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Abstract 

This thesis addresses the Traveling Tournament Problem (TTP), an NP-hard combinatorial 

optimization challenge in sports scheduling. The TTP is crucial in the sports community due 

to its impact on league management budgets, where suboptimal schedules can lead to significant 

financial losses. To tackle this problem, we propose an innovative approach that integrates 

machine learning and deep learning techniques to enhance the performance of Stochastic 

Local Search (SLS) and Biogeography-Based Optimization (BBO) algorithms. It is well 

known that the main challenge in the evolutionary algorithms is to set the best parameters. we 

employ a deep learning model for parameter tuning. Additionally, we proposed a novel 

approach to incorporate reinforcement learning within the SLS algorithm during the 

exploitation phase to enhance its performance. The computational experiments indicate that our 

method produces competitive and promising results, showcasing its potential for effective TTP 

optimization. 

Key words: Traveling Tournament Problem (TTP), NP-hard combinatorial optimization, 

machine learning, deep learning, Stochastic Local Search (SLS), Biogeography-Based 

Optimization (BBO), evolutionary algorithms. 
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 الملخص

 یحتل.  وهي مشكلة تحسین تركیبیة صعبة في جدولة الریاضات   (TTP)تتناول هذه الاطروحة مشكلة السفر في البطولات  

TTP  أهمیة كبیرة ضمن المجتمعات الریاضیة، حیث یمكن أن تتسبب التحسینات غیر المثلى في خسائر مالیة في میزانیة

لمعالجة هذه المشكلة، نقترح نهجًا مبتكرًا یدمج التعلم الآلي وتقنیات التعلم العمیق لتعزیز أداء خوارزمیات    .إدارة الدوریات

القائم على الجغرافیا الحیویة )SLSالبحث المحلي العشوائي ) التحدي الرئیسي في  BBO( والتحسین  (. من المعروف أن 

ا لضبط  العمیق  التعلم  نموذج  نستخدم  الإعدادات.  أفضل  تحدید  التطوریة هو  ذلك،  الخوارزمیات  إلى  بالإضافة  لإعدادات. 

أثناء مرحلة الاستغلال لتحسین أدائها. تشیر التجارب الحسابیة   SLSاقترحنا نهجًا جدیداً لدمج التعلم المعزز ضمن خوارزمیة  

  الفعال. TTPإلى أن طریقتنا تنتج نتائج تنافسیة وواعدة، مما یعرض إمكاناتها لتحسین 

 الكلمات المفتاحية:

خوارزمیات البحث المحلي العشوائي    ,التعلم العمیق  ,التعلم الآلي  ,  مشكلة تحسین تركیبیة صعب   ,  السفر في البطولات مشكلة  

(SLS),   ( والتحسین القائم على الجغرافیا الحیویةBBO)  
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Résumé 

Cette thèse aborde le problème du voyage dans les tournois (TTP), un défi d’optimisation 

combinatoire NP difficile dans la programmation sportive. Le TTP est crucial dans la 

communauté sportive en raison de son impact sur les budgets de gestion de la ligue, où les 

horaires sous-optimaux peuvent entraîner des pertes financières importantes. Pour résoudre ce 

problème, nous proposons une approche innovante qui intègre des techniques d’apprentissage 

automatique et d’apprentissage profond pour améliorer les performances des algorithmes de 

recherche locale stochastique (SLS) et d’optimisation basée sur la biogéographie (BBO). Il est 

bien connu que le principal défi des algorithmes évolutifs est de définir les meilleurs paramètres. 

Nous utilisons un modèle d’apprentissage profond pour le réglage des paramètres. De plus, nous 

avons proposé une nouvelle approche pour intégrer l’apprentissage par renforcement dans 

l’algorithme SLS pendant la phase d’exploitation afin d’améliorer ses performances. Les 

expériences informatiques indiquent que notre méthode produit des résultats compétitifs et 

prometteurs, démontrant son potentiel pour une optimisation efficace du TTP 

Mot clés :  

problème du voyage dans les tournois, d’optimisation combinatoire NP difficile, apprentissage 

automatique, apprentissage profond, recherche locale stochastique, d’optimisation basée sur la 

biogéographie 
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General introduction 

Context: 

Human life is filled with challenges and difficulties; however, humans have the unique ability 

to learn from past experiences and continuously improve to enhance their quality of life and 

achieve goals more efficiently. This evolution and progress are evident across various fields, 

including engineering, economics, finance, management, sports, and operations research. One 

significant aspect of this progression is the ability to solve optimization problems, which 

involves finding the most efficient or effective way to allocate resources, make decisions, or 

design systems. Optimization is crucial in decision-making and problem-solving as it evaluates 

different options to identify the best course of action. It also plays a vital role in improving 

processes and systems, reducing costs, and increasing efficiency. 

Modern optimization techniques leverage algorithms and computer programs to handle large 

and complex problems, allowing for faster and more accurate optimization. These tools have 

significantly contributed to the growth of optimization across many fields. There are various 

methods to solve optimization problems, including exact methods and approximate algorithms. 

Exact methods yield optimal solutions but often require significant time, making them 

unsuitable for solving the most complex problems (NP-hard problems). Approximate 

algorithms, including heuristic and meta-heuristic approaches, can provide high-quality 

solutions within a reasonable time, though they do not guarantee globally optimal solutions. 

In the context of sports scheduling, the Traveling Tournament Problem (TTP) is a prominent 

NP-hard combinatorial optimization challenge. The TTP aims to create a double round-robin 

tournament schedule that minimizes the total distance traveled by teams while adhering to 

specific constraints. This problem is crucial in the sports community as suboptimal schedules 

can lead to significant financial losses in league management budgets. 

To tackle the TTP, we propose an innovative approach that integrates Biogeography-Based 

Optimization (BBO) and Stochastic Local Search (SLS) algorithms enhanced by machine 

learning and deep learning techniques. Our methodology begins with generating initial 

solutions and defining neighborhood structures. The BBO algorithm is adapted to the TTP by 

implementing these structures and swap methods. Additionally, we employ a deep learning 
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model for parameter tuning and incorporate reinforcement learning within the SLS algorithm 

to further optimize the scheduling process. 

Our proposed methodology has demonstrated promising results in optimizing tournament 

schedules, reducing total travel distance, and adhering to the specific constraints of the TTP. 

The integration of deep learning for parameter tuning and reinforcement learning within the 

SLS algorithm has shown to be effective in addressing the complexities of the TTP. 

Looking forward, our future research will focus on enhancing the efficiency and scalability of 

our solutions, particularly in tackling larger TTP instances. We plan to explore alternative 

strategies to improve the effectiveness of our approach, such as refining the machine learning 

models and investigating other evolutionary algorithms. Additionally, we aim to expand the 

applicability of our methods to other domains, further bridging the gap between traditional 

optimization techniques and modern machine learning approaches. 

Problematic: 

Although optimization has advanced considerably nowadays, it is always receptive to new 

better methods and algorithms, The performance of an algorithm considered effective today 

may be deemed inadequate in the future, especially given the rapid evolution of artificial 

intelligence (AI) across various domains. This continuous progress in AI presents an 

opportunity to leverage its capabilities to enhance optimization techniques. Add to that, There 

is a constant need to propose new solutions and refine existing ones to address the ever-growing 

and complex set of optimization challenges. 

Objective: 

The primary objective of this research is to enhance the performance of Stochastic Local Search 

(SLS) and Biogeography-Based Optimization (BBO) algorithms in solving the TTP by 

incorporating machine learning and deep learning techniques. This hybrid approach aims to 

balance exploration and exploitation of the search space, thereby improving the overall solution 

quality. 

Organization of the Thesis: 

To comprehensively present our work, the thesis is structured as follows: 



 

XVII 

- Chapter 1: Provides a review of the main definitions and fundamental issues related to 

optimization problems. 

- Chapter 2: Provides a review of the main definitions of the machine learning 

- Chapter 3: Describes the Traveling Tournament Problem (TTP), the main focus of this study, 

and gives an overview of past approaches to solving the TTP. 

- Chapter 4: Describes The Biogeography-Based Optimization. 

- Chapter 5: Details the proposed approach for solving the TTP, including the integration of 

machine learning and deep learning techniques to enhance SLS and BBO algorithms. 

- Chapter 6: Highlights the experiments conducted and compares the results of our approach 

with the best results available in the literature. 

Through this structured approach, the thesis aims to contribute to the field of optimization by 

offering a novel method for solving the TTP, demonstrating its efficacy through rigorous 

experimentation and comparison with existing methods.
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1 

1 Introduction  

The inherent complexity of real-world systems, processes, equipment, and devices necessitates the 

development of optimization methodologies. Even seemingly simple systems often require 

theoretical models that incorporate approximations, time-dependent parameters, or random 

variations. These imperfections are unavoidable but crucial for predicting the optimal operating 

conditions that maximize a specific performance metric. At best, such models can only provide an 

approximation of the system's proximity to the desired optimum. Optimization techniques become 

essential tools in this scenario. They enable exploration of the local operational region and 

prediction of parameter adjustments necessary to drive the system towards its optimal state [1]. 

Optimization lies at the heart of any problem that necessitates decision-making. The core of 

decision-making involves selecting from a set of available alternatives. This selection process is 

guided by the pursuit of the "best" choice. An objective function, also known as a performance 

index, serves as the measure of merit for these alternatives. Optimization theory and methods strive 

to identify the optimal alternative based on the defined objective function. 

The field of optimization has witnessed a surge in interest in recent years, primarily driven by the 

rapid advancements in computer technology. These advancements encompass the development and 

widespread availability of user-friendly software, high-speed and parallel processing capabilities, 

and artificial neural networks. A compelling illustration of this phenomenon is the proliferation of 

optimization software tools [2]. 

In this chapter, we will cover the basic concepts and fundamental points of combinatorial 

optimization. This includes: 

• The concept of optimization: We will establish a clear understanding of what it means to 

optimize a system or process. 

• Identifying problems that require optimization: We will explore real-world scenarios where 

optimization techniques become crucial for achieving the best possible outcome. 

• Various solution methods: We will delve into a variety of approaches used to solve 

optimization problems in combinatorial optimization. 



CHAPTER I           Combinatorial optimization 

2 

• Complexity classes: Finally, we will learn how to classify optimization problems based on 

their inherent computational difficulty. 

2 Problems optimization 

2.1 Introduction to problems optimization  

Search space: a finite or infinite set of solutions used to find an optimal or near-optimal solution 

by a search algorithm [3]. 

Exploration: During the intensification phase in combinatorial optimization, the search algorithm 

focuses its exploration on the local neighborhood of a promising solution identified within the 

search space [4]. 

Exploitation: In optimization algorithms, exploitation refers to the strategy of iteratively refining 

solutions within the vicinity of previously explored regions of the search space. This approach aims 

to enhance the quality of existing solutions but can lead to premature convergence at local optima, 

thereby hindering the discoveries of globally optimal solutions [4]. 

Global optimum: A feasible solution is considered a global optimum if there is no other viable 

solution within the entire viable region that has a strictly better objective function value. A global 

optimum can be manifested as a global maximum (the value of the highest objective function) or a 

global minimum (the lowest objective function value) [5]. 

 Local optimum: a local optimal solution is a feasible solution where the objective function 

achieves a good value (minimum or maximum) compared to its immediate neighbors [6]. 
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Figure I.1: Local vs. Global Optima [7 

 

Combinatorial optimization is a subdomain of discrete optimization that involves identifying an 

optimal element in a finite set of candidate solutions. These candidate solutions are called feasible 

solutions, and the element with the most favorable objective function value is designated as the 

optimal solution [8]. 

optimization is the minimization or maximization of a function subject to constraints on its 

variables. We use the following notation: x is the vector of variables, also called unknowns or 

parameters; f is the objective function, a (scalar) function of x that we want to maximize or 

minimize; - ci are constraint functions, which are scalar functions of x that define certain equations 

and inequalities that the unknown vector x must satisfy [9]. 

Using this notation, the optimization problem can be written as follows: 

min
𝑥∈ℝ

𝑓(𝑥)  subject to  {
𝑐𝔦(𝑥) = 0, 𝔦𝜖𝜀
  𝑐𝔦(𝑥) ≥ 0, 𝔦𝜖Γ

  

There are two main classes for optimization problems: 

2.1.1 Constrained optimization 

A mathematical framework for decision-making in the field of mathematical optimization, limited 

optimization problems focus on identifying the optimal (minimum or maximum) value of an 

objective function. However, this quest is not boundless. A set of constraints restricts the feasible 

 

 

Local vs. Global Optima [7] 
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region, dictating acceptable solutions. In simpler terms, these constraints define a set of viable 

options that meet certain pre-determined conditions. Common constraint formulas include 

inequalities, such as x ≥ 0 (representing non-negative values for variable x) and equals, expressed 

as Ax = b (where x is a vector of decision variables, A is a matrix representing coefficients, and b 

is a constant vector). To solve these restricted optimization problems, there are several established 

methods, including the simplex method (both its algebraic and matrix-based forms) and graphical 

methodology. These methodologies provide a systematic approach to navigate the feasible region 

and locate the optimal solution that adheres to the defined constraints. 

2.1.2 Unconstrained optimization 

Unconstraint optimization problems, characterized by the absence of constraints (i.e., &= I = Ø in 

the equation (1.1)), occur naturally in many practical applications. This category includes scenarios 

in which decision variables operate freely across the area. Even in situations where inherent 

limitations (natural constraints) might exist for variables, it may be strategically wise to ignore 

them under certain conditions. This is especially true if these constraints have demonstrated no 

impact on the optimal solution and do not prevent the optimization algorithms chosen.  

Furthermore, optimization problems without constraints can be strategically constructed by 

reformulating these problems. In such reformulations, the initial constraints are replaced by 

criminal clauses incorporated into the objective function. These criminal conditions effectively 

discourage breaches of the original constraints, guiding the process of optimization toward 

solutions that implicitly adhere to the underlying limitations. This approach takes advantage of 

well-developed theoretical frameworks and solution methodologies available for problem-free 

optimization to solve problems with inherent constraints. 

2.1.3 Constrained optimization VS unconstrained optimization 

Now, consider the beam shown in Figure. It is subjected to moments at the ends and a load P at the 

center and rests on a Winkler tensionless elastic foundation of modulus K. The corresponding 

deformation pattern is shown in Figure, where two contact regions and one central noncontact 

region are observed. Here, ti and tf constitute the additional variables of the problem. 
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Figure I.2 shows the influence of the foundation stiffness on the behavior of the beam, where the 

lateral deflection along the beam axis is given for different values of the k = KL4/EI. Once more, 

there is good agreement between the results obtained by the dual-constrained numerical 

formulation and the Ritz method, in which the same displacement field (5.1) is adopted. Under 

unilateral constraints, the beam displacement w increases in the central region while the contact 

regions between the bodies decrease. 

 

 

 

 

 

 

Figure I.2: Deformed shape of the beam for several values of the foundation stiffness. 

2.2 Penalty function 

Methods of penalty: This section explores methods for approximating restricted optimization issues 

to non-restrictive ones. This approach allows us to leverage established research techniques to solve 

problems without constraints, in order to face problems with limitations. Approximation depends 

on the modification of the objective function. Methods of penalty: Here, a term is added to the 

objective function that significantly penalizes violations of constraints. The extent of the penalty 

increases as the degree of violation of the coercion increases. This effectively discourages the 

research process from venturing into areas that are not practical.   

The penalty method works directly in the n-dimensional space of the decision variables, where n 

represents the number of variables and m is the number of constraints. While the following 

 

 

 

Fig 5: Deformed shape of the beam for several 

values of the foundation stiffness. 

https://www.hindawi.com/journals/mpe/2008/786520/fig5/
https://www.hindawi.com/journals/mpe/2008/786520/#eq5.1
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discussion focuses on methods of penalty. Their main distinction lies in how they influence the 

research process to move toward a solution that adheres to constraints [10]. 

Consider the problem 

where 𝑓 is continuous function on ℛ𝑛and S is a constraint set in ℛ𝑛. In 

most applications S is defined explicitly by a number of functional  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥): 𝑥 ∈ 𝑆}                                                            (I. 1) 

constraints, but in this section the more general description can be handled. The idea of a 

penalty function method is to replace the problem by an unconstrained approximation of 

the form. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥) +  𝑐𝑃(𝑥)}                                                          (I. 2) 

where c is a positive constant and P is a function on ℛ𝑛satisfying (i) 𝑃(𝑥) is continuous, 

 (ii) 𝑃(𝑥)  ≥  0 for all 𝑥 ∈  ℛ𝑛, and (iii) 𝑃(𝑥)  =  0 if and only if 𝑥 ∈  𝑆. 

Here, each unsatisfied constraint influences x by assessing a penalty equal to the square of the 

violation. These influences are summed and multiplied by c, the penalty parameter. Of course, this 

influence is counterbalanced by 𝑓(𝑥). Therefore, if the magnitude of the penalty term is small 

relative to the magnitude of 𝑓(𝑥), the minimization of (c, x) will almost certainly not result in an 

x that would be feasible for the original problem. However, if the value of c is made suitably large, 

the penalty term will exact such a heavy cost for any constraint violation that the minimization of 

the augmented objective function will yield a feasible solution. 

The function 𝑐𝑃(𝑥) is illustrated in Fig for the one-dimensional case with g1 (x) = b – x and g2(x) 

= x-a. For large c it is clear that the minimum point of problem will be in a region where P is small. 

Thus, for increasing c it is expected that the corresponding solution points will approach the 

feasible region S and, subject to being close, will minimize f. Ideally then, as c→∞ the solution 

point of the penalty problem will converge to a solution of the constrained problem. 
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Figure I.3: Relationship Between Penalty Factor and Amount of Constraint Violations in Penalty 

Function 

Selecting the Penalty Parameter: is to start with a relatively small value of c and an infeasible 

(exterior) point. This will ensure that no steep valleys are present in the initial optimization of (c, 

x). Subsequently, we will solve a sequence of unconstrained problems with monotonically 

increasing values of c chosen so that the solution to each new problem is "close" to the previous 

one. This will preclude any major difficulties in finding the minimum of (c, x) from one iteration 

to the next. 

To implement this strategy, let {𝑐𝑘}, 𝑘 =  1, 2, . .. be a sequence tending to infinity such that      

𝑐𝑘 >  0 and 𝑐𝑘 + 1 >  𝑐𝑘. Now for each k we solve the problem. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {(𝑐𝑘, 𝒙): 𝒙 ∈  ℛ
𝑛}                                                    (I.3) 

To obtain xk, the optimum It is assumed that problem has a solution for all positive values of ck. This 

will be true, for example, if 𝜃(c, x) increases without bounds as ||𝐱||  → ∞. 

A simple implementation known as the sequential unconstrained minimization technique (SUMT), 

is given below. 

 

1   Relationship Between Penalty Factor and Amount of Constraint 

Violations in Penalty Function 
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Initialization Step: Select a growth parameter 𝜂> 1, a stopping parameter 𝜀> 0, and an initial value 

of the penalty parameter c0. 

Choose a starting point x0 that violates at least one constraint increases without bounds as ||𝐱||  →

∞. And formulate the augmented objective function (𝑐0, x). Let k=1. 

Iterative Step: Starting from xk–1, use an unconstrained search technique to find the point that 

minimizes 𝜃(𝑐k − 1
, x). Call it xk and determine which constraints are violated at this point. 

Stopping Rule: If the distance between 𝒙𝑘
– 1 and xk is smaller than 𝜀 (𝑖. 𝑒. , ||𝒙𝑘

– 1 −  𝒙𝑘|| ≤

 𝜀) or the difference between two successive objective functions values is smaller than 𝜀, stop with 

xk 

An estimate of the optimal solution. Otherwise, put ck←  𝜂c𝑘
– 1 formulate the new 𝜃(𝑐k − 1

, x) 

based on which constraints are violated at 𝒙𝑘 put 𝑘 ← 𝑘 + 1 and return to the iterative step. 

2.3 Computational Complexity 

2.3.1 Complexity of Algorithms 

The effective execution of algorithms relies on two crucial resources: time and space. In the context 

of algorithmic analysis, time complexity refers to the number of basic operations (or steps) it needs 

to solve a problem of the size n. (often representing the input size). This complexity is usually 

determined by a worst-case analysis, taking into account the maximum number of steps required 

for any size n entry.  

The main objective of computational complexity analysis is not to obtain a precise number of steps 

for each algorithm. Instead, it aims to establish an asymptotic link in the number of stages. This 

limitation describes the behavior of the runtime of the algorithm as the input size increases by an 

infinite size. Big-O notation, a common tool in algorithmic analysis, facilitates this asymptotic 

analysis. It provides a way to express the upper limit on the number of steps an algorithm takes 

based on the input size, ignoring constants and lower-order terms. As a result, the Big-O rating 
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allows a comparative evaluation of different algorithms to solve the same problem, highlighting 

their relative effectiveness based on their growth of runtime relative to input size [11]. 

2.3.2 Big-O notation 

An algorithm has a complexity 𝑓(𝑛)  =  𝑂(𝑔(𝑛)) if there exist positive constants n0 and c such 

that ∀𝑛 >  𝑛0, 𝑓(𝑛)  ≤  𝑐 ·  𝑔(𝑛). In this case, the function 𝑓(𝑛) is upper bounded by the function 

g(n). The Big-O notation can be used to compute the time or the space complexity of an algorithm 

[11]. 

2.3.3 Polynomial-time algorithm 

An algorithm is a polynomial-time algorithm if its complexity is 𝑂(𝑝(𝑛)), where 𝑝(𝑛) is a 

polynomial function of n. A polynomial function of degree k can be defined as follows: 

𝑝(𝑛)  =  𝑎𝑘 ·  𝑛𝑘 + · · ·  + 𝑎𝑗 ·  𝑛𝑗 + · · ·  + 𝑎1 ·  𝑛 +  𝑎0 

where 𝑎𝑘 >  0 and 𝑎𝑗 ≥  0, ∀1 ≤  𝑗 ≤  𝑘 −  1. The corresponding algorithm has a polynomial 

complexity of 𝑂(𝑛𝑘). 

2.3.4 Exponential-time algorithm 

 An algorithm is classified as exponential time if its time complexity can be expressed as 𝑂 (𝑐𝑛), 

where:  

c is a positive real constant strictly greater than 1 (denoting the base of the exponential term).  

n represents the size of the problem (often measured by the number of variables or constraints).  

This phenomenon is often referred to as the "combinatory explosion".  

In practical applications, waiting for centuries to solve a problem is simply not feasible. The use of 

an exhaustive research algorithm (which has an exponential complexity) to solve a problem of a 

certain size would require an impracticably long time, exceeding the estimated age of the universe.  

Big-𝜽 notation 

 An algorithm has a complexity f (n) = _(g(n)) if 
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there exist positive constants n0, c1, and c2 such that ∀𝑛 >  𝑛0, c1 · 𝑔(𝑛)  ≤  𝑓 (𝑛)  ≤ 𝑐2 · g(n). 

The complexity of the algorithm 𝑓 (𝑛) is lower bounded by the function 𝑔(𝑛). 

This analysis often begins with the determination of the Big-O notation, which provides an upper 

limit on the time complexity of an algorithm as the size of the problem increases. This initial 

evaluation can then be refined by calculating the Big-θ rating, which captures both th upper and 

lower limits, providing a more accurate characterization of the algorithm's time complexity. 

However, the most specific limit is provided by the Big-Omega notation, which defines the exact 

lower limit on the complexity of time.  

2.3.5 Asymptotic analysis 

Which encompasses these notations, focuses on the rate of growth of the time complexity of an 

algorithm depending on the size of the problem. This analysis provides a theoretical framework for 

comparing algorithms according to their complexity in the worst case, enabling researchers to 

evaluate how much an algorithm evolves with the increase in the size of the problem. It is important 

to note that asymptotic analysis focuses on theoretical performance assurances and does not predict 

the exact execution time for a specific problem instance. In fact, the execution time of an algorithm 

is strongly influenced by the nature of the input data. For a more comprehensive understanding, 

the analysis of the average complexity of cases can be performed, although it is often a more 

difficult task. 

Here are some common Big O notations and their corresponding growth rates: 

• O (1) - Constant Time Complexity: 

The algorithm's running time remains constant regardless of the input size. It indicates that the 

algorithm has a fixed number of operations and does not depend on the input. 

• O (log n) - Logarithmic Time Complexity:  

The algorithm's running time increases logarithmically with the input size. These algorithms 

typically divide the problem into smaller subproblems and solve them iteratively. 
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• O(n) - Linear Time Complexity:  

The algorithm's running time scales linearly with the input size. Each element of the input is 

processed once, resulting in a direct relationship between the input size and the running time. 

• O(n log n) - Linearithmic Time Complexity:  

The algorithm's running time grows at a rate slightly higher than linear. It is often seen in sorting 

algorithms like merge sort and quicksort. 

• O(n^2) - Quadratic Time Complexity:  

The algorithm's running time grows quadratically with the input size. It commonly occurs in nested 

loops where each element needs to be compared with every other element. 

• O(2^n) - Exponential Time Complexity: 

The algorithm's running time grows exponentially with the input size. These algorithms are highly 

inefficient and become infeasible for large inputs. 

2.4 Complexity of Problems 

2.4.1 Introduction 

 In the field of computational complexity theory, the difficulty of a problem is often measured by 

the complex of the most effective algorithm that solves it. A problem is considered to be treatable, 

or easy to solve, if there is an algorithm that can find a solution within a polynomial timeframe 

relative to the input size of the problem. Polynomial time refers to an algorithm whose execution 

time increases proportionally to a polynomic function of the input size. Conversely, a problem is 

classified as intractable, or difficult, if no algorithm can guarantee a solution in polynomial time 

regardless of the size of the input. This distinction between treatable and untreatable problems is a 

fundamental concept of complexity theory.  

It is important to note that complexity theory mainly focuses on decision problems. A decision 

problem is characterized by a definitive yes or no answer. By analyzing the complexity of solving 
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these decision-making problems, complexity theory highlights the inherent difficulty of larger 

problem classes. 

2.4.2 Complexity Classes 

A fundamental concept of the theory of computational complexity is the classification of problems 

into complexity classes. Each complexity class encompasses a set of solved problems with a 

specific amount of computer resources. Two important classes are P and NP (as illustrated in 

Figure).  

2.4.2.1 The class P (polynomial) 

represents all the decision problems solved by a deterministic Turing machine in polynomic time. 

We define an algorithm (determinist in this context) as polynomial for a decision problem A if its 

complexity in the worst case is limited by a polynomic function p(n), where n means the size of 

the input instance (I). Essentially, P encompasses problems for which a known polynomial time 

algorithm exists to come up with a solution. Therefore, P problems are considered to be relatively 

"easy" to solve from a computational point of view. 

2.4.2.2 The complexity class NP (Nondeterministic Polynomial Time) 

encompasses all the decision problems for which a solution can be verified in polynomial time by 

a deterministic algorithm. A key feature of NP problems is the existence of a non-determinist 

algorithm [14]. Non-determinist algorithms differ from their deterministic counterparts by 

incorporating "choice points". At these points, the algorithm can be branched into several possible 

continuations without any predetermined selection of the path to follow. The algorithm uses a set 

of fundamental primitives:  

Choice: This primitive proposes a potential solution, often called "oracle" or "certificate".  

Check: This primitive checks the proposed solution (certificate) in polynomial time, determining 

whether it leads to a positive or negative answer for the decision problem.  

Successful: If the primary test confirms a positive response, the algorithm successfully solves the 

problem.  
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Failure: If the control primitive does not give a positive answer, the algorithm does not solve the 

problem.  

The basic concept of NP lies in the relationship between choice and control primitives. If the 

primitive choice proposes a valid solution that, after verification by the primary control, leads to a 

"yes" answer, and the control can be carried out in polynomial time, then the problem is considered 

to be in NP. In simpler terms, NP problems are those where a solution can be effectively verified 

(polynomial time) by a deterministic algorithm, even though finding the solution itself could be 

computationally more difficult. 

 

 

 

 

 

 

 

 

 

Figure I.4: Classification of Computational Problems: P, NP, NP-Complete, and NP-Hard 
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2.4.2.3 Example of Nondeterministic algorithm for the 0–1 knapsack problem 

The 0–1 knapsack decision problem can be defined as follows. Given a set of N objects. Each 

object O has a specified weight and a specified value. Given a capacity, which is the maximum 

total weight of the knapsack, and a quota, which is the minimum total value that one wants to get. 

The 0–1 knapsack decision problem consists in finding a subset of the objects whose total weight 

is at most equal to the capacity and whose total value is at least equal to the specified quota. 

2.4.2.4 The P vs NP Question 

The question of whether P = NP is widely recognized as one of the most important unresolved 

problems in the theory of computational complexity. The answer to this question has profound 

implications for our understanding of effective algorithms and problem-solving approaches.  

Intuitively, class P (problems solved by deterministic algorithms in polynomial time) is known to 

be a subset of NP (problems solvable by nondeterministic algorithms in polynomial time). This 

relationship (P NP) is well established (Fig. 1.6). However, the P NP critical hypothesis, which 

states that there are problems in NP that are intrinsically more difficult than those in P, remains an 

open question. 

2.4.3  Reducibility and NP-Completeness 

A key concept in the theory of complexity is the reducibility of polynomial time. A decision 

problem A is said to be polynomial reduced to another problem B if there is a polynomic time 

function that transforms any input instance for A (called IA) into a corresponding instance of B. 

(denoted IB). The result (positive or negative) of A on IA must strictly match the result of B on IB.  

A decision problem A is classified as NP-complete if it belongs to class NP (solvable by a non-

deterministic polynomial-time algorithm) and also has the property that all other NP problems are 

polynomial reducible to A. Figure 1.6 visually represents the relationships between P, NP and NP-

complete problems.  
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2.4.4 The Meaning of NP-Completeness 

The meaning of NP completeness lies in the following: if a polynomial-time determinist algorithm 

is discovered for even one single NP-complete problem, then all NP problems can be solved 

effectively (in polynomial time). This highlights the importance of NP completeness in identifying 

intrinsically difficult problems within the wider NP class.  

2.4.5 NP-Hard Problems 

NP-hard problems are a subclass of optimization problems whose decision equivalents (problems 

asking whether a solution exists with specific properties) are complete in NP. The vast majority of 

real-world optimization problems fall into the NP-hard category. For these problems, it is highly 

unlikely that proven effective algorithms (with the complexity of polynomial time) exist. To solve 

them optimally, it often takes an exponential time (except P = NP). In the absence of precise and 

effective algorithms, metaheuristics provide valuable alternative approaches to solving these 

computationally challenging optimization problems. 

2.4.6 Example NP-hard problem 

Sequencing and scheduling problems such as flow-shop scheduling, job-shop scheduling, or open-

shop scheduling. 

2.5 Optimization Methods 

This section looks into the area of optimization issues. It explores various optimization strategies 

used to identify either the optimal solution or a solution that is close to the optimal, while 

minimizing the computational effort. 

In the field of operational research, combinatorial optimization problems present a unique 

challenge. Although many solution methodologies exist, they can be widely classified into two 

primary classes: exact methods and approximate methods. Exact methods offer the advantage of 

guaranteeing an optimal solution. However, their complexity can be prohibitive, often resulting in 

excessively long execution times. In contrast, approximate methods give priority to efficiency, 
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often producing high-quality solutions within a reasonable timeframe. However, they lack the 

guarantee of optimum combined with accurate methods. This compromise between solution quality 

and the complexity is a central consideration when choosing an appropriate solution method for 

combinatorial optimization problems. 

2.5.1 Exact methods 

Exact methods work by exploring the entire research space, either explicitly or implicitly, in order 

to identify the optimal solution. One of the main advantages of these methods is their ability to 

ensure that the solution they find is indeed the best. Their cost of calculation increases considerably 

with the increase in the size of the problem and the optimization of the number of targets. As a 

result, the practical application of exact methods is often limited to problems of a smaller scale. 

Exact optimization methods are the preferred approach when it comes to problems where the cost 

function exposes a polynomial growth relative to the size of the problem. These problems belong 

to class P of optimization problems. However, for problems classified as NP-hard, accurate 

optimization methods require exponential complexity of time. This can make them impractical for 

even medium-sized problems, making them untreatable. 

2.5.2 The branch and bound algorithm 

Branch and bound (B&B) is a general-purpose optimization algorithm used to identify optimal 

solutions to combinatorial optimization problems. It works by systematically exploring the 

research space, which encompasses all possible solutions. This exploration involves the iterative 

division of the research space into smaller subproblems, each of which is resolved recursively. A 

key feature of the B&B is the maintenance of a lower threshold on the value of the optimal solution 

encountered so far. By taking advantage of this lower limit, the algorithm can strategically cut 

portions of the search space that are guaranteed not to contain solutions that exceed the current best 

solution. This cut-off mechanism significantly reduces the overall research effort. Because of its 

effectiveness, B&B has become an accurate method widely used to deal with combinatorial 

optimization problems in various areas, including operational research, computer science and 

engineering. B&B methods solve a discrete optimization problem by breaking up its feasible set 
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into successively smaller subsets, calculating bounds on the objective function, and using them to 

discard certain subsets from further consideration. The procedure ends when there is no better 

solution than the existing solution [12]. 

2.5.3 Dynamic programming 

The origins of dynamic programming, like many models and methods of operational research, go 

back to World War II. During this period, American mathematician Abraham Wald developed a 

new approach called "sequential analysis" to improve quality control procedures in the production 

of ammunition [13]. 

Dynamic programming (DP) is a problem-solving paradigm that is suited to optimization problems. 

It works by systematically breaking up a complex problem into a series of smaller, overlapping 

sub-problems. A definite feature of DP is that each subproblem is solved only once, and that 

solutions are strategically stored (often in a table or using memorization) to prevent redundant 

calculations. This sub-problem solution storage strategy allows iterative construction of the overall 

solution, taking advantage of optimum solutions pre-calculated for smaller components [14]. The 

applicability of DP extends across a variety of fields, including computer science, operations 

research, economics, and bioinformatics [15]. 

Unlike branching algorithms, dynamic programming plays a crucial role in polynomial and 

exponential time methods. The basic principle underlying dynamic programming is to start by 

solving minor or trivial sub-problems and gradually address larger and more complex problems. 

This approach is to construct solutions for the larger sub-problems by taking advantage of the 

solutions obtained for the smaller ones. This is in contrast to the ramification algorithms, where the 

emphasis is on decomposing the problem. The selection of subproblems is often critical to the 

effectiveness of dynamic programming [16].  

2.5.4 Approximation methods 

A major challenge in computer optimization lies in the intrinsic complexity of real-world problems. 

Most of these problems are classified as NP-hard, which implies that finding the optimal, or 

optimal, solution for large-scale cases may often require IT resources exceeding current capabilities 
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[17]. A key subdomain of optimization research focuses on analyzing the computational 

requirements of solution methods relative to the size of the problem instance. Although NP-hard 

problems may not guarantee the effective discovery of optimal solutions, they can still facilitate 

the identification of solutions close to optimum. As a consequence, the design of approximation 

algorithms shares some high-level similarities with the conception of exact algorithms. Both 

approaches involve identifying appropriate problem structures and developing algorithmic 

techniques to take advantage of these structures. However, approximation algorithms often require 

more complex problem structures and algorithm techniques, often built on generalizations and 

extensions of powerful tools discovered in the study of exact algorithms.  

To meet the challenge of finding near-optimal solutions to NP-hard problems, a more theoretical 

approach known as approximation algorithms emerged. These algorithms aim to provide high-

quality solutions wheelieing efficient computing complexity (polynomial time). While achieving 

feasibility, or simply finding a valid solution, is usually not a major obstacle, the key aspect of 

approximation algorithms lies in their ability to guarantee a certain level of solution quality. This 

quality is measured by the maximum distance between the solutions produced by the 

approximation algorithm and the optimal solutions in all possible problem cases. In essence, it is 

said that an approximation algorithm approximately solves an optimization problem if it 

consistently provides feasible solutions that are close to the optimal value. 

Among the approximate methods for optimization problems, there are two main sub-categories: 

approximation algorithms and metaheuristic algorithms. Heuristic algorithms give priority to 

finding adequate quality solutions within a reasonable time frame. On the other hand, 

approximation algorithms are designed to identify solutions that have a guaranteed level of quality, 

especially for cases of large-scale problems. 

2.5.5 Approximation algorithms 

 It represents a class of iterative optimization algorithms that gradually build a solution in a step-

by-step manner. These methods start with an initially empty partial solution and iteratively seek to 

extend it by incorporating additional elements at each step. This process of extending the partial 

solution continues until a complete solution to the problem is obtained.  

The applicability of constructive methods is often appropriate for scenarios where the focus is not 
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primarily on obtaining the absolute optimal solution, or where examples are of reasonable size. 

They are often used to generate an initial solution in a metaheuristic framework. Their main 

advantages lie in their efficiency and ease of deployment. 

The Jacobian technique: The Jacobi method is an iterative approach used in numerical linear 

algebra to approximate the solution of a system of n linear equations in n variables. It is effective 

for dominant diagonal systems. The method iteratively updates the solution vector by calculating 

new values for each variable based on the current estimates of the other variables. This process 

continues until a convergence criterion is met. In particular, the Jacobi method has a historical 

significance, as it was initially introduced as the process of Jacobi transformation for matrix 

diagonalization. In addition, it is sometimes called the simultaneous displacement method. 

The Gauss-Seidel: an iterative technique for solving linear equation systems, is well suited for 

addressing systems of the shape 𝐴𝑥 =  𝑏, where A is a square matrix of the order n and x and b 

are vectors of Rn. The method involves a series of manipulations: first, A is broken down into 𝐷 −

 𝐿 −  𝑈, where 𝐷 is a diagonal matrix, - 𝐿 is a lower triangular matrix (L for the lowest), and - U 

is a upper triangle matter. (U for Upper). Subsequently, the system is transformed into an iterative 

pattern, where x values are updated iteratively until convergence is achieved. We can then 

transform the system into: 

Sure, here's the entire transformation written in one line: 

𝐴𝑥 =  𝑏 ⟺ (𝐷 −  𝐿) 𝑥 −  𝑈𝑥 =  𝑏 ⟺  𝑥 =  (𝐷 −  𝐿)−1 𝑈𝑥 + (𝐷 −  𝐿)−1𝑏  

The successive over-relaxation (SOR): The method of successive over-relaxation (SOR) appears 

to have emerged in the 1930s, with its initial mention found in [18]. However, the formal theoretical 

foundation of SOR was established almost simultaneously by Frankel [19] and Young [20]. A 

central focus in the development of SOR theory is the identification of complex numerical values 

(𝜔 ∈  𝐶 \ {0}) for which the method converges. All these values define the region of convergence. 

Furthermore, if possible, the theory seeks to determine the optimal value (ω b) that gives an 

asymptotic optimal convergence, meaning min 𝜔 ∈ 𝐶{0} 𝜆(𝐿 𝜔 𝑏)  =  𝜆( 𝐿!), where λ denotes the 

spectral radius. Finding convergence regions is usually less difficult than determining ω b. 
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However, in both cases, some knowledge on the spectrum of the associated Jacobi iteration matrix 

(J; σ(J)) is assumed to be available. This information is mainly derived from matrix A properties 

(and the chosen partitioning scheme). Significantly, Kahan [21] established a SOR method property 

that is independent of matrix A properties, with the exception of those that define the same method. 

This property is presented below. 

2.5.6 Metaheuristics methods 

The term "metaheuristic" comes from the Greek, combining "heuriskein" (which means "to be 

found") and the prefix "meta" (meaning "beyond" or "at a higher level"). Metaheuristics are a class 

of problem-solving methodologies that take advantage of natural phenomena. They are specifically 

designed for application to optimization problems, where the main objective is to identify the 

overall optimum, which can often be obscured by the presence of many local optima. Metaheuristic 

algorithms can be widely classified into two main categories: neighborhood search methods and 

evolutionary algorithms. 

2.5.7 Neighborhood Methods 

Neighbourhood search methods are iterative optimization techniques that start with an initial 

solution. This solution can be obtained either by exact methods or by random generation. The basic 

principle of these methods is to explore the solution space by gradually moving away from the 

initial solution. This exploration follows a defined path, leading to the identification of improved 

solutions in the research space. Neighbourhood research methods include a diverse set of 

algorithms, two of the most commonly used approaches: 

• Simulated annealing 

• Tabu search 

2.5.8 Simulated annealing 

The simulated annealing algorithm (SA), initially proposed by Metropolis et al. (1953), is inspired 

by the physical process of annulment in metallurgy. During the cancellation, a material is heated 

to a high temperature, allowing its atoms to reorganize freely. As the temperature is gradually 
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lowered, atoms are increasingly likely to settle in a low-cost configuration, eventually reaching a 

state. Similarly, SA seeks to find the optimal solution for an optimization problem. The cost 

function, also called the objective function, plays a crucial role in SA [22]. It guides the research 

towards cost-effective configurations. Kirkpatrick et al. (1983) introduced the concept of 

temperature as a control parameter in SA. The algorithm iteratively generates new configurations 

(solutiEon) from an initial solution (S0) and a high temperature (T0). As temperatures gradually 

decrease, the likelihood of accepting worse (more expensive) solutions decreases, eventually 

leading to the search for the overall optimum, which represents the state of equilibrium at zero 

temperatures. 

2.5.9 Tabu search 

Tabu Search (TS) is a meta-hero optimization technique that guides a local search process to 

explore the solution space beyond the local optima. This exploration capability is mainly motivated 

by its use of adaptive memory, which allows for more flexible search behavior compared to 

deterministic methods. Memory-based strategies are therefore a definitive feature of the TS 

approaches, in line with the concept of “integration principles” where various memory structures 

are combined with effective strategies for their exploitation [23]. 

2.5.10 Evolutionary algorithms 

Evolutionary algorithms (EAs) are a class of probabilistic optimization algorithms inspired by the 

principles of natural evolution. They deal with complex problems through an iterative process of 

perfecting a population of candidate solutions. At the core, the EAs maintain a population of 

individuals representing potential solutions. These individuals undergo evolution-inspired 

operations, including selection, crossover, and mutation, which mimic the processes of natural 

selection and genetic recombination observed in biological systems. Three of the most commonly 

used algorithms: 

• Genetic algorithm 

• Ant colony 

• Biogeography-based optimization 



CHAPTER I           Combinatorial optimization 

22 

2.5.11 Genetic algorithms 

(GA) are a class of computational optimization techniques inspired by the principles of natural 

selection and genetics. They deal with complex problems by imitating the evolutionary process, 

iteratively improving a population of potential solutions. These algorithms work on a set of 

candidate solutions, encoded as binary number strings or other data structures, and use selection, 

cross and mutation operators to explore the solution space [24]. Due to their population-based 

approach and their ability to escape local optima, Gas have become one of the most widely used 

evolutionary algorithms to solve challenging optimization problems in various scientific and 

engineering fields. 

2.5.12  Ant colony 

The Amphibious Colony Optimization (ACO) algorithm, a multi-agent approach inspired by the 

feeding behavior of real ant colonies, has proved effective in solving various discrete optimization 

problems [25]. In ACO, artificial ants explore the research space, initially randomly, in search of 

optimal solutions. Once a source of food (solution) is found, ants lay down traces of pheromones 

along their way back to the nest. The amount of pheromone deposited is usually correlated with 

the quality (e.g., physical condition) of the solution [26]. Traces of pheromones evaporate over 

time, promoting the exploration of alternative routes. However, the remaining pheromone signals 

guide the later ants, favoring pathways with higher initial concentrations. This positive feedback 

mechanism gradually leads the colony to converge towards shorter or better-quality solutions. 

2.5.13 Biogeography-based optimization 

 (BBO) is a population-based metaheuristic algorithm inspired by the principles of the island's 

biogeography. In BBO, each candidate solution is represented as a "habitat", and its quality is 

evaluated using a "Habitat Suitability Index" (HSI), similar to the physical conditioning function 

in traditional scalable algorithms. Each component of a solution is called a Suitable Variable Index 

(SIV) variable, reflecting the factors that influence the suitability of a habitat in a natural ecosystem 

[27]. These factors, similar to environmental variables in real-world islands, may include aspects 

such as precipitation, land surface, plant diversity, variety adaptation (uncertain concept, 
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clarification of needs) and climate. High HSI values indicate well-adapted habitats, while low HSI 

value indicates less favourable environments. BBO imitates the process of species migration by 

employing two main operators: migration and mutation [28]. These operators guide research 

towards optimal solutions within the problem space, similar to how species explore and adapt to 

appropriate islands in a natural environment. 

3 Conclusion 

Global optimization, the process of identifying the absolute optimal solution within a set of feasible 

alternatives, represents a major challenge in the field of operational research. (OR). This problem 

has been extensively studied for decades due to its frequent application in various areas. In OR, 

optimization refers to the selection of the "ideal" solution from a set of candidate solutions that 

maximizes (or minimizes) a given objective function.  

 

This chapter provided a fundamental understanding of the optimization problem model and its main 

characteristics. We explored different classification patterns for optimization problems, 

highlighting the prevalence of restricted problems in real-world scenarios. Contrary to the 

theoretical emphasis on unconstrained problems, most practical applications involve constraints 

that limit the space of feasible solution. The presence of equality and inequality constraints 

introduces additional complexities in the implementation of optimization algorithms [5]. As 

recommended practice, limited optimization problems can often be transformed into unlimited 

problems using established constraints management techniques.  

 

Finally, the chapter provides an overview of two leading approaches to optimization solutions: 

exact methods and approximation algorithms. Exact methods offer the advantage of guaranteeing 

the identification of the optimal solution, but their applicability is limited to problems with 

polynomial time complexity (P problems). For computably difficult and large-scale problems 

classified as non-deterministic polynomial problems (NP-hard), the exact methods become 

ineffective. In such scenarios, approximation algorithms, including metaheuristic, become more 

appropriate by providing almost optimal solutions within a reasonable timeframe. 
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1 Introduction:  

Artificial Intelligence (AI) is a field of computer science where experts build intelligent machines 

that can take in data, process it, and then take actions based on their findings [29]. Due to its ability 

to learn and reason about complex problems, artificial intelligence (AI) has become a powerful tool 

widely used in computer science and operational research [30].  

The basic aim of artificial intelligence (AI) is to mimic human brain intelligence. This enables 

machines to recognize and apply the appropriate piece of "knowledge" at a given stage of problem-

solving. AI uses several technologies to let machines mimic human intelligence. 

 Artificial intelligence is influenced by a wide range of fields, including mathematics, biology, 

philosophy, psychology, neuroscience (which studies the human mind and its behavior), statistics 

(which handles large amounts of data), and computer science (which runs the algorithms to put the 

concepts into practice) [29]. All of them have already adopted some form of artificial intelligence. 

Accordingly, AI can be classified into three main types: 

• Narrow artificial Intelligence Weak AI: NAI is a goal-oriented tool used to tackle specific 

problems in specific situations. While it can outperform people in data processing, it cannot 

tackle problems outside of its scope [31].   

• General artificial Intelligence: a machine intelligence that capable of performing general 

human intelligent behaviors with a full spectrum of human cognitive capacities [31]. 

• Strong artificial intelligence: This type of AI aims to outperform human capabilities. While 

challenging, it is conceivable for it to outperform humans in certain tasks. It's possible that 

machines will eventually surpass humans and may represent a threat to humanity [29]. 
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Figure II- 1: Hierarchical Architecture of Artificial Intelligence 

Artificial Intelligence consists of various subdivisions, the most famous of which are machine 

learning and deep learning 

Machine Learning (ML): Explain how ML enables machines to learn and develop without 

requiring explicit programming. Discuss the different learning paradigms: 

• Supervised learning 

• Unsupervised learning 

• Reinforcement learning 
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2. Machine learning 

2.1. Definition 

Machine learning (ML) is a subset of computer science and artificial intelligence that explores how 

computers can replicate human learning activities.  This approach assumes computers can learn 

from data, spot patterns, and form conclusions without being explicitly programmed [32]. The 

machine analyzes the available data set, also known as training data, and uses algorithms to predict 

possible outputs for a given input [29]. 

2.1.1 Types of machine learning 

Machine learning algorithms are trained using labeled, unlabeled, or hybrid datasets. Three types 

of machine learning have been identified: supervised, unsupervised, and Reinforcement learning. 

Understanding how they affect input and output variables is essential [33]. 

2.1.2 Supervised learning 

This type of ML requires supervision, in which machines are trained on labeled data to educate a 

system that can predict outcomes based on its training. The model evaluates the link between input 

and output data to identify underlying patterns [33]. In this context, input variables (X) and an 

output variable (Y) are given. The objective is to select an algorithm capable of learning the 

mapping function from the inputs to the output, denoted as 𝑌 = 𝑓(𝑥). This function is derived from 

a dataset consisting of a collection of labeled examples  {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1
𝑥  . Each 𝑥𝑖  among the N 

examples is referred to as a feature vector. A feature vector is a vector in which each dimension 

𝑖 = 1, . . . , 𝐷 contains a value that describes the sample in some way. After the training and 

processing are done, we test the model with sample data to see if it can accurately predict the 

output. 

Supervised machine learning is divided into two broad categories: 

• Classification: Classification is an SL approach that divides data into different 

classes. It’s a recursive technique recognizes and categorizes data objects using 

predefined labels. In simple terms, it assigns each new observation to an 

appropriate set or class. The output variable can belong to multiple classes 
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[34][35]. The purpose is to learn a mapping from inputs 𝑥 to outputs 𝑦, where 

𝑦 ∈ {1, . . . , 𝐶}, where C is the number of classes. If C = 2, this is known as 

binary classification. If 𝐶 >  2, this is called multiclass classification [36]. 

For example, determining whether an email is spam or not is a popular use case 

of classification. 

 

 

 

• Regression: Regression is a statistical technique that examines the connection 

between a dependent variable and one or more independent variables, regression 

is similar to classification, only the response variable is continuous [34]. 

Common algorithms for supervised learning include regression analysis (i.e. 

linear regression, logistic regression, non-linear regression) [33]. 

Figure II.3 presents a simple example with a single real-valued input 𝑥𝑖 and 

response 𝑦𝑖 in 𝑅. 

 

 

Figure II.2: Binary and Multi-class Classification. 

 

 

Figure II- 2: Binary and Multi-class Classification. 
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2.1.3 Unsupervised learning 

Unsupervised learning involves unlabeled output variables and unknown input-output pairings. In 

this method, a machine learning model searches for differences, patterns, similarities, and 

structures in data. Unsupervised learning methods are frequently classified into two categories: 

clustering and association analysis [33][34]. Unsupervised learning allows for the exploration of 

previously unnoticed data patterns. Unsupervised learning is perhaps more similar to human and 

animal learning. This method is more widely applicable than supervised learning as it doesn't 

require human expertise [36]. 

• Clustering: Clustering is a way of organizing items into groups so that the 

objects with the most similarities stay in one group and have few or no 

similarities with the objects in another [38]. It seems that clustering and 

classification are similar but in classification, There are predetermined labels 

provided to each input while these labels are not present in clustering.   

• Association: An association rule is an unsupervised learning strategy used to 

identify links between variables in a big database. It identifies the group of items 

that appear together in the dataset [38]. 

 

Figure II- 3: Linear regression on some 1d data. 

 

 

Figure II- 3: Linear regression on some 1d data. 
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2.1.4 Reinforcement Learning 

Reinforcement Learning (RL) is a unique form of machine learning that enables machines and 

software agents to determine optimal behavior in order to achieve desired outcomes [37]. Opposed 

to previous approaches, in RL the data is not predetermined; instead, it is provided to the agent as 

it investigates the environment. The approach uses a reward mechanism to guide the agent's 

learning based on previous knowledge, rather than being fully random [39]. 

 

 

 

 

 

2.2 Machine learning algorithms 

2.2.1  Supervised learning algorithms 

There are several SL algorithms, each with unique approaches. The algorithm used depends on the 

dataset and usage. 

• K-Nearest Neighbors (KNN) 

KNN categorizes data points based on a simple majority vote among their closest neighbors. Its 

precision is dependent on the quality of the data and it is resistant to noise. The biggest issue in 

using KNN is determining the proper number of neighbors. KNN is commonly used for statistical 

estimate and pattern identification based on proximity between objects [40][41]. 

• Decision tree: 

 

Figure II- 4: Basic RL model 

 

 

Figure II- 4: Basic RL model 
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Decision trees (DT), also known as classification trees, are a common and successful predictive 

modeling approach used in statistics and data mining. They are among the first and most recognized 

SL algorithms, making them ideal for classification problems. These are graphical representations 

of a problem or choice based on certain criteria, including internal and exterior nodes linked by 

branches [42]. 

 

2.2.2 Unsupervised learning algorithms 

Unsupervised learning algorithms are better suited for more complex problems, Below we describe 

some examples. 

- K-means algorithm: 

The K-means algorithm is simple to comprehend. K-means' complaint is that it splits a given set 

of data into K groups and then assigns the matching center to each sample. There are four phases 

[44]. 

- Data processing. 

- Select K centers. 

- Defining the loss function. 

- calculates the distances between each data point and each of the k centroids. 

Next, it uses the mean of the corresponding data points from each cluster to 

update each centroid's position. 

 

- Hierarchical clustering: 

hierarchical clustering is applied to create a cluster out of the unlabeled datasets. This 

algorithm creates a tree-like structure called a dendrogram, which is the hierarchy of 

clusters assembled into a tree [38]. It looks similar with k-means however we do not have 

to set the fixed K value in the hierarchical clustering [44]. 
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2.2.3 Reinforcement learning algorithms 

reinforcement learning provides a variety of approaches, based on the nature of assignment and the 

particulars of the environment. 

 

 

3. Deep learning 

3.1. Definition 

 Deep learning is a subset of machine learning in artificial intelligence (AI) based on 

artificial neural networks. DL models high-level abstractions in data through non-linear 

transformations [45]. 

Deep learning models, often known as deep neural networks, are inspired by the structure and 

operation of the human brain. They are made up of several layers of interconnected nodes 

(neurons), with each layer transforming the input data into more abstract representations. To 

decrease prediction errors, the network is trained using huge datasets and optimization tools like 

as backpropagation [46][47]. 

 

 

Figure II- 5: Neural network architecture. 

 

 

Figure II- 1: Neural network architecture. 
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3.2. Deep learning models 

3.2.1 Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) are a type of deep learning model that is specifically built 

to handle structured grid data like photographs. They use convolutional layers and filters to 

automatically and adaptively learn spatial feature hierarchies from input photos [46].  

CNN is a useful method for recognizing visual patterns in pixel images with minimal 

preprocessing. In 2012, Alex Krizhevsky developed Alex Net, a CNN that reduced error from 26% 

to 16% in the ImageNet Large Scale Visual Recognition Challenge [20]. 

3.2.2 Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) are a type of neural network that recognizes patterns in 

sequences of data, such as time series or natural language. They have connections that form directed 

cycles, allowing data to survive [46]. 

In the context of sequential data, RNN can be very powerful for the prediction process compared 

to other networks because it uses feedback loops in processing data. The advantage of RNN is that 

it considers what is encountered before to process current information [46]. 

3.3. Application of deep learning 

- Healthcare: in the field of medicine doctors use deep learning to classify photos of 

skin lesions as benign or malignant skin malignancies achieves the same accuracy 

as board-certified dermatologists [49]. 

 

- Auto Driving: Deep learning has been used to improve vehicle safety by 

automatically identifying the road, traffic signs, pedestrians, and providing 

necessary advice. This can help improve traffic regulation and reduce accidents 

[50]. 
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- Natural Language Processing (NLP): Deep learning has transformed processes like 

machine translation, which includes translating text from one language to another, 

and sentiment analysis, which identifies the sentiment expressed in text. Text 

summarization creates brief summaries of lengthier texts, whereas speech 

recognition translates spoken language to text. Siri, Alexa, and Google Assistant are 

examples of chatbots and virtual assistants that use deep learning [51]. 
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1 Introduction 

The Traveling Tournament Problem (TTP) was introduced by Easton, Nemhauser, and Trick in 

1993, inspired by Trick's work on scheduling Major League Baseball (MLB) in the United States. 

Since 1996, Trick and baseball executive Doug Bureman have collaborated on optimizing MLB 

schedules, demonstrating the practical importance and impact of this problem. The TTP's 

popularity surged as other sports leagues recognized the potential for significant operational cost 

reductions through mathematically generated schedules. 

TTP represents a global challenge that sports leagues face in their quest to schedule games that are 

fair and effective for all clubs. This combinatorial optimization problem seeks to find the most 

cost-effective tournament itinerary for a group of teams, aiming to meet specific constraints while 

minimizing the total distance travelled by all participating teams. In a double round-robin 

competition with 𝑛 teams, each team plays two games against each of the other 𝑛 − 1 teams, 

resulting in a complex scheduling challenge. 

The total travel distance between venues is a key consideration in tournament scheduling, with 

significant real-world implications. Efficient scheduling can lead to substantial cost savings, 

reduced travel fatigue for players, and improved overall fairness in the competition. This chapter 

explores different TTP variants, assesses their complexity, and introduces models and formulations 

designed to minimize travel costs and ensure fair tournament scheduling. 

We begin by presenting the TTP in its original form, followed by a discussion of existing solution 

methods. Subsequently, we explore various problem variants and advancements made in 

addressing these challenges. Finally, we delve into intriguing related problems that have emerged 

from the study of the TTP, highlighting ongoing research and future directions. 

2 The Traveling Tournament Problem 

In a round-robin tournament involving 𝑛 teams, where 𝑛 is an even number, each team competes 

against every other team exactly once. An 𝑚 -round-robin tournament extends this concept by 

requiring each team to play every other team 𝑚 times. Each match is designated to be played at 

one team's home venue, making them the home team, while their opponent is the away team. 
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A sequence of consecutive away games is referred to as a road trip, while consecutive home games 

are known as a home stand. At the start of the tournament, all teams are located at their home 

venues and must return to their home venues at the end of the tournament. 

The distances between all team venues are provided in an 𝑛 × 𝑛 matrix 𝐷. When a team plays an 

away game, they travel from their home city to their opponent’s city. During consecutive away 

games, the team travels directly from one opponent’s city to the next. Upon concluding their road 

trip, the team returns to their home city. 

Note that the length of a road trip (or home stand) is given by the number of opponents played and 

not the distance travelled by the team. 

The Traveling Tournament Problem can be succinctly captured as follows: 

Input: An even number of teams, n; an n by an integral distance matrix, D; L, U integer parameters. 

Output: A double round-robin tournament on the n teams such that: 

• every team plays every other team once at their home venue and once at the venue 

of the opponent 

• the length of every home stand and road trip is between L and U, and 

• the total distance travelled by the teams is minimized. 

A schedule satisfying the first constraint is a feasible double round-robin tournament. The second 

constraint is called the at-most constraint. The final constraint ensures optimality. 

There may be an additional constraint placed on the tournament: 

- No repeaters: there are no teams 𝑖, 𝑗 such that in the tournament schedule, 𝑖 plays 

at 𝑗, followed immediately by 𝑗 plays at 𝑖. 
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Note that for 𝐿 =  1 and 𝑈 =  𝑛 −  1 a team may take a road trip visiting all other teams, which 

equates to finding a traveling salesman tour. On the other hand, for small U, teams must return 

home often thus the distance travelled will increase. The TTP was originally introduced with      

𝑈 =  3 but we will explore the problem for different values. We rename the parameter k and the 

version of the problem being discussed is distinguished by using the notation TTP(k). Over the 

years, a growing number of variants and instances of TTP were introduced. Here are several classes 

of instances which have become popular benchmarks: 

The circle instance is one where 𝑛 cities correspond to the nodes of a circle graph of size 𝑛. Nodes 𝑖 

and 𝑖 +  1, and nodes 𝑛 −  1 and 0 are joined by an edge of length 1. Then the shortest distance 

from 𝑖 to 𝑗 (𝑖 >  𝑗) is the minimum of 𝑖 −  𝑗 and 𝑗 −  𝑖 +  𝑛. A circle instance with 𝑛 teams is 

denoted 𝐶𝐼𝑅𝐶𝑛. 

The National League instance with n teams is denoted NLn, and is given by n teams of the Major 

League Baseball league and distances are given by the “air distance” from city centers. Optimal 

solutions to NL4 and NL6 are given in [52]. NL8 was solved optimally for the first time in [54] 

using a branch and price algorithm in parallel with constraint programming although the no-

repeaters condition was neglected. 

The constant distance instance (denoted CONn) was introduced by Ribeiro and Urrutia [55] and 

the problem is formulated just as we would expect: the distance between all pairs of cities is 

constant, typically equal to one. Fujiwara, Imahori, Matsui, and Miyashiro [56] proposed a lower 

bound for the constant distance TTP and devised two approximation algorithms that produce 

feasible solutions with values close to their lower bound. 

A description of these instances as well as the most current progress on them can be found at the 

web-page maintained by Trick [57]. 

The constraints: 

The TTP is the problem of finding a feasible schedule that minimizes the distance traveled by the 

teams, and satisfies the following constraints [66]: 
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Double round robin constraint (DRRT): that means that each team plays with every other team 

exactly twice, once in its home and once in the home of its opponent. 

• AtMost constraint: each team must play no more than U and no less than L consecutive 

games at home or away. Specially, in our case, L is set to 1 and U to 3. 

• NoRepeat constraint: A game 𝑡𝑖 − 𝑡𝑗 can never be followed in the next round by the game      

𝑡𝑖 − 𝑡𝑗. 

1. The TTP contains the number of teams (denoted n) and the distance matrix (denoted Dis). 

2. The output are: a double round robin tournament on the n teams respecting the three constraints 

AtMost, NoRepeat and DRRT, and where the total distance traveled by the teams is minimized. 

Table 1 gives an example of a schedule for n = 4 teams. The negation sign means that the team 

plays away. 

 

Round 

Team 

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 

T1  3  2 4 -3 -2  -4 

T2 -4 -1 -3  4  1   3 

T3 -1  4  2  1 -4 -2 

T4  2 -3 -1 -2  3 1 

Table 1. Example of double round robin tournament with n = 4 

This schedule specifies that the team t2 has the following schedule: it successively plays against t3 

at home, t4 away, t1 away and t3 away, teams t4 at home, t1 at home. 

The travel cost of team t1 is: 𝐷𝑖𝑠24 +  𝐷𝑖𝑠41 +  𝐷𝑖𝑠13 +  𝐷𝑖𝑠32. 

We note that the travel costs of a schedule S is the sum of the travel cost of every team (denoted 

Travel-cost(S)). 
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2.1 Unconstrained TTP 

The unconstrained TTP (uTTP) is formulated identically to the original TTP except we do not 

enforce the at-most constraint. Thus, we do not impose a bound on the maximum length of home 

stands and road trips. In this formulation, a team can take an arbitrarily long road trip, possibly 

visiting all other teams, before returning home. The unconstrained version of the problem was 

shown to be NP-hard [58], and when the number of consecutive home/away games is fixed to three, 

the problem is strongly NP-complete [59]. NP-completeness was later shown for all fixed values 

of k > 3 [60]. 

2.2 Mirrored TTP 

The mirrored TTP (mTTP) is a widely studied variation of the problem. The first paper on mTTP 

is due to Ribeiro and Urrutia [61]. In this version, the first half of the season's schedule is identical 

to the second half, except the venues are reversed. If team A plays in city B on the first day of the 

half of the season, team B would play in city A on the first day of the second half of the season. 

The sports scheduling community is interested in this form of the problem due to its prevalence in 

Latin American tournament structures. Cheung [62] used a two-phase method based on generating 

timetables from 1-factorizations 

and finding optimal home/away assignments to solve NL8 and CIRC8 to optimality. Moreover, 

Cheung used a Benders approach to compute lower bounds for the mirrored TTP [63]. 

These bounds remain the current best-known lower bounds for the mirrored problem. Incidentally, 

several key results for the mirrored TTP were not intended to specifically solve the mirrored 

problem. The fact that the resulting schedule was mirrored was simply a side effect of the 

technology employed to create it. Several significant findings on 𝑚𝑇𝑇𝑃 are described in 

subsequent sections. 



CHAPTER III  Traveling tournament problem (TTP) 

39 

2.3 Approximation algorithms 

The Traveling Tournament Problem (TTP) was initially introduced with a constraint 𝑘 on the 

number of consecutive home or away games a team can play. Influenced by Major League 

Baseball, the value of 𝑘 was set to 3. However, research has also explored the problem for other 

values of 𝑘. The following presents the best current approximations for different values of 𝑘, 

assuming the distances between team venues satisfy the triangle inequality, thus making the 

distances metric. 

Imahori, Matsui, and Miyashiro [67] proposed a constant factor approximation algorithm for the 

unconstrained TTP (i.e., k=n−1, where 𝑛 is the number of teams). The solution returned by the 

algorithm is a mirrored schedule, making it a feasible solution to the unconstrained 𝑚𝑇𝑇𝑃. 

There is no feasible schedule when 𝑘 = 1 [68]. 

Campbell and Chen [69] studied the problem for 𝑘 = 2 in 1976, predating the formal definition of 

the TTP. Since then, numerous attempts have been made to achieve a good approximation ratio, 

but the result depends on the parity of 𝑛/2. Thielen and Westphal [70] devised an algorithm for 

each case and found a bound of 3/2 + 𝑂(1)/𝑛 for 𝑛/2 odd and 1 + 𝑂(1)/𝑛 for 𝑛/2 even. Building 

on this method, Imahori [71] proved a 1 + 𝑂(1)/𝑛 bound when 𝑛/2 is odd. Zhao and Xiao [72] 

also achieved a 1 + 𝑂(1)/𝑛 ratio for 𝑛/2 odd, which slightly improved the ratio (1 +  12/𝑛 versus 

1 +  24/𝑛) found by Imahori. 

For 𝑛/2 even, Xiao and Kou [73] provided an approximation algorithm with a ratio of 1 + 1/4𝑛. 

Chatterjee and Roy [74] found an approximation ratio of 1 + ⌈𝑙𝑜𝑔2(𝑛/4)⌉ + 4/(2(𝑛 − 2)) 

yielding slightly better results than Xiao and Kou for 𝑛 ≤ 32. 

For 𝑘 = 3, the most popular version of the problem, Imahori, Matsui, and Miyashiro [75] proposed 

a randomized approximation algorithm that yields a feasible solution with an approximation ratio 

of less than 2+(9/4)/(n−1). They then used a rerandomization technique to find a deterministic 

approximation algorithm with the same ratio. These algorithms were the first to achieve a constant 

approximation ratio. This result relies on a new lower bound, which, although not as tight as 

previously known bounds, is easier to calculate. This new bound implies that any feasible solution 
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to a 𝑇𝑇𝑃 (3) instance is at most three times the optimal value. In fact, their lower bond yields a 

trivial approximation ratio of 𝑘 for any feasible 𝑇𝑇𝑃(𝑘) solution. 

For 𝑘 ≥ 4, Westphal and Noparlik [76] proposed an approximation algorithm producing a solution 

for any 𝑛 ≥ 6. Yamaguchi, Imahori, Matsui, and Miyashiro [77] considered 𝑇𝑇𝑃(𝑘) for all fixed 

𝑘 ≥ 3. For 𝑘 ≤ 5, the approximation ratio of the proposed algorithm is bounded by (2𝑘 − 1)/𝑘 +

𝑂(𝑘/𝑛), and for 𝑘 > 5, the ratio is bounded by (5𝑘 − 7)/(2𝑘) + 𝑂(𝑘/𝑛). For k=3, the ratio is 

5/3 + 𝑂(1)/𝑛. The schedule produced by their algorithm is a mirrored schedule. 

The Bipartite Traveling Tournament Problem (𝐵𝑇𝑇𝑃) was introduced by Hoshino and 

Kawarabayashi [78], where 2n teams are divided into two groups of 𝑛 teams. Each team plays one 

home and one away game against all other teams in the other group. These variant models the 

scheduling of games for the Nippon Professional Baseball (NPB) league, Japan's largest sports 

league. Each NPB team plays 24 inter-league games each season, thus the bipartite structure of 

games between two groups was relevant. The problem is NP-complete. Despite its computational 

hardness, an optimal schedule for inter-league games was found for the NPB, which consists of 

only 12 teams. Hoshino and Kawarabayashi [79] developed a polynomial-time algorithm to solve 

the BTTP with an approximation ratio of 1 + 2𝑐/3 + (3 − 𝑐)/3𝑛, where ccc is the approximation 

factor of the TSP. 

2.4 TTP Complexity Analysis 

The Traveling Tournament Problem (TTP) is a well-known challenging problem that is thought to 

be extremely NP-hard. Numerous scholars have examined the difficulty of TTP, and various 

techniques have been suggested to address this issue. No research, however, has been able to tackle 

TTP with more than ten teams in the best way up until this point. The first proof of NP-

completeness for a variant of the original TTP was given by Bhattacharyya [64]. 

 

Numerous algorithms, including accurate and heuristic methods, have been developed to solve 

TTP. Exact methods provide the best solution for TTP instances, but they are usually not practical 
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for large instances due to their high computing cost. Integer programming is a methodical technique 

to solving TTP that determines the optimal solution using a mathematical model. Conversely, 

heuristic procedures take a reasonable amount of time to produce a less-than-ideal result. Heuristics 

like as greedy algorithms, local search algorithms, and evolutionary algorithms have been used to 

handle TTP scenarios. These methods usually work well and are of high quality, but they do not 

guarantee optimality.  

The size, complexity, and needed level of optimality all play a role in the method that is selected 

to solve TTP. Smaller TTP instances can be solved using accurate approaches, however larger 

instances frequently need for heuristic techniques. When choosing an algorithm to solve TTP, it is 

crucial to take the trade-off between optimality and computing time into account [65]. 

3 Conclusion 

This chapter provided a comprehensive overview of the Traveling Tournament Problem (TTP), its 

origins, and its significance in the field of sports scheduling. The TTP, inspired by Major League 

Baseball scheduling, presents a complex combinatorial optimization challenge aimed at 

minimizing the total travel distance for teams while adhering to specific constraints. 

We delved into the fundamental structure of the TTP, discussing the double round-robin format, 

road trips, and home stands. The problem formulation, including the input parameters and 

constraints, was thoroughly examined. Various instances and benchmarks of the TTP, such as the 

circle instance, National League instance, and constant distance instance, were introduced to 

illustrate the diversity and complexity of real-world scheduling problems. 

In summary, the TTP is a critical problem in sports scheduling with significant practical 

implications. This chapter laid the foundation for understanding the TTP, its variants, and the 

existing solution methods. The insights gained from this exploration will serve as a basis for 

developing new and innovative approaches to address the challenges posed by the TTP, ultimately 

contributing to more efficient and fairer tournament scheduling in the future. 
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1 History of BBO 

Biogeography-Based Optimization (BBO) is a nature-inspired optimization technique that 

considers the distribution of species across different geographic areas. BBO was first introduced 

by Dan Simon in 2008 as a novel evolutionary algorithm for solving optimization problems. 

2 Biogeography based optimization (BBO) 

Mathematical models in biogeography, such as those developed by Mark, describe the migration 

of species between habitats, the emergence of new organisms, and extinction processes. In the 

context of BBO, a habitat represents an isolated living space, and its quality is evaluated using a 

Habitat Suitability Index (HSI). The variables influencing this index, termed Suitability Index 

Variables (SIVs), can include factors such as rainfall, vegetation diversity, topographic features, 

land area, and temperature. 

The main characteristics of the habitats are as follows: 

• Habitats that are favorable to the residence (good geographical conditions) of 

biological species are called high habitat suitability index (HSI). It is intelligible that 

the habitat with a high HSI tends to have a large number of species. Similarly, 

habitats which have bad geographical conditions are called low habitat suitability 

index. 

• High HSI habitats tend to share their features with low HSI habitats by migrating 

their species to the low HSI habitats. The shared features re- main in the heightens 

HSI habitats while appearing at the same time as new features in the low HSI 

habitats. 

 

 

Figure IV.1 illustrates a linear migration model of species abundance within a single habitat, 

emphasizing the relationship between species count, immigration rate (λ), and emigration rate (µ). 

As the number of species in a habitat increases, indicative of a good habitat, the immigration rate 
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(λ) decreases while the emigration rate (µ) increases. Conversely, when the species count is low, 

indicative of a habitat with a low Habitat Suitability Index (HSI), the immigration rate (λ) increases 

and the emigration rate (µ) decreases. 

 

Figure IV.1: Evolution of immigration and emigration rates with the number of species 

• A habitat is a candidate solution for the optimization problem. 

• The quality of the solution (fitness) is analogous to the HSI. 

•  The variables defining the solution are SIVs. 

•  A good solution is analogous to a habitat with a high HSI, and thus with a high number of 

sp 

2.1  BBO implementation 

The immigration rate (λ) for each habitat is inversely proportional to the fitness (HSI) value, while 

the emigration rate is directly proportional to the HSI value (As shown in Fig. 1): The emigration 

(µ) and the immigration rate (λ) of each habitat is formulated as follows: 

 

𝜆𝑠𝑝 =  𝐼 (1 −
𝑠𝑝

𝑠𝑝𝑚𝑎𝑥
) 

 

µ𝑠𝑝 =   𝐸 (
𝑠𝑝

𝑠𝑝𝑚𝑎𝑥
) 
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λsp: is the immigration rate in a habitat with sp species.  

µsp: is the emigration rate in a habitat with sp species. I: refers to the maximum immigration 

rate. 

E: is the maximum emigration rate. 

sp: the number of species in the habitat. 

sp0: is the equilibrium number of species. 

spmax: is the maximum number of species that can live in the habitat. 

BBO= (𝜏, 𝜓) is a 2-tuple: 

𝜏 =  𝜃 {𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑛,𝐻𝑆𝐼} is a function that creates an initial population ( set of habitats). 

  𝜓 = 𝜆𝑛 ° 𝜇𝑛 ° Ω𝑛𝐻𝑆𝐼𝑛 ° 𝑀𝑛 ° 𝐻𝑆𝐼𝑛 

The population transition function initiates by calculating the immigration (λn) and emigration 

(µn) rates for each individual using the 2 formulas. One solution, designated as Habitati is then 

selected for modification. The immigration rate of Habitati determines whether a Suitable 

Index Variable (SIV) will be altered. Following this, the emigration rate (µ) is utilized to select 

a high-quality solution Habitatj, whose SIV will migrate (as outlined in Algorithm 1). The 

migration process (Ωn) is subsequently applied between the immigrating Habitati and the 

emigrating Habitatj, wherein superior SIVs from the good solutions (Habitatj) replace those 

in the poorer solutions (Habitati) followed by a recalculation of the Habitat Suitability Index 

(HSI).  

Finally, mutation (Mn) is performed, followed by another HSI recalculation for each habitat. 

In BBO, mutation is analogous to a sudden climatic change within a habitat that may alter its 

HSI. This is modeled in BBO through a mutation operator, which randomly modifies a 

habitat’s SIV based on the mutation rate. 
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Algorithm 1: Migration process 

1 for i=1: number habitats do 

2  Select a habitat Habitati with probability αλi 

3  if Hi is selected then 

4   if rand ∈ (0, 1) < λi then 

5    Select Habitatj with probability αµi 

6    if Hj is selected then 

7     Habitati(SIV) ← Habitatj (SIV) 

8    End if 

9   End if 

10  End if 

11 end for 

Pmut(sp) = α 
1−𝑃𝑠𝑝

𝑝𝑚𝑎𝑥
                                     

Where: 

- Pmut (sp): Mutation rate of a habitat with sp species. 

- α: Parameter defined by the user. 

- Psp: Probability of having sp species in the habitat. 

- Pmax: Probability of having maximum species (max PS). 

- Psp: is the probability of existence of sp species in the habitat. 

𝑃𝑠𝑝 =

{
 
 

 
 

𝜆0𝜆1…𝜆𝑠𝑝−1

𝜇1𝜇2…𝜇𝑠𝑝(1+∑
𝜆0𝜆1…𝜆𝑙−1
𝜇1𝜇2…𝜇𝑙

𝑛
𝑙=1 )

 1 < 𝑠𝑝 < 𝑛𝑢𝑚𝑏𝑒𝑟 ℎ𝑎𝑏𝑖𝑡𝑎𝑡𝑠

1

1+∑
𝜆0𝜆1…𝜆𝑙−1
𝜇1𝜇2…𝜇𝑙

𝑛
𝑙=1

…𝑠𝑝 = 0
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Algorithm 2: Mutation 

1 for j = 1 to number habitats do 

2  Use λi and µi to compute Pmuti 

3  Select Habitati(j) with probability αPmuti 

4  if Habitati(j) is selected then 

5   Replace Habitati(j) with a random SIV 

6  end if 

7   

8 end for 

3 Conclusion 

In this chapter, we have explained the biogeography-based optimization algorithm, First, we 

discussed the history of BBO and then provided a detailed description of this algorithm. This 

algorithm is designated by the migration of bad solutions towards excellent solutions. We then 

addressed the steps of this algorithm, which are construct initial population and migration and 

mutation 
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1. Introduction 

In the previous chapter, we introduced and discussed the Tournament Traveling Problem (TTP) 

and its constraints. In this chapter, we will focus on discussing the proposed approaches to apply 

machine and deep learning to enhance Stochastic Local Search (SLS) and BBO algorithms 

performance on solving the TTP. First, we will explore the generation of the initial solution and 

neighborhood structures that are used in both approaches. Then explain the BBO and its projection 

on our problem and how we implement a deep learning model for parameters tuning. Additionally, 

we will discover the application of reinforcement learning as neighborhood structure within the 

SLS algorithm. 

2. BBO for TTP 

The Biogeography-Based Optimization (BBO) algorithm is a powerful evolutionary algorithm 

inspired by the geographical distribution of biological species. It has been successfully applied to 

a wide range of optimization problems. To solve the scheduling challenge of The Traveling 

Tournament (TTP), we utilize the BBO algorithm. First, we will investigate the implementation of 

Neighborhood Structures and several swap methods. Then we will explore the BBO 

implementation using these methods. 

2.1.Initialize schedule 

Starting with creating an initial schedule that satisfies the DRRT (Double Round Robin 

Tournament) constraint. We create this structure using graph theory modeling, as follows: 

We number the graph's vertices from 1 to n, where n represents the number of teams. We center 

the top n vertices and form a circle around them. 

On the first day, we plan games between (Team 1 and Team n), (Team 2 and Team n−1), (Team 3 

and Team n−2), and so on, until the game between (Team n/2 and Team n/2 + 1). 

On the following day, we repeat the previous day's pairings by rotating the team couplings 

clockwise. 
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Using this method will give us an initial single round robin schedule. We mirror it to get a schedule 

that verifies the DRRT constraint. The following tables shows the final output for a tournament 

with n = 4. 

Table V.1: A Double Round Robin Tournament (DRRT) schedule. 

To find a feasible configuration that satisfies the remaining constraints specifically AtMost, 

NoRepeat and DDRT. We utilize a cost function to penalize configurations that break the 

constraints and neighborhood structures to navigate the search space. Additionally, we propose to 

use a local search method which is VNS to construct these feasible schedules. 

 The cost function is combination of two terms. The first term is to penalize constraints 

violation AtMost and NoRepeat. The second term is about the total traveled distance. 

 The penalty At-most 𝑓 𝐴𝑡𝑚𝑜𝑠𝑡(𝑆) is the total number of times the teams play more than three 

consecutive home games or three consecutive away games and the penalty  𝑓𝑁𝑜 𝑟𝑒𝑝𝑒𝑎𝑡 (𝑆) is the 

total number of times that the game (ti, tj ) is followed immediately by (tj , ti) in the schedule S. 

 Now, we define the following equations: 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝐶𝑜𝑠𝑡(𝑆) =  𝑓𝐴𝑡𝑀𝑜𝑠𝑡 (𝑆) + 𝑓𝑁𝑜𝑅𝑒𝑝𝑒𝑎𝑡(𝑆)            (V.1) 

𝐶𝑜𝑠𝑡 (𝑆) = 𝑒  𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝐶𝑜𝑠𝑡(𝑆) ×  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑐𝑜𝑠𝑡(𝑆)        (V.2) 

 

N = 4 

Rounds 

1 2 3 4 5 6 

 

 

Teams 

1 4 3 2 -4 -3 -2 

2 3 -4 -1 -3 4 1 

3 -2 -1 4 2 1 -4 

4 -1 2 -3 1 -2 3 
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2.2. Neighborhood structures 

We utilize four neighborhood structures, as stated below: 

N1 swap home: The Swap Home move is an operation that swaps the home and away roles of two 

teams involved in a specific match. This technique helps to explore alternative scheduling 

configurations while maintaining the tournament's overall structure. Given a schedule 𝑆 and teams 

𝑡𝑖and 𝑡𝑗 , the Swap Home move is denoted as 𝑆𝑤𝑎𝑝𝐻𝑜𝑚𝑒 (𝑆, 𝑡𝑖, 𝑡𝑗)  . For each round 𝑟 in the 

schedule, determine if teams 𝑡𝑖and 𝑡𝑗  are playing against each other, if so exchange their 

home\away roles. For example, if we apply 𝑆𝑤𝑎𝑝𝐻𝑜𝑚𝑒 (𝑆, 1, 3) the results will be  

 

Table V.2: 𝑆𝑤𝑎𝑝𝐻𝑜𝑚𝑒 (𝑆 ,1, 3) results. 

N2 swap round: The Swap Round move involves exchanging the positions of two rounds in the 

schedule. This helps explore different orderings of the rounds while keeping the matchups within 

each round intact. Given a schedule 𝑆 and two rounds 𝑟1 and 𝑟2, the Swap Round move is denoted 

as 𝑆𝑤𝑎𝑝𝑅𝑜𝑢𝑛𝑑 (𝑆, 𝑟1,  𝑟2). This technique Swap the positions of all the games scheduled in round 

𝑟1 with those in round 𝑟2 

 

 

 

N = 4 

Rounds 

1 2 3 4 5 6 

 

 

Teams 

1 4 -3 2 -4 3 -2 

2 3 -4 -1 -3 4 1 

3 -2 1 4 2 -1 -4 

4 -1 2 -3 1 -2 3 
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Table V.2: 𝑆𝑤𝑎𝑝𝑅𝑜𝑢𝑛𝑑 (𝑆 ,1, 4) results. 

N3 swap team: The Swap Team move swap the entire schedules of two given teams except the 

rounds they play against each other’s. Given a schedule 𝑆 and two teams 𝑡𝑖and 𝑡𝑗 , the Swap Team 

move is denoted as 𝑆𝑤𝑎𝑝𝑇𝑒𝑎𝑚 (𝑆, 𝑡𝑖, 𝑡𝑗)  

Table V.3: 𝑆𝑤𝑎𝑝𝑇𝑒𝑎𝑚 (𝑆 ,2, 4) results. 

N4 swap path: The Swap Path move involves transferring the entire schedule of one team from one 

schedule to another and apply all the necessary adjustment. This helps explore different scheduling 

configurations across different schedules while keeping the overall structure of the tournaments 

intact. Given two schedules 𝑆1 and 𝑆2 , and a team 𝑡𝑖, the Swap Path move is denoted as 

𝑆𝑤𝑎𝑝𝑃𝑎𝑡ℎ(𝑆1, 𝑆2, 𝑡𝑖). 

 

 

 

N = 4 

Rounds 

1 2 3 4 5 6 

 

 

Teams 

1 -4 -3 2 4 3 -2 

2 -3 -4 -1 3 4 1 

3 2 1 4 -2 -1 -4 

4 1 2 -3 -1 -2 3 

 

N = 4 

Rounds 

1 2 3 4 5 6 

 

 

Teams 

1 -2 -3 4 2 3 -4 

2 1 -4 -3 -1 4 3 

3 4 1 2 -4 -1 -2 

4 -3 2 -1 3 -2 1 
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Table V.4: Feasible Schedule S1. 

Table V.5: 𝑆𝑤𝑎𝑝𝑃𝑎𝑡ℎ (𝑆 , 𝑆1, 1) results. 

VNS works on a variety of neighborhoods. In our study, we use three (k = 3) neighborhood 

structures: N1 (Swap Home), N2 (Swap Round), and N3 (Swap Team). At each iteration, we 

choose one of the three structures to generate neighbor solutions. 

2.3.BBO implementation 

2.3.1. Initialize population 

We generate an initial population of an 𝑛 candidate solution where each element (habitat) is a 

schedule that satisfies the DRRT. To enhance the initial solution, we apply the Variable 

Neighborhood Search (VNS) algorithm. 

 

 

N = 4 

Rounds 

1 2 3 4 5 6 

 

 

Teams 

1 -2 4 -3 2 3 -4 

2 1 3 4 -1 -4 -3 

3 -4 -2 1 4 -1 2 

4 3 -1 -2 -3 2 1 

 

N = 4 

Rounds 

1 2 3 4 5 6 

 

 

Teams 

1 -2 4 -3 2 3 -4 

2 1 3 4 -1 -4 -3 

3 -4 -2 1 4 -1 2 

4 3 -1 -2 -3 2 1 
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Algorithm 1: InitializePopulation 

1 Input: populationSize 

2 Output: population 

3 Population ← [ ] 

4 S ← 𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐞𝐃𝐑𝐑𝐓(𝐓𝐓𝐏𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞) 

5 For i in populationSize do 

6  S ← 𝐕𝐍𝐒(𝐒) 

7  Population.append(S) 

8 Return Population 

2.3.2. Evaluate population 

We calculate the fitness, or the total cost of each schedule based on the total travel distance and 

constraint violations then we sort the population from the worst to the best that means the position 

of the solution indicate its quality. 

2.3.3.  Migrate and mutation 

In the migration process, we take two solutions from the population based on the migration rate, 

use the 𝑆𝑤𝑎𝑝𝑃𝑎𝑡ℎ structure to move an entire schedule of one team from the best solution and aim 

to integrate that schedule in the worst solution. Following that we execute the mutation either it 

happens or not based on the mutation rate. 
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Algorithm: Migration 

 Input: Population, migrationRate 

 Output: Population 

1 Select Hi with probability 𝛂𝛌𝐢 

2 If Hi selected then 

3  For j in n do 

4   Select Hj with probability 𝛂𝛍𝐣 

5   If Hj selected then 

6    t ← Extract the team that has the minimum path 

7    S𝐰𝐚𝐩𝐏𝐚𝐭𝐡 (𝐇𝐣 , 𝐇𝐢, 𝐭) 

8   End if 

9  End for 

10 End if  

11 Return Population 

Then, we repeat the entire process of calculating costs, sorting the table, performing migration, and 

executing mutation for a predefined number of generations. 

Algorithm: BBO 

 Inputs: nbumberOfGenerations, populationSize, migrationRate, mutaionRate 

 Output: BestSchedu  

1 Call InitializePopulation(populationSize) 

2 for i in nbumberOfGenerations do 

3  Population ← Evaluate Population //calculate fitness and sort the list  

4  Calculate 𝐬, 𝛌, 𝛍 for each habitat //  𝐬 = 𝒍𝒏 (𝐢𝐧𝐝𝐞𝐱 + 𝟏)  

5  Call migration (migrationRate) 

6  call Mutation (mutaionRate) 

7 end for 

8 Return BestSchedul 
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Figure V.1: BBO diagram 

3. SLS with Reinforcement learning 

During our studies on the TTP problem, we observed that the order of the rounds plays a significant 

role in minimizing the total traveled distance. This is because the order in which the games are 

played may have a significant impact on the entire travel schedule and, as a result, the teams total 

distance traveled. Trying all possible combinations of round orders is an exhaustive search can be 

very time-consuming, especially as the number of teams increases and considering that this process 

is repeated for every deferent set of rounds. We find a lot of similarities between this process and 

the traveling salesman problem (TSP) with some differences due to TTP’s constraints. Our task 

can be split into two distinct components; manipulate the rounds structure to explore feasible 

regions, then uses a reinforcement learning model to solve the TSP corresponding to the current 

schedule structure. 

Mutation

Select habitat

generate population

evaluate population 

Migration

Migrate population 

Number 

of gen  

Output 

YES 

NO 
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The following steps demonstrate the modeling of a reinforcement learning model as a 

neighborhood structure in the sls heuristic. 

3.1.Extract TSP  

• Inputs: 

A double round robin tournament timetable 

Integer distance matrix 

Teams 1 2 3 4 

1 0 745 665 929 

2 745 0 80 337 

3 665 80 0 380 

4 929 337 380 0 

Table V.6: NL4 integer distance matrix 

Table V.1: A Double Round Robin Tournament (DRRT) schedule. 

• Output 

TSP matrix  

Possible actions for each round 

Round 

(city) 

0 1 2 3 4 5 6 

 

N = 4 

Rounds 

1 2 3 4 5 6 

 

 

Teams 

1 4 3 2 -4 -3 -2 

2 3 -4 -1 -3 4 1 

3 -2 -1 4 2 1 -4 

4 -1 2 -3 1 -2 3 
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0 0 1009 1002 1125 1009 1002 1125 

1 1009 0 2011 1490 2018 1490 2011 

2 1002 2011 0 1974 1974 2004 2011 

3 1125 1490 1974 0 1974 1490 2250 

4 1009 2018 1974 1974 0 797 797 

5 1002 1490 2004 1490 797 0 797 

6 1125 2011 2011 2250 797 797 0 

Table V.7: TSP matrix for the initial schedule 

 

Round (city) 0 1 2 3 4 5 6 

0 0 1 1 1 1 1 1 

1 1 0 1 1 0 1 1 

2 1 1 0 1 1 0 1 

3 1 1 1 0 1 1 0 

4 1 0 1 1 0 1 1 

5 1 1 0 1 1 0 1 

6 1 1 1 0 1 1 0 

Table V.8: Possible actions matrix. 

We consider the rounds as the cities and calculate the distance traveled by all the teams between 

the rounds. We extract a new matrix that represents the distance between the rounds which is the 

TSP representation of the current schedule. The first city (index = 0) represents the starting point 

to make sure that all teams begin in their home city and must return there after the tournament last 

constraints. The second matrix represents the possible action for each round (city) where 1 means 

that we can move from round 𝑖 to round 𝑗 and 0 indicate that we can’t. Unlike traditional TSP it 

seems that the cities are not fully connected to each other that is due to the NoRepeat constraint. 
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3.2.Reinforcement learning (RL) for TSP 

Machine and deep learning approaches shows a good potential for solving the TSP such ass GNN 

[80] and ANN [81]. We chose RL since it does not require any training data and due to its ability 

the dynamic change of the constraints over the process. 

3.2.1. Environment : 

• Observation: The observation visible to the agent is a (numCities + 1 ) length integer array, 

where 

o 1 indicates that the round has been visited 

o 0 indicates that the round is yet to be visited 

• Action space: the agent can only take actions in a discrete space, which can also be described 

as [ 0, numRounds]. Action 𝑥 will take the agent to round 𝑥 

• Reward: a visit to a new round will reward the agent with the cost of the trip between nodes. 

We calculate the reward as follows: 𝑅𝑒𝑤𝑎𝑟𝑑 = 1 /𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , so that shorter connections 

will have more weight and to avoid the AtMost constraints we define a function that returns 

the available actions based on the current state, we use two lists to calculate the consecutive 

home and away games and check in the not selected rounds if it will violate the constraints 

so it masked that round. 

The 𝑟𝑒𝑠𝑒𝑡(𝑠𝑒𝑙𝑓) function Restart the environment for experience replay. Returns the first state in 

our case its always the round 0. 

The 𝑠𝑡𝑒𝑝(𝑠𝑒𝑙𝑓, 𝑎𝑐𝑡𝑖𝑜𝑛) function Takes an action in a given state based on the current path to avoid 

constraints violation and it returns the next state and the reward of such an action 

At the end the model we define a function to rebuild the TTP from the TSP path by eliminating 

both endpoints and follows the TSP path to order the rounds. 
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1 Introduction 

In this final chapter, we present the numerical results obtained from our proposed approach for 

solving the Traveling Tournament Problem (TTP). Our approach leverages a deep learning model 

to predict optimal Biogeography-Based Optimization (BBO) parameters based on training data, 

aiming to enhance the performance of the BBO algorithm. 

4. Numerical Results 

In this section, we present the numerical results obtained from our experiments on solving the 

Traveling Tournament Problem (TTP) using the proposed approach. The results are summarized 

in a table that provides insights into the performance of our method. The table includes columns 

such as Instance, Best Known, Initial Solutions, Best Solution. The Instance column indicates the 

specific dataset used, while the Best-Known column represents the known optimal solution. 

The Initial Solutions column displays the objective values before optimization, and the Best 

Solution column shows the optimal or near-optimal solutions obtained by our approach. 

The results obtained from our experiments using the proposed approach for the TTP are 

summarized in a table. This table provides important information about the performance of our 

method. It includes 

columns such as Instance, Best Known, Initial Solutions, Best Solution. These columns provide 

insights into the quality and efficiency of our approach. By comparing the Best Solution values 

with the Best-Known solutions, we can assess the quality of our method's results. 

between our best solution and the best-known solution. Overall, these numerical results offer a 

comprehensive analysis of our proposed approach's performance and its ability to produce 

competitive solutions for the challenging TTP. 

We compared the results of this new method with the cumulative results of recent studies, which 

in turn achieved very similar results. 
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The benchmarks consist of a set of teams and their corresponding distances or times between 

venues. 

Here are a few examples of TTP benchmarks: 

NL4: 

 Team 1 Team 2 Team 3 Team 4 

Team 1 0 745 665 929 

Team 2 745 0 80 337 

Team 3 665 80 0 380 

Team 4 929 337 380 0 

Table VI.1: NL4 distance matrix 

Instance Best known Initial solutions BBO without 

DL 

BBO with DL Gap % 

Con4 17 30 17 17 0 

Con6 43 82 43 43 0 

Con8 80 148 80 80 0 

Galaxy4 416 477 477 416 0 

Galaxy6 1365 1578 1408 1388 -1.68 

Galaxy8 2373 3325 2651 2492 -5.01 

NL4 8276 8413 8579 8276 0 

NL6 23916 26893 24526 24073 -0.65 

NL8 39947 57759 45628 43195 -8.13 

Table VI.2: Numerical results found by the overall approach 

Parameter Results: 

To validate our approach, we conducted experiments using various instances of the TTP, including 

NL4, NL6, NL8, CON4, CON6, and CON8. For each instance, we applied our deep learning model 
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to predict the optimal BBO parameters and then ran the BBO algorithm with these parameters. The 

results are summarized as follows: 

 Population 

size 

generations Migration 

rate 

Mutation 

rate 

Max 

iteration 

NL4 19 19 0.48 0.48 97 

NL6 140 139 0.31 0.44 305 

NL8 172 118 0.09 0.12 355 

CON4 29 30 0.5 0.36 34 

CON6 106 109 0.5 0.47 43 

CON8 87 87 0.24 0.46 230 

Galaxy4 27 29 0.49 0.5 35 

Galaxy6 91 102 0.18 0.36 150 

Galaxy8 113 109 0.11 0.48 230 

5. Deep learning model Performance Representation 

Time: 

This figure shows the training and validation loss curves over 200 epochs for our deep learning 

model used in optimizing the Biogeography-Based Optimization (BBO) parameters. The x-axis 

represents the number of epochs, while the y-axis indicates the loss value. The blue line depicts the 

training loss, and the grey line represents the validation loss. Initially, both the training and 

validation losses decrease rapidly, indicating that the model is learning effectively from the data. 

As the epochs progress, the training loss continues to decrease slightly and stabilizes, showing that 

the model is fitting well to the training data. Meanwhile, the validation loss also decreases and 

stabilizes, demonstrating that the model generalizes well to unseen data without significant 

overfitting. This figure is crucial for assessing the model's performance and ensuring that it 

achieves a good balance between fitting the training data and generalizing to new data. 
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Distribution: 

This figure shows the distribution of weights in one of the layers of the deep learning model over 

200 epochs of training. The x-axis represents the weight values, while the y-axis shows the epoch 

number. The orange shading illustrates the density of weight values at each epoch. Initially, the 

weights have a narrow distribution around a central value, but as training progresses, the 

distribution becomes wider and more spread out. This behavior indicates that the model is adjusting 

its weights to better capture the underlying patterns in the data, leading to improved learning. The 

spreading of the weight distribution is a sign of the model's adaptation and optimization process as 

it fine-tunes its parameters to minimize the loss function. Monitoring the weight distribution helps 

in understanding the training dynamics and ensuring that the model parameters are updated 

effectively. 

 

FigureVI.1: Training and Validation Loss over Epochs 
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Histogramme: 

This figure depicts the distribution of biases in one of the layers of the deep learning model across 

200 epochs of training. The x-axis represents the bias values, while the y-axis shows the epoch 

number. The orange shading indicates the density of bias values at each epoch. Initially, the biases 

are concentrated around a specific value, but as training progresses, the distribution broadens and 

becomes more varied. This broadening suggests that the model is actively adjusting its biases to 

better fit the training data, which is a crucial aspect of the learning process. By examining the 

evolution of bias distributions, we can gain insights into how the model parameters are being 

optimized over time. This information is valuable for understanding the training dynamics and 

ensuring the model's effective learning and generalization capabilities. 

 

Figure VI.2: Gradient Distribution of the Model 
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6. Limitations 

While our proposed approach has demonstrated promising results in solving the Traveling 

Tournament Problem (TTP) using deep learning-enhanced Biogeography-Based Optimization 

(BBO), there are several limitations to consider. The deep learning model and the BBO algorithm 

require significant computational resources, especially for large instances of the TTP, which can 

limit the applicability of our approach to smaller datasets or environments with high computational 

power. Although our method performs well on benchmark instances like NL4, NL6, and NL8, its 

scalability to even larger instances remain uncertain, as performance may degrade or become 

impractical due to increased computational demands. The deep learning model is trained on 

specific instances of the TTP, and its ability to generalize to entirely new instances or different 

types of scheduling problems may be limited, necessitating further research to evaluate the model’s 

robustness across diverse problem domains. The performance of the BBO algorithm is highly 

sensitive to the chosen hyperparameters, and while our model predicts these parameters, small 

changes can lead to significant variations in results, indicating a need for precise tuning. The 

effectiveness of the deep learning model also relies heavily on the quality and diversity of the 

training data; insufficient or biased training data can lead to suboptimal parameter predictions and 

hence, poorer optimization performance. Lastly, the convergence of the BBO algorithm can be 

 

Figure VI.3: Bias Distribution Over Time 
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slow for certain instances, leading to longer computation times. Addressing these limitations will 

be crucial for enhancing the practical applicability and robustness of our proposed method in 

solving large-scale and dynamic instances of the Traveling Tournament Problem. 

7. Conclusion 

In this study, we presented a novel approach for solving the Traveling Tournament Problem (TTP) 

by leveraging a deep learning model to predict optimal parameters for the Biogeography-Based 

Optimization (BBO) algorithm. Our method aimed to enhance the performance and efficiency of 

the BBO algorithm by accurately predicting the best parameters based on training data, thus 

improving the overall solution quality for various instances of the TTP. 

The numerical results demonstrated that our proposed approach is capable of producing 

competitive solutions, achieving near-optimal or optimal results for benchmark instances such as 

NL4, NL6, NL8, CON4, CON6, and CON8. The comparison of our results with existing methods 

showed that our approach can match or surpass the performance of state-of-the-art techniques, 

highlighting the potential of integrating deep learning with optimization algorithms. 

Despite the promising outcomes, we also identified several limitations, including the high 

computational demands, the potential need for extensive hyperparameter tuning, and the challenges 

of generalizing the deep learning model to new or different problem instances. These limitations 

point to areas for future research, such as developing more efficient computational techniques, 

exploring adaptive hyperparameter tuning methods, and extending the model's applicability to a 

broader range of scheduling problems. 

In conclusion, our study contributes a significant advancement in the application of machine 

learning to combinatorial optimization problems. The integration of deep learning with the BBO 

algorithm represents a powerful combination that can improve the efficiency and effectiveness of 

solving the TTP. Future work should focus on addressing the identified limitations and further 

refining the approach to enhance its robustness and scalability, ultimately contributing to more 

efficient and fairer tournament scheduling in practical applications.
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Conclusion 

The Traveling Tournament Problem (TTP) represents a challenging optimization problem with 

significant practical applications in sports scheduling. This thesis has provided a comprehensive 

overview of the TTP, discussed its complexity, and reviewed various methods and formulations 

for solving it. Throughout this work, we have emphasized the importance of the TTP in sports 

scheduling and optimization and have highlighted the benefits and limitations of our proposed 

approach integrating Biogeography-Based Optimization (BBO) and Stochastic Local Search (SLS) 

algorithms enhanced by machine learning and deep learning techniques. 

Our proposed methodology demonstrated promising results in optimizing tournament schedules, 

reducing total travel distance, and adhering to the specific constraints of the TTP. The integration 

of deep learning for parameter tuning and reinforcement learning within the SLS algorithm has 

shown to be effective in addressing the complexities of the TTP. 

Looking forward, our future research will focus on enhancing the efficiency and scalability of our 

solutions, particularly in tackling larger TTP instances. We plan to explore alternative strategies to 

improve the effectiveness of our approach, such as refining the machine learning models and 

investigating other evolutionary algorithms. Additionally, we aim to expand the applicability of 

our methods to other domains, further bridging the gap between traditional optimization techniques 

and modern machine learning approaches. 

By addressing these challenges, we hope to advance the field of TTP research and its practical 

applications, contributing to more efficient and effective solutions in sports scheduling and beyond. 
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