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 الاهداء

 " بسم خالقي وميسر اموري وعصمت أمري ، لك كل الحمد والامتنان  "

 اهدي هذا النجاح لنفسي اولاً ثم الى كل من سعى معي لإتمام هذه المسيرة، دمتم لي سنداً لا عُمر له 

من وكلله الله بالهيبة والوقار. إلى من أحمل اسمه بكل فخر. إلى من حصد الأشواك عن دربي ليمهد لي  

أبي الغالي  -الرجل الذي سعى طوال حياته لكي نكون أفضل منه  -أبي  -طريق العلم بعد    ما أنا فيه يعود إلى   

- 

والتفاني.. إلى بسمة الحياة وسر الوجودإلى ملاكي في الحياة إلى معنى الحب وإلى معنى الحنان   

إلى من كان دعاؤها سر نجاحي وحنانها بلسم جراحي التي كانت لي الأم والأخت والصديقة وداعمي الأول 

أمي الحبيبة -ووجهتي التي استمد منها القوة  . - 

اء عثرات حياتي من كانت دوما موضع اتك اختي وحبيبتي ، الىاخواني الساندين إلى مصدر قوتي، الداعمين   

 صفاء

وبالأخص طاطا سعيدةالى كل الاهل والعائلة الكريمة كل باسمه ومقامه...  . 

 إلى من هونوا تعب الطريق إلى من شجعوني على المثابرة وإكمال المسيرة إلى 

ممتنة لكم انا  ونورالهدىسميحة رفقتي السنين وسندي فالدراسة ...  . 

ل ولو بالنصيحةإلى كل من ساعدنا في إنجاز هذا العم . 

 -لله الشكر كله ان وفقني لهذه اللحظة، فالحمد لله رب العالمين والصلاة والسلام

 على نبيه الكريم.

 

 

 -- خريجتكم سماح  --
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 الاهداء

وبمناسبة هذه المناسبة  الحمد لله وحده والصلاة والسلام على من لا نبي بعده..ها نحن بصدد انتهاء مسيرتنا الدراسية الجامعية 

 التي تهب إلي بأطيب نسائم الفرح يسعدني أن اهدي هذا العمل المتواضع

 إلــــى:

* تلك الروح الطاهرة الراحلة التي بين السماء...التي سقتني بالحب والحنان وكل الرجاء علمتني الصبر والجهاد وتحمل 

أمي الغالية رحمها الله برحمته  ة في الحياة ولكنها في قلبي حاضرة ي غائبالصعاب..التي دعواتها رافقتني طيلة المشوار...ه

 الواسعة 

*من دعمني بلا حدود وأعطاني بلا مقابل وقادني للمجد إلى الذي جد وبذل كل جهده ودعمني ماديا ومعنويا من اجل أن اعتلي  

أبي الحنون سلالم النجاح   

 

محمد يونس المثابرة والاجتهاد لأصل إلى ما أصبو إليه أخي العزيز * من قيل فيه سنشد عضدك بأخيك والذي زرع لديَ روح   

 

* عزيزات ومن أتكئ عليهم في حزني وفرحي، هن شموع حياتي وكن خير عون لي في دربي وتعلمت منهم حب الحياة 

مريم، أنيسة، ليلى وهاجر أخواتي :   

 

رتاج، انتصار  وأستشعر من نظراتهم حب الخير سكراتي: * الطفولة البريئة التي استمد منهم قوتي وأبصر في عيونهم الأمل 

 ملاك، إلياس، جنى وأحمد سيراج 

 

سماح بن نونة * من طابت الأوقات بصحبتها صديقة في المذكرة   

 

عبد الحميد وعبد الرزاق * الأيادي التي لم تبخل عليَ بالعطاء وساندتني في انجاز هذا العمل خاصة   

 

 * كل صديقاتي التي جمعني بهم منبر العلم والصداقة وكل من اعرفهم من قريب أو بعيد

 

 ملوح رميصاء نور الهدى 
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Abstract: 

Drilling is crucial for oil and gas exploration but is costly and time-consuming. Enhancing 

productivity, reducing hazards, and cutting costs are ongoing challenges. Deep learning has emerged 

as a promising solution for improving decision-making in drilling operations, requiring less human 

intervention. Key parameters like surface pressure (SPP), rotary speed (RPM), and rate of penetration 

(ROP) are essential for creating models that predict subsurface conditions. 

Accurate identification of oil reservoirs is vital due to the risk of destruction from mud density. 

Engineers often rotate the drill bit at the same location, which is inefficient and costly. Real-time 

identification of reservoir access using drilling data can significantly reduce costs and improve 

productivity. Machine learning, especially deep learning, is effective in predicting geological layers 

and lithofacies, enhancing drilling safety and efficiency. 

Key words:  drilling, drilling parameters, lithofacies, prediction, lithofacies predicting, RNN, 

LSTM, GRU. 

Résumé : 

Le forage est crucial pour l’exploration pétrolière et gazière, mais il est coûteux et prend du temps. 

Améliorer la productivité, réduire les risques et réduire les coûts sont des défis permanents. 

L’apprentissage profond s’est imposé comme une solution prometteuse pour améliorer la prise de 

décision dans les opérations de forage, nécessitant moins d’intervention humaine. Des paramètres 

clés tels que la pression de surface (SPP), la vitesse de rotation (RPM) et le taux de pénétration (ROP) 

sont essentiels pour créer des modèles qui prédisent les conditions souterraines. 

Une identification précise des réservoirs de pétrole est vitale en raison du risque de destruction dû 

à la densité de la boue. Les ingénieurs font souvent tourner le foret au même endroit, ce qui est 

inefficace et coûteux. L'identification en temps réel de l'accès au réservoir à l'aide des données de 

forage peut réduire considérablement les coûts et améliorer la productivité. L’apprentissage 

automatique, en particulier l’apprentissage profond, est efficace pour prédire les couches géologiques 

et les litho facies, améliorant ainsi la sécurité et l’efficacité des forages. 

Mots clés : forage,  paramètres de forage, litho faciès, prédire de litho faciès  , 

prédiction ,RNN,LSTM,RGU.                                                                     
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 ملخص: 

. يعد تعزيز الإنتاجية وتقليل المخاطر يعد الحفر أمرًا بالغ الأهمية للتنقيب عن النفط والغاز ولكنه مكلف ويستغرق وقتاً طويلاً 

وخفض التكاليف من التحديات المستمرة. لقد ظهر التعلم العميق كحل واعد لتحسين عملية صنع القرار في عمليات الحفر، الأمر 

(RPM) ، وسرعة الدوران(SPP) الذي يتطلب تدخلًا بشريًا أقل. تعد المعلمات الرئيسية مثل الضغط السطحي ومعدل الاختراق،    

(ROP) ضرورية لإنشاء نماذج تتنبأ بالظروف تحت السطح. 

يعد التحديد الدقيق لخزانات النفط أمرًا حيويًا نظرًا لخطر التدمير الناتج عن كثافة الطين. غالبًا ما يقوم المهندسون بتدوير لقمة  

لوصول إلى الخزان في الوقت الفعلي باستخدام بيانات الحفر في نفس الموقع، وهو أمر غير فعال ومكلف. يمكن أن يؤدي تحديد ا

الحفر إلى تقليل التكاليف بشكل كبير وتحسين الإنتاجية. يعد التعلم الآلي، وخاصة التعلم العميق، فعالاً في التنبؤ بالطبقات 

 الجيولوجية والسحايا، مما يعزز سلامة وكفاءة الحفر 

  السحنات، التنبؤ بالسحنات، التنبؤالحفر، معلمات الحفر، : الكلمات المفتاحية



 

VI 
 

Table of Contents 

 

 

 I ................................................................................................................ الاهداء

 II ............................................................................................................... الاهداء

Acknowledgement ......................................................................................... III 

Abstract: ....................................................................................................... IV 

Résumé : ........................................................................................................ IV 

 V .............................................................................................................. ملخص: 

General introduction ...................................................................................... 1 

Chapter I: General informations on drilling and oil reservoirs. ...................... 0 

I.1 Introduction ................................................................................................................................... 2 

I.2 Definition of drilling ....................................................................................................................... 2 

I.3 The drilling processes ..................................................................................................................... 2 

I.4 A drilling rig system ........................................................................................................................ 5 

I.5 Drilling well problems..................................................................................................................... 5 

I.6 Geological Rocks ............................................................................................................................. 6 

I.7 Reservoir Rock ................................................................................................................................ 7 

I.8 Conclusion: ..................................................................................................................................... 8 

Chapter II: The basics of artificial intelligenc ................................................. 9 

II.1 Introduction .................................................................................................................................. 9 

II.2 Machine learning ........................................................................................................................... 9 

II.2.1 The main components of machine learning ..................................................................... 9 

II.2.2 Types of machine learning algorithms .............................................................................. 9 

II.3 Deep learning .............................................................................................................................. 11 

II.3.1 Deep learning applications ..............................................................................................12 

II.4 Artificial neural networks ANN .................................................................................................... 12 

II.4.1 Definition of artificial neural networks ...........................................................................12 

II.4.2 Neural network structure ................................................................................................12 

II.4.3 Backpropagation .............................................................................................................14 



 

VII 
 

II.4.4 Loss Function ...................................................................................................................15 

II.5 Types of Loss Functions ............................................................................................................... 15 

II.5.1 Loss Functions for Regression ..........................................................................................15 

II.5.2 Loss Functions for Classification ......................................................................................15 

II.6 Convolutional Neural Network CNN ............................................................................................ 16 

II.6.1 Architecture of CNN ........................................................................................................17 

II.6.2 CNN components in general It contains the following layers ..........................................17 

II.6.3 Training CNN ...................................................................................................................17 

II.7 Recurrent Neural Networks (RNN) .............................................................................................. 18 

II.7.1 The importance of return neural networks: ....................................................................18 

II.7.2 Architecture and working of RNN:...................................................................................19 

II.7.3 Backpropagation Through Time (BPTT) ...........................................................................20 

II.7.4 Problems of traditional return networks .........................................................................22 

II.8 Long Short-Term Memory (LSTM)................................................................................................ 22 

II.8.1 Architecture and Working of LSTM: ................................................................................22 

II.8.2 Advantages and Disadvantages of LSTM .........................................................................24 

II.8.3 Applications of LSTM .......................................................................................................25 

II.9 Gated Recurrent Unit or (GRU) ................................................................................................... 25 

II.9.1 Architecture and Working of GRU: ..................................................................................25 

II.9.2 Advantages and Disadvantages of GRU ...........................................................................26 

II.9.3 Applications of Gated Recurrent Unit ..............................................................................26 

II.10 LSTM Vs GRU ............................................................................................................................. 26 

II.11 Types of Recurrent Neural Networks ......................................................................................... 27 

II.12 Types of Neural Networks Activation Functions ........................................................................ 28 

II.12.1 Binary Step Function .......................................................................................................28 

II.12.2 Linear Activation Function ...............................................................................................28 

II.12.3 Non-Linear Activation Function Sigmoid / Logistic Activation Function ..........................28 

II.12.4 Non-Linear Activation Function Tanh Function (Hyperbolic Tangent) .............................29 

II.12.5 Activation Function ReLU Function (Rectified Linear Unit) ..............................................29 

II.12.6 Softmax Function ............................................................................................................30 

II.13 Conclusion ................................................................................................................................. 30 

Chapter III: Predicting the proximity of reaching an oil reservoir using deep 

learning and drilling data ................................................................................... 9 

III.1 Introduction ............................................................................................................................... 29 



 

VIII 
 

III.2 Software and libraries Used in the implementation python ....................................................... 29 

III.3 DATASET ..................................................................................................................................... 31 

III.3.1 Data collection ................................................................................................................31 

III.3.2 Description and pre-processing of data ...........................................................................31 

III.3.3 Data Selection .................................................................................................................31 

III.3.4 Data Split .........................................................................................................................31 

III.3.5 Input data ........................................................................................................................32 

III.3.6 Output data .....................................................................................................................33 

III.4 Correlation matrix visualization for Drilling data Well BMTG-1 .................................................. 34 

III.5 Visualization of “Facies” dataset using boxplot .......................................................................... 35 

III.6 Architecture for developed models ............................................................................................ 36 

III.7 Results obtained and discussion ................................................................................................. 37 

III.7.1 Performance of developed models, by well ....................................................................37 

III.7.2 Graphic curve of accuracy and Loss .................................................................................39 

III.8 Confusion matrix, predicted vs trues facies ................................................................................ 41 

III.9 Classification Reports ................................................................................................................. 42 

III.10 Facies Prediction for blind well RAA-1 ..................................................................................... 44 

III.11 conclusion ................................................................................................................................ 45 

General conclusion ....................................................................................... 46 

References .................................................................................................... 47 

                                                                                                              

                                                                                                                                     

 

 

 

 

 

 

 

 

 



 

IX 
 

 

List of figures 

FIGURE 1: DRILLING RIG .................................................................................................................................... 3 

FIGURE 2: RESERVOIR ROCK ............................................................................................................................ 7 

FIGURE 3:THE MAIN COMPONENTS OF ML ................................................................................................... 9 

FIGURE 4:TYPES OF ML ALGORITHME ........................................................................................................... 9 

FIGURE 5:REINFORCEMENT ALGORITHMS ..................................................................................................11 

FIGURE 6: DIAGRAM OF BIOLOGICAL NEURAL NETWORK. ....................................................................12 

FIGURE 7: THE TYPICAL ARTIFICIAL NEURAL NETWORK . .....................................................................13 

FIGURE 8: ARTIFICIAL NEURAL NETWORK .................................................................................................13 

FIGURE 9:NEURAL NETWORKS-FORWARD PASS AND BACKPROPAGATION .......................................14 

FIGURE 10:ARCHITECTURE OF CNN ...............................................................................................................17 

FIGURE 11: RECURRENT NEURAL NETWORKS (RNNS) ..............................................................................18 

FIGURE 12:ARCHITECTURE OF RNN ...............................................................................................................19 

FIGURE 13:BPTT ...................................................................................................................................................21 

FIGURE 14:ARCHITECTURE LSTM ...................................................................................................................22 

FIGURE 15:ARCHITECTURE OF GRU ...............................................................................................................25 

FIGURE 16:TYPES OF RECURRENT NEURAL NETWORKS ..........................................................................27 

FIGURE 17: BINARY STEP FUNCTION GRAPH ...............................................................................................28 

FIGURE 18: LINEAR ACTIVATION FUNCTION GRAPH ................................................................................28 

FIGURE 19:SIGMOID /LOGISTIC ACTIVATION FUNCTION GRAPH ..........................................................28 

FIGURE 20 :ACTIVATION FUNCTION TANH FUNCTION (HYPERBOLIC TANGENT) GRAPH ..............29 

FIGURE 21:RELU ACTIVATION FUNCTION (RECTIFIED LINEAR UNIT) GRAPH ...................................29 

FIGURE 22:SOFTMAX ACTIVATION FUNCTION GRAPH .............................................................................30 

FIGURE 23 :BASIC FLOW FOR DESIGNING ARTIFICIAL NEURAL NETWORK MODEL ........................29 

FIGURE 24: LOGO OF  PANDAS ..........................................................................................................................29 

FIGURE 25:LOGO OF TENSORFLOW ................................................................................................................30 

FIGURE 26: LOGO OF KERAS .............................................................................................................................30 

FIGURE 27: LOGO OF  SCIKIT-LEARN .............................................................................................................30 

FIGURE 28: LOGO OF SEABORN ........................................................................................................................31 

FIGURE 29:CORRELATION MATRIX FOR DRILLING DATA, WELL BMTG-1 ..........................................34 

FIGURE 30: VISUALIZATION OF “FACIES” USING BOXPLOT  FOR W-RAA ............................................35 

FIGURE 31: ACCURACY  AND LOSS CURVES  FOR THE RNN,WRAA WELL .................................................39 

FIGURE 32 : CONFUSION MATRIX FOR RNN FACIES CLASS PREDICTIONS FOR W-RAA- WELL ......41 

FIGURE 33 : CONFUSION MATRIX FOR LSTM FACIES CLASS PREDICTIONS FOR W-RAA- WELL ...41 

FIGURE 34: CONFUSION MATRIX FOR GRU  FACIES CLASS PREDICTIONS FOR W-RAA- WELL ......42 

FIGURE 35 :LOG FOR PREDICTED FACIES  RAA-1 WELL ...........................................................................44 

  

file:///C:/Users/Administrateur/Kamel%20Folder/Bureau/FINAL/FF/draft/UPDATED/bakari%202024-06-20(1).docx%23_Toc170769481
file:///C:/Users/Administrateur/Kamel%20Folder/Bureau/FINAL/FF/draft/UPDATED/bakari%202024-06-20(1).docx%23_Toc170769482
file:///C:/Users/Administrateur/Kamel%20Folder/Bureau/FINAL/FF/draft/UPDATED/bakari%202024-06-20(1).docx%23_Toc170769483
file:///C:/Users/Administrateur/Kamel%20Folder/Bureau/FINAL/FF/draft/UPDATED/bakari%202024-06-20(1).docx%23_Toc170769484
file:///C:/Users/Administrateur/Kamel%20Folder/Bureau/FINAL/FF/draft/UPDATED/bakari%202024-06-20(1).docx%23_Toc170769485
file:///C:/Users/Administrateur/Kamel%20Folder/Bureau/FINAL/FF/draft/UPDATED/bakari%202024-06-20(1).docx%23_Toc170769486


 

X 
 

List of tables 

TABLE 1: DATA SPLIT..........................................................................................................................................32 

TABLE 2 :LABELS CODIFICATION  ( FACIES) ................................................................................................33 

TABLE 3:ARCHITECTURE MODELS RNN,LSTM,GRU FOR W-RAA ...........................................................36 

TABLE 4:PERFORMANCE OF DEVELOPED MODELS ,WELL BMGT-1 ......................................................37 

TABLE 5:PERFORMANCE OF DEVELOPED MODELS ,WELL RAA-2 ..........................................................37 

TABLE 6:PERFORMANCE OF DEVELOPED MODELS, WELL  NRAA .........................................................37 

TABLE 7:PERFORMANCE OF DEVELOPED MODELS, WELL   WRAA .......................................................38 

TABLE 8:PERFORMANCE OF DEVELOPED MODELS, WELL  ERAA .........................................................38 

TABLE 9:PERFORMANCE OF DEVELOPED MODELS, 4 WELLS .................................................................38 

TABLE 10 : PREDICTED FACIES ........................................................................................................................45 

  

file:///C:/Users/Administrateur/Kamel%20Folder/Bureau/FINAL/FF/draft/UPDATED/bakari%202024-06-20(1).docx%23_Toc170769502


 

XI 
 

 

List of Abbreviations 

RP : Rotation Per Minute (Drill string rotary speed) 

ROP : Rate of penetration 

SPP:  Standpipe pressure 

TOB : Torque-on-bit 

USD : United States dollar 

WOB : Weight-on-bit 

NN  : Neural Network 

ANN : Artificial Neural Networks 

RNN : Recurrent Neural Networks 

GRU : Gated Recurrent Unit 

LSTM :  Long Short-Term Memory 

CNN : Convolutional Neural Networks 

AI  : Artificial Intelligence 

DL : Deep Learning 

ML : Machine Learning 

MAE  : Mean Absolute Error 

MSE  : Mean Squared Error 



1 
 

General introduction 

 

The exploration for oil and gas is a costly and time-consuming process. Improving efficiency, reducing 

risks, and cutting costs are crucial challenges facing the industry. Recently, deep learning techniques have 

shown promising results in enhancing decision-making in drilling operations by reducing the need for 

extensive human intervention.  

This study includes 5 wells oilfield. 

Location: BASSIN  AMGUID MESSAOUD 

PERIMETRE : TOUGGOURT EAST 

Objectives of the dissertation 

This study investigates the use of Recurrent Neural Networks (RNN) to predict rock layers meters away 

using data collected during the drilling process. 

Organization of the work 

This work was structured as follows: 

Chapter I: Definitions and presentations of drilling parameters and  

focuses on reservoir properties , detailing geological formations, rock and fluid properties, thereby 

enhancing understanding of the drilling environment and reservoir conditions.  

    Chapter II: explores the fundamentals of artificial intelligence, including neural network structure, 

training methods, and practical applications, with a particular emphasis on RNN and its variations such as 

Simple RNN, LSTM, and GRU, highlighting their ability to process and predict time-series data and 

continuous changes.  

Chapter II: Applies deep learning techniques to drilling data to predict rock layers meters away. Various 

models were created and tested, with LSTM models showing exceptional performance. The results confirm 

the effectiveness of LSTM in predicting rock layers, emphasizing their value in improvement. 

The general conclusion will summarize all the results obtained . 

 

 



 
 

 

 

Chapter I: General informations on drilling and oil 

reservoirs.
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I.1 Introduction 

The petroleum industry plays a crucial role in powering global economies and meeting the world's 

energy needs. Within this industry, the most critical aspect lies in exploration and drilling, as these 

processes are essential for discovering and extracting valuable oil and gas reserves that drive 

economic growth and development worldwide. Exploration and drilling require advanced 

technologies and equipment to analyze complex geological data Additionally, the use of  sophisticated 

machinery and tools is necessary to ensure the efficiency and safety of drilling operations, adding to 

the overall costliness of the process. Add to the need for skilled human resources, and effective 

planning and management and our work focuses on attempting to reduce the overall costs of the 

drilling process. cost price. 

I.2 Definition of drilling 

Drilling, in its most expansive sense, refers to any method employing a cutting tool to bore a round 

aperture in a solid material or resistant surface. Widely considered one of humanity's most remarkable 

innovations, drilling boasts myriad applications across numerous industries.[14][10] 

I.3 The drilling processes  

Upstream operations represent a virtual part of exploration and production operations in industries 

such as oil, gas, and mining. These processes involve the use of a variety of restraints and tools to 

stimulate and penetrate the ground in an efficient and safe manner. 
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Figure 1: Drilling Rig 
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1. Planning and Exploration: 

Based on geological and geophysical evaluations, possible drilling locations are identified to start 

the drilling process. 

- A drilling plan is created, detailing the tools to be utilized and the anticipated results. [2] 

2. Preparation: 

- Equipment and materials are transported to the drilling location. 

- The wells are ready for drilling operations, and the drilling platform or rig is installed (rig up).[2]  

3. Primary Drilling: 

 - To start primary drilling and make a first well, a drill bit is utilized. 

- Mud pumps are used to remove soil and rocks (to pump fluid). [9] 

4. Evaluation and Monitoring : 

 - To locate possible oil and gas deposits, the excavated rocks and soil are examined. 

 - To guarantee operational safety and prevent technical problems, drilling operations are 

constantly observed. [2] 

5. Secondary Drilling: 

 - Secondary drilling is done to extend the well and look for additional resources if possible places 

for oil and gas are discovered. [2] 

6. Extraction and Production: 

- Extraction pipelines are used to extract oil and gas once sufficient quantities have been 

established. 

 - To be used and transported, the oil and gas are processed. [2] 

7. Evaluation and Analysis : 

- To examine the outcomes and pinpoint areas for future development, a thorough evaluation of 

the entire process is conducted. [9] 
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I.4 A drilling rig system 

Drilling rigs vary widely in their external design and how they are used, however all rotary rigs 

have the same basic drilling equipment. The following are the principal parts of a rotary rig: 

• Power system (Generators, VFD, MCC) 

• Hoisting system 

• Circulating system 

• Rotary system 

• Well control system [15] 

The derrick, the draw works with its drilling line, crown block, and moving block, and the drilling 

fluid circulation system with its standpipe, rotating hose, drilling fluid pits, and pumps make up the 

majority of the rig. Together, these parts enable rotary rigs to perform the three primary tasks.[11] 

Drilling methods: 

There are two main types of drilling methods in mining engineering: rotary and percussive. Rotary 

drilling involves rotating a drill bit at a high speed to cut through the rock. Percussive drilling involves 

hammering a drill bit into the rock with a rapid succession of blows. Each method has its own 

advantages and disadvantages, depending on the rock characteristics, the hole diameter, the depth, 

and the purpose of drilling. [10] 

I.5 Drilling well problems 

1. Pipe sticking (stuck Pipe) 

 Pipe sticking is one of the most common problems faced during drilling that causes a lot of 

nonproductive time (NPT). Pipe is considered stuck if it cannot be freed and dragged out of hole 

without damaging the pipe or surpassing the maximum allowed hook. [10] [2] 

2. Loss of circulation (mud loss) 

Loss of circulation is the undesirable flow of portion or whole mud into the formation. There are 

two types of circulation loss: 

-Partial loss, at which only portion of the mud flow into the formation and the rest flows to the 

surface.  

-Total loss, at which the whole mud flows into the formation with no return to the surface. [15] 
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3. Hole deviation  

Hole deviation is defined as the unintentional departure of the path of the drill bit from the 

preselected one Several factors are responsible for the deviation including: 

• Heterogeneity of the formation 

• Bottom hole assembly characteristics 

• Stabilizers 

• Weight on bit 

• Hole inclination angle 

• Drill bit type and design 

• Hydraulics of the bit 

• Improper hole cleaning [4] 

4. Borehole instability 

Discussed borehole instability and its parameters indicating that it is geo-mechanical issue that is 

related to hydraulic and chemical factors.  

5. Hydrogen sulfide bearing zones (H2S) 

Hydrogen-sulfide anticipated during drilling operations can involve a serious consequence for 

personnel and equipment. Exposure to a relatively low concentrations of H2S for a short period of 

time may cause health problems or even death to personnel in site, in addition to be very corrosive to 

equipment in presence of oxygen. [4] 

I.6 Geological Rocks 

In the field of geology, a rock is defined as a naturally formed and cohesive assemblage of one or 

more minerals. These assemblages serve as the fundamental structural and compositional components 

of the lithosphere, comprising the solid outer shell of the Earth. [8] 

Rock consists of grains bound together by a bunch of material such:   
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Clay: is a naturally occurring rock material composed primarily of hydrated silicates or 

aluminosilicates with a layered structure.[5] 

Sandy clay:  a type of clay soil that contains a significant proportion of sand particles.  

Sandy Ochre Clay: Is similar to sandy clay but has an ochre coloration, which is often due to the 

presence of iron oxide minerals.[3]      

Silt: is a fine-grained sedimentary material consisting of particles smaller than sand but larger than 

clay. It is often deposited by moving water and can be found in riverbeds, floodplains, and coastal 

areas. Silt soils are fertile and well-draining, making them suitable for agriculture.[5]  

Fine Sandstone: is a sedimentary rock made up of compacted sand grains. It has a fine-grained 

texture and may contain various minerals, giving it different colors and patterns. Fine sandstone is 

often used in building materials and decorative applications. [3]      

Medium Sandstone: is similar to fine sandstone but with slightly larger sand grains. It is 

commonly found in sedimentary rock formations and can be used for construction, paving, and 

landscaping. [3]      

Dolomitic Limestone: is a limestone containing a high proportion of magnesium carbonate 

(dolomite). It forms through the replacement of calcium carbonate by magnesium-rich fluids. [3]      

 Dolostone: dolostone, also known as dolomite rock, is a sedimentary rock composed mainly of 

dolomite. It forms through the chemical alteration of limestone by magnesium-rich fluids. [3]      

I.7 Reservoir Rock 

These rocks provide appropriate storativity and conductivity for accumulating and flowing 

hydrocarbon. To evaluate and understand reservoir behavior and also improvement of reservoir 

performance, studying reservoir rock properties is vital. [1] 

 

 

 

 

 

 

Figure 2: Reservoir Rock 
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Most reservoir rock properties are determined by lab-based works. In order to perform 

experimental tests, the reservoir rock should be sampled. 

The special sample of reservoir rocks is called the core. The lengths of cores are varied, from a 

few inches in core plugs to several meters in whole cores. [3] 

 

I.8 Conclusion: 

In this chapter, it has been outlined the fundamentals of drilling operations, discussed the essential 

components of drilling systems, and explained their roles and functions.  examined various systems 

such as the hoisting system, circulation system, and draw works, emphasizing their significance in 

the drilling process. Additionally, the challenges associated with drilling,was highlighted including 

efficiency, risk mitigation, and cost reduction. The next chapter will focus on deep learning and 

artificial intelligence, exploring the advanced techniques and methodologies that will be applied in 

our project. It will delve into the ways these technologies can be leveraged to predict lithofacies, 

optimize drilling operations, and enhance overall drilling efficien



 

 
 

 

 

 

Chapter II: The basics of artificial intelligenc
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II.1 Introduction 

In the era of modern digital technology, artificial intelligence and machine learning technologies 

are considered one of the most important fields witnessing rapid development and significant impact 

on our daily lives and various industries. Among these technologies, deep learning stands out as an 

important and advanced subfield in the field of machine learning.  

Due to the recent trend of intelligent systems and their ability to adapt with varying conditions, 

deep learning becomes very attractive for many researchers. In general, neural network is used to 

implement different stages of processing systems based on learning algorithms by controlling their 

weights and biases. 

II.2  Machine learning 

II.2.1 The main components of machine learning 

Any system using machine learning will need three main components, which are: 

Data, features and Algorithm[6] 

 

Figure 3:The main components of ml 

II.2.2 Types of machine learning algorithms 

There are four types of machine learning algorithms: supervised, unsupervised, semi-supervised, 

and reinforcement. 

 

 

 

 

 

Figure 4:Types of ML algorithme 
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2.2.1 Supervised learning algorithms 

Supervised learning can be separated into two types of problems when data mining: classification 

and regression. Some popular Regression algorithms are given below: 

• Artificial neural networks 

• Decision tree algorithms 

• K-nearest neighbor 

• Linear regression 

• Logistic regression 

• Naïve Bayes 

• Random forests. 

• Support vector machines (SVM). [16] 

2.2.2 Unsupervised learning algorithms 

Unlike supervised learning, unsupervised learning uses unlabeled data. From that data, the 

algorithm discovers patterns that help solve clustering or association problems. Some popular 

Regression algorithms are given below: 

• Clustering. 

• Hierarchical clustering. 

• K-means clustering. 

• Applications of Unsupervised Learning. 

• Network Analysis. 

• Recommendation Systems. 

• Anomaly Detection. 

• Singular Value Decomposition. [6] 

2.2.3 Semi-supervised learning algorithms 

Semi-supervised learning algorithms operate when only a portion of the input data is labeled, giving the 

algorithm a slight "head start." This approach combines the advantages of both supervised and unsupervised 

machine learning. It offers improved accuracy associated with supervised learning while also utilizing cost-

effective, unlabeled data typical of unsupervised learning. [16] 

 

 

 

 



 

11 
 

2.2.4 Reinforcement algorithms 

In this context, the algorithms are trained in a manner similar to human learning-through rewards 

and penalties. These are measured and tracked by a reinforcement learning agent, which has a general 

understanding of the probability of successfully increasing the score versus decreasing it. Through 

trial and error, the agent learns to take actions that lead to the most favorable outcomes over time. 

Reinforcement learning is often used in resource management, robotics, and video games. [16] 

 

 

 

 

 

 

 

Figure 5:Reinforcement algorithms 

II.3 Deep learning 

Deep learning is based on the branch of machine learning, which is a subset of artificial 

intelligence. Since neural networks imitate the human brain and so deep learning will do. Nothing is 

explicitly programmed in deep learning. In essence, it is a machine learning class that does feature 

extraction and transformation by utilizing several nonlinear processing units. All subsequent levels 

accept as input the output from the layer that comes before it. With minimal assistance from the 

programmer, deep learning models can concentrate on the accurate features on their own and are 

highly beneficial in resolving the dimensionality issue.[17] In particular, deep learning algorithms are 

employed when there are a large number of inputs and outputs. Artificial neurons, sometimes referred 

to as nodes, make up a neural network, which is organized similarly to the human brain. [7] 

 

 

These nodes are stacked next to each other in three layers: 

• The input layers. 

• The hidden layers. 

• The output layers. 
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II.3.1 Deep learning applications 

There are many uses for deep learning, such as the following:  

• Image recognition: The process of recognizing features and objects in pictures, including 

people, animals, locations, etc. 

• Natural language processing: Used in spam filters and chatbots for customer support to assist 

in deciphering textual content.  

• Finance: To assist in the analysis of financial data and the forecasting of market trends  

• Text to image: Use the Google Translate app, for example, to convert text to images. [20] 

II.4  Artificial neural networks ANN 

II.4.1 Definition of artificial neural networks  

Artificial Neural Networks (ANNs) are computing systems inspired by the biological neural networks of 

animal brains. They consist of interconnected nodes, or "neurons," that process and analyze complex data. [25] 

ANNs recognize patterns, learn from data, and make decisions or  predictions, making them widely used in 

fields such as image and speech recognition, medical diagnosis, and financial forecasting. Their ability to 

model complex, nonlinear problems without prior knowledge of data distribution enhances their applicability 

across various domains.[19] 

II.4.2 Neural network structure 

 

 

 

 

 

 

 

 

Figure 6: diagram of Biological Neural Network. 
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Figure 7: The typical Artificial Neural Network . 

 

Artificial neural networks, dendrites from biological neural networks stand in for inputs, cell nuclei 

for nodes, synapses for weights, and axes for outputs. 

Relationship between Biological neural network and artificial neural network: 

   

Figure 8: Artificial Neural Network 

In the definitions of neuron and artificial neural network, several key terms emerge, including 

input, input layer, weights, hidden layer, output layer, output, and activation functions. 

Activation functions add an extra computational step at each layer during forward propagation. 

Despite this additional computation, they significantly improve the network's performance, making 

the effort worthwhile [25] 
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Figure 9:Neural Networks-Forward pass and Backpropagation 

There are three primary components to the overall learning process:  

1. Forward Passage, or Forward Propagation  

2. The loss function calculation  

3. Backpropagation, also known as backward pass or backpropagation  

The network receives the input data and feeds it forward. After receiving the input data and 

processing it in accordance with the activation function, each hidden layer moves on to the next layer. 

[19] 

II.4.3 Backpropagation  

The networks error is assessed when the forward pass is finished, and it should ideally be 

reduced.  

 A high mistake rate in the present process suggests that the network has not properly learned from 

the data. Stated differently, the existing set of weights lacks the necessary precision to minimize 

error and produce accurate predictions. As a result, in order to lower the error, the neural network 

weights must be updated.  

Finding the gradients of Loss in relation to the aspects of our neural network that we can modify is 

the goal of backpropagation.  

To put it simply, backpropagation makes a backward pass through a network after each forward run 

while modifying the models parameters (weights and biases). [13] 
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II.4.4 Loss Function 

The loss function, also referred to as the error function, is a crucial component in machine learning 

that quantifies the difference between the predicted outputs of a machine learning algorithm and the 

actual target values. 

II.5 Types of Loss Functions 

Machine learning loss functions can be divided into groups according to the types of tasks that 

they might be used for. Machine learning problems involving regression and classification can be 

addressed by most loss functions. [18] 

II.5.1  Loss Functions for Regression 

a) Mean Square Error (MSE): 

MSE = (1/n) * Σ (yᵢ - ȳ) ²                                           ( II-1) 

Where: 

• n : the number of samples in the dataset. 

• yᵢ ; the predicted value for the i-th sample. 

• ȳ : the target value for the i-th sample. 

b) Mean Absolute Error (MAE): 

MAE = (1/n) * Σ|yᵢ - ȳ|                                          ( II-2 ) 

Where: 

• n : the number of samples in the dataset. 

• yᵢ : the predicted value for the i-th sample. 

• ȳ : the target value for the i-th sample. 

II.5.2 Loss Functions for Classification 

a) Binary Cross-Entropy Loss / Log Loss: 

L (y, f(x)) = -[y * log(f(x)) + (1 - y) * log(1 - f(x))]II-3) 

Where: 

• L: represents the Binary Cross-Entropy Loss function. 

• y : true binary label (0 or 1). 

• f(x) : predicted probability of the positive class (between 0 and 1). 
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• log(.): represents the natural logarithm. 

b) Categorical Cross-Entropy (CCE) : 

For multi-class classification 

CCE = - (1/n) * ΣΣ yᵢⱼ * log(ŷᵢⱼ)                                          ( II-4) 

Where: 

• n :  number of samples in the dataset. 

• yᵢⱼ :  actual (ground truth) label of sample i for class j, where yᵢⱼ = 0 or 1. 

• ŷᵢⱼ :predicted probability of sample i for class j, where the probabilities for all classes sum up 

to 1. 

• log(.): represents the natural logarithm. 

• Σ :  represents the sum over all i samples in the dataset. 

• ΣΣ : represents the sum over all classes j. [18] 

II.6  Convolutional Neural Network CNN 

Convolutional Neural Networks (CNNs) are specialized neural architectures are primarily 

employed for a variety of computer vision tasks, including object detection and image classification. 

These neural networks use convolution operations to use the strength of linear algebra to find patterns 

in photos. [20] 

CNN components in general it contains the following layers: 

• Input layer.                                                                 

• convolutional (Conv) layer. 

• Pooling layer. 

• Fully connected (FC) layer. 

• Softmax/logistic layer. 

• Output layer. 

 

 

 

https://dataaspirant.com/multinomial-logistic-regression-model-works-machine-learning/
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II.6.1 Architecture of CNN 

All CNN models follow a similar architecture, as shown in the figure below. 

 

 

 

 

 

 

 

 

 

Figure 10:Architecture of CNN 

From linear algebra, particularly convolution operations, to extract features and identify patterns 

within images. Although CNNs are predominantly used to process images, they can also be adapted 

to work with audio and other signal data.[26] 

II.6.2 CNN components in general It contains the following layers 

• Input layer 

• Convolutional (Conv) layer 

• Pooling layer 

• Fully connected(FC) layer 

• Softmax/logistic layer 

• Output layer 

II.6.3 Training CNN 

CNN is trained via gradient descent and backpropagation, just like ANNs. This is outside the 

purview of this study because it involves more mathematics due to the convolution technique. 
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II.7 Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNNs) are specialized for processing sequential data by maintaining 

a cyclic connection structure that captures temporal dependencies. Unlike feedforward networks, 

RNNs use a hidden state to retain information from previous time steps, enabling contextual 

understanding during current input processing. Traditional RNNs struggle with the vanishing gradient 

problem, where gradients diminish over time, impairing their ability to learn long-term dependencies. 

[21] To address this, Long Short-Term Memory (LSTM) networks and Gated Recurrent Units 

(GRUs) were developed. LSTMs introduce gating mechanisms that manage information flow within 

memory cells, enhancing the network's capability to handle long-range dependencies effectively. 

GRUs offer a simpler architecture yet achieve comparable performance in various tasks, making both 

LSTM and GRU vital tools in sequential data processing tasks like language modeling and time series 

prediction.[30] 

 

 

 

 

 

 

Figure 11: Recurrent Neural Networks (RNNs) 

II.7.1 The importance of return neural networks: 

Recurrent Neural networks stand out in artificial intelligence and machine learning for their 

efficient pattern recognition and dynamic capabilities. However, conventional neural networks 

struggle with connecting events over time. While they excel in tasks like fruit classification, 

predicting stock prices or auto-completing texts challenges them. Recurrent Neural Networks (RNNs) 

address this limitation by incorporating memory, making them adept at predicting sequences. This 

feature unlocks new avenues for advancing machine learning approaches. 
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II.7.2 Architecture and working of RNN:  

 

 

 

 

 

 

Figure 12:Architecture of RNN 

The RNN takes an input vector X and the network generates an output vector y by scanning the 

data sequentially from left to right, with each time step updating the hidden state and producing an 

output. It shares the same parameters across all time steps. This means that, the same set of 

parameters, represented by U, V, W is used consistently throughout the network. U represents the 

weight parameter governing the connection from input layer X to the hidden layer h, W represents 

the weight associated with the connection between hidden layers, and V for the connection from 

hidden layer h to output layer y. This sharing of parameters allows the RNN to effectively capture 

temporal dependencies and process sequential data more efficiently by retaining the information from 

previous input in its current hidden state.[30] 

The RNN processes an input vector X to generate an output vector y by sequentially scanning the 

data from left to right. At each time step, the network updates its hidden state and produces an output 

using the same set of parameters U, V, and W across all time steps. Here's what each parameter 

represents: 

aₜ = f (U * Xₜ + W* aₜ₋₁ + b )                                       ( II-5 )                                               

where: 

• f : the activation function. 

• U : the weight matrix governing the connections from the input to the hidden layer; U ∈ θ 

• Xₜ : he input at time step t. 

• W : the weight matrix governing the connections from the hidden layer to itself (recurrent 

connections); W∈ θ 

• aₜ₋₁ : the output from hidden layer at time t-1. 

• b : bias vector for the hidden layer; b ∈ θ 
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The output at each time step t, denoted as yₜ is computed based on the hidden state output aₜ using 

the following formula. 

 

ŷₜ = f (V * aₜ + c)                                                           ( II-6 )                                                                                 

 

where: 

 

• ŷₜ : the output predicted at time step t.V is the weight matrix governing the connections 

from the hidden layer to the output layer. 

• c : the bias vector for the output layer.  

 

II.7.3  Backpropagation Through Time (BPTT) 

Backpropagation is the process of updating a model's parameters (weights and biases) to minimize 

the difference between predicted outputs and actual target values. Its objective is to enhance the 

model's performance by minimizing the loss function. Specifically for training Recurrent Neural 

Networks (RNNs), Backpropagation Through Time (BPTT) is employed. BPTT involves propagating 

the error backward through time, starting from the final time step back to the initial time step (t = 1). 

The process of backpropagation comprises two essential phases: the forward pass, where inputs are 

processed through the network to produce predictions, and the backward pass, where errors are 

propagated backward to adjust the parameters accordingly.[21] 

1-Forward Pass: 

 During forward pass, the RNN processes the input sequence through time, from t=1 to t=n, where 

n is the length of input sequence. In each forward propagation, the following calculation takes 

place.[30] 

aₜ = U * Xₜ + W* a_(t-1)+ b                                               ( II-7 )                              

ŷₜ = softmax (V * aₜ + c)                                                     ( II-8 ) 

After processing the entire sequence, RNN generates a sequence of predicted outputs ŷ = [ŷ₁, ŷ₂, 

…, ŷₜ]. Loss is then computed by comparing predicted output ŷ at each time step with actual target 

output y. Loss function given by: 

L (y, ŷ) = (1/t) * Σ(yₜ — ŷₜ)² — — —— — -> MSE     II-9 ) 



 

21 
 

2- Backward Pass: 

The backward pass in BPTT involves computing the gradients of the loss function with respect to 

the network’s parameters (U, W, V and biases) over each time step. 

Let’s explore the concept of backpropagation through time by computing the gradients of loss at 

time step t=4. The figure below also serves as an illustration of backpropagation for time step 4. [30] 

 

 

 

 

 

 

 

 

 

Figure 13:BPTT 

3- Derivative of loss L w.r.t V: 

Loss L is a function of predicted value ŷ, so using the chain rule ∂L/∂V can be written as: 

∂L/∂V = (∂L/∂ŷ) * (∂ŷ/∂V)                                             ( II-10 ) 

4- Derivative of loss L w.r.t U: 

Applying the chain rule of derivatives, ∂L/∂U can be expressed as follows: The loss at the 4th time 

step depends on ŷ, which is determined by the current time step’s hidden state a₄. This state a₄ is 

influenced by both U and a₃. In turn, a₃ is connected to both a₂ and U, and a₂ depends on a₁ as well as 

on W. 

∂L₄/∂U = (∂L₄/∂ŷ₄ * ∂ŷ₄/∂a₄ * ∂a₄/∂U) + (∂L₄/∂ŷ₄ * ∂ŷ₄/∂a₄ 

*∂a₄/∂a₃*∂a₃/∂U) + (∂L₄/∂ŷ₄ * ∂ŷ₄/∂a₄ *∂a₄/∂a₃*∂a₃/∂a₂*∂a₂/∂U) + (∂L₄/∂ŷ₄ 

* ∂ŷ₄/∂a₄ *∂a₄/∂a₃*∂a₃/∂a₂*∂a₂/∂a₁*∂a₁/∂U)                       ( II-11 ) 

Here we’re summing up the gradients of loss across all time steps which represents the key 

difference between BPTT and regular backpropagation approach.[27] 
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II.7.4 Problems of traditional return networks 

1.vanishing gradient problem: 

During the training of deep neural networks, the vanishing gradient problem refers to a 

phenomenon where the gradients used for updating the network diminish significantly or "vanish" as 

they propagate backward from the output layers to the earlier layers. This issue hinders effective 

learning of long-term dependencies in the network. [24] 

  2.Exploding Gradient problem:  

The Exploding Gradient problem occurs during neural network training when error gradients 

accumulate excessively, leading to exponentially large updates in model weights. This issue causes 

prolonged training times and results in poor performance and accuracy. [24] 

II.8 Long Short-Term Memory (LSTM)  

LSTM, an advanced type of recurrent neural network developed by Hochreiter and Schmidhuber, 

is specifically tailored for sequence prediction tasks. It excels in capturing long-term dependencies 

within data sequences  [27]. LSTM is highly effective in applications requiring the modeling of 

temporal relationships, such as time series analysis, machine translation, and speech recognition. Its 

robustness lies in its capability to handle complex problems by efficiently preserving and utilizing 

sequential information. [22] 

The main goal of its design was to avoid the vanishing gradient problem that can occur when 

training traditional RNNs was addressed with the development of LSTMs.  

II.8.1 Architecture and Working of LSTM: 

 

 

 

 

 

 

 

 

Figure 14:Architecture LSTM 
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Information is retained by the cells and the memory manipulations are done by the gates. There 

are three gates  

a) Forget Gate 

The forget gate in LSTM networks plays a crucial role in managing the cell state by deciding which 

information to retain or discard. It receives inputs xt (current input at time t) and ht-1 (previous cell 

output) which are processed through weighted matrices and bias addition. An activation function then 

produces a binary output: 0 indicates forgetting the information, while 1 signifies retaining it for 

future use within the cell state. This mechanism enables LSTM to selectively update and maintain 

relevant information across sequential data. [23] 

The equation for the forget gate is:  

 

𝑓𝑡  = (𝑤𝑓 [ℎ𝑡−1, 𝑥𝑡] +𝑏𝑓)                     ( II-12 ) 

 where: 

• 𝑤𝑓 : represents the weight matrix associated with the forget gate. 

• [ℎ𝑡−1, 𝑥𝑡]: denotes the concatenation of the current input and the previous hidden state. 

• 𝑏𝑓: bias with the forget gate. 

• σ :sigmoid activation function 

 

b) Input gate 

The input gate in LSTM updates the cell state by filtering and integrating new information. It uses 

sigmoid activation to decide what to retain based on current and previous inputs (ht-1 and xt). A tanh 

function creates a vector of potential values, which is then multiplied with the regulated information 

to incorporate useful updates into the cell state.[23] 

The equation for the input gate is:  

𝑖𝑡 = (𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] +𝑏𝑖)                                          ( II-13 ) 

�̂�𝑡 = 𝑡𝑎𝑛ℎ (𝑤𝑐[ℎ𝑡−1, 𝑥𝑡]+𝑏𝑐)                                   ( II-14 ) 

We multiply the previous state by ft, disregarding the information we had previously chosen to 

ignore. Next, we include it∗Ct. This represents the updated candidate values, adjusted for the amount 

that we chose to update each state value. 
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𝑐𝑡 = 𝑓𝑡 𝐶𝑡−1+ 𝑖𝑡�̂�𝑡                                              (  II-15 ) 

where 

•  ⊙ denotes element-wise multiplication 

• tanh is tanh activation function 

c) Output gate 

The LSTM output gate extracts essential information from the current cell state. It uses tanh on 

the cell state to create a vector. This vector is filtered and regulated by the sigmoid function based on 

inputs ht-1 and xt to decide what to retain. Finally, the resulting values are multiplied to produce the 

output sent to the next LSTM cell. [23] 

The equation for the output gate is:  

𝑜𝑡 =(𝑤0[ℎ𝑡−1, 𝑥𝑡]+𝑏0)                                         ( II-16 ) 

II.8.2 Advantages and Disadvantages of LSTM 

a) Advantages: 

• Handling Long Sequences. 

• Avoiding Vanishing Gradient Problem. 

• Handling Variable-Length Sequences. 

• Memory Cell. 

• Gradient Flow Control. [27] 

b) Disadvantages: 

• Computational Complexity. 

•  to overfitting. 

• Hyperparameter Tuning. 

• Limited Interpretability. 

• Long Training Times. [27] 
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II.8.3 Applications of LSTM 

• Some of the famous applications of LSTM includes: 

• Language Modeling 

• Speech Recognition 

• Time Series Forecasting 

• Anomaly Detection 

• Recommender Systems 

• Video Analysis[29] 

 

II.9 Gated Recurrent Unit or (GRU) 

GRU, or Gated Recurrent Unit, represents an evolution of the traditional RNN (Recurrent Neural 

Network). It shares similarities with LSTM in utilizing gates to manage information flow. Compared 

to LSTM, GRU is relatively newer and offers some enhancements while maintaining a simpler 

architecture. [28] 

II.9.1 Architecture and Working of GRU:  

 

 

Figure 15:Architecture of GRU 

At time 𝑡 = 0 , the output vector is ℎ0 = 0 : 

𝑧𝑡 = 𝜎(𝑤𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)                                                                         (II-17) 

     𝑟𝑡 = 𝜎(𝑤𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)                                                                          (II-18) 

     ℎ̂𝑡 = 𝜙(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)                                                               (II-19) 
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Where: 

• 𝑥𝑡 : the input vector at time 𝑡 . 

• ht : the output vector at time 𝑡. 

• Wz :weight matrices for the input-to-hidden connections. 

• Uz : weight matrices for the hidden-to-hidden connections. 

• bz : are bias vectors. 

• σ : denotes the sigmoid activation function. 

• ϕ : denotes the hyperbolic tangent activation function. 

• ⊙: denotes the element-wise (Hadamard) product. [28] 

II.9.2 Advantages and Disadvantages of GRU 

a) Advantages of GRU: 

• Faster Training and Efficiency 

• Effective for Sequential Tasks 

• Less Prone to Gradient Problems[27]. 

b) Disadvantages of GRU: 

• Less Powerful Gating Mechanism 

• Potential for Overfitting 

• Limited Interpretability[27] 

II.9.3 Applications of Gated Recurrent Unit 

Here are some applications of GRUs where their ability to handle sequential data shines: 

• Natural Language Processing (NLP) 

• Machine translation 

• Text summarization 

• Chatbots 

• Sentiment Analysis[27] 

II.10 LSTM Vs GRU 

Here are the key distinctions between GRU and LSTM: 

• GRU incorporates two gates, while LSTM employs three gates. 

• Unlike LSTM, GRU lacks an output gate. 

• In LSTM, the input and forget gates are linked via an update gate, whereas in GRU, the 

reset gate directly affects the previous hidden state without this linkage. 
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• GRU has fewer parameters than LSTM, resulting in lower memory usage and faster 

execution. However, LSTM tends to perform better on larger datasets where accuracy is 

critical. 

• LSTM is preferable for tasks involving extensive sequences and prioritizing accuracy, 

whereas GRU is chosen for scenarios requiring less memory consumption and faster 

processing times.  

II.11 Types of Recurrent Neural Networks 

There are four types of Recurrent Neural Networks: 

1. One to One : 

This type of RNN behaves the same as any simple Neural network it is also known as Vanilla 

Neural Network. In this Neural network, there is only one input and one output. [31] 

2. One to Many 

In this type of RNN, there is one input and many outputs associated with it. One of the most used 

examples of this network is Image captioning where given an image we predict a sentence having 

Multiple words. [31] 

3. Many to One 

In this type of network, Many inputs are fed to the network at several states of the network 

generating only one output. This type of network is used in the problems like sentimental analysis. 

Where we give multiple words as input and predict only the sentiment of the sentence as output. [31] 

4.Many to Many 

In this type of neural network, there are multiple inputs and multiple outputs corresponding to a 

problem. One Example of this Problem will be language translation. In language translation, we 

provide multiple words from one language as input and predict multiple words from the second 

language as output. [31] 

 

 

 

Figure 16:Types of Recurrent Neural Networks 
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II.12 Types of Neural Networks Activation Functions 

   The most popular neural networks activation functions listed below: 

II.12.1 Binary Step Function 

If the node input value is less than 0, it returns 0 as output. Else, it returns 1. 

Mathematically, it can be defined as: 

 

 

 

 

II.12.2 Linear Activation Function 

The linear activation function, also known as "no activation," 

or "identity function" (multiplied x1.0), is where the activation 

is proportional to the input. 

 

                                               

 

II.12.3 Non-Linear Activation Function Sigmoid / Logistic Activation Function 

It is commonly used for models where we have to 

predict the probability as an output. Since 

probability of anything exists only between the 

range of 0 and 1, sigmoid is the right choice 

because of it 

 

 

 

 

     

 

 

Figure 17: Binary Step Function graph 

 

 

Figure 18: Linear Activation Function graph 

 

Figure 19:Sigmoid /Logistic Activation Function graph 
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II.12.4 Non-Linear Activation Function Tanh Function (Hyperbolic Tangent) 

Tanh function is very similar to the sigmoid/logistic activation function, and even has the same S-

shape with the difference in output range of -1 to 1. In Tanh, the larger the input (more positive), the 

closer the output value will be to 1.0, whereas the smaller the input (more negative), the closer the 

output will be to -1.0. 

 

 

 

 

 

 

II.12.5  Activation Function ReLU 

Function (Rectified Linear Unit 

 Since only a certain number of neurons are activated, the ReLU function is far more 

computationally efficient when compared to the sigmoid and tanh functions.ReLU accelerates the 

convergence of gradient descent towards the global minimum of the loss function due to its linear, 

non-saturating property 

Mathematically it can be represented as: 

 

 

 

 

 

 

 

 

 

 

Figure 20 :Activation Function Tanh Function (Hyperbolic Tangent) graph 

 

Figure 21:ReLU Activation Function (Rectified Linear Unit) graph 
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II.12.6 Softmax Function 

It calculates the relative probabilities. Similar to the sigmoid/logistic activation function, the 

SoftMax function returns the probability of each class. It is most commonly used as an activation 

function for the last layer of the neural network in the case of multi-class classification. 

 

 

 

 

 

 

II.13 Conclusion 

In this chapter, we explored the basic fundamentals of artificial intelligence, focusing in particular 

on recurrent neural networks (RNNs). We began by introducing artificial intelligence and how it           

is evolving as a branch of computing that seeks to create systems traditional to human intelligence, 

which includes the ability to learn and adapt to changing environments. 

Then, we detail recursive neural networks (RNNs), a type of neural network that handles time-series 

data. We looked at the structure of RNNs, which include recursive units that enable them to retain  

memory and use past information to improve their predictions of future data. We also discussed the 

challenges facing RNNs, such as the problem of vanishing gradients, and how to solve them using 

techniques such as Long Memory Neural Networks (LSTM) and Variational Recursive 

NeuralNetworks (GRU).

Figure 22:Softmax Activation Function graph 



 

 
 

 

 

 

Chapter III: Predicting the proximity of reaching an oil reservoir 

using deep learning and drilling data
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III.1 Introduction 

In this chapter, we will delve into the architecture of three recurrent neural network (RNN) 

variants: SimpleRNN, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). These 

models, implemented using TensorFlow and Keras, are essential tools for learning and classification 

tasks. To optimize their performance, we will employ a simple yet effective technique known as 

dropout. 

Firstly, let's discuss the significance of comparing these three models. While all three belong to 

the family of RNNs and share the ability to model sequential data, they exhibit distinct architectural 

variances that can impact their performance in different scenarios. By comparing their architectures 

and evaluating their performance, we aim to identify the model that best suits our lithofacies 

prediction task, ensuring accurate predictions even at depths as shallow as 5 meters. 

 

 

 

 

 

 

 

 

Figure 23 :Basic flow for designing artificial neural network model 

III.2 Software and libraries Used in the implementation python  

Libraries used 

• Pandas 

pandas is a Python package that provides fast, flexible, and expressive data structures designed to 

make working with "relational" or "labeled" data both easy and intuitive. 

 

 

Figure 24: logo of  Pandas 
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• TensorFlow 

TensorFlow is an open-source machine learning framework developed by the Google Brain team. 

It is designed to facilitate the development and deployment of machine learning models by providing 

a comprehensive ecosystem for building, training, and deploying neural networks and other machine 

learning algorithms. [32] 

 

 

 

Figure 25:logo of TensorFlow 

• Keras 

Keras is an open-source, high-level neural networks API written in Python. It is designed to be 

user-friendly, modular, and extensible, enabling fast experimentation and easy prototyping of deep 

learning models.[32] 

 

 

 

Figure 26: logo of Keras 

• Scikit-learn 

Scikit-learn is a widely-used open-source machine learning library for Python. It is built on top of 

NumPy, SciPy, and matplotlib, and provides simple and efficient tools for data mining and data 

analysis. 

 

 

 

Figure 27: logo of  Scikit-learn 
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• Seaborn 

Seaborn is a popular Python data visualization library built on top of matplotlib. It provides a high-

level interface for creating attractive and informative statistical graphics. 

 

 

 

Figure 28: logo of Seaborn 

III.3 DATASET 

III.3.1 Data collection 

Sufficient data is collected constitute a basis necessary for modeling. 

This study includes 5 wells oilfield. 

BASSIN : AMGUID MESSAOUD 

PERIMETRE : TOUGGOURT EST  

III.3.2 Description and pre-processing of data 

NAN values are a big problem for the deep learning because it will harmfully influence the results, 

but fortunately our data set is empty of NAN values. We used the pandas library to load the data into 

a data frame. 

 

III.3.3 Data Selection 

The final selection was made after analyzing all wells data without any missing (Nan). Data was 

selected where the Depth was in the same range in each well section from 3000 m depth until bottom 

of well. 

III.3.4 Data Split 

selecting 80% percent of data as training set and remaining 20% as test Dataset stored in xlsx 

format  

(excel) contains 5 wireline log measurements, in meter interval, with corresponding facies label. 
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Table 1: Data Split 

Well Name 
Total 

Feautures 

Input data Output data 
Labels 

Train Test Train Test 

RAA-2 1201 960 241 960 241 7 

N_RAA 1201 960 241 960 241 7 

E_RAA 1232 985 247 985 247 9 

W_RAA 1149 918 231 918 231 9 

BMTG-1 1201 960 241 960 241 9 

Total 5 

Wells 5984 4787 1197 4787 1197 13 

 

III.3.5 Input data 

Drilling parameters used as input are: 

1- ROP (Rate of Penetration): 

 In the drilling industry, the rate of penetration (ROP), is the speed at which a drill bit breaks the 

rock under it to deepen the borehole. 

This speed is usually reported in units of feet per hour (ft/h) or meters per hour(m/h). [33]     

2- RPM (Rotation per minute):  

Determines the speed of the drill bit, which can affect the quality and speed of the drilling process. 

A lower RPM may not drill as quickly, but it can be gentler on the drill bits and may cause less 

wear and tear. It ultimately depends on the specific task you will be using the drill for and what type 

of rock will be drilling into This speed is usually reported in units of rpm. [33]          

 

 

3- WOB (Weight On Bit): 

Weight on bit (WOB) is the amount of downward force exerted by a drill bit during drilling 

operations. Weight on bit is generally measured in thousands of pounds, or tons. [33]          

4- SPP (Stand pipe Pressure):  

The standpipe pressure monitoring is the most effective conventional tool for detecting downhole 

problems such as drill string washout. 

By the continuous monitoring of the SPP, the driller can detect a sudden change in SPP, which is 

in the most cases an indication of a downhole problem. SPP is Measured on psi. [33]          
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5-  Pump flow rate:  

Volume of liquid or mud which moves through a pipe in one unit of time, the volumetric flow rate 

of a fluid in a drilling rig return line. Measured on l/mn. [33]          

 

III.3.6 Output data 

 

The facies (classes of rocks) used as output are shown in the table below:  

Table 2 :Labels codification  ( facies) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 
 

III.4 Correlation matrix visualization for Drilling data Well BMTG-1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29:Correlation matrix for drilling data, Well BMTG-1 

The correlation matrix is used to evaluate the dependence between several variables at the same 

time. The result is a table containing the correlation coefficients between each variable and the others. 

A correlation matrix helps us to determine the relationship and also the strength and the direction 

between the variables. 

For our case above Correlation analysis result shows that there is a significant relationship between 

spp and flwpopms (86%) 

Negative correlation is a relationship between two variables in which one variable increases as the 

other decreases, and vice versa. 
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III.5 Visualization of “Facies” dataset using boxplot 

The boxplot with a box plot visualization provides a detailed summary of the distribution of 

various "Facies" within the dataset. The primary function of this visualization is to offer a clear 

representation of the statistical distribution, including the median, quartiles, and potential outliers for 

each category of facies. 

 

 

Figure 30: Visualization of “Facies” using boxplot  for W-RAA 
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III.6 Architecture for developed models 

  For each well, we developed three models: Model 1 (RNN), Model 2 (LSTM), and Model 3 

(GRU). Below, we outline the architecture of these models: 

Architecture Models for W RAA-WELL 

 

  

Table 3:Architecture models RNN,LSTM,GRU for W-RAA 
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III.7 Results obtained and discussion 

Here, it presents a comprehensive analysis of the developed models. This includes accuracy and 

error rates, as well as graphical representations such as confusion matrices and classification reports, 

providing a detailed overview of the performance of each model. 

III.7.1 Performance of developed models, by well 

           

           Table 4:Performance of developed models ,Well BMGT-1 

Well Name Model 

Training Test 

Accuracy Loss Accuracy Loss 

BMGT-1 

RNN 72.91 0.62 64.58  0.98 

LSTM  71.65 0.63  67.50  0.97 

GRU  71.65  0.63  65.00  0.97 

 

            Table 5:Performance of developed models ,Well RAA-2 

Well Name Model 

Training Test 

Accuracy Loss Accuracy Loss 

RAA-2 

RNN 78.90 0.50  74.80 0.67 

LSTM 78.49 0.53 70.33  0.73 

GRU 78.49 0.53 71.95 0.73 

   

              Table 6:Performance of developed models, Well  NRAA 

Well Name Model 

Training Test 

Accuracy Loss Accuracy Loss 

 NRAA 

RNN  74.90 0.57 70.90 0.78 

LSTM  80.97 0.47 70.49  0.91 

GRU 79.12 0.45 70.08 0.83 
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               Table 7:Performance of developed models, Well   WRAA 

            

             

            Table 8:Performance of developed models, Well  ERAA 

Well Name Model 

Training Test 

Accuracy Loss Accuracy Loss 

 ERAA 

RNN 75.42  0.57 62.08  0.88 

LSTM  78.56  0.48 61.67  0.99 

GRU  77.30  0.48 65.00  0.99 

 

             Table 9:Performance of developed models, 4 Wells 

Well Name Model 

Training Test 

Accuracy Loss Accuracy Loss 

4WELLS  

RNN 68.39  0.74 69.66  0.78 

LSTM  75.29 0.57  72.17  0.72 

GRU 75.29  0.58 72.51  0.73 

   

Well Name Model 

Training Test 

Accuracy Loss Accuracy Loss 

 WRAA 

RNN 80.35 0.51 74.35  0.69 

LSTM 82.10  0.41 76.09 0.74 

GRU 79.59  0.49  73.48 0.70 
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In this study, we evaluated the performance of three Recurrent Neural Network (RNN) models—

Simple RNN, LSTM, and GRU—using drilling data from five different wells. The models were 

evaluated on both training and test data based on their accuracy and loss metrics. 

 The Simple RNN model showed moderate performance overall, with training accuracy ranging 

from 68.39% to 80.35% and test accuracy from 62.08% to 74.80%. 

 The higher loss values compared to other models suggest potential overfitting issues in some 

cases. 

The LSTM model exhibited excellent training performance with accuracy ranging from 71.65% 

to 82.10%. 

Test accuracy was generally good, ranging from 61.67% to 76.09%. However, some gaps between 

training and test accuracy indicate potential overfitting. 

 The GRU model's performance was very similar to that of the LSTM, with training accuracy 

between 71.65% and 79.59% and test accuracy between 65.00% and 73.48%. 

  Loss values were also comparable to those of the LSTM, indicating that both models perform 

similarly in many cases. 

All models demonstrated good training accuracy, but there was variability in test accuracy, 

highlighting the need for model refinement to reduce the training-test performance gap. 

III.7.2   Graphic curve of accuracy and Loss  

 

 

Figure 31: accuracy  and loss curves  for the RNN,WRAA well  
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Figure 32: accuracy  and loss curves  for the LSTM,WRAA well 

 

 

Figure 33:accuracy  and loss curves  for the GRU,WRAA well 

Comparing RNN, LSTM, and GRU models across five different wells: BMGT-1, RAA-2, NRAA, 

WRAA, and ERAA, the results showed variations in performance in terms of accuracy and loss for 

each model during training and testing stages. 

In well WRAA, the LSTM model was the best in both training and testing with accuracies of 

82.10% and 76.09% respectively, indicating strong and consistent performance compared to the other 

models.  
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III.8 Confusion matrix, predicted vs trues facies 

In this section, we present and analyze confusion matrices for Recurrent Neural Network (RNN), 

Long Short-Term Memory (LSTM) neural networks, and Gated Recurrent Unit (GRU) across five 

different wells: BMGT-1, RAA-2, N-RAA, W-RAA, and ERAA, in addition to analyzing confusion 

matrixes for model results across all wells together. 

In general, confusion matrices provide a powerful tool for analyzing model performance by 

highlighting points where the models perform well and those that need improvement. Through this 

analysis, we can make informed decisions to enhance the models and increase their accuracy and 

effectiveness in lithofacies classification using well logging data. 

Confusion matrix visualization for W-RAA- WELL 

 

 

                                         Figure 32 : Confusion matrix for RNN facies class predictions for W-RAA- WELL  

 

 

                                               Figure 33 : Confusion matrix for LSTM facies class predictions for W-RAA- WELL 
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Figure 34: Confusion matrix for GRU facies class predictions for W-RAA- WELL 

Confusion matrixes based on the actual lithology and classification results by RNN, LSTM and 

GRU are shown in above Figures (Fig.32, Fig.33 and Fig.34) 

 Along the diagonal space of the matrixes, the lithology is classified correctly, LSTM and GRU 

classified the largest number of data samples  

We have a total of  46 labels classified by  LSTM  and the same for   GRU, but   a total of 45  

classified by  RNN 

It is observed that 1 is no classified by LSTM and the same for GRU, but 2 not classified by RNN 

III.9 Classification Reports 

1. Model Performance Metrics: 

o Precision: The ability of the classifier to not label a negative sample as positive. 

o Recall: The ability of the classifier to find all the positive samples. 

o F1-score: A weighted harmonic mean of precision and recall, providing a single 

metric that balances both. 

o Support: The number of actual occurrences of the class in the dataset. 

2. Macro Average: Calculated as the average of precision, recall, and F1-score for each class, 

treating all classes equally. 

3. Weighted Average: Takes into account the support (number of true instances for each label), 

balancing the metric according to the class distribution. 
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Classification Report for W-RAA well 

Classification Report RNN: 

               precision    recall f1-score   support 

 

           0       0.79      0.85      0.81        39 

           1       0.00      0.00      0.00         1 

           3       1.00      0.58      0.74        12 

           4       0.50      0.75      0.60         4 

           7       0.88      0.90      0.89        39 

 

    accuracy                           0.82        95 

   macro avg       0.63      0.62      0.61        95 

weighted avg       0.83      0.82      0.82        95 

 

 

 

Classification Report LSTM: 

               precision    recall f1-score   support 

 

           0       0.81      0.87      0.84        39 

           1       1.00      1.00      1.00         1 

           3       1.00      0.67      0.80        12 

           4       0.75      0.75      0.75         4 

           7       0.88      0.90      0.89        39 

 

    accuracy                           0.85        95 Best score 

   macro avg       0.89      0.84      0.86        95 

weighted avg       0.86      0.85      0.85        95 

 

Classification Report GRU: 

               precision    recall  f1-score   support 

 

           0       0.80      0.85      0.83        39 

           1       0.00      0.00      0.00         1 

           3       1.00      0.67      0.80        12 

           4       0.50      0.75      0.60         4 

           7       0.88      0.90      0.89        39 

 

    accuracy                           0.83        95 

   macro avg       0.64      0.63      0.62        95 

weighted avg       0.84      0.83      0.83        95 

 

 

   Based on the results of classification of wells BMTG-1, RAA-2, N-RAA, W-RAA, E-RAA, it 

appears that the performance of the models varies depending on the type and architecture. The LSTM 

models appear to show overall superior performance compared to RNN and GRU in most cases, with 

high accuracy and f1 for many categories. 
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Due to the results showing that the W-RAA well provided excellent performance using the LSTM 

model, as the accuracy reached 85%, which indicates its ability to accurately predict rock types using 

geological data and deep learning techniques. This result can be considered positive because it shows 

the efficiency of the LSTM model in predicting the rock types in this well better than other models. 

This outstanding performance could have a positive impact on drilling and oil exploration operations 

in the region in question, as it could direct new research to improve the use of LSTM models in 

geological and engineering risk predictions in upcoming drilling projects. 

. 

III.10 Facies Prediction for blind well RAA-1 

  The best Trained LSTM model contributes to predict Facies types for the well RAA-1 as blin 

well, facies predicted between 3000 to 3250 m depth. Types in the well  RAA-1 as blin well, facies 

predected between 3000 to 3250 m depth. 

 

 

Figure 35 :Log for predicted facies  RAA-1 well  
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 Results of the blind well lithology prediction 

As shown in Figure 35 and table 10 bellow, it was observed that the LSTM model exhibited 

lithological classification of the blind well RAA-1 between 3000 to 3250 m depth. 

Table 10 : Predicted Facies 

Facie Name  Label Code Labels  

Argile silteuse 1 

 

Anhydrite 5 

 

Sel 8 

 

 

III.11 conclusion 

In this chapter, we developed three different recursive neural network models (RNNs), 

SimpleRNN, LSTM, and GRU, and test their performance in predicting lithostratigraphy using 

drilling data and using TensorFlow and Keras for implementation and evaluate the models on the test 

data and visualize the training loss, training _accuracy, test_loss and test_accuracy.The results of each 

model are presented in detail  
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General conclusion 

In our study, a dataset of oil wells from the Hassi Messaoud basin located in Touggourt, east 

Algeria. These models were developed to predict geological facies during the drilling phase with a 

depth offset of 5 meters. 

Based on classification reports, the results showed that the LSTM model achieved an accuracy of 

85%. This indicates that the LSTM model has demonstrated superior performance in predicting 

lithofacies using drilling data. The high accuracy suggests that the LSTM model effectively captures 

the temporal dependencies within the data, enabling it to make accurate predictions. 

The success of the LSTM model underscores the effectiveness of recurrent neural networks, 

particularly in tasks involving sequential data like lithofacies prediction. By leveraging the LSTM 

architecture's ability to retain information over time, the model can effectively learn and represent 

complex patterns present in drilling data, leading to more accurate predictions. 

Furthermore, the high accuracy achieved by the LSTM model has significant implications for 

drilling operations. Accurate lithofacies prediction is crucial for optimizing drilling processes, 

reducing costs, and minimizing risks associated with drilling operations. The ability to predict 

lithofacies with high accuracy using deep learning models like LSTM can greatly enhance the 

efficiency and effectiveness of oil exploration and production activities. 

In summary, the impressive performance of the LSTM model, with an accuracy of 85%, highlights 

its potential as a valuable tool for lithofacies prediction in drilling operations. This underscores the 

importance of leveraging advanced machine learning techniques, such as LSTM, to improve decision-

making and optimize processes in the oil and gas industry. In summary, the impressive performance 

of the LSTM model, with an accuracy of 85%, highlights its potential as a valuable tool for lithofacies 

prediction in drilling operations. This underscores the importance of leveraging advanced machine 

learning techniques, such as LSTM, to improve decision-making and optimize processes in the oil 

and gas industry. 
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