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Abstract
The optimization, control, and simulation of photovoltaic (PV) systems are essential to maximizing the
effectiveness of solar energy utilization. An important aspect influencing the performance of PV sys-
tems is the variability and unavailability of model parameters, necessitating accurate identification and
determination of these parameters. This thesis provides a comparative study of various metaheuristic
algorithms utilized for extracting model parameters from specific (PV) panels. The primary objective is
to evaluate and contrast the efficiency of five novel metaheuristic algorithms. The SDM mathematical
model was employed for its remarkable accuracy and simplicity in achieving this objective. In contrast,
the DDM mathematical model was ultimately chosen due to its superior ability to achieve a higher de-
gree of accuracy, particularly under real-world operating conditions. Subsequently, simulations were
carried out to identify the best model parameters based on the root mean square error (RMSE) val-
ues that each algorithm produced. The dataset obtained from these simulations, which consisted of
P-V and I-V curves as well as comparisons of CPU times, was examined and contrasted to derive
definitive conclusions. The Opposition Flow Directional Algorithm (OFDA) proved to be superior to
the other algorithms in terms of minimizing the error between the experimental and simulated data.
Even though some algorithms like ZOA and SBOA exhibited faster execution speeds, OFDA achieved
competitive CPU times while demonstrating a higher level of resemblance between the simulated P-V
and I-V curves compared to the experimental data. The main aim of this comparative study is to
acquire valuable knowledge regarding the effectiveness of different emerging metaheuristic algorithms
in identifying model parameters for photovoltaic modules.
Keywords: Photovoltaic (PV) systems, Extracting model parameters, Metaheuristic algorithms, Single
diode model, Double diode model, Opposition Flow Directional Algorithm (OFDA).
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Résumé
L’optimisation, le contrôle et la simulation des systèmes photovoltaïques (PV) sont essentiels pour max-
imiser l’efficacité de l’utilisation de l’énergie solaire. Un aspect important influençant les performances
des systèmes photovoltaïques est la variabilité et l’indisponibilité des paramètres du modèle, nécessi-
tant une identification et une détermination précises de ces paramètres. Cette thèse propose une étude
comparative de divers algorithmes métaheuristiques utilisés pour extraire les paramètres de modèle
de panneaux photovoltaïques spécifiques. L’objectif principal est d’évaluer et de comparer l’efficacité
de cinq nouveaux algorithmes métaheuristiques. Le modèle mathématique SDM a été utilisé pour
sa précision et sa simplicité remarquables dans la réalisation de cet objectif. En revanche, le modèle
mathématique DDM a finalement été choisi en raison de sa capacité supérieure à atteindre un degré
plus élevé de précision, en particulier dans des conditions de fonctionnement réelles. Par la suite,
des simulations ont été effectuées pour identifier les meilleurs paramètres du modèle en fonction des
valeurs d’erreur quadratique moyenne (RMSE) produites par chaque algorithme. L’ensemble de don-
nées obtenu à partir de ces simulations, composé de courbes P-V et I-V ainsi que de comparaisons de
temps CPU, a été examiné et comparé pour tirer des conclusions définitives. L’algorithme directionnel
de flux d’opposition (OFDA) s’est avéré supérieur aux autres algorithmes en termes de minimisation
de l’erreur entre les données expérimentales et simulées. Même si certains algorithmes comme ZOA
et SBOA présentaient des vitesses d’exécution plus rapides, OFDA a atteint des temps CPU compétitifs
tout en démontrant un niveau de ressemblance plus élevé entre les courbes P-V et I-V simulées par
rapport aux données expérimentales. L’objectif principal de cette étude comparative est d’acquérir
des connaissances précieuses sur l’efficacité de différents algorithmes métaheuristiques émergents dans
l’identification des paramètres de modèle pour les modules photovoltaïques.
Mots Clée: Systèmes photovoltaïques (PV), Extraire les paramètres du modèle, algorithmes méta-
heuristiques, modèle à simple diode, modèle à double diode, algorithme directionnel à flux d’opposition
(OFDA).
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ا ا أ . ا ا ام ا ً ور اً أ و وا (PV) و ـ ا ا
ه و ً د اً م ذج، ا ت م و ا و ـ ا ا أداء ا ا
اح أ ذج ا ت اج ا ر ا ت ارز ر درا و ا ه م ت. ا

ا ذج ا ام ا ة. ر ت ارز ءة ر و ا ف ا دة. (PV)
ر اً ا (DDM) ا ذج ا ر ا ، ا ف. ا ا ا و (SDM)

ة ا ت اء إ ، ذ . ا ا ا وف ، ا أ در ا
ا ت ا . ارز أ ا (RMSE) ا ر إ داً ا ذج ا ت أ

ا ة و ت أو ت ر إ (I-V)و (P-V) ت ن وا ه، ة ا ت ل ا
ت ارز ا (OFDA) ر ا ه ا ارز أ . ت ا ص ر و ، ا
(SBOA)و (ZOA) ت ارز ا أن ا ة. وا ا ت ا ا ى ا

ا أ ى ر إ ا ا ة ً أو (OFDA) أن إ ع، أ ت ت أ
ب ا ر ا را ا ه ا ف ا . ا ت ر ا (I-V)و (P-V)ت

. و ـ ا ات ذ ا ت ا ا ا ر ا ت ارز
ا م ا ذج ، ر ا ت ارز ذج، ا ت اج ا ،(PV) و ـ ا ا : ت

.(OFDA) رض ا ا ه ا ارز دوج، ا ا م ا ذج دي، ا
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General introduction
Context
Photovoltaic systems have attracted researchers’ attention due to their capability to convert solar energy
directly into electrical energy and their wide range of applications in various fields. Environmental
factors like extreme temperatures, dust, pollution, rain, and snow impact PV operating in harsh con-
ditions. These elements can lead to malfunctions, shorten the lifespan of the PV models, and decrease
the overall system efficiency. Modelling PV systems in detail is essential for designing new systems and
optimizing the efficiency of existing ones. The model should consider the impact of environmental
factors for an optimal PV system design. The modelling of the PV system begins with the PV cells, the
smallest unit of the system, followed by the handling of modules and arrays.

The main components of PV cells are diodes, which is why the circuit models of PV systems
are named based on the number of diodes they contain. Photovoltaic models are categorized into
four types: the single-diode model, the double-diode model, the triple-diode model, and the PV mod-
ule model(PVMM). SDM, PVMM, DDM, and TDM are also known as the five-parameter model, the
seven-parameter model, and the nine-parameter model, respectively. As the number of diodes increases,
extracting more parameters becomes necessary, leading to increased computational complexity. Hav-
ing accurate parameters is crucial for achieving high performance in PV models. Therefore, the search
for these parameters can be seen as an optimization problem.

A review of valuable literature studies revealed that metaheuristic methods were used for PV pa-
rameter extraction. Many researchers focus on these methods due to their advantages, including lack
of problem constraints, user-friendliness, applicability to multidimensional optimization problems, and
ability to deliver quick and reliable results.

Contribution
This study conducts a detailed comparative analysis of five recent metaheuristic algorithms: Opposi-
tion Flow Directional Algorithm(OFDA), Secretary Bird Optimization Algorithm (SBOA), Gold Rush
Optimizer (GRO), Zebra Optimization Algorithm (ZOA), and Hippopotamus Optimization Algorithm
(HOA), focusing on parameter estimation for PV models. The performance of these algorithms is as-
sessed according to their accuracy, speed of convergence, and computational efficiency. By performing
a contrastive analysis, the study aims to identify the most effective algorithm for parameter estimation
in PV systems. This research contributes to the optimization literature and practical management of
PV systems.

1



General introduction

Statement of the Problem
This study focuses on the main issue of accurately estimating the parameters of PV models through
optimization techniques. Traditional methods frequently fail to provide accurate results because of the
nonlinear and multimodal characteristics of the PV parameter estimation problem. A comprehensive
evaluation of recent metaheuristic algorithms is required to identify which ones demonstrate superior
performance in terms of accuracy, convergence rate, and computational resources. This contrastive
analysis aims to fill the gap in the current literature by providing insights into the performance of
Opposition Flow Directional Algorithm (OFDA), Secretary Bird Optimization Algorithm (SBOA), Gold
Rush Optimizer (GRO), Zebra Optimization Algorithm (ZOA), and Hippopotamus Optimization Algo-
rithm (HOA). This analysis aims to guide practitioners and researchers in choosing the most suitable
algorithm for PV parameter estimation.

Structure
This thesis is organized into three chapters as follows:

In Chapter 1 “Optimization and Metaheuristic Algorithms”, we start by defining optimisation and
its distinctive methods. Furthermore, we explain metaheuristic algorithms, discuss their strategies and
characteristics, and present a comprehensive classification of these algorithms. Finally, we discuss the
“ no-free lunch theory”.

In Chapter 2 “Metaheuristic Algorithms and Real-Life Application”, we provide a concise overview
of real-world optimisation problems. We cover real-world optimisation problem definitions, some
basic characteristics and the significance of metaheuristic algorithms in solving real-world optimisation
problems. Next, we present a step-by-step framework for generic metaheuristic algorithms in addition
to the main components of the metaheuristic process in solving any optimisation problem. Finally, we
provide some real-life applications of metaheuristics.

Chapter 3 “Parameter Estimation in Photovoltaic Models Problem” focuses on the practical part
of our thesis where we discuss the issue of parameter estimation in photovoltaic (PV) models. We
also talk about the source of inspiration for the algorithms used in our thesis. Next, we introduce
the mathematical implementation and pseudo-code. Finally, we present the results of the algorithm
and a comparative study of five metaheuristic algorithms namely: Gold Rush Optimizer (GRO), Ze-
bra Optimization Algorithm (ZOA), Secretary Bird Optimization Algorithm (SBOA), Hippopotamus
optimization algorithm (HOA), and Opposition Flow Directional Algorithm (OFDA).
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Chapter 1. Optimization and Metaheuristic Algorithms

1.1 Introduction
In computer science some problems that are difficult to solve by classic methods and why not sometimes
impossible to solve, are known as NP problems. To solve those problems metaheuristic techniques have
been invented. Metaheuristic algorithms have become increasingly popular in the last two decades, and
they are now among the most widely used algorithms for optimization.

In this first chapter, we shed light on optimisation and metaheuristic algorithms. We start by
explaining the notion of optimisation and its methods. We explain metaheuristic algorithms and their
characteristics. Then, we examine and discuss the following subtopics: strategies of metaheuristic
algorithms, classification of metaheuristic algorithms and well-known metaheuristic algorithms.

1.2 Optimization
Optimization is the process of finding the best solution to a problem or achieving the best outcome
based on specific criteria [15]. In formal terms, an optimization problem seeks to find a vector of
variables, also known as unknowns or parameters, that minimizes or maximizes a function within the
set, as defined by constraints on its variables [16].

Optimization is a crucial field of applied mathematics because of its diverse range of applications
and the existence of effective algorithms. It involves finding the best possible solution to a problem by
minimizing or maximizing a specific objective function, which depends on several decision variables.
Additionally, the solution must also satisfy functional constraints. Optimization can be used in various
fields to help achieve the most desirable outcome given the available resources and limitations. The
availability of efficient algorithms to quickly and effectively solve optimization problems further high-
lights the significance of optimization [17].
Studies on optimization are conducted using various analysis methods and algorithms.

1.3 Optimization Methods
Optimization methods are designed to find the best possible solution or a solution very close to the opti-
mal one while minimizing the computational effort required. These methods entail searching through
a set of potential solutions based on a specified objective function and any constraints. There are
two main types of optimization methods: exact optimization methods and approximate optimization
methods. Each method is classified into two subcategories as shown in Figure 1.1 [18].

1.3.1 Exact Optimization Methods
The term ”exact optimization method” refers to a category of optimization techniques that strive to
identify the global optimal solution for a specific problem. These methods depend on mathematical
models and algorithms that ensure convergence to the best possible solution within a finite number
of steps. Exact methods offer mathematically proven guarantees about the optimality of the solution,
unlike heuristic or approximation methods.

We can distinguish two distinct subcategories of the exact method: Direct Method and Indirect
Method.
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Direct Method
Direct methods solve optimization problems by formulating and solving them exactly as they are.
Examples include the Simplex Method, used for linear programming problems, and Branch and Bound,
used for integer programming problems [1].
Indirect Method
Indirect methods, also known as iterative methods, solve optimization problems by breaking them
down into a series of simpler problems. They reach the optimal solution through a sequence of
iterations. Examples include Gradient Descent, which uses the gradient of the objective function to
find the minimum and Newton’s Method, which uses second-order information (Hessian matrix) to
find the optimal solution more efficiently than gradient descent [1].

1.3.2 Approximate Optimization Methods
Approximate optimization methods, also referred to as heuristic optimization methods, are algorithms
designed to find near-optimal solutions for complex optimization problems. Approximate methods are
classified into two different subcategories: the Heuristic Method and the metaheuristic Method.
Heuristic Method
Heuristic Method is a technique designed for solving a problem more quickly when classic methods are
too slow or for finding an approximate solution when classic methods fail to find any exact solution.
This is achieved by trading optimality, completeness, accuracy, or precision for speed [19].
Metaheuristic Method
Metaheuristics is a set of techniques used to guide the search process to efficiently explore the search
space and find optimal or near-optimal solutions. These techniques vary from simple local search
methods to complex learning algorithms [20].

Figure 1.1: Optimization methods [1].
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1.4 Optimization Algorithms
An optimization algorithm is a computational method used to find the best solution from a set of
possible solutions by either maximizing or minimizing a specific objective function. These algorithms
systematically adjust inputs, processes, or parameters to efficiently achieve the desired outcome. Al-
gorithms used to solve optimization problems can also be referred to shortly as optimization algorithms.

Optimization algorithms are typically categorized into two groups: deterministic algorithms and
stochastic algorithms. There is also a hybrid category that combines elements of both deterministic
and stochastic algorithms.

1.4.1 Deterministic algorithms
Deterministic algorithms follow a strict and repeatable procedure. When given the same initial con-
ditions, they consistently yield identical results each time they are executed. The subcategories of
deterministic algorithms are listed below:

• Gradient-Based Algorithms: Use the gradient (derivatives) of the objective function to find the
optimal solution.

• Gradient-Free Algorithms: Do not use derivatives but rely only on function values.
• Classic Algorithms: Generally well-established and follow a deterministic path [21].

1.4.2 Stochastic Algorithms
Stochastic algorithms introduce randomness into their search process, leading to unique paths in each
run. They are beneficial for global optimization and tackling problems with numerous local optima.
Below are the subcategories of stochastic algorithms:

• Heuristic Algorithms: Aim to find good enough solutions through trial and error within a
reasonable time frame. They are not guaranteed to find the optimal solution.

• Metaheuristic Algorithms: Advanced heuristics generally perform better than simple heuris-
tics. They use a balance of randomization and local search [21].

1.4.3 Hybrid Algorithms
Hybrid algorithms combine deterministic and stochastic methods to improve efficiency and effective-
ness.

• Deterministic-Stochastic Hybrids: use deterministic methods with added random components
to improve performance.

These categories help in selecting the suitable optimization algorithm depending on the problem’s
nature and the desired result. A classification of the optimization algorithms is shown in Figure 1.2 [21].
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Figure 1.2: Classification of optimization algorithms.

1.5 Metaheuristic Algorithms
There are various definitions of metaheuristic algorithms. The term metaheuristic was first introduced
by Glover in 1986. This term is derived from two Greek words ’meta’ meaning ”beyond in the upper
level” and heuristic meaning ”to find”. Metaheuristic algorithms are stochastic search methods that
combine local improvement with advanced strategies to avoid getting stuck in local optima.

In computer science, a metaheuristic refers to a computational method that optimizes a problem by
iteratively attempting to enhance a candidate solution based on a specific quality measure. Metaheuris-
tics do not rely on specific assumptions about the problem being optimized and can explore extensive
solution spaces. However, they do not ensure finding an optimal solution. Many meta-heuristics use
stochastic optimization. Other terms with similar meanings to meta-heuristic include derivative-free,
direct search, black-box, or simply heuristic optimizer [22].

A metaheuristic is formally defined as an iterative generation process that guides a subordinate
heuristic by intelligently combining different concepts to explore and exploit the search space. Learn-
ing strategies are employed to organize information effectively to find near-optimal solutions effi-
ciently. Metaheuristic algorithms are approximate techniques that can be utilized to solve complex
problems [23].

Metaheuristics are optimization algorithms capable of addressing complex, nonlinear problems
and identifying satisfactory solutions without guaranteeing the global optimum. Metaheuristics use
advanced strategies to search for solutions, unlike traditional optimization techniques that linearize the
objective function or rely on derivatives and gradients. They are widely used in various industries and
professions such as administration, planning, architecture, engineering, healthcare, and logistics. The
effectiveness of metaheuristics in solving complex optimization problems has made them a popular
choice in various applications. This group of optimization techniques, known as metaheuristics, guides
the search process to deliver superior results. They are particularly useful in situations where it is not
possible to create an explicit equation-based model [24].

Up to here, metaheuristic algorithms can handle large and complex search spaces, which traditional
optimization methods cannot.
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1.6 Characteristics of Metaheuristic Algorithms
Metaheuristic algorithms share several common characteristics that distinguish them from other clas-
sical methods. Here are some of the key characteristics.

1.6.1 Anytime Algorithms
All metaheuristics, as well as many other optimization and machine learning methods, are considered
anytime algorithms. The concept behind anytime algorithms is that they begin with a (potentially poor)
guess of what a good solution might be. Throughout the course, they aim to enhance the quality of
their approximations by generating increasingly improved candidate solutions. At any given moment,
we can determine the current best estimate of the optimum and choose to halt the optimization process
if desired. This applies to optimization scenarios. It is often difficult to determine if the best solution
we currently have is the globally optimal solution for the given problem instance. Therefore, we keep
striving to enhance it until a termination criterion prompts us to stop or until the time runs out [25].

1.6.2 Return the Best-So-Far Candidate Solution
This concept is actually quite simple, but often overlooked and misunderstood by beginners in the
field: No matter what the optimization algorithm does, it will never forget the best candidate solution
found so far. In the formal definition of algorithms, there may not be explicit mention of it, but there is
always a specific variable that stores the solution. This variable gets updated whenever a better solution
is found and its value is returned when the algorithm finishes [25].

1.6.3 Randomization
Often, metaheuristics involve making random choices. When it’s uncertain whether ”A” or ”B” is the
better option, flipping a coin and choosing ”A” for heads or ”B” for tails is a practical approach. Random
number generators are tools that offer functions capable of producing numbers within specific ranges,
such as [0, 1] or integer intervals. Each time we use such a function, it can yield any value within
the specified range, but the exact value remains unknown until generated. The returned value should
be independent of the values returned previously. In other words, based on past random numbers,
we should not be able to predict the next one. By utilizing random number generators, algorithms
can make random choices, select elements from a set randomly, or unpredictably modify a variable’s
value [25].

1.6.4 Black-Box Optimization
Metaheuristics are algorithms designed to solve various optimization problems using a single approach,
commonly referred to as a black-box approach. These algorithms hide the details of the problems
under the structural elements, focusing on rating candidate solutions and ensuring smaller ratings
are better. There are various levels of general black-box metaheuristics, with many emphasizing the
search operators and data structures employed, while others require a particular search space. These
algorithms can be general as they make few assumptions about the objective function and the solution
space.
A black-box metaheuristic is a versatile algorithm that can accommodate different representations,
objective functions, and search operations required for a specific application. This concept is depicted
in Figure 1.3 as the highest level of abstraction for solving complex problems [25].
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Figure 1.3: Black Box Metaheristic.

1.6.5 Heuristic Nature
Metaheuristics depend on problem-specific heuristics instead of complete problem information. They
are designed to be used for a wide range of problems without needing in-depth problem-specific knowl-
edge [25].

Other principal characteristics of Metaheuristic Algorithms include:
• Metaheuristics may make use of domain-specific knowledge in the form of heuristics that are

controlled by the upper-level strategy
• Today’s more advanced metaheuristics use search experience (embodied in some form of memory)

to guide the search.

1.7 Strategies of Metaheuristic Algorithms
In every metaheuristic algorithm, exploration, exploitation, and avoiding local optima are crucial strate-
gies for achieving success in solving optimization problems. It employs these strategies to find optimal
solutions. However, researchers have not yet fully grasped how these strategies interact and affect each
other.

1.7.1 Exploration
Exploration involves how effectively the operators diversify solutions within the search space, providing
the metaheuristic with a global search behaviour. This aspect gives the metaheuristic a global search
behaviour. Exploitation refers to how well the operators can utilize the information available from
solutions from previous iterations to intensify the search. Such intensification gives the metaheuristic
a local search characteristic. Some metaheuristics tend to be more explorative than exploitative, while
others do the opposite [19].

1.7.2 Exploitation
Exploitation is the use of local knowledge of the search and solutions found so far so that new search
moves can concentrate on the local regions or neighbourhood where the optimality may be close;
however, this local optimum may not be the global optimality. The principal distinctions between
metaheuristic algorithms are their attempt to balance exploration and exploitation [19].

1.7.3 Local Optima Avoidance
Local search algorithms generate potential configurations and modify them to reduce cost. They use
a neighbourhood function and cost function to generate neighbouring solutions. However, they may
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become stuck in a local optimum after a limited number of iterations. Metaheuristic algorithms are
designed to guide local search and prevent getting stuck in local optima.

To avoid local optima, it is necessary to introduce diversity and randomness into the algorithm.
Diversity implies that a variety of solutions is generated and maintained, while randomness introduces
chance or uncertainty into the algorithm to explore new regions of the search space. There are various
ways to achieve diversity and randomness, depending on the type and structure of the algorithm [26].

In brief, a metaheuristic algorithm should be able to explore wide search spaces quickly, locate
global solutions, and prevent falling into local optimum.

1.8 Classification of Metaheuristic Algorithms
Many classification criteria may be used for metaheuristics:

1.8.1 Nature inspired versus non-nature inspired
The most intuitive way to classify metaheuristics is based on the algorithm’s origins. There are nature-
inspired algorithms, such as Genetic Algorithms and Ant Algorithms, and non-nature-inspired ones
like Tabu Search and Iterated Local Search [20].

1.8.2 Memory usage versus memoryless methods
A very important feature in classifying metaheuristics is how they use the search history ie whether
they use memory or not. Memory-less algorithms perform a Markov process. Examples of such
algorithms include local search and simulated annealing. While memory-based algorithms contain
some information extracted online during the search. We usually differentiate between the use of
short-term and long-term memory. Examples of such algorithms can be found in tabu search. The use
of memory is nowadays recognized as one of the fundamental elements of a powerful metaheuristic [20].

1.8.3 Deterministic versus stochastic
A deterministic metaheuristic solves an optimization problem by making deterministic decisions for
instance local search, and tabu search. In stochastic metaheuristics, some random rules are applied
during the search for instance simulated annealing, and evolutionary algorithms. Deterministic algo-
rithms obtain the final solution from the same initial solution, whereas stochastic metaheuristics can
obtain different final solutions from the same initial solution. This characteristic must be taken into
account in the performance evaluation of metaheuristic algorithms [20].

1.8.4 Population-based search versus single-solution based search
Metaheuristics can be classified based on the number of solutions they operate on simultaneously.
Single-solution-based algorithms manipulate and transform a single solution during the search. These
algorithms are known as trajectory methods and include local search and simulated annealing. Population-
based algorithms, on the contrary, perform search processes in which a whole population of solutions
is evolved. Examples of such algorithms include particle swarm and evolutionary algorithms [20].
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1.8.5 Iterative versus greedy
In iterative algorithms, we start with a complete solution, or population of solutions, and transform it
at each iteration using some search operators. Greedy algorithms start from an empty solution, and
at each step, a decision variable of the problem is assigned until a complete solution is obtained. The
majority of metaheuristics are iterative algorithms [20].

Figure 1.4: Classification of Metaheuristics

1.9 Well Known Metaheuristic Algorithms
Numerous metaheuristic algorithms have been developed over the years, each with its own strengths
and weaknesses. We will briefly introduce some of the most well-known metaheuristic algorithms.

1.9.1 Genetic Algorithms (GA)
GA is inspired by Charles Darwin’s theory of evolution, incorporating principles of genetics and natural
selection. It was first used by J. Holland and his collaborators in the 1960s and 1970s. The process
begins by randomly generating an initial population of solutions and then evolves the population
by applying operators such as crossover and recombination, mutation, and selection. Each solution
is represented by a string known as a chromosome. The crossover of two parent strings produces
offsprings which are new solutions created by exchanging parts or genes of the chromosomes. On
the other hand, Mutation involves flipping some digits of a string to create new solutions. These new
solutions are then evaluated based on their fitness in each generation. The new solutions are chosen
based on their fitness. Sometimes, to ensure that the best solutions remain in the population, they
are passed on to the next generation with minimal changes. This is known as elitism. It has been
successfully applied in fields like soft computing, health sciences and civil engineering.
GA has been widely used in optimization problems that require identifying the best combination of
parameters. It has been successfully applied in fields like soft computing, health sciences and civil
engineering [27].
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1.9.2 Particle Swarm Optimization (PSO)
Particle swarm optimization was proposed by Kennedy and Eberhart in 1995. PSO is inspired by the
collective behaviour of social organisms, such as birds flocking or fish schooling. PSO algorithm starts
with a population (swarm) of random potential solutions (particles). Each particle moves in the search
space using its position, velocity, and the best position found by the swarm so far. It is commonly
used in optimization problems that require determining the optimal weight configuration in neural
networks or other machine learning models. It is also used for route-finding issues, particularly in
frequent changes, considering parameters like power, delay, and delivery rate, to construct optimal
solutions and routing paths [27].

1.9.3 Simulated Annealing (SA)
Simulated annealing was developed by Kirkpatrick in 1983. It is inspired by the process of annealing
in metallurgy. The basic idea of the simulated annealing algorithm is to employ random search through
a Markov chain. This approach not only accepts changes that improve the objective function but also
remains some changes that may not be optimal. It starts with generating an initial solution randomly,
and then gradually reducing the temperature of the system. As the temperature decreases, the algorithm
is more likely to accept suboptimal solutions to avoid getting stuck in local optima. SA has been
Commonly used in optimization problems that require finding the best configuration of parameters in
complex models or simulations [27].

1.9.4 Tabu Search (TS)
The Tabu Search algorithm was proposed by Glover in 1986. It is a metaheuristic algorithm inspired
by the concept of memory in human decision-making. TS algorithm starts with randomly generating
an initial solution, followed by exploring the solution’s neighbourhood through operators like swapping
or reversing. The algorithm utilizes a tabu list to store recently visited solutions and prevent revisiting
them. Tabu Search is commonly applied in optimization problems requiring the identification of the
optimal sequence of actions or decisions, like scheduling or routing [27].

1.9.5 Ant Colony Optimization (ACO)
In 1992, Dorigo developed a paradigm called Ant Colony Optimization, which is a cooperative search
technique that imitates the foraging behaviour of real ant colonies.ACO is inspired by the behaviour
of ants in finding the shortest path between their nest and a food source. Ants use pheromone as a
chemical messenger and the pheromone concentration can also be considered as the indicator of quality
solutions to a problem of interest. Ants start searching the area randomly surrounding their nest. Ants
can construct the shortest path from their colony to the feed source and back using pheromone.
When ants encounter an obstacle, initially, all ants have an equal chance of moving either right or
left. Over time, more ants opt for the shorter path due to the higher concentration of pheromones
on that path. So, the movement of an ant is influenced by the concentration of pheromones that
gradually evaporate. Without this time-dependent evaporation, algorithms would prematurely converge
to incorrect solutions. ACO has been widely used in optimization problems that involve finding the
best routes such as in logistics and transportation [27].

1.10 No Free Lunch Theorems
The publication of the ’No Free Lunch Theorems for Optimization’ in 1997 shocked the optimization
community. Researchers have been always trying to find better algorithms for optimization, especially
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for tough NP-hard optimization problems. These theorems state that if algorithm A performs better
than algorithm B for some optimization functions, then B will outperform A for other functions. That
is to say, if averaged over all possible function space, both algorithms A and B will perform on average
equally well.

Alternatively, there is no universally better algorithms exist. Then, people realized that we do not
need the average overall possible functions for a given optimization problem. What we want is to
find the best solutions, which have nothing to do with average overall possible function space. In
addition, we can accept the fact that there is no universal or magical tool, but we do know from our
experience that some algorithms indeed outperform others for given types of optimization problems.
So, the research now focuses on finding the best and most efficient algorithms for a given problem.
The objective is to design better algorithms for most types of problems, not for all the problems [23].

1.11 Conclusion
The first chapter comes to an end, we have discussed the importance of optimization which is crucial
for solving complex problems. Various optimization methods, exact and approximate, are explored,
highlighting the limitations of traditional approaches. We have also covered the basics as well as the
definitions necessary for understanding metaheuristic algorithms as well as their characteristics strate-
gies and classification. Well-known metaheuristic algorithms like Genetic Algorithms, Particle Swarm
Optimization, Simulated Annealing, Tabu Search, and Ant Colony Optimization are reviewed, demon-
strating their diverse applications and effectiveness in various fields. The No Free Lunch Theorems are
briefly mentioned, emphasizing the need to choose appropriate algorithms based on specific problem
contexts.
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2.1 Introduction
Metaheuristics are a class of optimization algorithms that can handle complex, nonlinear problems and
find a good solution without necessarily finding the global optimum. metaheuristics employ advanced
strategies to search for a solution. They are extensively deployed in a wide range of domains, like
education, robotics, sentiment analysis, finance, architecture, engineering, healthcare, and logistics.
The efficiency of metaheuristics in solving difficult optimization problems has made them a popular
choice in many applications.

This chapter presents a brief overview of real-world optimisation problems. The process of meta-
heuristic algorithms in solving any optimisation problem is described and their essential components
are highlighted. Lastly, examples of real-world optimisation problems using metaheuristics are dis-
cussed.

2.2 Overview of Real-World Optimisation Problems
2.2.1 Definition of Real-World Optimisation Problems
An Optimization Problem is a problem that can be solved using optimization methods, and which
seeks to find the best solution among a large set of possible solutions. In other words, an optimization
problem involves finding the optimal solution that achieves the best possible outcome from a set of
available options. These problems can arise in many different fields and can be addressed using various
optimization techniques. Its goal is to find the solution that provides the most desirable results while
satisfying any constraints or limitations that may be present.

The main fundamental concepts used in optimization problems are based on the following elements:
The objective function: represents the primary goal of the model, which can be either minimized or
maximized. It is also known as the optimization criterion, the cost function, or the fitness function.
Variables (population or agents): they are a set of unknowns that influence the value of the objective
function. They are adjusted iteratively throughout the optimization process to achieve optimal so-
lutions. Constraints: they are a set of conditions that determine which values variables can take and
which ones they must exclude. In essence, constraints outline the conditions that variables need to meet.

Optimization problems in the real world require identifying the optimal solution from a range of
feasible options in fields like engineering, economics, logistics, and science. These problems usually
involve optimizing one or more objectives within a set of constraints. They are considered ”real-
world” as they arise in everyday practical situations and need to consider actual complexities and
limitations [28].

2.2.2 Characteristics of Real-World Optimisation Problems
Real-world optimization problems are characterized by several features [29]:
Complexity
Complexity refers to the complex nature of real-world optimization problems, which involve high-
dimensional search spaces, constraints, and challenges in accurately representing and solving these
complex problems in optimization.

15



Chapter 2. Metaheuristic Algorithms and Real-Life Application

Presence of Constraints
Many real-world problems include constraints. Constraints in optimization problems are additional
conditions or limitations that must be met in real-world scenarios. Understanding the types of con-
straints, evaluating their impact, and considering the quantity of constraints are crucial aspects of
optimization problems.
High-Dimensionality
Several real-world problems have high-dimensional search spaces. These problems may involve nu-
merous variables, resulting in a large search space.
Objective Types
Objective types are the various types of objectives found in real-world optimization problems. The
objective types may include either Single Objective (SO) or Multi-Objective (MO). Single Objective (SO):
Some real-world optimization problems involve a single objective function that requires optimization.
Multi-Objective (MO): In other real-world optimization problems, there are multiple objective functions
that need to be optimized simultaneously.
Non-linearity
Non-linearity refers to the relationship between the variables in the objective function or constraints
is not linear. Non-linear optimization problems involve functions that do not satisfy the superposition
principle, meaning that the output is not directly proportional to the input.
Dynamic and Stochastic Nature
The dynamic nature of a problem refers to situations where parameters, constraints, or objectives
change over time, requiring algorithms to adjust to these variations. On the other hand, the stochastic
nature involves uncertainty or randomness in problem components, which requires algorithms to make
decisions based on probabilistic information.
Problem Domain
Real-world optimization problems can cover various domains, including engineering, computer science,
mechanical engineering, medical engineering, robotics, engineering design, logistics, and scheduling.

2.2.3 The Significance of Metaheuristic Algorithms in Real-World Optimisa-
tion Problems

Traditional optimization algorithms are unsuitable for real-life applications due to practical reasons
such as local search limitations and exhaustive algorithms being time-consuming and intractable. This
has led to the development of heuristic optimization algorithms, such as evolutionary algorithms like
differential evolution, and new features like hybridization and parallelization. The heuristic search in-
volves making smart decisions based on minimal given information, obtaining relatively close results.
However, it is crucial to determine if the ideal solution convergence will occur shortly or if there will
always be a gap.

Metaheuristics are not specific to a particular problem. They are general strategies that help navi-
gate the search process to explore the search space effectively. They aim to find satisfactory solutions
within a reasonable time frame, rather than guaranteeing the discovery of the best solution. They aim
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to find an acceptable solution within a reasonable time frame rather than guaranteeing the best possible
outcome. A prime example of modern metaheuristics is nature-inspired optimization methods, which
consist of innovative algorithms inspired by nature. This belief stems from the common notion that
nature offers the best solutions for a wide range of complex problems. I deas and concepts found in
nature have been studied to develop algorithms that simulate them.

In recent decades, nature-inspired optimization methods have effectively addressed a wide range
of real-world optimization problems, garnering significant interest from researchers across various
fields. Nature-inspired optimization methods have successfully addressed a wide range of real-life
optimization problems. Therefore, they have attracted significant attention from researchers across
various domains, including evolutionary swarm intelligence methods. This is because they have ad-
vantages over conventional methods, as they require less domain-specific information. This feature is
crucial when dealing with various optimization problems where obtaining domain-specific information
is considered difficult. Their ideas were inspired by nature, as many natural systems excel at perform-
ing tasks. This is due to their common feature of seeking optimization. To find the best solution, they
need to achieve objectives and meet constraints. This search for the best solution can be organized
as an optimization problem, where the optimal solution is determined through an objective function
assessment [30].

As a result, most real-world problems can be represented as optimization problems. metaheuristic
optimization has become a crucial and widely applicable research field to solve these problems in areas
like computer science, operations research and mathematics.

2.3 The Generic Process of Metaheuristic Algorithms
Metaheuristic algorithms operate within a fascinating framework that balances simplicity and com-
plexity to solve optimization problems. The following is a general step-by-step optimisation process
that may be used for any kind of metaheuristic algorithm [13].

2.3.1 Initialisation
Initial solutions can be generated randomly or through a heuristic that provides a good starting point.
The choice between these methods can significantly influence the efficiency of the algorithm [13].
Initialize Iteration
The iteration counter is initialized to zero to start the algorithm. This counter will monitor the number
of times the main loop has been executed.
Initialize Solutions
Initial solutions can be generated randomly or through a heuristic that provides a good starting point.
The choice between these methods can significantly influence the efficiency of the algorithm.
Evaluate Each Member
The goal is to evaluate the quality of each initial solution by applying the objective function to determine
its fitness. This step is crucial as it establishes a baseline for comparing future solutions.
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Mark the Best Solution
Here, the aim is to identify and record the best solution found in the initial population. This requires
comparing the fitness values of all solutions in the population and identifying the one with the highest
(or lowest, depending on the problem) fitness.

2.3.2 Iterative improvement
The algorithm’s main loop refines the population of solutions until the termination condition is met.
This iterative process guarantees continuous progress towards a more optimal solution [13].
Choose Solutions Using SP
The purpose is to select a subset of solutions to serve as parents for generating new solutions. To do
so, the Selection Plan (SP) is used to choose solutions from the current population. These selected
solutions are typically those with higher fitness, although the specific method depends on the SP used.
Generate New Solutions Using GP
A Generation Plan (GP) is used to create new solutions to explore the search space. The solutions
are selected to produce new offspring through strategies like crossover, mutation, or other methods to
combine and alter the selected solutions.
Choose Solutions Using RP
The aim is to decide which solutions from the current population will be replaced. The Replacement
Plan (RP) is utilized to select solutions from the current population that will be replaced by the new
solutions generated in the previous step. This helps maintain diversity and allows for the exploration
of new areas in the search space.
Update and Replacing Solutions with a Combination of Solutions from Using UP
The Update Plan is used to integrate new solutions into the population and ensure continuity in the
search process by combining and replacing existing solutions with new ones. This step ensures the
creation of a new generation of solutions by balancing the exploitation of known good areas with the
exploration of new areas.

2.3.3 Solution Evaluation
Evaluate Each Member
Fitness functions evaluate the quality of each solution within the updated population, providing crucial
feedback to guide the next iteration of the algorithm. Fitness functions establish a clear objective for the
algorithm to pursue, enhancing the optimization process by making it more focused and effective [13].
Identify and Update the Best Solution
To track the best solution found so far, compare the fitness of all solutions in the updated population
and update if a better solution is found. This will ensure that the algorithm maintains a record of the
best solution discovered throughout the search process [13].
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2.3.4 Termination Criteria
Once the termination condition is met, such as reaching the maximum number of iterations, conver-
gence, or satisfactory fitness level, the algorithm stops. The best solution discovered during the search
is then declared as the near-optimal solution [13].

By following these steps shown in algorithm 1, the algorithm refines the population of solutions
iteratively. It balances the exploration of new areas with the exploitation of known good areas until it
converges on a near-optimal solution for the problem.
Algorithm 1 A Generic Metaheuristic Framework [13]
Require: SP, GP, RP, UP, TP, N(≥ 1), µ(≤ N), λ(≤ N), ρ(≤ N)
1: Set iteration counter t = 0
2: Initialize N solutions St randomly
3: Evaluate each member of St

4: Mark the best solution of St as x∗t
5: repeat
6: Choose µ solutions (set Pt) from St using a selection plan (SP)
7: Generate λ new solutions (set Ct) from Pt using a generation plan (GP)
8: Choose ρ solutions (set Rt) from St using a replacement plan (RP)
9: Update St by replacing Rt using ρ solutions from a pool of any combination of at most three

sets Pt, Ct, and Rt using an updated plan (UP)
10: Evaluate each member of St

11: Identify the best solution of St and update x∗t
12: t← t+ 1
13: until a termination plan (TP) is satisfied
14: Declare the near-optimal solution as x∗t

2.4 The Components of Real-World Optimisation Problems’ Pro-
cess

An optimization algorithm, a simulation, and a realistic representation are fundamental and essential
for addressing optimization problems in different domains. These components work cooperatively in
the optimization process to facilitate the search for optimal solutions within the design space, taking
into account constraints and objectives [31]. Here’s a detailed explanation of these components:

2.4.1 Optimisation Algorithm
The optimization algorithm is the core of the optimization process, responsible for searching through
possible solutions to find the optimal one. This method or technique defines how the search for the
best solution is carried out. In many cases, we may not know which algorithm is most suitable for a
specific problem until we try it. There could be a range of efficient algorithms available to solve these
problems, and in some instances, new algorithms can still be developed.
Thus, the selection of algorithms, even existing ones, largely depends on the decision-maker’s expertise,
available resources, and the nature of the problem. It is ideal to use the most suitable algorithms and
tools to solve a specific problem. The proper utilization of these tools may rely on the user’s experience.
Factors like computing costs, software availability, and solution production time also play a crucial role
in determining which algorithms and methods to use. It is worth noting that having specific knowledge
of a problem is always helpful in choosing the best and most efficient optimization methods [31].

19



Chapter 2. Metaheuristic Algorithms and Real-Life Application

In short, the algorithm iteratively explores the search space, evaluates potential solutions using the
numerical simulator ie. simulation, and updates the search direction based on the evaluation results.

2.4.2 Simulation
Simulation is a widely used technique for studying the behaviour of Discrete Event Systems. It is
commonly employed to analyze the intricate workings of manufacturing systems, logistics systems,
healthcare systems, and more, to estimate their key performance indicators like throughput, flow times,
resource utilization, etc. Simulation is particularly used in situations where it is impossible to define
analytical mathematical expressions to describe system behaviour. This is due to the high complexity
and various sources of randomness that are characteristic of most real-world systems. The main char-
acteristic of simulation is the ability to predict system performance implicitly, without requiring the
analyst to define complex mathematical equations to model the system.

A simulation model is usually a computer code used to predict the performance of a system with
a specific configuration. The optimization model is an algorithm built on top of the simulation, which
looks for the best configuration based on defined criteria (see Figure 2.1 )

Figure 2.1: Optimization for Simulation.

Simulation improves the optimization process by offering precise evaluations, modelling intricate
systems, ensuring feasibility, conducting sensitivity analysis, allowing for iterative enhancements, de-
veloping surrogate models, and verifying solutions. This integration is crucial for addressing real-world
problems that cannot be solved by analytical methods alone [32].

2.4.3 Realistic Representation
According to Xin-She Yang [31], realistic representation likely refers to accurately modelling the phys-
ical systems or processes being optimized. This involves creating mathematical models that closely
reflect the behaviour and constraints of real-world systems in order to perform effective optimiza-
tion. In optimization, realistic representation and mathematical modelling are used interchangeably.
In other words, realistic representation in the context of optimization typically involves mathemati-
cal modelling of the physical processes or systems being studied. This modelling aims to represent
the fundamental features, behaviours, and constraints of the real-world system in a mathematical form
suitable for simulation and optimization. Mathematical modelling enables engineers and researchers to
depict the relationships among various variables, parameters, and constraints that influence the system’s
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behaviour. By formulating these relationships mathematically, it is possible to simulate the system’s
response to various inputs and conditions, assess performance metrics, and optimize design variables
to meet specific objectives. Mathematical modelling is a powerful tool used in different disciplines
like science and engineering to describe and analyze real-world problems. It involves representing
the problem through mathematical equations, formulas, and algorithms. Mathematical modelling is a
crucial tool in today’s complex world, enhancing our understanding of systems and enabling efficient
solutions for various problems [33].

By effectively integrating these components, engineers and researchers can tackle a variety of op-
timization problems, including engineering design, resource allocation, parameter tuning, and system
optimization. The synergy among the optimization algorithm, simulation, and realistic representation
is essential for achieving meaningful and practical solutions in optimization efforts.

2.5 Examples of Real-World Optimisation Problems Using Meta-
heuristics

Metaheuristic algorithms have been used in a variety of optimization problems across different fields
like engineering, finance, logistics, and healthcare. We are going to explore some significant applications
of metaheuristics.

2.5.1 Engineering
Metaheuristic algorithms are commonly utilized in engineering to solve a variety of optimization prob-
lems. Here are some notable applications of metaheuristic algorithms in engineering.
Parameter Estimation
Researchers use the Dynamic Model-Based Parameter Estimation (DMbPE) process to calibrate a dy-
namic system model for accurate experimental data reproduction by minimizing an objective function
that evaluates the fit quality between predicted and observed values. The article ”On Metaheuristics
for Solving the Parameter Estimation Problem in Dynamic Systems: A Comparative Study” [34] eval-
uates the effectiveness of five metaheuristic algorithms for parameter estimation in dynamic systems.
These algorithms, including the Firefly Algorithm, Harmony Search Algorithm, Differential Evolution
Algorithm, Artificial Bee Colony Algorithm, and Directed Tabu Search, are widely used in real-world
applications. The study compares the performance of algorithms on benchmark functions and real-
world datasets. It concludes that no single algorithm is superior in all situations, and the selection of
an algorithm should be based on specific problem characteristics.
Design Optimization
Optimization in engineering design involves solving complex problem-solving challenges within con-
straints, aiming to minimize effort and time, or achieve maximum efficiency, in fields like industry,
automotive, construction, and machinery. Metaheuristic optimization approaches offer a fast and ac-
curate solution to global optimization problems, eliminating the need for continuous cost functions
and variables. They are commonly used in fields like structural design, and engineering. ”A Com-
parative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design
Problems” [35] presents The Chimp Optimization Algorithm (ChOA) to solve constrained engineering
design problems. The study compares 18 metaheuristic optimization algorithms, including The Chimp
Optimization Algorithm (ChOA). It finds ChOA promising for complex problems, making it a valuable
tool for engineers and researchers.
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2.5.2 Finance
Metaheuristic algorithms are commonly utilized in finance to address a range of optimization problems.
Below are some significant applications of metaheuristic algorithms in the field of finance.
Portfolio Optimization
Portfolio optimization is a crucial finance research area, involving allocating capital among assets.
Harry Markowitz introduced the mean-variance model, which balances expected return and risk. This
multi-objective nonlinear optimization problem requires discrete decision variables and multiple objec-
tives, making exact algorithms unfeasible. The study ”Meta-heuristics for portfolio optimization” [36]
explores the use of metaheuristics for portfolio optimization, utilizing various algorithms such as Ge-
netic Algorithms, Particle Swarm Optimization, Differential Evolution, Simulated Annealing, and Tabu
Search. The study indicates that multi-objective metaheuristics are efficient for solving complex port-
folio optimization problems. They offer a practical approach to determining the efficient frontier and
handling intricate constraints and objectives.
Fraud Detection
Banks use rule-based and statistical analysis to prevent credit card fraud, but detecting statistical fraud
is challenging due to skewed data, evolving techniques, and limited privacy exchanges. Fraud detection
optimization is crucial in industries like banking and e-commerce to identify fraudulent transactions,
minimize false positives, and minimize financial losses. It requires adaptive models, real-time detec-
tion, and data privacy constraints to achieve high accuracy. The study ”Solving Credit Card Fraud
Detection Problem by the New Metaheuristics Migrating Birds Optimization” [37] applies the recently
developed new metaheuristics algorithm namely the migrating birds optimization algorithm (MBO)
to this problem in which offer significant contributions to fraud detection. Results show that the
MBO algorithm performed better than traditional approaches and some other metaheuristics and it
performed better than a previous implementation of a combination of genetic algorithms and scatter
search. Overall, Metaheuristic algorithms such as MBO offer a robust and efficient method for opti-
mizing fraud detection systems. They provide a balance of accuracy, adaptability, and computational
efficiency.

2.5.3 Healthcare
Metaheuristic algorithms have been effectively used in different healthcare fields, including medical
diagnosis, treatment planning, drug discovery, and healthcare management. Some specific applications
of metaheuristic algorithms in healthcare are:
Healthcare Scheduling
Home Health Care Routing and Scheduling Problem (HHCRSP) involves the efficient routing and
scheduling of home health care services to patients while considering various constraints and objec-
tives such as minimizing costs, maximizing patient satisfaction, and optimizing staff assignments and
travel times. It is a complex optimization problem requiring careful consideration of staff and vehicle
routing and scheduling aspects to minimize costs and maximize patient satisfaction. The article ”Using
a metaheuristic algorithm for solving a home health care routing and scheduling problem” [38] aims
to offer insights on enhancing the efficiency and quality of home health care operations through effec-
tive optimization techniques. This article proposes using the Simulated Annealing (SA) metaheuristic
algorithm to solve the Home Health Care Routing and Scheduling Problem (HHCRSP). The results
show that using Simulated Annealing as a metaheuristic algorithm effectively addresses the complexity
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of the Home Health Care Routing and Scheduling Problem, providing reasonable solutions within a
reasonable computational time.
Disease Diagnosis
The modern medical field greatly benefits from advanced computing facilities and the latest technolo-
gies. Computer-aided automated processes in body examinations and disease diagnosis result in en-
hanced performance and treatment outcomes. The increasing amount of healthcare data and the rapid
expansion of database storage in clinics highlight the urgent need to access this vast data for efficient
disease diagnosis and treatment. In this era, numerous researchers are focusing on automating disease
diagnosis and prediction procedures. Metaheuristic algorithms are techniques capable of providing
practical solutions to various issues. In ” A Systematic Review on Metaheuristic Optimization Tech-
niques for Feature Selections in Disease Diagnosis: Open Issues and Challenges” [39] article, various
metaheuristic algorithms, such as Spider Monkey Optimization (SMO), Shuffled Frog Leaping Algo-
rithm (SFLA), Cuckoo Search Optimization (CSO), Ant lion Optimization (ALO), Lion Optimization
technique (LO), Moth Flame Optimization (MFO), Bat-inspired Algorithm (BA), Grey Wolf Optimiza-
tion (GWO), Whale Optimization Algorithm (WOA), and Dragonfly Algorithm (DA) have been utilized
to detect and classify different health-related diseases. According to this paper, researching the use of
metaheuristic algorithms could provide a great opportunity for developing models to diagnose diseases
effectively, benefiting both doctors and patients.

2.5.4 Machine Learning
Neural Network for Image Classification
The COVID-19 pandemic has highlighted the significance of wearing face masks to prevent the spread
of the virus and protect millions of people. Deep learning and machine learning are two widely used
subsets of artificial intelligence for face mask detection and classification. ” Comparative Study of Meta-
heuristic Optimization of Convolutional Neural Networks Applied to Face Mask Classification” [40]is
a research focuses on using Convolutional Neural Networks (CNNs) to classify face mask usage into
three categories: no mask, incorrect mask, and proper mask. The research compares the effective-
ness of four swarm intelligent metaheuristic optimization algorithms: Particle Swarm Optimization
(PSO), Grey Wolf Optimizer (GWO), Bat Algorithm (BA), and Whale Optimization Algorithm (WOA),
in designing optimal CNN architectures for accurate face mask classification. The results showed that
the Bat Algorithm (BA) performed better than other metaheuristics. These findings provide valuable
insights into using metaheuristic optimization techniques to enhance the efficiency and accuracy of
convolutional neural networks for face mask classification.
Feature Selection
Feature selection is a crucial and complex task in machine learning. It has various applications in
different fields. Some examples include biomedical problems, text mining, and image analysis. Feature
selection problem involves identifying and removing inappropriate, irrelevant, or unnecessary features
from datasets, aiming to extract the most relevant ones. Hence, metaheuristic algorithms are receiving
significant attention for addressing these conditions. The study: ”Metaheuristic Algorithms on Feature
Selection: A Survey of One Decade of Research (2009-2019)” [41] presents a comprehensive literature
review of metaheuristic algorithms developed between 2009 and 2019 and their applications in fea-
ture selection problems. This study introduced five algorithms: Binary Particle Swarm Optimization
(BPSO), Binary Differential Evolution (BDE), Binary Ant Lion Optimizer (BALO), Binary Grey Wolf
Optimizer (BGWO) and Binary gaining Sharing Knowledge Based Algorithm (FS-NBGSK) to assess the
performance of metaheuristic algorithms on the datasets. The main purpose of feature selection is to
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maximize performance accuracy while minimizing the number of selected features. The results indi-
cate that the FS-NBGSK algorithm converges to the minimum fitness value more effectively than other
algorithms. Overall, the study emphasizes the potential of binary metaheuristic algorithms in solving
feature selection problems. It highlights their advantages in improving classification performance by
efficiently reducing feature dimensionality.

2.6 Conclusion
In this chapter, we explored the nature and characteristics of real-world optimization problems We
have discussed the outlined metaheuristic process from initialization to termination, emphasizing im-
portant components like algorithms, simulation, and realistic representation. By showcasing examples
like feature selection and parameter estimation, we show how metaheuristics are applied in different
fields like machine learning and dynamic system modelling. For instance, feature selection and pa-
rameter estimation demonstrate how metaheuristic algorithms can effectively explore intricate search
spaces, producing high-quality solutions that improve performance and accuracy in areas like machine
learning and dynamic system modelling.

Based on this, we are interested in solving parameter estimation problems. We have decided to
focus on studying parameter estimation in PV systems using various metaheuristic algorithms. This
will be the subject of the next chapter.
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3.1 Introduction
In this chapter, we present a comparison of various metaheuristic algorithms used for extracting elec-
trical parameters from specific photovoltaic (PV) panels. These algorithms include the Gold Rush Op-
timizer (GRO), Zebra Optimization Algorithm (ZOA), Secretary Bird Optimization Algorithm (SBOA),
Hippopotamus Optimization Algorithm (HOA), and Opposition Flow Directional Algorithm (OFDA).
This chapter aims to explore the effectiveness of these new algorithms in estimating PV model parame-
ters. Renewable energy is increasingly being embraced as a sustainable substitute for fossil fuels across
many sectors. Solar energy, in particular, has become a key component in global power systems be-
cause it is plentiful, environmentally friendly, and simple to install and maintain. Photovoltaic (PV) cells
transform solar energy into electricity. To enhance the efficiency of PV cells, mathematical modelling
is essential for simulating their performance and determining the best parameters. Finding the right
parameters for PV models is an optimization challenge that can be effectively addressed with robust
optimization techniques. Among the metaheuristic techniques employed to determine the parameters
of photovoltaic cells, we can mention the walrus optimization algorithm (WaOA), Cheetah optimizer
(CO), Enhanced prairie dog optimization algorithm (En-PDO), Coati Optimization Algorithm (COA),
Aquila optimization (AO), Harris Hawks optimization (HHO), Wild Horse Optimizer (WHO), Honey
Badger Algorithm (HBA) and African Vulture Optimization Algorithm (AVOA). Table 3.1 presents a
comparative analysis of these algorithms based on their RMSE for (SDM) and (DDM), along with their
maximum iterations (MaxIt) and population size (Pop).

Algorithm Year RMSE MaxIt Pop
SDM DDM

WaOA [42] 2024 7.730062E-04 7.631566E-04 200 20
CO [42] 2024 7.7912E-04 7.757378E-04 200 20
En-PDO [43] 2024 7.7299E-04 7.4248E-04 1000 50
COA [3] 2024 7.73006E-04 7.41936E-04 Not reported Not reported
AO [44] 2023 1.3481E-03 Not reported 50000 30
HHO [44] 2023 2.5000E-05 Not reported 50000 30
WHO [45] 2023 9.8602E-04 9.8248E-04 10000 50
HBA [46] 2022 7.7301E-04 7.60042E-4 1000 100
AVOA [46] 2022 7.85654E-04 7.74523E-04 1000 100
SEDE [10] 2020 9.8602188E-04 9.8248485E-04 50000 30

Table 3.1: Nature-Inspired Meta-heuristics for Solar Parameter Estimation.
The rest of the chapter is organized as follows:

Section 3.2 describes the problem and its significance. Then, Section 3.3 provides a detailed description
of the proposed meta-heuristic algorithms, including GRO, ZOA, SBOA, HOA, and OFDA. Finally,
Section 3.4 presents a comparative study of the proposed algorithms.
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3.2 Description of the problem
The sun has around 173 trillion terawatts of solar energy, which is 10,000 times more than the world’s
population utilizes. Solar energy is created as both heat and light. Therefore, it can be harnessed into
heat energy or electricity.

Solar photovoltaic (PV) power plants are a popular method for generating electricity through the
photovoltaic effect. Solar cells, made from semiconductor materials, convert sunlight into electricity
by absorbing light and releasing electrons, which then travel through circuits to the electricity grid.
As shown in Figure 3.1, PV power plants consist of grids of PV modules, each containing a layer of
thin-film material with internally connected solar cells. These modules protect the solar cells from the
environment and produce higher voltage than a single cell. The efficiency of electricity production
depends significantly on the performance of PV modules and cells, which must adapt to environmental
and climatic changes [2].

To achieve higher conversion efficiency under varying weather and temperature conditions, it is
vital to simulate, optimize, and control the PV model. Commonly used models include the single diode
(SD) and double diode (DD) models. The goal is to find parameter values that closely match experimental
data to maximize performance under specific conditions. Accurate parameters are essential for high
performance, making parameter search an optimization problem [10].

Figure 3.1: Solar PV Systems [2].
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3.2.1 Photovoltaic Models
To design the SC and PV modules, a mathematical model is required to extract the SC parameters
analytically. Based on this, electronic circuits using diodes are utilized for modelling the SC [47].
Photovoltaic models fall into four categories: single-diode model(SDM), double-diode model (DDM),
triple-diode model (TDM) and PV module model(PVMM).
Single Diode Model
The SDM (Single Diode Model) represents a simple configuration for modelling a solar PV cell. It
consists of a diode and two resistors, one in series and one in parallel Table 3.2, to account for various
losses [48]. Due to its simplicity and minimal number of parameters (only five unknown parameters
need to be estimated) Equation 3.1 [10], the SDM is the most widely used model. This makes it
particularly suitable for cases where fast estimation is required with low manufacturing costs [49].
Double Diode Model
The DDM (Double Diode Model) is composed of two diodes and two resistors, one in series and one
in parallel Table 3.3, to compensate for various losses [48]. This configuration makes the DDM more
appropriate for the low irradiance level operation of PV cells. With seven unknown parameters to be
estimated Equation 3.2 [5], the DDM is suitable for cases where accurate I-V estimation is needed.
Additionally, it can easily consider the variations of environmental conditions during simulation [49].
Triple Diode Model
The third model, TDM (Triple Diode Model), is used for industrial applications. The TDM extends
the DDM by adding an additional diode in parallel with the other two diodes Table 3.4. With nine
unknown parameters to be estimated Equation 3.3 [5], the TDM is suitable for predicting values with
high accuracy and can easily model the complex nature of different PV module types [49].
PV module Model
Different from the above three models, the PV module typically includes several solar cells connected
in parallel or series. Based on the circuit presented in Table 3.5, the output current can be calculated by
Equation 3.4. where Np and Ns indicate the size of solar cells used in parallel and series, respectively.
With five unknown parameters to be estimated in the PV module [10].

The parameter meanings, the equivalent circuits and the mathematical equations of the SDM, DDM,
TDM and PVMM are represented in Table 3.2.
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Table 3.2: Summary on four photovoltaic (PV) cell models.
Model Electrical equivalent circuit Mathematical model

Single
diode
model
(SDM)

Figure 3.2: SDM [3]

IL = Iph − Id − Ish

IL = Iph − Isd ·
[
exp
(
q · (VL +RS · IL)

n · k · T

)
− 1

]
− VL +RS · IL

Rsh (3.1)
05 parameters to be estimated: Iph, Isd, Rs, Rsh and n

[10]

Double
diode
model
(DDM)

Figure 3.3: DDM [3]

IL = Iph − Id1 − Id2 − Ish

= Iph − Isd1 ·
[
exp
(
q · (VL +RS · IL)

n1 · k · T

)
− 1

]
− Isd2 ·

[
exp
(
q ·
(
VL +RS·IL)

n2 · k · T

)
− 1

]
− VL +RS · IL

Rsh

(3.2)
07 parameters to be estimated: Iph, Isd1, Isd2, Rs, Rsh,

n1 and n2 [10]

Triple
diode
model
(TDM)

Figure 3.4: TDM [4]

I = Iph −
∑

j=1→3

Idj − Ish

= Iph −
∑

j=1→3

Isdj

[
exp
(
q · (VL +RS · IL)

nj · k · T

)
− 1

]
− VL +RS · IL

Rsh (3.3)
09 parameters to be estimated: Iph, Isd1, Isd2, Isd3, Rs,

Rsh, n1, n2 and n3 [50]

PV
module
model

(PVMM)

Figure 3.5: PVMM [3]

IL/Np = Iph

− Isd ·
[
exp
(
q · (VL/NS +RS · IL/Np)

n · k · T

)
− 1

]
− VL/NS +RS · IL/Np

Rsh

(3.4)

05 parameters to be estimated: Iph, Isd, Rs, Rsh and n
[10]

Note: Iph(A),photo-generated current;Isd,Isd1,Isd2,Isd3(A),reverse saturation current;n,n1,n2,n3,ideality factor;Rs(Ω),seriesresistance; Rsh(Ω),shunt resistance; VL,output voltage;IL,PV current; k,boltzmann constant k = 1.3806503 × 10−23 J/K;
q,electron charge q = 1.60217646× 10−19C;T,cell temperature ◦K [3]
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3.2.2 Problem Formulation
The Metaheuristic algorithm selection process will preserve exceptional individuals according to the
values of their objective function, so the creation of an objective function is essential [10].

The primary objective of parameter extraction in both the SD and DD models is to identify model
parameters that minimize the discrepancy between the computed and observed current. One popu-
lar technique for calculating the difference between two I-V curves is the root-mean-square error or
RMSE [51].

The SD and DD model calculation methods are given by equations Equation 3.5 and Equation 3.6,
respectively. The ultimate goal is then ascertained by the total error evaluated by using the root means
square error (RMSE), as demonstrated by Equation 3.7 [10].

• SDM {
fSD (VL, IL,X) = Iph − Isd ·

[exp( q·(VL+RS·IL)
n·k·T

)
− 1
]
− VL+RS ·IL

Rsh
− IL

X = {Iph, Isd, RS, RSh, n}
(3.5)

• DDM
fDD (VL, IL,X) =Iph − Isd1 ·

[
exp
(
q · (VL +RS · IL)

n1 · k · T

)
− 1

]
− Isd2 ·

[
exp
(
q · (VL +RS · IL)

n2 · k · T

)
− 1

]
− VL +RS· · IL

Rsh

− IL

X = {Iph, Isd1, Isd2, RS, RSh, n1, n2}

(3.6)

RMSE(X) =
√√√√ 1

N

N∑
k=1

fk (VL, IL,X)2 (3.7)

Where VL and IL represent the experimental values of the solar cell’s voltage and current Table 3.4,
X indicates the solution consists of several unknown parameters and N shows the number of exper-
imental data. However, the upper/lower boundaries that control the study search space of the PV
model’s unknown parameters are presented in Table 3.3 [10].

Parameters Iph(A) Isd,Isd1, Isd2(A) Rs(Ω) Rsh(Ω) n, n1, n2LB 0 0 0 0 1
UB 1 1 0.5 100 2

Table 3.3: Parameter ranges of SDM and DDM models [10].
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Data VL( V)
Measured

IL( A)
Measured Data VL( V)

Measured
IL( A)
Measured

1 -0.2057 0.7640 14 0.4137 0.7280
2 -0.1291 0.7620 15 0.4373 0.7065
3 -0.0588 0.7605 16 0.4590 0.6755
4 0.0057 0.7605 17 0.4784 0.6320
5 0.0646 0.7600 18 0.9460 0.5730
6 0.1185 0.7590 19 0.5119 0.4990
7 0.1678 0.7570 20 0.5265 0.4130
8 0.2132 0.7570 21 0.5398 0.3165
9 0.2545 0.7555 22 0.5521 0.2120
10 0.2924 0.7540 23 0.5633 0.1035
11 0.3269 0.7505 24 0.5736 -0.0100
12 0.3585 0.7465 25 0.5833 -0.1230
13 0.3873 0.7385 26 0.5900 -0.2100

Table 3.4: Terminal measurements of voltage and current [11].

3.3 Description of the Proposed Metaheuristic Algorithms
Accurate extraction of PV model parameters remains difficult to work due to the various characteristic
types (non-linear, multi-variable, and multi-modal), as well as the limited information data provided
by manufacturers.

As a result, in terms of non-linearity, multi-variability, and multi-modality difficulties in PV cell/module
IV curves, metaheuristic algorithms appear to be a very efficient solution to overcome the constraints
of analytical and deterministic methods. Metaheuristic algorithms have recently gained popularity in
the PV energy sector for estimating a variety of parameters. However, applying optimization methods
to this type of problem necessitates specifying the parameters to be extracted and the objective function
to be decreased.

Figure 3.6 depicts the overall process of utilizing metaheuristic methods to improve the perfor-
mance of a particular function (system to be optimized) [5].

Metaheuristic algorithms

Result evaluations

New results

System to be optimized

New population

Figure 3.6: Interaction process between metaheuristic algorithms and system to be optimized [5].
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This section discusses the algorithms and mathematical models for the five proposed optimization
methods.

3.3.1 Gold Rush Optimizer (GRO) Algorithm
The Gold Rush Optimizer (GRO), created in 2023, is a new population-based metaheuristic algorithm
inspired by the gold prospecting methods used during the Gold Rush Era. It incorporates concepts like
migration, collaboration, and panning to efficiently search for optimal solutions to complex problems.
GRO’s inspiration
Gold, symbolized as (Au), with an atomic number of 79, is a noble metal found in the 11th group of
the periodic table, known for its shiny, yellow appearance and resistance to tarnishing. It has been
highly valued throughout history for its durability and various applications, including in jewellery,
coins, electronics, and dentistry.

A significant historical event related to gold is the gold rush, where people flocked to newly discov-
ered gold deposits in the hope of striking it rich, leading to major events in countries like the United
States, Australia, Canada, and South Africa during the 19th century [6].
Mathematical model and algorithm
This section introduces mathematical models for gold prospectors, migration, mining, and collabora-
tion, followed by an explanation of the GRO metaheuristic algorithm.

• Gold prospectors modeling
The (GRO) algorithm simulates the key aspects of the gold rush by using gold prospectors as the
main entities in the algorithm. In this meta-heuristic algorithm, the location of each prospector
is stored in a matrix called MGP P that is expressed as Equation 3.8, where xij represents the
position of prospector i in the jth dimension, d is the dimension size, and n is the number of
gold prospectors [6].

MGP =


x11 x12 . . . x1d

x21 x22 . . . x2d... ... . . . ...
xn1 xn2 . . . xnd

 (3.8)

The algorithm aims to optimize the performance of gold prospectors by evaluating their posi-
tions using an objective function stored in an evaluation matrix MF where xij represents the
location of prospector i in the jth dimension, and f denotes the evaluation function used for this
assessment. This process helps in analyzing and optimizing the performance of gold prospectors
in the context of the (GRO) meta-heuristic algorithm [6].

MF =


f (x11 x12 . . . x1d

f (x21 x22 . . . x2d)... ... . . . ...
f (xn1 xn2 . . . xnd

 (3.9)

• Migration of prospectors
After finding a gold mine, prospectors move towards it to extract gold. The algorithm uses
the position of the most successful prospector as an approximation for the location of the most
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lucrative gold mine since the exact location of the richest mine is typically unknown. This
migration process helps optimize the search for the best resources within the algorithm’s search
space Figure 3.7 and Figure 3.8 [6].

Figure 3.7: Schematic view of equation (3) in two dimensions [6].

Figure 3.8: Schematic view of the operator of migration toward gold mine in two dimensions [6].

Equation 3.10 and Equation 3.11 are used to represent a gold prospector’s migration to the
mine [6].

D⃗1 = C⃗1 · X⃗∗(t)− (t) (3.10)
−−−−→
X new i(t+ 1) = X⃗i(t) + A⃗1 · D⃗1 (3.11)

The variables X⃗∗, X⃗i, and t represent the location of the best gold mine, the location of a specific
gold prospector i and the current iteration t, respectively.−−−→Xnew is the new location of the gold
prospectori, and A⃗1 and C⃗1 are vector coefficients calculated by [6]:

A⃗1 = 1 + l1

(
r⃗1 −

1

2

)
(3.12)
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C⃗1 = 2r⃗2 (3.13)
where r⃗1 and r⃗2 are random vectors with value in the range [0, 1].The convergence component
l1 decreases linearly from 2 to 1maxiter if e equals one, and for values greater than 1, it decreases
non-linearly. Figures 3 and 4 illustrate the outcomes for power values 1 and 2, and the variations
in A1 over multiple iterations, respectively [6].

le =

(maxiter − iter
maxiter −1

)e(
2− 1

maxiter

)
+

1

max iter
(3.14)

Gold-seekers migrate to nearby locations after reaching an assumed gold mine. The vector A1in Equation 3.12 is used to mathematically model this migration process, where a value of 1
indicates movement directly to the assumed mine, while other values represent migration to
locations between the seeker’s current position and the mine or beyond. Figure 4 shows that its
value ranges from about 1. Seekers may explore areas close to known gold mines or consider
similar regions to increase their chances of finding gold. Vector C1 in Equation 3.10 is utilized
to mathematically represent the migration behaviour of gold seekers. A value of 1 in Vector
C1 signifies that the seeker migrates directly to the assumed gold mine location, while other
values indicate migration to locations with coordinates similar to the mine. Figure 3.7 provides
a visual representation of an equation in two dimensions that can be extended to any number of
dimensions (d). Figure 3.8 likely visually represents this migration process in a simplified two-
dimensional illustration. When (A1,C1) is (0.5, 1), the migration occurs at place F1, and when
it is (2, 1), migration happens at place F2. This process can be extended to higher dimensions,
where the migration region moves closer to the gold mine location based on the value of l1 [6].

Figure 3.9: Graph for values of l1 and l2 during algorithm iteration [6] .

Figure 3.10: Range of changes in A1 during algorithm iterations [6] .
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• Gold mining (gold panning)

Each gold prospector mines gold regions in search of further gold. In mathematical modelling,
each gold prospector represents the estimated location of a gold mine. The mathematical rela-
tionships of gold mining are as follows [6]:

D⃗2 = X⃗i(t)− X⃗r(t) (3.15)
−−−−→
X newi(t+ 1) = X⃗r(t) + A⃗2 · D⃗2 (3.16)

where X⃗r , X⃗i, t, and −−−→Xnew denote the locations of a randomly picked gold prospector r, a gold
prospector i, the current iteration t, and the new position of the gold prospector i, respectively.
A2 is the vector coefficient computed using Equation 3.17 [6].

Figure 3.11: Permissible range of changes of A2 during algorithm iteration [6] .

Figure 3.12: Schematic view of gold mining (panning) in 2D [6].

In this equation, using parameter l2 instead of l1 improves the mining method’s exploitation
capabilities. Figure 3.11 shows the range of variations in the latter parameter [6].

A⃗2 = 2l2
−→r1 − l2 (3.17)

Figure 3.12 provides a schematic 2D picture of gold mining to help comprehend Equation 3.10
and Equation 3.16. This figure indicates whether a gold prospector should approach or avoid
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a specific mine based on its A2 value. This approach can be used to a d-dimensional search
space [6].

• Collaboration between prospectors
The Equation 3.15 and Equation 3.19 model the collaboration between gold prospectors working
together in a team. In this scenario, two randomly selected prospectors, g1 and g2, collaboratewith another prospector, i, forming a three-person team. The collaboration vector, represented as
D3, illustrates how these prospectors work together to search for gold in a coordinated manner,
as shown in a schematic view in Figure 3.13 [6].

D⃗3 = X⃗g2(t)− X⃗g1(t) (3.18)
−−−−→
X newi(t+ 1) = X⃗i(t) + r⃗1 · D⃗3 (3.19)

Figure 3.13: Schematic view of the collaboration between prospectors in two dimensions [6].

Seekers g1 and g2 specify the gold-seeking zone, but seeker i determines the actual site at random
(see Figure 3.13). Thus, three-person cooperation is developed in this manner [6].

• Prospectors relocation
The decision-making process for a prospector involves constantly evaluating whether to stay in
their current location or move to a new one based on maximizing the amount of gold they can
obtain. This decision is guided by comparing the outcomes of an evaluation function, where
the prospector updates their location if there is an improvement in the objective function value,
otherwise, they remain in their current location. Equation 3.20 in the model represents this
decision-making process in scenarios where the prospector aims to minimize certain criteria [6].

X⃗i(t+ 1) =
−−−−→
X newii(t+ 1) if f (−−−−→X newii(t+ 1)

)
< f

(
X⃗i(t)

) (3.20)
• Domain control

If the location of Xnew i, d at dimension d falls within the lower and upper bounds of dimension
d, a new location is evaluated; otherwise, the old location of Xi, d is preserved.
Based on the preceding concepts, the Gold Rush Optimizer (GRO) algorithm, which starts with
prospectors randomly placed in a search space to find the best solution (global optimum). Each
prospector moves to a new location in each iteration using migration, gold mining, or collab-
oration methods based on the value of an objective function. If the new location offers more
value than the current one, the prospector moves there until the iteration loop ends, with the
best solution found considered as the final solution of the algorithm [6].
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• Exploitation and exploration of (GRO)

In the gold mining method of the Gold Rush Optimizer algorithm, prospectors search for gold
mines to increase their findings. When |A2| < 1, the distance between a prospector and the
chosen mine decreases, leading to increased exploitation by the algorithm.
In the Gold Rush Optimizer algorithm, teamwork among gold prospectors enhances the search
for gold mines by combining individual efforts. Initially, teamwork focuses on exploration and
searching, leading to increased gold findings through collective agreement. As prospectors move
closer to the best gold mine, their collaboration method allows for high exploration ability at the
start and increased exploitation ability as they converge towards optimal solutions [6].
The pseudocode of the Gold Rush Optimizer (GRO) algorithm is presented in algorithm 2,
outlining the steps for solving optimization problems theoretically [6].
∗ In the Gold Rush Optimizer (GRO) algorithm, the best solution found by each search agent

is saved or improved during the search process, making it part of the population.
∗ Parameters l1 and l2 control the balance between exploring new areas and exploiting known

solutions, with l2 emphasizing exploitation for more focused gold mining efforts.
∗ The (GRO) algorithm’s parameters are versatile and do not need to be adjusted for different

optimization problems.
∗ Using the best solution’s location in the migration process aids in discovering better solu-

tions.
∗ Parameter A1 restricts the search area around the best solution, leading to improved ex-

ploitation of the search space.
∗ On the other hand, parameter A2 influences the algorithm to switch between exploitation
|A2| < 1 and exploration |A2| > 1 phases
∗ Utilizing the position of a random search agent within a mining operator enhances the

algorithm’s ability to avoid getting stuck in local optimal solutions.
∗ Incorporating the parameter C1 assists in ensuring that new solutions generated by migra-

tion operators are placed within a hypersphere with varying radii.
∗ In the collaboration method, the distance between two solutions influences the search

radius for prospecting. During early iterations with long distances, a larger search radius
is used for exploring the global optimum. As the distance decreases, the search radius
reduces, transitioning to a local search for exploitation.
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Algorithm 2 Pseudo-code of the Proposed (GRO) Algorithm [6]
1: Initialize the gold prospectors’ population Xi, i = 1, 2, . . . , N
2: Initialize the gold prospectors’ new positions Xnewi

= Xi, i = 1, 2, . . . , N
3: Initialize t, l1, l2
4: X∗ is the best search agent
5: while t ≤ maximum number of iterations do
6: for each search agent i do
7: Calculate the fitness of the current search agent at new position Xnewi

8: Update position of current search agent Xi according to Equation 3.20
9: Update best search agent X∗

10: end for
11: Update l1, l2 by Equation 3.14
12: for each search agent i do
13: calculate the next position of current search agent Xnewi

with one of the migration, mining
or collaboration methods

14: end for
15: t← t+ 1
16: end while
17: return X∗

3.3.2 Zebra Optimization Algorithm (ZOA)
The Zebra Optimization Algorithm (ZOA), created in 2022, is a bio-inspired metaheuristic algorithm
based on the foraging behaviour and defence strategies of zebras. It effectively balances exploration
and exploitation to solve optimization problems. This subsection introduces ZOA and presents its
mathematical formulation and the pseudo-code.
ZOA’s inspiration

Figure 3.14: Zebra.

Zebras are large equine animals native to east-
ern and southern Africa, known for their dis-
tinctive black-and-white striped coat that helps
them camouflage and repel biting flies. They
have a body length ranging from 210 to 300
cm, a tail length of 38 to 75 cm, shoulder
height between 110 and 160 cm, and weigh be-
tween 175 and 450 kg as shown in the Fig-
ure 3.14.

Zebras are large animals with long, slender
legs that enable them to run at high speeds when
needed. Similar to other wild equines, zebras
have a single toe on each foot, a long neck, and a head structure that facilitates grazing on grass.
In their natural social behaviour, zebras exhibit significant behaviours related to foraging for food and
employing defensive strategies against predators to ensure their survival in the wild.

In the foraging process, a pioneer zebra initiates the foraging process, allowing others to follow
suit. As a result, the pioneer zebra leads the rest of the herd over the plains. The zebras’ first strategy
against predators is to move in a zigzag way. Sometimes they assemble to confuse or terrify predators.
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The mathematical modelling of the intelligent behaviours exhibited by zebras serves as the foundational
inspiration for the development of the ZOA [14].
Mathematical model and algorithm
This sub-subsection presents mathematical simulations of zebras’ natural actions to model (ZOA).

• Initialization

The (ZOA) algorithm is inspired by the behaviour of zebras and is designed as a population-based
optimizer. In this algorithm, each zebra represents a candidate solution to a problem, with their
position in the search space determining the values for decision variables. The population of ze-
bras is mathematically represented using a matrix, where each zebra is modelled as a vector with
elements representing the values of problem variables, and their initial positions are randomly
assigned in the search space. The ZOA population matrix is defined in Equation 3.21 [14].

X =


X1...
Xi...
XN


N×m

=


x1,1 · · · x1,j · · · x1,m... . . . ... .

...
xi,1 · · · xi,j · · · xi,m... .

... . . . ...
xN,1 · · · xN,j · · · xN,m


N×m

(3.21)

Where:
X : Represent the zebra population.
Xi : Represent the ith zebra.
xi,j : Represent the value for the jth problem variable proposed by the ith zebra.
N : Represent the number of population members (zebras).
m : Represent the number of decision variables.
Each zebra symbolizes a potential solution to the optimization problem. By assessing the pro-
posed values of each zebra for the variables involved, the algorithm can evaluate the objective
function to determine the quality of the candidate solutions. The values for the objective function
are supplied as a vector in Equation 3.22 [14].

F =


F1...
Fi...
FN


N×1

=


F (X1)...
F (Xi)...
F (XN)


N×1

(3.22)

Where:
F : Represent the vector of objective function values.
Xi : Represent the objective function value obtained for the ith zebra.
In optimization problems, comparing the objective function values helps evaluate the quality of
candidate solutions. For minimization problems, the zebra with the lowest objective function
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value is considered the best solution, while for maximization problems, the zebra with the highest
value is deemed the best solution. Continuously updating the positions of zebras and their
objective function values in each iteration allows for the identification of the best candidate
solution throughout the optimization process [14].
ZOA members were updated using two natural zebra behaviours seen in the wild. There are
two sorts of behaviour:

(i) foraging and
(ii) defence strategies against predators.

During each iteration, the (ZOA) population is updated in two steps [14].
• Phase 1: Foraging Behaviour

The first phase involves updating population members based on simulations of zebra foraging
behaviour. Zebras primarily feed on grasses and sedges, but they may consume other foods
like buds, fruits, bark, roots, and leaves when their preferred options are scarce. Zebras often
spend 60-80% of their time eating, depending on the quality and quantity of vegetation. The
plains zebra is a pioneer grazer that consumes top, less nutritious grass, creating conditions for
shorter, more nutritious grasses below.In ZOA, the best member of the population is referred to
as the pioneer zebra, and it brings other population members to its position in the search space.
Zebra location updates during foraging can be mathematically described using Equation 3.23
and Equation 3.24 [14].

xnew,P1
i,j = xi,j + r · (PZj − I · xi,j) (3.23)

Xi =

{
Xnew ,P1

i , F new ,P1
i < Fi

Xi, else , (3.24)

Where:
Xnew ,P1

i : Represent the new status of the ith zebra based on first phase.
xnew,P1
i,j : Represent the jth dimension value.

F new ,P1
i : Represent the objective function value.

PZ : Represent the pioneer zebra which is the best member.
PZi : Represent the jth dimension of the pioneer zebra.
r : Represent a random number in the interval [0, 1].
I : I = round(1 + rand) where rand is a random number in the interval [0, 1].
Thus, I ∈ {1, 2} and if parameter I = 2, then there are much more changes in population
movement.

• Phase 2: : Defense Strategies Against

The second phase involves simulating the zebra’s defence strategy against predator attacks to
update the position of ZOA population members in the search space. Zebras are mostly preyed
upon by lions but also face threats from cheetahs, leopards, wild dogs, brown and spotted hyenas.
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Crocodiles are predators of zebras that approach water. Zebras’ defence method differs according
to the predator. Zebras defend themselves against lion assaults by moving in a zigzag manner and
making random sideways turns. Zebras are more aggressive when attacked by smaller predators
like hyenas and dogs, who confuse and frighten the hunter by grouping. The ZOA design assumes
that one of the following two situations occurs with equal probability [14]:

(i) The lion attacks the zebra, prompting the latter to choose an escape option.
(ii) The zebra will select the attacking tactic when attacked by other predators.

The first strategy involves the zebras attacking the lions and running away from the attack in
the area surrounding their current location. Therefore, the mode S1 in Equation 3.25 can be
used to mathematically model this method. When a zebra is attacked by another predator, the
other zebras in the herd move towards it in an attempt to create a defensive structure that would
frighten and confuse the predator. This is the second method. The mode S2 in Equation 3.25 is
used to mathematically model this zebra technique. When zebra positions are updated, a zebra’s
new position is allowed if it has a superior value for the objective function there. Modelling this
update condition is done with Equation 3.26 [14].

xnew,P2
i,j =


S1 : xi,j +R · (2r − 1)

·
(
1− t

T

)
· xi,j, Ps ≤ 0.5;

S2 : xi,j + r · (AZj − I · xi,j) , else
(3.25)

Xi =

{
Xnew,P2

i , F new,P2
i < Fi

Xi, else (3.26)

Where:
Xnew ,P2

i : Represent the new status of the ith zebra based on the second phase.
xnew,P2
i,j : Represent the jth dimension value.

F new ,P2
i : Represent the objective function value.

t : Represent the iteration contour.
T : Represent the maximum number of iterations.
R : Represent a constant number equal to 0.01.
Ps : Represent the probability of choosing one of two strategies that are randomly
generated in the interval [0, 1].
AZ : Represent the the status of attacked zebra.
AZi : Represent the jth dimension of the attacked zebra.

• Repetitions Process and Pseudo-Code of (ZOA)

The population members are updated based on the first and second phases at the end of each
ZOA iteration. Up to the algorithm’s complete implementation, the algorithm population is
updated depending on steps Equation 3.23 through Figure 3.12. Through several cycles, the best
candidate solution is updated and saved. ZOA presents the top contender as the best answer to
the given problem after it has been fully developed. The ZOA phases are shown in Algorithm
3’s pseudocode [14].
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Algorithm 3 Pseudo-code of the Proposed (ZOA) Algorithm [14]
1: Start ZOA.
2: Input: The optimization problem information.
3: Set the number of iterations (T ) and the number of zebras’ population (N).
4: Initialization of the position of zebras and evaluation of the objective function.
5: for t = 1 to T do
6: Update pioneer zebra (PZ).
7: for i = 1 to N do
8: Phase 1: Foraging behavior
9: Calculate new status of the ith zebra using Equation 3.23.

10: Update the ith zebra using Equation 3.24.
11: Phase 2: Defense strategies against predators
12: if Ps < 0.5 then
13: Ps = rand
14: Strategy 1: against lion (exploitation phase)
15: Calculate new status of the ith zebra using mode S1 in Equation 3.25.
16: else
17: Strategy 2: against other predators (exploration phase)
18: Calculate new status of the ith zebra using mode S2 in Equation 3.25.
19: end if
20: Update the ith zebra using Equation 3.26.
21: end for
22: Save best candidate solution so far.
23: end for
24: Output: The best solution obtained by ZOA for a given optimization problem.
25: End ZOA.

42



Chapter 3. Parameter Estimation in Photovoltaic Models Problem

3.3.3 Secretary Bird Optimization Algorithm (SBOA)
The Secretary Bird Optimization Algorithm (SBOA), created in 2024, is a metaheuristic inspired by the
hunting and evasion strategies of secretary birds. This subsection provides a mathematical description
of the bird’s behaviour and the SBOA’s pseudo-code.
SBOA’s inspiration

Figure 3.15: Secretary bird [7].

The Secretary Bird, scientifically known as Sagit-
tarius serpentarius, is a visually striking African
bird known for its unique behaviours and ap-
pearance. It is commonly found in grass-
lands, savannas, and open riverine areas in
Africa. In addition to semi-desert locations
and wooded areas with wide clearings, sec-
retary birds are commonly found in tropi-
cal open grasslands, savannas with few trees,
and open places with long grass, showcasing
a distinctive plumage with grey-brown feath-
ers on their back and wings, white chest,
and black belly as shown in Figure 3.15
[7].

The Secretary Bird’s hunting behaviour involves using its long legs and talons to run and capture
prey on the ground, resembling a secretary at work as it scans the grasslands for hidden prey. This bird
feeds on insects, reptiles, small mammals, and other prey, swiftly charging towards its target, capturing
it with its sharp talons, and then striking it against the ground to consume it [7].

Figure 3.16: Secretary bird hunting and escape strategies correspond to
(SBOA) [7].

Secretary Birds exhibit
remarkable intelligence in
hunting snakes by leverag-
ing their height advantage
to closely monitor and pre-
dict the snakes’ movements.
Their ability to anticipate
the next move of the snake
showcases their exceptional
hunting skills and control
over the situation, making
them formidable adversaries
to snakes in their natural
habitat [7].

It leaps and provokes the
snake while delicately hovering above it. It acts like a agile martial arts expert, while the snake, im-
prisoned inside its circle, writhes in terror. The snake becomes weaker as a result of the constant
taunting. At this time, the Secretary Bird leaps behind the serpent to deal a fatal blow, avoiding its
frontal attacks. It delivers a lethal blow to the snake by grasping its critical parts with its sharp talons.
The Secretary Bird may find it difficult to handle larger snakes because of their strong constriction
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and crushing force. In these situations, the Secretary Bird has the ability to pick up the snake off the
ground by either grasping it with its talons or carrying it in its beak. It then takes off into the sky and
lets go of the snake, letting it hit the hard ground with a foreseeable end [7].

Furthermore, Secretary Bird’s intelligence is obvious in its predator avoidance methods, which in-
clude two separate ways. The bird’s first response is to conceal itself when detecting a nearby threat.
The Secretary Bird uses camouflage to avoid potential predators. The bird uses the second approach
when it learns its surroundings are unsuitable for camouflage. When faced with a predator, the animal
will either fight or walk quickly to escape [7].

Figure 3.16 shows how the Secretary Bird’s behaviour corresponds to the Secretary Bird Optimiza-
tion Algorithm (SBOA). The secretary bird’s prepared hunting behaviour correlates to the initialization
step of the Secretary Bird Optimization Algorithm (SBOA). The secretary bird’s hunting process follows
the three exploratory stages of SBOA. The secretary bird uses C1 and C2 methods to avoid predators,
which correlate to SBOA’s exploitation stages [7].
Mathematical model and algorithm
This sub-subsection proposes a mathematical model of secretary bird behaviour to hunt snakes and
avoid natural enemies, which will be presented to (SBOA).

• Initialization
The Secretary Bird Optimization Algorithm (SBOA) is a population-based method inspired by
the hunting behaviour of Secretary Birds. In this algorithm, each Secretary Bird represents a
potential solution to a problem, with their positions in the search space determining the values
of decision variables. The algorithm starts with random initialization of the Secretary Birds’
positions using a mathematical Equation 3.27 to explore possible solutions efficiently [7].

Xi,j = lbj + r × (ubj − lbj) , i = 1, 2, . . . , N, j = 1, 2, . . . , Dim (3.27)
Where:
Xi : Represent the position of the i th secretary bird.
lbj ,ubj : Represent the lower and upper bounds, respectively.
r : Represent a random number between 0 and 1.

The Secretary Bird Optimization Algorithm (SBOA) is a population-based method where opti-
mization begins with a group of potential solutions as shown in Equation 3.28. These solutions
X are randomly generated within specified upper and lower bounds, and the best solution found
in each iteration is considered the optimal solution [7].

X =



x1,1 x1,2 · · · x1,j · · · x1,Dim
x2,1 x2,2 · · · x2,j · · · x2,Dim... ... . . . ... . . . ...
xi,1 xi,2 · · · xi,j · · · xi,Dim... ... . . . ... . . . ...
xN,1 xN,2 · · · xN,j · · · xN,Dim


N×Dim

(3.28)

Where:
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X : Represent the secretary bird group.
Xi : Represent the ith secretary bird.
Xi,j : Represent the ith secretary bird jth question the value of a variable.
N : Represent group members (the secretary) number.
Dim : Represent problem of variable dimension.

Each secretary bird symbolizes a potential approach for optimizing the situation. The objective
function can be assessed using the values suggested by each secretary bird for the problem
variables. The objective function values are compiled into a vector by Equation 3.29 [7].

F =


F1...
Fi...
FN


N×1

=


F (X1)...
F (Xi)...
F (XN)


N×1

(3.29)

Where:
F : Represent the vector of objective function values.
Fi : Represent the objective function value obtained by the ith secretary bird.

Comparing objective function values effectively analyzes possible solutions to determine the best
answer for a given problem. In minimization problems, the secretary bird with the lowest ob-
jective function value is the best candidate solution. In maximizing problems, the secretary bird
with the greatest objective function value is the best candidate. Each iteration requires determin-
ing the best candidate solution, as the positions of the secretary birds and values of the objective
function change [7].

The secretary bird’s two natural actions were used to provide updates to SBOA members. These
two categories of behaviours include:

(i) The secretary bird’s hunting strategy;
(ii) The secretary bird’s escape strategy.

Each iteration involves updating each member of the secretary bird colony in two steps [7].
• Hunting strategy of secretary bird (exploration phase)

Secretary birds hunt snakes in three stages: searching for, consuming, and attacking them. Fig-
ure 3.17 shows the hunting behaviour of the secretary bird.
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Figure 3.17: The hunting behaviour of secretary birds [7].

We divided the secretary bird’s hunting process into three equal time intervals based on biological
statistics and phase durations: < 1

3
T, 1

3
T < t < 2

3
T and 2

3
T < t < T . These intervals

correspond to the three phases of predation: searching for, consuming, and attacking prey.
Thus, the modelling of each phase in SBOA is as follows:
Stage 1 (Searching for Prey): Secretary birds seek for snakes as their primary prey. Secretary
birds have exceptional vision, enabling them to detect snakes in tall grass on the savannah. They
sweep the ground carefully with their lengthy legs, keeping an eye out for snakes. Their large
legs and necks allow them to maintain a safe distance from snake strikes. This occurs during
the earliest iterations of optimization, where exploration is vital. This stage uses a differential
evolution method. Differential evolution leverages individual differences to provide new solu-
tions, increasing algorithm variety and global search capabilities. Diversity can help to prevent
becoming trapped in local optima by introducing differentiable mutation processes. Exploring
different parts of the solution space increases the probability of finding the global optimum. To
represent the secretary bird’s position during the Searching for Prey stage, use Equation 3.30
and Equation 3.31 [7].

While t < 1

3
T, xnew P1

i,j = xi,j + (xrandom 1 − xrandom _2)×R1 (3.30)

Xi =

{
Xnew ,P1

i , if F new ,P1
i < Fi

Xi, else (3.31)
Where:
t : Represent the current iteration number.
T : Represent the maximum iteration number.
Xnew ,P1

i : Represent the new state of the ith secretary bird in the first stage.
Xrandom1 : Represent the random candidate solutions in the first stage iteration.
Xrandom2 : Represent the random candidate solutions in the first stage iteration.
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R1 : A randomly generated array of dimension1× Dim from the interval [0, 1].
Dim : Represent the dimensionality of the solution space.
xnew ,P1
i : Represent the value of the jth dimension of the ith secretary bird.

F new ,P1
i : The fitness value of the objective function for the ith secretary bird.

Stage 2 (Consuming Prey): When a secretary bird discovers a snake, it uses a unique hunting
technique. Unlike other raptors, the secretary bird uses its agility to move around the snake. The
secretary bird stands solid, watching every move of the snake from a high vantage point. The
predator gradually wears down its opponent’s stamina by hovering, jumping, and provoking it
based on its behaviour. At this level, we use Brownian motion (RB) to imitate the random move-
ment of the secretary bird. Brownian motion can be formally represented using Equation 3.32.
The secretary bird’s ”peripheral combat” tactic offers them a significant physical advantage. The
bird’s long legs prevent snakes from entangling it, and its talons and leg surfaces are covered
in thick keratin scales that act as protection against venomous snakes’ fangs. During this step,
the secretary bird may pause to focus on the snake’s location using its keen vision. We employ
”xbest” (individual historical best position) and Brownian motion. Using ”xbest” allows for local
searches based on previously discovered best placements, leading to a greater exploration of the
solution space. This method not only prevents premature convergence to local optima but also
accelerates the algorithm’s convergence to optimal positions in the solution space. Individuals
can look for the global optimum by combining global knowledge with their own previous best
locations. Brownian motion’s randomness allows for more effective solution exploration and
avoidance of local optima, resulting in improved results for complicated problems. To represent
the secretary bird’s posture during the Consuming Prey stage, use equations Equation 3.33 and
Equation 3.34 [7].

RB = randn(1, Dim ) (3.32)

While 1

3
T < t <

2

3
T, xnew P1

i,j = xbest +exp((t/T )∧4)×(RB−0.5)×(xbest − xi,j) (3.33)

Xi =

{
Xnew ,P1

i , if F new ,P1
i < Fi

Xi, else (3.34)
Where:
randn(1, Dim) : Represent a randomly generated array of dimension 1× Dim
from a standard normal distribution (mean 0, standard deviation 1).
xbest : Represents the current best value.

Stage 3 (Attacking Prey): When the snake is tired, the secretary bird uses its strong leg muscles
to attack. During this stage, the secretary bird uses its keen talons to kick the snake’s head with
speed and accuracy. The kicks aim to swiftly incapacitate or kill the snake, preventing further
bites. The keen talons kill the snake by striking its vital areas. When a snake is too large to
kill immediately, the secretary bird may release it into the sky, allowing it to fall to the ground
and die. We use the Levy battle method in random search to improve global search capabilities,
reduce SBOA stuckness in local solutions, and improve algorithm convergence accuracy. We in-
troduce a nonlinear perturbation factor(1− t

T

)(
2× t

T

) to improve SBOA’s dynamic, adaptive,
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and flexible optimization process. This factor balances exploration and exploitation, avoids pre-
mature convergence, accelerates convergence, and improves algorithm performance. Therefore,
updating the secretary bird’s position in the Attacking Prey stage can be analytically described
using Equation 3.35 and Equation 3.36 [7].

While t > 2

3
T, xnew P1

i,j = xbest +
((

1− t

T

)
∧
(
2× t

T

))
× xi,j ×RL (3.35)

Xi =

{
Xnew ,P1

i , if F new ,P1
i < Fi

Xi, else (3.36)
To improve the algorithm’s accuracy, we apply the weighted Levy fight (RL).

RL = 0.5× Levy(Dim) (3.37)
Here, Levy(Dim) denotes the Levy battle distribution function. The calculation goes as follows:

Lev(D) = s× u× σ

|v| 1n
(3.38)

The fixed constants s and η are 0.01 and 1.5, respectively. u and v are random numbers in the
range [0, 1]. The formula for σ is given below:

σ =

(
Γ(1 + η)× sin (πη

2

)
Γ
(
1+η
2

)
× η × 2

(
η−1
2

)) 1
η

(3.39)

Here, Γ represents the gamma function, and η has a value of 1.5.
• Escape strategy of secretary bird (exploitation stage)

Predators that may attack and steal food from secretary birds include eagles, hawks, foxes, and
jackals. Secretive birds employ a variety of evasion techniques to shield their food and themselves
from predators. These strategies can be roughly divided into two categories. The initial tactic
is either sprinting or fighting fast. Secretary birds can sprint quickly because of their long legs.
Because they may cover 20–30 kilometres in a day, they are referred to as ”marching eagles”.
Secretary birds are adept combatants who can quickly escape peril and locate safe havens. The
second tactic is disguising oneself. Secretary birds can blend in with their surroundings by
using colours or structural features, which makes it more difficult for predators to find them.
Figure 3.18 shows their evasive tendencies in response to perceived threats. One of the following
two scenarios is thought to occur with equal likelihood in the SBOA’s design [7]:

(i) C1: Camouflage by environment;
(ii) C2: Fly or run away.

In the first method, secretary birds first look for an appropriate camouflage environment when
they sense the presence of a predator. They will choose to fight or run quickly away if there isn’t
a good and safe hiding place close by. We present a dynamic perturbation factor in this setting,
represented as (1− t

T

)2. The algorithm finds a balance between exploitation (using existing
solutions) and exploration (looking for new ones) with the aid of this dynamic perturbation
factor. It is feasible to improve exploitation at various phases or raise the degree of investigation
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by modifying these variables. In summary, Equation 3.40 can be used to mathematically model
both of the evasion tactics used by secretary birds and Equation 3.41 may be used to define this
updated condition [7].

xnew ,P2
i,j =

{
C1 : xbest + (2×RB − 1)×

(
1− t

T

)2 × xi,j, if r and < ri
C2 : xi,j +R2 × (xrandom −K × xi,j) , else (3.40)

Xi =

{
Xnew ,P2

i , if F new ,P2
i < Fi

Xi, else (3.41)
Where:
r = 0.5
R2 : Represents the random generation of an array of dimension (1× Dim)
from the normal distribution.
Xrandom : Represent the random candidate solutions of the current iteration.
K : Represents the random selection of integer 1 or 2, which can be calculated
by Equation 3.42.

Figure 3.18: The escape behaviour of the secretary bird [7].

K = round(1 + rand(1, 1)) (3.42)
rand(1, 1) in this context refers to selecting a random integer between (0, 1). In summary,
the pseudo-code appears in Algorithm 4 [7].
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Algorithm 4 Pseudo-code of the Proposed (SBOA) Algorithm [7]
1: Initialize Problem Setting (Dim, ub, lb, Pop_size(N)),Max_Iter(T ), Curr_Iter(t)
2: Initialize the population randomly
3: for t = 1 to T do
4: Update Secretary Bird xbest.
5: for i = 1 to N do
6: Exploration:
7: if t < 1

3
T then

8: Calculate new status of the ith Secretary Bird using Equation 3.30
9: Update the ith Secretary Bird using Equation 3.31

10: else if 1
3
T < t < 2

3
T then

11: Calculate new status of the ith Secretary Bird using Equation 3.33
12: Update the ith Secretary Bird using Equation 3.34
13: else
14: Calculate new status of the ith Secretary Bird using Equation 3.35
15: Update the ith Secretary Bird using Equation 3.36
16: end if
17: Exploitation:
18: if r < 0.5 then
19: Calculate new status of the ith Secretary Bird using C1 in Equation 3.40
20: else
21: Calculate new status of the ith Secretary Bird using C2 in Equation 3.40
22: end if
23: Update the ith Secretary Bird using Equation 3.41
24: end for
25: Save best candidate solution so far.
26: end for
27: Output: The best solution obtained by SBOA for a given optimization problem.
28: Return best solution.
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3.3.4 Hippopotamus Optimization Algorithm (HOA)
This section explains the inspiration and theoretical basis of the proposed HO Algorithm, which was
created in 2024. The HO algorithm is a novel nature-inspired optimization technique that emulates
the behaviours of hippopotamuses. It incorporates a trinary-phase model that reflects how hippos
navigate rivers, defend against predators, and evade threats. The algorithm has demonstrated promising
results in addressing various optimization problems, outperforming several well-known optimization
algorithms in both efficiency and effectiveness [8].
Hippopotamus
The hippopotamus is one of the most interesting animals found in Africa. This animal is classified
as a vertebrate, specifically a mammal. Hippopotamuses are semi-aquatic animals that live mostly in
aquatic habitats, such as rivers and ponds. Hippopotamuses live in pods or bloats, consisting of 10 to
30 individuals. Identifying the gender of hippopotamuses is challenging due to their lack of obvious
sexual organs and reliance on weight differences. Adult hippopotamuses can stay underwater for up
to 5 minutes. This animal looks similar to harmful mammals like shrews, yet its nearest relatives are
whales and dolphins, which shared a common ancestor approximately 55 million years ago.

Hippopotamuses, despite their herbivorous diet of grass, branches, leaves, reeds, flowers, leaves,
and plant husks, are curious and actively seek out different food sources. Biologists believe that eating
meat can create digestive problems in hippos. These animals have powerful jaws, an aggressive atti-
tude, and territorial behaviour, making them one of the most harmful mammals in the world. Male
hippopotamuses can weigh up to 9,920 pounds, while females average around 3,000 pounds. They
consume around 75 pounds of food daily. Hippopotamuses frequently communicate with one another,
and during these interactions, calves may receive injuries or even die. Adult hippopotamuses are typ-
ically not targeted by predators due to their size and power. Young hippopotamuses and weak adults
are vulnerable to predators like Nile crocodiles, lions, and spotted hyenas.

Hippopotamuses defend themselves against predators by rotating and opening their formidable
jaws. This is accompanied by a loud vocalization (about 115 decibels) that intimidates predators and
stops them from chasing the dangerous prey. When a hippopotamus’ defensive approach fails or it
lacks sufficient strength, it retreats quickly at 30 km/h to avoid the threat. Typically, it travels to
surrounding water bodies like ponds or rivers [8].
HOA’s inspiration
The HO is inspired by three significant behavioural characteristics seen in the lives of hippos. Hip-
popotamus herds typically consist of females, calves, mature males, and a dominant male leader. Young
and calves hippopotamuses are naturally curious and may wander away from their herd. As a result,
they may become solitary and vulnerable to predators.

Hippopotamuses’ secondary behaviour is protective, responding to predator attacks or outsiders in
their territory. Hippopotamuses defend themselves by spinning toward predators and using powerful
jaws and vocalizations to discourage and repel them Figure 3.19. Lions and spotted hyenas are aware
of hippopotamus jaws and avoid close contact to prevent damage. The hippopotamus’ last behavioural
style involves instinctively fleeing predators and aggressively avoiding places of danger. The hippopota-
mus seeks out the nearest body of water, such as a river or pond, as lions and spotted hyenas often
avoid watery habitats [8].
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Mathematical model and algorithm
The HO algorithm is population-based and uses hippopotamuses as search agents. The HO algorithm
uses hippopotamuses as candidate solutions for optimization problems. Each hippopotamus’ position
update in the search space represents values for decision variables. Tus represents each hippopotamus
as a vector, whereas the population is formally defined by a matrix. The HO, like other optimization
algorithms, generates randomized initial solutions during its initialization stage. In this stage, the
vector of decision variables is created using the following formula [8]:

Xi : xij = lbj + r · (ubj − lbj), i = 1, 2, . . . , N, j = 1, 2, . . . ,m (3.43)
Where:

Xi : Represent the position of the i th candidate solution.
lbj ,ubj : Represent the lower and upper bounds of the jth decision variable, respectively.
r : Represent a random number between 0 and 1.
N : Represent the population size of hippopotamuses within the herd.
m : Represent the number of decision variables in the problem.

And the population matrix is formed by Equation 3.44.

X =


X1...
Xi...
XN


N×m

=


x1,1 · · · x1,j · · · x1,m... . . . ... · · · ...
xi,1 · · · xi,j · · · xi,m... · · · ... . . . ...
xN,1 · · · xN,j · · · xN,m


N×m

(3.44)

Figure 3.19: (a–d) shows the defensive behaviour of the hippopotamus against the predator [8].

• Phase 1: The hippopotamuses position update in the river or pond (Exploration)

Hippopotamus herds consist of adult females, calves, adult males, and the herd leader. The
current hippopotamus is determined by iterating the objective function values (lowest for min-
imization, highest for maximization). Hippopotamuses typically cluster in close proximity to
one another. Dominant male hippopotamuses defend their herd and territory from any dangers.
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Female hippopotamuses surround the males. Male hippopotamuses are removed from the herd
by the dominant male as they reach maturity. To establish dominance, removed males must
either attract females or compete with established males in the herd. Equation 3.45 represents
the mathematical position of male hippopotamus members of the herd in the lake or pond [8].

X
Mhippo
i : x

Mhippo
ij = xij + y1 · (Dhippo − I1xij) (3.45)

for i = 1, 2, . . . ,

[
N

2

]
and j = 1, 2, . . . ,m

Where:
X

Mhippo
i : Represents male hippopotamus position.

Dhippo : Represent the dominant hippopotamus position (the hippopotamus that has
the best cost in the current iteration).
y1 : Represents a random number between 0 and 1.

h =


I2 × r⃗1 + (∼ ϱ1)

2× r⃗2 − 1
r⃗3

I1 × r⃗4 + (∼ ϱ2)
r5

(3.46)

Where:
r⃗1···4 : Represents a random vector between 0 and 1.
r5 : Represent a random number between 0 and 1.
I1,I2 : Represent an integer between 1 and 2.
∼ ϱ1,∼ ϱ2 : Represents an integer random number that can be one or zero.

T = exp
(
− t

T

)
(3.47)

X
FBhippo
i : x

FBhippo
ij =

{
xij + h1 · (Dhippo − I2MGi)T > 0.6

[I] else (3.48)

Where:
MGi : Represents the mean values of some randomly selected hippopotamus with
an equal probability of including the current considered hippopotamus (Xi) .
h1 : Represent a number or vector randomly selected from the five scenarios in
the h equation.
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[I] =
{
xij + h2(MGi −Dhippo)r6 > 0.5

lbj + r7 · (ubj − lbj) else (3.49)

for i = 1, 2, . . . ,

[
N

2

]
and j = 1, 2, . . . ,m

Where:
h2 : Represents a number or vector randomly selected from the five scenarios in
the h equation.
r7 : Represents a random number between zero and one.

Equation 3.48 and Equation 3.49 define the position of female or immature hippos (Xi) in the
herd. Immature hippopotamuses often stay close to their mothers, however some may wander
away from the herd owing to curiosity. If T is larger than 0.6, the young hippopotamus has
moved away from its mother (Equation 3.47). If r6, a number between 0 and 1 (Equation 3.49),
exceeds 0.5, it indicates that the immature hippopotamus has separated from its mother but re-
mains within or near the herd. Otherwise, it has left the herd. Equation 3.48 and Equation 3.49
model the behaviour of both immature and female hippopotamuses.

Equation 3.50 and Equation 3.51 describe male and female or immature hippopotamus position
updates within the herd. Fi is an objective function value.

Xi =

{
X

Mhippo
i F

Mhippo
i < Fi

Xi else (3.50)

Xi =

{
X

FBhippo
i F

FBhippo
i < Fi

Xi else (3.51)

Using h vectors, I1 and I2 scenarios enhance the global search and improve exploration in the
proposed algorithm. It leads to a better global search and enhances the exploration process in
the proposed algorithm [8].

• Phase 2: Hippopotamus defence against predators (Exploration)

Hippos live in herds for safety and comfort. Large animal herds can dissuade predators from
approaching too closely. Immature hippopotamuses may wander from the herd and become
targets for predators such as Nile crocodiles, lions, and spotted hyenas due to their curiosity and
lower strength compared to adults. Sick hippopotamuses, like immature ones, can be preyed
upon by predators. Hippopotamuses deploy a protective strategy of quickly turning towards
predators and emitting loud vocalizations to avoid close encounters Figure 3.20. During this
phase, hippos may approach predators to induce their abandonment, thus warding off prospective
threats. Equation 3.52 depicts the predator’s position in search space [8].

Predator : Predatorj = lbj + r⃗8 · (ubj − lbj), j = 1, 2, . . . ,m. (3.52)
where r⃗8 represents a random vector ranging from zero to one.
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D⃗ = |Predatorj − xij| (3.53)
Equation 3.53 indicates the distance of the ith hippopotamus to the predator. During this time,
the hippopotamus adopts a defensive behaviour based on the factor FPredatorj to protect itself
against the predator. If FPredatorj is less than Fi, indicating the predator is in very close proximity
to the hippopotamus, in such a case, the hippopotamus swiftly turns towards the predator and
moves towards it to make it retreat. If FPredatorj is greater, it indicates that the predator or
intruding entity is at a greater distance from the hippopotamus’s territory Equation 3.54. In this
case, the hippopotamus turns towards the predator but with a more limited range of movement.
The intention is to make the predator or intruder aware of its presence within its territory [8].

XHippoR
i : xHippoR

ij =


−→
RL⊕ Predatorj +

(
f

(c−d×cos(2πg))
)
·
(

1
−→
D

)
FPredatorj < Fj

−→
RL⊕ Predatorj +

(
f

(c−d×cos(2πg))
)
·
(

1

2×
−→
D+−→r 9

)
FPredatorj ≥ Fj

(3.54)

for i =
⌈
N

2

⌉
+ 1,

⌈
N

2

⌉
+ 2, . . . , N and j = 1, 2, . . . ,m

Where:
XHippoR

i : Represents a hippopotamus position which was faced to predator.
−→
RL : Represents a random vector with a Levy distribution, utilized for sudden
changes in the predator’s position during an attack on the hippopotamus.
f : Represents a uniform random number between 2 and 4.
c : Represents a uniform random number between 1 and 1.5.
D : Represents a uniform random number between 2 and 3.
g : Represents a uniform random number between −1 and 1.
r⃗8 : Represents a random vector with dimensions 1 × m.

The mathematical model for the random movement of Lévy movement is calculated as Equa-
tion 3.55.
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Figure 3.20: Graphic representation of the phase 2 [8].

Levy(V ) = 0.05× w × σw

|v| 1V
(3.55)

Where:
w,v : Represents random numbers in [0, 1], respectively .
V : Represents a constant (V = 1.5).
σw : can be obtained by Equation 3.56.

σw =

Γ(1 + v) sin (πv
2

)
Γ
(

(1+v)
2

)
v2

(v−1)
2

 1
v

(3.56)

According to the Equation 3.57, if FHippoR
i is greater than F , it means that the hippopotamus

has been hunted and another hippopotamus will replace it in the herd, otherwise the hunter will
escape and this hippopotamus will return to the herd. Significant enhancements were observed
in the global search process during the second phase. The first and second phases complement
each other and effectively mitigate the risk of getting trapped in local minima [8].

Xi =

{
XHippoR

i FHippoR
i < Fi

XiF
HippoR
i ≥ Fi

(3.57)

• Phase 3: Hippopotamus Escaping from the Predator (Exploitation)

Hippopotamus may exhibit defensive behaviour when confronted with a group of predators or
unable to reject them. In this case, the hippopotamus attempts to leave the area Figure 3.21.
To evade predators such as spotted lions and hyenas, hippopotamuses typically seek refuge in
nearby lakes or ponds. This method allows the hippopotamus to find a safe spot near its current
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location. Modelling this behaviour in the Phase Tree of the HO improves the ability to exploit
in local search. To imitate this behaviour, a random position is generated near the hippopota-
muses’ current location. The behaviour of hippopotamuses is represented using Equation 3.58
to Equation 3.61. When a newly formed position improves the cost function value, it signals
that the hippopotamus has located a safer spot near its current location and moved accordingly.
The current iteration is denoted as t, while the maximum iteration is represented by T [8].

lblocalj =
lbj
t
, ublocalj =

ubj
t
, t = 1, 2, . . . , T (3.58)

XHippoE
i : xHippoE

ij == xij + r10 ·
(
lblocalj + s1 ·

(
ublocalj − lblocalj

)) (3.59)

Figure 3.21: Drawing a Hippopotamus Escaping from the Predator [8].

i = 1, 2, . . . , N, j = 1, 2, . . . ,m

In Equation 3.59, XHippoE
i represents the position of a hippopotamus that was searched for the

closest safe place. Equation 3.60 selects s1 as a random vector or number from three scenarios
(s). The proposed approach improves its exploitation quality by resulting in a more appropriate
local search scenario.

s =


2× r⃗11 − 1

r12
r13

(3.60)

In Equation 3.60 r⃗11 represents a random vector between 0 and 1, while r10 Equation 3.59
and r13 denote random numbers generated within the range of 0 and 1. Additionally, r12 is a
normally distributed random number.

Xi =

{
XHippoE

i FHippoE
i < Fi

XiF
HippoE
i ≥ Fi

(3.61)
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To improve the performance of the HO algorithm, we did not categorize the population into
immature, female, and male hippopotamuses, despite the fact that doing so would better reflect
their nature [8].

• Repetitions Process and Pseudo-Code of (HO)

After each iteration of the HO algorithm, all population members are updated based on Phases
1–3 using Equation 3.55 to Equation 3.61. This procedure continues until the last iteration.
The best possible answer is consistently recorded and stored as the algorithm is executed. After
completing the procedure, the dominating hippopotamus solution emerges as the optimal answer
to the problem. The pseudocode for Algorithm 5 displays the HO’s procedural details [8].

Algorithm 5 Pseudo-code of the Proposed (HO) [8]
1: Start HO
2: Define an optimization problem
3: Set the maximum number of iterations (T ) and number of hippopotamus (N )
4: Generate the initial position of all hippopotamus based on Figure 3.3.4 and objective function

evaluation for this initial population
5: for t = 1 : T do
6: Update dominant hippopotamus position based on objective function value criterion
7: Phase 1: The hippopotamus’s position update in the river or pond (Exploration Phase)
8: for i = 1 : N /2 do
9: Calculate the new position for ith hippopotamus using Equation 3.45 to Equation 3.48

10: Update position of ith hippopotamus using Equation 3.50 to Equation 3.51
11: end for
12: Phase 2: Hippopotamus defence against predators (Exploration Phase)
13: for i = 1 +N /2 : N do
14: Generate random position for predator using Equation 3.52
15: Calculate the new position for ith hippopotamus using Equation 3.54
16: Update the position of ith hippopotamus using Equation 3.57
17: end for
18: Phase 3: Hippopotamus Escaping from the Predator (Exploitation Phase)
19: Calculate new bounds of variables decision using Equation 3.58
20: for i = 1 : N do
21: Calculate the new position for ith hippopotamus using Equation 3.59
22: Update the position of ith hippopotamus using Equation 3.61
23: end for
24: Save the best candidate solution found so far
25: end for
26: Output the best solution of the objective function found by HO
27: End HO
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3.3.5 Opposition Flow Directional Algorithm (OFDA)
The Proposed Opposition FDA (OFDA), created in 2022, is a technique that enhances the optimization
process by introducing opposition-based learning (OBL) to prevent convergence to local optima. In
OFDA, each flow in the optimization algorithm updates its solution based on an opposite flow in the
search space, allowing for exploration in both directions. This method aims to improve the search pro-
cess and decision-making by considering opposite directions in the optimization space. To understand
OFDA, firstly, we will introduce FDA:
The Flow Directional Algorithm
The Flow Directional Algorithm (FDA) is detailed in [52]. Inspired by the behaviour of water flowing
into a drainage basin, the FDA simulates the direction of flow towards the lowest height outlet points.
The direction of flow is influenced by neighbouring flows and the slope, which is based on the D8 cell
model (refer to Fig. 2 in [52]). Each flow position FlowX and its height Flowfitness(f(flowX)) serves as
a search agent for α flow, which is initialized within the drainage basin boundaries [ub, lb]. The new
flow positions are estimated using two methods in the FDA.

Firstly, it is assumed that a flow generates its β neighbour flow NeighborX (refer to Eq. (3) in [52])
on its route to the drainage basin. Subsequently, the flow locations FlownewX (refer to Eq. (8) in [52])
are updated based on the best neighbour flow. The flow positions are further updated FlownewX (refer
to Eq. (9) in [52]) in a second way by assuming that the present flow encounters a random flow
and changes its path. Finally, the flow’s position is updated if it is better than the old flow, which is
expressed as:

FlowX(i) =

{FlownewX(i) if f(FlownewX(i)) < f(FlowX)

FlowX(i) otherwise ∀i ∈ [1, α] (3.62)
where f(FlownewX(i)) is the height of FlownewX(i). The flow position is updated iteratively until it

reaches the optimal solution at the maximum iteration Max_Iter. The FDA demonstrated outstanding
performance on benchmark functions and showed better results for real-world engineering design
problems. More information regarding the FDA can be found in [52].
The Proposed Opposition FDA (OFDA)
As discussed earlier, each flow in the FDA updates its solution in the search space based on its random
neighbour or some random flow. This may steer the flow to a local optimum solution, which may be
a trap. This can be avoided by introducing opposition-based learning (OBL), which aids in the search
process in both directions. Let us assume FlowX(i) = {Flowx(i, 1), Flowx(i, 2), . . . , Flowx(i, d)} be a
flow in the d dimensional search space in the range [LB,UB], where LB = {lb(1), lb(2), . . . , lb(d)}
and UB = {ub(1), ub(2), . . . , ub(d)}.
Then, the opposite flow OFlowX(i) = {OFlowx(i, 1),OFlowx(i, 2), . . . ,OFlowx(i, d)} is determined
as:

OFlowx(i, j) = ub(j) + lb(j)− Flowx(i, j), ∀i ∈ [1, α] and ∀j ∈ [1, d] (3.63)
Finally, the OFDA’s selection-based updating rule is described as follows:

FlowX(i) =

{OFlowX(i) if f(OFlowX(i)) < f(FlowX(i))

FlowX(i) Otherwise , ∀i ∈ [1, α] (3.64)
where f(OFlowX(i)) is the height of OFlowX(i). The OFDA implementation is illustrated in

Figure 3.22 [9].
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Start

Initialization: Number of flow, number of
neighbors, maximum iteration, and boundaries

Assign the random position for
flow and evaluate its fitness

Generate the neighbors and
identify the best of them

Generate the flow positions using ei-
ther best neighbor, any random flow,
or best flow and check boundaries

Update the flow positions if generated flow
positions are better than previous ones

Estimate the opposite flow us-
ing OBL and check boundaries

Update the flow positions if opposite flow
positions are better than previous ones

Maximum number of iterations?

End

No

Yes

Figure 3.22: Flowchart of the optimization algorithm [9].
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3.4 Results and discussion
This section employs the proposed algorithms: SBOA [7], GRO [6], ZOA [14], HOA [8] and OFDA [9]
to estimate the unknown parameters of two PV models: SDM and DDM. These five algorithms, being
novel and recently developed, offer fresh approaches to parameter estimation in PV models. For a
fair comparison, GRO and SBOA algorithms are run 30 times using 30 search agents through 500
iterations, whereas the ZOA, HOA and OFDA algorithms are run 30 times using 30 search agents
through 1000 iterations. The experimental measurements of current vs voltage using a 57 mm diam-
eter commercial (R.T.C. France) silicon solar cell operating at 33 ◦C under 1000 W/m2 irradiance and
thoroughly contains 26 sets of current and voltage values taken from [11] are adopted in this study.
Table 3.4 shows the terminal measuring of current and voltage. In addition, the Parameter ranges of
each unknown parameter for SDM and DDM models is presented in Table 3.3 [10].

Table 3.5 displays the specifications of the device used in the experiments conducted in this work
using Matlab R2018b.

Name Configuration

Hardware
CPU Intel Core i7-5600U

Frequency 2.6 Giga Hertz
RAM 16 Giga Byte

Hard Drive 238.47 Giga Byte
Software Operating System 64 bit Windows 10 Pro

Language MATLAB 2018b
Table 3.5: The specification of hardware used in the simulation.

3.4.1 Comparison over single-diode model (SDM)
This section presents the results obtained by the proposed algorithms when solving the SDM over RTC
France cells. Our analysis is divided into two parts:

• Quantitative Analysis: This examines the performance of the algorithms in terms of the best,
average, worst, and standard deviation of RMSE values obtained over 30 independent runs, as
described in Table 3.6. Additionally, it includes a Computational Efficiency Test, evaluating the
algorithms based on their runtime.

• Qualitative Analysis: This visually compares the algorithms by analyzing their convergence
curves, as well as depicting the I–V curves of both measured and estimated data and the difference
between measured and estimated currents.
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Metric Description Formula

Best
The smallest value estimated
through the independent times is
distinguished as the best value and
used to compare the performance
of the different algorithms

Best = mini, i =
1, 2, 3, . . . ,NoR(27) where fiis the fitness value of the ith
independent run, and NoR
is the length of independent
runs.

Average
The average of the fitness values ob-
tained through the independent runs
is computed and compared among
the different algorithms to measure
their stability

Avg =
∑NoR

i=0 fiNoR (28)

Worst
The greatest fitness value obtained
through the number of independent
runs is another metric used to com-
pare the efficacy of the algorithms
and calculated as follows

Worst = maxi, i =
1, 2, 3, . . . ,NoR(29)

Standard devi-
ation (SD)

Another statistical metric known as
standard deviation (SD) is used to
measure the amount of dispersion of
the outcomes obtained by each algo-
rithm

SD =

√∑NoR
i=0(fi−Avg)2

NoR (30)

Table 3.6: Performance metrics description [12].

Quantitative Analysis
This sub-subsection compares statistical information (best, average, worst, and standard deviation) of
proposed algorithms for RTC France solar cells.

Table 3.7 demonstrates the comparison of results for SDM. This table provides the best RMSE and
extracted parameters from each algorithm. There are only five parameters X = {Iph, Isd, RS, RSh, n}which are required to be optimized in the case of SDM. Based on the output data in Table 3.7, the
most successful algorithm for SDM was OFDA because this algorithm produced the smallest RMSE
(9.8623239349e-04). While the second-best RMSE (1.0137326785e-03) was achieved by SBOA
followed by ZOA (3.1619917743e-03), GRO (2.7675043877e-03) and HOA (9.7512084076e-03)
respectively. The accuracy of the parameter values was measured by the RMSE.

Table 3.6 displays the performance metrics description. The minimum RMSE number indicates
algorithm accuracy, the average RMSE represents mean accuracy, and the standard deviation (SD)
represents system reliability. Based on the results presented in Table 3.8, it was observed that the
proposed OFDA achieved the best accuracy and reliability in the SDM.

Figure 3.23 compares the average computational times of the five proposed metaheuristic algo-
rithms OFDA, SBOA, ZOA, GRO, and HOA in estimating parameters for SDM (in purple) and DDM
(in red) photovoltaic models. SBOA and GRO are the most efficient, consuming only 7.97 and 6.13
seconds, respectively. OFDA takes 24.52 seconds, which is considerably higher but still more efficient
compared to ZOA and HOA, which require 17.46 and 40.86 seconds, respectively.
Qualitative Analysis
This sub-subsection compares the proposed methods based on the convergence curve, I-V characteristic,
and P-V characteristic curves.
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Figure 3.24 shows the convergence behaviour of the proposed methods when applied to the SD.
Upon analyzing the convergence curves, we find that the suggested method, OFDA, outperformed
all other competing algorithms in reaching the near-optimal solution, with SBOA coming in second.
Nevertheless, it is clear that the suggested OFDA performs better because it routinely obtains the best
result and the lowest RMSE value in previous iterations. OFDA’s best performance is due to good
exploration. However, ZOA performs the second best in terms of RMSE, followed by GRO. The worst
performance comes from HOA, this is due to an issue with these algorithms known as premature
convergence, which is brought about by unequal exploration and exploitation.

The P-V and I-V curves for the SDM were based on the estimated data from the five algorithms at
the best RMSE, which is explained in Figure 3.24. These figures show an impressive agreement between
the estimated data and the experimental data across the entire voltage range from the proposed OFDA.
This close match validates the accuracy of the OFDA in capturing the behaviour of the SD model.
While the rest of the algorithms show a random dispersion of their solutions, we can intuit that it is
due to the nature of their operators which have different degrees of exploration and exploitation.
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Figure 3.23: The average CPU time consumed by different algorithms on two models.
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(a) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
OFDA on the SD model.

(b) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
SBOA on the SD model.

(c) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
ZOA on the SD model.

(d) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
GRO on the SD model.

(e) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
HOA on the SD model.
Figure 3.24: The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the
parameters identified by the five algorithms on the SD model.
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3.4.2 Comparison over double-diode model (DDM)
Like SDM discussed in the previous section, This section compares the performance of proposed and
other algorithms in solving the DDM over RTC France cell, including best, average, worst, and standard
deviation of RMSE values, as well as their visual performance.
Quantitative Analysis
This section analyzes statistical data (best, average, worst, and standard deviation) on proposed methods
for RTC France solar cells.

Table 3.7 demonstrates the comparison of results for DDM. This table summarizes the optimal
RMSE and extracted parameters for each approach.
There are seven parameters X = {Iph, Isd1, Isd2, RS, RSh, n1, n2} which are required to be opti-
mized in the case of DDM. OFDA again shows the lowest RMSE (9.8602169813e-04), demon-
strating superior accuracy. SBOA and GRO have notable RMSE values of (1.7430803946e-03) and
(2.1963134144e-03), respectively. ZOA and HOA also have higher RMSE values of (3.1619917743e-
03) and (9.7512084076e-03). Table 3.8 shows that the proposed OFDA achieved the highest accuracy
and reliability in the DDM.

Regarding CPU time, OFDA takes 22.71 seconds, which is marginally lower than its time for the
SDM model. SBOA remains efficient at 7.56 seconds. ZOA’s CPU time is significantly higher at
65.59 seconds, while GRO and HOA are lower at 4.51 and 37.87 seconds, respectively as shown in
Figure 3.23.
Qualitative Analysis
This sub-section compares proposed approaches using convergence, I-V, and P-V curves.

Figure 3.25 illustrates the convergence behaviour of the proposed approaches when applied to DD.
The proposed method, OFDA, outscored all other competing algorithms in obtaining the near-optimal
solution, with SBOA coming in second, according to our analysis of the convergence curves. However,
since the recommended OFDA consistently yields the best outcome and the lowest RMSE value in
prior rounds, it is evident that it performs better. Effective exploration is the reason behind OFDA’s
highest results. The worst RMSE values are found in GRO, ZOA, and HOA. This is because limited
solution space exploration causes these algorithms to become trapped in local minima.

The P-V and I-V curves for the DDM were created using the estimated data from the five algorithms
at the best RMSE, as shown in Figure 3.25. This figure showed that the measured and simulation data
produced by the suggested OFDA for DDM aligned. As a result, the OFDA algorithm-based DDM
performed more effectively. The rest of the algorithms have a random distribution of solutions.

65



Chapter 3. Parameter Estimation in Photovoltaic Models Problem

(a) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
OFDA on the DD model.

(b) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
SBOA on the DD model.

(c) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
ZOA on the DD model.

(d) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
GRO on the DD model.

(e) The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the parameters identified by
HOA on the DD model.
Figure 3.25: The curves of Convergence, I-V characteristic and P-V characteristic respectively based on the
parameters identified by the five algorithms on the DD model.

66



Chapter 3. Parameter Estimation in Photovoltaic Models Problem

Table 3.7: Estimated parameters with best RMSE for all compared algorithms for SD and DD model.
Model Algorithms Parameters RMSE

Iph (A) Isd (µA) Isd2 (µA) Rs (Ω) Rsh (Ω) η η1 η2

SDM
OFDA 0.7607744702 0.0000003197 - 0.0364204044 53.4848003330 1.4801417493 - - 9.8623239349e-04
SBOA 0.7607584215 0.0000002865 - 0.0368703600 51.6437105061 1.4691956346 - - 1.0137326785e-03
ZOA 0.7608602483 0.0000004991 - 0.0338144737 54.5116463931 1.5266560048 - - 1.7443100559e-03
GRO 0.7637307382 0.0000008319 - 0.0320045168 53.6530156445 1.5832635967 - - 2.7675043877e-03
HOA 0.7619713152 0.0000000475 - 0.0413127913 18.6124493506 1.3117486238 - - 5.5440469014e-03

DDM
OFDA 0.7607760063 0.0000000000 0.0000003231 0.0363764780 53.7222351312 - 1.8217926025 1.4812001644 9.8602169813e-04
SBOA 0.7608838009 0.0000006651 0.0000000000 0.0332269118 72.7400021194 - 1.5577686748 1.9964278803 1.7430803946e-03
ZOA 0.7649976154 0.0000003025 0.0000000000 0.0357875890 25.8645574342 - 1.4756686854 1.0448570198 3.1619917743e-03
GRO 0.7603118761 0.0000005906 0.0000005902 0.0324489503 72.9450578860 - 1.9267876563 1.5517226016 2.1963134144e-03
HOA 0.7667780932 0.0000007646 0.0000000000 0.0270413729 15.9261912417 - 1.5770449642 1.6219986881 9.7512084076e-03

Note: Bold values indicate the best results.

Table 3.8: Statistical outcomes of RMSE for all compared algorithms for SD and DD model.
Model Algorithms RMSE MaxIt Pop

Minimum Average Maximum SD

SDM
OFDA 9.8623239349e-04 2.6457675220e-03 1.2435918010e-02 3.0742022205e-03 1000 30
SBOA 1.0137326785e-03 2.0823032531e-01 2.2286139909e-01 5.5683848341e-02 500 30
ZOA 1.7443100559e-03 2.0146388006e-01 2.2301020774e-01 6.5471006193e-02 1000 30
GRO 2.7675043877e-03 5.8143666400e-03 2.7675043877e-03 1.1157125884e-03 500 30
HOA 5.5440469014e-03 9.6307213754e-02 2.2287712391e-01 9.8742218282e-02 1000 30

DDM
OFDA 9.8602169813e-04 1.8602666640e-03 7.9297704375e-03 1.3503866492e-03 1000 30
SBOA 1.7430803946e-03 1.6495376175e-01 2.2286139909e-01 9.7675690290e-02 500 30
ZOA 3.1619917743e-03 1.8623892257e-01 2.2300026789e-01 7.5754966267e-02 1000 30
GRO 2.1963134144e-03 6.2833720169e-03 7.7677012220e-03 1.2106233944e-03 500 30
HOA 9.7512084076e-03 1.2183577144e-01 2.2563048072e-01 9.7271617605e-02 1000 30

Note: Bold values indicate the best results.

3.5 Conclusion
This chapter introduces a novel application of five algorithms to estimate the parameters of two photo-
voltaic (PV) models: the Single Diode Model (SDM) and the Double Diode Model (DDM). The SDM is
represented by a nonlinear current and voltage equation involving five unknown parameters. Similarly,
the DDM functions like the SDM but includes seven unknown parameters. The objective function for
parameter extraction in both models aims to minimize the root mean square error between the sim-
ulated and experimental currents of the R.T.C. France solar cell. The proposed OFDA, SBOA, ZOA,
GRO, and HOA are recent optimization techniques used to minimize this objective function for PV
cells using SDM and DDM. Among these, the OFDA algorithm demonstrated superior performance
in terms of solution accuracy and convergence speed. Consequently, the results obtained by OFDA
were more precise than those from the four other algorithms, making OFDA a promising candidate
for optimizing solar cell systems.
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Conclusion
This study compares five metaheuristic algorithms to optimize the parameters of two photovoltaic (PV)
models: the Single Diode Model (SDM) and the Double Diode Model (DDM). The objective function
is to minimize the root mean square error (RMSE) between simulated and experimental currents of
the PV models.

The proposed algorithms are the Opposition Flow Directional Algorithm (OFDA), Secretary Bird
Optimization Algorithm (SBOA), Zebra Optimization Algorithm (ZOA), Gold Rush Optimizer (GRO),
and Hippopotamus Optimization Algorithm (HOA). These algorithms are recent metaheuristic tech-
niques used for parameter estimation in PV cells. The analysis aims to determine which algorithm
achieves the best balance between accuracy, convergence speed, and computational time.

Out of these algorithms, the Opposition Flow Directional Algorithm (OFDA) shows superior per-
formance in terms of accuracy, balance, and convergence speed. As a result, OFDA algorithm produces
more accurate results compared to the other four algorithms, establishing it as a promising choice for
enhancing PV systems.

Perspectives
The comparative analysis offers a fundamental insight into the performance of these five metaheuristic
algorithms for estimating PV parameters. Several potential research directions can improve the effec-
tiveness and applicability of these methods:

Incorporating Chaotic Maps in Optimization: Chaotic maps can improve the exploration and
exploitation abilities of algorithms when integrated into the optimization process. By using chaotic
sequences, algorithms can avoid local optima and achieve superior global search results. This method is
especially advantageous for intricate optimization challenges in PV parameter estimation, characterized
by highly nonlinear and multi-modal solution spaces.

Opposition-Based Learning (OBL): Opposition-Based Learning can be further utilized to en-
hance the convergence speed and accuracy of optimization algorithms in future studies. It is beneficial
for increasing population diversity and generating improved initial solutions, thereby speeding up the
convergence process. Future research could investigate various strategies for integrating OBL with
current algorithms to achieve enhanced performance.

Hybrid Approaches: By combining chaotic maps and Opposition-Based Learning (OBL) with
traditional metaheuristic algorithms, it is possible to create hybrid approaches that capitalize on the
strengths of each method. These hybrid algorithms have the potential to deliver better performance
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by effectively balancing exploration and exploitation, as well as offering mechanisms to avoid getting
stuck in local optima. Research on these hybrid approaches could result in substantial enhancements
in the accuracy and efficiency of estimating PV model parameters.

Advanced Algorithm Variants: Future research could concentrate on creating advanced ver-
sions of current algorithms that include adaptive mechanisms to dynamically adjust their parameters
throughout the optimization process. This enhancement can improve the algorithms’ capacity to han-
dle the dynamic characteristics of the optimization landscape in PV parameter estimation, resulting in
more precise and dependable outcomes.

Real-World Applications: It is important to further explore the practical use of these optimized
models in real-world situations. By implementing these models in different geographical locations and
varying environmental conditions, we can gain valuable insights into their reliability and flexibility.
This process would also include validating the models using experimental data from different types of
PV modules and various operating conditions.

On the whole, by focusing on these areas, future research can expand on the findings of this study
to create more efficient optimization methods for estimating PV parameters. This will ultimately help
advance renewable energy technologies and enhance the performance of PV system.
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