

PEOPLE’S DEMOCRATIC AND REPUBLIC OF ALGERIA

MINISTRY OF HIGH EDUCATION AND SCIENTIFIC RESEARCH

N° Série : ………/2024

Kasdi Merbah Ouargla University

Faculty of New Technologies of Information and Communication

Department of computer science and information technologies

DISSERTATION

To obtain master's degree

Option: Fundamental computing

Presented by:

ATTAB Ismail, GHERIANI Mohammed Aymene

-TITLE-

Integration of Machine Learning into Local Search Meta-heuristics for the Sports Scheduling

Problem

Publicly defended on: 24/06/2024

Jury:

President: MESSAID Abd Elsselam Univ. Ouargla

Examiner: MECHALIKH Charafeddine Univ. Ouargla

Supervisor: KHELIFA Meriem Univ. Ouargla

College year: 2023/24

II

Acknowledgement

Above all, I thank ALLAH, the Almighty, for providing me with the bravery and

patience to finish my dissertation.

First, I'd like to thank my supervisors, Ms. KHELIFA Meriem, for her invaluable

patience and feedback during this project. for her insightful comments.

I would be remiss in not mentioning the faithful and truthful teachers, for their

full dedication for the sake of students, and their guidance in my journey in the

Kasdi Merbah Ouargla University's department of computer science and

information technology.

Last but not least, I express my heartfelt gratitude to the jury members Mr.

MESSAID Abd Elsselam and MR. MECHALIKH Charafeddine for their

tolerance and taking the time to assess my work.

III

Dedication

It’s an honor to be able to express my gratitude for the people I love the

most.

I wholeheartedly dedicate this work to my beloved mother KERRI

Zohra, she has made me who I am today and did nothing less than

everything to make sure that I am loved, save, supported, guided and

most of all successful, my inspiration who never fail to encourage me

morally, spiritually, and emotionally…

To my dear father ATTAB Abdelkader for his absolute support and

tremendous effort in raising me all this time.

To my cornerstone and brother BOUAICHA Mohamed Abdelhai.

To my brothers, IMADEDDIN, ABDESSALAM, Med AYMEN and

ZOUBIR.

To my sisters, MERIEM, HALA, HALIMA and ZINA.

To my beloved family and friends, all by his name. Specially

BOUAICHA Mohamed Abdelhai for his invaluable advice over the

past few years, and my dear friend BENHAMIDA Iskander may

ALLAH grant him heaven.

Finally, to all who helped me during my journey and made it special

and full of memories.

ATTAB Ismail

IV

Dedication

It’s an honor to express my gratitude to the people I love the most.

I dedicate this dissertation to my loving parents, whose unconditional

love, unwavering support, and sacrifices have been the cornerstone of

my journey. Your belief in me has fueled my determination, and your

guidance has shaped my character. This accomplishment is as much

yours as it is mine. Thank you for being my pillars of strength and for

instilling in me the values of perseverance and resilience.

To my brothers Imad, Ramy and Amir.

To my entire family and all my friends.

To Virage Sud Mouloudeen Who lifts my spirits every week.

To myself because I suffered a lot lo live this day

GHERIANI Mohamed Aymene

V

Abstract

This thesis addresses the Traveling Tournament Problem (TTP), an NP-hard combinatorial

optimization challenge in sports scheduling. The TTP is crucial in the sports community due

to its impact on league management budgets, where suboptimal schedules can lead to significant

financial losses. To tackle this problem, we propose an innovative approach that integrates

machine learning and deep learning techniques to enhance the performance of Stochastic

Local Search (SLS) and Biogeography-Based Optimization (BBO) algorithms. It is well

known that the main challenge in the evolutionary algorithms is to set the best parameters. we

employ a deep learning model for parameter tuning. Additionally, we proposed a novel

approach to incorporate reinforcement learning within the SLS algorithm during the

exploitation phase to enhance its performance. The computational experiments indicate that our

method produces competitive and promising results, showcasing its potential for effective TTP

optimization.

Key words: Traveling Tournament Problem (TTP), NP-hard combinatorial optimization,

machine learning, deep learning, Stochastic Local Search (SLS), Biogeography-Based

Optimization (BBO), evolutionary algorithms.

VI

 الملخص

 یحتل. وهي مشكلة تحسین تركیبیة صعبة في جدولة الریاضات (TTP)تتناول هذه الاطروحة مشكلة السفر في البطولات

TTP أهمیة كبیرة ضمن المجتمعات الریاضیة، حیث یمكن أن تتسبب التحسینات غیر المثلى في خسائر مالیة في میزانیة

لمعالجة هذه المشكلة، نقترح نهجًا مبتكرًا یدمج التعلم الآلي وتقنیات التعلم العمیق لتعزیز أداء خوارزمیات .إدارة الدوریات

القائم على الجغرافیا الحیویة)SLSالبحث المحلي العشوائي) التحدي الرئیسي في BBO(والتحسین (. من المعروف أن

ا لضبط العمیق التعلم نموذج نستخدم الإعدادات. أفضل تحدید التطوریة هو ذلك، الخوارزمیات إلى بالإضافة لإعدادات.

أثناء مرحلة الاستغلال لتحسین أدائها. تشیر التجارب الحسابیة SLSاقترحنا نهجًا جدیداً لدمج التعلم المعزز ضمن خوارزمیة

 الفعال. TTPإلى أن طریقتنا تنتج نتائج تنافسیة وواعدة، مما یعرض إمكاناتها لتحسین

 الكلمات المفتاحية:

خوارزمیات البحث المحلي العشوائي ,التعلم العمیق ,التعلم الآلي , مشكلة تحسین تركیبیة صعب , السفر في البطولات مشكلة

(SLS), (والتحسین القائم على الجغرافیا الحیویةBBO)

VII

Résumé

Cette thèse aborde le problème du voyage dans les tournois (TTP), un défi d’optimisation

combinatoire NP difficile dans la programmation sportive. Le TTP est crucial dans la

communauté sportive en raison de son impact sur les budgets de gestion de la ligue, où les

horaires sous-optimaux peuvent entraîner des pertes financières importantes. Pour résoudre ce

problème, nous proposons une approche innovante qui intègre des techniques d’apprentissage

automatique et d’apprentissage profond pour améliorer les performances des algorithmes de

recherche locale stochastique (SLS) et d’optimisation basée sur la biogéographie (BBO). Il est

bien connu que le principal défi des algorithmes évolutifs est de définir les meilleurs paramètres.

Nous utilisons un modèle d’apprentissage profond pour le réglage des paramètres. De plus, nous

avons proposé une nouvelle approche pour intégrer l’apprentissage par renforcement dans

l’algorithme SLS pendant la phase d’exploitation afin d’améliorer ses performances. Les

expériences informatiques indiquent que notre méthode produit des résultats compétitifs et

prometteurs, démontrant son potentiel pour une optimisation efficace du TTP

Mot clés :

problème du voyage dans les tournois, d’optimisation combinatoire NP difficile, apprentissage

automatique, apprentissage profond, recherche locale stochastique, d’optimisation basée sur la

biogéographie

VIII

Table of contents

Abstract ... V

General introduction ..XV

1 Introduction ... 1

2 Problems optimization .. 2

2.1 Introduction to problems optimization ... 2

2.1.1 Constrained optimization ... 3

2.1.2 Unconstrained optimization ... 4

2.1.3 Constrained optimization VS unconstrained optimization: 4

2.2 Penalty function: ... 5

2.3 Computational Complexity .. 8

2.3.1 Complexity of Algorithms: .. 8

2.3.2 Big-O notation: ... 9

2.3.3 Polynomial-time algorithm: ... 9

2.3.4 Exponential-time algorithm: ... 9

2.3.5 Asymptotic analysis ... 10

2.4 Complexity of Problems: .. 11

2.4.1 Introduction .. 11

2.4.2 Complexity Classes .. 12

2.4.3 Reducibility and NP-Completeness .. 14

IX

2.4.4 The Meaning of NP-Completeness .. 15

2.4.5 NP-Hard Problems ... 15

2.4.6 Example NP-hard problem ... 15

2.5 Optimization Methods: ... 15

2.5.1 Exact methods: ... 16

2.5.2 The branch and bound algorithm: .. 16

2.5.3 Dynamic programming: ... 17

2.5.4 Approximation methods: .. 17

2.5.5 Approximation algorithms: .. 18

2.5.6 Metaheuristics methods: ... 20

2.5.7 Neighborhood Methods: ... 20

2.5.8 Simulated annealing ... 20

2.5.9 Tabu search ... 21

2.5.10 Evolutionary algorithms: .. 21

2.5.11 Genetic algorithms: .. 22

2.5.12 Ant colony: ... 22

2.5.13 Biogeography-based optimization: ... 22

3 Conclusion: ... 23

1 Introduction: .. 24

2. Machine learning: ... 26

X

2.1. Definition: .. 26

2.1.1 Types of machine learning: .. 26

2.1.2 Supervised learning: ... 26

2.1.3 Unsupervised learning: ... 28

2.1.4 Reinforcement Learning: .. 29

2.2 Machine learning algorithms: ... 29

2.2.1 Supervised learning algorithms: ... 29

• K-Nearest Neighbors (KNN): .. 29

2.2.2 Unsupervised learning algorithms: ... 30

2.2.3 Reinforcement learning algorithms: ... 31

3. Deep learning: ... 31

3.1. Definition: .. 31

3.2. Deep learning models: .. 32

3.2.1 Convolutional Neural Networks (CNN): ... 32

3.2.2 Recurrent Neural Network (RNN): .. 32

3.3. Application of deep learning .. 32

1 Introduction: .. 34

2 The Traveling Tournament Problem: .. 34

2.1 Unconstrained TTP: ... 38

2.2 Mirrored TTP: .. 38

XI

2.3 Approximation algorithms: .. 39

2.4 TTP Complexity Analysis: ... 40

3 Conclusion: ... 41

1 History of BBO ... 42

2 Biogeography based optimization (BBO) .. 42

2.1 BBO implementation: ... 43

3 Conclusion .. 46

1. Introduction: .. 47

2. BBO for TTP: .. 47

3.1 Initialize schedule: .. 47

3.2 Neighborhood structures .. 49

3.3 BBO implementation: ... 51

3.3.1 Initialize population: ... 51

3.3.2 Evaluate population: ... 52

3.3.3 Migrate and mutation: .. 52

3. BBO parameters tuning: ...Error! Bookmark not defined.

3.4 Deep learning model ...Error! Bookmark not defined.

3.4.1 A feedforward neural network (FNN)Error! Bookmark not defined.

3.4.2 Lose and optimizer: ...Error! Bookmark not defined.

3.4.3 Data preparation: ...Error! Bookmark not defined.

XII

3.4.4 Model Architecture: ..Error! Bookmark not defined.

3.4.5 Training: ..Error! Bookmark not defined.

4. SLS with Reinforcement learning ... 54

3.5 Extract TSP ... 55

3.6 Reinforcement learning (RL) for TSP .. 57

3.6.1 Environment : ... 57

3.7 The proposed algorithm ...Error! Bookmark not defined.

1 Introduction: .. 63

2 Numerical Results: .. 63

3 Deep learning model Performance Representation: .. 65

4 Limitations: ... 68

5 Conclusion .. 69

Conclusion .. 70

References .. 71

XIII

List of figures:

I.1 Local vs. Global Optima ….………………………………………………………………..3

I.2 Deformed shape of the beam for several values of the foundation stiffness……………..…5

I.3 Relationship Between Penalty Factor and Amount of Constraint Violations in Penalty

Function…………………………………………………………………………………....…..7

I.4 Classification of Computational Problems: P, NP, NP-Complete, and NP-Hard…13

II- 1: Hierarchical Architecture of Artificial Intelligence…………………………………….25

II- 2: Binary and Multi-class Classification…………………………………………………..27

II- 3: Linear regression on some 1d data………………………………………………………28

II- 4: Basic RL model………………………………………………………………………….29

II- 5: Neural network architecture…………………………………………………………......31

IV.1: Evolution of immigration and emigration rates with the number of species……………43

V.1: BBO diagram…………………………………………………………………………….52

VI.1: Training and Validation Loss over Epochs……………...…………………………...….66

VI.2: Gradient Distribution of the Model……………………………………………………...67

VI.3: Bias Distribution Over Time……………………………………………………….……68

XIV

XV

General introduction

Context:

Human life is filled with challenges and difficulties; however, humans have the unique ability

to learn from past experiences and continuously improve to enhance their quality of life and

achieve goals more efficiently. This evolution and progress are evident across various fields,

including engineering, economics, finance, management, sports, and operations research. One

significant aspect of this progression is the ability to solve optimization problems, which

involves finding the most efficient or effective way to allocate resources, make decisions, or

design systems. Optimization is crucial in decision-making and problem-solving as it evaluates

different options to identify the best course of action. It also plays a vital role in improving

processes and systems, reducing costs, and increasing efficiency.

Modern optimization techniques leverage algorithms and computer programs to handle large

and complex problems, allowing for faster and more accurate optimization. These tools have

significantly contributed to the growth of optimization across many fields. There are various

methods to solve optimization problems, including exact methods and approximate algorithms.

Exact methods yield optimal solutions but often require significant time, making them

unsuitable for solving the most complex problems (NP-hard problems). Approximate

algorithms, including heuristic and meta-heuristic approaches, can provide high-quality

solutions within a reasonable time, though they do not guarantee globally optimal solutions.

In the context of sports scheduling, the Traveling Tournament Problem (TTP) is a prominent

NP-hard combinatorial optimization challenge. The TTP aims to create a double round-robin

tournament schedule that minimizes the total distance traveled by teams while adhering to

specific constraints. This problem is crucial in the sports community as suboptimal schedules

can lead to significant financial losses in league management budgets.

To tackle the TTP, we propose an innovative approach that integrates Biogeography-Based

Optimization (BBO) and Stochastic Local Search (SLS) algorithms enhanced by machine

learning and deep learning techniques. Our methodology begins with generating initial

solutions and defining neighborhood structures. The BBO algorithm is adapted to the TTP by

implementing these structures and swap methods. Additionally, we employ a deep learning

XVI

model for parameter tuning and incorporate reinforcement learning within the SLS algorithm

to further optimize the scheduling process.

Our proposed methodology has demonstrated promising results in optimizing tournament

schedules, reducing total travel distance, and adhering to the specific constraints of the TTP.

The integration of deep learning for parameter tuning and reinforcement learning within the

SLS algorithm has shown to be effective in addressing the complexities of the TTP.

Looking forward, our future research will focus on enhancing the efficiency and scalability of

our solutions, particularly in tackling larger TTP instances. We plan to explore alternative

strategies to improve the effectiveness of our approach, such as refining the machine learning

models and investigating other evolutionary algorithms. Additionally, we aim to expand the

applicability of our methods to other domains, further bridging the gap between traditional

optimization techniques and modern machine learning approaches.

Problematic:

Although optimization has advanced considerably nowadays, it is always receptive to new

better methods and algorithms, The performance of an algorithm considered effective today

may be deemed inadequate in the future, especially given the rapid evolution of artificial

intelligence (AI) across various domains. This continuous progress in AI presents an

opportunity to leverage its capabilities to enhance optimization techniques. Add to that, There

is a constant need to propose new solutions and refine existing ones to address the ever-growing

and complex set of optimization challenges.

Objective:

The primary objective of this research is to enhance the performance of Stochastic Local Search

(SLS) and Biogeography-Based Optimization (BBO) algorithms in solving the TTP by

incorporating machine learning and deep learning techniques. This hybrid approach aims to

balance exploration and exploitation of the search space, thereby improving the overall solution

quality.

Organization of the Thesis:

To comprehensively present our work, the thesis is structured as follows:

XVII

- Chapter 1: Provides a review of the main definitions and fundamental issues related to

optimization problems.

- Chapter 2: Provides a review of the main definitions of the machine learning

- Chapter 3: Describes the Traveling Tournament Problem (TTP), the main focus of this study,

and gives an overview of past approaches to solving the TTP.

- Chapter 4: Describes The Biogeography-Based Optimization.

- Chapter 5: Details the proposed approach for solving the TTP, including the integration of

machine learning and deep learning techniques to enhance SLS and BBO algorithms.

- Chapter 6: Highlights the experiments conducted and compares the results of our approach

with the best results available in the literature.

Through this structured approach, the thesis aims to contribute to the field of optimization by

offering a novel method for solving the TTP, demonstrating its efficacy through rigorous

experimentation and comparison with existing methods.

CHAPITRE I: Combinatorial optimization

CHAPTER I Combinatorial optimization

1

1 Introduction

The inherent complexity of real-world systems, processes, equipment, and devices necessitates the

development of optimization methodologies. Even seemingly simple systems often require

theoretical models that incorporate approximations, time-dependent parameters, or random

variations. These imperfections are unavoidable but crucial for predicting the optimal operating

conditions that maximize a specific performance metric. At best, such models can only provide an

approximation of the system's proximity to the desired optimum. Optimization techniques become

essential tools in this scenario. They enable exploration of the local operational region and

prediction of parameter adjustments necessary to drive the system towards its optimal state [1].

Optimization lies at the heart of any problem that necessitates decision-making. The core of

decision-making involves selecting from a set of available alternatives. This selection process is

guided by the pursuit of the "best" choice. An objective function, also known as a performance

index, serves as the measure of merit for these alternatives. Optimization theory and methods strive

to identify the optimal alternative based on the defined objective function.

The field of optimization has witnessed a surge in interest in recent years, primarily driven by the

rapid advancements in computer technology. These advancements encompass the development and

widespread availability of user-friendly software, high-speed and parallel processing capabilities,

and artificial neural networks. A compelling illustration of this phenomenon is the proliferation of

optimization software tools [2].

In this chapter, we will cover the basic concepts and fundamental points of combinatorial

optimization. This includes:

• The concept of optimization: We will establish a clear understanding of what it means to

optimize a system or process.

• Identifying problems that require optimization: We will explore real-world scenarios where

optimization techniques become crucial for achieving the best possible outcome.

• Various solution methods: We will delve into a variety of approaches used to solve

optimization problems in combinatorial optimization.

CHAPTER I Combinatorial optimization

2

• Complexity classes: Finally, we will learn how to classify optimization problems based on

their inherent computational difficulty.

2 Problems optimization

2.1 Introduction to problems optimization

Search space: a finite or infinite set of solutions used to find an optimal or near-optimal solution

by a search algorithm [3].

Exploration: During the intensification phase in combinatorial optimization, the search algorithm

focuses its exploration on the local neighborhood of a promising solution identified within the

search space [4].

Exploitation: In optimization algorithms, exploitation refers to the strategy of iteratively refining

solutions within the vicinity of previously explored regions of the search space. This approach aims

to enhance the quality of existing solutions but can lead to premature convergence at local optima,

thereby hindering the discoveries of globally optimal solutions [4].

Global optimum: A feasible solution is considered a global optimum if there is no other viable

solution within the entire viable region that has a strictly better objective function value. A global

optimum can be manifested as a global maximum (the value of the highest objective function) or a

global minimum (the lowest objective function value) [5].

 Local optimum: a local optimal solution is a feasible solution where the objective function

achieves a good value (minimum or maximum) compared to its immediate neighbors [6].

CHAPTER I Combinatorial optimization

3

Figure I.1: Local vs. Global Optima [7

Combinatorial optimization is a subdomain of discrete optimization that involves identifying an

optimal element in a finite set of candidate solutions. These candidate solutions are called feasible

solutions, and the element with the most favorable objective function value is designated as the

optimal solution [8].

optimization is the minimization or maximization of a function subject to constraints on its

variables. We use the following notation: x is the vector of variables, also called unknowns or

parameters; f is the objective function, a (scalar) function of x that we want to maximize or

minimize; - ci are constraint functions, which are scalar functions of x that define certain equations

and inequalities that the unknown vector x must satisfy [9].

Using this notation, the optimization problem can be written as follows:

min
𝑥∈ℝ

𝑓(𝑥) subject to {
𝑐𝔦(𝑥) = 0, 𝔦𝜖𝜀
 𝑐𝔦(𝑥) ≥ 0, 𝔦𝜖Γ

There are two main classes for optimization problems:

2.1.1 Constrained optimization

A mathematical framework for decision-making in the field of mathematical optimization, limited

optimization problems focus on identifying the optimal (minimum or maximum) value of an

objective function. However, this quest is not boundless. A set of constraints restricts the feasible

Local vs. Global Optima [7]

CHAPTER I Combinatorial optimization

4

region, dictating acceptable solutions. In simpler terms, these constraints define a set of viable

options that meet certain pre-determined conditions. Common constraint formulas include

inequalities, such as x ≥ 0 (representing non-negative values for variable x) and equals, expressed

as Ax = b (where x is a vector of decision variables, A is a matrix representing coefficients, and b

is a constant vector). To solve these restricted optimization problems, there are several established

methods, including the simplex method (both its algebraic and matrix-based forms) and graphical

methodology. These methodologies provide a systematic approach to navigate the feasible region

and locate the optimal solution that adheres to the defined constraints.

2.1.2 Unconstrained optimization

Unconstraint optimization problems, characterized by the absence of constraints (i.e., &= I = Ø in

the equation (1.1)), occur naturally in many practical applications. This category includes scenarios

in which decision variables operate freely across the area. Even in situations where inherent

limitations (natural constraints) might exist for variables, it may be strategically wise to ignore

them under certain conditions. This is especially true if these constraints have demonstrated no

impact on the optimal solution and do not prevent the optimization algorithms chosen.

Furthermore, optimization problems without constraints can be strategically constructed by

reformulating these problems. In such reformulations, the initial constraints are replaced by

criminal clauses incorporated into the objective function. These criminal conditions effectively

discourage breaches of the original constraints, guiding the process of optimization toward

solutions that implicitly adhere to the underlying limitations. This approach takes advantage of

well-developed theoretical frameworks and solution methodologies available for problem-free

optimization to solve problems with inherent constraints.

2.1.3 Constrained optimization VS unconstrained optimization

Now, consider the beam shown in Figure. It is subjected to moments at the ends and a load P at the

center and rests on a Winkler tensionless elastic foundation of modulus K. The corresponding

deformation pattern is shown in Figure, where two contact regions and one central noncontact

region are observed. Here, ti and tf constitute the additional variables of the problem.

CHAPTER I Combinatorial optimization

5

Figure I.2 shows the influence of the foundation stiffness on the behavior of the beam, where the

lateral deflection along the beam axis is given for different values of the k = KL4/EI. Once more,

there is good agreement between the results obtained by the dual-constrained numerical

formulation and the Ritz method, in which the same displacement field (5.1) is adopted. Under

unilateral constraints, the beam displacement w increases in the central region while the contact

regions between the bodies decrease.

Figure I.2: Deformed shape of the beam for several values of the foundation stiffness.

2.2 Penalty function

Methods of penalty: This section explores methods for approximating restricted optimization issues

to non-restrictive ones. This approach allows us to leverage established research techniques to solve

problems without constraints, in order to face problems with limitations. Approximation depends

on the modification of the objective function. Methods of penalty: Here, a term is added to the

objective function that significantly penalizes violations of constraints. The extent of the penalty

increases as the degree of violation of the coercion increases. This effectively discourages the

research process from venturing into areas that are not practical.

The penalty method works directly in the n-dimensional space of the decision variables, where n

represents the number of variables and m is the number of constraints. While the following

Fig 5: Deformed shape of the beam for several

values of the foundation stiffness.

https://www.hindawi.com/journals/mpe/2008/786520/fig5/
https://www.hindawi.com/journals/mpe/2008/786520/#eq5.1

CHAPTER I Combinatorial optimization

6

discussion focuses on methods of penalty. Their main distinction lies in how they influence the

research process to move toward a solution that adheres to constraints [10].

Consider the problem

where 𝑓 is continuous function on ℛ𝑛and S is a constraint set in ℛ𝑛. In

most applications S is defined explicitly by a number of functional

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥): 𝑥 ∈ 𝑆} (I. 1)

constraints, but in this section the more general description can be handled. The idea of a

penalty function method is to replace the problem by an unconstrained approximation of

the form.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥) + 𝑐𝑃(𝑥)} (I. 2)

where c is a positive constant and P is a function on ℛ𝑛satisfying (i) 𝑃(𝑥) is continuous,

 (ii) 𝑃(𝑥) ≥ 0 for all 𝑥 ∈ ℛ𝑛, and (iii) 𝑃(𝑥) = 0 if and only if 𝑥 ∈ 𝑆.

Here, each unsatisfied constraint influences x by assessing a penalty equal to the square of the

violation. These influences are summed and multiplied by c, the penalty parameter. Of course, this

influence is counterbalanced by 𝑓(𝑥). Therefore, if the magnitude of the penalty term is small

relative to the magnitude of 𝑓(𝑥), the minimization of (c, x) will almost certainly not result in an

x that would be feasible for the original problem. However, if the value of c is made suitably large,

the penalty term will exact such a heavy cost for any constraint violation that the minimization of

the augmented objective function will yield a feasible solution.

The function 𝑐𝑃(𝑥) is illustrated in Fig for the one-dimensional case with g1 (x) = b – x and g2(x)

= x-a. For large c it is clear that the minimum point of problem will be in a region where P is small.

Thus, for increasing c it is expected that the corresponding solution points will approach the

feasible region S and, subject to being close, will minimize f. Ideally then, as c→∞ the solution

point of the penalty problem will converge to a solution of the constrained problem.

CHAPTER I Combinatorial optimization

7

Figure I.3: Relationship Between Penalty Factor and Amount of Constraint Violations in Penalty

Function

Selecting the Penalty Parameter: is to start with a relatively small value of c and an infeasible

(exterior) point. This will ensure that no steep valleys are present in the initial optimization of (c,

x). Subsequently, we will solve a sequence of unconstrained problems with monotonically

increasing values of c chosen so that the solution to each new problem is "close" to the previous

one. This will preclude any major difficulties in finding the minimum of (c, x) from one iteration

to the next.

To implement this strategy, let {𝑐𝑘}, 𝑘 = 1, 2, . .. be a sequence tending to infinity such that

𝑐𝑘 > 0 and 𝑐𝑘 + 1 > 𝑐𝑘. Now for each k we solve the problem.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {(𝑐𝑘, 𝒙): 𝒙 ∈ ℛ
𝑛} (I.3)

To obtain xk, the optimum It is assumed that problem has a solution for all positive values of ck. This

will be true, for example, if 𝜃(c, x) increases without bounds as ||𝐱|| → ∞.

A simple implementation known as the sequential unconstrained minimization technique (SUMT),

is given below.

1 Relationship Between Penalty Factor and Amount of Constraint

Violations in Penalty Function

CHAPTER I Combinatorial optimization

8

Initialization Step: Select a growth parameter 𝜂> 1, a stopping parameter 𝜀> 0, and an initial value

of the penalty parameter c0.

Choose a starting point x0 that violates at least one constraint increases without bounds as ||𝐱|| →

∞. And formulate the augmented objective function (𝑐0, x). Let k=1.

Iterative Step: Starting from xk–1, use an unconstrained search technique to find the point that

minimizes 𝜃(𝑐k − 1
, x). Call it xk and determine which constraints are violated at this point.

Stopping Rule: If the distance between 𝒙𝑘
– 1 and xk is smaller than 𝜀 (𝑖. 𝑒. , ||𝒙𝑘

– 1 − 𝒙𝑘|| ≤

 𝜀) or the difference between two successive objective functions values is smaller than 𝜀, stop with

xk

An estimate of the optimal solution. Otherwise, put ck← 𝜂c𝑘
– 1 formulate the new 𝜃(𝑐k − 1

, x)

based on which constraints are violated at 𝒙𝑘 put 𝑘 ← 𝑘 + 1 and return to the iterative step.

2.3 Computational Complexity

2.3.1 Complexity of Algorithms

The effective execution of algorithms relies on two crucial resources: time and space. In the context

of algorithmic analysis, time complexity refers to the number of basic operations (or steps) it needs

to solve a problem of the size n. (often representing the input size). This complexity is usually

determined by a worst-case analysis, taking into account the maximum number of steps required

for any size n entry.

The main objective of computational complexity analysis is not to obtain a precise number of steps

for each algorithm. Instead, it aims to establish an asymptotic link in the number of stages. This

limitation describes the behavior of the runtime of the algorithm as the input size increases by an

infinite size. Big-O notation, a common tool in algorithmic analysis, facilitates this asymptotic

analysis. It provides a way to express the upper limit on the number of steps an algorithm takes

based on the input size, ignoring constants and lower-order terms. As a result, the Big-O rating

CHAPTER I Combinatorial optimization

9

allows a comparative evaluation of different algorithms to solve the same problem, highlighting

their relative effectiveness based on their growth of runtime relative to input size [11].

2.3.2 Big-O notation

An algorithm has a complexity 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if there exist positive constants n0 and c such

that ∀𝑛 > 𝑛0, 𝑓(𝑛) ≤ 𝑐 · 𝑔(𝑛). In this case, the function 𝑓(𝑛) is upper bounded by the function

g(n). The Big-O notation can be used to compute the time or the space complexity of an algorithm

[11].

2.3.3 Polynomial-time algorithm

An algorithm is a polynomial-time algorithm if its complexity is 𝑂(𝑝(𝑛)), where 𝑝(𝑛) is a

polynomial function of n. A polynomial function of degree k can be defined as follows:

𝑝(𝑛) = 𝑎𝑘 · 𝑛𝑘 + · · · + 𝑎𝑗 · 𝑛𝑗 + · · · + 𝑎1 · 𝑛 + 𝑎0

where 𝑎𝑘 > 0 and 𝑎𝑗 ≥ 0, ∀1 ≤ 𝑗 ≤ 𝑘 − 1. The corresponding algorithm has a polynomial

complexity of 𝑂(𝑛𝑘).

2.3.4 Exponential-time algorithm

 An algorithm is classified as exponential time if its time complexity can be expressed as 𝑂 (𝑐𝑛),

where:

c is a positive real constant strictly greater than 1 (denoting the base of the exponential term).

n represents the size of the problem (often measured by the number of variables or constraints).

This phenomenon is often referred to as the "combinatory explosion".

In practical applications, waiting for centuries to solve a problem is simply not feasible. The use of

an exhaustive research algorithm (which has an exponential complexity) to solve a problem of a

certain size would require an impracticably long time, exceeding the estimated age of the universe.

Big-𝜽 notation

 An algorithm has a complexity f (n) = _(g(n)) if

CHAPTER I Combinatorial optimization

10

there exist positive constants n0, c1, and c2 such that ∀𝑛 > 𝑛0, c1 · 𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐2 · g(n).

The complexity of the algorithm 𝑓 (𝑛) is lower bounded by the function 𝑔(𝑛).

This analysis often begins with the determination of the Big-O notation, which provides an upper

limit on the time complexity of an algorithm as the size of the problem increases. This initial

evaluation can then be refined by calculating the Big-θ rating, which captures both th upper and

lower limits, providing a more accurate characterization of the algorithm's time complexity.

However, the most specific limit is provided by the Big-Omega notation, which defines the exact

lower limit on the complexity of time.

2.3.5 Asymptotic analysis

Which encompasses these notations, focuses on the rate of growth of the time complexity of an

algorithm depending on the size of the problem. This analysis provides a theoretical framework for

comparing algorithms according to their complexity in the worst case, enabling researchers to

evaluate how much an algorithm evolves with the increase in the size of the problem. It is important

to note that asymptotic analysis focuses on theoretical performance assurances and does not predict

the exact execution time for a specific problem instance. In fact, the execution time of an algorithm

is strongly influenced by the nature of the input data. For a more comprehensive understanding,

the analysis of the average complexity of cases can be performed, although it is often a more

difficult task.

Here are some common Big O notations and their corresponding growth rates:

• O (1) - Constant Time Complexity:

The algorithm's running time remains constant regardless of the input size. It indicates that the

algorithm has a fixed number of operations and does not depend on the input.

• O (log n) - Logarithmic Time Complexity:

The algorithm's running time increases logarithmically with the input size. These algorithms

typically divide the problem into smaller subproblems and solve them iteratively.

CHAPTER I Combinatorial optimization

11

• O(n) - Linear Time Complexity:

The algorithm's running time scales linearly with the input size. Each element of the input is

processed once, resulting in a direct relationship between the input size and the running time.

• O(n log n) - Linearithmic Time Complexity:

The algorithm's running time grows at a rate slightly higher than linear. It is often seen in sorting

algorithms like merge sort and quicksort.

• O(n^2) - Quadratic Time Complexity:

The algorithm's running time grows quadratically with the input size. It commonly occurs in nested

loops where each element needs to be compared with every other element.

• O(2^n) - Exponential Time Complexity:

The algorithm's running time grows exponentially with the input size. These algorithms are highly

inefficient and become infeasible for large inputs.

2.4 Complexity of Problems

2.4.1 Introduction

 In the field of computational complexity theory, the difficulty of a problem is often measured by

the complex of the most effective algorithm that solves it. A problem is considered to be treatable,

or easy to solve, if there is an algorithm that can find a solution within a polynomial timeframe

relative to the input size of the problem. Polynomial time refers to an algorithm whose execution

time increases proportionally to a polynomic function of the input size. Conversely, a problem is

classified as intractable, or difficult, if no algorithm can guarantee a solution in polynomial time

regardless of the size of the input. This distinction between treatable and untreatable problems is a

fundamental concept of complexity theory.

It is important to note that complexity theory mainly focuses on decision problems. A decision

problem is characterized by a definitive yes or no answer. By analyzing the complexity of solving

CHAPTER I Combinatorial optimization

12

these decision-making problems, complexity theory highlights the inherent difficulty of larger

problem classes.

2.4.2 Complexity Classes

A fundamental concept of the theory of computational complexity is the classification of problems

into complexity classes. Each complexity class encompasses a set of solved problems with a

specific amount of computer resources. Two important classes are P and NP (as illustrated in

Figure).

2.4.2.1 The class P (polynomial)

represents all the decision problems solved by a deterministic Turing machine in polynomic time.

We define an algorithm (determinist in this context) as polynomial for a decision problem A if its

complexity in the worst case is limited by a polynomic function p(n), where n means the size of

the input instance (I). Essentially, P encompasses problems for which a known polynomial time

algorithm exists to come up with a solution. Therefore, P problems are considered to be relatively

"easy" to solve from a computational point of view.

2.4.2.2 The complexity class NP (Nondeterministic Polynomial Time)

encompasses all the decision problems for which a solution can be verified in polynomial time by

a deterministic algorithm. A key feature of NP problems is the existence of a non-determinist

algorithm [14]. Non-determinist algorithms differ from their deterministic counterparts by

incorporating "choice points". At these points, the algorithm can be branched into several possible

continuations without any predetermined selection of the path to follow. The algorithm uses a set

of fundamental primitives:

Choice: This primitive proposes a potential solution, often called "oracle" or "certificate".

Check: This primitive checks the proposed solution (certificate) in polynomial time, determining

whether it leads to a positive or negative answer for the decision problem.

Successful: If the primary test confirms a positive response, the algorithm successfully solves the

problem.

CHAPTER I Combinatorial optimization

13

Failure: If the control primitive does not give a positive answer, the algorithm does not solve the

problem.

The basic concept of NP lies in the relationship between choice and control primitives. If the

primitive choice proposes a valid solution that, after verification by the primary control, leads to a

"yes" answer, and the control can be carried out in polynomial time, then the problem is considered

to be in NP. In simpler terms, NP problems are those where a solution can be effectively verified

(polynomial time) by a deterministic algorithm, even though finding the solution itself could be

computationally more difficult.

Figure I.4: Classification of Computational Problems: P, NP, NP-Complete, and NP-Hard

2

Figure:

CHAPTER I Combinatorial optimization

14

2.4.2.3 Example of Nondeterministic algorithm for the 0–1 knapsack problem

The 0–1 knapsack decision problem can be defined as follows. Given a set of N objects. Each

object O has a specified weight and a specified value. Given a capacity, which is the maximum

total weight of the knapsack, and a quota, which is the minimum total value that one wants to get.

The 0–1 knapsack decision problem consists in finding a subset of the objects whose total weight

is at most equal to the capacity and whose total value is at least equal to the specified quota.

2.4.2.4 The P vs NP Question

The question of whether P = NP is widely recognized as one of the most important unresolved

problems in the theory of computational complexity. The answer to this question has profound

implications for our understanding of effective algorithms and problem-solving approaches.

Intuitively, class P (problems solved by deterministic algorithms in polynomial time) is known to

be a subset of NP (problems solvable by nondeterministic algorithms in polynomial time). This

relationship (P NP) is well established (Fig. 1.6). However, the P NP critical hypothesis, which

states that there are problems in NP that are intrinsically more difficult than those in P, remains an

open question.

2.4.3 Reducibility and NP-Completeness

A key concept in the theory of complexity is the reducibility of polynomial time. A decision

problem A is said to be polynomial reduced to another problem B if there is a polynomic time

function that transforms any input instance for A (called IA) into a corresponding instance of B.

(denoted IB). The result (positive or negative) of A on IA must strictly match the result of B on IB.

A decision problem A is classified as NP-complete if it belongs to class NP (solvable by a non-

deterministic polynomial-time algorithm) and also has the property that all other NP problems are

polynomial reducible to A. Figure 1.6 visually represents the relationships between P, NP and NP-

complete problems.

CHAPTER I Combinatorial optimization

15

2.4.4 The Meaning of NP-Completeness

The meaning of NP completeness lies in the following: if a polynomial-time determinist algorithm

is discovered for even one single NP-complete problem, then all NP problems can be solved

effectively (in polynomial time). This highlights the importance of NP completeness in identifying

intrinsically difficult problems within the wider NP class.

2.4.5 NP-Hard Problems

NP-hard problems are a subclass of optimization problems whose decision equivalents (problems

asking whether a solution exists with specific properties) are complete in NP. The vast majority of

real-world optimization problems fall into the NP-hard category. For these problems, it is highly

unlikely that proven effective algorithms (with the complexity of polynomial time) exist. To solve

them optimally, it often takes an exponential time (except P = NP). In the absence of precise and

effective algorithms, metaheuristics provide valuable alternative approaches to solving these

computationally challenging optimization problems.

2.4.6 Example NP-hard problem

Sequencing and scheduling problems such as flow-shop scheduling, job-shop scheduling, or open-

shop scheduling.

2.5 Optimization Methods

This section looks into the area of optimization issues. It explores various optimization strategies

used to identify either the optimal solution or a solution that is close to the optimal, while

minimizing the computational effort.

In the field of operational research, combinatorial optimization problems present a unique

challenge. Although many solution methodologies exist, they can be widely classified into two

primary classes: exact methods and approximate methods. Exact methods offer the advantage of

guaranteeing an optimal solution. However, their complexity can be prohibitive, often resulting in

excessively long execution times. In contrast, approximate methods give priority to efficiency,

CHAPTER I Combinatorial optimization

16

often producing high-quality solutions within a reasonable timeframe. However, they lack the

guarantee of optimum combined with accurate methods. This compromise between solution quality

and the complexity is a central consideration when choosing an appropriate solution method for

combinatorial optimization problems.

2.5.1 Exact methods

Exact methods work by exploring the entire research space, either explicitly or implicitly, in order

to identify the optimal solution. One of the main advantages of these methods is their ability to

ensure that the solution they find is indeed the best. Their cost of calculation increases considerably

with the increase in the size of the problem and the optimization of the number of targets. As a

result, the practical application of exact methods is often limited to problems of a smaller scale.

Exact optimization methods are the preferred approach when it comes to problems where the cost

function exposes a polynomial growth relative to the size of the problem. These problems belong

to class P of optimization problems. However, for problems classified as NP-hard, accurate

optimization methods require exponential complexity of time. This can make them impractical for

even medium-sized problems, making them untreatable.

2.5.2 The branch and bound algorithm

Branch and bound (B&B) is a general-purpose optimization algorithm used to identify optimal

solutions to combinatorial optimization problems. It works by systematically exploring the

research space, which encompasses all possible solutions. This exploration involves the iterative

division of the research space into smaller subproblems, each of which is resolved recursively. A

key feature of the B&B is the maintenance of a lower threshold on the value of the optimal solution

encountered so far. By taking advantage of this lower limit, the algorithm can strategically cut

portions of the search space that are guaranteed not to contain solutions that exceed the current best

solution. This cut-off mechanism significantly reduces the overall research effort. Because of its

effectiveness, B&B has become an accurate method widely used to deal with combinatorial

optimization problems in various areas, including operational research, computer science and

engineering. B&B methods solve a discrete optimization problem by breaking up its feasible set

CHAPTER I Combinatorial optimization

17

into successively smaller subsets, calculating bounds on the objective function, and using them to

discard certain subsets from further consideration. The procedure ends when there is no better

solution than the existing solution [12].

2.5.3 Dynamic programming

The origins of dynamic programming, like many models and methods of operational research, go

back to World War II. During this period, American mathematician Abraham Wald developed a

new approach called "sequential analysis" to improve quality control procedures in the production

of ammunition [13].

Dynamic programming (DP) is a problem-solving paradigm that is suited to optimization problems.

It works by systematically breaking up a complex problem into a series of smaller, overlapping

sub-problems. A definite feature of DP is that each subproblem is solved only once, and that

solutions are strategically stored (often in a table or using memorization) to prevent redundant

calculations. This sub-problem solution storage strategy allows iterative construction of the overall

solution, taking advantage of optimum solutions pre-calculated for smaller components [14]. The

applicability of DP extends across a variety of fields, including computer science, operations

research, economics, and bioinformatics [15].

Unlike branching algorithms, dynamic programming plays a crucial role in polynomial and

exponential time methods. The basic principle underlying dynamic programming is to start by

solving minor or trivial sub-problems and gradually address larger and more complex problems.

This approach is to construct solutions for the larger sub-problems by taking advantage of the

solutions obtained for the smaller ones. This is in contrast to the ramification algorithms, where the

emphasis is on decomposing the problem. The selection of subproblems is often critical to the

effectiveness of dynamic programming [16].

2.5.4 Approximation methods

A major challenge in computer optimization lies in the intrinsic complexity of real-world problems.

Most of these problems are classified as NP-hard, which implies that finding the optimal, or

optimal, solution for large-scale cases may often require IT resources exceeding current capabilities

CHAPTER I Combinatorial optimization

18

[17]. A key subdomain of optimization research focuses on analyzing the computational

requirements of solution methods relative to the size of the problem instance. Although NP-hard

problems may not guarantee the effective discovery of optimal solutions, they can still facilitate

the identification of solutions close to optimum. As a consequence, the design of approximation

algorithms shares some high-level similarities with the conception of exact algorithms. Both

approaches involve identifying appropriate problem structures and developing algorithmic

techniques to take advantage of these structures. However, approximation algorithms often require

more complex problem structures and algorithm techniques, often built on generalizations and

extensions of powerful tools discovered in the study of exact algorithms.

To meet the challenge of finding near-optimal solutions to NP-hard problems, a more theoretical

approach known as approximation algorithms emerged. These algorithms aim to provide high-

quality solutions wheelieing efficient computing complexity (polynomial time). While achieving

feasibility, or simply finding a valid solution, is usually not a major obstacle, the key aspect of

approximation algorithms lies in their ability to guarantee a certain level of solution quality. This

quality is measured by the maximum distance between the solutions produced by the

approximation algorithm and the optimal solutions in all possible problem cases. In essence, it is

said that an approximation algorithm approximately solves an optimization problem if it

consistently provides feasible solutions that are close to the optimal value.

Among the approximate methods for optimization problems, there are two main sub-categories:

approximation algorithms and metaheuristic algorithms. Heuristic algorithms give priority to

finding adequate quality solutions within a reasonable time frame. On the other hand,

approximation algorithms are designed to identify solutions that have a guaranteed level of quality,

especially for cases of large-scale problems.

2.5.5 Approximation algorithms

 It represents a class of iterative optimization algorithms that gradually build a solution in a step-

by-step manner. These methods start with an initially empty partial solution and iteratively seek to

extend it by incorporating additional elements at each step. This process of extending the partial

solution continues until a complete solution to the problem is obtained.

The applicability of constructive methods is often appropriate for scenarios where the focus is not

CHAPTER I Combinatorial optimization

19

primarily on obtaining the absolute optimal solution, or where examples are of reasonable size.

They are often used to generate an initial solution in a metaheuristic framework. Their main

advantages lie in their efficiency and ease of deployment.

The Jacobian technique: The Jacobi method is an iterative approach used in numerical linear

algebra to approximate the solution of a system of n linear equations in n variables. It is effective

for dominant diagonal systems. The method iteratively updates the solution vector by calculating

new values for each variable based on the current estimates of the other variables. This process

continues until a convergence criterion is met. In particular, the Jacobi method has a historical

significance, as it was initially introduced as the process of Jacobi transformation for matrix

diagonalization. In addition, it is sometimes called the simultaneous displacement method.

The Gauss-Seidel: an iterative technique for solving linear equation systems, is well suited for

addressing systems of the shape 𝐴𝑥 = 𝑏, where A is a square matrix of the order n and x and b

are vectors of Rn. The method involves a series of manipulations: first, A is broken down into 𝐷 −

 𝐿 − 𝑈, where 𝐷 is a diagonal matrix, - 𝐿 is a lower triangular matrix (L for the lowest), and - U

is a upper triangle matter. (U for Upper). Subsequently, the system is transformed into an iterative

pattern, where x values are updated iteratively until convergence is achieved. We can then

transform the system into:

Sure, here's the entire transformation written in one line:

𝐴𝑥 = 𝑏 ⟺ (𝐷 − 𝐿) 𝑥 − 𝑈𝑥 = 𝑏 ⟺ 𝑥 = (𝐷 − 𝐿)−1 𝑈𝑥 + (𝐷 − 𝐿)−1𝑏

The successive over-relaxation (SOR): The method of successive over-relaxation (SOR) appears

to have emerged in the 1930s, with its initial mention found in [18]. However, the formal theoretical

foundation of SOR was established almost simultaneously by Frankel [19] and Young [20]. A

central focus in the development of SOR theory is the identification of complex numerical values

(𝜔 ∈ 𝐶 \ {0}) for which the method converges. All these values define the region of convergence.

Furthermore, if possible, the theory seeks to determine the optimal value (ω b) that gives an

asymptotic optimal convergence, meaning min 𝜔 ∈ 𝐶{0} 𝜆(𝐿 𝜔 𝑏) = 𝜆(𝐿!), where λ denotes the

spectral radius. Finding convergence regions is usually less difficult than determining ω b.

CHAPTER I Combinatorial optimization

20

However, in both cases, some knowledge on the spectrum of the associated Jacobi iteration matrix

(J; σ(J)) is assumed to be available. This information is mainly derived from matrix A properties

(and the chosen partitioning scheme). Significantly, Kahan [21] established a SOR method property

that is independent of matrix A properties, with the exception of those that define the same method.

This property is presented below.

2.5.6 Metaheuristics methods

The term "metaheuristic" comes from the Greek, combining "heuriskein" (which means "to be

found") and the prefix "meta" (meaning "beyond" or "at a higher level"). Metaheuristics are a class

of problem-solving methodologies that take advantage of natural phenomena. They are specifically

designed for application to optimization problems, where the main objective is to identify the

overall optimum, which can often be obscured by the presence of many local optima. Metaheuristic

algorithms can be widely classified into two main categories: neighborhood search methods and

evolutionary algorithms.

2.5.7 Neighborhood Methods

Neighbourhood search methods are iterative optimization techniques that start with an initial

solution. This solution can be obtained either by exact methods or by random generation. The basic

principle of these methods is to explore the solution space by gradually moving away from the

initial solution. This exploration follows a defined path, leading to the identification of improved

solutions in the research space. Neighbourhood research methods include a diverse set of

algorithms, two of the most commonly used approaches:

• Simulated annealing

• Tabu search

2.5.8 Simulated annealing

The simulated annealing algorithm (SA), initially proposed by Metropolis et al. (1953), is inspired

by the physical process of annulment in metallurgy. During the cancellation, a material is heated

to a high temperature, allowing its atoms to reorganize freely. As the temperature is gradually

CHAPTER I Combinatorial optimization

21

lowered, atoms are increasingly likely to settle in a low-cost configuration, eventually reaching a

state. Similarly, SA seeks to find the optimal solution for an optimization problem. The cost

function, also called the objective function, plays a crucial role in SA [22]. It guides the research

towards cost-effective configurations. Kirkpatrick et al. (1983) introduced the concept of

temperature as a control parameter in SA. The algorithm iteratively generates new configurations

(solutiEon) from an initial solution (S0) and a high temperature (T0). As temperatures gradually

decrease, the likelihood of accepting worse (more expensive) solutions decreases, eventually

leading to the search for the overall optimum, which represents the state of equilibrium at zero

temperatures.

2.5.9 Tabu search

Tabu Search (TS) is a meta-hero optimization technique that guides a local search process to

explore the solution space beyond the local optima. This exploration capability is mainly motivated

by its use of adaptive memory, which allows for more flexible search behavior compared to

deterministic methods. Memory-based strategies are therefore a definitive feature of the TS

approaches, in line with the concept of “integration principles” where various memory structures

are combined with effective strategies for their exploitation [23].

2.5.10 Evolutionary algorithms

Evolutionary algorithms (EAs) are a class of probabilistic optimization algorithms inspired by the

principles of natural evolution. They deal with complex problems through an iterative process of

perfecting a population of candidate solutions. At the core, the EAs maintain a population of

individuals representing potential solutions. These individuals undergo evolution-inspired

operations, including selection, crossover, and mutation, which mimic the processes of natural

selection and genetic recombination observed in biological systems. Three of the most commonly

used algorithms:

• Genetic algorithm

• Ant colony

• Biogeography-based optimization

CHAPTER I Combinatorial optimization

22

2.5.11 Genetic algorithms

(GA) are a class of computational optimization techniques inspired by the principles of natural

selection and genetics. They deal with complex problems by imitating the evolutionary process,

iteratively improving a population of potential solutions. These algorithms work on a set of

candidate solutions, encoded as binary number strings or other data structures, and use selection,

cross and mutation operators to explore the solution space [24]. Due to their population-based

approach and their ability to escape local optima, Gas have become one of the most widely used

evolutionary algorithms to solve challenging optimization problems in various scientific and

engineering fields.

2.5.12 Ant colony

The Amphibious Colony Optimization (ACO) algorithm, a multi-agent approach inspired by the

feeding behavior of real ant colonies, has proved effective in solving various discrete optimization

problems [25]. In ACO, artificial ants explore the research space, initially randomly, in search of

optimal solutions. Once a source of food (solution) is found, ants lay down traces of pheromones

along their way back to the nest. The amount of pheromone deposited is usually correlated with

the quality (e.g., physical condition) of the solution [26]. Traces of pheromones evaporate over

time, promoting the exploration of alternative routes. However, the remaining pheromone signals

guide the later ants, favoring pathways with higher initial concentrations. This positive feedback

mechanism gradually leads the colony to converge towards shorter or better-quality solutions.

2.5.13 Biogeography-based optimization

 (BBO) is a population-based metaheuristic algorithm inspired by the principles of the island's

biogeography. In BBO, each candidate solution is represented as a "habitat", and its quality is

evaluated using a "Habitat Suitability Index" (HSI), similar to the physical conditioning function

in traditional scalable algorithms. Each component of a solution is called a Suitable Variable Index

(SIV) variable, reflecting the factors that influence the suitability of a habitat in a natural ecosystem

[27]. These factors, similar to environmental variables in real-world islands, may include aspects

such as precipitation, land surface, plant diversity, variety adaptation (uncertain concept,

CHAPTER I Combinatorial optimization

23

clarification of needs) and climate. High HSI values indicate well-adapted habitats, while low HSI

value indicates less favourable environments. BBO imitates the process of species migration by

employing two main operators: migration and mutation [28]. These operators guide research

towards optimal solutions within the problem space, similar to how species explore and adapt to

appropriate islands in a natural environment.

3 Conclusion

Global optimization, the process of identifying the absolute optimal solution within a set of feasible

alternatives, represents a major challenge in the field of operational research. (OR). This problem

has been extensively studied for decades due to its frequent application in various areas. In OR,

optimization refers to the selection of the "ideal" solution from a set of candidate solutions that

maximizes (or minimizes) a given objective function.

This chapter provided a fundamental understanding of the optimization problem model and its main

characteristics. We explored different classification patterns for optimization problems,

highlighting the prevalence of restricted problems in real-world scenarios. Contrary to the

theoretical emphasis on unconstrained problems, most practical applications involve constraints

that limit the space of feasible solution. The presence of equality and inequality constraints

introduces additional complexities in the implementation of optimization algorithms [5]. As

recommended practice, limited optimization problems can often be transformed into unlimited

problems using established constraints management techniques.

Finally, the chapter provides an overview of two leading approaches to optimization solutions:

exact methods and approximation algorithms. Exact methods offer the advantage of guaranteeing

the identification of the optimal solution, but their applicability is limited to problems with

polynomial time complexity (P problems). For computably difficult and large-scale problems

classified as non-deterministic polynomial problems (NP-hard), the exact methods become

ineffective. In such scenarios, approximation algorithms, including metaheuristic, become more

appropriate by providing almost optimal solutions within a reasonable timeframe.

 CHAPTER 2 : Artificial Intelligence

CHAPTER II Artificial Intelligence

24

1 Introduction:

Artificial Intelligence (AI) is a field of computer science where experts build intelligent machines

that can take in data, process it, and then take actions based on their findings [29]. Due to its ability

to learn and reason about complex problems, artificial intelligence (AI) has become a powerful tool

widely used in computer science and operational research [30].

The basic aim of artificial intelligence (AI) is to mimic human brain intelligence. This enables

machines to recognize and apply the appropriate piece of "knowledge" at a given stage of problem-

solving. AI uses several technologies to let machines mimic human intelligence.

 Artificial intelligence is influenced by a wide range of fields, including mathematics, biology,

philosophy, psychology, neuroscience (which studies the human mind and its behavior), statistics

(which handles large amounts of data), and computer science (which runs the algorithms to put the

concepts into practice) [29]. All of them have already adopted some form of artificial intelligence.

Accordingly, AI can be classified into three main types:

• Narrow artificial Intelligence Weak AI: NAI is a goal-oriented tool used to tackle specific

problems in specific situations. While it can outperform people in data processing, it cannot

tackle problems outside of its scope [31].

• General artificial Intelligence: a machine intelligence that capable of performing general

human intelligent behaviors with a full spectrum of human cognitive capacities [31].

• Strong artificial intelligence: This type of AI aims to outperform human capabilities. While

challenging, it is conceivable for it to outperform humans in certain tasks. It's possible that

machines will eventually surpass humans and may represent a threat to humanity [29].

CHAPTER II Artificial Intelligence

25

Figure II- 1: Hierarchical Architecture of Artificial Intelligence

Artificial Intelligence consists of various subdivisions, the most famous of which are machine

learning and deep learning

Machine Learning (ML): Explain how ML enables machines to learn and develop without

requiring explicit programming. Discuss the different learning paradigms:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

CHAPTER II Artificial Intelligence

26

2. Machine learning

2.1. Definition

Machine learning (ML) is a subset of computer science and artificial intelligence that explores how

computers can replicate human learning activities. This approach assumes computers can learn

from data, spot patterns, and form conclusions without being explicitly programmed [32]. The

machine analyzes the available data set, also known as training data, and uses algorithms to predict

possible outputs for a given input [29].

2.1.1 Types of machine learning

Machine learning algorithms are trained using labeled, unlabeled, or hybrid datasets. Three types

of machine learning have been identified: supervised, unsupervised, and Reinforcement learning.

Understanding how they affect input and output variables is essential [33].

2.1.2 Supervised learning

This type of ML requires supervision, in which machines are trained on labeled data to educate a

system that can predict outcomes based on its training. The model evaluates the link between input

and output data to identify underlying patterns [33]. In this context, input variables (X) and an

output variable (Y) are given. The objective is to select an algorithm capable of learning the

mapping function from the inputs to the output, denoted as 𝑌 = 𝑓(𝑥). This function is derived from

a dataset consisting of a collection of labeled examples {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1
𝑥 . Each 𝑥𝑖 among the N

examples is referred to as a feature vector. A feature vector is a vector in which each dimension

𝑖 = 1, . . . , 𝐷 contains a value that describes the sample in some way. After the training and

processing are done, we test the model with sample data to see if it can accurately predict the

output.

Supervised machine learning is divided into two broad categories:

• Classification: Classification is an SL approach that divides data into different

classes. It’s a recursive technique recognizes and categorizes data objects using

predefined labels. In simple terms, it assigns each new observation to an

appropriate set or class. The output variable can belong to multiple classes

CHAPTER II Artificial Intelligence

27

[34][35]. The purpose is to learn a mapping from inputs 𝑥 to outputs 𝑦, where

𝑦 ∈ {1, . . . , 𝐶}, where C is the number of classes. If C = 2, this is known as

binary classification. If 𝐶 > 2, this is called multiclass classification [36].

For example, determining whether an email is spam or not is a popular use case

of classification.

• Regression: Regression is a statistical technique that examines the connection

between a dependent variable and one or more independent variables, regression

is similar to classification, only the response variable is continuous [34].

Common algorithms for supervised learning include regression analysis (i.e.

linear regression, logistic regression, non-linear regression) [33].

Figure II.3 presents a simple example with a single real-valued input 𝑥𝑖 and

response 𝑦𝑖 in 𝑅.

Figure II.2: Binary and Multi-class Classification.

Figure II- 2: Binary and Multi-class Classification.

CHAPTER II Artificial Intelligence

28

2.1.3 Unsupervised learning

Unsupervised learning involves unlabeled output variables and unknown input-output pairings. In

this method, a machine learning model searches for differences, patterns, similarities, and

structures in data. Unsupervised learning methods are frequently classified into two categories:

clustering and association analysis [33][34]. Unsupervised learning allows for the exploration of

previously unnoticed data patterns. Unsupervised learning is perhaps more similar to human and

animal learning. This method is more widely applicable than supervised learning as it doesn't

require human expertise [36].

• Clustering: Clustering is a way of organizing items into groups so that the

objects with the most similarities stay in one group and have few or no

similarities with the objects in another [38]. It seems that clustering and

classification are similar but in classification, There are predetermined labels

provided to each input while these labels are not present in clustering.

• Association: An association rule is an unsupervised learning strategy used to

identify links between variables in a big database. It identifies the group of items

that appear together in the dataset [38].

Figure II- 3: Linear regression on some 1d data.

Figure II- 3: Linear regression on some 1d data.

CHAPTER II Artificial Intelligence

29

2.1.4 Reinforcement Learning

Reinforcement Learning (RL) is a unique form of machine learning that enables machines and

software agents to determine optimal behavior in order to achieve desired outcomes [37]. Opposed

to previous approaches, in RL the data is not predetermined; instead, it is provided to the agent as

it investigates the environment. The approach uses a reward mechanism to guide the agent's

learning based on previous knowledge, rather than being fully random [39].

2.2 Machine learning algorithms

2.2.1 Supervised learning algorithms

There are several SL algorithms, each with unique approaches. The algorithm used depends on the

dataset and usage.

• K-Nearest Neighbors (KNN)

KNN categorizes data points based on a simple majority vote among their closest neighbors. Its

precision is dependent on the quality of the data and it is resistant to noise. The biggest issue in

using KNN is determining the proper number of neighbors. KNN is commonly used for statistical

estimate and pattern identification based on proximity between objects [40][41].

• Decision tree:

Figure II- 4: Basic RL model

Figure II- 4: Basic RL model

CHAPTER II Artificial Intelligence

30

Decision trees (DT), also known as classification trees, are a common and successful predictive

modeling approach used in statistics and data mining. They are among the first and most recognized

SL algorithms, making them ideal for classification problems. These are graphical representations

of a problem or choice based on certain criteria, including internal and exterior nodes linked by

branches [42].

2.2.2 Unsupervised learning algorithms

Unsupervised learning algorithms are better suited for more complex problems, Below we describe

some examples.

- K-means algorithm:

The K-means algorithm is simple to comprehend. K-means' complaint is that it splits a given set

of data into K groups and then assigns the matching center to each sample. There are four phases

[44].

- Data processing.

- Select K centers.

- Defining the loss function.

- calculates the distances between each data point and each of the k centroids.

Next, it uses the mean of the corresponding data points from each cluster to

update each centroid's position.

- Hierarchical clustering:

hierarchical clustering is applied to create a cluster out of the unlabeled datasets. This

algorithm creates a tree-like structure called a dendrogram, which is the hierarchy of

clusters assembled into a tree [38]. It looks similar with k-means however we do not have

to set the fixed K value in the hierarchical clustering [44].

CHAPTER II Artificial Intelligence

31

2.2.3 Reinforcement learning algorithms

reinforcement learning provides a variety of approaches, based on the nature of assignment and the

particulars of the environment.

3. Deep learning

3.1. Definition

 Deep learning is a subset of machine learning in artificial intelligence (AI) based on

artificial neural networks. DL models high-level abstractions in data through non-linear

transformations [45].

Deep learning models, often known as deep neural networks, are inspired by the structure and

operation of the human brain. They are made up of several layers of interconnected nodes

(neurons), with each layer transforming the input data into more abstract representations. To

decrease prediction errors, the network is trained using huge datasets and optimization tools like

as backpropagation [46][47].

Figure II- 5: Neural network architecture.

Figure II- 1: Neural network architecture.

CHAPTER II Artificial Intelligence

32

3.2. Deep learning models

3.2.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a type of deep learning model that is specifically built

to handle structured grid data like photographs. They use convolutional layers and filters to

automatically and adaptively learn spatial feature hierarchies from input photos [46].

CNN is a useful method for recognizing visual patterns in pixel images with minimal

preprocessing. In 2012, Alex Krizhevsky developed Alex Net, a CNN that reduced error from 26%

to 16% in the ImageNet Large Scale Visual Recognition Challenge [20].

3.2.2 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are a type of neural network that recognizes patterns in

sequences of data, such as time series or natural language. They have connections that form directed

cycles, allowing data to survive [46].

In the context of sequential data, RNN can be very powerful for the prediction process compared

to other networks because it uses feedback loops in processing data. The advantage of RNN is that

it considers what is encountered before to process current information [46].

3.3. Application of deep learning

- Healthcare: in the field of medicine doctors use deep learning to classify photos of

skin lesions as benign or malignant skin malignancies achieves the same accuracy

as board-certified dermatologists [49].

- Auto Driving: Deep learning has been used to improve vehicle safety by

automatically identifying the road, traffic signs, pedestrians, and providing

necessary advice. This can help improve traffic regulation and reduce accidents

[50].

CHAPTER II Artificial Intelligence

33

- Natural Language Processing (NLP): Deep learning has transformed processes like

machine translation, which includes translating text from one language to another,

and sentiment analysis, which identifies the sentiment expressed in text. Text

summarization creates brief summaries of lengthier texts, whereas speech

recognition translates spoken language to text. Siri, Alexa, and Google Assistant are

examples of chatbots and virtual assistants that use deep learning [51].

 CHAPTER 3 : Traveling tournament problem

(TTP)

CHAPTER 3 Traveling tournament problem (TTP)

34

1 Introduction

The Traveling Tournament Problem (TTP) was introduced by Easton, Nemhauser, and Trick in

1993, inspired by Trick's work on scheduling Major League Baseball (MLB) in the United States.

Since 1996, Trick and baseball executive Doug Bureman have collaborated on optimizing MLB

schedules, demonstrating the practical importance and impact of this problem. The TTP's

popularity surged as other sports leagues recognized the potential for significant operational cost

reductions through mathematically generated schedules.

TTP represents a global challenge that sports leagues face in their quest to schedule games that are

fair and effective for all clubs. This combinatorial optimization problem seeks to find the most

cost-effective tournament itinerary for a group of teams, aiming to meet specific constraints while

minimizing the total distance travelled by all participating teams. In a double round-robin

competition with 𝑛 teams, each team plays two games against each of the other 𝑛 − 1 teams,

resulting in a complex scheduling challenge.

The total travel distance between venues is a key consideration in tournament scheduling, with

significant real-world implications. Efficient scheduling can lead to substantial cost savings,

reduced travel fatigue for players, and improved overall fairness in the competition. This chapter

explores different TTP variants, assesses their complexity, and introduces models and formulations

designed to minimize travel costs and ensure fair tournament scheduling.

We begin by presenting the TTP in its original form, followed by a discussion of existing solution

methods. Subsequently, we explore various problem variants and advancements made in

addressing these challenges. Finally, we delve into intriguing related problems that have emerged

from the study of the TTP, highlighting ongoing research and future directions.

2 The Traveling Tournament Problem

In a round-robin tournament involving 𝑛 teams, where 𝑛 is an even number, each team competes

against every other team exactly once. An 𝑚 -round-robin tournament extends this concept by

requiring each team to play every other team 𝑚 times. Each match is designated to be played at

one team's home venue, making them the home team, while their opponent is the away team.

CHAPTER III Traveling tournament problem (TTP)

35

A sequence of consecutive away games is referred to as a road trip, while consecutive home games

are known as a home stand. At the start of the tournament, all teams are located at their home

venues and must return to their home venues at the end of the tournament.

The distances between all team venues are provided in an 𝑛 × 𝑛 matrix 𝐷. When a team plays an

away game, they travel from their home city to their opponent’s city. During consecutive away

games, the team travels directly from one opponent’s city to the next. Upon concluding their road

trip, the team returns to their home city.

Note that the length of a road trip (or home stand) is given by the number of opponents played and

not the distance travelled by the team.

The Traveling Tournament Problem can be succinctly captured as follows:

Input: An even number of teams, n; an n by an integral distance matrix, D; L, U integer parameters.

Output: A double round-robin tournament on the n teams such that:

• every team plays every other team once at their home venue and once at the venue

of the opponent

• the length of every home stand and road trip is between L and U, and

• the total distance travelled by the teams is minimized.

A schedule satisfying the first constraint is a feasible double round-robin tournament. The second

constraint is called the at-most constraint. The final constraint ensures optimality.

There may be an additional constraint placed on the tournament:

- No repeaters: there are no teams 𝑖, 𝑗 such that in the tournament schedule, 𝑖 plays

at 𝑗, followed immediately by 𝑗 plays at 𝑖.

CHAPTER III Traveling tournament problem (TTP)

36

Note that for 𝐿 = 1 and 𝑈 = 𝑛 − 1 a team may take a road trip visiting all other teams, which

equates to finding a traveling salesman tour. On the other hand, for small U, teams must return

home often thus the distance travelled will increase. The TTP was originally introduced with

𝑈 = 3 but we will explore the problem for different values. We rename the parameter k and the

version of the problem being discussed is distinguished by using the notation TTP(k). Over the

years, a growing number of variants and instances of TTP were introduced. Here are several classes

of instances which have become popular benchmarks:

The circle instance is one where 𝑛 cities correspond to the nodes of a circle graph of size 𝑛. Nodes 𝑖

and 𝑖 + 1, and nodes 𝑛 − 1 and 0 are joined by an edge of length 1. Then the shortest distance

from 𝑖 to 𝑗 (𝑖 > 𝑗) is the minimum of 𝑖 − 𝑗 and 𝑗 − 𝑖 + 𝑛. A circle instance with 𝑛 teams is

denoted 𝐶𝐼𝑅𝐶𝑛.

The National League instance with n teams is denoted NLn, and is given by n teams of the Major

League Baseball league and distances are given by the “air distance” from city centers. Optimal

solutions to NL4 and NL6 are given in [52]. NL8 was solved optimally for the first time in [54]

using a branch and price algorithm in parallel with constraint programming although the no-

repeaters condition was neglected.

The constant distance instance (denoted CONn) was introduced by Ribeiro and Urrutia [55] and

the problem is formulated just as we would expect: the distance between all pairs of cities is

constant, typically equal to one. Fujiwara, Imahori, Matsui, and Miyashiro [56] proposed a lower

bound for the constant distance TTP and devised two approximation algorithms that produce

feasible solutions with values close to their lower bound.

A description of these instances as well as the most current progress on them can be found at the

web-page maintained by Trick [57].

The constraints:

The TTP is the problem of finding a feasible schedule that minimizes the distance traveled by the

teams, and satisfies the following constraints [66]:

CHAPTER III Traveling tournament problem (TTP)

37

Double round robin constraint (DRRT): that means that each team plays with every other team

exactly twice, once in its home and once in the home of its opponent.

• AtMost constraint: each team must play no more than U and no less than L consecutive

games at home or away. Specially, in our case, L is set to 1 and U to 3.

• NoRepeat constraint: A game 𝑡𝑖 − 𝑡𝑗 can never be followed in the next round by the game

𝑡𝑖 − 𝑡𝑗.

1. The TTP contains the number of teams (denoted n) and the distance matrix (denoted Dis).

2. The output are: a double round robin tournament on the n teams respecting the three constraints

AtMost, NoRepeat and DRRT, and where the total distance traveled by the teams is minimized.

Table 1 gives an example of a schedule for n = 4 teams. The negation sign means that the team

plays away.

Round

Team

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

T1 3 2 4 -3 -2 -4

T2 -4 -1 -3 4 1 3

T3 -1 4 2 1 -4 -2

T4 2 -3 -1 -2 3 1

Table 1. Example of double round robin tournament with n = 4

This schedule specifies that the team t2 has the following schedule: it successively plays against t3

at home, t4 away, t1 away and t3 away, teams t4 at home, t1 at home.

The travel cost of team t1 is: 𝐷𝑖𝑠24 + 𝐷𝑖𝑠41 + 𝐷𝑖𝑠13 + 𝐷𝑖𝑠32.

We note that the travel costs of a schedule S is the sum of the travel cost of every team (denoted

Travel-cost(S)).

CHAPTER III Traveling tournament problem (TTP)

38

2.1 Unconstrained TTP

The unconstrained TTP (uTTP) is formulated identically to the original TTP except we do not

enforce the at-most constraint. Thus, we do not impose a bound on the maximum length of home

stands and road trips. In this formulation, a team can take an arbitrarily long road trip, possibly

visiting all other teams, before returning home. The unconstrained version of the problem was

shown to be NP-hard [58], and when the number of consecutive home/away games is fixed to three,

the problem is strongly NP-complete [59]. NP-completeness was later shown for all fixed values

of k > 3 [60].

2.2 Mirrored TTP

The mirrored TTP (mTTP) is a widely studied variation of the problem. The first paper on mTTP

is due to Ribeiro and Urrutia [61]. In this version, the first half of the season's schedule is identical

to the second half, except the venues are reversed. If team A plays in city B on the first day of the

half of the season, team B would play in city A on the first day of the second half of the season.

The sports scheduling community is interested in this form of the problem due to its prevalence in

Latin American tournament structures. Cheung [62] used a two-phase method based on generating

timetables from 1-factorizations

and finding optimal home/away assignments to solve NL8 and CIRC8 to optimality. Moreover,

Cheung used a Benders approach to compute lower bounds for the mirrored TTP [63].

These bounds remain the current best-known lower bounds for the mirrored problem. Incidentally,

several key results for the mirrored TTP were not intended to specifically solve the mirrored

problem. The fact that the resulting schedule was mirrored was simply a side effect of the

technology employed to create it. Several significant findings on 𝑚𝑇𝑇𝑃 are described in

subsequent sections.

CHAPTER III Traveling tournament problem (TTP)

39

2.3 Approximation algorithms

The Traveling Tournament Problem (TTP) was initially introduced with a constraint 𝑘 on the

number of consecutive home or away games a team can play. Influenced by Major League

Baseball, the value of 𝑘 was set to 3. However, research has also explored the problem for other

values of 𝑘. The following presents the best current approximations for different values of 𝑘,

assuming the distances between team venues satisfy the triangle inequality, thus making the

distances metric.

Imahori, Matsui, and Miyashiro [67] proposed a constant factor approximation algorithm for the

unconstrained TTP (i.e., k=n−1, where 𝑛 is the number of teams). The solution returned by the

algorithm is a mirrored schedule, making it a feasible solution to the unconstrained 𝑚𝑇𝑇𝑃.

There is no feasible schedule when 𝑘 = 1 [68].

Campbell and Chen [69] studied the problem for 𝑘 = 2 in 1976, predating the formal definition of

the TTP. Since then, numerous attempts have been made to achieve a good approximation ratio,

but the result depends on the parity of 𝑛/2. Thielen and Westphal [70] devised an algorithm for

each case and found a bound of 3/2 + 𝑂(1)/𝑛 for 𝑛/2 odd and 1 + 𝑂(1)/𝑛 for 𝑛/2 even. Building

on this method, Imahori [71] proved a 1 + 𝑂(1)/𝑛 bound when 𝑛/2 is odd. Zhao and Xiao [72]

also achieved a 1 + 𝑂(1)/𝑛 ratio for 𝑛/2 odd, which slightly improved the ratio (1 + 12/𝑛 versus

1 + 24/𝑛) found by Imahori.

For 𝑛/2 even, Xiao and Kou [73] provided an approximation algorithm with a ratio of 1 + 1/4𝑛.

Chatterjee and Roy [74] found an approximation ratio of 1 + ⌈𝑙𝑜𝑔2(𝑛/4)⌉ + 4/(2(𝑛 − 2))

yielding slightly better results than Xiao and Kou for 𝑛 ≤ 32.

For 𝑘 = 3, the most popular version of the problem, Imahori, Matsui, and Miyashiro [75] proposed

a randomized approximation algorithm that yields a feasible solution with an approximation ratio

of less than 2+(9/4)/(n−1). They then used a rerandomization technique to find a deterministic

approximation algorithm with the same ratio. These algorithms were the first to achieve a constant

approximation ratio. This result relies on a new lower bound, which, although not as tight as

previously known bounds, is easier to calculate. This new bound implies that any feasible solution

CHAPTER III Traveling tournament problem (TTP)

40

to a 𝑇𝑇𝑃 (3) instance is at most three times the optimal value. In fact, their lower bond yields a

trivial approximation ratio of 𝑘 for any feasible 𝑇𝑇𝑃(𝑘) solution.

For 𝑘 ≥ 4, Westphal and Noparlik [76] proposed an approximation algorithm producing a solution

for any 𝑛 ≥ 6. Yamaguchi, Imahori, Matsui, and Miyashiro [77] considered 𝑇𝑇𝑃(𝑘) for all fixed

𝑘 ≥ 3. For 𝑘 ≤ 5, the approximation ratio of the proposed algorithm is bounded by (2𝑘 − 1)/𝑘 +

𝑂(𝑘/𝑛), and for 𝑘 > 5, the ratio is bounded by (5𝑘 − 7)/(2𝑘) + 𝑂(𝑘/𝑛). For k=3, the ratio is

5/3 + 𝑂(1)/𝑛. The schedule produced by their algorithm is a mirrored schedule.

The Bipartite Traveling Tournament Problem (𝐵𝑇𝑇𝑃) was introduced by Hoshino and

Kawarabayashi [78], where 2n teams are divided into two groups of 𝑛 teams. Each team plays one

home and one away game against all other teams in the other group. These variant models the

scheduling of games for the Nippon Professional Baseball (NPB) league, Japan's largest sports

league. Each NPB team plays 24 inter-league games each season, thus the bipartite structure of

games between two groups was relevant. The problem is NP-complete. Despite its computational

hardness, an optimal schedule for inter-league games was found for the NPB, which consists of

only 12 teams. Hoshino and Kawarabayashi [79] developed a polynomial-time algorithm to solve

the BTTP with an approximation ratio of 1 + 2𝑐/3 + (3 − 𝑐)/3𝑛, where ccc is the approximation

factor of the TSP.

2.4 TTP Complexity Analysis

The Traveling Tournament Problem (TTP) is a well-known challenging problem that is thought to

be extremely NP-hard. Numerous scholars have examined the difficulty of TTP, and various

techniques have been suggested to address this issue. No research, however, has been able to tackle

TTP with more than ten teams in the best way up until this point. The first proof of NP-

completeness for a variant of the original TTP was given by Bhattacharyya [64].

Numerous algorithms, including accurate and heuristic methods, have been developed to solve

TTP. Exact methods provide the best solution for TTP instances, but they are usually not practical

CHAPTER III Traveling tournament problem (TTP)

41

for large instances due to their high computing cost. Integer programming is a methodical technique

to solving TTP that determines the optimal solution using a mathematical model. Conversely,

heuristic procedures take a reasonable amount of time to produce a less-than-ideal result. Heuristics

like as greedy algorithms, local search algorithms, and evolutionary algorithms have been used to

handle TTP scenarios. These methods usually work well and are of high quality, but they do not

guarantee optimality.

The size, complexity, and needed level of optimality all play a role in the method that is selected

to solve TTP. Smaller TTP instances can be solved using accurate approaches, however larger

instances frequently need for heuristic techniques. When choosing an algorithm to solve TTP, it is

crucial to take the trade-off between optimality and computing time into account [65].

3 Conclusion

This chapter provided a comprehensive overview of the Traveling Tournament Problem (TTP), its

origins, and its significance in the field of sports scheduling. The TTP, inspired by Major League

Baseball scheduling, presents a complex combinatorial optimization challenge aimed at

minimizing the total travel distance for teams while adhering to specific constraints.

We delved into the fundamental structure of the TTP, discussing the double round-robin format,

road trips, and home stands. The problem formulation, including the input parameters and

constraints, was thoroughly examined. Various instances and benchmarks of the TTP, such as the

circle instance, National League instance, and constant distance instance, were introduced to

illustrate the diversity and complexity of real-world scheduling problems.

In summary, the TTP is a critical problem in sports scheduling with significant practical

implications. This chapter laid the foundation for understanding the TTP, its variants, and the

existing solution methods. The insights gained from this exploration will serve as a basis for

developing new and innovative approaches to address the challenges posed by the TTP, ultimately

contributing to more efficient and fairer tournament scheduling in the future.

Chapitre IV BBO

Chapitre IV : BBO

Chapitre IV BBO

1 History of BBO

Biogeography-Based Optimization (BBO) is a nature-inspired optimization technique that

considers the distribution of species across different geographic areas. BBO was first introduced

by Dan Simon in 2008 as a novel evolutionary algorithm for solving optimization problems.

2 Biogeography based optimization (BBO)

Mathematical models in biogeography, such as those developed by Mark, describe the migration

of species between habitats, the emergence of new organisms, and extinction processes. In the

context of BBO, a habitat represents an isolated living space, and its quality is evaluated using a

Habitat Suitability Index (HSI). The variables influencing this index, termed Suitability Index

Variables (SIVs), can include factors such as rainfall, vegetation diversity, topographic features,

land area, and temperature.

The main characteristics of the habitats are as follows:

• Habitats that are favorable to the residence (good geographical conditions) of

biological species are called high habitat suitability index (HSI). It is intelligible that

the habitat with a high HSI tends to have a large number of species. Similarly,

habitats which have bad geographical conditions are called low habitat suitability

index.

• High HSI habitats tend to share their features with low HSI habitats by migrating

their species to the low HSI habitats. The shared features re- main in the heightens

HSI habitats while appearing at the same time as new features in the low HSI

habitats.

Figure IV.1 illustrates a linear migration model of species abundance within a single habitat,

emphasizing the relationship between species count, immigration rate (λ), and emigration rate (µ).

As the number of species in a habitat increases, indicative of a good habitat, the immigration rate

Chapitre IV BBO

43

(λ) decreases while the emigration rate (µ) increases. Conversely, when the species count is low,

indicative of a habitat with a low Habitat Suitability Index (HSI), the immigration rate (λ) increases

and the emigration rate (µ) decreases.

Figure IV.1: Evolution of immigration and emigration rates with the number of species

• A habitat is a candidate solution for the optimization problem.

• The quality of the solution (fitness) is analogous to the HSI.

• The variables defining the solution are SIVs.

• A good solution is analogous to a habitat with a high HSI, and thus with a high number of

sp

2.1 BBO implementation

The immigration rate (λ) for each habitat is inversely proportional to the fitness (HSI) value, while

the emigration rate is directly proportional to the HSI value (As shown in Fig. 1): The emigration

(µ) and the immigration rate (λ) of each habitat is formulated as follows:

𝜆𝑠𝑝 = 𝐼 (1 −
𝑠𝑝

𝑠𝑝𝑚𝑎𝑥
)

µ𝑠𝑝 = 𝐸 (
𝑠𝑝

𝑠𝑝𝑚𝑎𝑥
)

Chapitre IV BBO

44

λsp: is the immigration rate in a habitat with sp species.

µsp: is the emigration rate in a habitat with sp species. I: refers to the maximum immigration

rate.

E: is the maximum emigration rate.

sp: the number of species in the habitat.

sp0: is the equilibrium number of species.

spmax: is the maximum number of species that can live in the habitat.

BBO= (𝜏, 𝜓) is a 2-tuple:

𝜏 = 𝜃 {𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑛,𝐻𝑆𝐼} is a function that creates an initial population (set of habitats).

 𝜓 = 𝜆𝑛 ° 𝜇𝑛 ° Ω𝑛𝐻𝑆𝐼𝑛 ° 𝑀𝑛 ° 𝐻𝑆𝐼𝑛

The population transition function initiates by calculating the immigration (λn) and emigration

(µn) rates for each individual using the 2 formulas. One solution, designated as Habitati is then

selected for modification. The immigration rate of Habitati determines whether a Suitable

Index Variable (SIV) will be altered. Following this, the emigration rate (µ) is utilized to select

a high-quality solution Habitatj, whose SIV will migrate (as outlined in Algorithm 1). The

migration process (Ωn) is subsequently applied between the immigrating Habitati and the

emigrating Habitatj, wherein superior SIVs from the good solutions (Habitatj) replace those

in the poorer solutions (Habitati) followed by a recalculation of the Habitat Suitability Index

(HSI).

Finally, mutation (Mn) is performed, followed by another HSI recalculation for each habitat.

In BBO, mutation is analogous to a sudden climatic change within a habitat that may alter its

HSI. This is modeled in BBO through a mutation operator, which randomly modifies a

habitat’s SIV based on the mutation rate.

Chapitre IV BBO

45

Algorithm 1: Migration process

1 for i=1: number habitats do

2 Select a habitat Habitati with probability αλi

3 if Hi is selected then

4 if rand ∈ (0, 1) < λi then

5 Select Habitatj with probability αµi

6 if Hj is selected then

7 Habitati(SIV) ← Habitatj (SIV)

8 End if

9 End if

10 End if

11 end for

Pmut(sp) = α
1−𝑃𝑠𝑝

𝑝𝑚𝑎𝑥

Where:

- Pmut (sp): Mutation rate of a habitat with sp species.

- α: Parameter defined by the user.

- Psp: Probability of having sp species in the habitat.

- Pmax: Probability of having maximum species (max PS).

- Psp: is the probability of existence of sp species in the habitat.

𝑃𝑠𝑝 =

{

𝜆0𝜆1…𝜆𝑠𝑝−1

𝜇1𝜇2…𝜇𝑠𝑝(1+∑
𝜆0𝜆1…𝜆𝑙−1
𝜇1𝜇2…𝜇𝑙

𝑛
𝑙=1)

 1 < 𝑠𝑝 < 𝑛𝑢𝑚𝑏𝑒𝑟 ℎ𝑎𝑏𝑖𝑡𝑎𝑡𝑠

1

1+∑
𝜆0𝜆1…𝜆𝑙−1
𝜇1𝜇2…𝜇𝑙

𝑛
𝑙=1

…𝑠𝑝 = 0

Chapitre IV BBO

46

Algorithm 2: Mutation

1 for j = 1 to number habitats do

2 Use λi and µi to compute Pmuti

3 Select Habitati(j) with probability αPmuti

4 if Habitati(j) is selected then

5 Replace Habitati(j) with a random SIV

6 end if

7

8 end for

3 Conclusion

In this chapter, we have explained the biogeography-based optimization algorithm, First, we

discussed the history of BBO and then provided a detailed description of this algorithm. This

algorithm is designated by the migration of bad solutions towards excellent solutions. We then

addressed the steps of this algorithm, which are construct initial population and migration and

mutation

 Chapitre V : PROPOSED APPROCH

CHAPTER V PROPOSED APPROCH

47

1. Introduction

In the previous chapter, we introduced and discussed the Tournament Traveling Problem (TTP)

and its constraints. In this chapter, we will focus on discussing the proposed approaches to apply

machine and deep learning to enhance Stochastic Local Search (SLS) and BBO algorithms

performance on solving the TTP. First, we will explore the generation of the initial solution and

neighborhood structures that are used in both approaches. Then explain the BBO and its projection

on our problem and how we implement a deep learning model for parameters tuning. Additionally,

we will discover the application of reinforcement learning as neighborhood structure within the

SLS algorithm.

2. BBO for TTP

The Biogeography-Based Optimization (BBO) algorithm is a powerful evolutionary algorithm

inspired by the geographical distribution of biological species. It has been successfully applied to

a wide range of optimization problems. To solve the scheduling challenge of The Traveling

Tournament (TTP), we utilize the BBO algorithm. First, we will investigate the implementation of

Neighborhood Structures and several swap methods. Then we will explore the BBO

implementation using these methods.

2.1.Initialize schedule

Starting with creating an initial schedule that satisfies the DRRT (Double Round Robin

Tournament) constraint. We create this structure using graph theory modeling, as follows:

We number the graph's vertices from 1 to n, where n represents the number of teams. We center

the top n vertices and form a circle around them.

On the first day, we plan games between (Team 1 and Team n), (Team 2 and Team n−1), (Team 3

and Team n−2), and so on, until the game between (Team n/2 and Team n/2 + 1).

On the following day, we repeat the previous day's pairings by rotating the team couplings

clockwise.

CHAPTER V PROPOSED APPROCH

48

Using this method will give us an initial single round robin schedule. We mirror it to get a schedule

that verifies the DRRT constraint. The following tables shows the final output for a tournament

with n = 4.

Table V.1: A Double Round Robin Tournament (DRRT) schedule.

To find a feasible configuration that satisfies the remaining constraints specifically AtMost,

NoRepeat and DDRT. We utilize a cost function to penalize configurations that break the

constraints and neighborhood structures to navigate the search space. Additionally, we propose to

use a local search method which is VNS to construct these feasible schedules.

 The cost function is combination of two terms. The first term is to penalize constraints

violation AtMost and NoRepeat. The second term is about the total traveled distance.

 The penalty At-most 𝑓 𝐴𝑡𝑚𝑜𝑠𝑡(𝑆) is the total number of times the teams play more than three

consecutive home games or three consecutive away games and the penalty 𝑓𝑁𝑜 𝑟𝑒𝑝𝑒𝑎𝑡 (𝑆) is the

total number of times that the game (ti, tj) is followed immediately by (tj , ti) in the schedule S.

 Now, we define the following equations:

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝐶𝑜𝑠𝑡(𝑆) = 𝑓𝐴𝑡𝑀𝑜𝑠𝑡 (𝑆) + 𝑓𝑁𝑜𝑅𝑒𝑝𝑒𝑎𝑡(𝑆) (V.1)

𝐶𝑜𝑠𝑡 (𝑆) = 𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝐶𝑜𝑠𝑡(𝑆) × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑐𝑜𝑠𝑡(𝑆) (V.2)

N = 4

Rounds

1 2 3 4 5 6

Teams

1 4 3 2 -4 -3 -2

2 3 -4 -1 -3 4 1

3 -2 -1 4 2 1 -4

4 -1 2 -3 1 -2 3

CHAPTER V PROPOSED APPROCH

49

2.2. Neighborhood structures

We utilize four neighborhood structures, as stated below:

N1 swap home: The Swap Home move is an operation that swaps the home and away roles of two

teams involved in a specific match. This technique helps to explore alternative scheduling

configurations while maintaining the tournament's overall structure. Given a schedule 𝑆 and teams

𝑡𝑖and 𝑡𝑗 , the Swap Home move is denoted as 𝑆𝑤𝑎𝑝𝐻𝑜𝑚𝑒 (𝑆, 𝑡𝑖, 𝑡𝑗) . For each round 𝑟 in the

schedule, determine if teams 𝑡𝑖and 𝑡𝑗 are playing against each other, if so exchange their

home\away roles. For example, if we apply 𝑆𝑤𝑎𝑝𝐻𝑜𝑚𝑒 (𝑆, 1, 3) the results will be

Table V.2: 𝑆𝑤𝑎𝑝𝐻𝑜𝑚𝑒 (𝑆 ,1, 3) results.

N2 swap round: The Swap Round move involves exchanging the positions of two rounds in the

schedule. This helps explore different orderings of the rounds while keeping the matchups within

each round intact. Given a schedule 𝑆 and two rounds 𝑟1 and 𝑟2, the Swap Round move is denoted

as 𝑆𝑤𝑎𝑝𝑅𝑜𝑢𝑛𝑑 (𝑆, 𝑟1, 𝑟2). This technique Swap the positions of all the games scheduled in round

𝑟1 with those in round 𝑟2

N = 4

Rounds

1 2 3 4 5 6

Teams

1 4 -3 2 -4 3 -2

2 3 -4 -1 -3 4 1

3 -2 1 4 2 -1 -4

4 -1 2 -3 1 -2 3

CHAPTER V PROPOSED APPROCH

50

Table V.2: 𝑆𝑤𝑎𝑝𝑅𝑜𝑢𝑛𝑑 (𝑆 ,1, 4) results.

N3 swap team: The Swap Team move swap the entire schedules of two given teams except the

rounds they play against each other’s. Given a schedule 𝑆 and two teams 𝑡𝑖and 𝑡𝑗 , the Swap Team

move is denoted as 𝑆𝑤𝑎𝑝𝑇𝑒𝑎𝑚 (𝑆, 𝑡𝑖, 𝑡𝑗)

Table V.3: 𝑆𝑤𝑎𝑝𝑇𝑒𝑎𝑚 (𝑆 ,2, 4) results.

N4 swap path: The Swap Path move involves transferring the entire schedule of one team from one

schedule to another and apply all the necessary adjustment. This helps explore different scheduling

configurations across different schedules while keeping the overall structure of the tournaments

intact. Given two schedules 𝑆1 and 𝑆2 , and a team 𝑡𝑖, the Swap Path move is denoted as

𝑆𝑤𝑎𝑝𝑃𝑎𝑡ℎ(𝑆1, 𝑆2, 𝑡𝑖).

N = 4

Rounds

1 2 3 4 5 6

Teams

1 -4 -3 2 4 3 -2

2 -3 -4 -1 3 4 1

3 2 1 4 -2 -1 -4

4 1 2 -3 -1 -2 3

N = 4

Rounds

1 2 3 4 5 6

Teams

1 -2 -3 4 2 3 -4

2 1 -4 -3 -1 4 3

3 4 1 2 -4 -1 -2

4 -3 2 -1 3 -2 1

CHAPTER V PROPOSED APPROCH

51

Table V.4: Feasible Schedule S1.

Table V.5: 𝑆𝑤𝑎𝑝𝑃𝑎𝑡ℎ (𝑆 , 𝑆1, 1) results.

VNS works on a variety of neighborhoods. In our study, we use three (k = 3) neighborhood

structures: N1 (Swap Home), N2 (Swap Round), and N3 (Swap Team). At each iteration, we

choose one of the three structures to generate neighbor solutions.

2.3.BBO implementation

2.3.1. Initialize population

We generate an initial population of an 𝑛 candidate solution where each element (habitat) is a

schedule that satisfies the DRRT. To enhance the initial solution, we apply the Variable

Neighborhood Search (VNS) algorithm.

N = 4

Rounds

1 2 3 4 5 6

Teams

1 -2 4 -3 2 3 -4

2 1 3 4 -1 -4 -3

3 -4 -2 1 4 -1 2

4 3 -1 -2 -3 2 1

N = 4

Rounds

1 2 3 4 5 6

Teams

1 -2 4 -3 2 3 -4

2 1 3 4 -1 -4 -3

3 -4 -2 1 4 -1 2

4 3 -1 -2 -3 2 1

CHAPTER V PROPOSED APPROCH

52

Algorithm 1: InitializePopulation

1 Input: populationSize

2 Output: population

3 Population ← []

4 S ← 𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐞𝐃𝐑𝐑𝐓(𝐓𝐓𝐏𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞)

5 For i in populationSize do

6 S ← 𝐕𝐍𝐒(𝐒)

7 Population.append(S)

8 Return Population

2.3.2. Evaluate population

We calculate the fitness, or the total cost of each schedule based on the total travel distance and

constraint violations then we sort the population from the worst to the best that means the position

of the solution indicate its quality.

2.3.3. Migrate and mutation

In the migration process, we take two solutions from the population based on the migration rate,

use the 𝑆𝑤𝑎𝑝𝑃𝑎𝑡ℎ structure to move an entire schedule of one team from the best solution and aim

to integrate that schedule in the worst solution. Following that we execute the mutation either it

happens or not based on the mutation rate.

CHAPTER V PROPOSED APPROCH

53

Algorithm: Migration

 Input: Population, migrationRate

 Output: Population

1 Select Hi with probability 𝛂𝛌𝐢

2 If Hi selected then

3 For j in n do

4 Select Hj with probability 𝛂𝛍𝐣

5 If Hj selected then

6 t ← Extract the team that has the minimum path

7 S𝐰𝐚𝐩𝐏𝐚𝐭𝐡 (𝐇𝐣 , 𝐇𝐢, 𝐭)

8 End if

9 End for

10 End if

11 Return Population

Then, we repeat the entire process of calculating costs, sorting the table, performing migration, and

executing mutation for a predefined number of generations.

Algorithm: BBO

 Inputs: nbumberOfGenerations, populationSize, migrationRate, mutaionRate

 Output: BestSchedu

1 Call InitializePopulation(populationSize)

2 for i in nbumberOfGenerations do

3 Population ← Evaluate Population //calculate fitness and sort the list

4 Calculate 𝐬, 𝛌, 𝛍 for each habitat // 𝐬 = 𝒍𝒏 (𝐢𝐧𝐝𝐞𝐱 + 𝟏)

5 Call migration (migrationRate)

6 call Mutation (mutaionRate)

7 end for

8 Return BestSchedul

CHAPTER V PROPOSED APPROCH

54

Figure V.1: BBO diagram

3. SLS with Reinforcement learning

During our studies on the TTP problem, we observed that the order of the rounds plays a significant

role in minimizing the total traveled distance. This is because the order in which the games are

played may have a significant impact on the entire travel schedule and, as a result, the teams total

distance traveled. Trying all possible combinations of round orders is an exhaustive search can be

very time-consuming, especially as the number of teams increases and considering that this process

is repeated for every deferent set of rounds. We find a lot of similarities between this process and

the traveling salesman problem (TSP) with some differences due to TTP’s constraints. Our task

can be split into two distinct components; manipulate the rounds structure to explore feasible

regions, then uses a reinforcement learning model to solve the TSP corresponding to the current

schedule structure.

Mutation

Select habitat

generate population

evaluate population

Migration

Migrate population

Number

of gen

Output

YES

NO

CHAPTER V PROPOSED APPROCH

55

The following steps demonstrate the modeling of a reinforcement learning model as a

neighborhood structure in the sls heuristic.

3.1.Extract TSP

• Inputs:

A double round robin tournament timetable

Integer distance matrix

Teams 1 2 3 4

1 0 745 665 929

2 745 0 80 337

3 665 80 0 380

4 929 337 380 0

Table V.6: NL4 integer distance matrix

Table V.1: A Double Round Robin Tournament (DRRT) schedule.

• Output

TSP matrix

Possible actions for each round

Round

(city)

0 1 2 3 4 5 6

N = 4

Rounds

1 2 3 4 5 6

Teams

1 4 3 2 -4 -3 -2

2 3 -4 -1 -3 4 1

3 -2 -1 4 2 1 -4

4 -1 2 -3 1 -2 3

CHAPTER V PROPOSED APPROCH

56

0 0 1009 1002 1125 1009 1002 1125

1 1009 0 2011 1490 2018 1490 2011

2 1002 2011 0 1974 1974 2004 2011

3 1125 1490 1974 0 1974 1490 2250

4 1009 2018 1974 1974 0 797 797

5 1002 1490 2004 1490 797 0 797

6 1125 2011 2011 2250 797 797 0

Table V.7: TSP matrix for the initial schedule

Round (city) 0 1 2 3 4 5 6

0 0 1 1 1 1 1 1

1 1 0 1 1 0 1 1

2 1 1 0 1 1 0 1

3 1 1 1 0 1 1 0

4 1 0 1 1 0 1 1

5 1 1 0 1 1 0 1

6 1 1 1 0 1 1 0

Table V.8: Possible actions matrix.

We consider the rounds as the cities and calculate the distance traveled by all the teams between

the rounds. We extract a new matrix that represents the distance between the rounds which is the

TSP representation of the current schedule. The first city (index = 0) represents the starting point

to make sure that all teams begin in their home city and must return there after the tournament last

constraints. The second matrix represents the possible action for each round (city) where 1 means

that we can move from round 𝑖 to round 𝑗 and 0 indicate that we can’t. Unlike traditional TSP it

seems that the cities are not fully connected to each other that is due to the NoRepeat constraint.

CHAPTER V PROPOSED APPROCH

57

3.2.Reinforcement learning (RL) for TSP

Machine and deep learning approaches shows a good potential for solving the TSP such ass GNN

[80] and ANN [81]. We chose RL since it does not require any training data and due to its ability

the dynamic change of the constraints over the process.

3.2.1. Environment :

• Observation: The observation visible to the agent is a (numCities + 1) length integer array,

where

o 1 indicates that the round has been visited

o 0 indicates that the round is yet to be visited

• Action space: the agent can only take actions in a discrete space, which can also be described

as [0, numRounds]. Action 𝑥 will take the agent to round 𝑥

• Reward: a visit to a new round will reward the agent with the cost of the trip between nodes.

We calculate the reward as follows: 𝑅𝑒𝑤𝑎𝑟𝑑 = 1 /𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , so that shorter connections

will have more weight and to avoid the AtMost constraints we define a function that returns

the available actions based on the current state, we use two lists to calculate the consecutive

home and away games and check in the not selected rounds if it will violate the constraints

so it masked that round.

The 𝑟𝑒𝑠𝑒𝑡(𝑠𝑒𝑙𝑓) function Restart the environment for experience replay. Returns the first state in

our case its always the round 0.

The 𝑠𝑡𝑒𝑝(𝑠𝑒𝑙𝑓, 𝑎𝑐𝑡𝑖𝑜𝑛) function Takes an action in a given state based on the current path to avoid

constraints violation and it returns the next state and the reward of such an action

At the end the model we define a function to rebuild the TTP from the TSP path by eliminating

both endpoints and follows the TSP path to order the rounds.

CHAPTER VI: NUMERUCAL RESULT

CHAPTER VI NUMERUCAL RESULT

63

1 Introduction

In this final chapter, we present the numerical results obtained from our proposed approach for

solving the Traveling Tournament Problem (TTP). Our approach leverages a deep learning model

to predict optimal Biogeography-Based Optimization (BBO) parameters based on training data,

aiming to enhance the performance of the BBO algorithm.

4. Numerical Results

In this section, we present the numerical results obtained from our experiments on solving the

Traveling Tournament Problem (TTP) using the proposed approach. The results are summarized

in a table that provides insights into the performance of our method. The table includes columns

such as Instance, Best Known, Initial Solutions, Best Solution. The Instance column indicates the

specific dataset used, while the Best-Known column represents the known optimal solution.

The Initial Solutions column displays the objective values before optimization, and the Best

Solution column shows the optimal or near-optimal solutions obtained by our approach.

The results obtained from our experiments using the proposed approach for the TTP are

summarized in a table. This table provides important information about the performance of our

method. It includes

columns such as Instance, Best Known, Initial Solutions, Best Solution. These columns provide

insights into the quality and efficiency of our approach. By comparing the Best Solution values

with the Best-Known solutions, we can assess the quality of our method's results.

between our best solution and the best-known solution. Overall, these numerical results offer a

comprehensive analysis of our proposed approach's performance and its ability to produce

competitive solutions for the challenging TTP.

We compared the results of this new method with the cumulative results of recent studies, which

in turn achieved very similar results.

CHAPTER VI NUMERUCAL RESULT

64

The benchmarks consist of a set of teams and their corresponding distances or times between

venues.

Here are a few examples of TTP benchmarks:

NL4:

 Team 1 Team 2 Team 3 Team 4

Team 1 0 745 665 929

Team 2 745 0 80 337

Team 3 665 80 0 380

Team 4 929 337 380 0

Table VI.1: NL4 distance matrix

Instance Best known Initial solutions BBO without

DL

BBO with DL Gap %

Con4 17 30 17 17 0

Con6 43 82 43 43 0

Con8 80 148 80 80 0

Galaxy4 416 477 477 416 0

Galaxy6 1365 1578 1408 1388 -1.68

Galaxy8 2373 3325 2651 2492 -5.01

NL4 8276 8413 8579 8276 0

NL6 23916 26893 24526 24073 -0.65

NL8 39947 57759 45628 43195 -8.13

Table VI.2: Numerical results found by the overall approach

Parameter Results:

To validate our approach, we conducted experiments using various instances of the TTP, including

NL4, NL6, NL8, CON4, CON6, and CON8. For each instance, we applied our deep learning model

CHAPTER VI NUMERUCAL RESULT

65

to predict the optimal BBO parameters and then ran the BBO algorithm with these parameters. The

results are summarized as follows:

 Population

size

generations Migration

rate

Mutation

rate

Max

iteration

NL4 19 19 0.48 0.48 97

NL6 140 139 0.31 0.44 305

NL8 172 118 0.09 0.12 355

CON4 29 30 0.5 0.36 34

CON6 106 109 0.5 0.47 43

CON8 87 87 0.24 0.46 230

Galaxy4 27 29 0.49 0.5 35

Galaxy6 91 102 0.18 0.36 150

Galaxy8 113 109 0.11 0.48 230

5. Deep learning model Performance Representation

Time:

This figure shows the training and validation loss curves over 200 epochs for our deep learning

model used in optimizing the Biogeography-Based Optimization (BBO) parameters. The x-axis

represents the number of epochs, while the y-axis indicates the loss value. The blue line depicts the

training loss, and the grey line represents the validation loss. Initially, both the training and

validation losses decrease rapidly, indicating that the model is learning effectively from the data.

As the epochs progress, the training loss continues to decrease slightly and stabilizes, showing that

the model is fitting well to the training data. Meanwhile, the validation loss also decreases and

stabilizes, demonstrating that the model generalizes well to unseen data without significant

overfitting. This figure is crucial for assessing the model's performance and ensuring that it

achieves a good balance between fitting the training data and generalizing to new data.

CHAPTER VI NUMERUCAL RESULT

66

Distribution:

This figure shows the distribution of weights in one of the layers of the deep learning model over

200 epochs of training. The x-axis represents the weight values, while the y-axis shows the epoch

number. The orange shading illustrates the density of weight values at each epoch. Initially, the

weights have a narrow distribution around a central value, but as training progresses, the

distribution becomes wider and more spread out. This behavior indicates that the model is adjusting

its weights to better capture the underlying patterns in the data, leading to improved learning. The

spreading of the weight distribution is a sign of the model's adaptation and optimization process as

it fine-tunes its parameters to minimize the loss function. Monitoring the weight distribution helps

in understanding the training dynamics and ensuring that the model parameters are updated

effectively.

FigureVI.1: Training and Validation Loss over Epochs

CHAPTER VI NUMERUCAL RESULT

67

Histogramme:

This figure depicts the distribution of biases in one of the layers of the deep learning model across

200 epochs of training. The x-axis represents the bias values, while the y-axis shows the epoch

number. The orange shading indicates the density of bias values at each epoch. Initially, the biases

are concentrated around a specific value, but as training progresses, the distribution broadens and

becomes more varied. This broadening suggests that the model is actively adjusting its biases to

better fit the training data, which is a crucial aspect of the learning process. By examining the

evolution of bias distributions, we can gain insights into how the model parameters are being

optimized over time. This information is valuable for understanding the training dynamics and

ensuring the model's effective learning and generalization capabilities.

Figure VI.2: Gradient Distribution of the Model

CHAPTER VI NUMERUCAL RESULT

68

6. Limitations

While our proposed approach has demonstrated promising results in solving the Traveling

Tournament Problem (TTP) using deep learning-enhanced Biogeography-Based Optimization

(BBO), there are several limitations to consider. The deep learning model and the BBO algorithm

require significant computational resources, especially for large instances of the TTP, which can

limit the applicability of our approach to smaller datasets or environments with high computational

power. Although our method performs well on benchmark instances like NL4, NL6, and NL8, its

scalability to even larger instances remain uncertain, as performance may degrade or become

impractical due to increased computational demands. The deep learning model is trained on

specific instances of the TTP, and its ability to generalize to entirely new instances or different

types of scheduling problems may be limited, necessitating further research to evaluate the model’s

robustness across diverse problem domains. The performance of the BBO algorithm is highly

sensitive to the chosen hyperparameters, and while our model predicts these parameters, small

changes can lead to significant variations in results, indicating a need for precise tuning. The

effectiveness of the deep learning model also relies heavily on the quality and diversity of the

training data; insufficient or biased training data can lead to suboptimal parameter predictions and

hence, poorer optimization performance. Lastly, the convergence of the BBO algorithm can be

Figure VI.3: Bias Distribution Over Time

CHAPTER VI NUMERUCAL RESULT

69

slow for certain instances, leading to longer computation times. Addressing these limitations will

be crucial for enhancing the practical applicability and robustness of our proposed method in

solving large-scale and dynamic instances of the Traveling Tournament Problem.

7. Conclusion

In this study, we presented a novel approach for solving the Traveling Tournament Problem (TTP)

by leveraging a deep learning model to predict optimal parameters for the Biogeography-Based

Optimization (BBO) algorithm. Our method aimed to enhance the performance and efficiency of

the BBO algorithm by accurately predicting the best parameters based on training data, thus

improving the overall solution quality for various instances of the TTP.

The numerical results demonstrated that our proposed approach is capable of producing

competitive solutions, achieving near-optimal or optimal results for benchmark instances such as

NL4, NL6, NL8, CON4, CON6, and CON8. The comparison of our results with existing methods

showed that our approach can match or surpass the performance of state-of-the-art techniques,

highlighting the potential of integrating deep learning with optimization algorithms.

Despite the promising outcomes, we also identified several limitations, including the high

computational demands, the potential need for extensive hyperparameter tuning, and the challenges

of generalizing the deep learning model to new or different problem instances. These limitations

point to areas for future research, such as developing more efficient computational techniques,

exploring adaptive hyperparameter tuning methods, and extending the model's applicability to a

broader range of scheduling problems.

In conclusion, our study contributes a significant advancement in the application of machine

learning to combinatorial optimization problems. The integration of deep learning with the BBO

algorithm represents a powerful combination that can improve the efficiency and effectiveness of

solving the TTP. Future work should focus on addressing the identified limitations and further

refining the approach to enhance its robustness and scalability, ultimately contributing to more

efficient and fairer tournament scheduling in practical applications.

70

Conclusion

The Traveling Tournament Problem (TTP) represents a challenging optimization problem with

significant practical applications in sports scheduling. This thesis has provided a comprehensive

overview of the TTP, discussed its complexity, and reviewed various methods and formulations

for solving it. Throughout this work, we have emphasized the importance of the TTP in sports

scheduling and optimization and have highlighted the benefits and limitations of our proposed

approach integrating Biogeography-Based Optimization (BBO) and Stochastic Local Search (SLS)

algorithms enhanced by machine learning and deep learning techniques.

Our proposed methodology demonstrated promising results in optimizing tournament schedules,

reducing total travel distance, and adhering to the specific constraints of the TTP. The integration

of deep learning for parameter tuning and reinforcement learning within the SLS algorithm has

shown to be effective in addressing the complexities of the TTP.

Looking forward, our future research will focus on enhancing the efficiency and scalability of our

solutions, particularly in tackling larger TTP instances. We plan to explore alternative strategies to

improve the effectiveness of our approach, such as refining the machine learning models and

investigating other evolutionary algorithms. Additionally, we aim to expand the applicability of

our methods to other domains, further bridging the gap between traditional optimization techniques

and modern machine learning approaches.

By addressing these challenges, we hope to advance the field of TTP research and its practical

applications, contributing to more efficient and effective solutions in sports scheduling and beyond.

71

References

1. Pardalos, P. M., & Resende, M. G. C. (2014). Introduction to Optimization Methods. Springer.

2. Chong, E. K. P., & Żak, S. H. (2013). An Introduction to Optimization (4th ed.). Wiley.

3. Neller, T. W. (1994). State Space Search. Springer.

4. Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). An Introduction to Metaheuristics for

Optimization. Springer.

5. Wang, J. (Ed.). (2014). Encyclopedia of Business Analytics and Optimization. IGI Global.

6. Tan, Y., Shi, Y., & Niu, B. (Eds.). (2014). Fireworks Algorithms and Swarm Intelligence.

Springer.

7. MathWorks. (n.d.). MathWorks. Retrieved June 15, 2024, URL: https://www.mathworks.com/

8. Dantong, X. (n.d.). Lecture Notes. University of Texas at Dallas. Retrieved June 15, 2024

9. Nie, Q. (n.d.). Numerical Optimization. University of California, Irvine. Retrieved June 15,

2024

10. Alseda, L. (n.d.). Constrained Optimization. Universitat Autònoma de Barcelona. Retrieved

June 15, 2024

11. Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. Wiley.

12. Balas, E., & Toth, P. (1983). “Branch and Bound Methods for the Traveling Salesman

Problem”. Management Science Research Report, (MSRR 488).

13. Zitouni, F. (2021). Recherche opérationnelle avancée.

https://www.mathworks.com/

CHAPTER VI NUMERUCAL RESULT

72

 14. Bellman, R. E. (2021). Dynamic Programming. In Dynamic Programming. Princeton

University Press.URL: https://doi.org/10.1515/9781400835386

15. Fomin, F. V., & Kratsch, D. (2010). Exact Exponential Algorithms. Springer-Verlag.

16. Gomes, C. P., & Williams, R. (2005). Approximation Algorithms. In E. K. Burke & G. Kendall

(Eds.), Search Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques p. 557–585. Springer US.

17. Southwell, R. V. (1946). Relaxation Methods in Theoretical Physics. Clarendon Press.

18. Frankel, S. P. (1950). Convergence rates of iterative treatments of partial differential equations.

"Mathematical Tables and Other Aids to Computation, 4"(30), 65-75.

19. Young, D. M. (1950). Iterative methods for solving partial differential equations of elliptic type

(Doctoral dissertation). Harvard University.

20. Kahan, W. (1958). Gauss–Seidel methods of solving large systems of linear equations

(Doctoral dissertation). University of Toronto.

21. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220(4598), 671-680.

22. Glover, F. (1989). Tabu Search, Part I. *ORSA Journal on Computing, 1*(3), 190-206.

23. Sampson, J. R. (1976). Adaptation in natural and artificial systems. In J. H. Holland.

 24. Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A new meta-heuristic. In

Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (pp. 1470-1477). IEEE.

 25. Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle

routing problems. *European Journal of Operational Research, 225*(1), 1-11.

https://doi.org/10.1515/9781400835386

CHAPTER VI NUMERUCAL RESULT

73

26. Simon, D. (2008). Biogeography-based optimization. *IEEE Transactions on Evolutionary

Computation, 12*(6), 702-713. https://doi.org/10.1109/TEVC.2008.919004

27. Ma, H., & Simon, D. (2011). Blended biogeography-based optimization for constrained

optimization. *Engineering Applications of Artificial Intelligence, 24*(3), 517-525.

28. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671

29. Moumita Ghosh and A. Thirugnanam Introduction to Artificial Intelligence

30. Rupali , K., & Deepali , S. (2018). APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN

HUMAN LIFE. International Journal of Research -GRANTHAALAYAH.

31.The levels of artificial intelligence application in human resource systems January 202 *The

European Journal of Applied Economics* 19(2)

32. “A Brief Review of Machine Learning and its Application” WANG Hua MA Cuiqin

33. O. Theobald, Machine Learning For Absolute Beginners, London, UK: Scatterplot press, 2017.

34. “An overview of machine learning classification techniques” Amer F.A.H. ALNUAIMI1* and

Tasnim H.K. ALBALDAWI

35. S. Bansal, "ANALYTIXLABS," MACHINE LEARNING What is Classification Algorithm in

Machine Learning? With Examples, 25 JANUARY 2023. [Online]. URL:

https://www.analytixlabs.co.in/blog/classification-in-machine-learning

36.

 Murphy, K. P. (n.d.). Machine Learning A Probabilistic Perspective

https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1126/science.220.4598.671
https://www.analytixlabs.co.in/blog/classification-in-machine-learning

CHAPTER VI NUMERUCAL RESULT

74

37. V. Rastogi, S. Satija, P. K. Sharma and S. Singh, "MACHINE LEARNING

ALGORITHMS:OVERVIEW," International Journal of Advanced Research in Engineering and

Technology (IJARET), vol. 11, no. 9, pp. 512-517, 2020.

38. https://www.javatpoint.com/unsupervised-machine-learning

39. Algorithms for Reinforcement Learning by Morgan & Claypool Publishers Csaba Szepesv´ari

June 9, 2009∗

40. M. Yuval, B. Yaman and Ö. Tosun, "Classification Comparison of Machine Learning

Algorithms Using Two Independent CAD Datasets," Mathematics , vol. 10, no. 3, p. 311, 2022.

41. R. V. K. Reddy and U. R. Babu, "A Review on Classification Techniques in Machine

Learning," International Journal of advance research in science and engineering, vol. 7, no. 3, pp.

40-47, 2018.

42. A. Ram and Meenakshi, "Short Review on Machine Learning andits Application,"

SPECIALUSIS UGDYMAS / SPECIAL EDUCATION, vol. 1, no. 43, pp. 9894-9902, 2022.

43. Mohan Zhang “Unsupervised Learning Algorithms in Big Data: An Overview” Beijing 21st

century international school, Beijing, China

44. A. Graves, A. Mohamed, and G. E. Hinton. Speech recognition with deep recurrent neural

networks. CoRR, abs/1303.5778, 2013.

45. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

46. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,

61, 85-117.

47. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 25,

https://www.javatpoint.com/unsupervised-machine-learning

CHAPTER VI NUMERUCAL RESULT

75

48. Esteva, A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural

networks. Nature, 542(7639), 115-118.

49. B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka, P.

Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. A. Mujica, A. Coates, and A. Y. Ng. An empirical

evaluation of deep learning on highway driving.

49. B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka, P.

Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. A. Mujica, A. Coates, and A. Y. Ng. An empirical

evaluation of deep learning on highway driving.

50.Vaswani, A., et al. (2017). Attention is all you need. Advances in Neural Information Processing

Systems

52. - Kelly Easton, George Nemhauser, and Michael Trick. The traveling tournament problem

description and benchmarks. In Toby Walsh, editor, Principles and Practice of Constraint

Programming — CP 2001, pages 580–584, Berlin, Heidelberg, 2001.Springer Berlin Heidelberg.

53. -Constraint Programming for the Travelling Tournament Problem By Gan Tiaw Leong

54. Kelly Easton, George Nemhauser, and Michael Trick. Solving the Travelling Tournament

Problem: A Combined Integer Programming and Constraint Programming Approach. In Edmund

Burke and Patrick De Causmaecker, editors, Practice and Theory of Automated Timetabling IV,

pages 100–109, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

55. S. Urrutia and Celso C. Ribeiro. Maximizing breaks and bounding solutions to the mirrored

traveling tournament problem. *Discrete Applied Mathematics*, 154(13):1932 1938, 2006. Traces

of the Latin American Conference on Combinatorics, Graphs and Applications.

56. N. Fujiwara, S. Imahori, T. Matsui, and R. Miyashiro. Constructive algorithms for the constant

distance traveling tournament problem. PATAT’06, page 135–147, Berlin, Heidelberg, 2006.

Springer-Verlag.

CHAPTER VI NUMERUCAL RESULT

76

57. M. Trick. “Challenge traveling tournament instances”. URL

https://mat.tepper.cmu.edu/TOURN/. Accessed: 2022-05-12.

58. R. Bhattacharyya. Complexity of the unconstrained traveling tournament problem. *Operations

Research Letters*, 44(5):649–654, 2016.

59. C. Thielen and S. Westphal. Complexity of the traveling tournament problem. *Theoretical

Computer Science*, 412:345–351, 02 2011.

60. D. Chatterjee. “Complexity of traveling tournament problem with trip length more than three”,

2021. arXiv:2110.02300.

61. C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament problem.

European Journal of Operational Research, 179(3):775–787, 2007.

62. Kevin K.H. Cheung. “Solving mirrored traveling tournament problem benchmark instances

with eight teams”. Discrete Optimization, 5(1):138–143, 2008.

63. Kevin K.H. Cheung.” A benders approach for computing lower bounds for the mirrored

traveling tournament problem”. Discrete Optimization, 6(2):189–196, 2009.

64. A. Jaafari et al., “Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf

optimizer and biogeography-based optimization algorithms for spatial prediction of landslide

susceptibility,” CATENA, vol. 175, pp. 430–445, Apr. 2019

65. M. Ghobaei-Arani, “A workload clustering based resource provisioning mechanism using

Biogeography based optimization technique in the cloud based systems,” Soft Comput.,vol. 25, no.

5, pp. 3813–3830, Mar. 2021, doi: 10.1007/s00500-020-05409-2.

66. M. Khelifa, D. Boughaci Computing and Informatics, Vol. 37, 2018, 1386{1410, doi:

10.4149/cai 2018 6 1386.

67. S.Imahori, T. Matsui, and R. Miyashiro. “A 2.75-approximation algorithm for the

unconstrained traveling tournament problem”. Annals of Operations Research, 218, 10 2011.

https://mat.tepper.cmu/

CHAPTER VI NUMERUCAL RESULT

77

68. D. de Werra. Some models of graphs for scheduling sports competitions. *Discrete Applied

Mathematics*, 21(1):47–65, 1988.

69. R.Thomas Campbell and DS Chen. “A minimum distance basketball scheduling Problem”.

Management science in sports, 1976

70. Clemens Thielen and Stephan Westphal. Approximation algorithms for TTP(2). Mathematical

Methods of Operations Research, 76:1–20, 2012.

71. Shinji Imahori. A 1 + O(1/n) approximation algorithm for TTP(2), 2021. arXiv:2108.08444.

72. J.Zhao and Mingyu Xiao. The traveling tournament problem with maximum tour length two:

A practical algorithm with an improved approximation bound. In Proceedings of the Thirtieth

International Joint Conference on Artificial Intelligence, International Joint Conferences on

Artificial Intelligence Organization, 08 2021.

73. Mingyu Xiao and Shaowei Kou. “An Improved Approximation Algorithm for the Traveling

Tournament Problem with Maximum Trip Length Two”. In Piotr Faliszewski, A.Muscholl, and

R.Niedermeier, editors, Proceedings in Informatics (LIPIcs, Dagstuhl, Germany, 2016. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

74. Diptendu Chatterjee and Bimal Kumar Roy. An improved scheduling algorithm for traveling

tournament problem with maximum trip length two. 2021. arXiv:2109.09065.

75. Shinji Imahori, Ryuhei Miyashiro, and Tomomi Matsui. An approximation algorithm for the

traveling tournament problem. Annals of Operations Research, 194:317–324, 2012.

76. Stephan Westphal and Karl Noparlik. A 5.875-approximation for the traveling tournament

problem. *Annals of Operations Research*, 218:1–14, 01 2010.

77. D. Yamaguchi, S. Imahori, R. Miyashiro, and T. Matsui. An improved approximation algorithm

for the traveling tournament problem. *Algorithmica*, 61:1077–1091, 01 2011.

CHAPTER VI NUMERUCAL RESULT

78

78. R. Hoshino and K. Kawarabayashi. “The inter-league extension of the traveling tournament

problem and its application to sports scheduling”. Proceedings of the AAAI Conference on

Artificial Intelligence, 25(1):977–984, 08 2011.

79. R. Hoshino and K. Kawarabayashi. “An approximation algorithm for the bipartite traveling

tournament problem”. Mathematics of Operations Research,

38(4):720–728, 2013.

80.Chaitanya K. Joshi , T. Laurent, and X. Bresson “Graph Neural Networks for the Travelling

Salesman Problem” NTU, Singapore, LMU, LA, USA 22nd October, 2019

81.S. Roy, S. Sarma, S. Chakravorty, S. Maity “A COMPARATIVE STUDY OF VARIOUS

METHODS OF ANN FOR SOLVING TSP PROBLEM”

