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Biometrics involves automatically identifying individuals using their physiological or be-
havioral characteristics. Multimodal biometric systems integrating multiple modalities
recognition methods are considered the optimal solution for accurate identification. This
research focuses on using knuckle prints for biometric identification and evaluates the
performance of a proposed CNN model. The study explores different feature extraction
techniques and classification methods, aiming to determine the most effective combination
of knuckle prints for identification.
Keywords : Recognition, deep learning, SVM, biometrics, CNN, transfer learning, uni-
modal, multimodal, FKP.

La biométrie consiste à identifier automatiquement des individus à l’aide de leurs ca-
ractéristiques physiologiques ou comportementales. Les systèmes biométriques multimo-
daux intégrant plusieurs méthodes de reconnaissance sont considérés comme la solution
optimale pour une identification précise. Cette recherche se concentre sur l’utilisation des
empreintes des articulations pour l’identification biométrique et évalue les performances
d’un modèle CNN proposé. L’étude explore différentes techniques d’extraction de carac-
téristiques et méthodes de classification, dans le but de déterminer la combinaison la plus
efficace d’empreintes de phalanges pour l’identification.
Mots-clés : Reconnaissance, apprentissage profond, SVM, biométrie, CNN, apprentis-
sage par transfert, unimode, multimode, FKP.
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General introduction
The security and safety of people, property, and information are paramount societal

concerns. Traditional identity verification and identification methods, such as passports,

access cards, usernames, and passwords, are increasingly vulnerable to compromise. Pass-

words can be forgotten or hacked, and access cards can be falsified or duplicated, leading

to identity theft. In response to these challenges, biometric authentication has emerged as

a robust solution, leveraging physiological and behavioral traits to verify identities. Bio-

metrics, encompassing traits such as facial features, fingerprints, iris patterns, and voice,

ensures higher security and convenience as it requires physical presence for identification,

significantly reducing the risk of identity theft.

Single-mode or unimodal biometric systems, although beneficial, face limitations such

as low public acceptance and high error rates. This has led to the development of multi-

modal biometric systems, which integrate multiple biometric sources to enhance accuracy

and reliability. One notable system in this realm is the Finger Knuckle Print (FKP) sys-

tem, which uses finger joint impressions. FKP systems are user-friendly and have proven

to be effective in establishing reliable biometric systems when combining various modali-

ties .

Concurrently, the fields of artificial intelligence (AI), machine learning (ML), and deep

learning (DL) have seen substantial advancements. AI enables machines to perform tasks

1



Chapter 1. General introduction

akin to human capabilities, while ML focuses on enabling computers to learn from data

with minimal human intervention. Deep learning, a subset of ML, utilizes artificial neu-

ral networks to process large amounts of data, mimicking human brain functions. These

technologies have revolutionized various sectors, including business, education, manufac-

turing, banking, military, and healthcare.

Deep learning has significantly enhanced diagnostic assistance algorithms and biosig-

nal processing methods such as electroencephalography and electrocardiography in the

medical field. For medical image processing, deep learning techniques have improved the

accuracy of automatic characterization, segmentation, and classification. Convolutional

neural networks (CNNs), inspired by human brain function, are particularly effective for

image classification tasks, often surpassing traditional methods in performance and accu-

racy.

This work integrates unimodal and multimodal biometric identification systems with

advanced deep-learning techniques to develop more secure and efficient authentication

systems. By exploring the Finger Knuckle Print system and leveraging CNNs for image

classification, this research aims to contribute to the growing field of biometric security

and its applications.

This chapter is organized as follows:

THE FIRST CHAPTER General Introduction

THE SECOND CHAPTER explains the fundamental ideas of biometrics, as well

as its properties, criteria, and classifications. We also present the architecture and major

module of a biometric system, as well as the processes involved in biometric authentication

systems. The chapter concludes with the performance evaluation of biometric systems.

THE THIRD CHAPTER covers deep learning, delving deeper into transfer learn-

ing (TL) concepts, which is how we conducted our research, and convolutive neural net-

works (CNN).

THE FOURTH CHAPTER shows the results of the final FKP picture recognition

experiments. Next, based on transfer learning, we explore a deep learning technique

University Kasdi Merbah of Ouargla 2023/2024 page 2



Chapter 1. General introduction

for people identification employing four pre-trained CNN networks (AlexNet, VGG19,

ResNet50, and DenseNet201).

THE FIFTH CHAPTER covers the general conclusions and future work. It

summarizes the main findings of the study and provides recommendations for further

research in this area.

University Kasdi Merbah of Ouargla 2023/2024 page 3
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Basic of Biometrics

2.1 Introduction

The fast growth of modern human civilization has led to an increasing demand

for new and efficient technologies to sustain it. Alongside, security and privacy concerns

have emerged, and the usage of highly reliable and accessible individual authentication

and identification techniques has become crucial. Biometrics has emerged to address this

need and has become a science that studies the physiological and behavioral characteristics

of the human body to recognize an individual’s identity [1]. This chapter will provide

an introduction to biometry and its many modalities. First, we will define and discuss

biometrics. We then go on to discuss the various biometric modalities. We then present

the metrics used to evaluate biometric systems, along with their meanings and other

associated information.

2.2 definition of biometrics

Biometrics is the quantitative analysis of biological or behavioral characteristics to

identify or verify an individual’s identity [2].

Instead of relying on traditional identification methods such as passwords or identifi-

cation cards, biometric systems analyze distinctive features like fingerprints, facial char-

acteristics, iris patterns, or voiceprints. By capturing and comparing these unique traits,

biometrics provides a secure and efficient means of authentication (Figure 2.1).

4



Chapter 2. Basic of Biometrics

Figure 2.1 – Biometric Technology

2.3 Biometrics classifications

The following categories are the most widely used biometric methods; however,

they are applied in many other fields (Figure 2.2).

Figure 2.2 – Biometrics categories

2.3.1 Physical characteristics

Anything that has to do with how the different organs look on the outside interests

them, such as the following:

2.3.1.1 Fingerprint

Fingerprints are the patterns of ridges on our fingers’ tips. It is one of the most

mature biometric technologies and is considered a legitimate proof of evidence in courts

of law all over the world [3] (Figure 2.3).

Figure 2.3 – images of fingerprint

University Kasdi Merbah of Ouargla 2023/2024 page 5



Chapter 2. Basic of Biometrics

2.3.1.2 Finger Knuckle Print (FKP)

People commonly utilize FKP as a biometric due to its ease of use and low cost.

The FKP surface has different patterns in terms of direction, points of detail, and pores,

and these features are unique to all people. However, the identification process using

the FKP image may still encounter challenges due to variations in the image’s lighting

quality. Because of the noisy sensor data, the extraction of features is one of the most

crucial stages of FKP image recognition. This leads to an increase in research in this field

in order to create a system that can be used for accurate identification [4](Figure 2.4).

Figure 2.4 – Biometric system based on finger joints

2.3.1.3 Palmprint

Palmprint recognition is based on palm texture, which has unique line features. It

can also extract relatively stable features from low-resolution images and has strong anti-

noise ability. Compared with other commonly used biometric recognition technologies,

palmprint recognition has many unique advantages. Unlike face recognition [5], palmprint

features remain relatively stable and unaffected by ornaments, expressions, and gestures.

Compared with fingerprint technology [6], the effective area of a palmprint is much larger

and contains more information.(Figure 2.5).

Figure 2.5 – Images of palm print

University Kasdi Merbah of Ouargla 2023/2024 page 6



Chapter 2. Basic of Biometrics

2.3.1.4 Iris

The iris is a thin, circular structure in the eye that is a protected internal organ, so

it is not affected by environmental conditions [7]. Amongst all the biometric recognition

systems, Iris is the most promising solution because of its uniqueness, reliability, and

stability over its lifetime. Even the genetically identical twins have different iris textures

[8](Figure 2.6).

Figure 2.6 – images of fingerprint

2.3.1.5 Face

The face contains many biometric features based on the face, such as the gap between

the two eyes, the geometry of the face, the facial thermography, or the width of the

mouth [9]. Face recognition works by capturing and analyzing the unique facial features

of an individual. These features include the distance between the eyes, the shape of the

nose, and the contours of the face. This information is then transformed into a digital

representation, creating what is commonly known as a "face template"(Figure 2.7).

Figure 2.7 – Face recognition

University Kasdi Merbah of Ouargla 2023/2024 page 7



Chapter 2. Basic of Biometrics

2.3.2 Behavioral characteristics

This kind concentrates on analyzing an individual’s behavior:

2.3.2.1 Keystrokes

Every person types on a keyboard in a unique way, according to a theory. Although

it is not anticipated that this behavioral biometric would be exclusive to each person, it

does provide enough discriminating information to enable identity verification. Keystroke

dynamics is a behavioral biometric; one could expect to see significant differences in certain

people’s usual typing patterns. Furthermore, a system may discreetly record someone’s

keystrokes as they enter data [10] (Figure 2.8).

Figure 2.8 – Typing image

2.3.2.2 Voice

With a passphrase, voice or speaker recognition recognizes people based on their

vocal characteristics. One of the many inexpensive and easily deployable technologies is

the ability to use a telephone or microphone as a sensor. Environmental elements like

background noise, however, might have an impact on speech recognition. In order to

increase dependability, the U.S. government’s intelligence community and the telecoms

sector have dedicated a significant amount of resources to this technology [11] (Figure 2.9)

Figure 2.9 – voice recognition image
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2.3.2.3 Signature

Dynamic Signature: Everyone has their own writing style. We can define a model

to identify a person based on their signature. Since signatures are used in many countries

as a legal or administrative element, they are used to justify a person’s position or to

confuse a person with previously signed documents [12](Figure 2.10).

Figure 2.10 – Signature images

2.3.2.4 Gait

Gait is a sophisticated spatiotemporal biometric that describes each individual’s

unique walking style. Gait, while not highly precise, is sufficiently discriminating in some

low-security situations to allow verification. As a behavioral biometric, gait may change

over time, particularly in response to significant injuries to the joints or brain, changes in

body weight, or intoxication. Since learning a person’s stride is like learning a face, gait

analysis might be a valid biometric. Gait-based systems are computationally costly and

need a lot of data since they analyze several distinct motions of each articulating joint

using video-sequence footage of a walking human [10](Figure 2.11).

Figure 2.11 – Images of gait system
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2.3.3 Biological characteristics

This type of biometric modality, incorporating distinctive features like DNA, saliva,

and odor, serves as a robust foundation for precise individual identification.

2.3.3.1 DNA

Forensic applications primarily use DNA, a unique identity code, for person recog-

nition. However, it faces issues like contamination, sensitivity, automatic real-time recog-

nition, and privacy concerns. DNA theft can lead to unauthorized use, and current

technology isn’t suitable for online noninvasive recognition[10](Figure 2.12).

Figure 2.12 – DNA images

2.4 Properties of biometric modalities

Biometric modalities have some properties that differ from one modality to another.

•Universality: The entire community must possess the same modality.

•Distinctiveness: In that aspect, any two individuals should differ enough from

one another.

•Consistency: It implies that the characteristic should not vary significantly over

time or in reaction to external factors.

• Collectability: It means that the trait is statistically measurable.

•Performance: Biometric identification must be precise, quick, and resilient to

environmental and operational changes.

• Acceptance: This expresses how much acceptance there is for the use of a specific

biometric identifier (characteristic) in day-to-day life.

•Circumvention: It should be difficult to manipulate the biometric modality.
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Figure 2.13 – Biometric Characteristics Evaluation

2.5 Operating modes of a biometric system

A biometric system can operate in either verification or identification mode. Both

modes essentially necessitate a recruitment process that records the biometric data ac-

quired.

Enrollment: Entering an individual’s biometric information into the system’s database

is the first step in the enrollment process. A biometrical reader records an individual’s

biometric characteristics during the enrollment process. After that, a quality measurement

is often performed to guarantee the acquisition’s high quality [9](Figure 2.14).

Figure 2.14 – mode Enrollment

2.5.1 Verification

VThe process of verifying an individual’s claimed identity involves comparing their

collected biometric data to matching templates recorded in the system database. This

process is known as identity verification.

A person looking for recognition in such a system presents their identity using a PIN

or smart card, and the system compares the two in a one-to-one fashion to ascertain
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whether the claim is accurate or not (by providing an answer to the question, "Does this

biometric data really correspond to Mr. Bob?"). Identity verification is a crucial process

that tries to prevent many persons from using the same identity [13] (Figure 2.15).

Figure 2.15 – mode Verification

2.5.2 Identification

In identification mode, the system looks for matches in all user templates stored in

the database to identify an individual. Thus, without requiring the subject to assert their

identify, the system does a one-to-many comparison to determine an individual’s identity

(or fails if the subject is not enrolled in the system database) (e.g., "Whose biometric data

is this?").

In negative recognition applications, identification plays an important part in de-

termining if the subject is who she explicitly or implicitly claims not to be. Negative

recognition aims to stop an individual from utilizing several identities [13] .

Positive recognition can also utilize identification for convenience, but it does not

require the user to disclose their identity. On the other hand, traditional recognition

methods such as PINs and cards may function correctly for positive recognition, but

biometrics can only determine negative recognition (Figure 2.16).
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Figure 2.16 – mode Identification

2.6 Modules of Biometric Systems

There are four primary elements that make up a standard biometric system:

• Capture module: A device, such as a camera, fingerprint reader, or security

camera, is responsible for collecting a person’s biometric information [14].

• Features extraction module: creates a new representation of the data by taking

the biometric data that was collected by the capture module and extracting just the per-

tinent information. This new representation should ideally be specific to each individual

and mostly unaffected by differences within the same class [14].

• Matching Module: It assesses the degree of similarity (or divergence) between

the extracted characteristics and the model recorded in the system database [14].

• Decision Module: The system verifies the claimed identity of a user or identifies

a person based on the degree of similarity between the extracted characteristics and the

stored model [14].

2.7 Evaluation of biometric systems

We must clearly establish the following primary criteria in order to evaluate the

effectiveness of a biometric system:

2.7.1 FRR (False Rejection Rate)

The FRR is a measure of how likely the system is to reject a legitimate request from

a "Genuine" user. A Genuine user may try the transaction one or more times [15]. One

University Kasdi Merbah of Ouargla 2023/2024 page 13



Chapter 2. Basic of Biometrics

way to calculate FRR is:

FRR = Total number of False Rejections
Total number of ’Genuine’ Attempts (1.1)

2.7.2 FAR (False Acceptance Rate)

The FAR measures the probability that the system may mistakenly provide access

to an "Imposter." An Imposter may make one or more attempts at the transaction [15].

Performing the FAR calculation entails:

FAR = Total number of False Acceptances
Total number of ’Imposter’ Attempts (1.2)

Figure 2.17 – FAR and FRR diagrams

Figure 2.17 shows FAR and FRR diagrams according to distributions of genuine and

imposter scores, While The EER is represented in Figure 2.17.

2.7.3 GAR (Genuine Acceptance Rate)

The GAR is an overall accuracy measurement of a biometric system. It represents

the proportion of genuine attempts that are correctly identified and accepted by the

system [16].It is calculated by the equation :

GAR = 1−FRR (1.3)
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2.7.4 ERR (Equal Error Rate)

Equal Error Rate The system obtains this quantitative measure when the False Ac-

ceptance Rate (FAR) and False Rejection Rate (FRR) distribution curves intersect at a

specific point. Here, FAR corresponds to imposter cases accepted as genuine, while FRR

shows the distribution of genuine attempts rejected by the system. This metric fulfills the

criteria for measuring accuracy. Both protected and unprotected systems must use the

same protocol and database when performing the equal error rate measurement [17].

2.7.5 Receiver Operating Characteristics Curve (ROC)

The ROC curve is an additional statistic used to assess accuracy. The obtained FAR

is plotted against the verification rate (1-FRR). Since there is a trade-off between FAR

and FRR, the ROC curve is essential in determining the biometric system’s acceptable

operating point where this trade-off may be handled. Every biometric system generally

aims to produce a curve close to the upper left corner. An appropriate biometric system

is represented by the opportunistic point that can be found on the curve in the top left

corner[17](Figure 2.18).

Figure 2.18 – ROC curve
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2.7.6 Cumulative Matching characteristic Curve (CMC)

This curve aids in the assessment of system throughput. This curve illustrates the

identification rate of the biometric system when it compares a probe to each enrolled user.

The system uses the matching score to rank the registered user in this case. Therefore,

for inquiries whose enrollment is among the top r matches, the CMC curve gives the rank

r identification rate. The CMC curve is then generated by plotting the acquired rank

against the recognition rate [17] (Figure 3.1).

Figure 2.19 – CMC curve

2.8 Conculsion

This chapter served as a foundational exploration into the realm of biometric sys-

tems. We delved into the fundamental concepts underlying these systems, examining their

architecture and diverse applications across various domains. We realized that numerous

factors intricately link the performance of biometric systems, leading to variations in effi-

cacy among different systems. The following chapter will explore the use of Convolutional

Neural Networks (CNNs) in biometrics, focusing on their potential applications in fea-

ture extraction and pattern recognition, and their impact on future biometric recognition

systems.
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Deep learning for biometrics

3.1 Introduction to AI

Determining the definition of artificial intelligence is a challenging task, with numer-

ous definitions emerging, especially in recent years when the topic has garnered significant

attention. The definition provided in the European Commission’s communication dated

April 25, 2018, which states that the term “refers to systems that display intelligent

behavior by analysing their environment and taking actions—with some degree of auton-

omy—to achieve specific goals,” is among the most recent and sufficient to mention [18].

Machine learning is a subfield of artificial intelligence (AI) that enables applications

to anticipate outcomes with increasing accuracy without requiring explicit programming.

In order to anticipate new output values, machine learning (ML) algorithms require the

utilization of input data as features. Machine learning employs several techniques such

as decision trees, support vector machine learning (SVM), and artificial neural networks

(ANN), among others [19].

Deep learning is one area of machine learning. It is more widely used than ML algo-

rithms and has grown in popularity in many areas. Convolutional neural networks (CNNs)

are the most widely used algorithms in deep learning [20]. The CNN automatically ex-

tracts features from a set of raw image data based on the succession of convolutional

layers, eliminating the need for human feature extraction for things like first- and second-
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order statistical features, LBP, LPQ, etc. DL models come in a variety of forms, including

AlexNet, GoogleNet, RestNet18, ResNet50, etc....[21].

In this chapter, we will explore more about deep learning, show the difference between

machine learning and deep learning, and explain how deep learning works.

Figure 3.1 – ai-vs-machine-learning-vs-deep-learning

3.2 Deep learning

Deep learning is a machine learning approach that uses automated algorithms to ex-

tract data insights to support decision-making. Deep learning techniques gradually extract

higher-level information from unprocessed input using successive layers [22].

What sets deep learning apart is its progressive nature. It prioritizes the acquisition

of successive layers of progressively more meaningful representations from the provided

data. A deep learning model learns from the data at each layer, transferring knowledge

from one layer to the next. This process is akin to how lower layers in image processing

could recognize edges, while higher levels might recognize ideas that are important to

humans, like faces, characters, or numbers [22].

Deep neural networks are large artificial neural networks composed of several hidden

layers between the input and output layers [23](Figure 3.2).
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Figure 3.2 – Dieffrence between a simple neural network and deep neural network

3.2.1 How deep learning work?

Deep learning methods are based on artificial neural networks, which mimic the hu-

man brain’s hierarchical structure. During training, these networks automatically learn

numerous hidden layers stacked on each other. The hierarchical structure of deep networks

allows for nonlinear data processing, with each layer learning more complex concepts. The

first layers detect low-level features as edges, while the deeper layers identify more com-

plex features by combining features from the preceding layer. This hierarchical learning

eliminates the need for hand-crafted feature extraction in the network [24].

Figure 3.3 – Deep learning method

Figure 3.3 As one delves further into the network, a deep neural network of stacking

layers learns increasingly intricate and unique traits. The lowest-level layers identify the

edges of an input picture, and the next layers identify the curves and corners.

Combining the features derived from the earlier levels can lead to more complicated

characteristics. The input is categorized by the output layer [24].

3.2.2 Deep learning vs machine learning

Even though deep learning is a branch of machine learning, it differs from traditional

methods because deep learning algorithms automatically extract features and make pre-

dictions based on them. In contrast, traditional machine-learning methods require human
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intervention [25].

Figure 3.4 – Deep learning methode

Another important difference is that deep learning algorithms perform better as data

sizes grow, but typical machine learning approaches experience a performance plateau.

Figure 3.5 – ML vs DL algorithms performance
[24]

According to Figure 3.5, machine learning performance reaches a certain certification

level and then plateaus once a certain amount of data is obtained, whereas deep learning

performance rises with more data [25].
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3.3 Neural networks basics

The development of ANN was based on the similar functioning of human neuronal

networks [26]. Artificial neuron networks, which represent an advanced data modeling

tool that can collect and disclose complicated input/output correlations, have provided

several benefits in replicating many recent intelligent systems. Each node in an artificial

neural network performs a basic calculation, and each connection transfers a signal from

one node to another. Each connection is identified by a value known as the "connection

strength" or weight, which indicates how much the signal is amplified or lessened by the

connection [27].

Figure 3.6 – Structure of ANN

Figure 3.6 shows a network topology in which neuron j connects to inputs (x1,x2, ...xi)

with weights (wj1,wj2, ...wi) on each connection. The neuron sums all the signals it

receives, with each signal multiplied by its associated weights on the connection.

The final output,(y), is obtained by passing this output (V) through a transfer (acti-

vation) function, f(v), which is often non-linear [24].

y = f

(
n∑

i=1
xiwi +bias

)
(2.1)

3.4 Deep neural network structure

There have been two major trends in deep learning approaches: supervised and unsu-

pervised.

•Supervised learning: In supervised learning, input data is provided to the model
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along with the output (e.g., Convolutional Neural Networks [28] and Recurrent Neural

Networks [29]).

•Unsupervised learning: In unsupervised learning, the model receives only input

data. (e.g., Deep Belief Network [30] and Deep (Sparse/Denoising) AutoEncoder [31]).

In our work, we use convolutional neural networks, which we will discuss in more detail

in the section that follows.

3.5 Convolutional neural networks

Convolutional neural networks, sometimes called ConvNet architectures, are feed-

forward neural networks typically used to process and interpret visual pictures. A CNN

network detects and classifies objects in an image [32].

A Convolutional Neural Network is a deep learning algorithm model that accepts an

image as input and uses it to give weights and biases—which may be learned—to distinct

parts in the picture so that they can be distinguished from one another [33]. A ConvNet

requires much less pre-processing than other classification techniques. One important

feature of ConvNets is their ability to learn many visual features using various filter mod-

ifications, including max-pooling and convolutional layers.

CNNs are characterized by their convolution and pooling layers. In order to decrease

the number of parameters and improve the sharing of common traits, these layers intro-

duce partial correlations [22].

3.5.1 CNN blocs

Convolutive neuron networks are composed of two main blocks:

3.5.1.1 Feature Extraction Bloc

The feature extraction block in a convolutional neural network (CNN) is crucial for

extracting distinctive features from input data, especially images. It uses convolutional

layers, pooling layers, and activation functions like ReLU to process the data efficiently.

Convolutional layers detect patterns and features in the input data while pooling layers re-
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duce computational complexity while preserving important spatial information. Common

pooling operations include max pooling and average pooling, consolidating information

from neighboring regions in feature maps [34].

3.5.1.2 Classification Bloc

After feature extraction, convolutional neural networks (ConvNets) use fully connected

layers to learn extracted features. These layers connect each neuron to the next, allowing

for comprehensive learning. These layers use the detected features to make decisions

about input data, predicting the strength of a particular input matching a specific class.

A classifier receives the output of the last layer and generates class scores or probabilities

to identify the most suitable class for the input data [35].

Figure 3.7 – Structure of CNN

3.5.2 Layers in a CNN Network

A typical convolutional neural network consists of the following layers:

3.5.2.1 Convolutional layer

The convolutional layer (CONV) is the core of a CNN used to extract features from

the input image. It consists of learnable filters or kernels, each with a width and height,

applied through the full depth of the volume. The convolution is performed between

the input image and K kernels of size M × M , each sliding across the input image and

convolving with it. The result is a 2D output called a feature map, which represents
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specific characteristics of the input. These feature maps are then fed to the next layer in

the network, serving as feature extractors [24].

Figure 3.8 – Convolutional Neural Network (CNN) Kernel Operation Steps

3.5.2.2 Activation layer

An activation function layer receives the output from every convolutional layer. An

activation function makes up the activation function layer. It takes the convolutional

layer’s feature map as input and outputs the activation map. The activation function

produces an output signal from a neuron’s activation level. It describes a neuron’s output

about a certain input. Usually, an activation function produces a squashing effect after

receiving an input (a number), processing it mathematically, and then returning the ac-

tivation level of a neuron within a specified range, such as 0 ≤ x ≤ 1 or −1 ≤ x ≤ 1 [35]

3.5.2.3 Pooling layer

ConvNets use a convolution and activation function layer followed by an optional

pooling or down-sampling layer to reduce the input size and parameter count. The pooling

layer summarizes a region of neurons in the convolution layer, with the most common

technique being max-pooling. This technique outputs the maximum value in the input

region, typically 2 × 2. The pooling layer discards less significant data but preserves

detected features in a smaller representation. The reasoning behind the pooling operation

is that feature detection is more important than feature location [35].
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Figure 3.9 – Example of max pooling

This strategy works well for simple problems but has its limitations and may not be

suitable for some problems.

3.5.2.4 Fully connected layers

The final few levels of the network, known as fully connected layers (FC), are often

positioned before the output layer. They comprise neurons fully coupled to every acti-

vation in the layer above, weight, and biases. The output from the preceding layer is

flattened and supplied to the FC layers. They are employed in classifying images into

various classifications. A softmax classifier that calculates the probability of each class

comes after [24].

3.5.3 Activation function

The output of a neural network is defined by mathematical models called activation

functions. They determine whether or not to activate the neuron. They are non-linear

transformations that are used to shorten computation times, normalize the output be-

tween [0,1] and [1,-1], and stop the network from converging. Different activation types

exist. The most popular ones are the rectified linear unit, hyperbolic tangent, sigmoid

function, and step function [24].

3.5.3.1 Step function

This is the most basic activation function. simply outputs binary values 0or1 based

on threshold(Figure 3.10).often used in binary classification tasks [24] defined by :
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f(x) =


1 if x ≥ 0

0 else
(2.2)

Figure 3.10 – Step function

3.5.3.2 Sigmoid function

The sigmoid function is mathematically represented as :

f(x) = 1
1+ e−x

(2.3)

Figure 3.11 – sigmoid activation function

It is an S-shaped curve as shown in (Figure 3.11). The sigmoid function squashes the

input into the range [0, 1] [35].

3.5.3.3 Hyperbolic tangent

Similar to the sigmoid function, the hyperbolic tangent function’s output ranges be-

tween -1 and 1. Tanh over sigmoid has the advantage of mapping negative inputs strongly
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negative and zero inputs near zero in the tanh graph [35], as shown in (Figure 3.12)

tanh(x) = ex − e−x

ex + e−x
(2.4)

Figure 3.12 – Hyperbolic tangent

3.5.3.4 ReLU Activation Function

ReLu is a piecewise linear function that returns zero if the input value is negative

and directly if the input value is positive (Figure 3.13). Because it makes training easier

and frequently performs better than other activation functions, it is the default activation

function for a lot of networks [22]. It is mathematically given as :

f(x) = max(0,x) (2.5)

Figure 3.13 – Rectified Linear Unit (ReLU) activation function
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3.6 Transfer learning

Deep CNNs require a lot of compute power because of their depth and quantity of

fully linked nodes, so training them on big datasets from the start might take days or

weeks. Starting from the model weights of pre-trained networks on benchmark datasets,

the process of picture classification can be sped up by minimizing these enormous time and

computation resources. These models can be applied straight to additional classification

problems, or they can be integrated into a new model. We refer to this as transfer learning.

As a result, the most widely applied deep learning technique is transfer learning, which

involves using a model that has been trained on one job as an initialization for a different

task [24].

Transfer learning has become more and more common, particularly with convolutional

neural networks. It efficiently shortens training times and improves the precision of models

created for jobs with little or no training data. Some uses for transfer learning are as

follows:

•Pretrained model as fixed feature extractor

In this case, a new linear classifier is added as the final fully connected layer (classifier

layer), and it is then trained using fresh datasets. In this way, just the classifier is refined

while the feature extraction layers stay constant. This approach works well in situations

when the new dataset is small but comparable to the old dataset [35].

Figure 3.14 – Fine Tuning

•Fine-tune whole Model

with a pre-trained model, create a new fully connected layer to replace the classifier

layer, and then retrain the whole network with a fresh dataset by extending backpropa-
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gation to the upper layers. This adjusts all the weights for each new task [35].

3.7 CNN architectures

Convolutional neural networks (CNNs) are a domain with many different architectures.

The most typical ones are:

3.7.1 AlexNet

Alex Krizhevsky and associates developed Alexnet in 2012. Though it has eight layers

and learnable parameters, its architecture is similar to that of LeNet but deeper. The

network receives RBG photos as input. This model has three fully connected layers with

a Softmax classifier, five convolution layers, and max-pooling layers. They use ReLU as

an activation function. Two dropout layers are also present in the network [28].

Figure 3.15 – Alexnet architecture

3.7.2 VGGNet

VGGNet, based on the principles of AlexNet, aims to create deep configurations (16

to 19 layers) using structural stabilization techniques to control parameters and mitigate

overfitting risks. By reducing filter sizes from 7 × 7 and 5 × 5 to 3 × 3, VGGNet enables

the addition of more intermediate layers without exponentially increasing parameters.

Comparing parameters in three stacked convolutional layers with 3×3 filters to one layer

with a 7×7 filter shows that smaller filters reduce parameters [26].

For each convolutional layer with depth C, the parameter count in three stacked

3 × 3 convolutional layers is 3(32C2), while for one layer with 7 × 7 filters, it’s 72C2.
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Overall, stacking convolutional layers with smaller receptive fields reduces parameters

and enhances network non-linearity through additional activation functions (ReLU) [26].

3.7.3 ResNet

Xiangyu Zhang, Jian Sun, Kaiming He, and Shaoqing Ren created ResNet, or Resid-

ual Network, in 2015. This architecture was the winner of the ILSVRC competition.

ResNet uses batch normalization and skip connections as its foundation. Its architecture

is influenced by the VGG-19, although there are no FC layers at the network’s end. An

average pooling layer takes its place. There is just one max pooling layer in all ResNet

models after the initial one. It There are various ResNet topologies, ranging in number

of layers from 18 to 152 [36].

Figure 3.16 – RESNet architecture

3.7.4 DenseNet

DenseNet201 is a convolutional neural network architecture developed by Huang et al.

in 2017. It features a densely connected structure, with each layer receiving inputs from

preceding layers and passing feature maps to subsequent layers. This design improves

information flow and reduces the vanishing gradient problem.

DenseNet201 is parameter-efficient, achieving performance on par with deeper net-

works like ResNet-101 but with fewer parameters. Transition layers manage complexity,

ensuring improved gradient flow, reduced overfitting, and enhanced model generalization[37].

3.8 Support Vector Machines (SVM)

Pattern recognition problems are addressed by creating Support Vector Machines

(SVM). By employing support vectors—specific points from the training dataset—to cre-
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Figure 3.17 – Architecture of DenseNet201

ate a decision boundary, this technique recognizes patterns for binary classification. The

decision boundary is optimized to maximize the margin between the two classes. The

ideal separation hyperplane is the decision boundary, which symbolizes this margin. As

seen (Figure 3.18), the points that are closest to this hyperplane are known as support

vectors [38].

Figure 3.18 – Separating hyperplane of the SVM

3.9 Conclusion

In this chapter, we have presented the various principles of deep learning. Deep

learning networks are machine learning algorithms based on neural networks. We then

explored some fundamental principles by detailing the structure of a Convolutional Neural

Network (CNN), including the layers of a CNN, how they function, and how to progress

towards the transfer learning process, the method we used in our study. Finally, we

analyzed some well-known CNN architectures. In the next chapter, we will discuss the

experimental results.
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Results and discussions

4.1 Introduction

This chapter represents the experimental results of unimodal and multimodal biomet-

ric identity identification systems that employ finger-knuckle prints (FKPs) patterns as

biometric information. We used four pre-trained CNNs (AlexNet, VGG19, ResNet50 and

Densenet201) to extract and classify the features from the images in the data set. The

trials compared each CNN’s performance on the index, middle, and ring finger images,

evaluated improvement through score-level fusion and examined overall systems perfor-

mance. The objective is to create reliable and efficient biometric identification systems

that can handle the unpredictability and complexity of biometric data.

4.2 System Overview and Block Diagram

Figure 4.1 shows a simplified block diagram of a biometric system designed to authen-

ticate individuals based on the unique patterns of their finger knuckle prints (FKPs). In

this system, three fingers—index, middle, and ring—are utilized to enhance the reliability

and accuracy of the biometric identification process.

"The system begins with the Pre-processing Stage, where Region of Interest (ROI)

extraction is performed to ensure the most relevant data is obtained. This process is

carried out by the app while the photos are being taken, ensuring that the critical areas

are focused on. Deep learning techniques are used in the Feature-Extraction Stage to ex-

tract meaningful features from ROIs using pre-trained networks like AlexNet, VGGNet19,

32



Chapter 4. Results and discussions

ResNet50, and Densenet201. The classification stage uses extracted characteristics to dis-

tinguish different people using classifiers like Support Vector Machines (SVM) and a fully

connected layer. These classifiers produce scores indicating the likelihood of FKPs be-

longing to specific people. The final choice stage involves fusing the classifiers’ results at

the score level, using the advantages of multiple classifiers and fingers to improve system

accuracy. The system completes the biometric authentication process by accepting or

rejecting users based on their scores.

Figure 4.1 – Biometric system structure
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4.3 Datasets used

We meticulously evaluated the system under consideration using the FKP and palm-

print datasets, which include images of finger knuckle prints (FKP) and palmprints. We

painstakingly generated these datasets using a custom-developed Android application,

which allowed us to capture FKP and palmprint images at specified dimensions. Forty-

four individuals contributed to the database, and we acquired images in two sessions

spaced 15 to 30 days apart.

Each participant’s process involved FKP images: precisely six images of each of the

index, middle, and ring fingers of both hands (right and left) in each session. We also

collected the hand-palm dataset, using 96 images for each individual. Although we did

not use the palmprint data in our study due to the time-consuming editing process, we

collected it with the same meticulousness.

The FKP dataset contains images from 44 individuals. We effectively generated 88

files by looking at each finger (index, middle, and ring) on both right and left hands and

grouping them. For each finger, we used six images (1st, 3rd, 5th, 7th, 9th, and 11th) for

training purposes and the remaining six for testing.

During the data collection process, we encountered challenges, particularly in securing

the participation of all volunteers in the second session. However, despite these hurdles, it

was our first attempt at such a study, and we remained dedicated, achieving satisfactory

and acceptable results. We take pride in our unwavering commitment to this research,

even in adversity.

(a) 1 (b) 2

Figure 4.2 – Example des Images FKP
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4.4 Separation of Databases

The finger knuckle images used in our study consist of standard FKP (Finger Knuckle

Print) images. These images capture the natural patterns and features present on the

finger knuckles.

For data separation, we employ the following strategy:

• Training Images: The training set consists of images captured during odd ses-

sions. Specifically, images from sessions 1, 3, 5, 7, 9, and 11 are utilized for training.

• Testing Images: The testing set comprises images captured during even sessions.

This includes images from sessions 2, 4, 6, 8, 10, and 12.

Using this method, we ensure that the system’s performance is systematically eval-

uated over many sessions, making it easier to evaluate its accuracy and resilience in

identifying finger knuckle patterns.

4.5 Work environment

• Hardware environment :

•PC: DESKTOP-ITHQKBS

•Memory (RAM): 8.00 GB.

•Processor: Intel(R) Core(TM) i7-7700 CPU @ 2.80GHz 2.81 GHz.

•System type: 64-bit operating system.

•Software environment :

We have employed Matlab R2024a as the logic tool in our method.

4.6 Experimental Results

4.6.1 Uni-modal biometric identification system

We determined the open set’s threshold (T0) and equal error rate (EER). We calcu-

lated the closed set’s Ranke of Perfect recognitio (RPR) and recognition rate (ROR). The

performance of the systems based on the four modalities—Index, Middel, Ring—was

evaluated after adapting each pre-trained network (AlexNet, VGG19, ResNet50, and

DenseNet201) with a CNN model trained from scratch (CNN Scratch).Table 4.1 shows

the results for the index dataset.
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Table 4.1 – Performance of the uni-modal identification system based on index finger

Transfer Learning EER T0 ROR RPR
AlexNet.50 3.97945 0.795 88.4470 86

VGG.19 4.38001 0.814 86.9318 68
ResNet.50 3.66162 0.837 86.9318 63

DenseNet.201 3.40909 0.777 88.447 67
CNN Scratch 1.92006 0.051 88.0682 51

ERR CNN Scratch outperforms pre-trained models with the lowest EER at 1.92006,

with DenseNet-201 having the lowest EER at 3.40909.

T0 The CNN Scratch model achieves a low threshold of 0.051, demonstrating pre-

cise decision boundaries, while pre-trained models have higher thresholds at ResNet-50,

VGG19, AlexNet, and DenseNet-201.

ROR The CNN Scratch model performs well with ROR of 88.0682%, but DenseNet-

201 and AlexNet achieving the highest ROR at 88.4470%.

RPR CNN Scratch outperforms all models with an RPR of 51, while ResNet-50 has

the lowest RPR at 63, followed by DenseNet-201, VGG19, and AlexNet.

(a) 1 (b) 2

Figure 4.3 – UNI-modal system performance based on index data set, (a)CMC curve for CNN
scratch ,(b) CMC curves for transfer learning architectures

Based on the results and Figure 4.3, the CNN from scratch shows a superior error

rate and recognition efficiency performance, with DenseNet-201 being the best performer

among pre-trained models. However, it falls short compared to the custom-trained model.

The analysis highlights the advantages of training a model from scratch for specific bio-

metric tasks, provided sufficient data and computational resources are available.
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Table 4.2 – Performance of the uni-modal system based on middle modulate

Transfer Learning EER T0 ROR RPR
AlexNet.50 3.60066 0.814 92.8030 86

VGG.19 3.26106 0.775 91.2879 88
ResNet.50 2.67328 0.776 93.1818 88

DenseNet.201 1.37583 0.698 94.697 82
CNN Scratch 1.92006 0.042 90.7197 73

ERR The DenseNet-201 model has the best error rate performance at 1.37583, fol-

lowed by the CNN Scratch model with an EER of 1.92006, and AlexNet-50 with the

highest EER at 3.60066.

T0The CNN Scratch model achieves a low threshold of 0.042, demonstrating precise

decision boundaries, while DenseNet-201 has the lowest threshold at 0.698 among pre-

trained models.

ROR DenseNet-201 outperforms other models with a high ROR of 94.697%, followed

by ResNet-50, AlexNet-50, and Vgg-19, while CNN Scratch model achieves a ROR of

90.7197

RPR The CNN Scratch model has the highest recognition precision (RPR) at 73,

followed by ResNet-50 and Vgg-19 at 88, DenseNet-201 at 82, and AlexNet-50 at 86.

(a) (b)

Figure 4.4 – UNI-modal system performance based on middle data set, (a)CMC curve for
CNN scratch ,(b) CMC curves for transfer learning architectures

Depending on the results and Figure 4.4, the CNN Scratch model shows low EER

and precise decision boundaries, proving its effectiveness when trained from scratch.

DenseNet-201 is the top-performing pre-trained model, excelling in EER and ROR. How-

ever, it achieved the lowest RPR compared to ResNet-50 and Vgg-19.
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Table 4.3 – Performance of the uni-modal system based on ring modulate

Transfer Learning EER T0 ROR RPR
AlexNet 2.79084 0.783 92.9924 87
Vgg.19 2.26402 0.76 93.1818 75

ResNet.50 1.52821 0.732 94.697 76
DenseNet.201 1.89829 0.692 94.5076 79
CNN Scratch 2.25531 0.042 88.4470 36

ERR The ResNet-50 model outperforms DenseNet-201 with an EER of 1.89829, while

AlexNet-50 has the highest EER at 2.79084.

T0 The CNN Scratch model achieves a low threshold of 0.042, demonstrating precise

decision boundaries, while DenseNet-201 has the lowest threshold at 0.692 among pre-

trained models.

ROR ResNet-50 outperforms DenseNet-201, Vgg-19, and AlexNet-50 in recognizing

instances with a high ROR of 94.697%, while CNN Scratch has a lower ROR of 88.4470%.

RPR The CNN Scratch model has the lowest recognition precision at 36, with AlexNet-

50 having the highest RPR at 87.

(a) (b)

Figure 4.5 – UNI-modal system performance based on ring data set,(a)CMC curve for CNN
scratch ,(b) CMC curves for transfer learning architectures

Considering the analysis and Figure 4.5, the ResNet-50 model is the best overall, with

the lowest EER and highest ROR, indicating superior error rate and recognition accuracy.

The CNN Scratch model has the lowest threshold and best recognition precision, but its

overall performance does not surpass ResNet-50. DenseNet-201 is a strong pre-trained

option.
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4.6.2 Multi-modal biometric identification system

This subsection aims to assess and enhance the unimodal biometric identification sys-

tem’s performance by utilizing data from several modalities produced from various finger

kinds. Multiple multimodal systems can be constructed using multiple CNN networks

for feature extraction and classification (AlexNet, ResNet50, VGG19, DenseNet201) and

modalities (Index, Middle, and Ring fingers). However, we concentrated on a multi-sample

system approach in our work.

In our methodology, score-level fusion was tested. Multiple combinations can be ob-

tained using each person’s modalities. In our study, we considered two cases:

Case 01: We input all the data (Index, Middle, and Ring fingers) simultaneously into

each model (AlexNet, VGG19, ResNet50, and DenseNet201) for every evaluation. The

performance results were obtained for each model using this comprehensive dataset.

Case 02: We separated the data by finger type, inputting the Index finger data into

our custom CNN models and saving the results. The same procedure was repeated for

the Middle and Ring finger data. After obtaining the results for each finger type, we

performed a fusion of these three results using the SUM fusion rule to obtain our final

results.

4.6.2.1 Case 01 - Simultaneous Input of All Finger Data into CNN Models

Table 4.4 – Performance of multimodal biometric identification systems (open set and closed
set), identification test results for AlexNet, VGG19, Resnet50, and Densenet201 networks

Transfer Learning EER T0 ROR RPR
AlexNet 0.940439 0.758 97.1591 82
VGG.19 0.936085 0.722 97.5379 81

ResNet.50 0.76193 0.703 97.3485 70
DenseNet.201 0.570359 0.699 97.5379 29

The table presents the performance of various CNN models (AlexNet, VGG19, ResNet-

50, and DenseNet-201) when simultaneously using data from Index, Middle, and Ring

fingers. The metrics included are EER (Equal Error Rate), Threshold, ROR (Rank-One

Recognition), and RPR ( Ranke of Perfect recognitio).

AlexNet: It has an EER of 0.940439, demonstrating a generally tall blunder rate.

It requires the most elevated limit esteem of 0.758 among the models, recommending
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that it needs a higher edge to separate accurately. Despite this, it accomplishes a ROR of

97.1591%, illustrating great rank-one acknowledgement execution. The RPR for AlexNet-

50 is 82, reflecting lower exactness compared to DenseNet-201.

VGG19: It has an EER of 0.936085, slightly less than AlexNet—50 but still fairly

high. T0 value is 0.722, lower than AlexNet—50 but more advanced than ResNet—50 and

DenseNet—201. VGG19 achieves a high ROR of 97.5379, meaning strong performance in

identifying accurate existence on the first try. Its RPR is 81, analogous to AlexNet—50,

indicating moderate perfection.

ResNet-50: It improves over both AlexNet-50 and VGG19 with an EER of 0.76193.

T0 esteem is 0.703, lower than AlexNet-50 and VGG19, proposing superior separation

capability. ResNet-50 has an ROR of 97.3485%, slightly lower than VGG19 and DenseNet-

201 but still very high. The RPR is 70, which is way better than VGG19 and AlexNet-50

but less exact than DenseNet-201.

DenseNet-201: It stands out with the minimum EER at 0.570359, indicating the best

performance in minimizing errors. It has the smallest threshold value of 0.699, demon-

strating the ability to identify true and false matches. DenseNet-201 matches VGG19

with a high ROR of 97.5379, establishing a strong rank-one recognition performance. It

has an RPR of 29, significantly lesser than the others, indicating the highest perfection

rate.

Summary:

DenseNet-201 is the best model for biometric identification because it has the lowest

error rate, threshold, and highest accuracy. ResNet-50 does an excellent job with minor

mistakes and is accurate. AlexNet and VGG19 are good at recognizing the most common

objects but make more mistakes and have higher limits so that they could be better

overall. Figure 4.6 The CMC graph shows that DenseNet-201 is the best, followed by

ResNet-50, and then AlexNet and VGG19 are also good but not as good as the others.
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Figure 4.6 – CMC curves for all CNN models (AlexNet, VGG19, ResNet-50, DenseNet-201)

4.6.2.2 Separate Input of Finger Data with Post-Fusion

Table 4.5 – Distinct Data Capture: Index, Middle, Ring Fingers Performance in Open Set and
Closed Set for CNN Models.

Data Set EER T0 ROR RPR
Index finger 2.27708 0.845 91.0985 14

Middle finger 1.4542 0.76 91.0985 14
Ring finger 0.966562 0.752 91.0985 12

The table illustrates the individual performance metrics of custom CNN models for

each finger type—Index, Middle, and Ring. For each finger, the data was processed

through the CNN models(AlexNet, VGG19, ResNet-50, DenseNet-201) to evaluate the

system’s performance based on individual finger biometrics. The results were combined

using the SUM fusion rule to enhance the identification system’s accuracy and reliability.

• Comparison between the three modalities

Figure 4.7 shows the performance of the multi-modal system (open and closed set)

using the index dataset based on the CNN models, as it is apparent that the index finger

has the highest error In the open set identification mode. However, it gives better results

than the index unimodal test. This method gives a T0 = 0.845, significantly higher
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than the other data set modalities. All modalities perform more closely in closed set

identification mode with an ROR = 91,09%

(a) (b)

Figure 4.7 – Multi-modal biometric identification system performance (open/closed set) based
on index data set,(a)accuracy of index data (b) CMC curve of middle data

Figure 4.8 shows the performance of the multimodal system (open and closed set) using

the middle finger dataset based on the CNN models. As it is apparent, the middle finger

has a lower error than the index finger in the open set identification mode, demonstrating

better performance. This method provides a T0 = 0.76, lower than the index finger

dataset. All modalities perform similarly in the closed set identification mode, with an

ROR = 91.0985% and an RPR = 14.

(a) (b)

Figure 4.8 – Multi-modal biometric identification system performance (open/closed set) based
on middle data set, (a)accuracy of middle data (b) CMC curve of middle data

Figure 4.9 shows the performance of the multimodal system (open and closed set)

using the ring finger dataset based on the CNN models. The ring finger dataset yields
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the lowest error in the open set identification mode among all three datasets, indicating

the best performance. This method provides a T0 = 0.752, slightly lower than the middle

finger dataset. All modalities perform similarly in the closed set identification mode, with

an ROR = 91.0985 % and an RPR = 12. The ring finger presents the best results among

the three datasets, highlighting its effectiveness in biometric identification.

(a) (b)

Figure 4.9 – Multi-modal biometric identification system performance (open/closed set) based
on ring data set,(a)accuracy of ring data (b) CMC curve of ring data

Table 4.6 – Fusion results for the three modalities (index, middle, ring ) in open/closed sets

test 3 EER THRESHOLD ROR RPR
fusion of all dataset 0.339603 0.687 97.5379 10

The table shows the efficiency parameters of the multimodal biometric identification

system at the end of Case 02 when the data from separate finger modalities (Index,

Middle, and Ring) are fused.

Figure 4.10’s results are really encouraging. The open set exhibited a notable decrease

in error, as seen by the lowest Equal Error Rate (ERR) of 0.339603. This implies that

integrating data from various finger modalities enhances the system’s accuracy. Further-

more, the low threshold of 0.687 suggests that when the data is pooled, the system can

distinguish between real and false matches more successfully.

The Rate of Recognition (ROR) in the closed set is 97.5379%, which aligns with the

maximum ROR values noted for each of the individual CNN models in Case 01. Moreover,

compared to earlier findings, the lowest Ranke of Perfect recognition (RPR) is 10. This

suggests that there are fewer false positives with the fused technique.
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(a) (b)

Figure 4.10 – Multi-modal biometric identification system performance (open/closed set) based
on fusion results, (a)accuracy of fusion results (b) CMC curve of fusion process

The lowest overall EER and the maximum precision were obtained in the final fusion

stage by processing each finger modality independently and then fusing the results. This

illustrates how combining the outputs can greatly improve the system’s accuracy and

precision, even though individual processing may have certain limitations.

To sum everything up, Case 02 demonstrates the effectiveness of multimodal fusion,

which combines the advantages of many modalities to produce better biometric identifi-

cation results.

4.7 Conclusion

This chapter describes the development of an accessible biometric research-based fin-

ger knuckle print (FKP) identification system. In addition to multiple pre-trained CNN

models, the system used a custom-trained CNN to extract features from unimodal bio-

metric systems. We focus on transfer learning architectures in multimodal biometric

identification systems. Based on the results, Densenet201 came out on top, showing ex-

cellent results; however, the fusion process achieved the best results, with a significant

improvement in the identification rate of 97.5379%based on a dataset of 44 individuals.
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Chapter 5. General conclusion and future work

In recent years, the recognition of Finger-Knuckle Prints (FKP) as a means of identify-

ing individuals has become an important addition to biometric modalities. This research

delves into identifying individuals using their biometric descriptors, specifically empha-

sising the innovative FKP modality.

Our study’s introduction to the basic ideas of biometric systems and assessment pro-

cedures laid the foundation for this dissertation’s main topic. We examined the distinct

features of unimodal and multimodal biometric systems, such as their architecture, data

sources, and various information processing layers.

To improve the outcomes of our research, we employed different descriptors to extract

features from unimodal and multimodal biometric systems. These methods were exam-

ined to enhance the identification rate in open-set and closed-set scenarios. Specifically,

we tested our algorithms on a database of 44 individuals, achieving a notable identifica-

tion rate of 97.5379%.

This study utilized transfer learning models such as AlexNet, VGG19, ResNet-50, and

DenseNet-201 and CNN from scratch also in uni-model system. These models were in-

strumental in obtaining the best results, significantly enhancing the performance of our

biometric system. To put things into perspective, We suggest employing other descriptor

techniques in the future to boost the functionality of our biometric system further and

increasing the size of our dataset to enhance accuracy for future research.Other biometric

modalities could also be added to improve the system’s functionality and adaptability.
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