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Abbreviations and Notations

The di¤erent abbreviations and notations used throughout this dissertation are explained

below :

E[X] Expectation at X.

E [XjB] Conditional expectation of X given the �-�eld B.

var(X) Variance of the random variable X:

EDS Stochastic di¤erential equations.

SFDEs Stochastic functional di¤erential equations.

PSDERB Perturbed stochastic di¤erential equations with re�ecting boundary.


 Fundamental space of a random experiment.

P Propability.

(
;F ;P) Propability space.

fFtg Filtration.

(
;A;P) Probability space.

a:s: Almost surely.

i:e For every integer.

P�a:s Almost surely in propability.

a:e: Almost everywhere.

r:v Random variable.

r:c:l:l: Right continuous with left limits.

kfkp Lp-norm of the function f:
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Rd Euclidean real space of dimension d

�B indicator function of the set B:

lim Limit

lim " Limit from the right

inf In�nity.

sup Supremum.

min Minimum

max Maximum
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Introduction

In recent years, there has been signi�cant interest in the Carathéodory approximation

method ([9]). Researchers have explored various aspects of this technique for stochastic di¤e-

rential equations (SDEs). For instance, Bell and Mohammed ([1]) extended the Carathéodory

approximation to SDEs and demonstrated the convergence of the approximate solutions. Mao

([6],[7]) investigated a class of SDEs with variable delays, focusing on the Carathéodory ap-

proximation of delayed SDEs. Turo ([14]) addressed the Carathéodory approximation for

stochastic functional di¤erential equations (SFDEs) and established an existence theorem

for SFDEs. Liu ([5]) studied semilinear stochastic evolution equations with time delays and

proved convergence of the Carathéodory approximate solutions to the solutions of stochastic

delay evolution equations. Additionally, Mao ([8]) examined the Carathéodory approximation

scheme for doubly perturbed stochastic di¤erential equations (DPSDEs) and established an

existence theorem for DPSDEs with non-Lipschitz coe¢ cients. In this work, we will study

the Carathéodory approximate scheme of a class of one-dimensional perturbed stochastic

di¤erential equations with re�ecting boundary, This paper is divided as follows : In chaptre

one, we will explain the theory of stochastic calculus by providing de�nitions and properties.

The second chapter focuses on the study of existence and uniqueness of solution for stochas-

tic di¤erential equations. Finally in chaptre three we prove that (PSDERB) have a unique

solution and show that the Carathéodory approximate solution converges to the solution of

(PSDERB) whose both drift and di¤usion coe¢ cients are non-Lipschitz.
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Chapitre 1

Stochastic analysis

1.1 Conditional Expectation [4]

1.1.1 Integrable Random Variables

Théoréme 1.1 Let B be a sub-�-�eld of A, and let X 2 L1(
;A;P). There exists a unique

element of L1(
 ;B;P), which is denoted by E [XjB], such that

8B 2 B; E [X�B] = E[E[XjB]�B]: (1.1)

We have more generally, for every bounded B-measurable real random variable Z,

E[XZ] = E[E [XjB]Z]: (1.2)

If X � 0, we have E [XjB] � 0 a.s.

The crucial point is the fact that E [XjB] is B-measurable. Either of properties (1.1) and (1.2)

characterzes the conditional expectation E [XjB] among random variables of fX�> X�g. In

what follows, we will refer to (1.1) or (1.2) as the characteristic property of E [XjB].

2



Chapitre 1. Stochastic analysis

Proof. Let us start by proving uniqueness. Let X� and X�� be two random variables in

L1(
;B;P) such that

8B 2 B�E [X��B] = E [X�B] = E [X��B] :

Taking B = fX�> X�g (which is in B since both X�and X�are B-measurable), weget

E
�
(X��X�)�fX�>X�g

�
= 0;

which implies that fX�� X�g a.s., and we have similarly fX�� X�g a.s. Thus fX�= X�g

a.s., which means that X�and X�are equal as elements of L1(
;B;P). Let us now turn to

existence. We �rst assume that X � 0, and we let Q be the �nite measure on (
;B) de�ned

by

8B 2 B; Q(B) := E [X�B] :

Let us emphasize that we de�ne Q(B) only for B 2 B. We may also view P as a probability

measure on (
;B), by restricting the mapping B 7! P(B) to B 2 B, and it is immediate that

Q � P. The Radon-Nikodym theorem applied to the probability measures P and Q on the

measurable space (
;B) yields the existence of a nonnegative B-measurable random variable
~X such that

8B 2 B; E [X�B] = Q(B) = E
h
~X�B

i
:

Taking B = 
, we have E
h
~X
i
= E [X] <1, and thus ~X 2 L1(
;B;P). The random variable

E [XjB] = ~X satis�es (1.1). When X is of arbitrary sign, we just have to take

E [XjB] = E
�
X+jB

�
� E

�
X�jB

�
;

and it is clear that (1.1) also holds in that case.

Finally, to see that (1.1) implies (1.2), we rely on the usual measure-theoretic arguments. (1.2)

follows from (1.1) when Z is a simple random variable (taking only �nitely many values), and

in the general case Proposition (3.1) allows us to write Z as the pointwise limit of a sequence
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Chapitre 1. Stochastic analysis

(Zn)n2N of simple B�measurable random variables that are uniformly bounded by the same

constant K (such that jZj � K) and the dominated convergence theorem yields the desired

result.

1.1.2 Properties of Conditional Expectation

(a) If X 2 L1(
;A;P) and X is B-measurable, then E [XjB] = X.

(b) The mapping X 7�! E [XjB] is linear on L1(
;A;P).

(c) If X 2 L1(
;A;P);E [E [XjB]] = E [X].

(d) If X 2 L1(
;A;P), then jE [XjB]j � E [jXj jB]a.s. and, consequently, E [jE [XjB]j] �

E [jXj]. Therefore the mapping X 7�! E [XjB] is a contraction of L1(
;A;P).

(e) If X;X�2 L1(
;A;P) and X � X�, then E [XjB] � E [X�jB] a.s

Proof. (a) immediately folllows from uniqueness in Theorem (1.1). Similarly, for (b), we

observe that, if X;X�2 L1(
;A;P) and �, ��2 R the random variable

�E [XjB] + ��E [X�jB]

satis�es the characteristic property (1.1) for the conditional expectation of �X+��X�: Property

(c) is the special case B = 
 in (1.1). As for (d), using the fact that X � 0 implies,

E [XjB] � 0 we have

jE [XjB]j =
��E �X+jB

�
� E

�
X�jB

��� � E �X+jB
�
+ E

�
X�jB

�
= E [jXj jB]

Finally, (e) is immediate by linearity.

1.1.3 Nonnegative Random Variables

Théoréme 1.2 LetX be a random variable with values in [0;1]. There exists a B-measurable

random variable with values in [0;1], which is denoted by E [XjB] and is such that, for every

4



Chapitre 1. Stochastic analysis

nonnegative B-measurable random variable Z,

E [XZ] = E [E [XjB]Z] : (1.3)

Furthermore E [XjB] is unique up to a B-measurable set of probability zero.

Proof. We de�ne E [XjB] by setting

E [XjB] := lim
n!1

" E [X ^ njB] a.s.

This de�nition makes sense because, for every n 2 N, X ^ n is bounded hence integrable

and thus E [X ^ njB] is well de�ned by the previous section. Furthermore, the fact that the

sequence (E [X ^ njB])n2N is (a:s:) increasing follows from property (e) above. Then, if Z is

nonnegative and B-measurable, the monotone convergence theorem implies that

E [E [XjB]Z] = lim
n!1

E [E [X ^ njB] (Z ^ n)] = lim
n!1

E [(X ^ n)(Z ^ n)] = E [XZ] :

It remains to establish uniqueness. Let X�and X��be two B-measurable random variables with

values in [0;1], such that

E [X�Z] = E [X�Z]

for every nonnegative B-measurable random variable Z. Let us �x two nonnegative rationals

a < b, and take

Z = �fX��a<b�X�g:

If follows that

aP(X�� a < b � X�) � E
�
�fX��a<b�X�g X�

�
� E

�
�fX��a<b�X�g X�

�
� bP(X�� a < b � X�)

5



Chapitre 1. Stochastic analysis

which is only possible if P(X�� a < b � X�) = 0. Hence,

P( [
a;b2Q+
a<b

fX�� a < b � X�g) = 0

which implies X�� X�a.s., and interchanging the roles of X�and X�also gives X�� X�a.s.

1.1.4 Properties

In the statement of the following properties, �nonnegative�means �with values in [0;1]�.

(a) If X�and X��are nonnegative random variables, and a; b � 0,

E [aX + bX�jB] = aE [XjB] + bE [X�jB] :

(b) If X is nonnegative and B-measurable, E [XjB] = X.

(c) For any nonnegative random variable X, E [E [XjB]] = E [Xj].

(d) If (Xn)n2N is an increasing sequence of nonnegative random variables,and X = lim
n!1

"Xn,

then

E [XjB] = lim
n!1

" E [XnjB] ; a.s.

As a useful consequence, if (Yn)n2N is a sequence of nonnegative random variables, we

have

E

"X
n2N

YnjB
#
=
X
n2N

E [YnjB] :

(e) If (Xn)n2N is any sequence of nonnegative random variables

E [lim infXnjB] � lim inf E [XnjB] ; a.s:

(f) Let (Xn)n2N be a sequence of integrable random variables that converges a.s. to X.

Assume that there exists a nonnegative random variable Z such that jXnj � Z a.s. for

6



Chapitre 1. Stochastic analysis

every n 2 N, and E [Z] <1. Then,

E [XjB] = lim
n!1

E [XnjB] ; a.s. and in L1:

(g) (Jensen�s Inequality for Conditional Expectations) If f : R! R+ is convex,and ifX 2 L1

E [f(X)jB] � f(E [XjB]):

Proof. (a) and (b) are easy using the characteristic property (1.3), and (c) is the special case

Z = 1 in (1.3). (d) It follows from (a) that we have E [XjB] � E [Y jB] if X � Y � 0. Under

the assumptions of (d), we can therefore set X�=lim " E [XnjB] ; which is a -B-measurable

random variable with values in [0;1]. Then, for every nonnegative B-measurable random

variable Z; the monotone convergence theorem gives

E [ZX�] = lim " E [ZE [XnjB]] = lim " E [ZXn] = E [ZX]

which implies X�= E [XjB] thanks to the characteristic property (1.3). The second assertion

in (d) follows by applying the �rst one to Xn = Y1 + :::+ Yn: (e) Using (d), we have

E [lim infXnjB] = E
�
lim
k"1

" (inf
n�k
Xn)jB

�
=lim "

k"1
E
�
inf
n�k
XnjB

�
� lim

k"1
(inf
n�k
E [XnjB])

= lim inf E [XnjB] :

(f) It su¢ ces to apply (e) twice :

E [Z �XjB] = E [lim inf(Z �Xn)jB] � E [ZjB]� lim supE [XnjB] ;

E [Z +XjB] = E [lim inf(Z +Xn)jB] � E [ZjB] + lim inf E [XnjB] ;

7



Chapitre 1. Stochastic analysis

which leads to

E [XjB] � lim inf E [XnjB] � lim supE [XnjB] � E [XjB] ;

giving the desired almost sure convergence. The convergence in L1 is now a consequence of

the dominated convergence theorem, since we have jE [XnjB] j � E [jXnj jB] � E [ZjB] and

E [E [ZjB]] = E [Z] <1.

(g) set

Ef =
�
(a; b) 2 R2 : 8x 2 R; f(x) � ax+ b

	
:

Then,

8x 2 R2; f(x) = sup
(a;b)2Ef

(ax+ b) = sup
(a;b)2Ef\Q2

(ax+ b):

We can take advantage of the fact that Q2 is countable to disgard a countable collection of

sets of probability zero and to get that, a.s.,

E [f(X)jB] = E
"

sup
(a;b)2Ef\Q2

(aX + b)jB
#

� sup
(a;b)2Ef\Q2

E [aX + bjB] = f(E [XjB])

1.1.5 The Special Case of Square Integrable Variables

Théoréme 1.3 If X 2 L2(
;A;P), then E [XjB] is the orthogonal projection of X on X 2

L2(
;A;P).

Proof. Jensen�s inequality shows that E [XjB]2 � E [X2jB], a.s. This implies that E
�
E [XjB]2

�
�

E [E [X2jB]] = E [X2] < 1, and thus the random variable E [XjB] belongs to L2(
;A;P):

On the other hand, for every bounded B-measurable random variable Z,

E [Z(X � E [XjB])] = E [ZX]� E [ZE [XjB]] = 0;

8



Chapitre 1. Stochastic analysis

by the characteristic property (1.2). Hence X � E [XjB] is orthogonal to the space of all

bounded B-measurablo random variables, and the latter space is dense in L2(
;A;P) (for

instance by Theorem(3.7)). It follows that X � E [XjB] is orthogonal to L2(
;A;P), which

gives the desired result.

1.2 Martingals

Dé�nition 1.1 (�ltration) A �ltration on a probability space (
;F ;P)is an increasing fa-

mily of sub-�-�elds(Fn) = fFn : n � 0g of F indexed by n 2 f0; 1; 2; :::;m; :::g:

Dé�nition 1.2 Mt is a continuous-time martingale with respect to the �ltration fFtg and

the probability measure P if

1. EjMtj <1 for each t ;

2. MtisFt measurable for each t ;

3. E[MtjFs] =Ms; a:s:;if s < t:

Part (2) of the de�nition can be rephrased as saying Mt is adapted to Ft. If in part (3) �=�

is replaced by ���then Mt is a submartingale, and if it is replaced by ���then we have a

supermartingale.

Dé�nition 1.3 A sequence of random variables M0;M1;::: is called a martingale with respect

to the �ltration fFng if :

� For each n, Mn is an Fn-measurable random variable with E [jMnj].

� If m < n, then

E [MnjFm] =Mm: (1.4)

We can also write (1.4) as

E [Mn �MmjFm] = 0:

If we think of Mn as the winnings of a game, then this implies that no matter what has

happened up to time m, the expected winnings in the next n � m games is 0. Sometimes

9



Chapitre 1. Stochastic analysis

one just says �M0; M1;... is a martingale�withoutreference to the �ltration. In this case, the

assumed �ltration is Fn, the information in M0; :::;Mn. In order to establish (1.4) it su¢ ces

to show for all n,

E [Mn+1jFn] =Mn: (1.5)

In order to see this, we can use the tower property (1.5) for conditional expectation to see

that

E [Mn+2jFn] = E [E [Mn+2jFn+1] jFn] = E [Mn+1jFn] =Mn;

and so forth. Also note that if Mn is a martingale, then

E [Mn] = E [E [MnjF0]] = E [M0] :

1.2.1 Martingale convergence theorem [3]

The martingale convergence theorem describes the behavior of a martingale Mn as n!1.

Théoréme 1.4 (Martingale Convergence Theorem). Suppose Mn is a martingale with

respect to fFng and there exists C < 1 such that E [jMnj] � C for all n. Then there exists

a random variable M1 such that with probability one

lim
n!1

Mn =M1:

It does not follow from the theorem that E [M1] = E [M0]. For example, the martingale betting

strategy satis�es the conditions of the theorem since

E [jWnj] =
�
1� 2�n

�
� 1 + (2n � 1) � 2�n � 2:

However, W1 = 1 and W0 = 0.

10



Chapitre 1. Stochastic analysis

We will prove the martingale convergence theorem. The proof uses a well-known �nancial

strategy� buy low, sell high. Suppose M0;M1; ::: is a martingale such that

E [jWnj] � C � 1

for all n. Suppose a < b are real numbers. We will show that it is impossible for the martingale

to �uctuate in�nitely often below a and above b. De�ne a sequence of stopping times by

S1 = min fn :Mn � ag ; T1 = min fn > S1 :Mn � bg

and for j > 1;

Sj = min fn > Tj�1 :Mn � ag ;

Tj = min fn > Sj :Mn � bg :

We set up the discrete stochastic integral

Wn =
X
Bk [Mk �Mk�1] ;

with Bn = 0 if n� 1 < S1 and

Bn = 1 if Sj � n� 1 < Tj;

Bn = 0 if Tj � n� 1 < Sj+1:

In other words, every time the �price�drops below a we buy a unit ofthe asset and hold onto

it until the price goes above b at which time we sell. Let Un denote the number of times by

time n that we have seen a �uctuation ; that is,

Un = j if Tj � n � Tj+1:

11



Chapitre 1. Stochastic analysis

We call Un the number of upcrossings by time n. Eery upcrossing results in a pro�t of at

least b� a. From this we see that

Wn � Un (b� a) + (Mn � a) :

The term a �Mn represents a possible loss caused by holding a share of the asset at the

current time. Since Wn is a martingale, we know that E [Wn] = E [W0] = 0, and hence

E [Un] �
E [a�Mn]

b� a � jaj+ E [jMnj]
b� a � jaj+ C

b� a :

This holds for every n, and hence

E [Un] �
jaj+ C
b� a <1:

In particular with probability one, Un < 1, and hence there are only a �nite number of

�uctuations. We now allow a, b to run over all rational numbers to see that with probability

one,Therefore, the limit

Mn = lim
n!1

Mn

exists. We have not yet ruled out the possibility that M1 is �1, but it is not di¢ cult to see

that if this occurred with positive probability, then E [jMnj] would not be uniformly bounded.

To illustrate the martingale convergence theorem, we will consider an other example of a

martingale called Polya�s urn. Suppose we have an urn with red and green balls. At time

n = 0, we start with one red ball and one green ball. At each positive integer time we choose

a ball at random from the urn (with each ball equally likely to be chosen), look at the color

of the ball, and then put the ball back in with another ball of the same color. Let Rn, Gn

denote the number of red and green balls in the urn after the draw at time n so that

R0 = G0 = 1; Rn +Gn = n+ 2;

12



Chapitre 1. Stochastic analysis

and let

Mn =
Rn

Rn +Gn
=

Rn
n+ 2

be the fraction of red balls at this time. Let Fn denote the information in the dataM1; :::;Mn;,

which one can check is the same as the information in R1; R2; :::; Rn. Note that the probability

that a red ball is chosen at time n depends only on the number (or fraction) of red balls in

the urn before choosing. It does not depend on what order the red and green balls were putin.

This is an example of the Markov property. This concept will appear a number of times for

us, so let us de�ne it.

1.2.2 Square intrgrable martingales [3]

Dé�nition 1.4 A martingale Mn is called square integrable if for each n;E [M2
n] <1:

Note that this condition is not as strong. We do not require that there exists a c < 1 such

that for each n. Random variables X; Y are orthogonal if E [XY ] = E [X]E [Y ]. Independent

random variables are orthogonal, but orthogonal random variables need not be independent.

If X1; :::; Xn are pairwise orthogonal random variables with mean zero, thenand by expanding

the square we can see that

E
�
(X1; :::; Xn)

2� = nX
j=1

E
�
X2
j

�
:

This can be thought of as a generalization of the Pythagorean theorem a2 + b2 = c2 for right

triangles. The increments of a martingale are not necessarily independent, but for square

integrable martingales they are orthogonal as we now show.

Proposition 1.1 Suppose that Mn is a square integrable martingale with respect to fFng.

Then if m < n;

E [(Mn+1 �Mn) (Mm+1 �Mm)] = 0:

Moreover, for all n;

E
�
M2
n

�
= E

�
M2
0

�
+

nX
j=1

E
�
(Mj �Mj�1)

2� :
13
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Proof. If m < n; Fn-measurable, and hence

E [(Mn+1 �Mn) (Mm+1 �Mm) p Fn] = (Mm+1 �Mm)E [Mn+1 �Mn p Fn] = 0

Hence

E [(Mn+1 �Mn) (Mm+1 �Mm)] = E [E [(Mn+1 �Mn) (Mm+1 �Mm) p Fn]] = 0

Also, if we set M�1 = 0;

M2
n =

"
M0 +

nX
j=1

E [(Mj �Mj�1)]

#2
=M2

0+
nX
j=1

(Mj �Mj�1)
2+
X
j 6=k

(Mj �Mj�1) (Mk �Mk�1) :

Taking expectations of both sides gives the second conclusion.

1.3 Brownian motion [3]

Dé�nition 1.5 Brownian motion or the Wiener process is a model of random continuous

motion. We will start by making the assumptions that underlie the phrase �random continuous

motion�. Let Bt = B(t) be the value at time t. For each t; Bt is a random variable. A collection

of random variables indexed by time is called a stochastic process. We can view the process

in two di¤erent ways :

� For each t, there is a random variable Bt;and there are correlations between the values at

di¤erent times.

� The function t 7! B(t) is a random function. In other words, it is a random variable whose

value is a function.

There are three major assumptions about the random variables Bt:

� Stationary increments. If s < t; then the distribution of Bt �Bs is the same as that of

Bt�s �B0.

14
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� Independent increments. If s < t, the random variable Bt � Bs is independent of the

values Br for r � s.

�Continuous paths. The function t 7! Bt is a continuous function of t.

We often assume B0 = 0 for convenience, but we can also take other initial conditions. All

of the assumptions above are very reasonable for a model of random continuous motion.

However, it is not obvious that these are enough assumptions to characterize our process

uniquely. It turns out that they do up to two parameters. that if Bt is a process satisfying

the three conditions above, then the distribution of Bt for each t must be normal. Suppose Bt

is such a process, and let m, �2be the mean and variance of B1. If s < t, then independent,

identically distributed increments imply that

E [Bt] = E [Bs] + E [Bt �Bs] = E [Bs] + E [Bt�s] ;

V ar [Bt] = V ar [Bs] + V ar [Bt �Bs] = V ar [Bs] + V ar [Bt�s] :

Using this relation, we can see that E [Bt] = tm; V ar [Bt] = t�2. At this point, we have only

shown that if a process exists, then the increments must have a normal distribution. We will

show that such a process exists. It will be convenient to put the normal distribution in the

de�ntion.

Dé�nition 1.6 A stochastic process Bt is called a (one-dimensional) Brownian motion with

drift m and variance (parameter) �2 starting at the origin if it satis�es the following

� B0 = 0:

� For s < t, the distribution of Bt�Bs is normal with mean m(t� s) and variance �2(t� s):

� If s < t, the random variable Bt �Bs is independent of the values Br for r � s:

�With probability one, the function t 7! Bt is a continuous function of t:

If m = 0; �2 = 1, then Bt is called a standard Brownian motion.

Recall that if Z has a N(0; 1)distribution and Y = �Z + m; then Y has a N(m;�2)

distribution. Given that it is easy to show the following.

15
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� If Bt is a standard Brownian motion and

Yt = �Bt +mt:

then Yt is a Brownian motion with drift m and variance �:

Indeed, one just checks that it satis�es the conditions above. Hence, in or der to establish

the existence of Brownian motion, it su¢ ces to construct a standard Brownian motion.

There is a mathematical challenge in studying stochastic processes in dexed by continuous

time. The problem is that the set of positive real num bers is uncountable, that is, the

elements cannot be enumerated t1; t2; ::: The major axiom of probability theory is the fact

that if A1; A2; ::: is a countable sequence of disjoint events, then

P
h 1
[
n=1
An

i
=

1X
n=1

P [An] :

This rule does not hold for uncountable unions. An example that we have all had to deal

with arises with continuous random variables. Suppose, for instance, that Z has a N(0; 1)

distribution. Then for each

x 2 R;P fz = xg = 0:

However,

1 = P fz 2 Rg = P
�
[
x2R
Ax

�
;

where Ax denotes the event fx = zg. The events Ax are disjoint, each with probability

zero, but it is not the case that

P
�
[
x2R
Ax

�
=
X
P(Ax) = 0:

In constructing Brownian motion, we use the fact that if g : [0;1) ! R is a continuous

16
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function and we know the value of g on a countable, dense set, such as the dyadic rationals

�
k

2n
: k = 0; 1; :::;n = 0; 1; :::

�
;

then we know the value at every t. Indeed, we need only �nd a sequence of dyadic rationals

tn that converge to t, and let

g(t) = lim
tn!t

g(tn):

This is �ne if a priori we know the function g is continuous. Our strategy formconstructing

Brownian motion will be :

� First de�ne the process Bt when t is a dyadic rational.

� Prove that with probability one, the function t! Bt is continuous on the dyadics (this is

the hardest step, and we need some care in the de�nition of continuity).

� Extend Bt to other t by continuity.

The next section shows that one can construct a Brownian motion. Thereader can skip this

section and just have faith that such a process exists.

Proposition 1.2 With probability one, for all � < 1
2
,

lim
n!1

2�nkn = 0: (1.6)

In particular, Kn ! 0.

In order to prove this proposition, it is easier to consider another sequence of random variables

Jn = max
j=1;:::;2n

Y (j; n)

where Y (j; n) equals

sup
���B �B(j�1)2�1�� : q 2 D; (j � 1)2�n � q � j2�n	 :

A simple argument using the triangle inequality shows that Kn � 3Jn. It turns out Jn is

17
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easier to analyze. For any " > 0;

P fJn � "g �
2nX
j=1

P fY (j; n) � "g = 2nP fY (1; n) � "g :

Also the distribution of

Y (1; n) = sup
�
jBqj : q 2 D; q � j2�n

	
:

is the same as that of 2�n=2Y where

Y = Y (1; 0) = sup fjBqj : q 2 Dg :

Using this we see that

P
�
Jn � C

p
n2�n=2

	
� 2nP

�
Y � C

p
n
	
:

We will show below that if C >
p
2 log 2, then

1X
n=1

2nP
�
Y � C

p
n
	
<1: (1.7)

The Borel-Cantelli lemma then implies that with probability one, the event
�
Jn � C

p
n2�n=2

	
happens for only �nitely many values of n. In particular,

lim
n!1

2n=2n�1Jn = 0;

which implies. To get our estimate, we will need the following lemma which is a form of the

�re�ection principle� for Brownian motion.

Théoréme 1.5 With probability one, for all � < 1=2, Bt is Hölder continuous of order �

but it is not Hölder continuous of order 1=2.

18
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We will be using Brownian motion and functions of Brownian motions to model prices of

assets. In all of the Brownian models, the functions will have Hôlder exponent 1=2:

Hence, we could �nd a positive integer M <1 such that for all su¢ ciently large integers n,

there exists K � n such that Yk;n �M=n; where Yk;n is

max

�����B(k + 1n )�B(k
n
)

���� ; ����B(k + 2n )�B(k + 1
n

)

���� ; ����B(k + 3n )�B(k + 2
n

)

����� :

Let Yn = min fYk;n : k = 0; 1; :::; n� 1gand let AM be the event that for all n su¢ ciently large,

Yn �M=n:For each positive integer M ,

P fYk;n �M=ng = [P fjB(1=n)j �M=ng]3

=
�
P
�
n�1=2 jB1j �M=n

	�3
=

�Z
1p
2�
exp(�y2=2)dy

�3
�
�
2Mp
n

1p
2�

�3
� M3

n3=2
;

and hence,

P fYn �M=ng �
n�1X
k=0

P fYk;n �M=ng �
M3

n1=2
! 0:

This shows that P(AM) for each M , and hence

P
h 1
[
M=1

AM

i
=0

But our �rst remark shows that the event that Bt is di¤erentiable at some point is contained

in [MAM :
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1.3.1 Brownian motion as a continuous martingale

The de�nition of a martingale in continuous time is essentially the same as in discrete time.

Suppose we have an increasing �ltration fFtg of information and integrable random variables

Mt such that for each t, Mt is Ft-measurable. (We say that Mt is adapted to the �ltration

if Mt is Ft-measurable for each t.) Then, Mt is a martingale with respect to fFtg if for each

s < t,

E [Mt j Ft] =Ms

When one writes an equality as above there is an implicit �up to an event of probability

zero�. In discrete time this presents no problem because there are only a countable number

of pairs of times (s; t) and hence there can be only a countable number of sets of measure

zero. For continuous time, there are instances where some care is needed but we will not

worry about this at the moment. As in the discrete case, if the �ltration is not mentioned

explicitly then one assumes that Ft is the information contained in fMs : s � tg. In that

case, if Bt is a standard Brownian motion and s < t,

E [Bt j Fs] = E [Bs j Fs] + E [Bt �Bs j Fs] = Bs + E [Bt �Bs] = Bs: (1.8)

Often we will have more information at time t than the values of the Brownian motion so it

is useful to extend our de�nition of Brownian motion. We say that Bt is Brownian motion

with respect to the �ltration fFtg if each Bt is Ft-measurable and Bt satis�es the conditions

to be a Brownian motion with the third condition being replaced by

� If s < t, the random variable Bt �Bs is independent of Fs.

In other words, although we may have more information at time s than the value of the

Brownian motion, there is nothing useful for predicting the future increments. Under these

conditions, (1.8) holds and Bt is a martingale with respect to fFtg.

If Ms, 0 � s � t is a martingale, then by de�nition, for each s � t,

E (Y j Fs) =Ms
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where Y = Mt.Conversely, if Y is an integrable random variable that is measurable with

respect to Ft, we can de�ne a martingale Ms, 0 � s � t by

E (Y j Fs) =Ms:

Indeed, if we de�ne Mt as above and r < s, then the tower property for conditional expecta-

tion implies that

E (Ms j Fr) = E (E (Y j Fs) j Fs) = E (Y j Fr) =Mr:

AmartingaleMt is called a continuous martingale if with probability one the function t!Mt

is a continuous function. The word continuous in continuous martingale refers not just to the

fact that time is continuous but also to the fact that the paths are continuous functions of t.

One can have martingales in continuous time that are not continuous martingales.

1.3.2 Brownian motion as a Gaussian process

A process fXtg is called a Gaussian process if each �nite subcollection

(Xt1 ; ::::; Xtn)

has a joint normal distribution. Recall that to describe a joint normal distri bution one needs

only give the means and the covariances. Hence the �nite dimensional distributions of a

Gaussian process are determined by the num bers

mt = E [Xt] ;�st = COV(Xt; Xt):

Is a standard Brownian motion and t1; t2; :::; tn, then we can write Bt1 ,...,Btn as linear com-

binations of the independent standard normal random variables

zj =
Btj �Btj�1p
tj � tj�1

; j = 1; :::; n
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Hence Bt is a Gaussian process with mean zero. If s < t,

E [BsBt] = E [Bs(Bs +Bt �Bs)]

= E
�
B2s
�
+ E [Bs (Bt �Bs)]

= s+ E [Bs]E [Bt �Bs] = s;

which gives the general rule

COV(Bs; Bt) = min fs; tg :

The description of Brownian motion as a Gaussian process describes only the �nite-dimensional

distributions but our de�nition includes some aspects that depend on more than �nite-

dimensional distributions. In particular, one cannot tell from the �nite-dimensional distribu-

tions alone whether or not the paths are continuous.

1.4 The Itô�s Integral [13]

1.4.1 Quadratic Variation of Brownian Motion

Let (Wt) denote a one-dimensional Brownian motion on a probability space (
;F ;P). We

have seen thatW is a martingaleW , its natural �ltration (FW
� ) and withMt = W

2
t � t; M is

also (FW
� )-martingale. These properties are easy consequence of the independent increment

property of Brownian motion.

Wiener and Ito�s realized the need to give a meaning to limit of what appeared to be Riemann�

Stieltjes sums for the integral
tZ
0

fsdWs (1.9)

in di¤erent contexts� while in case of Wiener, the integrand was a deterministic function,

Itô�s needed to consider a random process (fs) that was a non-anticipating function ofW� i.e.

f is adapted to (FW
� ).

It is well known that paths s 7! Ws(!) are nowhere di¤erentiable for almost all !, and hence
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we cannot interpret the integral in (1.9) as a path-by-path Riemann�Stieltjes integral. We

will deduce the later from the following result that is relevant for stochastic integration.

Théoréme 1.6 Let (Wt) be a Brownian motion. Let tn1 = i2
�2. Let V nt =

1P
i=0

���Wtni+1^t �Wtni ^t

��� ;
Qnt =

1P
i=0

(Wtni+1^t �Wtni ^t)
2: Then for all t > 0,

(a) V nt !1 a:s.

(b) Qnt ! t a:s:

Proof. We will �rst prove (b). Let us �x t <1 and let

Xn
i = Wtni+1^t �Wtni ^t; Z

n
i = (Wtni+1^t �Wtni ^t)

2 � (tni+1^t�tni ^t):

then from properties of Brownian motion it follows that fXn
i ; i � 0g are independent random

variables with normal distribution and E(Xn
i ) = 0; E(Xn

i ) = (t
n
i+1^ t� tni ^ t): So, fZni ; i � 0g

are independent random variables with E(Zni ) = 0 and E(Zni )2 = (tni+1 ^ t� tni ^ t)2: Now

E(Qnt � t)2 = E(
1X
i=0

Znt )
2 (1.10)

=

1X
i=0

E(Znt )2

= 2
1X
i=0

(tni+1 ^ t� tni ^ t)2

� 2�2+1
1X
i=0

(tni+1 ^ t� tni ^ t)

= 2�2+1t:

Note that each of the sum appearing above is actually a �nite sum. Thus

E
1X
i=0

(Qnt � t)2 � t <1

so that
1P
i=0

(Qnt � t)2 <1. and hence Qnt ! t a.s.

For (a), let �(�; !; t) = sup fjWu(!)�Wv(!)j : ju� vj � �; u; v 2 [0;1]g :
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Then uniform continuity of u 7! Wu(!) implies that for all t �nite and for each

lim
�#0
�(�; !; t) = 0: (1.11)

Now note that for any !,

So if lim infn V nt (!) for some !, then lim infnQ
n
t (!) = 0 in view of (??) and (??). For t > 0,

since Qnt ! t a.s., we must have V nt !1 a.s.

1.4.2 Itô�s Integral

Let S be the class of stochastic processes f of the form

fs(!) = a0(!){f0g(s) +
mX
j=0

aj+1(!){(sj ;sj+1](s) (1.12)

where 0 = s0 < s1 < s2 < ::: < sm+1 <1, aj is bounded Fsj�1 measurable random variable

for 1 � j � (m + 1), and a0 is bounded F0-measurable. Elements of S will be called simple

processes. For an f given by (1.12), we de�ne X =
R
fdW by

Xt(!) =
mX
j=0

aj+1(!)(Wsj+1^t(!)�Wsj^t(!)): (1.13)

a0 does not appear on the right side because W0 = 0. It can be easily seen that
R
fdW

de�ned via (1.12) and (1.13) for f 2 S does not depend upon the representation(1.12). In

other words, if g is given by

gt(!) = b0(!){f0g(s) +
nX
j=0

bj+1(!){(rj ;rj+1](t) (1.14)

where 0 = r0 < r1 < r2 < ::: < rn+1 and bj is Frj�1-measurable bounded random variable,1 �

j � (n+ 1), and b0 is bounded F0-measurable and f = g, then
R
fdW =

R
gdW , i.e.

mX
j=0

aj+1(!)(Wsj+1^t(!)�Wsj^t(!)) =

nX
j=0

bj+1(!)(Wrj+1^t(!)�Wrj^t(!)): (1.15)
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By de�nition, X is a continuous adapted process. We will denote Xt as

tZ
0

fdW:

We will obtain an estimate on the growth of the integral de�ned above for simple f 2 S and

then extend the integral to an appropriate class of integrands� those that can be obtained

as limits of simple processes. This approach is di¤erent from the one adopted by Itô�s, and

we have adopted this approach with an aim to generalize the same to martingales.

We �rst note some properties of fdW for f 2 S and obtain an estimate.

Lemme 1.1 Let f; g 2 S and let a; b 2 R. Then

tZ
0

(af + bg)dW = a

tZ
0

fdW + b

tZ
0

gdW: (1.16)

Proof. Let f; g have representations (1.12) and (1.14), respectively. Easy to see that 0 =

t0 < t1 < ::: < tk such that

ftj : 0 � j � kg = fsj : 0 � j � mg [ frj : 0 � j � ng

and then represent both f; g over common time partition. Then the result (1.16) follows

easily.

Lemme 1.2 Let f; g 2 S, and let Yt =
tZ
0

fdW; Zt =

tZ
0

gdW and At =
Z
fsgsds, Mt =

YtZt � At:Then Y; Z;M are (F)-martingales.

Proof. By linearity property (1.16) and the fact that sum of martingales is a martin gale,

su¢ ces to prove the lemma in the following two cases :

Case 1: 0 � s < r and

ft = a{(s;r](t); gt = b{(s;r](t); a; b are Fs-measurable.

Case 2: 0 � s < r � u < v and

ft = a �(s;r] (t); gt = b �(u;v] (t); a is Fs-measurable and b is Fu-measurable.
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Here in both cases, a; b are assumed to be bounded. In both the cases, Yt = a(Wt^r �Wt^s).

That Y is a martingale follows fromTheorem(3.8). Thus in both cases, Y is an (F�)-martingale

and similarly, so is Z. Remains to show thatM is a martingale. In case 1, writing Nt = W 2
t �t

Mt = ab((Wt^r �Wt^s)
2 � (t ^ r � t ^ s))

= ab((W 2
t^r �W 2

t^s)� (t ^ r � t ^ s)� 2Wt^s(Wt^r �Wt^s))

= ab(Nt^r �Nt^s)� 2abWt^s(Wt^r �Wt^s)

Recalling that N;W are martingales, it follows from Theorem (3.8) that M is amartingale

as

abWt^s(Wt^r �Wt^s) = abWs(Wt^r �Wt^s)

In case 2, recalling0 � s � r � u � v, note that

Mt = a(Wt^r �Wt^s)b(Wt^v �Wt^u)

= a(Wr �Ws)b(Wt^v �Wt^u)

as Mt = 0 if t � u. Proof is again completed using Theorem (3.8).

Théoréme 1.7 Let f 2 S, Mt =

tZ
0

fdW and Nt = M2
t �

tZ
0

f 2ds:Then M and N are (F�)-

martingales. Further, for any T <1,

E

24sup
t�T

������
tZ
o

fdW

������
235 � 4E

24 TZ
0

f 2s ds

35 : (1.17)

Proof. The fact thatM and N are martingales follows from Lemma (1:2). As a consequence

E [Nt] and hence

E

24( tZ
o

fdW )2

35 = E
24 TZ
0

f 2s ds

35 : (1.18)
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Now the growth inequality (1.17) follows from Doob�s maximal inequality, Theorem applied

to M and using (1.18).

Lemme 1.3 Let f be a predictable process such that

E

24 TZ
0

f 2s ds

35 <1 8T <1: (1.19)

Then there exists a continuous adapted process Y such that for all simple predictable processes

h 2 S,

E

24( sup
0�t�T

������Yt �
tZ
o

hdW

������)2
35 � 4E

24 TZ
0

(fs � hs)ds

35 8T <1: (1.20)

Further, Y and Z are (Ft)-martingales where

Zt = Yt �
TZ
0

f 2s ds

Proof. For r > 0, let �r be the measure on (~
;P) de�ned as follows : for P measur able

bounded functions g Z
~


gd�r = E

24 rZ
0

gsds

35 ;
and let us denote the L2 norm on �r. By Theorem(3.9), S is dense in �r for every r > 0 and

hence for integers m � 1, we can get fm 2 S such that

kf � fmk2;�m � 2
�m�1: (1.21)

Using k:k2;�r � k:k2;�s for r � s it follows that for k � 1



fm+k � fm


2;�m

� 2�m: (1.22)
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Denoting the L1(
 ,B, P) norm by k:k2;p, the growth inequality (1.17) can be rewrit ten as,

for g 2 S;m � 1, 





 sup0�t�m

������
tZ
0

gdW

������







2;p

� 2 kgk2;�m :

Recall that fk 2 S and hence
tZ
0

fkdW is already de�ned. Let Y kt =

kZ
0

fdW . Now using

(1.22) and (??), we conclude that for k � 1





 sup
0�t�m

��Y m+kt � Y mt
��




2;p

� 2�m+1: (1.23)

Fix an integer n. For m � n, using (1.23) for k = 1 we get





 sup
0�t�n

��Y m+1t � Y mt
��




2;p

� 2�m+1: (1.24)

and hence







" 1X
m=n

sup
0�t�n

��Y m+1t � Y mt
��#






2;p

�
1X
m=n





� sup
0�t�n

��Y m+1t � Y mt
���





2;p

�
1X
m=n

2�m+1

<1:

Hence,
1X
m=n

�
sup
0�t�n

��Y m+1t � Y mt
���
2;p

<1 a.s.P: (1.25)

So let

Nn =

( 1

! :
X

m=n

�
sup
0�t�n

��Y m+1t � Y mt
���
2;p

=1
)

and let N = [1n=1Nn. Then N is a P null set. For ! =2 N , let us de�ne

Yt(!) = lim
m!2

Y mt (!);
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and for ! 2 N , let Yt(!) = 0. It follows from (1.25) that for all T <1, ! =2 N

sup
0�t�T

jY mt (!)� Yt(!)j ! 0: (1.26)

ThusY is a process with continuous paths. Now using (??) for f � h 2 S we get

E

24( sup
0�t�T

������Y mt �
tZ
0

hdW

������)2
35 � 4E

24 TZ
0

(fm � h)2ds

35 : (1.27)

In view of (1.21), the right-hand side above converges to

E

24 TZ
0

(fs � hs)2ds

35 :
Using Fatou�s lemma and (1.26) along with P(N) = 0, taking lim inf in (1.27) we conclude

that (1.20) is true. From these observations, it follows that Y mt converges to Yt in L2(P) for

each �xed t. The observation k:k2;�r � k:k2;�s for r � s and (1.21) implies that for all r,

kf � fmk2;�r ! 0 and hence for all t

E

24 tZ
0

(fs � fms )2ds

35! 0:

As a consequence,

E

24 tZ
0

��(fs)2 � (fms )2�� ds
35! 0

and hence

E

24 tZ
0

(fms )
2ds�

tZ
0

f 2s ds

35! 0:

By Theorem (1:7), we have Y n and Zn which are martingales where Znt = (Y
n
t )

2�
tZ
0

(fns )
2ds.

As observed above Y nt converges in L1(P) to Yt, and Znt converges in L1(P) to Zt for each

tand hence Y and Z are martingales.
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Dé�nition 1.7 For a predictable process f such that E

24 TZ
0

f 2s ds

35 <1 8T <1, we de�ne

the Itô�s integral

tZ
0

fdW ; to be the process Y that satis�es (1.20).

The next result gives the basic properties of the Ito�s integral
Z
fdW ; most of them have

essentially been proved above.

Théoréme 1.8 Let f; g be predictable processes satisfying (1.19). Then

tZ
0

(af + bg)dW = a

tZ
0

fdW = b

tZ
0

gdW: (1.28)

Let Mt =

tZ
0

fdW and Nt =M2
t �

tZ
0

f 2s ds: Then M and N are (F)-martingales. Further, for

any T <1,

E

24sup
t�T

������
tZ
0

fdW

������
235 � 4E

24 TZ
0

f 2s ds

35 : (1.29)

Proof. The linearity (1.28) follows by linearity for the integral for simple functions observed

in Lemma and then for general predictable processes via approximation. That M;N are

martingales has been observed in Lemma (1:3). The growth inequality (1.29) follows from

(1.20) with h = 0:

1.5 Itô Formula [11]

1.5.1 Formula for Brownian motion

We want a rule to "di¤erentiate" expressions of the form f(W (t)), where f(x) is a di¤eren-

tiable function and W (t) is a Brownian motion. If W (t) were also di¤erentiable, then the

chain rule from ordinary calculus would give

d

dt
f(W (t)) = f�(W (t))W�(t)dt;
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which could be written in di¤erential notation as

df(W (t)) = f�(W (t))W�(t)dt = (W (t))dW (t):

Because W has nonzero quadratic variation, the correct formula has an extra term, namely,

df(W (t)) = f�(W (t))dW (t) +
1

2
f�(W (t))dt: (1.30)

This is the ltô-Doeblin formula in di¤erential form. Integrating this, we obtain the ltô-Doeblin

formula in integral form :

f(W (t))� f(W (0)) =
tZ
0

f�(W (u))dW (u) +

tZ
o

f�(W (u))du: (1.31)

1.5.2 Formula for Itô processes

Dé�nition 1.8 LetW (t); t � 0, be a Brownian motion, and let :F (t), t � 0, be an associated

�ltration. An Itô process is a stochastic process of the form

X(t) = X(0) +

tZ
0

�(u)dW (u) +

tZ
0

�(u)du; (1.32)

where X(0) is nonrandom and �(u) and �(u) are adapted stochastic processes.

In order to understand the volatility associated with Itô processes, we must determine the rate

at which they accumulate quadratic variation.

Lemme 1.4 The quadratic variation of the Itô process (1.32) is

[X;X] =

tZ
0

�2(u)du: (1.33)

Proof.We introduce the notation I(t) =

tZ
0

�(u)dW (u); R(t)

tZ
0

�(u)du. Both these processes

are continuous in their upper limit of integration t. To determine the quadratic variation of
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X on [0; t], we choose a partition � = ft0; t1; ::::; tng of [0; t] (i.e.,0 = t0 < t1 < ::: < tn = t)

and we write the sampled quadratic variation.

n�1X
j=0

[X(tj+1)�X(tj)]2 =
n�1X
j=0

[I(tj+1)� I(tj)]2 +
n�1X
j=0

[R(tj+1)�R(tj)]2

+ 2

n�1X
j=0

[I(tj+1)� I(tj)] [R(tj+1)�R(tj)] :

As k�k ! 0, the �rst term on the right-hand side,
n�1X
j=0

[I(tj+1)� I(tj)]2, converges to the qua-

dratic variation of I on [0; t], which according to Theorem (3:10) (vi) is [I; I] (t) =

tZ
0

�2(u)du:

The absolute value of the second term is bounded above by

max
0�k�n�1

jR(tk+1)�R(tk)j �
n�1X
j=0

jR(tj+1)�R(tj)j = max
0�k�n�1

jR(tk+1)�R(tk)j �
n�1X
j=0

�������
tj+1Z
tj

�(u)du

�������
� max

0�k�n�1
jR(tk+1)�R(tk)j �

n�1X
j=0

tj+1Z
tj

j�(u)j du

= max
0�k�n�1

jR(tk+1)�R(tk)j �
n�1X
j=0

tZ
0

j�(u)j du;

and as k�k ! 0, this has limit 0 �
tZ
0

j�(u)j du = 0 because R(t) is continuous. The absolute

value of the third term is bounded above by

2 max
0�k�n�1

jI(tk+1)� I(tk)j �
n�1X
j=0

jR(tj+1)�R(tj)j � 2 max
0�k�n�1

jI(tk+1)� I(tk)j �
tZ
0

j�(u)j du;

and this has limit 0 �
tZ
0

j�(u)j2 du = 0 as k�k ! 0 because I(t) is continuous. We conclude

that [X;X] (t) = [I; I] (t) =

tZ
0

�2(u)du.
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Théoréme 1.9 (Itô�s formula for an Itô process).Let X(t); t � 0, be an Itô process as

described and let f(t; x) be a function for which the partial derivatives ft(t; x); fx(t; x), and

fxx(t; x) are de�ned and continuous. Then, for every T � 0;

f(T;X(T )) = f(O;X(O)g+
TZ
0

ft(t;X(t))dt+

TZ
0

fx(t;X(t))dX(t) +
1

2

TZ
0

fxx(t;X(t))d[X;X](t)

(1.34)

= f(O;X(O)) +

TZ
0

ft(t;X(t))dt+

TZ
0

fx(t;X(t))�(t)dW (t)

+

TZ
0

fx(t;X(t))�(t)dt+
1

2

TZ
0

fxx(t;X(t))�
2(t) (1.35)

Proof. However, it is easier to remember and use the result of this theorem if we recast it

in di¤erential notation. We may rewrite (1.34) as

df(t;X(t)) = ft(t;X(t))dt+ fs(t;X(t))dX(t) +
1

2
fxx(t;X(t))dX(t)dX(t): (1.36)

The guiding principle here is that we write out the Taylor series expansion of f(t;X(t)) with

respect to all its arguments, which in this case are t and X(t). We take this Taylor series

expansion out to �rst order for every argument that has zero quadratic variation, which in

this case is t, and we take the expansion out to second order for every argument that has

nonzero quadratic variation, which in this case is X(t).

We may reduce (1.36) to an expression that involves only dt and by using the di¤erential

form of the Itô process (i.e., dX(t) = �(t)dW (t) + �(t)dt) and the formula

dX(t)dX(t) = �2(t)dW (t)dW (t) + 2�(t)�(t)dW (t)dt+ �2(t)dtdt

= �2(t)dt:

For the rate at which X(t) accumulates quadratic variation (i.e., dX(t)dX(t) = �2(t)dt:).
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This is obtained by squaring the formula for dX(t) and using the multiplication table

dW (t)dW (t) = dt; dtdW (t) = dW (t)dt = 0; dtdt = 0:

Making these substitutions in (1.36), we obtain

df(t;X(t)) = ft(t;X(t))dt+fx(t;X(t))�(t)dW (t)+fx(t;X(t))�(t)dW (t)
1

2
fxx(t;X(t))�

2(t)dt:

Itô calculus is little more than repeated use of this formula in a variety of situations.
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Stochastic Di¤erential Equations

2.1 Existence and uniqueness solution of stochastic dif-

ferential equation

We are going to consider stochastic di¤erential equations (SDE) of the type

dXt = �(t;Xt)dWt + b(t;Xt)dt: (2.1)

Equation (2.1) is to be interpreted as an integral equation :

Xt = X0 +

tZ
0

�(s;Xs)dWs +

tZ
o

b(s;Xs)ds: (2.2)

Here W is an Rd -valued Brownian motion, X0 is an Rd -valued F0 measurable ran dom

variable, � : [o;1)� Rm 7! L(m; d) and b : [o;1)� Rm 7! Rm are given functions, and one

is seeking a process X such that (2.2) is true. The solution X to the SDE (2.1), when it

exists, is called a di¤usion process with di¤usion coe¢ cient ��� and drift coe¢ cient b. We
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shall impose the following conditions on �,b :

� : [o;1)� Rm 7! L(m; d) is a continuous function (2.3)

b : [o;1)� Rm 7! Rm is a continuous function

8T <1 9CT <1 such that for all t 2 [0; T ], x1; x2 2 Rd



�(t; x1)� �(t; x2)2

 � CT ��x1 � x2�� ; (2.4)

b(t; x1)� b(t; x2)2

 � CT ��x1 � x2�� :
Since t 7! �(t; 0) and t 7! b(t; 0) are continuous and hence bounded on[0; T ] for every T <1,

using the Lipschitz conditions (2.4), we can conclude that for each T < 1; 9KT < 1 such

that

k�(t; x)k � KT (1 + jxj); (2.5)

kb(t; x)k � KT (1 + jxj):

We will need the following lemma, known as Gronwall�s lemma, for proving unique ness of

solution to (2.2) under the Lipschitz conditions.

Lemme 2.1 Let �(t) be a bounded measurable function on [0; T ] satisfying, for some 0 �

a <1; 0 < b <1;

�(t) � a+ b
tZ
0

�(s)ds; 0 � t � T: (2.6)

Then

�(t) � aebt: (2.7)

Proof. Let

g(t) = e�bt
tZ
0

�(s)ds:
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Then by de�nition, g is absolutely continuous and

g�(t) = e�bt�(t)� be�bt
tZ
0

�(s)ds: a.e.

Where almost everywhere refers to the Lebesgue measure on R. Using (2.6), it follows that

g�(t) � ae�bt a.e.

Hence (using g(0) = 0 and that g is absolutely continuous) g(t) � a
b
(e�bt � 1) from which we

get
tZ
0

�(s)ds � a

b
(e�bt � 1):

The conclusion �(t) � aebt follows immediately from (2.6).

Lemme 2.2 Let Y; Z 2 |m and let � = �(Y ) and � = �(Z). Then for 0 � t � T one has

E
�
sup
0�s�t

j�s � �sj2
�
� 3E

�
jY0 � Z0j2

�
+ 3C2T (4 + T )

tZ
0

E
�
jYs � Zsj2

�
ds:

Proof. Let us note that

�t � �t = Y0 � Z0 +
tZ
0

[�(s; Ys)� �(s; Zs)] dWs +

tZ
0

[b(s; Ys)� b(s; Zs)] ds (2.8)

and hence this time using the Lipschitz condition (2.4) along with the growth inequality we

now have

E
�
sup
0�s�t

j�s � �sj2
�
� 3E

�
jY0 � Z0j2

�
+ 4E

24 tZ
0

k�(s; Ys)� �(s; Zs)k2 ds

35+ E
24( tZ

0

jb(s; Ys)� b(s; Zs)j ds)2
35

� 3E
�
jY0 � Z0j2

�
+ 3C2T (4 + T )

tZ
0

E
�
jYs � Zsj2

�
ds:
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Corollaire 2.1 Suppose Y; Z 2 |m be such that Y0 = Z0. Then for 0 � t � T

E
�
sup
0�s�t

j�(Y )s � �(Z)sj2
�
� 3C2T (4 + T )

tZ
0

E
�
jYs � Zsj2

�
ds:

We are now in a position to prove the main result of this section.

Théoréme 2.1 Suppose �; b satisfy conditions (2.3) and (2.4) and X0 is a F0 measurable

Rm-valued random variable with E
�
jX0j2

�
. Then there exists a processX such that E

24 TZ
0

jXsj2 ds

35 <
1 and

Xt = X0 +

tZ
0

�(s;Xs)dWs +

tZ
o

b(s;Xs)ds: (2.9)

Further if X is another process such that ~XtX0; E

24 TZ
0

��� ~Xs

���2 ds
35 <1 for all T <1 and

~Xt = ~X0 +

tZ
0

�(s; ~Xs)dWs +

tZ
o

b(s; ~Xs)ds

then X = ~X; i.e. P(Xt = ~Xt 8t) = 1:

Proof. Let us �rst prove uniqueness. Let X and ~X be as in the statement of the theorem.

Then, using Corollary (2.1) it follows that

u(t) = E
�
sup
s�t

���Xs � ~Xs

���2�

satis�es for 0 � t � T (recalling X0 = ~X0)

u(t) = 3C2T (4 + T )

tZ
0

E
����Xs � ~Xs

���2� ds:
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Hence u is bounded and satis�es

u(t) = 3C2T (4 + T )

tZ
0

u(s)ds; 0 � t � T:

By (Gronwall�s) Lemma (2.1), it follows that u(t) = 0; 0 � t � T for every T <1.

Hence

X = ~X:

We will now construct a solution. Let X1
t = X0 for all t � 0. Note that X1 2 |m. Now de�ne

Xn inductively by

Xn+1 = �(Xn):

Since X1
t = X0 for all t X2

0 = X
1
0 ;

X2
t �X1

t =

tZ
0

�(s;X0)dWs +

tZ
o

b(s;X0)ds

and hence

E
�
sup
s�t

��X2
s �X1

s

��2� � 2K2
T (4 + T )(1 + E

�
jX0j2

�
)t: (2.10)

Note that Xn
0 = X

1
0 = X0 for all n � 1 and hence from Lemma (2:2) it follows that for n � 2,

for 0 � t � T ,

E
�
sup
s�t

��Xn+1
s �Xn

s

��2� � 3C2T (4 + T ) tZ
0

E
h��Xn

s �Xn�1
s

��2i ds:

Thus de�ning for n � 1, un = E
�
sup
s�t
jXn+1

s �Xn
s j
2

�
we have for n � 2, for 0 � t � T ,

un(t) � 3C2T (4 + T )
tZ
0

un�1(s)ds: (2.11)
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As seen in (2.10),

u1(t) � 2K2
T (4 + T )(1 + E

�
jX0j2

�
)t

and hence using (2.11), which is true for n � 2, we can deduce by induction on n that for a

constant ~CT = 3(C2T +K
2
T )(4 + T )(1 + E

�
jX0j2

�
)

un(t) �
( ~CT )

ntn

n
; 0 � t � T:

Thus
P

n

p
un(T ) <1 for every T <1 which is same as

1X
n=1





sup
s�T

��Xn+1
s �Xn

s

��2




2

<1 (2.12)

kZk2 denoting the L2(P) norm here. The relation (2.12) implies







1X
n=1

sup
s�T

��Xn+1
s �Xn

s

��2





2

<1 (2.13)

as well as

sup
k�1





�sup
s�T

��Xn+k
s �Xn

s

���




2

� sup
k�1







" 1X
j=1

sup
s�T

��Xj+1
s �Xj

s

��#





2

(2.14)

�
" 1X
j=1





sup
s�T

��Xj+1
s �Xj

s

��




2

#
! 0 as n tends to 1:

Let N = [1T=1
�
! :

1P
n=1

sup
s�T

jXn+1
s (!)�Xn

s (!)j =1
�
. Then by (2.13), P(N) = 0 and for

! =2 N; Xn
s (!) converges uniformly on [0; T ] for every T <1. So let us de�ne X as follows :

Xt(!) = lim
n!1

Xn
s (!) if ! 2 N c

Xt(!) = 0 if ! 2 N c
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By de�nition, X is a continuous adapted process (since by assumption N 2 F0) and Xn

converges to X uniformly in [0; T ] for every T almost surely. Using Fatou�s lemma and (2.14)

we get





�sup
s�T

jXs �Xn
s j
�





2

� lim inf






"
n+kX
j=n

sup
s�T

��Xj+1
s �Xj

s

��#





2

(2.15)

�
" 1X
j=n





sup
s�T

��Xj+1
s �Xj

s

��




2

#
! 0 as n tends to 1:

In particular, X 2 |m. Since �(Xn) = Xn+1 by de�nition, (2.15) also implies that

lim
n!1





�sup
s�T

jXs � �(Xn)sj
�





2

= 0 (2.16)

while (2.15) and Corollary (2.1) (remembering that Xn
0 = X0 for all n) imply that

lim
n!1





�sup
s�T

j�(X)s � �(Xn)sj
�





2

= 0: (2.17)

From (2.16) and (2.17) it follows that X = �(X) or that X is a solution to the SDE (2.9).
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PSDERB with non-Lipschitz

coe¢ cients : Existence and uniqueness

Let
�

;F ; fFtgt�0 ;P

�
be a complete probability space with a �ltration fFtgt�0 satis-

fying the usual conditions (i.e., it is increasing and right continuous, while F0 contains all

P-null sets). Let B : = (B(t))0�t�T be a standard one-dimensional Brownian motion, de�-

ned on the probability space (
;F ;P) Let L2([a; b] ;R) denote the family of Ft-measurable,

R-valued processes f(t) = ff(t; !)g ; t 2 [a; b] such that
tZ
0

jf(t)j2 dt < 1 a.s. Where the

coe¢ cient � 2 [0; 1] ; and � is a Borel-measurable functions from [0; T ]! (0; 1] :

Here (�(t)L0t ; 0 < �(t) � 1) denotes the local time at 0 for the time t of the semi-martingale

X. Its role is to push upward the process X in order to keep it above 0, that is, to have the

condition X � 0 satis�ed. One of the possible ways to de�ne it is through the limit,

L0t (X) = lim
"!0

1

2"

tZ
0

�[�";"] (Xs)d hXis ; t � 0:

as it satis�es, for example, L0t (X) =

tZ
0

�fXs=0g dL0s(X); see [[10], Proposition 3.2].

Now, we de�ne the sequence of the Carathéodory approximate solutions Xn : [�1; T ]! R:
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For all n � 1; we de�ne

8>>>>>>>>>><>>>>>>>>>>:

Xn = x0 = 0;�1 � t � 0:

Xn = x0 +

tZ
0

�(s;Xn(s� 1
n
))dB(s) +

tZ
0

b(s;Xn(s� 1
n
))ds+ �max

0�s�t
Xn(s� 1

n
) + �(t)L0t (X

n);

t 2 [0; T ] :

Xn � 0; x0 � 0 for all t � 0:
(3.1)

According to Skorokhod�s equation [[10], Chapter VI, Lemma 1.3], and PSDERB (1), we get

L0t (X
n) =

1

�(t)
max

240; max
s2[0;t]

0@�
0@X(0) + sZ

0

�(u;X(u))dB(u) +

sZ
0

b(u;X(u))du+ �max
0�u�s

Xn(u)

1A1A35 :
We assume that the discretization of the local time (L0t (X)) is the local time of the Cara-

théodory approximation (L0t (X
n)) Therefore. the Carathéodory approximation, of (L0t (X

n))

is given by

L0t (X
n) � 1

�(t)
max

266666640; maxs2[0;t]

0BBBBBB@�
0BBBBBB@

X(0) +

tZ
0

�(u;Xn(u� 1
n
))dB(u)

+

tZ
0

b(u;Xn(u� 1
n
))du+ �max

0�u�s
Xn(u� 1

n
)

1CCCCCCA

1CCCCCCA

37777775 :
(3.2)

Note that Xn(t) can be calculated step by step on the intervals,
�
0; 1

n

�
,
�
1
n
; 2
n

�
; :::etc.
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3.1 PSDERBwith non-Lipschitz coe¢ cients : Existence

and uniqueness

Let us consider the following perturbed SDE with re�ecting boundary, de�ned by

8>>><>>>:
fX(t) = X(0) +

tZ
0

�(s;X(s))dB(s) +

tZ
0

b(s;X(s))ds+ �max
0�s�t

X(s) + �(t)L0t (X); X(t) � 0;

X(0) = 0;8t � 0:
(3.3)

where � 2 [0; 1] ; and � : [0; T ] ! (0; 1] ; and b; � : [0; T ] � R ! R; are a Borel-measurable

functions, and the initial value X(0) = x0 is independent of B and satis�es E jx0j2 <1:

To obtain the main results, we give the following conditions.

Assumption For any x; y 2 R and t 2 [0; T ] ;there exists a function �(:) such that,

j� (t; x)� � (t; y)j _ jb (t; x)� b (t; y)j � �(jx� yj):

Where �(u) is a concave non-decreasing continuous function such that �(0) = 0 and
R
0+

u
�2(u)

du =

1:

Remarque 3.1 Since �(:) is concave and �(0) = 0 one can �nd a pair of positive constants

a and � such that,

�(u) � a+ �u for u � 0:

Assumption For any t 2 [0; T ] and x; y 2 R, there exists a positive constant C such

that,j�(t; 0)j _ jb(t; 0)j � C:

Assumption The coe¢ cients satisfy : 0 � � < �
1+�
: where � = min f�(t); t 2 [0; T ]g :

Remarque 3.2 Assumptions 3.1 imply that, � 2
�
0; 1

2

�
:Now, we state our main result.

Théoréme 3.1 Under Assumptions 3.1, 3.1, and 3.1, there exists a unique Ft-adapted so-

lution fX(t)gt�0 to 3.3. Moreover, for any T > 0,

lim
n!1

E
�
sup
0�t�T

jXn(t)�X(t)j2
�
= 0:

44



Chapitre 3. PSDERB with non-Lipschitz coe¢ cients : Existence and uniqueness

To prove Theorem (3.1), we will need the following Lemma.

Lemme 3.1 Under Assumptions 3.1, 3.1, and 3.1, there exists a constant C > 0, which does

not depend on n, such that

E
�
sup
0�t�T

jXn(t)j2
�
� C:

Proof. For any t 2 [0; T ] we have

jXn(t)j

=

������
tZ
0

�(s;Xn(s� 1

n
))dB(s) +

tZ
0

b(s;Xn(s� 1

n
))ds+ �max

0�s�t
Xn(s� 1

n
) + �(t)L0t (X

n)

������
(3.4)

�

������
tZ
0

�(s;Xn(s� 1

n
))dB(s) +

tZ
0

b(s;Xn(s� 1

n
))ds+ �max

0�s�t
Xn(s� 1

n
)

������+ ���(t)L0t (Xn)
�� :

Equation (1.1) implies that,

L0t (X
n)

� 1

�(t)
max
0�u�s

������
tZ
0

�(u;Xn(u� 1

n
))dB(u) +

tZ
0

b(u;Xn(u� 1

n
))du+ �max

0�u�s
Xn(u� 1

n
)

������ : (3.5)
By using (3:4) and (3:5) we obtain,

jXn(t)j � 2max
0�u�s

������
tZ
0

�(u;Xn(u� 1

n
))dB(u) +

tZ
0

b(u;Xn(u� 1

n
))du+ �max

0�u�s
Xn(u� 1

n
)

������
� 2max

0�s�t

������
tZ
0

�(u;Xn(u� 1

n
))dB(u) +

tZ
0

b(u;Xn(u� 1

n
))du+ � max

�1
n
�u�0

Xn(u) + �max
0�u�s

Xn(u)

������
� 2max

0�s�t

������
tZ
0

�(u;Xn(u� 1

n
))dB(u) +

tZ
0

b(u;Xn(u� 1

n
))du+ �max

0�u�s
Xn(u)

������ :
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Therefore

(1� 2�) max
0�t�T

jXn(t)j � 2max
0�s�t

������
tZ
0

�(u;Xn(u� 1

n
))dB(u) +

tZ
0

b(u;Xn(u� 1

n
))du

������ : (3.6)

By the Hölder inequality and the Burkholder �Davis�Gundy inequality, we get

(1� 2�)2E
�
sup
0�t�t1

jXn(t)j2
�

� 8(8E
t1Z
0

�����(u;Xn(u� 1

n
))� �(u; 0)

����2 du+ 2TE
t1Z
0

����b(u;Xn(u� 1

n
))� b(u; 0)

����2 du
+ 8E

t1Z
0

j�(u; 0)j2 du+ 2TE
t1Z
0

jb(u; 0)j2 du):

By Assumptions 3.1 and 3.1

(1� 2�)2E
�
sup
0�t�t1

jXn(t)j2
�
� 8(2(T + 4)E

t1Z
0

�2(

����Xn(u� 1

n
)

����)du+ 2(T + 4)TC):
Then the Jensen inequality implies that,

(1� 2�)2E
�
sup
0�t�t1

jXn(t)j2
�
� 8(2(T + 4)

t1Z
0

�2((E
����Xn(u� 1

n
)

����2) 12 )du+ 2(T + 4)Tc):
Let, h(x) = �2(x

1
2 ) ; it follows that,

E
�
sup
0�t�t1

jXn(t)j2
�
� 16(T + 4)TC

(1� 2�)2 +
16(T + 4)

(1� 2�)2

t1Z
0

h(E
����(Xn(u� 1

n
))

����2)du: (3.7)

Since�(x)
x
and �0+(x) are non-negative, nonincreasing functions, we have that

h0+(x) = x
� 1
2�(x

1
2 )�0+(x):

is a non-negative, nonincreasing function which implies that h is a non-negative, non-decreasing
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concave function. Note that �(0) = 0, then h(0) = 0, and there exists a pair of positive

constants a and � such that,

h(u) � a+ �u for u � 0:

We therefore have,

E
�
sup
0�t�t1

jXn(t)j2
�
� 16(T + 4)T (C + 2)

(1� 2�)2 +
16(T + 4)�

(1� 2�)2

t1Z
0

E
����(Xn(u� 1

n
))

����2 du
� 16(T + 4)T (C + a)

(1� 2�)2 +
16(T + 4)�

(1� 2�)2

t1Z
0

E sup
0�u�t

jXn(t)j2 dt:

Set,

E
�
sup
0�t�t1

jXn(t)j2
�
� 16(T + 4)T (C + a)

(1� 2�)2 e
16(T+4)�

(1�2�)2 t:

one can have

E
�
sup
0�t�t1

jXn(t)j2
�
� C

for any n � 1: This completes the proof.

Lemme 3.2 Under Assumptions 3.1, 3.1, and 3.1, for any 0 � s � t � T; there exists a

constant C > 0, which does not depend on n, such that

E jXn(t)�Xn(s)j2 � C(t� s):
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Proof. For all n � 1; and 0 � s � t � T , we have

jXn(t)�Xn(s)j

=

����������

tZ
s

�(u;Xn(u� 1
n
))dB(u) +

tZ
s

b(u;Xn(u� 1
n
))du+ �max

0�u�t
Xn(u� 1

n
) + �(t)L0t (X

n)

��max
0�u�s

Xn(u� 1
n
) + �(s)L0s(X

n)

����������
(3.8)

�

������
tZ
s

�(u;Xn(u� 1

n
))dB(u) +

tZ
s

b(u;Xn(u� 1

n
))du

������+ ���(t)L0t (Xn)� �(s)L0s(Xn)
��

+

�����(max0�u�t
Xn(u� 1

n
)� max

0�u�s
Xn(u� 1

n
))

���� : (3.9)

Applying the inequality max fa; bg = 1
2
[a+ b+ ja� bj] for a; b 2 R; and the inequality
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jjaj � jbjj � ja� bj ; Equation (3) implies that

���(t)L0t (Xn)� �(s)L0s(Xn)
��

=

�������������������

max

26664 0; max0�v�t
(�

vZ
0

�(u;Xn(u� 1
n
))dB(u)�

vZ
0

b(u;Xn(u� 1
n
))du

��max
0�u�v

Xn(u� 1
n
))

37775

�max

26664 0; max0�w�s
(�

wZ
0

�(u;Xn(u� 1
n
))dB(u)�

wZ
0

b(u;Xn(u� 1
n
))du

�� max
0�u�w

Xn(u� 1
n
))

37775

�������������������

=

������������������������

1
2
(0 + max

0�v�t
(�

vZ
0

�(u;Xn(u� 1
n
))dB(u)�

vZ
0

b(u;Xn(u� 1
n
))du� �max

0�u�v
Xn(u� 1

n
))

+

������0� max
0�v�t

(�
vZ
0

�(u;Xn(u� 1
n
))dB(u)�

vZ
0

b(u;Xn(u� 1
n
))du� �max

0�u�v
Xn(u� 1

n
)

������)
�1
2
(0 + max

0�w�s
(�

wZ
0

�(u;Xn(u� 1
n
))dB(u)�

wZ
0

b(u;Xn(u� 1
n
))du� � max

0�u�w
Xn(u� 1

n
))

�

������0� max
0�w�s

(�
wZ
0

�(u;Xn(u� 1
n
))dB(u)�

wZ
0

b(u;Xn(u� 1
n
))du� � max

0�u�w
Xn(u� 1

n
)

������

������������������������

=

������������

1
2
(2

������max0�v�t
(�

vZ
0

�(u;Xn(u� 1
n
))dB(u)�

vZ
0

b(u;Xn(u� 1
n
))du� �max

0�u�v
Xn(u� 1

n
)

������
�1
2
(2

������max0�w�s
(�

wZ
0

�(u;Xn(u� 1
n
))dB(u)�

wZ
0

b(u;Xn(u� 1
n
))du� � max

0�u�w
Xn(u� 1

n
)

������

������������

=

������������

������max0�v�t
(�

vZ
0

�(u;Xn(u� 1
n
))dB(u)�

vZ
0

b(u;Xn(u� 1
n
))du� �max

0�u�v
Xn(u� 1

n
)

������
�

������max0�w�s
(�

wZ
0

�(u;Xn(u� 1
n
))dB(u)�

wZ
0

b(u;Xn(u� 1
n
))du� � max

0�u�w
Xn(u� 1

n
)

������

������������

�

�������������������

max
0�v�t

(�
vZ
0

�(u;Xn(u� 1
n
))dB(u)�

vZ
0

b(u;Xn(u� 1
n
))du

��max
0�u�v

Xn(u� 1
n
))

�max
0�u�v

(�
wZ
0

�(u;Xn(u� 1
n
))dB(u)�

wZ
0

b(u;Xn(u� 1
n
))du

�� max
0�u�w

Xn(u� 1
n
))

�������������������

:

49



Chapitre 3. PSDERB with non-Lipschitz coe¢ cients : Existence and uniqueness

Let,

Y n(v) = �
vZ
0

�(u;Xn(u� 1

n
))dB(u)�

vZ
0

b(u;Xn(u� 1

n
))du� �max

0�u�v
Xn(u� 1

n
):

This implies,

����max0�v�t
Y n(v)� max

0�v�s
Y n(u)

���� = �����max0�v�s
Y n(v); max

s�v�t
Y n(v)

�
max
0�v�s

Y n(v)

���� :

Applying the inequality max fa; bg = 1
2
[a+ b+ ja� bj] for a; b 2 R; we get

max
0�v�t

Y n(v) =
1

2

�
max
0�v�s

Y n(v) + max
s�v�t

Y n(v) +

����max0�v�s
Y n(v) + max

s�v�t
Y n(v)

����� :
If max
s�v�t

Y n(v) � max
0�v�s

Y n(v); then

����max0�v�t
Y n(v)� max

0�v�s
Y n(v)

���� = 0:

If max
0�v�s

Y n(v) � max
s�v�t

Y n(v); then

����max0�v�t
Y n(v)� max

0�v�s
Y n(v)

���� = ����maxs�v�t
Y n(v)� max

0�v�s
Y n(v)

���� :

Since, max
0�v�s

Y n(v) � max
s�v�t

Y n(v) and Y n(s) � max
0�v�s

Y n(v), we get

����max0�v�t
Y n(v)� max

0�u�s
Y n(v)

���� � ����maxs�v�t
Y n(v)� Y n(v)

����
� max

s�v�t
jY n(v)� Y n(s)j :
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Therefore,

���(t)L0t (Xn)� �(s)L0s(Xn)
�� � max

s�v�t

������
vZ
s

�(u;Xn(u� 1

n
))dB(u)�

vZ
s

b(u;Xn(u� 1

n
))du

������
(3.10)

+ �max
s�v�t

����Xn(v � 1

n
)�Xn(s� 1

n
)

���� :
Equations (3.8) and (3.10) imply that,

jXn(t)�Xn(s)j � 2max
s�v�t

������
vZ
s

�(u;Xn(u� 1

n
))dB(u) +

vZ
s

b(u;Xn(u� 1

n
))du

������
+ 2�max

s�v�t

����Xn(v � 1

n
)�Xn(s� 1

n
)

����
� 2max

s�v�t

������
vZ
s

�(u;Xn(u� 1

n
))dB(u) +

vZ
s

b(u;Xn(u� 1

n
))du

������
+ 2�max

s�v�t

����Xn(v � 1

n
)�Xn(s� 1

n
)

���� :

We therefore have,

jXn(t1)�Xn(s1)j

=

����������

t1Z
s1

�(u;Xn(u� 1
n
))dB(u) +

tZ
s1

b(u;Xn(u� 1
n
))du+ � max

0�u�t1
Xn(u� 1

n
) + �(t1)L

0
t1
(Xn)

�� max
0�u�s1

Xn(u� 1
n
) + �(s1)L

0
s1
(Xn)

����������
(3.11)

�

������
t1Z
s1

�(u;Xn(u� 1

n
))dB(u) +

tZ
s1

b(u;Xn(u� 1

n
))du+ � max

0�u�t1
Xn(u� 1

n
)

������ (3.12)

+
���(t1)L0t1(Xn)

��+ ���(s1)L0s1(Xn)
�� (3.13)

51



Chapitre 3. PSDERB with non-Lipschitz coe¢ cients : Existence and uniqueness

Equation (1.1) implies that,

���(t1)L0t1(Xn)
�� � t1Z

0

�(u;Xn(u� 1

n
))dB(u) +

t1Z
0

b(u;Xn(u� 1

n
))du+ � max

0�u�t1
Xn(u� 1

n
)

So,

max
s�s1�t1�t

jXn(t1)�Xn(s1)j � 2 max
s�s1�t1�t

������
t1Z
s1

�(u;Xn(u� 1

n
))dB(u) +

t1Z
s1

b(u;Xn(u� 1

n
))du

������
+ 2� max

s�s1�t1�t
jXn(t1)�Xn(s1)j

max
s�s1�t1�t

jXn(t1)�Xn(s1)j �
2

(1� 2�) max
s�s1�t1�t

������
t1Z
s1

�(u;Xn(u� 1

n
))dB(u) +

t1Z
s1

b(u;Xn(u� 1

n
))du

������ :

Hence,

E jXn(t)�Xn(s)j2 � 4
(1�2�)2

0@E
������
tZ
s

�(u;Xn(u� 1

n
))dB(u)

������
2

+

������
tZ
s

b(u;Xn(u� 1

n
))du

������
21A :

Then Lemma (3.1) yields,

E jXn(t)�Xn(s)j2 � 4
(1�2�)2

0@(t� s)E
������
tZ
s

b(u;Xn(u� 1

n
))

������
2

du+ 4E
tZ
s

�����(u;Xn(u� 1

n
))

����2 du
1A

� 4(T + 4)~L
(1�2�)2

tZ
s

(1 + E
����Xn(u� 1

n
)

����2)du
� 4(T + 4)~L

(1�2�)2 (1 + C)(t� s):

Where ~L = 2max(a+ C; �) The proof is therefore complete.
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Now, let us apply the above lemmas to prove theorem 3.1

Proof. of Theorem 3.1. First, we will show that the sequence fXn(t)g is a Cauchy sequence

in L2([0; T ] ;R) For any n � m � 1 we get

jXn(t)�Xm(t)j

�

������
tZ
0

�
�(s;Xn(s� 1

n
))� �(s;Xm(s� 1

m
))

�
dB(s) +

tZ
0

�
b(s;Xn(s� 1

n
))� b(s;Xm(s� 1

m
))

�
ds

������
+

�����(max0�s�t
Xn(s� 1

n
)� max

0�s�t
Xm(s� 1

m
))

����+ ���(t)(L0t (Xn)� L0t (Xm))
�� :

Applying the inequalitymax fa; bg = 1
2
[a+ b+ ja� bj] for a; b 2 R and the inequalityjjaj � jbjj �

ja� bj ; Equation (1.1) implies that

���(t)(L0t (Xn)� L0t (Xm))
��

=

������������
max

240;�max
o�v�t

(

vZ
0

�(u;Xn(u� 1
n
))dB(u)�

vZ
0

b(u;Xn(u� 1
n
))du� �max

o�u�v
Xn(u� 1

n
)

35
�max

240;�max
o�v�t

(

vZ
0

�(u;Xm(u� 1
m
))dB(u)�

vZ
0

b(u;Xm(u� 1
m
))du� �max

o�u�v
Xm(u� 1

m
)

35

������������
���(t)(L0t (Xn)� L0t (Xm))

��

�

������������
max
o�v�t

(�
vZ
0

�(u;Xn(u� 1
n
))dB(u)�

vZ
0

b(u;Xn(u� 1
n
))du� �max

o�u�v
Xn(u� 1

n
))

�max
o�v�t

(

vZ
0

�(u;Xm(u� 1
m
))dB(u)�

vZ
0

b(u;Xm(u� 1
m
))du� �max

o�u�v
Xm(u� 1

m
))

������������
:

Let

Y n(v) = �
vZ
0

�(u;Xn(u� 1

n
))dB(u)�

vZ
0

b(u;Xn(u� 1

n
))du� �max

o�u�v
Xn(u� 1

n
):
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This implies, ����maxY n(v)
o�v�t

� max
o�v�t

Y m(v)

���� � max
o�v�t

jY n(v)� Y m(v)j :

Therefore

���(t)(L0t (Xn)� L0t (Xm))
��

� max
o�v�t

������
vZ
0

�
�(s;Xn(s� 1

n
))� �(s;Xm(s� 1

m
))

�
dB(s) +

vZ
0

�
b(s;Xn(s� 1

n
))� b(s;Xm(s� 1

m
))

�
ds

������
+ �max

0�s�t

����Xn(s� 1

n
)�Xm(s� 1

m
)

���� :

Then

jXn(t)�Xm(t)j

� 2

������
tZ
0

�
�(s;Xn(s� 1

n
))� �(s;Xm(s� 1

m
))

�
dB(s)

������
+ 2

������
tZ
0

�
b(s;Xn(s� 1

n
))� b(s;Xm(s� 1

m
))

�
ds

������+ 2�max0�s�t

����Xn(s� 1

n
)�Xm(s� 1

m
)

����
= 2

������
tZ
0

�
�(s;Xn(s� 1

n
))� �(s;Xm(s� 1

m
))

�
dB(s)

������+ 2
������
tZ
0

�
b(s;Xn(s� 1

n
))� b(s;Xm(s� 1

m
))

�
ds

������
2�max

0�s�t

����Xn(s� 1

n
)�Xm(s� 1

m
) +Xm(s� 1

n
)�Xm(s� 1

n
)

����
� 2

������
tZ
0

�
�(s;Xn(s� 1

n
))� �(s;Xm(s� 1

m
))

�
dB(s)

������
+ 2

������
tZ
0

�
b(s;Xn(s� 1

n
))� b(s;Xm(s� 1

m
))

�
ds

������
+ 2�max

0�s�t

����Xn(s� 1

n
)�Xm(s� 1

n
)

����+ 2�max0�s�t

����Xm(s� 1

n
)�Xm(s� 1

m
)

���� :
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By using the inequality,

(a+ b+ c)2 � 3(a2 + b2 + c2):

For any L 2 N; ai 2 R and q � 0;we obtain that

(1� 2�)2E
�
sup
0�t�t1

jXn(t)�Xm(t)j2
�

� 12(�2E
"
sup
0�t�t1

����Xn(t� 1

n
)�Xm(t� 1

m
)

����2
#

+ E sup
0�t�t1

������
tZ
0

�
�(s;Xn(t� 1

n
))� �(s;Xm(t� 1

m
))

�
dB(s)

������
2

+ E sup
0�t�t1

������
tZ
0

�
b(s;Xn(t� 1

n
))� b(s;Xm(t� 1

m
))

�
ds

������
2

): (3.14)

By the Hölder inequality and the Burkholder �Davis�Gundy inequality, we get,

(1� 2�)2E
�
sup
0�t�t1

jXn(t)�Xm(t)j2
�

� (4E
t1Z
0

�����(s;Xn(t� 1

n
))� �(s;Xm(t� 1

m
))

����2 dB(s)
+ TE

������
t1Z
0

�
b(s;Xn(t� 1

n
))� b(s;Xm(t� 1

m
))

�������
2

ds

+ �2E sup
0�t�t1

����Xm(t� 1

n
)�Xm(t� 1

m
)

����2):
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By Assumption 3.1 and the Jensen inequality, we have

(1� 2�)2E
�
sup
0�t�t1

jXn(t)�Xm(t)j2
�

� 12((4 + T )E
t1Z
0

�2(

����Xn(s� 1

n
))�Xm(s� 1

m
)

����)ds
+ �2E sup

0�t�t1

����Xm(t� 1

n
)�Xm(t� 1

m
)

����2)
� 12((4 + T )

t1Z
0

�2((E
����Xn(s� 1

n
))�Xm(s� 1

m
)

����2) 12 )ds
+ �2E sup

0�t�t1

����Xm(t� 1

n
)�Xm(t� 1

m
)

����2):

Similar to (3.7), one obtains

E
�
sup
0�t�t1

jXn(t)�Xm(t)j2
�
� 12

(1� 2�)2 ((4 + T )
t1Z
0

h(E
����Xn(s� 1

n
))�Xm(s� 1

m
)

����2)ds
+ �2E sup

0�t�t1

����Xm(t� 1

n
)�Xm(t� 1

m
)

����2):
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Since h(:) is concave, we have h(a+ b) � h(a) + h(b). Then Lemma 3.2 yields,

(1� 2�)2E
�
sup
0�t�t1

jXn(t)�Xm(t)j2
�

� 12

(1� 2�)2 (2(4 + T )
t1Z
0

h(E
����Xn(s� 1

n
))�Xm(s� 1

m
)

����2)ds
+ 2(4 + T )

t1Z
0

h(E
����Xm(t� 1

n
)�Xm(t� 1

m
)

����2)ds
+ �2E sup

0�t�t1

����Xm(t� 1

n
)�Xm(t� 1

m
)

����2)
� 24(4 + T )

(1� 2�)2 (
t1Z
0

h(E
����Xn(s� 1

n
))�Xm(s� 1

m
)

����2)ds
+

t1Z
0

h(C(
1

m
� 1

n
))ds) +

12�2

(1� 2�)2C(
1

m
� 1

n
): (3.15)

Where,

t1Z
0

h(E
����Xn(s� 1

n
))�Xm(s� 1

m
)

����2)ds
�

t1Z
0

h(E sup
0���s

����Xn(� � 1

n
))�Xm(� � 1

m
)

����2)ds
�

t1Z
0

h(E sup
� 1
n
�v�s� 1

n

jXn(v)�Xm(v)j2)ds+ E sup
�0�v�s� 1

n

jXn(v)�Xm(v)j2)ds

� h(0)T
t1Z
0

h(E sup
�0�s�t

jXn(s)�Xm(s)j2)dt: (3.16)
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Inserting (3.15) into (3.16), we obtain that

(1� 2�)2E
�
sup
0�t�t1

jXn(t)�Xm(t)j2
�

� 24(4 + T )

(1� 2�)2
24(4 + T )

(1� 2�)2

t1Z
0

h(E sup
0�s�t

jXn(s)�Xm(s)j2)dt+ 12C(n;m): (3.17)

Where,

C(n;m) =
2(T + 4)T

(1� 2�)2 Ch(
1

m
� 1

n
) +

�2

(1� 2�)2C(
1

m
� 1

n
):

By Bahri inéqalities, we get

E
�
sup
0�t�t1

jXn(t)�Xm(t)j2
�
� G�1(G(12C(n;m)) + 24(4 + T )T

(1� 2�)2 ):

Where G(t) =

t1Z
0

ds
h(s)
: Obviously, G is a strictly increasing function, then G has an inverse

function which is strictly increasing, and G�1(1) = 0 Note that when n;m ! 1 then

C(n;m)! 0. Recalling
Z
0+

ds
h(s)

=

Z
0+

s
�2(s)

ds =1; we have

G(12C(n;m))! �1:

And,

G�1(G(12C(n;m)) +
24(4 + T )T

(1� 2�)2 ! 0:

We therefore have,

lim sup
n;m!1

E
�
sup
0�t�t1

jXn(t)�Xm(t)j2
�

� lim sup
n;m!1

G�1(G(12C(n;m)) +
24(4 + T )T

(1� 2�)2 ) = 0: (3.18)
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Which implies that (Xn(t))n�1 is a Cauchy sequence. Denote the limit by X(t). Letting

m!1 in (3.18) yields,

lim
n!1

E
�
sup
0�t�T

jXn(t)�X(t)j2
�
= 0:

Similar to (3.17), (3.18), we can show that X(t) is a unique solution of Equation (nder non-

Lipschitz conditions. Then, the proof is completed.

To see the generality of our results, let us give a few examples of the func tion �(:) let � 2 (0; 1)

be su¢ ciently small, de�ne

�1(u) :=

8>>>><>>>>:
0; if u = 0;

u
p
log(u�1); if u 2 (0; �] ;

�
p
log(��1); if u 2 [�;+1] ;

and,

�2(u) :=

8>>>><>>>>:
0; if u = 0;

u
p
log(u�1) log log(u�1); if u 2 (0; �] ;

�
p
log(��1) log log(��1); if u 2 [�;+1] ;

They are all concave non-decreasing functions satisfying,
Z
0+

u
�2i (u)

du =1; i = 1; 2:
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Conclusion

In this work, we study the carathéodory approximate solution for a class of one-dimensional

perturbed stochastic di¤erential equations with re�ecting boundary (PSDERB). We prove

that PSDERB have a unique solution and show that the carathéodory approximate solu-

tion converges to the solution of PSDERB whose both drift and di¤usion coe¢ cients are

non-Lipschitz.
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Annex : Some mathematical tools

Théoréme 3.2 (Burkholder�Davis�Gundy Inequality [11]) Let Mt be a continuous

local martingale with Mo = 0; a:s, and suppose 2 � p < 1. There exists a constant c1

depending on p such that for any �nite stopping time T ,

E(M�
T )p � c1E(M)

p=2
T :

Proof. There is nothing to prove if the left-hand side is zero, so we may assume it is positive.

First supposeM�
T is bounded by a positive constant K. Note for p � 2 the function x! jxjp

is C2. By Doob�s inequalities and then Ito�s formula (and the fact that jMsj � 0), we have

EjM�
T jp � cEjMT jp

= cE

TZ
0

pjMsjp�1dMs +
1

2
cE

Z
p(p� 1)jMsjp�1d hMis

� cE
TZ
0

(M�
T )
p�2d hMis

= cE[(M�
T )
p�2 hMiT ]:

(Recall our convention about constants and the letter c.) Using Holder�s inequality with

exponents p=(p� 2) and p=2, we obtain

E(M�
T )
p � c(E(M�

T )
p)

p
2 (E hMi

p
2
T )

2
p :
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Dividing both sides by (E(M�
T )
p)

p�2
p and then taking both sides to the power p=2gives our

result.

We then apply the above to T ^ Uk, where Uk = infft : jMtj � Kg; letK ! 1, and use

Fatou�s lemm.

Théoréme 3.3 (Hölder Inequality [4]) Let p and q be conjugate exponents. Then, if f

and g are two measurable functions from E into R,

Z
jfgj d� � kfkp kgkq

In particular, fg 2 L1(E;A; �) if f 2 Lp(E;A; �) and g 2 Lq(E;A; �).

Remark In the last assertion, we implicitly use the fact that, if f and g are de�ned up to a set

of zero �-measure, the product fg (as well as the sum f + g is also well de�ned up to a set

of zero �-measure.

Proof. If kfkp = 0, we have f = 0, � a.e., which implies jfgj d� = 0, and the inequality is

trivial. We can thus assume that kfkp > 0 and kgkq > 0. Without loss of generality, we can

also assume that f 2 Lp(E;A; �) and g 2 Lq(E;A; �) (otherwise kfkp kgkq = 1 and there

is nothing to prove).

The case p = 1 and q =1 is very easy, since we have jfgj d� � kgk1 jf j�a:e:,

which implies Z
jfgj d� � kgk1

Z
kgk1 kfk

In what follows we therefore assume that 1 < p < 1 (and thus 1 < q < 1). Let � 2 (0; 1).

Then, for every

x 2 R+x� � �x � 1� �:

Indeed, de�ne ��:(x) = x� � �x for x � 0. Then, for x > 0, we have ���:(x) = �(x��1 � 1),

and thus��(x) > 0 if x 2 (0; 1) and ��(x) < 0 if x 2 (1;1). Hence ��: attains its maximum at

x = 1, which gives the desired inequality. By applyingthis inequality to x = u
v
, where u � 0
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and v > 0, we get

u�v1�� � �u+ (1� �)v;

and this inequality still holds if v = 0. We then take � = 1
p
(so that 1� � = 1

q
) and

u =
jf(x)jp
kfkpp

; v =
jg(x)jq

kgkqq

to arrive at

u =
jf(x)g(x)j
kfkp kgkq

� 1

p

jf(x)jp
kfkpp

+
1

q

jg(x)jq

kgkqq
:

By integrating the latter inequality with respect to �(dx), we get

1

kfkp kgkq

Z
jfgj d� � 1

p
+
1

q
= 1

which completes the proof.

Théoréme 3.4 (Jensen�s Inequality [4]) Suppose that � is a probability measure, and let

' : R! R+ be a convex function. Then, for every f 2 L1(E;A; �)

Z
' � fd� � '(

Z
fd�):

Remark The integral
R
' � f d� is well de�ned as the integral of a nonnegative measurable

function.

Proof. Set

"' = f(a; b) 2 R2 : 8x 2 R; '(x) � ax+ bg:

Then elementary properties of convex functions show that

8x 2 R;'(x) = sup
(a;b)2"'

(ax+ b):
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Since ' � f � af + b for every (a; b) 2 "', we get

Z
' � fd� � sup

(a;b)2"'

Z
(af + b)d� = sup

(a;b)2"'

Z
(a

Z
fd�+ b) = '(

Z
fd�):

Théoréme 3.5 (Doob�s Maximal Inequality) Let M be a martingale or a positive sub-

martingale. Then, for � > 0, n � 1 one has

P( max
0�k�n

jMkj > �) �
1

�
E

"
jMnj ��

max
0�k�n

jMkj>�
�
#
: (3.19)

Further, for 1 < p <1, there exists a universal constant C depending only on p such that

E
�
( max
0�k�n

jMkj)p
�
� CE [jMnjp] :

Théoréme 3.6 (Gronwall Inequality) Let A; B 2 V+ (increasing processes with A0 � 0;

B0 � 0) and a stopping time � be such that A0 � 0, B�� �M . Suppose that for all stopping

times � � �

E [A�� ] � a+ �E

264 Z
[0;�)

A�dB

375 :

For � > 0 let C(�) =
[�]X
j=0

�j. Then we have

E [A�� ] � 2aC(2�M):

Lemme 3.3 Let h : R+ ! R+ be a continuous, non-decreasing function satisfying h(0) = 0;

and
Z

du
h(u)

= +1. Let u(:) be a Borel measurable bounded non-negative func tion de�ned on

[0; T ] satisfying,

u(t) � u0 +
tZ
0

v(s)h(u(s))ds; t 2 [0; T ] :
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where u0 > 0 and v(:) is a non-negative integrable function on [0; T ]. Then we have

u(t) � G(G(u0) +
tZ
0

v(s)ds):

where

G(t)=

tZ
t0

du

h(u)
is well de�ned for some t0 > 0 and G�1 is the inverse function of G. In

particular, if u0 = 0, then u(t) = 0 for all t 2 [0; T ] :

Proposition 3.1

1. Let f be a nonnegative measurable function on E. There exists an increasing sequence

(fn)n2N of nonnegative simple functions such that fn ! f pointwise as n!1. If f is

also bounded, the sequence (fn)n2N can be chosen to converge uniformly to f .

2. Let f and g be two nonnegative measurable functions on E and a; b 2 R+. Then

Z
(af + bg)d� = a

Z
fd�+ b

Z
gd�:

3. Let (fn)n2N be a sequence of nonnegative measurable functions on E. Then

Z
(
X
n2N

fn)d� =
X
n2N

Z
fnd�:

Remarque 3.3
X
n2N

fn is an increasing limit of nonnegative measurable functions and thus

also measurable.

Théoréme 3.7 Let P 2 [1;1) :

1. If (E, A, �) is a measure space, the set of all integrable simple functions is dense in

Lp(E, A, �).

2. If (E; d) is a metric space, and � is an outer regular measure on (E;B(E)); then the

set of all bounded Lipschitz functions that belong to Lp(E, B(E), �) is dense in Lp(E,

B(E), �):
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3. If (E; d) is a separable locally compact metric space, and � is a Radon measure on E,

then the set of all Lipschitz functions with compact support is dense in Lp(E, B(E),

�):

Théoréme 3.8 Suppose M is an r.c.l.l.(F�)-martingale and � and � are (F�) stopping times

with � � � . Suppose X is an r.c.l.l adapted process. Let

Nt = X��t(M��t �M��t):

Then N is a (F�)-martingale if either (i) X is bounded or if (ii) E [X2
�] <1 and M is square

integrable.

Théoréme 3.9 Let F be a �-�eld on 
, and let Q be a probability measure on (
;F).

Suppose G � B(
;F) be an algebra such that �(G) = F . Further, 9fn 2 G such that

fn < fn+1 and fn converges to 1 pointwise. Then G is dense in L (
;F ;Q) :

Théoréme 3.10 Let T be a positive constant and let �(t), 0 � t � T; be an adapted

stochastic process that satis�es E
TZ
0

�(t)2dt <1. Then
tZ
0

�(u)dW (u) de�ned by

tZ
0

�(u)dW (u) = lim
n!1

tZ
0

�n(u)dW (u);

has the following properties.

(i) (Continuity) As a function of the upper limit of integmtion t, the paths of I(t) are

continuous.

(ii) (Adaptivity) For each t, I(t) is F(t)-measumble.

(iii) (Linearity) If I(t) =

tZ
0

�(u)dW (u) and J(t) =

tZ
0

�(u)dW (u); then I(t) � J(t) =

tZ
0

(�(u)� �(u)) dW (u); furthermore, for every constant cI(t) =
tZ
0

c�(u)dW (u).
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(iv) (Martingale) J(t) is a martingale.

(v) (Itô isometry) EI2(t) = E
tZ
0

�2(u)du:

(vi) (Quadratic variation) [I; I] (t) =

tZ
0

�2(u)du:

Proposition 3.2 Let H be a separable real Hilbert space. There exist a propability space (
;

F , P) and a family X(h); h 2 H; of random variables on this space, such that

i the map h! X(h) is linear ;

ii for each h, the r.v. X(h) is gaussian centered and

E
�
X(h)2

�
= khk2H :
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 الملخص:  

ذات البعد الواحد، حيث قمنا بدراسة الوجود و الوحدانية  بحاجز العكسيةفي هذه المذكرة نحن مهتمين بالمعادلات التفاضلية العشوائية 

حت شرط المعادلة الأم ت حلن الحل التقريبي الكاثيودوري لهذه المعادلة يتقارب إلى بناءا على التقريب الكاثيودوري، حيث أثبتنا أ

 يبشيتز.اللال

 الكلمات المفتاحية :

 .ليبشيتز الشرط اللا ؛الكاثيودوري التقريب؛ المعادلات التفاضلية العشوائية العكسية ذات البعد الواحد

 

 

ABSTRACT: 

  In this memory, we are interested about the perturbed stochastic differential equations 

with reflecting boundary, we studied the existence and uniqueness of the solution to this 

equation based on Carathéodory approximate, where we proved that the Carathéodory 

approximate solution for this equation converges to the solution under non-Lipschitz 

condition. 

Keywords: 

Perturbed stochastic differential equations with reflecting boundary; Carathéodory 

approximate; non-Lipschitz. 

 

 

RÉSUMÉ : 

 Dans ce mémoire, nous nous intéressons aux équations différentielles stochastiques 

perturbées avec des conditions de bord réfléchissantes. Nous avons étudié l'existence et 

l'unicité de la solution de cette équation en nous basant sur une approximation de 

Carathéodory. Nous avons démontré que la solution approchée de Carathéodory pour cette 

équation converge vers la solution dans le cas d'une condition non lipschitzienne. 

Mot clés : 

L'équations différentielles stochastiques perturbées avec un barriér réfléchies;  

approximatives de Carathéodory;  non lipschitzienne. 
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