ(∂γ0)×
[
−1

2ε,
1
2ε
]
of its boundary, where γ0 = ∂ω0 is

assumed to have strictly positive measure, i.e. mes(γ0) > 0.

2. Loaded by a force distribution with a resultant force f on the average surface.

3. Loaded on the complementary part ∂S1 = ϕ(γ1) = ∂S − ∂S0 of its boundary by a

force distribution with a resultant force N on γ1 and a resultant moment M .

With suitable a priori assumptions, different models of shells can be obtained. Subse-

quently, we mention two distinct models that are representative of the two major classes

of thin shell modeling. The first, by Koiter, relies on an assumption of norm conservation

during deformation. This model is representative of the family of classical Kirchhoff and

Love models.The second, by Naghdi, accounts for the consequences of transverse shear.

This model belongs to the family of E. and F. Cosserats. As the Koiter model can be

obtained as a particular case of the Naghdi model, we’ll stick with the description of the
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latter model.

1.3 Modeling of Naghdi’s shell

1.3.1 Geometric aspects of deformation

First, we present in the following paragraph: the asumptions of Kirchhoff-Love:

• A1: The distance between a location on the shell and the midsurface is constant

during deformation.

• A2: The vector a3 is converted into a vector a∗3 orthogonal to the deformed surface.

i.e.:

a∗3 = a∗1 ∧ a∗2
|a∗1 ∧ a∗2|

where a∗α = aα + ∂αu is the covariant base of the deformed surface. After lineariza-

tion, it can be verified that:

a∗3(x) = a3(x)− (∂αu · a3)aα.

• A3: The stresses are approximately planar to the middle surface.

Our Naghdi model considers membrane deformations, bending distortions, and transverse

shear impacts for homogeneous and isotropic shells. while adhering to the assumption

of plane stress (A3) and that of the conservation of distance between a point and the

midsurface during deformation (A1).

Therefore, the following points explain the deformed shell C∗:

C̄∗ =
{
φ∗(x, z) = ϕ∗(x) + za∗3(x), x ∈ ω̄ and − 1

2ε(x) ≤ z ≤ 1
2ε(x)

}
.

where

a∗3 = a3(x) + rαa
α
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ϕ∗(x) = ϕ(x) + u

where rαaα represents the linear covariant components of the rotation field associated with

the normal a3, and u indicates the change in position of the point ϕ(x) on the surface S.

The change in position of the point (the displacement) on the shell U(x, z) is expressed

as:

U(x, z) = φ∗(x, z)− φ(x, z)

= ϕ∗(x) + za∗3(x)− (ϕ(x) + za3(x))

= ϕ(x) + u(x) + z(a3(x) + rαa
α)− (ϕ(x) + za3(x))

= u(x) + zrαa
α

then

U(x, z) = u(x) + zr(x)

So, to determine the displacement U through the dimension of the shell (thickness), it

suffices to find the displacement u(x) of the average surface as well as the components rα
of the rotation of the normal a3.

1.3.2 The strain tensors of deformation

This subsection aims to introduce novel definitions for different strain tensors as presented

in Blouza’s work from 1997 [11]. Given ϕ ∈ C2(ω;R3), let u represent the movement of

the midsurface, and r denote a rotation of the normal vector a3.

In the traditional method, rotation and displacement are continuous functions of ω in R3,

represented by the triplet (u)i, i = 1, 2, 3 and the pair (r)α, α = 1, 2 of their covariant

elements such that:

if ui = u · ai then u(x) = ui(x)ai(x)

and

if rα = r · aα then r = rα(x)aα(x)
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The tangential components of u and the components of r have covariant derivatives defined

as:

uα|β = ∂βuα − Γραβuρ

and

rα|β = ∂βrα − Γραβrρ.

We review the linearized tensors representing deformation, transverse shearing deforma-

tion, and curvature change of the average surface of the shell. The definitions are provided

within the functional framework established in the classical method of Bernardou, Ciarlet,

and Miara. The classical linearized strain tensor is defined as

γβα(u) = 1
2(uβ|α + uα|β)− bβαu3. (1.1)

The classical linearized change of curvature tensor is

χαβ(U) = 1
2(rα|β + rβ|α)− 1

2b
ρ
α(uρ|β − bρβu3)− 1

2b
σ
β(uσ|α − bσαu3). (1.2)

Finally, the classical linearized transverse shear strain is noted by

δα3(U) = 1
2(∂αu3 + bραuρ + rα). (1.3)

Such that U = (u, r).

Now, we recall alternative formulations for the different strain tensors that are more

basic and inherent than equations (1.1)-(1.3).

We may demonstrate the existence and uniqueness of general shells with potentially dis-

continuous curvatures by utilising these equations. Double backslash In this context, we

consider the displacement and rotation u, r as mappings from ω to R3, rather than iden-

tifying them with their covariant components. then, we obtain the following symmetrized

expressions when using the same idea as that used in [14].

The updated covariant elements of the metric tensor transformation are

γnβα(u) = 1
2(∂βu · aα + ∂αu · aβ), (1.4)

The new covariant elements of the change in the transverse shear tensor are:

δnβ3(U) = 1
2(∂βu · a3 + r · aβ), (1.5)
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The new covariant elements of the curvature tensor change are:

χnαβ(U) = 1
2(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα). (1.6)

Following [12], These quantities are applicable to little regularity shells and can be

straightforwardly represented using the Cartesian coordinates of the unknowns and geo-

metric data.

We consider the case of an isotropic and homogeneous material with a Young modulus

E greater than 0 and a Poisson ratio ν, where 0 is less than or equal to ν and ν is less

than 1
2 .

The elasticity tensor aαβρσ ∈ L∞(ω) with contravariant components is determined by the

expression:

aαβρσ = E

(2 + 2ν)(aαρaβσ + aασaβρ) + Eν

1− ν2a
αβaρσ. (1.7)

This tensor adheres to the typical symmetry properties and is uniformly strictly positive,

indicating the existence of a positive constant c such that:

aαβρσγnαβγρσ ≥ c
∑
α,β

|γnαβ|2, (1.8)

for all 2 × 2 symmetric real-valued matrices. The symbol γ represents a matrix with

elements γnαβ, for 1 ≤ α, β ≤ 2.

1.3.3 Constrained variational formulation

It is assumed that the boundary of the chart, denoted as ∂ω is composed of two com-

ponents: γ0 which represents a strictly positive one-dimensional measure and serves as

the clamping point for the shell, and γ1 = ∂ω \ γ0,which represents the boundary across

which the shell is subjected to applied tractions and moments. In order to satisfy these

boundary conditions, we establish the space H1
γ0(ω) as the collection of functions µ within

H1(ω) that have a value of zero on γ0.
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H1
γ0(ω) = {µ ∈ H1(ω); µ = 0 on γ0}

Now, let’s present the space introduced in reference [15]:

V =
{
V = (v, s) ∈ H1(ω)3 ×H1(ω)3 | s · a3 = 0 in ω, v|γ0 = s|γ0 = 0

}
, (1.9)

endowed with the natural Hilbert norm

‖V ‖V = ‖(v, s)‖V =
(
‖v‖2

H1(ω)3 + ‖s‖2
H1(ω)3

) 1
2 (1.10)

Lemma 1.3.1 The space V is a Hilbert space.

Proof. The proof of this lemma is detailed in [10]

The Naghdi shel model is represented by the variational form given below:
Find U = (u, r) ∈ V such that

a(U, V ) = L(V ), ∀V = (v, s) ∈ V ,
(1.11)

where

a(U, V ) :=
∫
ω
({εaαβρσ

[
γnαβ(u)γnρσ(v) + ε2

12χ
n
αβ(U)χnρσ(V )

]

+ 2εE
1 + ν

aαβδnα3(U)δnβ3(V ))}
√
adx,

(1.12)

and

L(V ) :=
∫
ω
f · v
√
adx+

∫
γ1

(N · v +M · s)` dς. (1.13)

The data f ∈ L2(ω)3, N ∈ L2(γ1)3 and M ∈ L2(γ1)3 represent a given resultant force

density, an applied traction density and an applied moment density, respectively.

Theorem 1.3.2 For any data (f,N,M) ∈ L2(ω)3 × L2(γ1)3 × L2(γ1)3, problem (1.11)

admits a unique solution U in V(ω). Moreover, this solution satisfies:

‖U‖V(ω) ≤ c‖L‖

The following form of the infinitesimal rigid displacement lemma is a key part of the proof.

It works for a W 2,∞ shell and relies on expressions (1.4), (1.5), and (1.6).
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Lemma 1.3.3 (Rigid Displacement Lemma [15]) Let u ∈ H1(ω,R3) and r ∈ H1(ω,R3)

such that r · a3 = 0 with ϕ ∈ W 2,∞(ω,R3).

• In the case where u is such that γn(u) = 0, then a distinct ψ̃ ∈ L2(ω,R3) exists ans

satisfy:

∂αu = ψ̃ × aα, α = 1, 2. (1.14)

• If, in addition, u and r satisfy δ3
α(u, r) = 0, then ∂αu = −r × aα belong to H1(ω).

Moreover, r · aα = −eαβaβ · ψ̃ with e11 = e22 = 0 and e12 = −e21 =
√
a.

• If, in addition, χ(u, r)n = 0, then ψ̃ is identified with a constant vector in R3, and

for all x ∈ ω:

u(x) = c+ ψ̃ × ϕ(x),

where c is a constant in R3 and

r(x) = −(eαβaβ·)aα(x).

Proof.

• For a proof of the existence and uniqueness of the infinitesimal rotation vector ψ̃

such that (1.14) holds true, refer to [13].

• If we assume δ3
α(u, r) = 0, then

∂αu · a3 = −r · aα ∈ H1(ω), (1.15)

since r ∈ H1(ω,R3) and aα ∈ W 1,∞(ω,R3). Therefore, we have

r · aα = (aα ∧ a3) · ψ̃ = −εαβaβ · ψ̃.

• Let us first note that under the previous hypotheses, we have, because of the formula

(1.15),

∂αβu · a3 = ∂β(∂αu · a3)− ∂αu · ∂βa3 = −∂β(r · aα)− ∂αu · ∂βa3 ∈ L2(ω). (1.16)
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because ∂βa3 ∈ L∞(ω,R3). It follows, by (1.16), that

χnαβ(u, r) = 1
2(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα)

= 1
2 (∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂α(r · aβ) + ∂β(r · aα)− 2r · ∂αaβ)

= 1
2(−2∂αβu · a3 − 2r · ∂αaβ)

= −(∂αβu · a3 + Γραβr · aρ),

since ∂αaβ = Γραβaρ. Then, using (1.15), we see that

χαβ(u, r) = −(∂αβu− εαβρ∂ρu) · a3. (1.17)

If we assume now that χn(u, r) = 0, we just need to use the infinitesimal rigid

displacement lemma valid for W 2,∞-Koiter shell given in [14] to complete the proof.

Now we require the following lemmas to prove the V -ellipticity of the bilinear form of

(1.11).

Lemma 1.3.4 There is a constant C > 0 so that

a(V, V ) ≥ C
(
‖γn(v)‖2

L2(ω) + ‖χn(V )‖2
L2(ω) + ‖δnα3(V )‖2

L2(ω)

)1/2

for all V = (v, s) ∈ (H1(ω,R3))2.

Proof. This is clear in view of inequality (1.8) and the fact that aαβ(x)ηαηβ ≥ Cγnα(ηα)2

for all x ∈ ω.

Lemma 1.3.5 The bilinear form of the problem (1.11) is V-elliptic.

Proof. Given the previous Lemma and the assumptions made about the chart ϕ, the

elasticity tensor, and the thickness of the shell, it suffices to demonstrate that

‖(V )‖ =
(
‖γn(v)‖2

L2(ω) + ‖χn(V )‖2
L2(ω) + ‖δnα3(V )‖2

L2(ω)

)1/2

is a norm on V that is bounded from below by a multiple of the natural norm (1.10) of

V , see [15] to complete the proof.
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Proof. (Proof of Theorem (1.3.2))

It’s clear that the bilinear and linear forms in (1.11) are continuous on V . Along with

Rellich’s theorem and the two-dimensional Korn inequality, we just used a contradiction

argument to show that the bilinear form is V-elliptic. The Lax-Milgram lemma applied

to problem (1.11) shows that there is existence and uniqueness.

Remark 1.3.1 We can represent the problem described in equation (1.11) as a set of

partial differential equations according to reference [5]. Let’s establish the operator:

Ā : H1(ω)3 ×H1(ω)3 −→ H−1(ω)3 ×H−1(ω)3

by duality as follows: 〈Ā U, V 〉 = a(U, V )

The Neumann operator associated with it, denoted as

N̄ : H1(ω)3 ×H1(ω)3 −→ H
1/2
00 (γ1)3 ×H1/2

00 (γ1)3

defined by 〈N̄U, V 〉 = a(U, V )− 〈Ā(U, V ))〉

Note that this necessitates an additional regularity property (for example, if ĀU ∈ L2(ω)3)

which we assume here. Therefore, in terms of distributions, it can be readily verified that

the solution to problem (1.11) produces the subsequent system:

ĀU =

 f
√
a

0

 in ω

r · a3 = 0 in ω

u = r = 0 on γ0

N̄U =

 Nl

Ml

 in γ1

(1.18)

1.3.4 Mixed variational formulation

For the general shell situation, the constraint s · a3 which appears in the definition of

V cannot be implemented in astandard conforming way. This amounts to say that the
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problem (1.11) cannot be approximated by conforming methods for a general shell [12].

The approach used here consists in introducing a Lagrange multiplier in order to handle

the tangency requirement on the rotation.

X = H1
γ0(ω)3 ×H1

γ0(ω)3,

Still possessing the norm specified in Equation (1.10), now represented as ‖ · ‖X.

We also established

M = H1
γ0(ω) =

{
µ ∈ H1(ω); µ = 0 on γ0

}
.

So, the mixed variational problem is as follows :

Find (U, ψ) in X×M such that

a(U, V ) + b(V, ψ) = L(V ) ∀V ∈ X

b(U, χ) = 0 ∀χ ∈M

(1.19)

where

b(V, χ) =
∫
ω
∂α(s · a3)∂αχ dx. ∀(V, χ) ∈ X×M, (1.20)

The form b(·, ·) is continuous on X×M because a3 in W 1,∞(ω)3.

In addition, the following description is accurate:

V = {V ∈ X | ∀χ ∈M, b(V, χ) = 0}.

Lemma 1.3.6 There exists a positive constant c∗ such that

∀χ ∈M sup
V ∈X

b(V, χ)
‖V ‖X

≥ c∗‖χ‖M (1.21)

Proof. The inf-sup condition for the form b(·, ·) may be obtained by setting V = (0, χa3).

Theorem 1.3.7 [58] Let f ∈ L2(ω) be a given force resultant density. Then the mixed

variational problem (1.19) has a unique solution (U, ψ) in X ×M, which is such that U

is the solution of Naghdi’s problem (1.11). Moreover, this solution satisfies:

‖U‖X + ‖ψ‖M ≤ ‖f‖
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Proof. (See [39] lemma 4.1.)

A similar as (1.18), the mixed problem (1.19) can be written as a system of partial

differential equations. This ones using an explicit form of the operators Ā and N̄ , see [9].

−∂ρ
(
(nρσ(u)aσ +mρσ(U)∂σa3 + qρ(U)a3)

√
a
)

= f
√
a in ω,

−∂ρ(mρσ(U)aσ
√
a) + qβ(U)aβ

√
a+ ∂ρρψa3 = 0 in ω,

r · a3 = 0 in ω,

u = r = 0 on γ0,

ψ = 0 on γ0,

νρ
(
(nρσ(u)aσ +mρσ(U)∂σa3 + qρ(U)a3)

√
a
)

= Nl on γ1,

νρ(mρσ(U)aσ
√
a+ ∂ρψa3) = Ml on γ1,

(1.22)

Where

nαβ(u) = εaαβρσγαβ(u), the stress resultant

mαβ(U) = ε

3a
αβρσχαβ(U), the stress couple

qβ(U) = ε
E

1 + ν
aαβδα3(U). the transverse shear force.
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Chapter 2

Contact Problem of a Naghdi’s shell

In this chapter, we present a contact Naghdi’s shell model proposed in [47]. We adopt

the geometric preliminaries and notations introduced in pervious sections.

In this context, we are considering Naghdi’s shell model in the free-basis formulation. This

formulation is based on the idea of using Cartesian coordinates for the unknowns, which

facilitates the handling of contact between the shell and an obstacle. The construction

and the implementation of conforming finite element methods in FreeFem++ software

for this formulation is easier unlike the curvilinear coordinates, despite of adventage of

absence the constraint imposed on the rotation field (which must be tangential to the

middle surface) if we use the last coordonates. The contact model is predicated on the

assumption that:

• During the deformation of the shell, the distance between a given point and its

orthogonal projection onto the midsurface remains constant.
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• Although the nodes remain on a line that is normal to the midsurface, this line is

no longer normal to the midsurface that has been deformed

• The two-dimensional model incorporates two unknown variables: the displacement u

of the shell midsurface points and the linearized rotation field r, which characterises

the midsurface’s normal straight fibre rotation.

~e1

~e3

~e2

M = ϕ(ω̄)

γ0, Γε0 = γ0×]− ε
2 ,

ε
2 [f

ε

a3
a2

a1 aα =
∂ϕ

∂xα
, α = 1, 2

a3 =
a1 ∧ a2
|a1 ∧ a2|

Figure 2.1: A shell in contact with a rigid obstacle

2.1 The derivation of model

The midsurface S = ϕ(ω̄) of the shell C and thickness ε is defined as follows:

C̄ =
{
ϕ(x) + za3(x), x ∈ ω̄ and − 1

2ε(x) ≤ z ≤ 1
2ε(x)

}
,

which z is the distance of a point on the shell to its midsurface. Here, we are interested

in studying the contact of this shell with a rigid obstacle contained in the half-space

z · e3 < 0

and such that its boundary occupies the whole plane z · e3 = 0. Therefore, from now on,

we assume without restriction that the function ϕ satisfies:

ϕ · e3 > 0, for all x ∈ ω
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Thus, the contact occurs on part of the lower surface of the shell, specifically on the

surface {
ϕ(x)− ε

2a3, x ∈ ω̄
}

As standard for contact models, the contact condition combines three equations or

inequalities:

2.1.1 The contact conditions

• The positions of the shell and of the obstacle:

As a result of the shell model, the deformed shell C∗ has its midsurface

S∗ = ϕ∗(ω̄), ϕ∗ = ϕ+ u

Now, we set: a∗3 = a3 + r

C̄∗ =
{
ϕ∗(x) + za∗3(x), x ∈ ω̄ and − 1

2ε(x) ≤ z ≤ 1
2ε(x)

}
.

Therefore, the fact that the shell is above the obstacle can be expressed as:

∀x ∈ ω̄ − 1
2ε(x) ≤ z ≤ 1

2ε(x) ((ϕ∗(x) + za∗3(x))) · e3 ≥ 0.

If we choose z = − ε
2 then

∀x ∈ ω̄
(
ϕ(x)− ε

2a3 + u(x)− ε

2r(x)
)
· e3 ≥ 0.

Let’s set

Φ(x) =
(
ε

2a3(x)− ϕ(x) · e3

)
(2.1)

thus Φ ∈ W 1,∞(ω) , and from now on, we assume that

Φ(x) ≤ 0 for a. e x in ω. (2.2)
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Due to the non-negativeness of a3 · e3 and the positivity of ϕ · e3, it follows that the

contact model is cleary useless without this condition. If the shell is not flat and

the thickness ε is not too big, then (2.2) is true,i.e:

ε

2 max
x∈ω̄

a3(x) · e3 ≤ min
x∈ω̄

ϕ(x) · e3. (2.3)

Therefore, if the shell is flat, meaning if a3 ·e3 = 0 on ω, then (2.3) holds (and hence

(2.2)), ∀ ε > 0.

Conversely, if maxx∈ω̄ a3(x) · e3 > 0, then (2.3) holds if and only if

ε ≤ ε0 := 2 minx∈ω̄ ϕ(x) · e3

maxx∈ω̄ a3(x) · e3
.

Therefore (2.2) holds under this last constraint on ε.

The first contact inequality takes the form:
(
u− ε

2r
)
· e3 ≥ Φ a.e in ω.

Let ωc represent the contact zone, defined as the set of points x in ω satisfying:
(
u− ε

2r
)
· e3 = Φ a.e in ω (2.4)

• Reaction of the obstacle:

In the situation that we consider, the reaction of the obstacle due to the presence

of the shell is of the form λe3 for a scalar function λ. Thus, in the right-hand side

of the equation, the term ∫
ω
f · v

√
a dx

must be replaced by:
∫
ω
f · v

√
a dx+

∫
ω
λe3 · (v −

ε

2s) dx

Moreover, since the shell is above the obstacle, we have:

λ ≥ 0 in ω.
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• Location of the reaction

Naturally, the reaction of the obstacle is confined to the contact zone ωc defined by

(2.4). This results in the complementarity equation

λ
((
u− ε

2r
)
· e3 − Φ

)
= 0 in ω.

2.1.2 System of inequalities

Taking into account all of above contact conditions, we derive the model for the

contact of the shell, where the unknowns are the deformation of the shell u, its

rotation r and the reaction coefficient λ:

ĀU −

 λe3

− ε
2λe3

 =

 f
√
a

0

 in ω

r · a3 = 0 in ω(
u− ε

2r
)
· e3 ≥ Φ, λ ≥ 0, λ

((
u− ε

2r
)
· e3 − Φ

)
= 0 in ω

u = r = 0 on γ0

N̄U =

 Nl

Ml

 in γ1

(2.5)

2.1.3 Variational inequalities formulation

First, we introduce the cone of nonnegative distributions in the dual space of H1
γ0(ω):

Λ = {µ ∈M′; ∀σ ∈M, σ ≥ 0, 〈σ, µ〉 ≥ 0},

with the bilinear form c : X×M′ → R defined by

c(V, µ) =
〈(
v − ε

2s
)
· e3, µ

〉
, ∀(V, µ) ∈ X×M′. (2.6)
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Following [5], the variational problem of the contact Naghdi is:

Find (U, ψ, λ) ∈ X×M× Λ such that :

a(U, V ) + b(V, ψ)− c(V, λ) = L(V ), ∀V ∈ X

(U, χ) = 0, ∀χ ∈M

c(U, µ− λ) ≥ 〈Φ, µ− λ〉 . ∀µ ∈ Λ

(2.7)

Proposition 2.1.1 Assume that the data are sufficiently smooth. Hence any triplet

(U, ψ, λ) in X×M×Λ is a solution of Problem (2.7) if and only if it satisfies the system

(2.5).

Proof. The equivalence between the problem (2.7) and (2.5 ) is done in [5]

A closely related yet simpler system is examined in [20] [65].

Nevertheless, our approach in this analysis differs slightly. We are introducing an

initial simplified version of the problem.

Find (U, λ) ∈ V × Λ such that :

a(U, V )− c(V, λ) = L(V ), ∀V = (v, s) ∈ V(ω),

c(U, µ− λ) ≥ 〈Φ, µ− λ〉. ∀µ ∈ Λ.

(2.8)

Proposition 2.1.2 Problems (2.7) and ( 2.8) are equivalent, in the following sense:

1. Given that (U, ψ, λ) solves problem (2.7), then the pair (U, λ) also solves Problem

(2.8).

2. If (U, λ) is a solution to problem ( 2.8), then there is a unique function ψ in M such

that the triple (U, ψ, λ) is a solution to problem (2.7).

However, this is not sufficient to prove the existence of a solution for problem (2.7). We

now introduce the convex set

KΦ =
{
V ∈ V ;

(
v − ε

2s
)
· e3 ≥ Φ, a.e. in ω

}
(2.9)

We consider the problem:
Find U ∈ KΦ such that :

a(U, V − U) ≥ L(V − U) ∀V = (v, s) ∈ KΦ.
(2.10)

Therefore, we can now state the following proposition:
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Proposition 2.1.3 For any data (f,N,M) in L2(ω)3×L2(γ1)3×L2(γ1)3 problem (2.10)

has a unique solution U in KΦ

Proof.

1. KΦ is closed, convex set.

2. Φ ≤ 0 then the set KΦ is not empty.

3. a(·, ·) is V-elliptic.

Then, the existence and uniqueness of a solution to problem (2.10) follows directly from

the Lions-Stampacchia theorem [53].

Remark 2.1.1 To establish the existence of a solution for problem (2.8), and therefore

for problem (2.7), we assume: In order to ascertain the presence of a solution for problem

(2.8), and consequently problem (2.7), the following assumptions are made:

• c(·, ·) satisfies the inf-sup condition belongs to V.

• The function Φ satisfies

Φ(x) = 0 for a.e x ∈ γ0. (2.11)

then the Problem (2.8) has at least a solution (U, λ) ∈ V × Λ. Consequently from [5] the

problem (2.7) has a unique solution using the proposition (2.1.2).

2.2 New well posdness analysis

In what follows, we are mainly interested in the discretization of problem (2.10). It

must be noted from Proposition (2.1.3) that the well-posedness of this problem requires

no further assumption. However, if assumption (2.11) is not satisfied, there is no link

between this problem and the contact model in the subsequent discussion.

Furthermore, from a numerical point of view, the constraint r · a3 = 0 is not easy to

handle since the direction of a3 is not constant. For this reason the paper [5] proposed

new variational model of Naghdi’s contact defined by:
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Problem 1 Find (U, ψ) in NΦ ×M such that
a(U, V − U) + b(V − U, ψ) ≥ L(V − U), ∀V ∈ NΦ,

b(U, χ) = 0, ∀χ ∈M,
(2.12)

where NΦ is a closed convex set of X given by

NΦ :=
{
V ∈ X;

(
v − ε

2s
)
· e3 ≥ Φ a.e. in ω

}
. (2.13)

The primary objective of this chapter is to give another proof in the spirit of [65] based on

a perturbation technique. Since r ·a3 = 0 a.e. in ω, verifying that Problem 1 is equivalent

to the subsequent problem is straightforward:

Problem 2 

Find (U, ψ) ∈ NΦ ×M such that

aρ(U, V − U) + b(V − U, ψ) ≥ L(V − U), ∀V ∈ NΦ,

b(U, χ) = 0, ∀χ ∈M,

(2.14)

For any real parameter ρ > 0, we define:

aρ(U, V ) = a(U, V ) + ρ
∫
ω
∂α(r · a3)∂α(s · a3) dx, ∀U, V ∈ X.

Remark 2.2.1 Note that the bilinear form a(·, ·) is not X-elliptic (see [12, Lemma 3.3]).

Replacing the bilinear form a((·, ·), (·, ·)) by aρ((·, ·), (·, ·)) allows us to recover the ellip-

ticity over the space X, where as soon as ρ > 0.

2.2.1 A compact formulation of reduced problem

It is clear that neither Problem reduced nor Problem 2 is in the "standard" form of

variational inequalities, i.e., a single variational inequality. In this subsection following

[43], we first rewrite Problem 2 in a compact form involving a single variational inequality

set in a closed convex set.

H = X×M (2.15)
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and

K = NΦ ×M.

which is a closed convex set. The bilinear form is defined as follows: Aρ : K × K → R

through

Aρ((W,µ); (V, χ)) := aρ(W,V ) + b(V, µ) + b(W,χ),

Subsequently, expressing Problem 2 concisely can be formulated as:

Problem 3 Find (U, ψ) in K such that

Aρ((U, ψ);V − U, χ)) ≥ L(V − U), ∀(V, χ) ∈ K. (2.16)

The next lemma is useful for proving the existence result.

Lemma 2.2.1 ([47]) 1

The bilinear form b(·, ·) fulfills the subsequent inf-sup condition:

∃c∗ > 0 such that sup
W∈W(ω)

b(W,χ)
‖W‖X

≥ c∗‖χ‖M, ∀χ ∈M, (2.17)

Where W denotes the closed subspace of X, which is encompassed within NΦ, as defined

by:

W := {(v, s) ∈ X; (v − ε

2s) · e3 = 0}.

Befor making the proof, we first recall the general result of ([39] Lemma 4.1):

Let’s X and M denotes two Hilbert spaces with the normes ‖ · ‖X and ‖ · ‖M respectively.

Let b(·, ·) : X ×M → R continuous belinear form, and

V = {v ∈ X | b(v, µ) = 0, ∀µ ∈M}

We introduce B′ : X →M ′ the dual operator of B i.e:

〈Bv, µ〉 = b(v, µ) = 〈v,B′µ〉 , ∀(v, µ) ∈ X ×M (2.18)

1S. Khenfar, S. Nicaise, and I. Merabet. On the finite element approximation of the obstacle problem

of a naghdi shell.
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Lemma 2.2.2 ([39]) The three following properties are equivalnet:

(i) There exists a constant β > 0 such that

inf
µ∈M

sup
v∈X

b(v, µ)
‖µ‖M‖v‖X

≥ β (2.19)

(ii) The operator B′ is an isomorphism from M onto the polar set V ◦ of V and

‖B′µ‖X′ ≥ β‖µ‖M ∀µ ∈M (2.20)

(iii) The operator B is an isomorphism from V ⊥ onto M ′ and

‖Bv‖M ′ ≥ β‖v‖X ∀v ∈ V ⊥ (2.21)

Proof.

1. Let us show that (i) ⇔ (ii): by (2.18) the first statment is equivalent to

sup
v∈X

〈B′µ, v〉
‖µ‖M‖v‖X

≥ β

that is (2.19) is equinalent to (2.20) it remains to prove that B′ is an isomorphism.

Clearly, (2.20) implies that B′ is a one to one operator from M onto its range R(B′).

Thus we are led to prove that R(B′) = V ◦. For this, we remark that R(B′) is a

closed subspace of X ′, since B′ is an isomorphism. Therefore, we can apply the

closed range theorem of Banach which says that R(B′) = (Ker(B))◦ = V ◦. the

first part of proof is complete.

2. (ii)⇔ (iii): We observe that V ◦ can be identified isometrically with (V ⊥)′. Indeed,

for v ∈ X, let v⊥ denote the orthogonal projection of v on V ⊥. Then, with each

z ∈ (V ⊥)′ we associate the element z̃ of X ′ defined by 〈z̃, v〉 =
〈
z, v⊥

〉
∀v ∈ X.

Obviously z̃ ∈ V ◦ and it is easy to check that the correspondence z −→ z̃ maps

isometrically (V ⊥)′ onto V ◦. This permits to identify (V ⊥)′ and V ◦. So, statement

(ii) and (iii) are equivalent.
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Proof. ( of Lemma (2.2.1)) If we consider χ ∈ M, then W̃ = (2
ε
χe3, χe3) ∈ W and

meets the condition

‖W̃‖X ∼ ‖χ‖M.

As a result, one obtains

sup
W )∈W

b(W ), χ)
‖W‖X

≥ b(W̃ , χ)
‖W̃‖X

∼
|χ|21,ω
‖χ‖M

& ‖χ‖M.

for each W = (w, r̃)

Theorem 2.2.3 ([47]) For any data For (f,N,M) ∈ L2(ω)3×L2(γ1)3×L2(γ1)3, Problem

3 has a unique solution.

Proof. The proof is done in four steps: First step:

It is noteworthy to mention that the bilinear form A(·, ·) does not exhibit coercivity across

the entire X ×M space. As a result, it is not possible to explicitly deduce the existence

and uniqueness of Problem 2 using Stampacchia’s theorem. Undoubtedly, a perturbed

bilinear form Ap is introduced, which is dependent on a minor positive parameter p.

The form is described as follows:

Ap((W,µ); (V, χ)) := aρ(W, ) + b(V, µ) + b(W,χ) + p(W,V )X + p(µ, χ)M,

With (·, ·)X and (·, ·)M representing the inner products in X and M respectively, we then

investigate the ensuing perturbed problem:

Problem 4 Find (Up, ψp) in K such that

Ap((Up, ψp); (V − Up, χ)) ≥ L(V − Up), ∀(V, χ) ∈ K. (2.22)

Given the coercivity of the bilinear form Ap on the space H, Stampacchia’s theorem

guarantees a unique solution for Problem 4. It is imperative to establish the connection

between the solution of Problem 4 and Problem 3.
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Second step

In this step, we show that the sequence (Up, ψp) is uniformly bounded in p.

The solution (Up, ψp) of Problem 4 satisfies

aρ(Up, V − Up) + b(V − Up, ψp) + p(Up, (V − Up) ≥ L(V − U),

∀V ∈ NΦ,

b(Up, χ)− p(ψp, χ)M = 0, ∀χ ∈M(ω),

(2.23)

Since (0X,0M) ∈ K. Then, we can establish the following bound:

p‖Up‖X + p‖ψp‖M ≤ ‖L‖X′ . (2.24)

Third step:

From the last step,possibly passing to a sub-sequence, we can assume that (Up, ψp) con-

verges weakly to an element (U∗, ψ∗) ∈ K × Λ.

Our aim now is to show that the limit (U∗, ψ∗) satisfies problem (3). Now, we introduce

the functional G : M→ R, defined as follows:

∀χ ∈M, G(χ) = p(ψp, χ).

It’s evident that G ∈M′, and according to (2.24), we obtain the subsequent bound:

‖G‖M′ . ‖L‖X′ . (2.25)

By Lemma (2.2.2 ) there exists a unique solution Qp ∈W of

b(Qp, χ) = G(χ), ∀χ ∈M,

such that

‖Qp‖X . ‖G‖M′ . (2.26)

Therefore Up −Qp ∈ NΦ and by the second line in (2.23) we have

b(Up −Qp, χ) = 0 ∀χ ∈M

whence,

Up −Qp ∈ NΦ ∩ V .
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Substituting V = Qp into the first line of (2.23), we obtain:

aρ(Up, Qp − Up) + b(Qp − Up, ψp) + p(Up, Qp − Up) ≥ L(Qp − Up),

and subtracting aρ(Qp, Qp − Up) from both sides we obtain

aρ(Up −Qp, Qp − Up) + p(Up, Qp − Up) ≥ L(Qp − Up)− aρ(Qp, Qp − Up).

Then using (2.24), (2.25), (2.26) and the Cauchy-Schwarz inequality we get

aρ(Up −Qp, Up −Qp) ≤ L(Up −Qp)− aρ(Qp, Up −Qp) + p(Up, Qp − Up)

. ‖L‖X′‖Up −Qp‖X.

Using the fact that Up−Qp ∈ V and Considering the coercivity of the bilinear form a(·, ·)

over the space V , we obtain:

‖Up −Qp‖X . ‖L‖X′ . (2.27)

Applying the triangle inequality, (2.27) and (2.26) collectively imply:

‖Up‖X . ‖L‖X′ . (2.28)

It’s important to note that the hidden constant in this final estimate is independent of p.

Now, we aim to bound ‖ψp‖M. Since ∀(v, s) ∈ NΦ

aρ(Up, V − Up) + b(V − Up, ψp) + p(Up, V − Up) ≥ L(V − U),

Subsequently (considering that W is a closed subspace included in NΦ)

∀(v, s) ∈W, aρ(Up, V ) + b(V, ψp) + p(Up, V ) = L(V )

This can be expressed as

b(V, ψp) = L(V )− aρ(Up, V )− p(Up, V ), ∀(v, s) ∈W.

Once more, the inf-sup inequality (2.17), along with the Cauchy-Schwarz inequality, and

(2.28), indicate that

‖ψp‖M . ‖L‖X′ . (2.29)
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Using the estimate (2.29) and the second line in (2.23), we infer that

lim
p→0

b(Up, χ) = 0, ∀χ ∈M and lim
p→0

b(Up, ψp) = 0. (2.30)

Collecting (2.28) and (2.29) we conclude that the sequence ((Up, ψp))p is uniformly bounded

in the Hilbert space X×M.

Consequently, there exists (U∗, ψ∗) ∈ K ((bearing in mind that (Up, ψp) ∈ K for all p)

such that

(Up, ψp) ⇀ (U∗, ψ∗) ∈ X×M weakly as p→ 0.

For any V ∈ NΦ we have,

L(V − Up) ≤Ap((Up, ψp); (V − Up, χ))

Since

Ap((Up, ψp); (V − Up, χ)) = Aρ((Up, ψp); (V − U)p, χ))

+ p(Up, V − Up) + p(ψp, χ) = aρ(Up, V − Up) + b(Up, χ)

+ b(V − Up, ψp) + p(Up, V − Up) + p(ψp, χ) = aρ(Up, (v, s)) + b(V, ψp)

+ p(Up, (v, s))− a(Up, Up)− p(Up, Up) + p(ψp, χ) + b(Up, χ)− b(Up, ψp)

= aρ(Up, V ) + b(V, ψp)− a(Up, Up) + p(Up, V )− p(Up, Up)

+ b(Up, χ)− b(Up, ψp) + p(ψp, χ),

we then have,

L(V − Up) ≤ aρ(Up, (v, s)) + b(V, ψp)− a(Up, Up) + p(Up, V )

− p(Up, Up) + b(Up, χ)− b(Up, ψp) + p(ψp, χ).

By allowing p to 0 (utilizing (2.30)), we obtain

aρ(U∗, V ) + b(V, ψ∗)− lim
p→0

aρ(Up, Up) ≥ L(V − U∗).

Since,

lim
p→0

aρ(Up − U∗, Up − U∗) ≥ 0
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then

lim
p→0

aρ(Up, Up) ≥ a(U∗, U∗).

Combining the aforementioned inequalities with (2.30), we can express

aρ(U∗, V − U∗) + b(V, ψ∗) ≥ L(V − U∗), ∀(v, s) ∈ NΦ,

b(U∗, χ) = 0, ∀χ ∈M.

Therefore (U∗, ψ∗) is a solution of Problem 3.

Fourth step:

Now, let’s demonstrate the uniqueness. Consider (U1, ψ1) ∈ K and (U2, ψ2) ∈ K as two

solutions of Problem 3. Then

aρ(U1, U2 − U1) + b(U2 − U1, ψ1) ≥ L(U2 − U1),

b(1, χ) = 0 ∀χ ∈M.

and

aρ(U2, U1 − U2) + b(U1 − U2, ψ2) ≥ L(U1 − U2),

b(U2, χ) = 0 ∀χ ∈M.

Since U1 and U2 ∈ V , Consequently, we have
a(U1, U2 − U1) ≥ L(U2 − U1),

a(U2, U1 − U2) ≥ L(U1 − U2).
(2.31)

Hence

a(U1 − U2, U1 − U2) ≤ 0,

which implies that U1 = U2 using the coercivity of a(·, ·) on V .

From the inf-sup condition (2.17) we can get the uniqueness of ψ. Also, since,

a(U, (V − U) + b(V − U, ψ) ≥ L(V − U), ∀(v, s) ∈ NΦ,
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therefore

a(U,W ) + b(W,ψ) = L(W ), ∀W ∈W. (2.32)

Suppose (U, ψ1) ∈ K and (U, ψ2) ∈ K are two solutions of Problem 3, then the inf-sup

condition (2.17) and (2.32) imply that

‖ψ1 − ψ2‖M ≤ sup
W∈W (ω)

b(W,ψ1 − ψ2)
‖W‖X

= 0,

which leads to ψ1 = ψ2.

Now, let c# and c# denote the coercivity and the continuity constants of the form aρ(·, ·)

on X, respectively.

2.2.2 First stability result

Based on the following stability condition, we can built our error analysis.

Lemma 2.2.4 ([47]) For any (W, ξ) ∈ X×M there exists V ∈ X such that:

Aρ((W, ξ); (V,−η)) ≥ C1 (‖W‖X + ‖ξ‖M)2 , (2.33)

‖V ‖X + ‖ξ‖M ≤ C2‖W‖X + ‖ξ‖M. (2.34)

where C1 and C2 are two positive constants depending only on the constants c#, c# and

c∗.

Proof. Let (W, η) ∈ X×M and let Q ∈ X be the unique solution of the following problem:
Find Q ∈X such that

aρ(Q,Z) + (Q,Z)X = b(Z, η), ∀Z ∈ X.
(2.35)

By substituting Z = Q in (2.35) we obtain

‖Q‖2
X ≤ b(Q, η).

The Cauchy-Schwarz inequality implies

‖Q‖2
X . ‖Q‖X‖ξ‖M.
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This simplifies to

‖Q‖X . ‖ξ‖M.

Moreover, due to the inf-sup condition, we have

‖ξ‖M . sup
Z∈X

b(Z, η)
‖Z‖X

.

Using (2.35) and Cauchy-Schwarz’s inequality, we get

‖ξ‖M . ‖Q‖X.

Thus ‖Q‖X ∼ ‖ξ‖M.

We now take (v, s) = W + δQ, where 0 < δ <
c#

c2
#
, and get

Aρ((W, ξ); (v,−ξ)) = Aρ((W, ξ); (W + δQ,−ξ))

= aρ(W,W + δQ) + b(W + δQ, ξ) + b(W,−ξ)

= aρ(W,W ) + δaρ(W,Q) + b(W, ξ) + δb(Q, ξ)− b(W, ξ)

= aρ(W,W ) + δaρ(W,Q) + δb(Q, ξ)

≥ c#‖W‖2
X −

δc2
#

2 ‖W‖
2
X −

δ

2‖‖
2
X + δ‖Q‖2

X

& ‖W‖2
X + ‖ξ‖2

M.

Recalling the following bilinear form c : X×M′ → R defined by

c(V, µ) =
〈(
v − ε

2s
)
· e3, µ

〉
,∀(V, µ) ∈ X×M′. (2.36)

Now, we want to prove the connection between the reduced problem (2.12) and the full

problem (2.7). Hence, we require the following lemma:

Lemma 2.2.5 There exists a positive constant Cc such that

inf
χ∈M′

sup
v∈H1

γ0 (ω,R3)

c((v, 0), µ)
‖µ‖M′‖(v, 0)‖X

≥ Cc. (2.37)
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Proof. Building upon the proof of [5, Lemma 4.4], we establish the continuity of the

form c(·, ·) through its definition and the continuity of the mapping: V 7→ (v − ε
2s) · e3

from X into M.

Conversely, for any µ ∈M the Lax-Milgram lemma combined with the Poincaré-Friedrichs

inequality implies that the problem:

Find σ in M such that

∀ς ∈M
∫
ω
(grad σ) · (grad ς)(x)dx = 〈ς, µ〉 (2.38)

has a unique solution denoted by σ. Additionally the description of the norm ofM′ implies

‖µ‖M′ ≤ |σ|M

Next, we note that the previous mapping is onto: By taking V = (v, 0), with v = (0, 0, σ),

we obtain

c(V, µ) = |σ|2M, ‖V ‖X = ‖σ‖M.

Furthermore, this V belongs to V . Combining this with the Poincaré-Friedrichs inequality

yields the desired condition. Clearly, the preceding result implies that

inf
χ∈M′

sup
V ∈X

c(V, µ)
‖µ‖M′‖V ‖X

≥ Cc. (2.39)

Proposition 2.2.1 Let (U, ψ) be the solution of Problem 1. Then there exists a unique

λ ∈ Λ such that

c(V, λ) = aρ(U, (V ) + b(V, ψ)− L(V ), ∀V ∈ X. (2.40)

Moreover, the multiplier λ satisfies the following bound

‖λ‖M′ ≤ C‖L‖X′ .

Proof. See [5].

52



2.2. NEW WELL POSDNESS ANALYSIS CHAPTER 2.

2.2.3 A compact formulation of the full problem

Now we consider the "full" problem

Problem 5 Find (U, ψ, λ) ∈ X×M× Λ such that:

aρ(U, V ) + b(V, ψ)− c(V, λ) = L(V ), ∀(v, s) ∈ X,

b(U, χ) = 0, ∀χ ∈M

c(U, µ− λ) ≥ 〈Φ, µ− λ〉 , ∀µ ∈ Λ̄,

(2.41)

Proposition 2.2.2 The full problem 5 and the reduced problem 1 are equivalent, in the

following sense: If (U, ψ, λ) is a solution of full problem, then (U, ψ) is a solution of the

reduced. Conversely, if (U, ψ) is a solution of the reduced problem then there exists a

unique λ ∈ Λ such that (U, ψ, λ) is a solution of the full problem.

Proof. The proof can be carried out similarly to the one of [5, Proposition 4.2].

Let’s introduce the following forms:

B(U, ψ, λ;V, χ, µ) := aρ(U, V ) + b(V, ψ) + b(U, χ)− c(V, λ) + c(U, µ),

L (V, χ, µ) := L(V ) + 〈Φ, µ〉 .

Now, Problem 5 can be expressed in the following concise form:

Problem 6 Find (U, ψ, λ) ∈ X×M× Λ such that:

B(U, ψ, λ;V, χ, µ− λ) ≥ L (V, χ, µ− λ), ∀(V, χ, µ) ∈ X×M× Λ.

2.2.4 Second stability result

Theorem 2.2.6 (Continuous stability) For any (V, χ, µ) ∈ X×M×M′ there existsW ∈ X

such that

B(V, χ, µ;W,−χ, µ) & (‖W‖X + ‖χ‖M + ‖µ‖M)2 , (2.42)

‖W‖X . ‖V ‖X. (2.43)
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In order to prove Theorem 2.2.6, we require the following lemma.

Lemma 2.2.7 ([47]) There exists a constant β# > 0 such that:

inf sup
(χ,µ)∈M×M′ V ∈X

c(V, µ)− b(V, χ)
‖(χ, µ)‖M×M′‖V ‖X

≥ β#. (2.44)

Proof. Suppose (χ, µ) be in M×M′, then there exists σ in H1
γ0(ω) such that

∀ς ∈ H1
γ0(ω),

∫
ω
(grad σ) · (grad ς) dx = 〈ς, µ〉 . (2.45)

From this, we directly deduce that

‖σ‖1,ω . ‖µ‖M′ .

Furthermore

‖µ‖M′ = sup
ς∈H1

γ0 (ω)

〈ς, µ〉
‖ς‖1,ω

= sup
ς∈H1

γ0 (ω)

∫
ω(grad σ) · (grad ς) dx

‖ς‖1,ω
. ‖σ‖1,ω. (2.46)

Hence ‖σ‖1,ω ∼ ‖µ‖M′ . In (2.45), take Ṽ = (ṽ, s̃) with

ṽ = (−σ + ε

2χa3 · e3)e3 and s̃ = χa3,

then we have

b(Ṽ , χ) =
∫
ω
∂α(s̃ · a3)∂αχ dx = |χ|21,ω,

c(Ṽ , µ) = −〈σ, µ〉 = −|χ|21,ω,

‖Ṽ ‖X . ‖σ‖1,ω + ‖χ‖1,ω . ‖µ‖M′ + ‖χ‖1,ω.

These properties directly imply

sup
V ∈X

b(V, χ)− c(V, µ)
‖V ‖X

≥ b(Ṽ , χ)− c(Ṽ , µ)
‖Ṽ ‖X

=
‖χ‖2

1,ω + ‖σ‖2
1,ω

‖Ṽ ‖X
& (‖χ‖2

1,ω + ‖µ‖2
M′)1/2.
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Proof. (of Theorem 2.2.6) Let (V, χ, µ) ∈ X ×M ×M′, and consider the following

variational problem:
Find Q in X such that

aρ(Q,Z) + (Q,Z)X = b(Z, χ)− c(µ, Z), ∀Z ∈ X.
(2.47)

Given that the bilinear form aρ(·, ·)+(·, ·)X is X-elliptic, problem (2.47) possesses a unique

solution Q ∈ X.

Moreover, because c(·, ·) − b(·, ·) satisfies the inf-sup condition, the Cauchy-Schwarz in-

equality yields

‖χ‖M + ‖µ‖M′ . sup
Z∈X

c(µ, Z)− b(χ, Z)
‖Z‖X

= sup
Z∈X

a(Q,Z) + (Q,Z)
‖Z‖X

. ‖Q‖X.

Consider W = V + δQ where (v, s) = V and δ is a positive constant to be determined

later, then we obtain:

B(V, χ, µ;W,−χ, µ) = aρ(V, V + δQ) + b(V + δQ, χ) + b(V,−χ)− c(V + δQ, µ) + c(µ, V )

= aρ(V, V ) + δaρ(V,Q) + δb(Q,χ)− δc(µ,Q)

≥ aρ(V, V )− δc#‖V ‖X‖Q‖X + δ‖Q‖2
X

≥ (c# −
δ(c#)2

2 )‖V ‖2
X + δ

2‖Q‖
2
X

Therefore, it suffices to choose 0 < δ <
c2

#

2(c#)2 to obtain

B(V, χ, µ;W,−χ, µ) & (‖V ‖2
X + ‖χ‖2

1 + ‖µ‖2
−1).
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Chapter 3

Finit element discretisation

The finite element method (FEM) stands out as a powerful numerical technique with

various advantages for solving engineering and physical problems. One of its primary

strengths lies in its versatility and broad applicability across a range of scientific domains.

FEM’s ability to handle complex geometries and solve problems with intricate boundary

conditions is a key advantage, allowing for realistic modeling of physical structures and

systems. It excels in solving partial differential equations that describe phenomena like

heat transfer, fluid dynamics, and structural mechanics. Additionally, FEM is effective

in addressing nonlinear problems, including large deformations, material nonlinearities,

and contact problems, providing a more accurate representation of real-world scenarios.

Properly implemented, the method ensures stable and convergent numerical solutions,

particularly as the mesh is refined.

In this chapter, we are interested in finding an approximative solution to the contact

problem using finit element method. We shall prove existence and uniqueness of a solu-
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tion to this finitedimensional problem. Furthermore, we shall study the behavior of the

approximative solutions, as the parameter of discretization tends to zero.

3.1 Statement of discret problem

We assume that ω is a polygonal domain such that ω̄ can be precisely triangulated as

ω̄ = ∪Ti where Ti is a triangle such that Ti ∩ Tj = ∅ or a vertex for i 6= j. We denote by

si the vertices of the triangles. The mesh-size is characterized by

h = max hT = diam T ,

where hT is the triangle size defined by: hT = max
si,sj∈T

|si − sj| Then Th is noted as the

affine triangulation formed by the triangles Ti which cover the domain ω. Later on, we

will consider a regular family of triangulations Th, i.e., there existe σ such that

σT = hT
%T
≤ σ ∀T ∈ Th

where %T = sup{the diameter of B,where B is a ball contained inT }

For a positive integer k, Pk(T ) represents the set of functions on T that are restrictions

of polynomials of degree less than or equal to k.

For T ∈ Th, bT represents the bubble function defined as bT = λ1λ2λ3
27 , where λi,be the

barycentric coordinates of T . It’s worth noting that bT ∈ H1
0 (T ) ∩ P3(T ) and has a

maximum value of one. As [68], we further establish

B3(T ) = {v ∈ H1
0 (T ); v = bT w, w ∈ P0(T )}. (3.1)

Let us to define the finite-dimensional spaces as follows:

Mh :={χh ∈ H1
γ0(ω) | χh|T ∈ P1(T )⊕B3(T ), ∀T ∈ Th}.

Qh :={µh ∈ L2(ω) | µh|T ∈ P0(T ), ∀T ∈ Th}.

Xh :=(Mh)3 × (Mh)3.

Wh :=
{

(vh, sh) ∈ Xh;
(
vh −

ε

2sh
)
· e3 = 0

}
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Next, we introduce the discrete convex cone.

Nh =
{

(vh, sh) ∈ Xh;
(
vh −

ε

2sh
)
· e3 ≥ Φh

}
, (3.2)

where Φh := IhΦ.

Ih represents the standard Lagrange interpolant operator, defined as (IhΦ)T ∈ P1(T ),

with (IhΦ)T (x) = Φ(x) for all vertices x of T . It’s evident that Xh ⊂ X, Mh ⊂ M, and

Wh ⊂ Nh, but Nh is not automatically include in NΦ.

Initially, we examine the discrete version of Problem 2, which is given by:

Problem 7 Find (Uh, ψh) ∈ Nh ×Mh such that:
∀Vh ∈ Nh, aρ(Uh, Vh − Uh) + b(Vh − Uh, ψh) ≥ L(Vh − Uh),

∀χh ∈Mh, b(Uh, χh) = 0.
(3.3)

As in the continuous case, we can express Problem 7 in the following compact form:

Problem 8 Find (Uh, ψh) ∈ Nh ×Mh such that:

Aρ((Uh, ψh); (Vh − Uh, χh) ≥ L(Vh − Uh), ∀(Vh, χh) ∈ Nh ×Mh. (3.4)

3.2 The well posedness of approximate solution

Our objective here is to establish the existence and uniqueness of the discrete solution.

Hence, we present the following lemma:

Lemma 3.2.1 ([47]) If the mesh size h is sufficiently small, then there exists a positive

constant Cb such that

inf
χh∈Mh

sup
Vh∈Wh

b(Vh, χh)
‖χh‖M‖Vh‖X

≥ Cb. (3.5)

Proof. Recalling that Ih represents the standard Lagrange interpolation operator, for

any χh ∈Mh, we take

Vh = (2
ε
Ih(χha3), Ih(χha3)),
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then clearly, Vh ∈Wh and

b(Vh, χh) & ‖χh‖M

since the inverse estimate ‖∇vh‖∞,ω . h−1‖vh‖∞,ω, this holds true for all vh ∈ Mh, see

[17, Lemma 3.3] and [12, Lemma 5.6].

Theorem 3.2.2 If the mesh size h is sufficiently small, then Problem 7 admits a unique

solution.

Proof. Since Wh is a closed subspace of Nh (see for instance [65]), the proof can be done

by using the same perturbation technique as for the continuous problem.

Now, we introduce the closed convex cone

Λh = {µh ∈ Qh;µh ≥ 0} , (3.6)

This is evidently a subspace of Λ. We then proceed to address the "full" discrete problem

(compare with Problem 5).

Problem 9 Find (Uh, ψh, λh) in Xh(ω)×Mh(ω)× Λh such that:

∀Vh ∈ Xh, aρ(Uh, Vh) + b(Vh, ψh)− c(Vh, λh) = L(Vh),

∀χh ∈Mh, b(Uh, χh) = 0,

∀µh ∈ Λ̄h, c(Uh, µh − λh) ≥ 〈IhΦ, µh − λh〉 .

(3.7)

Let us also introduce the following h-dependent norm:

‖χh‖2
h =

∑
T ∈Th

h2
T ‖χh‖2

T ,∀χh ∈ Qh. (3.8)

Lemma 3.2.3 There exist two positive constants C1 and C2 which are independent of h

such that

∀χh ∈ Qh, sup
Vh∈Xh∩ker b

c(Vh, χh)
‖Vh‖Xh

≥ C1‖χh‖M′ − C2‖χh‖h. (3.9)

Proof. Suppose χh ∈ Qh ⊂ M′. Then, according to the inf-sup condition (2.37), there

exists v ∈ H1
γ0(ω,R3) and C1 > 0 such that

c((v, 0), χh) ≥ C1‖(v, 0)‖X‖χh‖M′ .
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Let Vh be the Clément interpolant of (v, 0) (hence Vh is in the form (vh, 0) and belongs

to ker b), then we have

c(Vh, χh) = c(Vh − V, χh) + c(V, χh)

=
∑
T ∈Th

((vh − v) · e3, χh)T + c(V, χh)

≥
∑
T ∈Th

((vh − v) · e3, χh)T + C1‖V ‖X‖χh‖M′

≥ −
∑
T ∈Th
‖ (vh − v) · e3‖T )‖χh‖T + C1‖V ‖X‖χh‖M′

= −
∑
T ∈Th

h−1
T ‖ (vh − v) · e3‖T hT ‖χh‖T + C1‖V ‖X‖χh‖M′ .

(3.10)

With the properties of the Cl’ement interpolant and considering that Th is quasi-uniform,

we obtain:

T

 ∑
T ∈Th

h−2
T ‖ (vh − v) · e3‖2

T

1/2

≤ C2‖V ‖X and ‖Vh‖X . ‖V ‖X,

consequently ∑
T ∈Th

h−1
T ‖ (vh − v) · e3‖ThT ‖χh‖T ≤ C2‖χh‖h‖V ‖X,

This, together with (3.10), indicates that

c(Vh, χh) ≥ C1‖V ‖X‖χh‖M′ − C2‖V ‖X‖χh‖h. (3.11)

Now if C1‖χh‖M′ − C2‖χh‖h ≥ 0, then (3.11) implies that

C1‖χh‖M′ − C2‖χh‖h ≤
c(Vh, χh)
‖V ‖X

.
c(Vh, χh)
‖Vh‖X

,

since c(Vh, χh) ≥ 0 because the left-hand side of this estimate is positive.

Alternatively, if C1‖χh‖M′ − C2‖χh‖h ≤ 0, then clearly

sup
Vh∈Xh

c(Vh, χh)
‖Vh‖X

& C1‖χh‖M′ − C2‖χh‖h,

Considering Wh = (0, 0, χhbT , 0, 0, 0) for some interior triangle T , we find: c(Wh, χh) ≥ 0.
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Lemma 3.2.4 We have the following inf-sup condition for the mesh-dependent norm

(3.8): namely there exists a positive constant C3 (independent of h) such that

∀χh ∈ Qh, sup
Vh∈Xh∩ker b

c(Vh, χh)
‖Vh‖X

≥ C3‖χh‖h. (3.12)

Proof. Let χh ∈ Qh, we define Vh ∈ Xh as follow:

Vh = (0, 0, σh, 0, 0, 0), with (σh)|T = h2
T χhbT , ∀T ∈ Th.

Then clearly Vh ∈ Xh ∩ ker b, and we have

c(Vh, χh) =
∑
T ∈Th

((
vh −

ε

2sh
)
· e3, χh

)
=

∑
T ∈Th

∫
T
h2
T χ

2
hbT & ‖χh‖2

h

and

‖Vh‖2
X = ‖σh‖2

1,T .
∑
T ∈Th

h−2
T ‖σh‖2

0,T ≤
∑
T ∈Th

h2
T ‖χh‖2

0,T = ‖χh‖2
h

From this, we conclude that

c(Vh, χh) & ‖Vh‖X‖χh‖h.

Lemma 3.2.5 It holds

sup
Vh∈X∩ker b

c(Vh, χh)
‖Vh‖X

& ‖χh‖M′ . (3.13)

Proof. For δ ∈ (0, 1), based on (3.9) and (3.12), we find

sup
Vh∈X∩ker b

c(Vh, χh)
‖Vh‖X

= δ sup
Vh∈X∩ker b

c(Vh, χh)
‖Vh‖X

+ (1− δ) sup
Vh∈X∩ker b

c(Vh, χh)
‖Vh‖X

≥ δ (C1‖χh‖M′ − C2‖χh‖h) + (1− δ)C3‖χh‖h

≥ δC1‖χh‖M′ + ((1− δ)C3 − δC2) ‖χh‖h.

By selecting δ such that (1− δ)C3− δC2 = 0 or equivalently δ = C3
C2+C3

which indeed falls

within the range (0, 1), we derive (3.13).
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Proposition 3.2.1 The full problem (3.7) and the reduced problem (3.3) are equivalent

in the following sense: if (Uh, ψh, λh) is a solution of the full problem, then (Uh, ψh) is

a solution of the reduced problem. Conversely, if (Uh, ψh) is a solution of the reduced

problem, then there exists λh ∈ Λh such that (Uh, ψh, λh) is a solution of the full problem.

Proof. Let’s assume that (Uh, ψh, λh) satisfies (3.7), then from the first equation of

(3.7) we have

aρ(Uh, Vh) + b(Vh, ψh) = L(Vh) + c(Vh, λh), ∀Vh = (v, s)h ∈ Xh. (3.14)

Taking µh = 0 and µh = 2λh in the third line of (3.7) gives

c(Uh, λh) = 〈IhΦ, λh〉 , (3.15)

and since IhΦ ≤ 0 in ω, for any Vh ∈ Nh we have

c(Vh, λh) ≥ 〈IhΦ, λh〉 . (3.16)

So, combining (3.15) and (3.16) we get

c(Vh − Uh, λh) ≥ 0, ∀Vh ∈ Nh.

Therefore, (3.10) and the second line in (3.7) can be expressed as:

aρ(U)h, Vh − Uh) + b(Vh − Uh, ψh) ≥ L(Vh − Uh), ∀Vh ∈ Nh,

b(Uh, χh) = 0. ∀χh ∈Mh.

Conversely, if (Uh, ψh) is a solution of Problem 7, we aim to demonstrate the existence of

λh ∈ Λh such that (Uh, ψh, λh) is a solution of Problem 9.

Let’s start by recalling that the first line of (3.3) with Vh = 0 and Vh = 2Uh results in:

aρ(Uh, Uh) + b(Uh, ψh) = L(Uh). (3.17)

Given that the bilinear form c(·, ·) satisfies the inf-sup condition (refer to Lemma 3.2.5),

there exists a unique λh ∈ Qh such that

c(Vh, λh) = aρ (Uh, Vh) + b (Vh, ψh)− L (Vh) ,∀Vh ∈ Xh. (3.18)
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Now we need to prove that λh ∈ Λh.

First let T ∈ Th be an arbitrary triangle and let Vh ∈ Xh be chosen such that

Vh = (uh + (0, 0, bT ), rh),

Then since bT ∈ H1
0 (T ), bT ≥ 0, it is clear that Vh ∈ Nh and

c(Vh − Uh, λh) =
∫
T
λhbT = aρ (Uh, Vh − Uh) + b (Vh − Uh, ψh)− L (Vh − Uh) ≥ 0

Hence λh ≥ 0 in ω, which means that λh ∈ Λh.

We now need to establish the final property of Problem 9. Firstly, since Uh belongs to

Nh, we have: (
uh −

ε

2rh
)
· e3 ≥ IhΦ, (3.19)

which directly implies that

c(Uh, µh) ≥ 〈IhΦ, µh〉 ∀µh ∈ Λh. (3.20)

The last inequality of (3.7) then holds if we show that〈(
uh −

ε

2rh
)
· e3 − IhΦ, λh

〉
= 0, (3.21)

Since Uh ∈ Nh and λh ∈ Λh then we have〈(
uh −

ε

2rh
)
· e3 − IhΦ, λh

〉
≥ 0. (3.22)

On the other hand, by (3.17) and (3.18), we have

c(Uh, λh) = 0,

while the fact that λh ∈ Λh and that IhΦ ≤ 0 lead to

〈IhΦ, λh〉 ≥ 0.

This directly implies 〈(
uh −

ε

2rh
)
· e3 − IhΦ, λh

〉
≤ 0. (3.23)

Hence, (3.22) and (3.23) imply that (3.21) holds.

63



3.3. A PRIORI ERROR ANALYSIS CHAPTER 3.

3.3 A Priori Error Analysis

3.3.1 A priori error estimation of the reduced problem

The objective of this subsection is to conduct the a priori error analysis of Problem 2. We

assume that the mesh size h is sufficiently small such that Lemma 3.2.1 holds.

Lemma 3.3.1 For any (Wh, ξh) ∈ Xh×Mh there exists Vh ∈ Xh such that Vh−Wh ∈Wh

and satisfying

Aρ((Wh, ξh); (Vh,−ξh)) & (‖Wh‖X + ‖ξh‖M)2 (3.24)

‖Vh‖X + ‖χh‖M . ‖Wh‖X + ‖ξh‖M. (3.25)

Proof. The proof can proceed in the same manner as in Lemma 2.2.4 for the continuous

problem. Consider (Wh, ξh) ∈ Xh ×Mh and let Qh ∈Wh be the unique solution of
Find Qh ∈Wh such that

aρ(Qh, Zh) + (Qh, Zh)X = b(Zh, ηh), ∀Zh ∈Wh.
(3.26)

By taking Zh = Qh in (3.26) we get

‖Qh‖2
X ≤ b(Qh, ηh)

This, by Cauchy-Schwarz’s inequality, results in:

‖Qh‖X . ‖ηh‖M.

Additionally, Lemma 3.2.1 implies:

Cb‖ξh‖M ≤ sup
Vh∈Wh

b(Vh, χh)
‖Vh‖X

,

and by (3.26) and Cauchy-Schwarz’s inequality, we obtain

‖ξh‖M . ‖Qh‖X.
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This implies that

‖Qh‖X ∼ ‖ξh‖M.

Let’s now consider Vh = Wh + δQh where 0 < δ <
c#

c2
#
, and get

Aρ((Wh, ξh); (Vh,−ξh)) = Aρ((Wh, ξh); (Wh + δQh,−ξh))

= aρ(Wh,Wh + δQh) + b(Wh + δQh, ξh) + b(Wh,−ξh)

= aρ(Wh,Wh) + δaρ(Wh, Qh) + b(Wh, ξh) + δb(Qh, ξh)− b(Wh, ξh)

= aρ(Wh,Wh) + δaρ(Wh, Qh) + δb(Qh, ξh)

≥ c#‖Wh‖2
X −

δc2
#

2 ‖Wh‖2
X −

δ

2‖Qh‖2
X + δ‖Qh‖2

X

& ‖Wh‖2
X + ‖ξh‖2

M.

Let us finally notice that Vh −Wh = δQh, which indeed belongs to Wh.

Theorem 3.3.2 ([47]) Suppose (U, ψ) and (Uh, ψh) are the solutions of Problem 2 and

Problem 7, respectively. Then,

‖U−Uh‖X+‖ψ−ψh‖M . inf
Vh∈Nh

(‖U−Vh‖X+
√
c(Vh − U, λ)− 〈IhΦ− Φ, λ〉)+ inf

χh∈Mh

‖ψ−χh‖M

Proof. Let (Vh, χh, µh) ∈ Nh ×Mh × Λh and let Qh ∈Wh be the solution of

aρ(Qh, Zh) + (Qh, Zh)Xh = b(χh, Zh)− c(µh, Zh), ∀Zh ∈Wh

For an arbitrary χh ∈Mh, we apply Lemma 3.3.1 to the pair (Vh− (u, r)h, χh−ψh), hence

there exists Wh ∈ Xh such that Dh := Wh − (Vh − Uh) ∈Wh and satisfying

(‖Vh − Uh‖X + ‖χh − ψh‖M)2 .Aρ((Vh − Uh, χh − ψh); (Wh, ψh − χh))

=Aρ((Vh − U, χh − ψ); (Wh, ψh − χh)) +Aρ((U, ψ); (Wh, ψh − χh))

−Aρ((Uh, ψh); (Wh, ψh − χh)) (3.27)

Taking Vh as the test function in the first line of problem 7, with Uh +Wh = Dh +Vh that

belongs to Nh because Dh is in Wh and Vh is in Nh, we find that

aρ(Uh,Wh) + b(Wh, ψh) ≥ L(Wh).
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Since

b(Uh, ψh − χh) = 0,

we obtain

aρ(Uh,Wh) + b(Wh, ψh) + b(Uh, ψh − χh) ≥ L(Wh),

or equivalently,

Aρ((Uh, ψh); (Wh, ψh − χh)) ≥ L(Wh), (3.28)

recalling that

Aρ((Uh, ψh); (Wh, ψh − χh)) = aρ(Uh,Wh) + b(Wh, ψh) + b((Uh, ψh − χh).

Then (3.28) and (3.27) amount to write

(‖Vh − Uh‖X + ‖χh − ψh‖M)2 . Aρ((Vh − U, χh − ψ); (Wh, ψh − χh))

+Aρ((U, ψ); (Wh, ψh − χh))− L(Wh).

But by Proposition (2.2.2), we may write

Aρ((U, ψ); (Wh, ψh − χh))− L(Wh) = c(Wh, λ).

Then we get

(‖Vh − Uh‖X + ‖χh − ψh‖M)2 . Aρ((Vh − U, χh − ψ); (Wh, ψh − χh)) + c(Wh, λ). (3.29)

As Wh − (Vh − Uh) ∈Wh, we directly obtain

c(Wh, λ) = c(Vh − Uh, λ) = c(Vh − U, λ) + c(U − Uh, λ).

Now let’s recall that

c(U, λ) = 〈Φ, λ〉 and c(Uh, λ) ≥ 〈IhΦ, λ〉 ,

hence,

c(U − Uh, λ) + 〈IhΦ− Φ, λ〉 ≤ 0.
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Putting it all together, we then have

c(Wh, λ) ≤ c(Vh − U, λ)− 〈IhΦ− Φ, λ〉 .

The estimate in (3.29) implies

(‖Vh − Uh‖X + ‖χh − ψh‖M)2 .Aρ((Vh − U, χh − ψ); (Wh,−ηh)) + c(Vh − U, λ)

− 〈IhΦ− Φ, λ〉 .

The continuity of the bilinear form Aρ implies

(‖Vh − Uh‖X + ‖χh − ψh‖M)2 .‖(Vh − U, χh − ψ)‖H‖(Wh,−ηh)‖H + c(Vh − U, λ)

− 〈IhΦ− Φ, λ〉 .

Note that

c(Vh − U, λ)− 〈IhΦ− Φ, λ〉 ≥ 0, ∀Vh ∈ Nh.

Applying Young’s inequality to the first term on the right-hand side and completing the

square gives

‖Vh − Uh‖X + ‖χh − ψh‖M . ‖Vh − U‖X + ‖χh − ψ‖M +
√
c(Vh − U, λ)− 〈IhΦ− Φ, λ〉

The last inequality, along with the triangule inequality, leads to the required estimate.

The following a priori error estimate is a direct consequence of the Lagrange interpolant

properties. In particular, we can observe that if U belongs to N, then IhU belongs to Nh.

Corollary 3.3.3 ([47]) Suppose the solution (U, ψ) of Problem 1 belongs to (H2(ω,R3))2×

H2(ω), and the function Φ belongs to H2(ω). Then,

‖U − Uh‖X + ‖ψ − ψh‖M .
√
h [|U |2,ω + |ψ|2,ω + |Φ|2,ω].
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3.3.2 A Priori Error Estimation of the Full Problem

In this section, we conduct a priori error analysis for problem 5. Recall that it involves

finding (U, ψ, λ) ∈ X×M× Λ such that

aρ(U, V ) + b(V, ψ)− c(V, λ) = L(V ), ∀V = (v, s) ∈ X,

b(U, χ) = 0, ∀χ ∈M,

c(U, µ− λ) ≥ 〈Φ, µ− λ〉 , ∀µ ∈ Λ̄.

(3.30)

while its discrete approximation (Problem 9) consists of finding (Uh, ψh, λh) ∈ Xh×Mh×Λh

such that 

∀Vh ∈ Xh, aρ(Uh, Vh) + b(Vh, ψh)− c(Vh, λh) = L(Vh),

∀χh ∈Mh, b(Uh, χh) = 0

∀µh ∈ Λh, c(Uh, µh − λh) ≥ 〈Φh, µh − λh〉 .

(3.31)

Firstly, we observe that (3.31) can now be written in a more compact form as follows:

Problem 10 Find (Uh, ψh, λh) ∈ Xh ×Mh × Λ− h such that:

B(Uh, ψh, λh;Vh, χh, µh − λh) ≥ Lh(Vh, µh − λh), ∀(Vh, χh, µh) ∈ Xh ×Mh × Λh,

where

B(Uh, ψh, λh;Vh, χh, µh) := aρ(Uh, Vh) + b(Vh, ψh) + b(Uh, χh)− c(Vh, λh) + c(Uh, µh)

Lh(Vh, χh, µh) := L(V ) + 〈Φh, µh〉

Lemma 3.3.4 ([47]) There exists a constant β̃# > 0 such that:

inf sup
(χh,µh)∈Mh×Qh Zh=(zh,th)∈Xh

c(Zh, µh)− b(Zh, χh)
‖(χh, µh)‖Mh×M′‖Zh‖X

≥ β̃#. (3.32)

Proof. Let us fix (χh, µh) ∈ Mh ×Qh such that (χh, µh) 6= (0, 0). Initially, note that by

Lemma 3.2.5, there exists Vh ∈ Xh ∩ ker b with |Vh|X = 1, such that

‖µh‖M′ . c(Vh, µh) = c(Vh, µh)− b(Vh, χh),

68



3.3. A PRIORI ERROR ANALYSIS CHAPTER 3.

while by Lemma 3.2.1 there exists Wh ∈Wh = ker c with ‖Wh‖X = 1 such that:

‖χh‖M . −b(Wh, χh) = c(Wh, µh)− b(Wh, χh).

Now, observe that |Vh + Wh|X is positive. If Vh + Wh = 0, then Wh = −Vh, implying

that Uh and Wh belong to ker b ∩ ker c. From the previous estimates, we would have

χh = µh = 0, which contradicts our assumption. Therefore, by the triangular inequality,

we have 0 < |Vh + Wh|X ≤ 2, and consequently 1 ≤ 2
|Vh+Wh|X

. Using all these estimates,

we get:

‖χh‖M + ‖µh‖M′ . c(Vh +Wh, µh)− b(Vh +Wh, χh)

.
c(Vh +Wh, µh)− b(Vh +Wh, χh)

‖Vh +Wh‖X
.

This obviously implies that

‖χh‖M + ‖µh‖M′ . sup
Zh∈Xh

c(Zh, µh)− b(Zh, χh)
‖Zh‖X

. (3.33)

Lemma 3.3.5 For any (Wh, χh, µh) ∈ Xh ×Mh ×Qh there exists Yh ∈ Xh such that:

B(Wh, χh, µh;Yh,−χh, µh) & (‖Wh‖X + ‖χh‖M + ‖µh‖M′)2 , (3.34)

‖Yh‖X + ‖χh‖M + ‖µh‖M′ . ‖Wh‖X + ‖χh‖M + ‖µh‖M′ . (3.35)

Proof. The proof follows the same lines as that of Theorem 2.2.6, utilizing the previous

lemma. We present it here for completeness. Let (Wh, χh, µh) ∈ Xh × Mh × Qh. We

consider the following variational problem:
Find Qh in Xh such that

aρ(Qh, Zh) + (Qh, Zh)X = b(Zh, χh)− c(µh, Zh), ∀Zh ∈ Xh

(3.36)

As the bilinear form aρ(·, ·) + (·, ·)X is X-elliptic and Xh ⊂ X, problem (3.36) possesses a

unique solution Qh ∈ Xh.

Furthermore, since c(·, ·) − b(·, ·) satisfies the inf-sup condition (refer to Lemma 3.3.4),

and the Cauchy-Schwarz inequality implies:

‖χh‖M + ‖µh‖M′ . sup
Zh∈Xh

c(µh, Zh)− b(χh, Zh)
‖Zh‖X

= sup
Zh∈Xh

a(Qh, Zh) + (Qh, Zh)X
‖Zh‖X

. ‖Qh‖X.
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Take Yh = Wh + δQh such δ be a positive constant to be determined later, then we have:

B(Wh, χh, µh;Yh,−χh, µh) = aρ(Wh,Wh + δQh) + b(Wh + δQh, χh) + b(Wh,−χh)− c(Wh + δQh, µh)

+ c(µh,Wh)

= aρ(Wh,Wh) + δaρ(Wh, Qh) + δb(Qh, χh)− δc(µh, Qh)

≥ aρ(Wh,Wh)− δc#‖Wh‖X‖Qh‖X + δ‖Qh‖2
X

≥ (c# −
δ(c#)2

2 )‖Wh‖2
X + δ

2‖Qh‖2
X.

It suffices to choose 0 < δ <
c2

#
2(c#)2 to get

B(Wh, χh, µh;Yh,−χh, µh) & (‖Wh‖2
X + ‖χh‖2

M + ‖µh‖2
M′). (3.37)

Theorem 3.3.6 Let (U, ψ, λ) and (Uh, ψh, λh) be the solution of Problem 5 and Problem

9 respectively. Then

‖U − Uh‖X + ‖ψ − ψh‖M + ‖λ− λh‖M′ . inf
Vh∈Nh

‖U − Vh‖X + inf
χh∈Mh

‖ψ − χh‖M

+ inf
µh∈Λh

(‖µh − λ‖M′ +
√
c(U, µh − λ)− 〈Φ, µh − λ〉)

+ ‖Φ− Φh‖M.

Proof. Let Vh ∈ Nh and let Qh ∈Wh be the solution of

aρ(Qh, Zh) + (Qh, Zh)Xh = b(χh − ψh, Zh)− c(µh − λh, Zh), ∀Zh ∈Wh.

Using Lemma 3.3.5 with Wh = Vh − Uh, χh = χh − ψh and µh = µh − λh, there exists

Yh ∈ Xh satisfying (3.34) and (3.35), namely

‖Yh‖X . ‖Vh − Uh‖X. (3.38)

as well as

(‖Vh − Uh‖X + ‖χh − ψh‖M + ‖µh − λh‖)2 .B(Vh − Uh, χh − ψh, µh − λh;Yh, ψh − χh, µh − λh)

=B(Vh − U, χh − ψ, µh − λ;Yh, ψh − χh, µh − λh)

+ B(U), ψ, λ;Yh, ψh − χh, µh − λh)

−B(Uh, ψh, λh;Yh, ψh − χh, µh − λh).
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Considering the definition of Problem 10,

−B(Uh, ψh, λh;Yh, ψh − χh, µh − λh) ≤ −Lh(Yh, µh − λh).

For the second term, since Xh ⊂ X, the definition of the bilinear form c(·, ·) implies that:

B(U, ψ, λ;Yh, ψh − χh, µh − λh) = aρ(U, Yh) + b(Yh, ψ) + b(U, ψh − χh)︸ ︷︷ ︸
=0

− c(Yh, λ) + c(U, µh − λh)

= L(Yh) + c(U, µh − λh),

we then get

(‖Vh − Uh‖X + ‖χh − ψh‖M + ‖µh − λh‖)2 .B(Vh − U, χh − ψ, µh − λ;Yh, ψh − χh, µh − λh)

+ c(U, µh − λh) + L(Yh)−Lh(Yh, µh − λh)

=B(Vh − U, χh − ψ, µh − λ;Yh, ψh − χh, µh − λh)

+ c(U, µh − λh)− 〈Φh, µh − λh〉 .

Since Λh ⊂ Λ then,

c(U, λh) ≥ 〈Φ, λh〉 (3.39)

On the other hand, we have,

c(U, µh − λh)− 〈Φh, µh − λh〉 =c((u, r), µh − λ) + c(U, λ− λh)− 〈Φh − Φ, µh − λh〉 − 〈Φ, µh − λ〉

− 〈Φ, λ− λh〉

≤c(U, µh − λ)− 〈Φh − Φ, µh − λh〉 − 〈Φ, µh − λ〉

whence we obtain

(‖Vh − Uh‖X + ‖χh − ψh‖M + ‖µh − λh‖)2 .B(Vh − U, χh − ψ, µh − λ;Yh, ψh − χh, µh − λh)

+ c(U, µh − λ)− 〈Φ, µh − λ〉 − 〈Φh − Φ, µh − λh〉

Applying Young’s inequality to the first term on the right-hand side, utilizing the estimate

(3.38), and completing the square yields:

‖Vh − Uh‖X + ‖χh − ψh‖M + ‖µh − λh‖M′ .‖Vh − U‖X + ‖χh − ψ‖M + ‖µh − λ‖M′

+
√
c(U, µh − λ)− 〈Φ, µh − λ〉+ ‖Φ− Φh‖M
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Finally, from this last inequality and the triangle inequality, we obtain the desired esti-

mate.

Corollary 3.3.7 ([47]) Suppose the solution (U, ψ, λ) of Problem 5 belongs to (H2(ω,R3))2×

H2(ω)× L2(ω), and the function Φ belongs to H2(ω) ∩H1
γ0(ω). Then,

‖U − Uh‖X + ‖ψ − ψh‖M + ‖λ− λh‖M′ .
√
h [|U |2,ω + |ψ|2,ω + |Φ|2,ω + ‖λ‖ω].

Proof. The proof relies on the a priori error estimate shown in Theorem 3.3.6. The

estimates for the terms ‖Vh−U‖X, ‖χh−ψh‖M, ‖µh−λ‖M′ , and ‖Φ−Φh‖M can be easily

obtained by standard interpolation procedures. To establish the result, we need to prove

the estimate for the term
√
c(U, µh − λ)− 〈Φ, µh − λ〉.

As U ∈ H1
γ0(ω;R3))2 and Φ ∈ H1

γ0(ω), we have:

|c(U, µh − λ)− 〈Φ, µh − λ〉| . (‖U‖1,ω + ‖Φ‖1,ω)‖µh − λ‖M′ . (3.40)

Now, let’s take µh as the weighted Clément type interpolation operator of λ [24], denoted

by µh = Qhλ, defined as:

Qhλ =
∑
x∈Nh

πx(λ)λx,

For any ϕ ∈ L1(ω), define:

πx(ϕ) =


∫
ωx

ϕλx∫
ωx

λx
if x 6∈ γ̄0,

0 if x ∈ γ̄0.

Therefore, as

‖λ−Qhλ‖M′ = sup
ϕ∈H1

γ0 (ω),ϕ6=0

∫
ω(λ−Qhλ)ϕ
‖ϕ‖1,ω

,

and as we directly verify that
∫
ω
(λ−Qhλ)ϕ =

∫
ω
λ(ϕ−Qhϕ),

we obtain

‖λ−Qhλ‖M′ = sup
ϕ∈H1

γ0 (ω),ϕ 6=0

∫
ω λ(ϕ−Qhϕ)
‖ϕ‖1,ω

.
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By Cauchy-Schwarz’s inequality and Lemma 6.2 of [24], we obtain:

‖λ−Qhλ‖M′ . h‖λ‖ω.

Inserting this estimate into (3.40), we obtain:

|c(U, µh − λ)| . h(‖U)‖1,ω + ‖Φ‖1,ω)‖λ‖ω . h(‖(U‖2
1,ω + ‖Φ‖2

1,ω + ‖λ‖2
ω).
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3.4 Comments on the Regularity of the Solution

The regularity of the solutions plays an important role in the error analysis. The a priori

error analysis carried out in Section 3.3 requires additional regularity on the solution

of the continuous problem. Our contact problem takes the following complementarity

system:

−∂%((n%σ(u)aσ +m%σ(U)∂σa3 + q%(u, r)a3)
√
a)− λe3 = f

√
a in ω,

−∂%(m%σ(U)aσ
√
a) + qβ(U)aβ

√
a+ ε

2λe3 = 0 in ω,

r · a3 = 0 in ω,(
u− ε

2r
)
· e3 ≥ Φ, λ ≥ 0, λ

((
u− ε

2r
)
· e3 − Φ

)
= 0 in ω,

u = r = 0 on ∂ω,

(3.41)

with coefficients which are in L∞(ω), and the function Φ belongs only to W 1,∞(ω) when

the chart ϕ ∈ W 2,∞(ω,R3) and therefore, the translations (or finite difference quotients)

method of Nirenberg ([59]) can not be applied here. The coefficients of the system satisfy

the ellipticity condition and in the non contact set the system is a "standard" second order

elliptic system. But the famous De Giorgi’s counter-example (see [38, p.205]) indicates

that the regularity problem for systems of equations (or vectorial case) can not be treated

as the case of a single elliptic equation (or scalar case), so the Stampacchia-Brezis [18]

technique can not used here. However, if we assume that the chart ϕ is more regular,

namely ϕ ∈ C3(ω,R3), then the formulation (expressions of the tensors (1.4), (1.5) and

(1.6)) used in this paper coincides with the classical formulation of thin shell theory (see

[12]). For sufficiently smooth surfaces, recent papers (see [27],[61], [62]) improved inte-

rior regularity of the solution of elastic shell in the presence of obstacles, by using the

Nirenberg method. The main difficulty for this approach is the construction of admis-

sible displacement field in term of the finite difference quotient satisfying the inequality

constraint.
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Chapter 4

Iterative methods for double saddle

point system

The relationship between variational inequalities and saddle points is interesting and

involves concepts from convex analysis and optimization. A saddle point is a concept often

encountered in game theory and optimization. In fact, variational inequalities can be seen

as a special case of saddle point problems. They share similarities in their mathematical

formulations, and the existence of solutions in one context often implies the existence of

solutions in the other.

The chapter focuses on the analysis and numerical solution of double saddle-point

systems, specifically those with a block-3 × 3 structure. These systems are common in

multiphysics problems, implying the need for effective numerical solutions. The numerical

solution of double saddle-point systems is gaining importance and interest in the research

community. Solving several saddle-point issues iteratively has recently attracted a lot of
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attention. For instance, [66], [60], and [22] are recent articles that offer intriguing analysis.

In this context, we first provide a mathematical problem statement and discuss the con-

nections between double and classical (block-2×2) saddle-point systems. We then provide

a brief overview of iterative solution methods.

4.1 Problem Statement:

We consider the double saddle-point system

A u = b

such that:

A ≡


A1 AT2 AT3

A2 0 0

A3 0 −A4




x

y

z

 =


b1

b2

b3

 (4.1)

where A1 ∈ Rn×n is symmetric positive definite (SPD), A2 ∈ Rm×n, A3 ∈ Rp×n, and

A4 ∈ Rp×p is symmetric positive semidefinite (SPS) and possibly zero. Throughout the

section we assume that n ≥ m+ p.

We further mention the large linear systems with coefficient matrices of the form:

B ≡


A1 AT3 AT2

A3 −A4 0

A2 0 0

 or C ≡


−A4 A3 0

AT3 A1 AT2

0 A2 0


see, e.g., [1] and [25], respectively. Using symmetric permutations (row and column

interchanges), it is clear that B and C may be transformed into the same form as matrix

A in (4.1).

Generalization:

• The matrix A is considered a generalization of the block-2×2 or "classical" saddle-

point matrix Ã =

A1 A2

AT2 −A4

.
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The first-order optimality requirements for quadratic programming problems with equality

constraints are classical saddle-point matrices:

min
x

1
2x

TA1x− F Tx (4.2)

subject to A2x = g. (4.3)

Letting y denote the vector of Lagrange multipliers, an optimal solution of (4.2) and (4.3)

is a saddle point for the Lagrangian:

L(x, y) = 1
2x

TA1x− F Tx+ (A2x− g)Ty.

This is equivalent to the solution (x, y) of the linear system:A1 A2

AT2 0


x
y

 =

g
F

 . (4.4)

Here, the coefficient matrix in (4.19), denoted as Ã0 is a matrix in classical saddle-point

form with A4 = 0. The matrix A4 is often associated with regularization or stabilization,

and matrices with A4 = 0 are referred to as unregularized or unstabilized. Block-3×3 ma-

trices in tridiagonal form as in (4.1) can occur when a physical problem with constraints,

such as the contact problem of Nagdi’shell with a rigide body (3.7) which mention in

previous chapters.

Remark 4.1.1 Equatrical features, including invertibility, spectral characteristics, con-

ditioning, existence, and different factorizations, were present in the saddle point matrix.

The development of solution algorithms relies on knowing these qualities. For further

information, go to [6].
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4.2 Double Saddle-Point Systems

Double saddle-point systems of the form (4.1) arise in several applications. We provide

an overview of some these applications as described in [16] in the following section.

4.2.1 Examples Arising from Optimization

PDE-Constrained Optimization

Consider a discretized linear-quadratic optimization problem of the form:

min
y,u

1
2y

TA3y − yTw + β

2u
TRu

subject to Ky + Lu = d,

(4.5)

where K ∈ Rn×n is a stiffness matrix corresponding to a partial differential equation

(PDE); L ∈ Rn×m is a control matrix; and A3 ∈ Rn×n is a positive semidefinite (sometimes

positive definite) observation matrix. Consider a linear-quadratic optimization problem

with partial differential equation (PDE) constraints:

min
y,u

J(y, u) = 1
2y

TA3y − yTw + β

2u
TRu

subject to Ky + Lu = d,

(4.6)

where:

• K ∈ Rn×n is a stiffness matrix corresponding to a PDE.

• L ∈ Rn×m is a control matrix.

• A3 ∈ Rn×n is a positive semidefinite (sometimes positive definite) observation ma-

trix.

• R ∈ Rm×m is a positive definite regularization matrix.
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• β > 0 is a regularization parameter (often around 10−2 in practice).

• The vector y ∈ Rn denotes the state variables, u ∈ Rm the control variables, and

λ ∈ Rm represents Lagrange multipliers.

The associated Karush-Kuhn-Tucker (KKT) system can be written as a classical

saddle-point system: 
A3 0 KT

0 βR LT

K L 0




y

u

λ

 =


w

0

d


We can also reorder the unknowns so that the coefficient matrix is in double saddle-point

form (4.1): 
A3 KT 0

K 0 L

0 LT βR




y

λ

u

 =


w

d

0



Interior point techniques saddle point systems

In this paper, we demonstrate the emergence of saddle point systems as a result of solving

limited optimisation issues using interior point techniques. The excellent summary pro-

vided in [7] forms the basis of our presentation. Think about a nonlinear programming

issue that is convex.

minF (x) (4.7)

subject to c(x) ≤ 0. (4.8)

Think about dual differentiable convex functions F : Rn → R and c : Rn → Rm. The

inequality constraint may be expressed as the system of equalities c(x) + z = 0 after

introducing a nonnegative slack variable z ∈ Rm. After that, we may define the related

barrier:

minF (x)− η
m∑
i=1

ln zi (4.9)

subject to c(x) + z = 0. (4.10)
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The corresponding Lagrangian is given by:

L(x, y, z; η) = F (x) + yT (c(x) + z)− η
m∑
i=1

ln zi. (4.11)

To find a stationary point of the Lagrangian, we set the following partial derivatives equal

to zero:

∇xL(x, y, z; η) = ∇F (x) +∇c(x)Ty = 0, (4.12)

∇yL(x, y, z; η) = c(x) + z = 0, (4.13)

∇zL(x, y, z; η) = y − ηZ−1e = 0. (4.14)

Where Z = diag(z1, z2, . . . , zm) and e = [1, 1, . . . , 1]T .

Introducing the diagonal matrix Y = diag(y1, y2, . . . , ym), the first-order optimality con-

ditions for the barrier problem become:

∇F (x) +∇c(x)Ty = 0, (4.15)

c(x) + z = 0, (4.16)

Y Ze = ηe, (4.17)

y, z ≥ 0. (4.18)

This is a system of equations with nonlinearity and nonnegativity requirements that can

be resolved using Newton’s technique. The barrier parameter η is decreased progressively

to guarantee convergence of the iterates to the optimal solution of issue (4.7)–(4.8). At

each iteration of Newton’s method, a linear system of equations must be solved.
H(x, y) A2(x)T Q

A2(x) Q I

Q Z Y




δx

δy

δz

 =


−∇F (x)− A2(x)Ty

−c(x)− z

ηe− Y Ze

 , (4.19)

Where

H(x, y) = ∇2F (x) +
m∑
i=1

yi∇2ci(x) ∈ Rn×n

and

A2(x) = ∇c(x) ∈ Rm×n.
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Here, ∇2F (x) denotes the Hessian of F evaluated at x. The matrix in (4.19) can be

symmetrized using a diagonal similarity transformation:

A =


I 0 0

0 I 0

0 0 Z1/2


−1 

H(x, y) A2(x)T 0

A2(x) 0 I

0 Z Y




I 0 0

0 I 0

0 0 Z1/2

 (4.20)

=


H(x, y) A2(x)T 0

A2(x) 0 Z1/2

0 Z1/2 Y

 . (4.21)

The matrix in (4.21) is equivalent to the double saddle-point formulation (4.1) up to a

difference in sign.

Constrained weighted least-squares

Linear systems of saddle-point type frequently arise when addressing least squares prob-

lems. Let’s examine the least squares problem with linear equality requirements.

min
x
‖c− Gy‖2 (4.22)

subject to Ey = d, (4.23)

where c ∈ Rp, G ∈ Rp×m, y ∈ Rm, E ∈ Rq×m, d ∈ Rq, and q < m.

Issues of this nature arise, particularly in curve or surface fitting scenarios where the curve

needs to interpolate specific data points.

The optimality conditions for problem (4.22) are:
Ip Q G

Q Q ET

GT E Q




r

λ

y

 =


c

d

0

 (4.24)

where Ip is the p × p identity matrix and λ ∈ Rq is a vector of Lagrange multipliers.

Clearly, (4.24) is a special case of the symmetric saddle point problem (4.19).
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4.2.2 Examples arising from the numerical solution of PDE

Second application on double saddle point systems belongs to the numerical solution

of partial differential equations for example: Dual-dual fnite element formulations [37]

and Magma mantle dynamics Rhebergen et al, [63]. Also Darcy-Stokes following the

formulation of [23].

In other hand thers exist some application deal with classical saddle-point systems with

singular leading blocks. Some of these examples are in fact, double saddle-point systems,

where the systems are re-ordered and partitioned into block-2× 2 systems.

4.3 Iterative solution of sparse linear systems

Double saddle-point systems, as expressed in the form of (4.1), commonly exhibit sub-

stantial sparsity. In the context of solving such systems, direct solvers utilizing methods

like Gaussian elimination (as detailed in [30], [41]) may introduce a notable amount of

fill-in. This phenomenon occurs when the matrix decompositions required for precise

inversion result in a considerable increase in nonzero entries compared to the original

matrix.Furthermore, in addressing problems rooted in the modeling of physical phenom-

ena, the pursuit of an extremely accurate solution, as provided by direct solvers, is often

unnecessary.

Discretization processes, whether in space [54],[32] time in [6], or continuous processes

like differentiation and integration, inherently introduce errors.

4.3.1 Stationary Iterative Methods

Stationary iterative methods tackle a linear system using a simplified matrix that approx-

imates the original one, often based on a splitting of the original matrix (A = M −N).

In each step, the iterate xk+1 updates based on the residual at step k, defined by rk =
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b − Axk. Specifically, considering a splitting of the matrix A = M − N , a stationary

iteration takes the form xk+1 = xk +M−1rk.

Examples of methods in this category include the Richardson method, Jacobi method,

Gauss-Seidel. In fluid dynamics, a popular iterative approach for solving the linear sys-

tem (4.1) is Uzawa’s method, which is similar to a relaxed block SOR iteration (see [64],

Chapter 4). In the remainder of the paper we will always assume that A is nonsingular.

Uzawa-type methods

Uzawa-like iterative methods have long been among the most popular algorithms for

solving linear systems in saddle point form ([6] Sect 8.1). In this paragraph we study

variants of Uzawa’s algorithm [4]. We discuss the case where the matrix D in (4.1) is zero.

First choice ; We consider the following splittings for A

A =M1 −N1

where

M1 =


A1 0 0

B −1
α
I 0

A3 0 −1
β
I

 , N1 =


0 −AT2 −AT3
0 −1

α
I 0

0 0 −1
β
I

 . and α, β 6= 0

The corresponding iterative scheme for solving (4.1) are given by

xk+1 = G1xk +M−1
1 b, k = 0, 1, 2..., (4.25)

where x0 is arbitrary,and G1 =M−1
1 N1 the iteration matrix .

Now we analyze the convergence properties of iterative methods (4.25). The following

useful lemma is needed, which is a special case of Weyl’s Theorem [[46], Theorem 4.3.1]

Lemma 4.3.1 Let si be the eignvalues. If A1 and A2 are two Hermitian matrices. Then

smax(A1 + A2) ≤ smax(A1) + smax(A2),

smin(A1 + A2) ≥ smin(A1) + smin(A2),
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Corollary 4.3.2 [4] Let A is nonsingular with A1 > 0, AT2 and AT3 have full column

rank, and range(AT2 ) ∩ range(AT3 ) = 0. If the parametres α > 0 and β > 0 satisfy

αsmax(A2A
−1
1 AT2 ) + βsmax(A3A

−1
1 AT3 ) < 2 (4.26)

then the iterative scheme (4.25) is convergent for any initial guss, i.e:ρ(G1) < 1.

Proof. we gave the proof in the following steps:

• A is nonsungular lead us that the solvability condition in [4] are satisfied.

• Note that if the assumptions on A1, A2 and A3 are satisfied, Then all of the eigen-

values of the following matrix are real and positive for positive parametersα and

β:

Sα,β =

 αA2A
−1
1 AT2 αA2A

−1
1 AT3

βA3A
−1
1 AT2 βA3A

−1
1 AT3


• observe that the nonzero eigenvalues of Sα,β are the same as those of

S1 = A−1
1

[
AT2 AT3

]  αA2

βA3

 = αA−1
1 AT2A2 + βA−1

1 AT3A3.

then we can say

smin(S1) ≤ s(Sα,β) ≤ smax(S1),

• From tha following iteration matrix :

G1 =M−1
1 N1 =


0 −A−1

1 AT2 −A−1
1 AT3

0 I − αA2A
−1
1 AT2 −αA2A

−1
1 AT3

0 −βA3A
−1
1 AT2 I − βA3A

−1
1 AT3

 (4.27)

the iterative schemme (4.25) is convergent if and only if ρ(I −Sα,β) < 1.

• Using lemma (4.3.1) and noting SB = A2A
−1
1 AT2 and SC = A3A

−1
1 AT3 we get

1− (αsmax(SB) + βsmax(SC)) ≤ s(S1) ≤ 1− (αsmin(SB) + βsmin(SC)). (4.28)
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as a result:

−1 < 1− (αsmax(SB) + βsmax(SC))

which complet the proof.

Second choice :

A =M2 −N2,

where

M2 =


A1 AT2 0

A2 0 0

A3 0 −1
α
I

 , and N2 =


0 0 −AT3
0 0 0

0 0 −1
α
I

 .

The corresponding iterative scheme for solving (4.1) are given by

xk+1 = G2xk +M−1
2 b, k = 0, 1, 2..., (4.29)

where

G2 =M−1
2 N2 =


0 0 −ÃAT3
0 0 −S−1

B A2A
−1
1 AT3

0 0 I − αA3ÃA
T
3

 (4.30)

with Ã = A−1 − A−1AT2 S
−1
B A2A

−1
1 and SB = A2A

−1
1 AT2 .

We finalize this subsection with a brief exploration of the convergence properties of the

iterative method (4.29). To achieve this, we initially require the following two proposi-

tions.

Proposition 4.3.1 Assume that A1 > 0 and AT2 has full column rank. Then

Ã = A−1
1 − A−1

1 AT2 S
−1
B A2A

−1
1 ≥ 0

.
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Proof. Since A1 is SPD, we can write

Ã = A
−1/2
1 (I − A−1/2

1 AT2 S
−1
B A2A

−1/2
1 )A−1/2

1 .

The nonzero eigenvalues of

A
−1/2
1 AT2 S

−1
B A2A

−1/2
1

are the same as those of

A2A
−1/2
1 A

−1/2
1 AT2 S

−1
B = SBS

−1
B = I

and therefore are all equal to 1. Hence, I − A−1/2
1 AT2 S

−1
B A2A

−1/2
1 ≥ 0 as claimed.

Proposition 4.3.2 Suppose that A1 > 0, AT2 ,AT3 have full comumn rank

and

Ã = A−1
1 − A−1

1 AT2 S
−1
B A2A

−1
1 ≥ 0.

If zT (A3ÃA
T
3 )z = 0 for some nonzero vector z, then range(AT2 ) ∩ range(AT3 ) 6= 0.

Proof. Suppose that z is a nonzero vector such that zT (A3ÃA
T
3 )z = 0.

Setting y = AT3 z and invoking Proposition (4.3.1), we obtain that yT Ãy = 0 where Ã ≥ 0.

Note that AT3 has full column rank, hence y 6= 0. From [9, Page 400], we obtain that

Ãy = 0, or y ∈ ker(Ã). On the other hand, Ãy = 0 implies that y = AT2 S
−1A2A

−1
1 y,

which shows that y ∈ range(AT2 ).

Consequently, in view of the definition of y, we have that that y ∈ range(AT2 )∩range(AT3 )

as claimed.

The following proposition provides a necessary and sufficient condition under which

ρ(G2) < 1.

Proposition 4.3.3 Assume that A is invertible, with A1 > 0 and A4 = 0. A necessary

and sufficient condition for the iterative scheme (4.29)to be convergent is

0 < α <
2

smax(ŜC)
,

where ŜC = A3ÃA
T
3 and Ã is defined as before. The minimum value od the spectral radius

ρ(G2) is attained for

α∗ = 2
smax(ŜC) + smin(ŜC)

86



4.3. ITERATIVE SOLUTION OF SPARSE LINEAR SYSTEMS CHAPTER 4.

Proof. Since A is assumed to be nonsingular, and let the matrices AT2 and AT3 have

full column rank and range(AT2 )∩ range(AT3 ) 6= 0. Therefore, Proposition (4.3.2) implies

that SC > 0.

From the structure of the iteration matrix G2 given by (4.30), it is clear that a necessary

and sufficient condition for the convergence of (4.29) is that ρ(I − αŜC) < 1.

The asymptotic convergence rate is equivalent to Richardson’s approach for solving a

linear system of equations with coefficient matrix ŜC . The function of α is seen in Figure

(4.1).

Figure 4.1: The curve ρ(Gα) as a function of α.

The optimal α is achieved at the intersection point of the curve |1 − smaxα| with

positive slope and the curve |1− sminα| with negative slope, as seen in the graph.

Now the conclusions follow from the results in [[64], Chapter 4] on the convergence

properties of Richardson’s method applied to a linear system with an SPD coefficient

matrix.
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Chapter 5

Numerical solution for some

variationl inequalities

In this chapter we analyze the iterative solution algorithms like Uzawa method for

solving some variational inequalities. The Uzawa method’s primary appeal lies in its ease

of implementation and its minimal memory footprint. Despite its potentially sluggish con-

vergence rate, we’ve opted for it precisely because of these characteristics. Alternatively,

a primal-dual active set method could be employed. During each iteration of the Uzawa

method, an elliptic solver is necessary to compute the inverse of a large sparse matrix.

The convergence of this method for saddle point systems has been explored by various

authors.(see for instance [50], [3]). Here we establish the convergence of the Uzawa algo-

rithm through two distinct approaches. First, we leverage the convergence results derived

from the analysis of the Richardson iteration on simple conatct with singular saddle point.

In the second approach, we present the uzawa method for double saddle point system and
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give their convergence proof in the context of a variational inequality and equality .

5.1 Obstacle problem

As a model example of a problem formulated in a variational inequality we choose the

so-called Obstacle problem. We consider the problem where an elastic membrane (Ω ⊂ R2)

is fixed at the boundary, subjected to an external force g in the vertical direction. The

membrane is in contact with a rigid body (the obstacle) positioned above it.

Several mathematical frameworks are available for this problem : linear complemen-

tarity, free boundary, variational inequality, restricted convex minimization, and others.

Optimal control, financial mathematics, elasto-plasticity, fluid filtration in porous media,

and other areas find mathematical treatments of this topic useful. Numerous studies have

conducted thorough explorations of the barrier issue and its formulations, as well as any

solutions that may exist. for instance, refer to [48],[21], and [36].

Let

K = {v ∈ H1
0 (Ω) | v ≥ ϕ in Ω}

The corresponding minimization problem reads:

u = arg min
v∈K
J with J (v) = 1

2

∫
Ω
|∇v|2 − (g, v) dx

The formulation as a variational inequality takes the form:
Find u ∈ K such that∫
Ω∇u · ∇(v − u) dx ≥

∫
Ω g(v − u) dx, ∀v ∈ K

The classical solution u of this model problem is determined by the system in Ω ⊂ R2

(see Evans [33], for instance):

−∆u− g ≥ 0 in Ω,

u− ϕ ≥ 0 in Ω,

(u− ϕ)(−∆u− g) = 0 in Ω,

u = 0 on ∂Ω.
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Introducing a non-negative Lagrange multiplier gunction λ : Ω → R, we can rewrite the

obstacle problem as:

−∆u− λ = g in Ω,

u− ϕ ≥ 0 in Ω,

λ ≥ 0 in Ω,

(u− ϕ)λ = 0 in Ω,

u = 0 on ∂Ω.

(5.1)

The Lagrange multiplier is in the dual space Q = H−1(Ω) with the norm

‖η‖−1 = sup
v∈ H1

0 (Ω)

〈v, η〉
‖v‖1

,

The corresponding mixed problem in variational formulation becomes:

find ((u, λ) ∈ V × Λ such that

(∇u,∇v)− 〈λ, v〉 = (g, v) ∀v ∈ V,

〈u− ϕ, µ− λ〉 ≥ 0 ∀µ ∈ Λ,

(5.2)

where

V = H1
0 (Ω) and Λ = {µ ∈ Q : 〈µ, v〉 ≥ 0 ∀v ∈ V, v ≥ 0 a.e. in Ω}

5.1.1 Uzawa method

Now, our goal is to construct an algorithm that can approximate the solution of the

primal-dual problem (5.2) . In general, the Gradient method is used, but the projection

of this problem is not explicitly known and very difficult to determine. Note that we have

significant a priori information on the Lagrange multiplier λ = u − ϕ which is always

positive based on the mixed formulation. Building upon this observation, we propose

the Uzawa algorithm, which is essentially a saddle point search method utilizing a

very simple projection operator given by:

PΛ(λ) = max(λi, 0)
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Therefore, we apply the Uzawa algorithm to problem (5.2). We can see that the previ-

ous mixed formulation when discretized can be rewritten as a system of equations and

inequalities.

By letting θj, j ∈ {1, . . . , N}, be the basis for Vh, and writing uh = ∑N
j=1 ujθj,

Au+BTλ := g

(µ− λ)TBu ≤ (µ− λ)Tϕ ∀µ ∈ Λ
(5.3)

where: A ∈ RN×N , (A)ij = (∇i,∇j); B ∈ RM×N , (B)ij = (ηi, θj); g ∈ RN , (g)i =

(g, θi); ϕ ∈ RM , (ϕ)i = (ϕ, ηi); u ∈ RN , (u)i = ui; λ ∈ RM , (λ)i = λi.

Starting with initial guesses u0 and λ0, Uzawa’s method [6] consists of the following

coupled iteration 
Auk+1 = g −BTλk

λk+1 = λk + α(Buk+1 − ϕ)
(5.4)

where α > 0 is a relaxation parameter. This iteration can be written in terms of a matrix

splitting A = P −Q where

A =

 A 0

B − 1
α
I

 , Q =

 0 −BT

0 − 1
α
I

 (5.5)

The corresponding iterative schemes is

PUk+1 = QUk + b where Uk =

 uk

λk

 (5.6)

then the iteration matrix is

P−1Q =

 0 A−1BT

0 I − αBA−1BT

 (5.7)

we note that the eignvalues of P−1Q are all real. On the other hand we can eliminate

u(k+1) from the construction of λ(k+1). This means that we compute λ(k+1) directly from

λ(k) without finding u(k+1).

From the first step of the kth iteration, we obtain

uk+1 = A−1(g −BTλk) (5.8)
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after inserting this into the second equation in (5.4) we compute λk+1 from λk in two

steps:

λ̃k+1 = λk − α(BA−1BTλk −BA−1f + ϕ)

λk+1 = PΛ(λ̃k+1). k ≥ 1

Our goal now is to analyze the convergence of Uzawa’s method of the obstacle problem.

Theorem 5.1.1 Let (u, λ) be a solution to the system (5.4) and s1, s2 denote the smallest

and the largest eigenvalues of BA−1BT . Then there exists a constant α > 0 such that for

each choice α > 0 there holds uk −→ u and λk −→ λ.

Proof.

λ̃k+1 = λk − α(BA−1BTλk −BA−1g + ϕ) (5.9)

we set: SB = BA−1BT and h = BA−1g + ϕ. Then

λ̃(k+1) := λ(k) − α(SBλ(k) − h) = (I − αSB)λ(k) + αh.

One then degines λ(k+1) := PΛ
(
(I − αSB)λ(k) + αh

)
. Similarly, if λ ∈ Λ is a solution to

the mixed problem, then one has λ = PΛ ((I − αSB)λ+ αh) . Then, the errors satisfy

λ(k+1) − λ = PΛ
(
(I − αSB)λ(k) + αh

)
− PΛ ((I − αSB)λ+ αh) .

By the contraction property of projections, we have

‖λ(k+1) − λ‖ ≤ ‖(I − αSB)‖‖λ(k) − λ‖.

Let us denote ‖λ(k+1) − λ‖ by e(k+1) and ‖λ(k) − λ‖ by e(k), then the errors satisfy

e(k+1) ≤ ‖(I − αSB)‖e(k).

Thus (e(k+1), e(k+1)) ≤ ((I − αSB)e(k), (I − αSB)e(k)). Since SB is symmetric, it follows

that ρ(I − αSB) = ‖I − αSB‖, so that the error norm satisfies

‖e(k+1)‖ ≤ ρ((I − αSB))‖e(k)‖.
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µi denote the eigenvalues of (I − αSB). Then 1 − αs2 ≤ µi ≤ 1 − αs1, and the Uzawa’s

Method is convergent provided ρ(I − αSB) < 1, i.e.,

0 < α <
2
s2

as uk depends continuously on λk, we can conclude that uk → u.
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5.2 Contact Probem of Naghdi’s shell

The mathematical description of this model is presented in second chapter. We will

suffice here with a reminder of the variational form (Problem 9) which consists in finding

(Uh, ψh, λh) ∈ Xh ×Mh × Λh such that:

∀Vh ∈ Xh, aρ(Uh, Vh) + b(Vh, ψh)− c(Vh, λh) = L(Vh),

∀χh ∈Mh, b(Uh, χh) = 0

∀µh ∈ Λh, c(Uh, µh − λh) ≥ 〈Φh, µh − λh〉 .

(5.10)

5.2.1 Uzawa-type stationary methods

In this section, we will analyze the Uzawa method to solve Problem 9, which is regarded

as an illustrative example of a double saddle point. It’s notable that Problem 9, when

expressed in its matrix form, can be interpreted as a 2 × 2 block matrix in two distinct

manners, depending on the chosen partitioning strategy.

Firstly, by seeking (Uk+1
h , ψk+1

h ) for a given λkh ∈ Λh, one emphasizes that Problem 9

can essentially be treated as a standard saddle point problem to determine Uk+1
h , ψk+1

h ,

followed by a projection procedure to compute λk+1
h .

Alternatively, the second approach involves finding Uk+1
h for a given (ψkh, λkh) ∈Mh × Λh.

To clarify, this means considering iterative methods for solving large, sparse linear systems

of equations of a particular form.

A x = b, with A ≡


A BT CT

B 0 0

C 0 0

 , (5.11)

In our context, the matrix A can be seen as a 2× 2 block matrix in two different ways,

depending on the chosen partitioning strategies. This is pertinent when A ∈ Rn×n is sym-

metric positive definite, B ∈ Rm×n, and C ∈ Rp×n. In iterative methods, we commonly
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employ a splitting A =M−N , whereM is an invertible matrix. The iteration scheme

follows the pattern:

xk+1 =M−1Nxk +M−1b,

For our considered case, the matrix A can be regarded as a 2 × 2 block matrix in two

different ways, according to which of the following partitioning strategies is used:

A ≡


A BT CT

B 0 0

C 0 0

 or A ≡


A BT CT

B 0 0

C 0 0

 . (5.12)

Then if the splitting A =M1−N1 is used, we need to initialize our iterative method

with a given (ψ0
h, λ

0
h) ∈Mh×Λh and two parameters α and β. While for the second choice

we need only one parameter and an initial guess λ0
h ∈ Λh.

In this thesis we will make use only the second type with only one parameter α, but we

are especially interested in studying the convergence of the considered method when the

third line of the system (5.11) is replaced by an inequality. Here we prove the convergence

of the Uzawa algorithm for the case of variational inequality.

The Uzawa algorithm for Problem 9 in its variational form can be expressed as

follows:

aρ(Uk+1
h , Vh) + b(Vh, ψk+1

h ) = L(Vh) + c(Vh, λkh), ∀Vh ∈ Xh,

b(Uk+1
h , χh) = 0, ∀χh ∈Mh,

(λ̃k+1
h , µ̃h) = (λkh, µ̃h) + αc(Uk+1

h , µ̃h)− α(Φh, µ̃h), ∀µ̃h ∈Mh,

λk+1
h = PΛh(λ̃k+1

h ).

(5.13)

Now we outline the algorithm for this method
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Algorithm 1 Uzawa methods

1. give some initial value λ(0)
h

2. k = 0

3. repeat :

4. compute (U (k+1), ψ(k+1)) from the equations
aρ(Uk+1

h , Vh) + b(Vh, ψk+1
h ) = L(Vh) + c(Vh, λkh), ∀Vh ∈ Xh,

b(Uk+1
h , χh) = 0, ∀χh ∈Mh,

(5.14)

5.

(λ̃k+1
h , µ̃h) = (λkh, µ̃h) + αc(Uk+1

h , µ̃h)− α(Φh, µ̃h), ∀µ̃h ∈Mh, (5.15)

{α is some given, small positive constant }

6. take λ(k+1)as the projection of λ̃(k+1) on Λ̄h:

λk+1
h = PΛ̄h(λ̃k+1

h )

7. k = k + 1

8. until: ‖λ(k+1) − λ(k)‖/‖λ(k+1)‖} ≤ ε

The study of convergence:

For an appropriate choice of α one can show that the sequence (U (k), ψ(k), λ(k)) converges

to (U, ψ, λ) of the contact naghdi problem (2.41). For k ≥ 1, let’s introduce the following

notation:

Ek
h = Uh − Uk

h , Ek
h = ψh − ψkh, and ekh = λh − λkh,

then we can easily write

aρ(Ek+1
h , Vh) + b(Vh, Ek+1

h ) = c(Vh, ekh), ∀Vh ∈ Xh

b(Ek+1
h , χh) = 0, ∀χh ∈Mh
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Utilizing the coercivity of aρ(·, ·), the continuity of c(·, ·), and the inf-sup condition of

b(·, ·), we obtain:

‖Ek+1
h ‖X + ‖Ek+1

h ‖M . ‖ekh‖

Hence, the convergence to zero of the sequence |ekh| will immediately imply the convergence

of |Ek+1
h |X and |Ek+1

h |M.

We conclude these preliminary remarks with the following observation:

λk+1
h = PΛ̄h(λ̃k+1

h ),

i.e, λk+1
h is the projection of λ̃k+1

h onto the closed convex set Λ̄h. Therefore

(λ̃k+1
h − λk+1

h , µh − λk+1
h ) ≤ 0, ∀µh ∈ Λ̄h and ‖λk+1

h ‖ ≤ ‖λ̃k+1
h ‖.

Since (λ̃k+1
h − λk+1

h , λh) ≤ 0, we then have

(λ̃k+1
h − λk+1

h , λh) + ‖λk+1
h ‖2 ≤ ‖λ̃k+1

h ‖2,

which is equivalent to

(λh − λk+1
h , λh − λk+1

h ) ≤ (λh − λ̃k+1
h , λh − λ̃k+1

h ).

This amounts to write

‖ek+1
h ‖ ≤ ‖ẽk+1

h ‖, where ẽkh = λh − λ̃kh. (5.16)

Therefore, the convergence to zero of the sequence ‖ẽk+1
h ‖, will imply the convergence to

zero of the sequence ‖ek+1
h ‖.

Theorem 5.2.1 ([47]) Let’s define K0 = c#

c̃c
, where c̃c represents the inf-sup constant

of Lemma 3.2.4. Now, let cc,# denote the continuity constant of the bilinear form c in

X× L2(ω). This constant is defined as the smallest positive constant such that

|c(V, µ)| ≤ cc,#‖U‖X‖µ‖,∀V ∈ X, µ ∈ L2(ω). (5.17)

Should the parameter α be selected such that

0 < 1 + α(αc2
c,# − 2c#)K−2

0 h2 < 1 (5.18)

then

lim
k→+∞

‖ẽk+1
h ‖ = 0.
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Proof. First we have

aρ(Ek+1
h , Vh) + b(Vh, Ek+1

h )− c(Vh, ekh) = 0, ∀Vh ∈ Xh. (5.19)

Take Vh = Ek+1
h , we get

aρ(Ek+1
h ,Ek+1

h ) = c(Ek+1
h , ekh)− b(Ek+1

h , Ek+1
h )︸ ︷︷ ︸

=0

= c(Ek+1
h , ekh). (5.20)

The fifth line of the algorithm (1) and (3.31) amount to write

(λ̃k+1
h , µ̃h) = (λkh, µ̃h) + αc(Uk+1

h , µ̃h) + α(Φh, µ̃h),

c(Uh, λkh − λh) ≥
〈
Φh, λ

k
h − λh

〉
.

For µ̃h = ekh, we get

(λ̃k+1
h , ekh) = (λkh, ekh) + αc(Uk+1, ekh) + α(Φh, e

k
h),

(λh, ekh) ≥ (λh, ekh) + αc(Uh, ekh) + α(Φh, e
k
h).

Then,

(ẽk+1, ekh) ≥ (ekh, ekh) + αc(Ek+1
h , ekh)

or equivalently,

αc(Ek+1
h , µh) ≤ (ẽk+1 − ekh, ekh).

Using (5.20) we find

aρ(Ek+1
h ,Ek+1

h ) ≤ − 1
α

(ẽk+1 − ekh, ekh) = − 1
2α

(
‖ẽk+1

h ‖2 − ‖ekh‖2 − ‖ẽk+1
h − ekh‖2

)
, (5.21)

In the final equality, we utilized the identity:

(d− c, d− c)− (d, d) + (c, c) = (d, d− c)− (c, d− c)− (d, d) + (c, c)

= (d, d)− (d, c)− (c, d− c)− (d, d) + (c, c)

= (c, c− d)− (c, d− c)

= 2(c, c− d).

98



5.2. CONTACT PROBEM OF NAGHDI’S SHELL CHAPTER 5.

The estimate (5.21) suggests that

2αc#‖Ek+1
h ‖2

X + ‖ẽk+1
h ‖2 ≤ ‖ekh‖2 + ‖ẽk+1

h − ekh‖2, (5.22)

Here, c# represents the coercivity constant of aρ. The subsequent step involves computing

|ẽk+1
h − ekh|2.

Let µ̃h ∈Mh and µh ∈ Λ̄h be defined as follows:

µ̃h = ẽk+1
h − ekh, µh = λh − (λkh − λ̃k+1

h )

then,

µ̃h = µh − λh.

We substitute this µ̃h into the fifth line of above algorithm to obtain:

(λ̃k+1
h , µ̃h) = (λkh, µ̃h) + αc(Uk+1

h , µ̃h)− α(Φh, µ̃h),

while by the third line of (3.7) one has

(λh, µh − λh) ≤ (λh, µh − λh) + αc(Uh, µh − λh)− α(Φh, µh − λh).

So by taking the difference

(ẽk+1
h , ẽk+1

h − ekh) ≤ (ekh, ẽk+1
h − ekh) + αc(Ek+1

h , ẽk+1
h − ekh) (5.23)

Then the estimate (5.17) yields

‖ẽk+1
h − ekh‖2 ≤ αc(Ek+1

h , ẽk+1
h − ekh) ≤ αcc,#‖Ek+1

h ‖X‖ẽk+1
h − ekh‖.

Ultimately, this estimate is equivalent to:

‖ẽk+1
h − ekh‖2 ≤ α2c2

c,#‖Ek+1
h ‖2

X.

By (5.22), we deduce that,

(2αc# − α2c2
c,#)‖Ek+1

h ‖2
X + ‖ẽk+1

h ‖2 ≤ ‖ekh‖2,

or equivalently

‖ẽk+1
h ‖2 ≤ ‖ekh‖2 + α(αc2

c,# − 2c#)‖Ek+1
h ‖2

X. (5.24)
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We therefore chose α > 0 small enough such that αc2
c,# − 2c# < 0. So that we will

conclude if one can show that

‖ekh‖ ≤ K0h
−1‖Ek+1

h ‖X. (5.25)

Indeed if this estimate is valid then (5.24) becomes

‖ẽk+1
h ‖2 ≤ (1 + α(αc2

c,# − 2c#)K−2
0 h2)‖ekh‖2,

and by (5.16)

‖ek+1
h ‖2 ≤ (1 + α(αc2

c,# − 2c#))K−2
0 h2)‖ekh‖2.

Through iteration, we eventually find:

‖ekh‖ ≤ (1 + α(αc2
c,# − 2c#))K−2

0 h2) k2 ‖e0
h‖,

and establishes the convergence of ‖ekh‖ to zero if 0 < 1 + α(αc2
c,# − 2c#)K−2

0 h2 < 1.

To prove (5.25), we utilize the identity (5.19), which states that

c(Vh, ekh) = aρ(Ek+1
h , Vh) + b(Vh, Ek+1

h ), ∀Vh ∈ Xh,

which reduces to

c(Vh, ekh) = aρ(Ek+1
h , Vh) ∀Vh ∈ Xh ∩ ker b,

Therefore, employing Lemma 3.2.4, we conclude that

c̃c‖ekh‖h ≤ c#‖Ek+1
h ‖X.

By applying the definition of the norm | · |h, we obtain (5.25) with K0 = c#
c̃c

.
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5.3 Numerical experiments

In this section, we provide several numerical tests designed to demonstrate the effective-

ness of the suggested solvers, particularly Uzawa. Detailed results are provided exclusively

forthe methods examined in the theoretical sections, accompanied by brief comments on

the remaining ones. We address two distinct types of variational inequality problems, each

arising from vastly different contact applications. One involves a singular saddle point,

while the other features a double saddle point. The tests and codes illustrated in this

chapter are developed using the FreeFem++-cs 15.2 32 software, which was developed

at the Jacques-Louis Lions Laboratory at Pierre and Marie Curie University (Paris 6).

Indeed, this software is an open-source finite element tool that provides a flexible envi-

ronment for solving partial differential equations (PDEs). It is particularly designed for

numerical simulations and computations related to scientific and engineering problems.

FreeFem++ supports a wide range of applications, including but not limited to fluid dy-

namics, solid mechanics, heat transfer, and electromagnetism. We initiate the application

of the Uzawa methods to model simple contact, as represented by the obstacle problem.

Following that, we delve into our contribution in this thesis to the thin shell domain,

specifically addressing the contact in the obstacle problem for Naghdi’s shell model.

First test

We choose the mesh Ω as a disk, such that

Ω = {(x, y) ∈ R2 | x2 + y2 ≤ 1}

and consider the problem (5.1) with


f = −4

ϕ = −x2 + y2 − 0.3
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That is we suppose that the membrane is attached at a point y = 0.7 and is loaded by a

force f = −4. In this case the problem is fully radial and u = u(r). Thus

∂2u

∂r2 + 1
r

∂u

∂r
= 1; a < r < 1; u(1) = 0; u(a) = ϕ(a); u′(a) = ϕ′(a); (5.26)

where a represents the contact area. when solving (5.26) we obtain

u(r) = r2 − 4a2ln(r)− 2a2 + 0.3 + 4a2ln(a) and a ' 0.29

If r > a then λ = 0 and when r < a, the solution (u, λ) satisfies:

λ = 1−∆ϕ and u = ϕ

The Uzawa method is employed to solve the given problem. The table below provides

some information on the convergence between the exact solution and the result of the

Uzawa method iteratioin using the L2 norm.

step size hT 0.80 0.40 0.20 0.10

iteration number 69 1907 2999 2999

‖λk+1 − λk‖L2(ω) 9.295 e-5 9.9834 e-6 7.5953 e-5 0.0002023

Table 5.1: Convergence outcomes for the Uzawa scheme using P1 ⊕B3 − P0

step size hT 0.80 0.40 0.20 0.10

iteration number 38 416 1412 2999

‖λk+1 − λk‖L2(ω) 9.0111 e-6 9.9358 e-6 9.98504 e-6 1.75612 e-5

Table 5.2: Convergence results for the Uzawa scheme using P2 − P1
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The finit element iteration number ‖uh − u‖L2(ω) ‖λk+1 − λk‖L2(ω) Convergence

factor (rate)

P1 ⊕B3 − P0 2999 6.16032 e-5 7.5953 e-5 0.98

P2 − P1 1412 0.0002783 9.98 e-6 1.59

Table 5.3: Convergence rate when α = 1.9

The finit element iteration number ‖uh − u‖L2(ω) Convergence factor (rate)

P1 ⊕B3 − P0 2999 0.000153 0.98

P2 − P1 2559 9.99 e-6 1.37

Table 5.4: Convergence rate when α = 0.9

(a) The mesh (b) Isovalues for uh

Figure 5.1: The mesh and isovalues of uh
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(a) The exat contact using P1⊕B3−P0 (b) The approximate contact using P1 ⊕B3 − P0

(c) The exact contact using P2 − P1 (d) The approximate contact using P2 − P1

Figure 5.2: The comparison between the eaxat and approximate contact

Second test

In this subsection, we examine the efficacy of the Uzawa algorithm outlined in the preced-

ing section for addressing the discrete problem Problem 9. We focus on the hyperbolic

paraboloid shell S = ϕ(ω), with the reference domain ω being.

ω =
{

(x, y) ∈ R2, | x | + | y |< 50
√

2
}

(5.27)

and the chart is defined by ( Figure 5.3)

ϕ(x, y) = (x, y, x
2 − y2

R2 + 1.4), with R = 50
√

2. (5.28)

The shell is clamped on ∂ω, meaning we select γ0 = ∂ω (thus γ1 is empty) and it is

subjected to a uniform pressure f3 = q = −0.25kp/cm2.
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Figure 5.3: The surface S = ϕ(ω).

Alternatively, in equation (1.13), we set f = (0, 0, q). Young’s modulus and Poisson’s

ratio are E = 2.85 × 104 kp/cm2, ν = 0.4 respectively, with the shell thickness being

ε = 0.8 cm.

Then the function Φ defined by (2.1) is expressed as

Φ(x, y) = 0.4R2√
4(x2 + y2) +R4

− x2 − y2

R2 − 1.4.

It’s worth noting that the function Φ (refer to Figure 5.6 (a)) meets the condition (2.2),

ensuring that the surface fulfills the necessary criteria discussed in the introductory sec-

tion. The numerical experiments presented here were conducted using the finite element

software FreeFem++ [44]. We investigate the convergence behavior of the Uzawa method

concerning the number of iterations.

The Uzawa method is widely recognized as being equivalent to a fixed-parameter first-

order Richardson iteration, achieved through the elimination of the unknowns U and ψ

and employing the Schur complement for the unknown λ (refer to [6]). Thus, we can

employ a stopping criterion where we halt the process when ‖λk+1 − λk‖L∞ becomes suf-

ficiently small.
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In our problem, the contact zone is delineated as the set of points (x, y) ∈ ω that

satisfy (
(
u− ε

2r
)
·e3)(x, y) = Φ(x, y). In contact problems, both the contact zone and the

free boundary are a priori unknowns.

Nonetheless, in the considered example we have noticed that at the origin (0, 0)

we approximate (
(
uh − ε

2rh
)
· e3)(0, 0) ≈ Φh(0, 0) as the number of iterations grows

large. Given that the analytical expression of the function Φh is accessible, and through

analytical calculations, we ascertain Φh(0, 0) = −1, we have monitored the quantity

|
(
uh − ε

2rh
)
· e3)(0, 0)− Φh(0, 0)| at various steps. The results suggest that this quantity

diminishes relatively to zero at a comparable rate to ‖λk+1−λk‖L∞ (see Figure 5.8). This

observation could be interpreted as follows: the nature of the applied loading and the

position of the function Φ relative to the shell suggest that the origin (0, 0) is part of the

contact zone, at least in the context of discrete problems.

(a) isovalues for u3 (b) The mesh

Figure 5.4: The mesh and isovalues for u3

In Figure 5.4 (a) the isovalues for u3 are plotted using the quasi uniform mesh shown

in Figure 5.4 (b). Due to the form of the considered loading we can expect that the

displacement u3 will be larger than the tangential displacement uβ, β = 1, 2.

Figure 5.5 shows this significant difference between u3 and uβ, β = 1, 2. Indeed the
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(a) Isovalues for u1 (b) Isovalues for u2

Figure 5.5: isovalues for uβ, β = 1, 2

range of u3 is between 0.029 and −1.09 while the values of u1 and u2 varies between

−0.005 and 0.005.

(a) The function Φ (b)
(
uh − ε

2rh

)
· e3 and Φh

Figure 5.6: The constraint
(
uh − ε

2rh
)
· e3 and the functions Φ and Φh

The constraint
(
uh − ε

2rh
)
· e3 and the function Φh are depicted in Figure 5.6 (b).
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There, we notice that the function Φh can be regarded as an obstacle for the unknown(
uh − ε

2rh
)
· e3.

In Figure 5.7, we plot the "contact zone" and the free boundary after 350 iterations. It

appears to be a connected and non-convex subset of ω containing the origin.

Figure 5.7: The contact zone {(x, y) ∈ ω;
((
uh − ε

2rh
)
· e3

)
(x, y) = Φh(x, y)}.

iteration 100 150 200 250 300 350

‖λk+1 − λk‖L2(ω) 0.0485238 0.0327921 0.0288491 0.0220641 0.021193 0.0192298

Value of

the constraint 0.0317884 0.024239 0.0207364 0.0169701 0.0156183 0.0140509

at the point (0,0)

Table 5.5: Convergence outcomes for the Uzawa scheme using P1 ⊕B3 − P0

We present in Table 5.5 and Figure 5.8, the evolution of ‖λk+1 − λk‖L∞(ω) and of

|
(
uh − ε

2rh
)
·e3)(0, 0)−Φh(0, 0)| at different iterations. Note that the number of iterations

to stop the algorithm for some reasonable stopping criteria is huge. Indeed, we have
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(a) ‖λk+1 − λk‖L∞(ω) (b) |(
(
uh − ε

2rh

)
· e3)(0, 0)− Φh(0, 0)|

Figure 5.8: The error as a function of the number of iterations

observed that in order to obtain ‖λk+1 − λk‖L∞(ω) < 10−6 or |
(
uh − ε

2rh
)
· e3)(0, 0) −

Φh(0, 0)| < 10−6 more then 100000 iterations is needed but no pathological behavior is

observed. Therefore we have preferred to present the evolution of the errors up to 350

iterations.

The convergence of the Uzawa method depends strongly on the value of the parameter α.

The optimal choice of this parameter depends on the eigenvalues of the system. Based on

the inequality (5.18), it must satisfy

0 < α <
2c#

c2
c,#

but the coercivity of the bilinear form depends on the parameter ρ.

Indeed, for ρ = 0, we have observed that the method does not converge choosing ρ > 0

big enough gives a large range of α for which the method converges. In order to show

the influence of the parameter ρ on the performance of the algorithm we have performed

numerical experiments on a mesh consists of 512 triangles, 6119 degree of freedom with

fixed value of α and different values of ρ = 101, 103, 105, 107 and 109.

The results are listed in tables 5.6 and 5.8. We observe that the augmenting the value of

ρ with α fixed reduces slightly the number of iterations for a given stopping criteria which

is chosen ‖λk+1 − λk‖L∞(ω) < 0.01 (see table 5.8). For a fixed (large enough) value of ρ
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ρ 103 105 107 109

‖λk+1
h − λkh‖L2(ω) 0.0119165 0.0119167 0.0119348 0.0087216

|(
(
uh − ε

2rh
)
· e3 − Φh)(0, 0)| 0.0635194 0.0636253 0.0637142 0.0621998

Table 5.6: Convergence results for the Uzawa sheme for α = 0.01 and differents values of

ρ

we have performed numerical tests with different values of α. The results are shown in

Table 5.7. Contrary to the previous case, we observe that changing α and fixing ρ large

enough may affect significantly the convergence.

α 10−1 10−2 10−3 10−4

‖λk+1
h − λkh‖L2(ω) 0.01851140 0.01191650 0.00732018 0.00148822

Table 5.7: Convergence results for the Uzawa sheme for ρ = 103 and differents values of

α

ρ 1 101 103 105 107 109

Number of iterations 701 688 686 686 686 684

Table 5.8: Comparison of the number of iteration for α = 0.01 and differents values of ρ

In the context of finite element approximation of PDEs, the rate of convergence de-

pends strongly on the regularity of the solution of the exact solution and the degree of

the used polynomials, an inverse theorem also exists (see [2]). It should be noticed that

for contact problems, the limited regularity of the solution due to the unknown contact

boundary limits the convergence rate. For our problem the exact solution and the a priori

regularity are unknown. In order to overcome this issue, we follow the algorithm purposed

in [52, Sec. 6]. Indeed, the prescribed numerical test is solved by our mixed formulation

discretised using (P1 ⊕ B3,P1 ⊕ B3,P0) and the Uzawa algorithm with fixed parameters

ρ = 103 and α = 0.01. The mesh is refined uniformly and the mesh size is of the form
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hmax = 50
√

2/2(n+4), n = 0, 1, 2, 3 (see figure 5.9). Since the different components have

very different order of magnitude, we prefer to use the relative error instead of the abso-

lute error. The resulting convergence curves are visualized in Figure 5.10 as a function of

the mesh parameter. The parameter κ stands for the rate of convergence O(hκ).

(a) n = 0 (b) n = 3

Figure 5.9: The first and the fourth meshes

The numerical test shows that the algorithm converges with a "global" rate κ ≈ 0.5

and it is in good agreement with the theoretical results obtained in Corollary 3.3.7 and

3.3.3. Note that the experimental rate of convergence is the not the same for different

components.

We have observed that it is smaller when comparing it the rate of convergence for of the

Lagrange multipliers ψ and λ, (or even for the tangential components uβ, rβ), this is due

to the fact that the regularity of components u3 and r3 is limited by the presence of the

obstacle Φ.

It seems to be a very interesting work to investigate whether the rate of convergence can

be improved by an automatic adaptive refinement strategy using a reliable and efficient a

posteriori error indicator together with high order polynomial spaces like Pk +Bk+1, Pk−2,

k ≥ 2.
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(a) ‖uk+1
h − uk

h‖H1(ω,R3) (b) ‖rk+1
h − rk

h‖H1(ω,R3)

(c) ‖λk+1
h − λk

h‖−1,h (d) ‖ψk+1
h − ψk

h‖H1(ω)

Figure 5.10: The rate of the convergence as a function of the mesh size
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Conclusion

In conclusion, this research has delved into the contribution: application of iterative meth-

ods to address variational inequalities arising from the finite element approximation of the

obstacle problem in Naghdi’s shell formulation within Cartesian coordinates. The focus

has been on finding solutions within a convex, non-linear subset, subject to additional

constraints, particularly the tangency requirement on the rotation field.

Throughout the investigation, the finite element approximation has been employed

to address unilateral contact problems involving elastic shells and rigid obstacles. The

research has achieved significant milestones, including establishing existence and unique-

ness results, stability estimates, and optimal a priori error estimates for both continuous

and discrete problems.

Efficient iterative solution methods, such as the Uzawa algorithm associated with the

variational inequality, have been proposed and validated through numerical tests. The

study extends its scope by considering two equivalent formulations of the obstacle problem

for a Naghdi shell, introducing a new perspective on the continuous problem and deriving

Lagrange multipliers to enforce tangency requirements and inequality constraints.

In summary, the proposed approach has undergone rigorous validation through a se-

ries of numerical tests, encompassing various aspects such as convergence results, the
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behavior of the approximate solution, characteristics of the contact zone, and the rate

of convergence. These tests have collectively demonstrated the effectiveness of the devel-

oped methodology in addressing unilateral contact problems within the realm of structural

mechanics.

This research represents a valuable contribution, extending beyond theoretical foun-

dations to provide practical methodologies. The comprehensive validation process un-

dertaken serves to strengthen the reliability and applicability of the proposed approach.

By successfully navigating through the complexities of structural mechanics, this work

stands as a significant advancement in the field, offering solutions to intricate problems

and paving the way for future developments in the understanding and resolution of similar

challenges.

Future Perspectives

Several extensions and future directions emerge from this work. Potential areas of explo-

ration include:

• High Order Finite Element Methods: Investigate the application of high-order finite

element methods to enhance the accuracy and efficiency of the proposed approach.

• Adaptive Mesh Refinement: Implementing adaptive mesh refinement techniques

based on a posteriori error estimates to improve the accuracy and efficiency of

numerical solutions.

• Stabilized Finite Element Method: Explore the integration of stabilized finite el-

ement methods to address stability concerns and improve the robustness of the

proposed algorithms.

• Iterative Solution Algorithms: Study alternative iterative solution algorithms such

as inexact Uzawa methods, interior point methods, multigrid, and preconditioned

Krylov subspace methods for potential improvements in computational efficiency.
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• Thin Shells with Signorini Boundary Conditions: Extend the research to incorporate

thin shells with Signorini boundary conditions, providing a more comprehensive

understanding of the problem.

• Extension to the Koiter Shell Model: Explore the application of the developed

methodology to the Koiter shell model, expanding the scope of the research to

different shell models.

These future perspectives aim to enhance the versatility, efficiency, and applicability

of the proposed methods, contributing to advancements in the field of structural

mechanics and variational inequalities.
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