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Abstract

Medical image watermarking is essential for ensuring the integrity, authenticity, and
confidentiality of digital medical images used in healthcare for diagnosis, treatment
planning, and research purposes. In this study, we propose a 3 watermarking tech-
niques based on the Least Significant Bit (LSB), the Discrete Cosine Transform
(DCT) and the Discrete Wavelet Transform (DWT) for embedding and extracting
watermarks in medical images.

The objective of our research is to develop a robust watermarking algorithm
capable of withstanding common attacks while preserving the diagnostic quality of
medical images. We evaluate the performance of our proposed method using matri-
ces (MSE, PSNR, SSIM and NC), using a diverse dataset of medical images. Our
findings demonstrate that the proposed watermarking technique achieves acceptable
levels of robustness and imperceptibility, making it suitable for secure transmission
and storage of medical images.

The significance of this research lies in its contribution to advancing the field of
medical image security and facilitating the development of improved watermarking
algorithms tailored to the specific requirements of medical imaging applications.

Keywords: Medical ImageWatermarking, Discrete Cosine Transform (DCT), Least
Significant Bit (LSB), Discrete Wavelet Transform (DWT), Robustness, Impercep-
tibility.
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Résumé

Le tatouage d’images médicales est essentiel pour garantir l’intégrité, l’authenticité
et la confidentialité des images médicales numériques utilisées dans les soins de santé
à des fins de diagnostic, de planification de traitement et de recherche. Dans cette
étude, nous proposons 3 techniques de filigrane basées sur le bit le moins significatif
(LSB), la transformation cosinus discrète (DCT) et la transformation en ondelettes
discrètes (DWT) pour intégrer et extraire des filigranes dans des images médicales.

L’objectif de nos recherches est de développer un algorithme de tatouage ro-
buste capable de résister aux attaques courantes tout en préservant la qualité diag-
nostique des images médicales. Nous évaluons les performances de notre méthode
proposée à l’aide de matrices (MSE, PSNR, SSIM et NC), en utilisant un ensem-
ble de données diversifié d’images médicales. Nos résultats démontrent que la
technique de tatouage proposée atteint des niveaux acceptables de robustesse et
d’imperceptibilité, ce qui la rend adaptée à la transmission et au stockage sécurisés
d’images médicales.

L’importance de cette recherche réside dans sa contribution à l’avancement du
domaine de la sécurité des images médicales et à la facilitation du développement
d’algorithmes de tatouage améliorés adaptés aux exigences spécifiques des applica-
tions d’imagerie médicale.

Mots clés: Filigrane d’images médicales, Transformation cosinus discrète (DCT),
Bit de poids faible (LSB), Transformation en ondelettes discrètes (DWT), Ro-
bustesse, Imperceptibilité.
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Chapter 1

General Introduction

In recent years, the digitization of medical imaging has revolutionized healthcare
by enabling efficient storage, transmission, and analysis of medical images such as
X-rays, CT scans, MRIs, and ultrasound images [38]. However, the widespread
adoption of digital medical imaging also raises concerns about the security these im-
ages, particularly regarding issues such as unauthorized access, tampering, and data
breaches. Medical image watermarking emerges as a promising solution to address
these challenges by embedding imperceptible yet robust digital signatures or iden-
tifiers into medical images, thereby ensuring their authenticity and confidentiality
[28][57][54].

The primary objective of medical image watermarking is to enhance the secu-
rity and reliability of digital medical imaging systems while preserving the diagnostic
quality and clinical utility of medical images. By embedding watermarks directly
into medical images, healthcare providers, researchers, and patients can safeguard
the integrity of sensitive medical data, prevent unauthorized modifications or tam-
pering, and trace the origin of digital images throughout their lifecycle.

The goal of this work is to create and assess sophisticated watermarking meth-
ods that may safely and effectively incorporate data into medical images without
sacrificing image quality. We seek to improve the robustness, imperceptibility, and
resilience of watermarks in medical imaging by investigating techniques including
Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Least
Significant Bit (LSB) embedding. In this study, we focus on investigating and
developing advanced watermarking techniques tailored specifically to the unique
characteristics and requirements of medical imaging applications.

Through comprehensive experimentation and evaluation, we aim to assess the
performance, efficacy, and practical feasibility of our proposed watermarking tech-
nique, as well as the potential contributions of LSB, DCT and DWT techniques
in the context of medical image security. By addressing key challenges and limi-
tations in existing watermarking methods, our research endeavors to advance the
state-of-the-art in medical image watermarking and facilitate the development of
more secure and reliable digital medical imaging systems.

1



The rest of this thesis is structured as follows:

1. Requirements for MIW: This chapter outlines the fundamental require-
ments for effective and secure medical image watermarking (MIW). It delves
into the essential criteria that watermarking techniques must meet to ensure
robust protection of medical images. Key requirements include imperceptibil-
ity, robustness against various attacks, capacity for sufficient data embedding,
computational efficiency, and reversibility to restore the original image when
needed. By defining these requirements, the chapter sets the foundation for
evaluating and comparing different MIW techniques, guiding the development
of advanced methods tailored to the unique demands of medical imaging.

2. Methods and Performance of MIW: This chapter presents a comprehen-
sive examination of the various methods utilized in medical image watermark-
ing (MIW) and evaluates their performance. It covers traditional and con-
temporary watermarking techniques, including spatial and transform domain
approaches such as Least Significant Bit (LSB), Discrete Cosine Transform
(DCT), and Discrete Wavelet Transform (DWT). The chapter also discusses
the performance metrics used to assess these methods, such as impercepti-
bility, robustness, capacity, and computational complexity. Through detailed
analysis and comparison, this chapter aims to highlight the strengths and
weaknesses of different MIW techniques, providing insights into their practical
applications and guiding future research in the field.

3. Experiment and Results discussion: This chapter details the experimen-
tal setup and procedures used to evaluate the performance of various medical
image watermarking techniques. It presents the results of these experiments,
including quantitative metrics such as Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and Normalized Cross-Correlation (NC).
The discussion interprets these results, comparing the effectiveness and effi-
ciency of different watermarking methods under various conditions. By analyz-
ing the outcomes, this chapter provides a critical assessment of the techniques’
strengths and weaknesses, offering insights into their practical implications and
potential areas for improvement.

2



Chapter 2

Requirements for MIW

2.1 Introduction

One important method for addressing the confidentiality, integrity, and validity of
digital medical images is medical image watermarking (MIW). Ensuring the security
and dependability of digital imaging technologies is crucial as the healthcare sector
uses them more and more for patient records, treatment planning, and diagnostics.
MIW provides a way to incorporate undetectable data into medical images, which
can then be retrieved to confirm the authenticity and integrity of the image. The
fundamental needs for a successful MIW are discussed in this chapter, including
reversibility, capacity, security, robustness, and imperceptibility. Comprehending
these prerequisites is essential in order to create watermarking algorithms that sat-
isfy the demanding specifications of medical imaging applications. fig 2.1 has an
illustration of Watermarking medical images requirements.

2.2 Image Imperceptibility

It is a factor that is utilized to determine how comparable the original medical
image and medical images with watermark [17][72][77]. It is necessary to insert the
watermark. in the host medical image so that the watermark is invisible to humans
Visual System (HVS) and preserves the host image’s quality. This suggests that
HVS should be impossible to differentiate between the original and the watermarked
medical image.

medical illustration. One of the most important characteristics of a watermark-
ing system should be image quality. have, particularly for systems that watermark
medical images, where even the smallest change can lead to an incorrect diagnosis.
Consequently, watermarking systems for medical images should Try to maintain the
highest level of perceptivity feasible.[22]
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Figure 2.1: Requirements for Watermarking Images in Medicine.

2.3 Image Robustness

The medical image watermarking system’s robustness is measured by its resistance
to several signal processing and geometric assaults [73]. It is necessary to verify how
resilient the watermark is against these kinds of assaults because these images are
vulnerable to both deliberate and inadvertent ones. Certain medical image water-
marking methods may be delicate, even if they don’t all have to be. Watermarks
that are not resistant to deliberate or inadvertent assaults are considered fragile.

Ensuring the resilience of medical images to various forms of degradation and
manipulation is essential for maintaining their integrity, authenticity, and diagnostic
utility [49]. Medical images are often subject to a range of distortions during acqui-
sition, transmission, storage, and processing, including compression artifacts, noise,
geometric transformations, and malicious attacks [16]. Therefore, it is crucial to
develop watermarking techniques that can withstand these challenges and reliably
recover embedded watermarks under adverse conditions.

One approach to enhancing image resilience is through the use of robust wa-
termarking algorithms that exploit the redundancy and perceptual properties of
medical images to embed watermark data in a manner that is resistant to common
distortions and attacks [16]. These algorithms typically employ error correction
coding, spread spectrum modulation, and perceptual modeling techniques to embed
redundant and robust watermark data into the image while minimizing the impact
on its visual quality and diagnostic information [16][21].

Furthermore, the adoption of reversible watermarking techniques, such as re-
versible data hiding (RDH), allows for the embedding of watermark data in a man-
ner that preserves the original image content and enables lossless extraction of the
watermark when needed [21]. Reversible watermarking algorithms achieve this by
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exploiting the spatial and frequency domains of medical images to embed watermark
data without introducing irreversible modifications, thus ensuring the integrity and
authenticity of the original image [21].

In addition to algorithmic approaches, the resilience of medical images can be
enhanced through the integration of authentication and verification mechanisms,
such as digital signatures and cryptographic techniques [33]. These mechanisms
enable the verification of image authenticity and integrity through the validation
of embedded watermarks and the detection of any unauthorized modifications or
tampering attempts [33].

By combining robust watermarking algorithms with authentication mechanisms
and error correction coding, medical imaging systems can ensure the resilience of
images against a wide range of distortions and attacks, thereby enhancing their
reliability for clinical diagnosis, telemedicine, and secure data exchange.

2.4 Image Payload

The payload capacity of medical image watermarking systems refers to the maximum
amount of data that can be embedded into an image while maintaining its diagnostic
quality and visual integrity [21]. The payload capacity is a critical consideration in
watermarking design, as it determines the amount of auxiliary information that can
be reliably conveyed within the image for various applications, including patient
identification, copyright protection, and data authentication.

The payload capacity of a watermarking system is influenced by several factors,
including the size and complexity of the medical image, the embedding algorithm,
the desired level of robustness, and the perceptual constraints imposed by human
visual perception. In general, larger and more complex images can accommodate
a greater payload capacity due to their increased spatial redundancy and spectral
diversity [33]. However, the payload capacity must be carefully balanced with the
imperceptibility and robustness requirements of the watermarking system to ensure
that the embedded data remains undetectable and resistant to common distortions
and attacks [49].

One approach to increasing the payload capacity of medical image watermark-
ing systems is through the use of data compression techniques, such as wavelet and
JPEG compression [25]. These techniques exploit the spatial and spectral redundan-
cies present in medical images to reduce their size while preserving their diagnostic
quality, thereby creating additional space for embedding watermark data without
perceptible degradation.

Furthermore, recent advances in reversible watermarking techniques have en-
abled the embedding of high-capacity payloads into medical images without intro-
ducing irreversible modifications . [10] Reversible watermarking algorithms achieve
this by exploiting the spatial and spectral redundancies of medical images to em-
bed watermark data in a reversible manner, allowing for lossless extraction of the
embedded data when needed.
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By optimizing the payload capacity of medical image watermarking systems,
researchers can maximize the utility and effectiveness of watermarking techniques
for various applications in healthcare, including image authentication, data integrity
verification, and patient information management.

2.5 Image Security

Image security refers to the protection of images from unauthorized access, tam-
pering, or theft. In the context of digital images, ensuring security is essential to
safeguard sensitive information and maintain privacy [2]. Various techniques are
employed to enhance image security, including encryption, watermarking, and au-
thentication.

2.5.1 Encryption

Encryption is a fundamental technique used to secure digital images by convert-
ing them into an unreadable format using cryptographic algorithms. Only autho-
rized users with the appropriate decryption key can access the original image. Ad-
vanced encryption standards such as AES (Advanced Encryption Standard) and
RSA (Rivest-Shamir-Adleman) are commonly utilized to ensure robust security 7.

2.5.2 Watermarking

Watermarking is another effective method for image security, wherein imperceptible
digital signatures or marks are embedded into the image data. These watermarks
can be visible or invisible and serve various purposes, including copyright protec-
tion, content authentication, and ownership verification. Techniques like digital
watermarking and steganography are widely employed for this purpose [18].

2.5.3 Authentication

Authentication mechanisms are crucial for verifying the integrity and authenticity
of digital images. Digital signatures, hash functions, and digital certificates are
commonly used for image authentication. These techniques enable users to validate
the origin and integrity of images, ensuring that they have not been tampered with
or altered maliciously [74], 3].

2.6 Image Invisibility

Image invisibility refers to the ability to conceal or hide information within digital
images without altering their visual appearance to the human eye. This technique
is commonly employed in applications where maintaining the visual integrity of the
image is paramount, such as covert communication, data embedding, and copyright
protection.
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2.6.1 Steganography

Steganography is a prevalent method for achieving image invisibility, where secret
data is embedded within the image pixels in a manner that is imperceptible to human
observers. Various steganographic techniques exist, including LSB (Least Significant
Bit) embedding, frequency domain techniques, and spatial domain methods. These
techniques ensure that the hidden information remains undetectable, even upon
close inspection of the image [26].

2.6.2 Visual Transparency

Invisible watermarking is another approach to achieve image invisibility, wherein a
digital watermark is embedded into the image data without visibly altering its ap-
pearance. The watermark is imperceptible to the human eye but can be extracted
and decoded using specialized algorithms. This method is commonly used for copy-
right protection, content authentication, and digital rights management [13].

2.7 Reversibility

Reversibility in image watermarking refers to the ability to recover the original image
or data accurately after the watermark has been embedded and extracted. In many
applications, it is essential for the watermarking process to be reversible to ensure
that the original image quality is not significantly degraded and that the embedded
information can be reliably retrieved.

2.7.1 Lossless Embedding

Lossless embedding techniques ensure that the watermark is inserted into the image
without causing any irreversible changes to the original pixel values. This approach
guarantees that the original image can be reconstructed exactly as it was before
the watermarking process, allowing for perfect reversibility. Lossless embedding
methods often involve modifying specific image components, such as the least sig-
nificant bits (LSBs) or the discrete cosine transform (DCT) coefficients, to embed
the watermark while minimizing distortion [18][26].

2.7.2 Watermark Extraction

During watermark extraction, the embedded watermark is retrieved from the wa-
termarked image without altering the image content. Reversible extraction algo-
rithms recover the watermark with high fidelity, enabling the original data to be
reconstructed accurately. These algorithms typically exploit the redundancy or sta-
tistical properties of the watermark to achieve reliable extraction while preserving
image quality [13].

2.8 Computational Complexity

Computational complexity is a critical consideration in image watermarking sys-
tems, as it directly impacts the efficiency and performance of the embedding and
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extraction processes. Various factors contribute to the computational complexity
of watermarking algorithms, including the size of the image, the complexity of the
embedding technique, and the level of security required.

2.8.1 Embedding Complexity

The computational complexity of embedding algorithms depends on the method
used to insert the watermark into the image. For example, frequency domain tech-
niques such as the discrete cosine transform (DCT) or discrete wavelet transform
(DWT) may involve complex mathematical operations, such as matrix multiplica-
tions or convolution, resulting in higher computational overhead [18][13]. On the
other hand, spatial domain methods like least significant bit (LSB) substitution may
have lower computational complexity but may lack robustness and security [26].

2.8.2 Extraction Complexity

The complexity of watermark extraction algorithms also varies based on the cho-
sen technique. Reversible extraction methods, which aim to recover the watermark
without altering the original image, often require sophisticated processing to accu-
rately estimate and remove the embedded watermark. In contrast, non-reversible
techniques may involve simpler computations but may sacrifice image quality or
require additional post-processing steps [46].

2.8.3 Trade-offs

In practice, watermarking algorithms must strike a balance between computational
complexity, robustness, and security. Highly complex algorithms may offer stronger
protection against attacks but may require significant computational resources and
time to execute. Conversely, simpler techniques may be faster but may be more
vulnerable to attacks or may produce lower-quality watermarked images.

2.9 Conclusion

In the context of digital healthcare, ensuring the confidentiality and integrity of
medical images requires compliance with watermarking rules. Robustness assures
that the watermark will remain visible even after numerous image changes, while
imperceptibility ensures that it won’t affect medical diagnostics. The quantity of
data that can be safely inserted without sacrificing image quality is determined by
capacity. Reversibility enables the full restoration of the original image when needed,
while security guards against unwanted discovery and modification of the watermark.
Medical photographs can be safely protected using MIW procedures, guaranteeing
that they will always be a reliable part of healthcare information systems. The
essential needs that must be taken into account while developing and putting into
practice MIW systems have been delineated in this chapter, laying the groundwork
for additional study and advancement in this crucial field.
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Chapter 3

Methods and Performance of
MIW

3.1 Introduction

When it comes to safeguarding Electronic Patient Records (EPRs) that include
sensitive patient information during the transfer of medical images, watermarking
is seen to be the best option [5][12][15][17][30][29]. Researchers are increasingly
concerned about the possibility of biological image theft resulting from transmission
across unsecure networks. Usually, there is a chance that this data will be altered,
whether on purpose or accidentally. Furthermore, the newly established medical
image communication system may lose the trustworthiness of the data due to a
variety of harmful assaults. When sending across insecure networks, watermarking
has been thought to be the best option for protecting and authenticating medical
images and EPRs that include sensitive patient data.

3.2 Image-Based Watermark Embedding

Image-based watermark embedding techniques involve the direct insertion of water-
mark data into the pixel values of an image. These methods aim to embed impercep-
tible watermarks while ensuring minimal distortion to the original image content.
Image-based watermarking approaches can be categorized into spatial domain tech-
niques, which operate directly on pixel values, and transform domain techniques,
which exploit mathematical transformations to embed watermarks.

3.2.1 Spatial Domain Techniques

Spatial domain watermarking methods manipulate the pixel values of an image to
embed the watermark. The Least Significant Bit (LSB) substitution is one of the
simplest and most widely used spatial domain techniques. In LSB substitution, the
least significant bits of selected pixels are replaced with the bits of the watermark
data, causing minimal visual distortion while embedding the watermark [14]. Other
spatial domain techniques include spread spectrum watermarking, where the water-
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Figure 3.1: LSB Algorithm.

mark signal is spread across the image using pseudo-random sequences to enhance
robustness against attacks [47].

3.2.1.1 Least Significant Bit (LSB) Embedding

It is among the most traditional and straightforward techniques for watermarking
in the spatial domain. LSB embedding involves replacing the least significant bits of
image pixels with the watermark data [60][20]. This technique is simple and effective,
especially for lossless compression formats like PNG. However, it is vulnerable to
various attacks and may introduce visible artifacts in the image.

The watermark is embedded in the LSB to do this. Encoding the watermark
comes before embedding. The encoded bits are embedded by first converting the
pixel values to binary form and then replacing the rightmost bit of each pixel with
the encoded watermark bits. The binary value image pixel is transformed back to the
decimal value image pixel following the replacement of the LSB. Fig. 3.1 provides
an illustration of this, Fig. 3.2 displays the flow graph for LSB substitution.

Calculating the embedding space for LSB (Least Significant Bit) watermarking
involves determining the total number of available LSBs in the image pixels that can
be used for embedding the watermark. Here’s how we can calculate the embedding
space for LSB watermarking:

1. Image Size: Determine the dimensions (width and height) of the image in
pixels. Let’s denote the width as W and the height as H.

2. Color Depth: Determine the color depth of the image, which specifies the
number of bits used to represent each pixel. Common color depths include 8
bits per channel for grayscale images and 24 bits (8 bits per channel) for RGB
color images.
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Figure 3.2: Flow chart for replacing LSBs.

3. Number of Pixels: Calculate the total number of pixels in the image, which is
the product of the width and height:

N = W ×H (3.1)

4. Number of LSBs per Pixel: For LSB watermarking, each pixel typically pro-
vides one LSB per color channel (e.g., red, green, blue for RGB images).
Therefore, for an image with C color channels, the number of available LSBs
per pixel is C.

5. Total Embedding Space: Multiply the number of pixels by the number of LSBs
per pixel to obtain the total embedding space. This represents the maximum
number of bits that can be embedded in the image:

Embedding Space = N × C (3.2)

The embedding space calculated using this method gives we the total number
of bits that can be used to embed the watermark. Keep in mind that the actual
payload size may be lower due to constraints such as the need to maintain image
quality, avoid perceptual distortion, and ensure robustness against attacks and image
processing operations.

After determining the embedding space, we can use it to calculate the maximum
payload size for your watermarking application, taking into account any additional
factors or constraints specific to your implementation.

3.2.1.2 Spatial Domain Filtering

Spatial domain filtering modifies the pixel values in the image to embed the water-
mark. Examples include techniques based on adding noise or altering pixel intensi-
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ties to encode the watermark information. Spatial filtering methods offer flexibility
and robustness but may degrade image quality [42].

3.2.1.3 Modification of Image Histogram

Another spatial domain method that has been applied to data concealment in med-
ical images is histogram modification [58]. Peak bins are used in this approach to
incorporate data in a histogram. Although this approach is simple to use, it can only
integrate data into a limited number of maximum or peak points that are accessible.

Histogram modification techniques are widely used in image processing for var-
ious purposes, including contrast enhancement, brightness adjustment, and equal-
ization. These techniques aim to redistribute the pixel intensities in an image to
achieve desired visual effects or improve image quality.

Contrast Enhancement One common application of histogram modification is
contrast enhancement, which aims to improve the visual appearance of an image by
increasing the difference in intensity between different regions. Techniques such as
histogram stretching and histogram equalization are often used for this purpose.

Brightness Adjustment Histogram modification can also be used for brightness
adjustment, allowing users to control the overall brightness of an image. This can
be achieved by shifting the histogram along the intensity axis or by scaling its values
[62].

Histogram Equalization Histogram equalization is a popular technique used to
enhance the contrast of an image by redistributing the pixel intensities to cover the
entire intensity range more uniformly. This can be particularly useful for improving
the visibility of details in images with low contrast.

3.2.1.4 Local Binary Patterns (LBP)

Local Binary Patterns (LBP) is a texture descriptor used in computer vision for
texture classification. In the context of watermarking, LBP has been employed as
a feature extraction technique to capture the texture characteristics of the image.
The watermark embedding process using LBP involves encoding the watermark
information into the texture features extracted by the LBP algorithm. The image is
divided into non-overlapping pieces, and then the differences are computed. After
that, these pixels are embedded using the guidelines provided in [75].

3.2.1.5 Edge-based Techniques

Edge-based watermarking techniques focus on embedding watermarks in image edges
or regions of interest. By exploiting edge information, these methods aim to en-
hance robustness against attacks while minimizing visual distortion. Edge-based
techniques often involve edge detection algorithms and selective embedding in edge
regions [39].
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3.2.2 Transform Domain Techniques

Transform domain watermarking techniques utilize mathematical transformations,
such as the Discrete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT),
to embed watermarks into images. These techniques exploit the frequency or spatial-
frequency characteristics of images to embed imperceptible watermarks while min-
imizing distortion. For example, DCT-based watermarking modifies the frequency
coefficients of an image to embed the watermark, leveraging the frequency local-
ization property of the DCT to ensure invisibility [4]. Similarly, DWT-based wa-
termarking decomposes the image into different frequency bands and embeds the
watermark in selected sub-bands to achieve robustness and invisibility [32], those
are some of the transform domain techniques:

3.2.2.1 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is a widely used transform technique that
decomposes an image into a set of frequency components. In DCT-based water-
marking, the cover image is divided into small blocks, and the DCT is applied to
each block. The watermark information is then embedded into selected DCT coeffi-
cients. Since the DCT concentrates most of the image energy in a few low-frequency
coefficients, it is more robust against compression and common image processing op-
erations.

DCT offers an appealing and effective image transformation that converts an
n-dimensional vector to n number of coefficients in a linear fashion. Low-frequency
component (LFC), middle-frequency component (MFC), and high-frequency com-
ponent (HFC) are the three distinct frequency components into which it splits the
image. Compressed LFC has the maximum energy [61]. While DCT is more re-
silient to JPEG compression, it is less resilient to geometric attacks such as scaling,
rotation, and cropping. The following formulas display the DCT and its inverse.

CT (u, v) =
2

√
pq

β(u)β(v)

p−1∑
x=0

q−1∑
y=0

ft(x, y)× Cos

(
(2x+ 1)uπ

2p

)
∗ Cos

(
(2y + 1)vπ

2q

)
(3.3)

and

fT (x, y) =
2

√
pq

p−1∑
u=0

q−1∑
v=0

β(u)β(v)fT (x, y)× Cos

(
(2x+ 1)uπ

2p

)
∗ Cos

(
(2y + 1)vπ

2q

)
(3.4)

In this case, the block sizes are p and q, the original image pixel is represented
by fT (x, y), the transform domain coefficient is CT (u, v), and the values of β(u) and
β(v) are computed as

β(u), β(v) =

{
1√
2
, if u, v = 1

1, else
(3.5)

13



Chapter 3. Methods and Performance of MIW

Several studies have proposed DCT-based watermarking techniques for various
applications, including medical image watermarking, copyright protection, and au-
thentication. These techniques typically focus on optimizing the embedding process
to maximize watermark robustness while minimizing perceptual distortion.

The embedding space for DCT (Discrete Cosine Transform) watermarking
refers to the number of coefficients in the DCT domain that can be used to embed
the watermark. In DCT-based watermarking, not all DCT coefficients are suitable
for embedding the watermark. Typically, only a subset of coefficients, often referred
to as ”watermarkable coefficients,” are used for embedding to minimize the impact
on image quality.

To calculate the embedding space for DCT watermarking, we need to consider
the following factors:

1. Image Size: Determine the dimensions (width and height) of the image.

2. Block Size: Determine the size of the DCT blocks used for processing. Com-
mon block sizes include 8x8, 16x16, or 32x32.

3. Compression Ratio: If the image undergoes compression (e.g., JPEG com-
pression), consider the compression ratio, as it affects the number of non-zero
DCT coefficients.

4. Watermarking Method: Depending on the watermarking method (e.g.,
spread spectrum, LSB modification), identify the specific DCT coefficients
suitable for embedding the watermark.

Once we have these factors, we can calculate the embedding space using the following
formula:

Embedding Space = NBB ×NBWC (3.6)

where NBB is the number of blocks, and NBWC is the number of watermarking per
blocks

The number of blocks is determined by dividing the image dimensions by the
block size. For example, for an image of size W ×H and a block size of B ×B, the
number of blocks would be:

Number of Blocks =

⌈
W

B

⌉
×
⌈
H

B

⌉
(3.7)

The number of watermark-able coefficients per block depends on the water-
marking method and the selected coefficients for embedding.
Keep in mind that the actual embedding space may be further constrained by factors
such as the robustness requirements, perceptual quality constraints, and compati-
bility with image compression standards.
Once we have calculated the embedding space, we can use it to determine the max-
imum payload size or the embedding capacity for the watermarking process.
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Figure 3.3: Breakdown of the sub-bands within DWT.

3.2.2.2 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) is another widely used transform technique
that decomposes an image into different frequency sub-bands. Without a doubt,
wavelet transformations have become quite well-liked in the image watermarking
community [17].
Unlike DCT, DWT provides both frequency and spatial localization, making it suit-
able for watermarking applications requiring both robustness and localization. The
most effective and widely applied transform domain approach is DWT [22].

The wavelet transform is usually based on a principle that is similar to that of
the Fourier transform [27], with the exception that a centered, windowed function
with a null integral is used to weight the complex sinusoid.
This function can take many various forms, but it always has the ability to adjust
to the signal’s frequency after compression or expansion [24]. In fact, a wavelet’s
temporal compression causes the specific frequency to rise noticeably, whereas a
wavelet’s temporal expansion usually causes it to fall. Generally speaking, a multi-
resolution decomposition employing adaptive filters is employed to perform wavelet
decomposition on used images [55]. It is accomplished by subsampling after a series
of directed low-pass and high-pass filtering.
The number of times that these filtering and subsampling are done is usually n,
which corresponds to the appropriate level of the functional decomposition. To
obtain each local sub-band’s complex coefficients, Using the Haar filter, we can
compute the following values with accuracy:

LL(x, y) =
p(x, y) + p(x, y + 1) + p(x+ 1, y) + p(x+ 1, y + 1)

2
(3.8)
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LH(x, y) =
p(x, y) + p(x, y + 1) + p(x+ 1, y)− p(x+ 1, y + 1)

2
(3.9)

HL(x, y) =
p(x, y)− p(x, y + 1) + p(x+ 1, y)− p(x+ 1, y + 1)

2
(3.10)

HH(x, y) =
p(x, y)− p(x, y + 1)− p(x+ 1, y)− p(x+ 1, y + 1)

2
(3.11)

where p(x, y) are the position in the original image.

In DWT-based watermarking, the cover image is decomposed into multiple
wavelet subbands, and the watermark information is embedded into selected coeffi-
cients in these subbands. DWT offers multi-resolution analysis, allowing for efficient
embedding in different frequency bands based on the desired trade-off between ro-
bustness and invisibility.

Accurate spatial localization is provided by the multi-resolution properties. As
seen in 3.3. it divides the image into four sub-bands: Low Low (LL), Low High (LH),
High Low (HL), and High High (HH). While other sub-bands provide the detail that
the LL sub-band misses, the LL sub-band contains the most important information
regarding the image details. Moreover, DWT provides a hierarchical breakdown of
the LL sub-band [7][69]. The following formulas are used to determine the energy
in the DWT scenario [22].

EN =
1

PNQN

∑
k

∑
l

|lC(k, l)| (3.12)

where p(x, y) are the position in the original image.

3.2.2.3 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) technique used to convert a finite sequence
of equally spaced samples of a function into a same-length sequence of complex
numbers representing the frequency domain of the original function. It is widely
used in signal processing, image processing, and various other fields, the following
formulas display the DFT:

X[K] =
N−1∑
n=0

x[n]× e−j 2π
N

kn, K = 0, 1, 2, ..., N − 1 (3.13)

where:

• X[k] is the k-th frequency component.
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• x[n] is the n-th sample of the input sequence.

• j is the imaginary unit (j = −1).

• N is the total number of samples.

The inverse DFT (IDFT), which converts the frequency domain representation
back to the time domain, is given by:

x[n] =
1

N

N−1∑
k=0

X[k]× ej
2π
N

kn, n = 0, 1, 2, ..., N − 1 (3.14)

3.2.2.4 Discrete Sine Transform (DST)

The Discrete Sine Transform (DST) is similar to the DFT, but it uses only sine
functions. It is particularly useful for certain types of boundary conditions in solv-
ing partial differential equations and for signal processing applications where odd
symmetry is assumed, there are several types of DST, but the most commonly used
one is DST Type-II, the following formulas display it:

X[k] =
N−1∑
n=0

x[n]× sin

(
π(n+ 1)(k + 1)

N + 1

)
, k = 0, 1, 2, ..., N − 1 (3.15)

where:

• X[k] is the k-th frequency component.

• x[n] is the n-th sample of the input sequence.

• N is the total number of samples.

the following equation displays The inverse DST (IDST) Type-II:

x[n] =
2

N − 1

N−1∑
k=0

X[k]× sin

(
π(n+ 1)(k + 1)

N + 1

)
, n = 0, 1, 2, ..., N − 1 (3.16)

3.2.2.5 Discrete Hartley Transform (DHT)

The Discrete Hartley Transform (DHT) is a real-valued transform similar to the
DFT. It is particularly useful because it avoids the use of complex numbers, making
it simpler to implement in certain applications, the following formulas display the
DHT:

H[k] =
N−1∑
n=0

x[n]×
(
cos

(
2π

N
kn

)
+ sin

(
2π

N
kn

))
, k = 0, 1, 2, ..., N − 1 (3.17)
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where:

• H[k] is the k-th transform component.

• x[n] is the n-th sample of the input sequence.

• N is the total number of samples.

The inverse DHT (IDHT) is identical to the forward DHT, which means ap-
plying the DHT twice will yield the original sequence (scaled by NN):

x[n] =
1

N

N−1∑
k=0

H[k]×
(
cos

(
2π

N
kn

)
+ sin

(
2π

N
kn

))
, n = 0, 1, 2, ..., N − 1 (3.18)

3.3 Self-Generated Watermark Embedding

Self-generated watermark embedding techniques involve creating a watermark signal
directly from the content of the image itself. Unlike traditional watermarking meth-
ods that rely on external watermark signals, self-generated watermarking extracts
features or properties from the image and uses them to generate the watermark. This
approach offers several advantages, including simplicity, robustness, and resistance
to attacks that target external watermark signals.

3.3.1 Feature-Based Watermarking

Feature-based watermarking methods extract distinctive features from the image,
such as texture patterns, color distributions, or geometric structures, and use them
to generate the watermark. Common techniques include using local binary patterns
(LBP) to extract texture features [43], color histograms for color-based features [68],
and edge detection algorithms for shape-based features [9]. These extracted features
are then encoded into a watermark signal that is embedded into the image.

3.3.2 Content-Based Watermarking

Content-based watermarking techniques analyze the semantic content of the image,
such as objects, scenes, or regions of interest, and derive a watermark signal based
on this analysis. For example, content-based watermarking may identify key objects
or regions within the image and encode information about them into the watermark.
This approach enables the watermark to be closely tied to the content of the image,
making it more robust to modifications or transformations that preserve the image’s
semantic meaning [19].

3.4 Metrics of Performance

Numerous metrics, including resilience, temporal complexity, encrypted and de-
crypted image quality, and computing speed, can be used to evaluate the suggested
algorithms. Fig. 11 presents an overview of these metrics.
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3.4.1 Measurement of Image Quality

One of the crucial performance indicators that needs to be addressed. Data de-
pendability may be impacted by certain image encryption algorithms that cause
some distortion in the ciphered images. Accurate decrypted images are necessary
for some military and medical uses. Misdiagnosis is the result of influencing ROI.
The quality of ciphered images is represented by this metric, which is applied by an-
alyzing the correlation between source and decrypted images. Peak signal-to-noise
ratio (PSNR), bit correct ratio (BCR), structural similarity index measure (SSIM),
signal-to-noise ratio (SNR), mean absolute error (MAE), mean squared error (MSE),
and standard dynamic range (SDR) are the assessments of the wide-spread image
aspect. Metrics are frequently contested notwithstanding signal fidelity because they
ignore the characteristics of the image signal. As an indicator of image quality, they
are still commonly used [76].

3.4.1.1 PSNR

The suggested algorithm’s high imperceptibility is determined using PSNR crite-
ria, which take into account the degree of similarity between the original and wa-
termarked images. A high PSNR score indicates that the two photos are highly
comparable [38]. It is depicted as

PSNR = 10log
(255)2

MSE
(3.19)

the optimum value for PSNR is Hight as possible.

3.4.1.2 MSE

MSE stands for Mean Squared Error. It’s a widely used metric in image processing
and other fields to measure the average squared differences between the original
values and the predicted values. In the context of image processing, MSE quantifies
the difference between the original image and a modified or reconstructed version of
that image. Mathematically, MSE is calculated as follows:

MSE =
1

X × Y

X∑
i=1

Y∑
j=1

(Iij −Wij)
2 (3.20)

the value range for MSE is between 0 and 1, the optimum value is 0.

3.4.1.3 SSIM

SSIM stands for Structural Similarity Index Measure. It is a metric commonly
used to evaluate the similarity between two images, taking into account both their
luminance and structural information. SSIM is widely used in image processing
and computer vision tasks to assess the quality of image compression, denoising,
enhancement, and other image manipulation techniques [74][6].

The SSIM index compares local patterns of pixel intensities in the reference
image (usually the original image) and the distorted image (usually the modified or

19



Chapter 3. Methods and Performance of MIW

reconstructed image). It computes three components: luminance similarity, contrast
similarity, and structural similarity.

Mathematically, SSIM is calculated as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.21)

Where:

• x and y are the reference and distorted images, respectively.

• µx and µy are the means of x and y.

• σ2
x and σ2

y are the variances of x and y.

• σxy is the covariance of x and y.

• c1 and c2 are small constants to stabilize the division, typically c1 = (k1L)
2

and c2 = (k2L)
2, where L is the dynamic range of the pixel values (e.g., 255

for 8-bit images), and k1 and k2 are constants to control the impact of the
luminance and contrast terms.

The SSIM index ranges between -1 and 1, where 1 indicates perfect similarity be-
tween the two images, and -1 indicates complete dissimilarity. Higher SSIM values
correspond to greater similarity between the images.

3.4.1.4 SNR

SNR stands for Signal-to-Noise Ratio. It is a measure used to quantify the ratio
of the strength of a signal to the strength of background noise that may affect the
signal. In various fields such as telecommunications, electronics, audio engineering,
and image processing, SNR is an essential metric for assessing the quality of a signal.

In the context of images, SNR is often used to evaluate the quality of an image
by comparing the strength of the desired image signal (i.e., the useful information) to
the strength of the background noise present in the image. A higher SNR indicates
that the signal is stronger relative to the noise, which generally corresponds to a
higher quality image.

Mathematically, SNR is calculated as the ratio of the power of the signal (Psignal)
to the power of the noise (Pnoise):

SNR = 10 · log10
(
Psignal

Pnoise

)
(3.22)

Where:

• Psignal is the power of the signal.

• Pnoise is the power of the noise.
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SNR is typically expressed in decibels (dB). Higher SNR values indicate better signal
quality, while lower SNR values indicate a higher level of noise relative to the signal.

3.4.1.5 MAE

MAE stands for Mean Absolute Error. It is a metric used to evaluate the perfor-
mance of a predictive model or the accuracy of an estimation technique.

In the context of image processing or machine learning, MAE measures the
average magnitude of errors between predicted or estimated values and the actual
values. It provides a simple and intuitive measure of the average deviation of pre-
dictions from the ground truth, without considering the direction of the deviations.

Mathematically, Mean Absolute Error is calculated as the average of the abso-
lute differences between the predicted values (ŷi) and the actual values (yi):

MAE =
1

n

n∑
i=1

|ŷi − yi| (3.23)

Where:

• n is the total number of samples or data points.

• ŷi is the predicted value for the ith sample.

• yi is the actual (true) value for the ith sample.

MAE provides a measure of the average magnitude of errors, with higher values
indicating larger average errors and lower values indicating smaller average errors.
It is commonly used alongside other evaluation metrics such as MSE (Mean Squared
Error) and RMSE (Root Mean Squared Error) to assess the performance of models
or algorithms.

3.4.1.6 NPCR

NPCR (Normalized Pixel Change Rate) is a metric used to evaluate the robustness
of image encryption or watermarking algorithms. It measures the percentage of
pixel value changes between two versions of the same image when a watermark or
encryption operation is applied [74].

The NPCR value is calculated by comparing corresponding pixels in the orig-
inal image and the watermarked/encrypted image. A high NPCR value indicates
that a small change in the original image leads to a large change in the water-
marked/encrypted image, which is desirable for robustness. Mathematically, NPCR
is calculated as follows:

NPCR = N(C1, C2) =
∑
I,J

D(i, j)

T
(3.24)

the value range for NPCR is between 0 and 100, the optimum value is 100.
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3.4.1.7 UACI

UACI (Unified Average Changing Intensity) is another metric commonly used to
evaluate the effectiveness of image encryption or watermarking algorithms. Similar
to NPCR, UACI measures the average intensity change between corresponding pixels
in the original and watermarked/encrypted images. Mathematically [44], UACI is
calculated as follows:

NPCR = U(C1, C2) =
∑
I,J

|C1(i, j)× C2(i, j)|
F.T

(3.25)

the value range for UACI is between 0 and 100, the optimum value is 100.

3.4.2 Security Analysis

The evaluation of watermarking techniques for medical images involves assessing
their security aspects in addition to their performance metrics. Security analysis
aims to determine the robustness of the watermarking scheme against various attacks
and the potential vulnerabilities that may compromise the integrity and authenticity
of medical images. Several performance metrics are commonly used to evaluate the
security of watermarking techniques in medical imaging applications [13].

3.4.2.1 NC

The similarity between the extracted and original watermarks is calculated using
NC, and the coefficient values range from 0 to 1. Mathematically, it may be ex-
pressed as

NC =

∑X
I=1

∑Y
J=1(Worgij ×Wrecij)∑X

I=1

∑Y
J=1(Worg−ij2)

(3.26)

the value range for NC is between 0 and 100, Ideally, NC=1 but 0.7 is acceptable

3.4.2.2 BER

BER stands for Bit Error Rate. It is a metric used to quantify the number of
erroneous bits transmitted or received in a communication system compared to the
total number of bits transmitted or received. BER is commonly used in digital
communication systems to assess the quality of the transmission channel or the
performance of the communication system itself [59].

Mathematically, BER is defined as the ratio of the number of bits received in
error to the total number of bits transmitted:

BER =
Number of bits received in error

Total number of bits transmitted
(3.27)

A lower BER indicates better performance, as it means fewer errors occurred during
transmission. BER is typically expressed as a decimal fraction or as a percentage.

In practical applications, BER is often measured experimentally by comparing
the transmitted and received bit streams and counting the number of discrepancies.
It is an important metric in digital communication systems, especially in systems
where data integrity and reliability are critical, such as wireless communication,
optical communication, and digital data storage systems.
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Figure 3.4: Example of Cropping attack.

Figure 3.5: Example of Resizing and Scaling attack.

3.5 Attacks on Watermarked Images

In the context of image watermarking, attacks refer to various techniques or pro-
cesses aimed at tampering with or removing watermarks from images. These attacks
can be categorized into different types based on their objectives and methods. Here’s
a section discussing attacks in the context of image watermarking:

3.5.1 Removal Attacks

Removal attacks aim to completely eliminate or obscure the watermark from the
image. These attacks often involve modifying the image in such a way that the
watermark becomes undetectable or irrelevant [35]. Examples of removal attacks
include:

3.5.1.1 Image Cropping

It is the process of removing undesirable regions from a image [35], an example was
providing in the fig 3.4.

3.5.1.2 Image Resizing and Scaling

Resizing or Rescaling the image to change the watermark’s size or aspect ratio, an
example was providing in the fig 3.5.
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Figure 3.6: Example of Shearing attack.

Figure 3.7: Example of Median Filter attack.

3.5.1.3 Shearing

A shearing attack is a form of geometric distortion applied to digital images. It
involves transforming the image by displacing pixels along one axis, typically either
horizontally or vertically, while keeping the other axis fixed. This displacement
creates a sheared or skewed appearance in the image [35], an example was providing
in the fig 3.6.

3.5.1.4 Image Filtering

Applying filters or image processing techniques to blur or remove the watermark[11],
an example was providing in the fig 3.7.

3.5.1.5 Salt and Pepper

Salt and pepper noise, also known as impulse noise, is a type of image corruption
where random pixels in the image are either set to the maximum intensity value
(salt) or the minimum intensity value (pepper). This type of noise can occur due
to errors in image acquisition or transmission, and it can significantly degrade the
quality of the image [51].

The ”salt” pixels typically appear as bright white spots, while the ”pepper”
pixels appear as dark black spots, an example was providing in the fig 3.8.
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Figure 3.8: Example of Salt and Pepper attack.

Figure 3.9: Example of Gaussian Noise attack.

3.5.1.6 Gaussian Noise

Gaussian noise, also known as additive white Gaussian noise (AWGN), is a type
of statistical noise that is characterized by its Gaussian (bell-shaped) probability
distribution. In the context of images, Gaussian noise appears as random variations
in pixel intensity that follow a Gaussian distribution.

Gaussian noise is often added to images as an attack in the context of image
processing or computer vision to simulate noise that can occur during image acqui-
sition or transmission. It can model various sources of noise, including electronic
sensor noise, thermal noise, and environmental factors [51].

Mathematically, Gaussian noise is generated by sampling from a Gaussian dis-
tribution with a specified mean (usually 0) and standard deviation (σ), where the
mean represents the average intensity shift and the standard deviation represents
the magnitude of the noise, an example was providing in the fig 3.9.

3.5.2 Geometric Attacks

Geometric attacks involve transforming or distorting the watermarked image to
degrade the watermark’s integrity. These attacks can include:
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Figure 3.10: Example of Rotating attack.

Figure 3.11: Example of Histogram Equalization attack.

3.5.2.1 Rotation

Rotating the image to alter the watermark’s orientation [35], an example was pro-
viding in the fig 3.10.

3.5.2.2 Histogram Equalization

Histogram equalization is not typically referred to as an ”attack”; instead, it’s a
method used in image processing to improve the contrast and overall appearance of
an image. It’s a technique used to adjust the contrast of an image by redistributing
pixel intensities, an example was providing in the fig 3.11.

3.5.3 Content Attacks

Content attacks focus on modifying the image content while preserving the appear-
ance of the original image. These attacks attempt to embed misleading information
or artifacts into the image to undermine the watermark. Examples include:

3.5.3.1 Copy-Paste

Copying a region of the image containing the watermark and pasting it onto another
part of the image, an example was providing in the fig 3.12.
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Figure 3.12: Example of Copy Paste attack.

Figure 3.13: Example of Content Adding attack.

3.5.3.2 Content Addition

Adding new elements or content to the image to distract from or obscure the wa-
termark, an example was providing in the fig 3.13.

3.5.4 Compression Attacks

Compression attacks exploit image compression algorithms to degrade the water-
mark’s quality during compression and decompression processes. Common com-
pression attacks include:

3.5.4.1 Lossy Compression

Using lossy compression algorithms that discard some image data, potentially af-
fecting the watermark’s visibility.
By deleting certain information that is not as perceptually significant, the lossy
compression technique can shrink the file size of images. The JPEG compression
algorithm is a popular approach for lossy compression.

JPEG scans every area of an image, identifying and eliminating everything that
is difficult for your eyes to see.
Since human eyes are not flawless, JPEG takes advantage of these differences to
eliminate information that our eyes struggle to perceive. For instance, the human
eye contains two distinct types of light-receptive cells. cones and rods Your eyes are
therefore far more sensitive to an image’s brightness and darkness, or luminance,
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and far less sensitive to its colors, or chrominance. Rods are not color sensitive and
are essential for seeing in low light, whereas cones, with their color receptors for red,
green, and blue, are color sensitive. Additionally, each eye contains 100 million rod
cells compared to only six million cone cells.

Color Space Conversion: First, the input image is converted from the RGB
(Red, Green, Blue) color space to the YCbCr color space. The image is divided into
its chrominance (Cb and Cr) and brightness (Y) components using YCbCr. The
human eye is more sensitive to changes in brightness than in color, which is why
this distinction works [1].

Y = (0.299×R) + (0.587×G) + (0.114×B) (3.28)

Cb = (−0.1687×R) + (−0.3313×G) + (0.5×B) + 128 (3.29)

Cr = (0.5×R) + (−0.4187×G) + (−0.0813×B) + 128 (3.30)

Where R: is Red value, G: is Green value and B: is Blue value. Each values
is limited between 0 to 255.
There is no data loss during the conversion process, and the process is reversible.

Pheromones Down-Sampling: Down sampling involves taking the red and blue
chrominance component images, dividing them into two by two blocks of pixels,
calculating the average value for each block, eliminating repetitive information, and
shrinking the image so that each average value of a four-pixel block occupies a single
pixel. This reduces the information that the red and blue prominence component
images, which our eyes are not very good at perceiving, to a quarter of their original
size while maintaining the same luminance [1].
With that the image is half the size it was originally. It should be noted that
the red and blue prominence images are rescaled to match the size of the luminance
component when the image is reassembled. The rgb values are recalculated from the
luminance blue chrominance and red chrominants, and since the luminance varies
from pixel to pixel, so too can the rgb values.

Block Division: The image will be divided into 8 by 8 blocks, or blocks, in this
step. Each block will have 64 pixels representing the luminance at each pixel, ranging
from 0 to 255. Next, we will shift each value by subtracting 128 from each pixel,
making the range negative 128 to 127, where negative 128 is black and 127 is white.

Discrete Cosine Transform (DCT): A two-dimensional DCT is used on each
block in order to convert the spatial domain pixel values into frequency domain
coefficients.
By combining these 64 base images, also known as the DCT Base Image (fig 3.14),
we can rebuild any block of 64 pixels. Each base image is multiplied by a value or
constant that indicates how much of it is used; as a result, the 64-pixel block that
contains 64 values is changed into 64 values or constants that indicate how much of
each base image is used [8].
Nothing in DCT truly shrinks or compresses the image; quantization, the following
stage, achieves that.
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Figure 3.14: DCT 64 Base Block.

Figure 3.15: Standard JPEG Quantisation Matrix.
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Figure 3.16: Example of Zig Zag List and Run Length Encoding.

Quantization: To minimize the amount of bits needed to express the DCT co-
efficients, they are quantized. Each coefficient is quantized by dividing it by the
matching value from a quantization matrix (fig. 3.15) and round it to integer. Com-
pression is the result of information loss introduced by the quantization process,
especially in higher-frequency components [1].

Run Length and Huffman Encoding: The values for each block in the lumi-
nance and prominence images are listed in this step using a zigzag pattern, as it is
more likely that the non-zero numbers will be found up here. Next, we use a run
length encoding algorithm, where the numbers are listed, and instead of listing all
the zeros, we just state how many there are (fig 3.16).
As we can notice, this list of only a few dozen numbers is much more compressed
than 64 pixels, which are each represented by a number ranging from zero to 255.

Finally, we utilize the Huffman encoding scheme, a well-liked method for lossless
data compression that is widely applied in text and image compression methods like
ZIP and JPEG. It achieves effective compression by allocating variable-length codes
to distinct symbols according to their likelihood of occurring, with shorter codes
denoting more often occurring symbols. (fig 3.17).

3.5.4.2 Quantization

Another method for compressing images is quantization, which limits the range of
pixel values to a more manageable set of representative values.
In quantization Attacks we applying aggressive quantization to reduce the number
of colors or levels in the image, which can degrade the watermark.
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Figure 3.17: Example of Huffman Encoding.

3.6 Related Works

We covered a number of state-of-the-art image-based water-marking techniques in
this section, including DCT and DWT, that have been applied to color, grayscale,
medical, and other types of images. These techniques have been evaluated using a
variety of performance matrices, including Bit Error Rate (BER) and Peak-Signal-
to-Noise-Ratio (PSNR), among others. Numerous attacks, including image pro-
cessing and geometric attacks, noise, filtering, manipulation, etc., have also been
carried out to assess the resilience and imperceptibility of these methods for a range
of applications, including copyright protection, owner identification and verification
[31].

• A revolutionary blind color image watermarking approach was proposed by Su
et al. [65]. In this case, the color image watermark is embedded into the color
host image using QR decomposition techniques.

• A spatial domain blind color image watermarking system was presented by
Su et al. [67] to protect color images’ copyright. Here, the watermark is
embedded using the largest Eigenvalue of the Schur decomposition achieved
using algebraic operations.

• Su et al.’s [66] innovative watermarking method uses the color host image’s
DC and AC coefficients to safeguard the color image’s copyright. The findings
of the experiment demonstrate that the suggested method is more resilient to
many attacks and exhibits improved imperceptibility.

• A spatial domain watermarking approach for the copyright protection of the
color image has been presented and studied by Su et al. [64]. Here, a re-
silient watermarking strategy is devised based on the characteristics of the
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DC coefficient of DFT blind.

• Hessenberg decomposition is the foundation of a revolutionary blind water-
marking that Su [63] has described. Comparing the provided approaches to
alternative methods based on QR decomposition or singular value decomposi-
tion, the latter two demonstrate higher computing complexity.

• A fully original self-implanting fragile watermarking method for photos has
been proposed by Qin et al. [50]. This system, which was created for tampering
recovery, is based on the adaption option of embedding mode and the reference-
data interlocking method. The strategy is more effective than the rumored
schemes, according to the experimental results.

• A strategy to fend off geometric and image modification attacks was put out
by Roy et al. [52]. The cover image has no bearing on this technique. Its
foundation is the key alone. The outcomes of the experiment show that this
process is effective in straightforward situations. It is strong. Additionally,
the cover’s authenticity is preserved. Nevertheless, this approach fails when
dealing with intricate attacks (such as cropping, rotation, and scaling). A
comparative examination reveals that the projected technique outperforms
a number of competing watermarking techniques in terms of both time de-
mand and hardiness. As composite attacks that combine scaling, cropping,
and rotating attacks, future study might focus on improving the anticipated
technique for including improved resistance to compression attacks.

• Block-based DCT constant modification was assisted by the powerful blind
watermarking technique developed by Parah et al. [45]. According to the
experimental results, the predicted scheme’s common PSNR price is 41.25 dB,
which is superior to other state-of-the-art methods. Furthermore, the values
of Normalized Correction (NC) are higher than [91, 99].

• A wholly original strong blind color image watermarking technique was planned
by Huynh et al. [23]. In order to incorporate a grayscale watermark into a
color host image, a quantization technique within the ripple domain is used to
convert the grayscale image to binary photos from LSB to MSB. The testing
results demonstrate that the planned methodology outperforms the remaining
state-of-the-art in terms of the physical quality of embedded host photos and
the robustness of extracted watermarks.

• Four blind watermarking techniques were planned and contrasted by Aggarwal
et al. [3]. For a thorough examination of the pro- exhibit watermarking
algorithms S1, S2, S3, and S4, the author has conducted eight trials. According
to the experimental result, S3 and S4 have greater PSNRs than [36][37], but
S1 and S2 have lower PSNRs.

• A robust blind watermarking technique was planned by Vaidya & PVSSR
[48] using the Bhat-Tacharyya distance and a mathematical function. When
the experimental results are compared to the state-of-the-art, the outcome is
superior.

• For photos taken using a camera, Thongkor et al. [70] proposed a digital
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watermarking method. In this approach, a watermark bit was embedded in
each pixel of the host image to embed a binary image of the same size. The
suggested scheme has an average wPSNR of 35dB and an average SSIM value
of 0.93.

• Lai [34] designed a technique that was mostly based on the Tiny-Genetic al-
gorithm and single value decomposition (SVD). Here, the watermark is em-
bedded via an adaptation to the cover image’s single values. The findings of
the simulation demonstrate that the embedded watermark is resilient enough
to withstand attacks or image processing processes, and that this planned
strategy outperforms other comparable approaches in terms of hardiness.

• A contourlet transformation & quantization index modulation largely based
watermarking technology was developed by Najih et al. [41]. Additionally, the
Lagrange approach was applied for optimization. Experiments demonstrate
greater physical property utility, transparency, and smart capacity in addition
to offering superior robustness compared to alternative strategies for various
attacks.

• Image security was addressed in a proposal made by Sarreshtedari & Akhaee
[56]. The source channel was to be encoded. Its foundations were set par-
titioning in hierarchical transforms (SPIHT) and Reed-Solomon (RS). The
encoder bits, which are utilized for content recovery, are found in the first seg-
ment. Parity bits are found in the second part, and check bits are found in the
last zone. The experiment’s outcome demonstrates the suggested method’s
effectiveness and superiority over alternative approaches.

Table 3.1 presents a comparative examination of the state-of-the-art in image
watermarking, while Tables [3.2, 3.3, 3.4, 3.5] is a summary of the state-of-the-art
in this field [31].
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3.7 Conclusion

In conclusion, research on medical image watermarking (MIW) techniques and ef-
ficacy emphasizes how crucial it is to protect the confidentiality, accuracy, and in-
tegrity of medical images. Each method has its own advantages and disadvantages,
including the Least Significant Bit (LSB), Discrete Cosine Transform (DCT), and
Discrete Wavelet Transform (DWT). While DCT and DWT offer more impercepti-
bility and resilience at the expense of increased computational complexity, LSB is
less resilient despite being simpler and more efficient.

Metrics like PSNR, SSIM, NC, and BER are useful for assessing the efficacy of
watermarking techniques and for striking a balance between computing needs and
robustness. The ongoing advancement of sophisticated approaches that combine
several strategies or cryptographic components holds potential for improving MIW’s
security and resilience.

All things considered, continuous improvements in MIW methods seek to safe-
guard medical images without sacrificing their diagnostic quality. Subsequent in-
vestigations ought to concentrate on enhancing these methods to augment their
resilience, safety, and effectiveness, therefore endorsing the safe management of med-
ical images in healthcare.
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Chapter 4

Experiment and Results discussion

4.1 Introduction

In this chapter, we outline the methods employed in our study of watermarking
techniques for medical images along with the resources and results. Our objective
is to provide a comprehensive overview of the approaches and tools used in our
investigation.

4.2 Hardware Setup

The experiments and analyses conducted in this research were performed on a work-
station with the following specifications:

4.2.1 Operating System

• OS: Linux Mint 21.3 x86 64.

• Kernel: 5.15.0-107-generic.

4.2.2 Host and Environment

• Host: Lenovo ThinkPad T590 (20N5S8L200).

• Resolution: 1920x1080.

• Desktop Environment: Cinnamon 6.0.4.

• Window Manager: Mutter (Muffin).

• Window Manager Theme: Adapta-Nokto (Mint-Y).

• Theme: Adapta-Nokto [GTK2/3].

• Icons: Breeze-Dark [GTK2/3].
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4.2.3 Terminal and Shell

• Terminal: Gnome Terminal.

• Shell: Bash 5.1.16.

4.2.4 Hardware Specifications

• CPU: Intel i5-8365U (4 cores, 8 threads) @ 4.100GHz.

• GPU: Intel WhiskeyLake-U GT2 [UHD Graphics 620].

• Memory: 16GB.

4.3 Programming Language

Python has emerged as a popular programming language in the field of image pro-
cessing research due to its versatility, ease of use, and extensive libraries tailored
for scientific computing [40]. In our study of watermarking techniques for medical
images, we have leveraged Python for various aspects of our research, including al-
gorithm implementation, data manipulation, visualization, and evaluation [71].

Python boasts an extensive ecosystem of libraries specifically designed for image
processing and computer vision tasks. Libraries such as OpenCV, scikit-image, and
Pillow provide comprehensive functionality for reading, writing, manipulating, and
analyzing images. These libraries offer a rich set of functions for tasks such as image
filtering, transformation, feature extraction, and visualization, allowing researchers
to efficiently implement and experiment with different watermarking techniques.

4.4 Python Packages

Our research on watermarking techniques for medical images relies on a variety of
Python packages tailored for image processing, data manipulation, visualization,
and evaluation. In this section, we provide an overview of the key Python packages
we utilized and their roles in our research.

4.4.1 OpenCV (Open Source Computer Vision Library)

OpenCV is a widely-used open-source library for computer vision and image process-
ing tasks. It provides a comprehensive set of functions and algorithms for reading,
writing, manipulating, and analyzing images and videos. In our research, we lever-
aged OpenCV for tasks such as image loading, color space conversion, filtering,
feature extraction, and geometric transformations, OpenCV Documentation.

4.4.2 Pillow (Python Imaging Library)

Pillow is a fork of the Python Imaging Library (PIL), offering support for opening,
manipulating, and saving many image file formats. We utilized Pillow for image

41

https://docs.opencv.org/4.x/


Chapter 4. Experiment and Results discussion

file I/O operations, format conversion, resizing, cropping, and other basic image
processing tasks in our research pipeline, Pillow Documentation.

4.4.3 NumPy (Numerical Python)

NumPy is a fundamental package for scientific computing in Python, providing
support for multidimensional arrays, linear algebra, mathematical functions, and
random number generation. We utilized NumPy extensively for representing images
as arrays, performing array operations, and implementing mathematical operations
required for various watermarking algorithms, NumPy Documentation.

4.4.4 Matplotlib

Matplotlib is a plotting library for creating static, interactive, and animated visu-
alizations in Python. It offers a wide range of plotting functions and customiza-
tion options for generating publication-quality figures and plots. In our research,
we employed Matplotlib for visualizing images, histograms, signal waveforms, and
performance metrics to analyze and interpret experimental results, Matplotlib Doc-
umentation.

4.4.5 Tkinter

Tkinter is the standard GUI (Graphical User Interface) toolkit for Python. It is
included with most Python installations, so there’s no need to install it separately,
Tkinter Documentation.
Tkinter provides a fast and easy way to create GUI applications in Python, allowing
developers to create windows, dialogs, buttons, menus, and more, with minimal
effort. Its simplicity and ease of use make it a popular choice for building desktop
applications with Python.

4.5 Dataset Discription

The success of any research in medical image processing heavily relies on the quality
and diversity of the dataset used for experimentation and evaluation. In our study
on watermarking techniques for medical images, we utilized a database of chest
X-ray images for COVID-19 positive cases, along with normal and viral pneumo-
nia images, has been created by a team of researchers from Qatar University, Doha,
Qatar, and the University of Dhaka, Bangladesh, along with their collaborators from
Pakistan and Malaysia in collaboration with medical professionals.

It is composed of 33,920 chest X-ray (CXR) images. For the full dataset, 10,701 Nor-
mal Ground-truth lung segmentation masks are provided, along with 11,956 COVID-
19 and 11,263 Non-COVID infections (Viral or Bacterial Pneumonia), COVID-19
Radiography Database.
In our study, we included 200 images from each group, for a total of 800 medical
images used in the testing phase.
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4.6 Algorithm’s used in the study

In this section we provide an overview of the main techniques we used in our research
to watermark medical images. These algorithms are essential for both embedding
and extracting watermarks and for assessing how effectively watermarking methods
work.

4.6.1 Least Significant Bit (LSB)

LSB substitution is a quick and efficient way to include data into digital images.
This method replaces the least significant pixel values in the image with portions of
the watermark message. We employ LSB substitution as one of the watermarking
techniques in our analysis.
In our study, we used 3 types of Least Significant Bit (LSB) techniques, each with
a version to embed the watermark as a message and as an image.

4.6.1.1 LSB Embedding with RGB Pixels

Three color channels—Red, Green, and Blue—represent each pixel in an image
according to the RGB color paradigm. With eight bits in each color channel, there
are 256 different levels of intensity for every color. In LSB embedding, a portion of
the watermark message is substituted for each color channel’s least significant bit
(LSB).
In this technique each Pixel from the Cover Image will provide 3 bits of space to
embed the watermark on it, the total space could be calculated with this formula:

LSB RGB Embedding Space = W ×H × 3 (4.1)

with W : represent the width of the Cover image, and H: represent the height
of the Cover image.

Text Watermark: To embed a Text Watermark using this technique, first we
extract the color channels of each pixel from the cover image, then we convert the
Text Watermark into the ASCII binary format. After that we loop throw each color
channel from each pixel in the cover image and loop throw each bit from the Binary
Text Watermark with change the LSB from each color channel with the bit from
the watermark, after embedding all the characters we embed the NULL character
to stop the extracting process later, the null character represented as 8 Zeroes. the
process steps are shown in the (fig 4.1).
Each character from the Text Watermark will take a space of 8 bits in the ASCII
binary format, so each character will need approximately 3 pixels from the Cover
image to be embedded.

Image Watermark: To embed an Image Watermark using this technique, first
we extract the color channels of each pixel from the cover image, then we extract
the color channels of each pixel from the watermark image, then we resize the
Watermark Image to certain size to be able to extracted later, after that we convert
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Figure 4.1: LSB RGB Text Algorithm

Figure 4.2: LSB RGB Image Algorithm
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each color channel from each pixel in the resized watermark into the binary format
and concatenate them into one long string of binary values. After that we loop
throw each color channel from each pixel in the cover image and loop throw each bit
from the Binary Watermark Image with changing the lsb of the binary cover image
pixel with the corresponding bit form the binary watermark, the process steps are
shown in the (fig 4.2).
Each pixel from the Watermark Image will be represented as 3 color channels, and
each color channel will take a space of 8 bits in the binary format, so each Pixel form
the Watermark Image will need 8 pixels from the Cover image to be embedded.

4.6.1.2 LSB Gray Scale Embedding

The procedure for LSB embedding using grayscale pixels is the same as for RGB LSB
embedding, but it uses a single intensity channel rather than three different color
channels. In grayscale images, a single intensity value between 0 (black) and 255
(white) represents each pixel. In order to encode the watermark data in grayscale
photos, LSB embedding entails adjusting the least significant bit of each pixel’s
intensity value. this formula shows how to convert and RGB pixel into a Gray Scale
pixel:

Gray Scale Value = (0.299×Red) + (0.587×Green) + (0.114×Blue) (4.2)

Since each pixel in a grayscale image only has one intensity channel, the em-
bedding space is only as big as the image resolution. So In this technique each Pixel
from the Cover Image will provide 1 bits of space to embed the watermark on it,
the total space could be calculated with this formula:

LSB Gray Scale Embedding Space = W ×H (4.3)

with W : represent the width of the Cover image, and H: represent the height
of the Cover image.

Text Watermark: To embed a Text Watermark using this technique, first we
load the cover image as gray scale format, then extract the pixel values, then we
convert the Text Watermark into the ASCII binary format. After that we loop
throw each pixel value in the cover image and loop throw each bit from the Binary
Text Watermark with changing the LSB from each pixel value with the bit from
the watermark, after embedding all the characters we embed the NULL character
to stop the extracting process later, the null character represented as 8 Zeroes. the
process steps are shown in the (fig 4.3).
Each character from the Text Watermark will take a space of 8 bits in the ASCII
binary format, so each character will need approximately 8 pixels from the Cover
image to be embedded.

Image Watermark: To embed an Image Watermark using this technique, first
we load the Cover image as gray scale format, and also we do the same for the
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Figure 4.3: LSB Gray Scale Text Algorithm.

Figure 4.4: LSB Gray Scale Image Algorithm.
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Table 4.1: Sample Values Redistribution Condition.
Sample Values Reorganization Watermark Bits

Min, Avr, Max 0, 0
Max, Avr, Min 1, 1
Min, Max, Avr 0, 1
Max, Min, Avr 1, 0

Watermark image, then we resize the Watermark Image to certain size to be able
to extracted later, after that we convert each pixel from the resized watermark into
the binary format and concatenate them into one long string of binary values. After
that we loop throw each pixel in the binary cover image and loop throw each bit in
the Binary Watermark Image with changing the lsb of the binary cover image pixel
with the corresponding bit form the binary watermark, the process steps are shown
in the (fig 4.4).
Each pixel from the Watermark Image will be represented as one color channels with
value between 0 and 255, and the color channel will take a space of 8 bits in the
binary format, so each Pixel form the Watermark Image will need 8 pixels from the
Cover image to be embedded.

4.6.1.3 LSB (Min Avr Max) Method

The LSB (Min Avr Max) method involves comparing three successive sample values;
the results of this comparison will yield an average, a maximum, and a minimum
element. The watermark’s components will be divided into two groups, resulting
in four possible combinations: 00, 01, 10, and 11. Then, as indicated in Table 4.1,
the values (minimum, maximum, and average) will be re-distributed in accordance
with the watermark bits that will be introduced. Two bits are hidden in the sug-
gested watermarking approach using three sample values. Let Min, Max, and Avr
represent the lowest, highest, and average values of three consecutive sample values,
respectively [53].
In case of getting 2 or all of the samples equal we change the value of some of them
by adding or subtracting 1 or 2, for example if we get (0,0,0) we change it with
(0,1,2).
The embedding space of this technique could be calculated with this formula:

LSB (Min Avr Max) Embedding Space =
(W ×H)× 2

3
(4.4)

with W : represent the width of the Cover image, and H: represent the height
of the Cover image.

The watermarked file’s sample values are extracted by first grouping them
into three groups and comparing them to find the lowest, maximum, and average
values. In accordance with the guidelines in Table 4.1, the received order permits
the extraction of two bits [53].

Text Watermark: To embed a Text Watermark using this technique, first we
load the cover image as gray scale format, then we extract the pixel values, then we
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Figure 4.5: LSB (Min Avr Max) Text Algorithm.

convert the Text Watermark into the ASCII binary format. After that we loop throw
the Cover image 3 pixels by 3 pixels and loop throw the Binary Text Watermark
two bits by two bits with changing the order of the 3 pixels according to the table
4.1, after embedding all the characters we embed the NULL character to stop the
extracting process later, the null character represented as 8 Zeroes. the process steps
are shown in the (fig 4.5).
Each character from the Text Watermark will take a space of 8 bits in the ASCII
binary format, so each character will need 12 pixels from the Cover image to be
embedded.

Image Watermark: To embed an Image Watermark using this technique, first
we load the Cover image as gray scale format, and also we do the same for the
Watermark image, then we resize the Watermark Image to certain size to be able to
extracted later, after that we convert each pixel from the resized watermark into the
binary format and concatenate them into one long string of binary values. After that
we loop throw the Cover image 3 pixels by 3 pixels and loop throw the Binary Image
Watermark two bits by two bits with changing the order of the 3 pixels according
to the table 4.1, the process steps are shown in the (fig 4.6).
Each pixel from the Watermark Image will be represented as one color channels with
value between 0 and 255, and the color channel will take a space of 8 bits in the
binary format, so each Pixel form the Watermark Image will need 12 pixels from
the Cover image to be embedded.

4.6.2 Discrete Cosine Transform (DCT)

One method that is frequently used in image processing and watermarking is the
Discrete Cosine Transform (DCT). An image is converted from the spatial domain
to the frequency domain, where its frequency components serve as its representation.
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Figure 4.6: LSB (Min Avr Max) Image Algorithm.

In this work, we effectively incorporate watermarks into medical images using the
DCT method.

In this technique the watermark is loaded as gray scale image, then each pixel
will be converted into binary format of 8-bits.
In case of Test watermark, the text will be converted into a binary image as shown
in the (fig 4.7) and (fig 4.8).

4.6.2.1 Divide the Image into Blocks

The image is divided into small non-overlapping blocks. Typically, square blocks of
fixed size, such as 8x8 or 16x16 pixels, are used.

4.6.2.2 Apply DCT to Each Block

Every block is subjected to DCT individually. In the frequency domain, each co-
efficient denotes the magnitude of a distinct frequency component, converting the
spatial domain representation of the image into the frequency domain.

4.6.2.3 Select Embedding Positions

Establish the locations of the watermark’s embedding within the DCT coefficients.
These places are typically chosen based on how robustly they adhere to standard
image processing methods or how important they are perceptually.
It’s usually advisable to embed the watermark bit in the DCT block’s lower-right
corner for a number of reasons:

Energy Concentration: DC coefficients, or low-frequency components, are often
represented by DCT coefficients in the lower-right corner. These coefficients provide
significant perceptual information about the block. Since changes in low-frequency
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Figure 4.7: Convert Text to Binary Image.

Figure 4.8: Convert Binary Image to Text.
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components are less evident to the human eye than changes in high-frequency com-
ponents, embedding the watermark in this area ensures that it is less perceptually
detectable.

Robustness to Compression: The quantization process tends to retain low-
frequency components while eliminating high-frequency components in many image
compression algorithms, including JPEG compression. The watermark has a better
chance of surviving compression without suffering from severe deterioration if it is
embedded in the low-frequency area.

Robustness to Cropping and Resizing: Compared to high-frequency compo-
nents, low-frequency components usually stay intact or are less damaged when an
image is cropped or resized. As a result, adding a watermark to the lower-right
corner of the image improves its resistance to typical image alteration techniques.

Diminished Visibility: Viewers will see the watermark as less noticeable or un-
detectable due to changes in the lower-right corner of the DCT block that are less
noticeable to the human eye. This guarantees that the appearance and visual quality
of the watermarked image are preserved.

4.6.2.4 Change DCT Coefficients

To embed the watermark information, change or swap out a few DCT coefficients.
A minor number can be added or subtracted from the coefficient, or it can be imme-
diately replaced with a new value that is obtained from the watermark, depending
on the adjustment.

4.6.2.5 Inverse DCT

To return the modified coefficients to the spatial domain, apply the inverse DCT
(IDCT) to each modified block.

4.6.2.6 Combine Blocks

To create the watermarked image, put the altered blocks back together.

4.6.2.7 Embedding Space

Using this technique we can embed one bit from the binary watermark into each
DCT Block, the embedding space could be calculated with this formula:

DCT Embedding Space =
W ×H

B
(4.5)

Where W : is the Width of the Cover image, H: is the Height of the Cover
image and B: is the DCT Block Size.
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4.6.3 Discrete Wavelet Transform (DWT)

A thorough explanation of the Discrete Wavelet Transform (DWT) watermark em-
bedding procedure is given in this section.

4.6.3.1 Decomposition

Input Image: The DWT is used to break the input image up into several tiers of
wavelet subbands.

Wavelet Filters At each decomposition level, the image is convolved using high-
pass and low-pass filters, producing approximate (low-frequency) and detailed (high-
frequency) coefficients.

4.6.3.2 Selection of Embedding Location

Choice of Subbands Certain wavelet subbands are chosen for the watermark’s
embedding based on the intended trade-off between resilience and invisibility.

Typical Selection Due to their stability, the low-frequency approximation sub-
band (LL) and their sensitivity to changes, the high-frequency detail subbands (HL,
LH, HH) are popular choices.

Differences when Embedding into LL vs HL vs LH vs HH: The choice
of subbands (LL, HL, LH, HH) when employing the Discrete Wavelet Transform
(DWT) to embed a watermark dictates where the watermark is embedded in the
frequency domain and how it affects the image. Here’s a quick rundown of the
variations:

LL (Low-Low) Subband:

• Comprised of the image’s low-frequency elements.

• LL subband is typically utilized for watermark embedding when robustness
against standard image processing procedures, such as resizing and compres-
sion, is desired.

• The watermark can be distributed throughout the entire image by embedding
it in the LL subband, which reduces the likelihood of distortion.

HL (High-Low) Subband:

• Has high-frequency horizontal features.

• Since it alters the image’s horizontal boundaries and details, including the
watermark in the HL subband may result in the watermark becoming invisible.

• In contrast to LL subband, HL subband could not be as resistant to specific
image alterations.
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LH (Low-High) Subband:

• Has high-frequency vertical features.

• Embedding in the LH subband, like in the HL subband, can accomplish water-
mark invisibility without compromising the image’s vertical edges and details.

• Depending on the type of image and watermark, the robustness properties of
the LH subband may differ from those of the HL subband.

HH (High-High) Subband:

• Has high-frequency diagonal features.

• Embedding in the HH subband may cause the watermark to become embedded
in the image’s tiny features or texture.

• The HH subband can be resilient to some assaults and transformations, but if
the watermark is not well-designed, it can potentially lead to more pronounced
artifacts.

4.6.3.3 Watermark Embedding

Scaling of Watermark: In order to align with the dynamic range of the chosen
wavelet subbands, the watermark signal is scaled.

Addition to Coefficients: The chosen coefficients in the wavelet subbands re-
ceive an addition of the scaled watermark signal, in our case we selected each 11th
bit to write the information on it.

4.6.3.4 Reconstruction

Inverse DWT (IDWT): The inverse DWT is used to rebuild the changed wavelet
coefficients into the spatial domain.

Combination of Subbands: The altered coefficients from the chosen subbands
are combined with the unaltered coefficients from the other subbands to create the
reconstructed image.

4.7 Results

4.7.1 Imperceptibility test

It is essential that medical image watermarking preserve patient information while
maintaining high image quality. Many distortions may arise throughout the inte-
grating process [27].
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Table 4.2: Imperceptibility Test Result for LSB RGB.

Attacks
Text Watermark Image Watermark

MSE PSNR SSIM MSE PSNR SSIM

No Attacks 0.0006 80.29 0.9999 0.201 55.0968 0.9988

Salt 10.155 38.077 0.1923 1.1727 47.4387 0.7978

Pepper 10.124 38.0914 0.65 1.2615 47.1207 0.7543

Gaussian Noise 94.5038 28.3791 0.1822 94.7291 28.3659 0.1876

Histogram Equalization 95.7986 28.3656 0.8459 113.82 27.5682 0.9619

Content 6.7725 39.8478 0.8752 2.6751 43.8572 0.9681

Compress 27.7843 33.7588 0.8565 33.2874 32.908 0.7981

Table 4.3: Imperceptibility Test Result for LSB Gray.

Attacks
Text Watermark Image Watermark

MSE PSNR SSIM MSE PSNR SSIM

No Attacks 0.0021 74.8068 0.9999 0.2031 55.0535 0.9989

Salt 10.1549 38.0773 0.1922 1.2127 47.2929 0.7917

Pepper 10.1359 38.086 0.228 1.2701 47.0921 0.755

Gaussian Noise 94.5105 28.3789 0.1821 94.6947 28.3675 0.1877

Histogram Equalization 95.7783 28.3668 0.8461 111.34 27.6642 0.9619

Content 10.8218 37.8481 0.8917 2.2399 44.6283 0.9645

Compress 27.7846 33.7588 0.8565 33.3141 32.9045 0.7581

Table 4.4: Imperceptibility Test Result for LSB Min Avr Max.

Attacks
Text Watermark Image Watermark

MSE PSNR SSIM MSE PSNR SSIM

No Attacks 0.0831 59.6989 0.9998 12.9569 37.0057 0.909

Salt 10.2282 38.046 0.1923 13.8136 36.7277 0.7249

Pepper 10.2025 38.0576 0.2281 13.8969 36.7016 0.6882

Gaussian Noise 94.5063 28.379 0.1821 95.0351 28.3519 0.1704

Histogram Equalization 95.7499 28.3676 0.8462 109.4924 27.7369 0.8722

Content 10.9028 37.8142 0.8916 15.0736 36.3486 0.8824

Compress 27.793 33.7575 0.8565 34.3584 32.7704 0.7853
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Table 4.5: Imperceptibility Test Result for DCT.

Attacks
Text Watermark Image Watermark

MSE PSNR SSIM MSE PSNR SSIM

No Attacks 3.3142 42.9362 0.9756 15.5411 36.2159 0.8963

Salt 4.2965 41.8033 0.7436 16.4049 35.981 0.72

Pepper 4.2922 41.8077 0.74 16.4401 35.9717 0.6781

Gaussian Noise 94.5881 28.3752 0.1814 63.89 30.1449 0.5659

Histogram Equalization 95.833 28.3591 0.8149 97.5688 28.2376 0.8656

Content 14.1339 36.655 0.8674 17.806 35.6251 0.8679

Compress 81.0615 29.0594 0.6772 86.7302 28.749 0.5821

Table 4.6: Imperceptibility Test Result for DWT.

Attacks
Text Watermark Image Watermark

MSE PSNR SSIM MSE PSNR SSIM

No Attacks 26.4997 33.8984 33.8984 34.7349 32.31 0.8176

Salt 27.2491 33.7773 0.6164 35.3966 32.6411 0.6631

Pepper 27.2457 33.7778 0.6016 35.4334 32.6366 0.6286

Gaussian Noise 95.0683 28.3527 0.1734 66.8416 29.8803 0.5376

Histogram Equalization 96.0476 28.3451 0.6002 100.3276 28.1165 0.7825

Content 31.5567 33.1409 0.6919 36.5171 32.5058 0.7929

Compress 81.1797 29.0528 0.5564 86.7736 28.7469 0.5375

4.7.2 Robustness test

There are numerous ways to alter the image. It is crucial to remember that these
changes are not always attempts to manipulate the image for unauthorized use or to
fake its authenticity. These may be adjustments meant to modify the image for one’s
own usage. However, the watermark needs to remain the same in every situation.
The most popular assaults are applied to the watermarked image in order to assess
the resilience of our approach. The extracted watermark is then compared to the
original mark by computing the normalized correlation between the two. According
to Hashim et al. (2018), an NC > 0.85 indicates a strong similarity between the
extracted watermark and the original watermark.
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Table 4.7: Robustness Test Result for LSB RGB.

Attacks
Text Watermark Image Watermark

NC NC

No Attacks 0.9999 0.9988

Salt 0.01 0.7846

Pepper 0 0.8341

Gaussian Noise 0.1058 0.02

Histogram Equalization 0.1198 0.0796

Content 0.9999 0.8007

Compress 0.0526 0.011

Table 4.8: Robustness Test Result for LSB Gray.

Attacks
Text Watermark Image Watermark

NC NC

No Attacks 0.9999 0.9785

Salt 0.7265 0.9769

Pepper 0.7384 0.9705

Gaussian Noise 0.2365 0.005

Histogram Equalization 0.3234 0.06

Content 0.9999 0.9525

Compress 0.0506 0.0033

Table 4.9: Robustness Test Result for LSB Min Avr Max.

Attacks
Text Watermark Image Watermark

NC NC

No Attacks 0.9999 0.9785

Salt 0.4111 0.085

Pepper 0.4121 0.0024

Gaussian Noise 0.1821 0.0053

Histogram Equalization 0.4883 0.0145

Content 0.9999 0.3746

Compress 0.1197 0.0078
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Table 4.10: Robustness Test Result for DCT.

Attacks
Text Watermark Image Watermark

NC NC

No Attacks 0.9999 0.875

Salt 0.9756 0.5859

Pepper 0.9765 0.8539

Gaussian Noise 0.5111 0.4158

Histogram Equalization 0.9637 0.8654

Content 0.9999 0.8272

Compress 0.4824 0.3052

Table 4.11: Robustness Test Result for DWT.

Attacks
Text Watermark Image Watermark

NC NC

No Attacks 0.9313 0.8586

Salt 0.8483 0.7611

Pepper 0.8314 0.7506

Gaussian Noise 0.4586 0.6314

Histogram Equalization 0.7211 0.7054

Content 0.8859 0.8371

Compress 0.5546 0.3908

4.8 Conclusion

The studies carried out for this work offer important new perspectives on the effi-
ciency and performance of several medical image watermarking methods. We evalu-
ated their effects on the computational efficiency, imperceptibility, and robustness of
watermarking in medical images using techniques including LSB, DCT, and DWT.
While each method had its own advantages, DCT and DWT proved to be more
resilient and imperceptible than LSB, albeit requiring more computing power.

A thorough comparison of the watermarking methods was made possible by
the assessment metrics, which included MSE, PSNR, SSIM, and NC. This compar-
ison highlighted the trade-offs between resilience, imperceptibility, and computing
complexity. The outcomes emphasized how crucial it is to choose the right water-
marking techniques for medical imaging applications based on particular needs and
limitations.

To sum up, the outcomes of the experiment highlight how important it is to use
strong and effective watermarking methods to protect medical photos. The results
highlight the necessity of continued study to improve and develop these techniques
in order to guarantee the safe and dependable handling of medical images in the
healthcare sector.
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General Conclusion

In conclusion, the utilization of LSB, DWT, and DCT watermarking techniques in
medical image security presents promising avenues for safeguarding sensitive pa-
tient data while ensuring the integrity and authenticity of medical images. Through
our investigation, we have demonstrated the effectiveness of these methods in em-
bedding and extracting watermarks with minimal distortion to the original image
quality. The LSB method, with its simplicity and ease of implementation, offers
a straightforward approach to watermarking, albeit with limitations in terms of
robustness and capacity. The DWT technique provides superior robustness and se-
curity through its multi-resolution analysis, making it suitable for applications where
high levels of security are required. Additionally, the DCT technique offers a viable
alternative, with its ability to efficiently represent image content in the frequency
domain.

Furthermore, our results underscore the importance of considering the specific
requirements and constraints of medical image watermarking, such as impercepti-
bility, capacity, and robustness to various attacks. By tailoring the watermarking
approach to meet these requirements, we can ensure the successful integration of
watermarking techniques into clinical workflows without compromising diagnostic
accuracy or patient privacy. Additionally, our study highlights the need for further
research and development in this field to address emerging challenges, such as the
mitigation of potential vulnerabilities to sophisticated attacks.

In essence, the integration of LSB, DWT, and DCT watermarking techniques
holds great promise for enhancing the security and integrity of medical image data,
thereby contributing to improved patient care and clinical outcomes. As the health-
care industry continues to embrace digital technologies, it is imperative that robust
and efficient watermarking solutions be developed and deployed to safeguard the
confidentiality, integrity, and authenticity of medical images in the digital era.

Possibly the future word improvement could be as following:
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Chapter 5. General Conclusion

Advanced Watermarking Techniques

• Hybrid Methods: Combining multiple watermarking techniques (e.g., LSB
with DWT or DCT with DWT) to leverage the strengths of each method and
achieve better robustness and imperceptibility.

• Machine Learning Integration: Using machine learning algorithms to dy-
namically adjust watermark embedding parameters based on the characteris-
tics of the medical images and the type of watermark.

• Deep Learning: Implementing deep learning-based watermarking approaches
that can learn optimal embedding and extraction strategies from large datasets.

Enhanced Security Measures

• Cryptographic Watermarking: Integrating cryptographic techniques to
ensure the security and integrity of the watermark, making it more resistant
to intentional attacks.

Comprehensive Evaluation:

• Robustness Testing: Conducting extensive robustness testing against a
wider range of attacks, including geometric distortions, compression, noise
addition, and combined attacks.

• Comparative Studies: Performing comparative studies with other state-
of-the-art watermarking techniques to benchmark performance in terms of
robustness, imperceptibility, and computational efficiency.
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