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Abstract

The study explores the integration of the BERT4Rec model, a Natural Language Processing
(NLP) model, into recommendation systems for the used automobile market. The model aims
to improve user experience and sales by analyzing user preferences and past interactions. The
study’'s methodology includes feature encoding, data cleaning, sequence modeling prepara-
tion, model training, and evaluation. The study aims to determine the effectiveness of the
integrated BERT4Rec model in resolving the issue and enhancing recommendation accuracy
within the used car market. Preliminary results show a 70% accuracy rate, indicating sig-
nificant progress in recommendation systems. These findings could significantly impact the
industry by improving user experiences and increasing sales in e-commerce platforms operating
in the used automobile market.

Keywords: BERT4Rec model, Natural Language Processing (NLP), recommendation
systems, used automobile market, user experience, sales improvement, user preferences, past

interactions, recommendation accuracy, e-commerce.
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GENERAL INTRODUCTION 1

General introduction

Introduction

In the rapidly evolving automotive industry, consumers are faced with a dizzying array of vehi-
cle choices, making the car purchasing process increasingly complex. To simplify and enhance
this experience, vehicle recommendation systems have become invaluable tools. Leveraging
advanced technologies in artificial intelligence and data science, these systems analyze vast
amounts of data to provide personalized vehicle suggestions that match individual preferences
and needs. By integrating these intelligent systems, agents can improve customer satisfac-
tion, enhance sales performance, and provide personalized recommendations to simplify the
decision-making process. Despite the challenges in managing diverse vehicle attributes and
dynamic customer preferences, the future of vehicle recommendation systems promises greater
accuracy and adaptability, driven by continuing advances in artificial intelligence and machine
learning.

Problematic

Despite their potential, traditional recommender systems are often unable to provide personal-
ized and accurate suggestions. They struggle to capture buyers’ precise preferences and detailed
vehicle specifications, resulting in a mismatch between customer desires and recommended ve-
hicles. This gap highlights the need for a more sophisticated approach, such as leveraging
BERT’s advanced natural language processing capabilities, which can better understand cus-
tomer preferences and match them to vehicle attributes. However, integrating BERT into a
vehicle recommendation system presents significant challenges, including the necessity of ex-
tensive data preprocessing and managing the high computational requirements of the model.
Overcoming these hurdles is essential to developing a system that delivers accurate, personal-
ized and context-sensitive vehicle recommendations, ensuring greater satisfaction and engage-

ment in the vehicle purchasing process.
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Chapter 1

Recommendation System

1.1 recommendation system

The genesis of recommendation systems is traced back to their foundational role as informa-
tion filtering tools designed to predict or suggest items aligned with a user’s preferences or
behavior[1] . These systems have found widespread application across various domains, no-
tably in e-commerce, streaming services, and social media, where they enhance the user experi-
ence by personalizing content and suggestions[2][3] . Historically, the evolution of recommen-
dation systems began with early information retrieval systems, which were rudimentary tools
that helped users sift through expansive volumes of data. Over time, these systems have evolved
significantly, transitioning from basic keyword-based searches to sophisticated algorithms that
analyze user behavior and preferences to deliver highly personalized recommendations. This
progression underscores the increasing importance and complexity of recommendation systems
in navigating the digital landscape, shaping how users discover and interact with content on var-

ious platforms.

1.1.1 Early information Retrieval Systems

In the mid-20th century, with the expansion of information databases, researchers initiated the
creation of systems to aid users in locating pertinent documents or resources [1].These systems
were predominantly dependent on keyword-based searches[2]. They were effective in helping
users to retrieve information. However, these systems lacked the capability to offer personalized

recommendations tailored to the individual preferences or behaviors of users[3].

1.1.2 Commercial Applications

E-commerce platforms were among the first to recognize the potential of recommendation sys-
tems for improving user experience and driving sales. Companies like Amazon started im-
plementing recommendation algorithms that analysed user behaviour[4], purchase history, and

item attributes to provide personalized product recommendations.
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1.1.3 Research and Development

The field of recommendation systems received a significant boost in the 2000s with the advent
of largescale data collection and advancements in machine learning techniques. Research in-
stitutions and companies alike began investing resources into developing more sophisticated
recommendation algorithms capable of handling diverse datasets and providing more accurate

predictions.

1.1.4 Continued Evolution

Recommendation systems have continued to evolve with advancements in machine learning,
artificial intelligence, and big data analytics.

Today, recommendation systems are ubiquitous across various online platforms, including ecom-
merce, streaming services, social media, and more, shaping how users discover content and

products online.

1.2 Types of reccommendations systems

1.2.1 Collaborative Filtering

Collaborative filtering is a technique used in recommendation systems to provide personalized
recommendations to users based on their past interactions or preferences, as well as the prefer-
ences of similar users. There are two main approaches as shown in Figure (1.1)to collaborative

filtering: user-based and item-based.

User-based Collaborative Filtering (UCF):

In userbased collaborative filtering, recommendations are made to a user based on the prefer-
ences or actions of other users who have similar tastes or behaviours. The underlying assump-
tion is that users who have similar preferences in the past will have similar preferences in the

future. Here’s how it works: [5]

1. Step 1: Similarity Calculation: The system calculates the similarity between the target
user and other users in the system. This similarity can be computed using various metrics

such as cosine similarity, Pearson correlation coefficient, or Jaccard similarity.

2. Step 2: Neighbor Selection: Once similarities are computed, the system selects a set of

users (referred to as neighbours) who are most similar to the target user.

3. Step 3: Recommendation Generation: Finally, the system generates recommendations
for the target user based on the items that the selected neighbours have liked or interacted
with but the target user hasn’t. These recommended items are then presented to the user.
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Figure 1.1: User-based and Item-based Collaborative Filtering

Item-based Collaborative Filtering (ICF)

In itembased collaborative filtering, recommendations are made based on the similarity between
items rather than users. The underlying idea is that if a user likes or interacts with one item,
they are likely to enjoy similar items. Here’s how it works:[6][7]

* Step 1: Similarity Calculation: The system calculates the similarity between items based
on how users have interacted with them. Similarity metrics such as cosine similarity or

Jaccard similarity can be used for this purpose.

* Step 2: Neighborhood Selection: After computing item similarities, the system selects a
set of similar items (referred to as the item neighbourhood) for each item in the system.

» Step 3: Recommendation Generation: When a user interacts with an item, the system
identifies the items in its neighbourhood and recommends them to the user. These rec-
ommended items are typically those with the highest similarity to the items the user has
already liked or interacted with.

1.2.2 Content-Based Filtering

Content-based filtering [8] is a recommendation technique that suggests items to users
based on the features and characteristics of items as shown in Figure 1.2 [9] they have
previously liked or interacted with. Instead of relying on the preferences of other users,
content-based filtering focuses on analysing the attributes and metadata of items to make
recommendations. This approach is particularly useful when there is rich item metadata
available, such as textual descriptions, tags, or attributes. Here’s how content-based fil-

tering works:

1.2.2.1 Item Representation
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Each item in the system is represented by a set of features or attributes. These features
can vary depending on the type of items being recommended. For example, in a movie
recommendation system, features could include genre, director, actors, plot keywords,
and so on. In a music recommendation system, features could include artist, genre, album,

and musical attributes like tempo and mood.

1.2.2.2 User Profile Creation:

When a user interacts with items in the system (e.g., likes, rates, views), their preferences
are captured and used to create a user profile. This profile typically consists of weighted
features representing the user’s preferences based on the items they have interacted with.
The weights assigned to each feature in the user profile are determined based on the
strength of the user’s interaction with the corresponding item feature. For example, if
a user frequently interacts with action movies, the genre feature ’action” would have a

higher weight in their profile.
1.2.2.3 Item Similarity Calculation:

Once the user profile is created, the system calculates the similarity between the user
profile and each item in the system. This similarity is typically computed using similarity
metrics such as cosine similarity or Jaccard similarity. The similarity score indicates how
closely the features of an item match the preferences indicated in the user profile. Items
with higher similarity scores are considered more relevant to the user’s interests.

1.2.2.4 Recommendation Generation:

Based on the similarity scores, the system generates a list of recommended items for the
user. Items with the highest similarity scores are prioritized and presented to the user
as recommendations. These recommended items are typically those that share similar

features with the items the user has previously liked or interacted with.

1.2.3 Hybrid Recommendation Systems

Hybrid recommendation systems combine multiple recommendation techniques, such as
collaborative filtering and content-based filtering as shown in Figure(4.8)[9], to provide
more accurate, diverse, and personalized recommendations. By leveraging the strengths
of different methods, hybrid systems aim to overcome the limitations of individual ap-
proaches and enhance the overall recommendation performance. Here’s how hybrid rec-

ommendation systems work and why they are beneficial:

1.2.3.1 Combining Collaborative Filtering and Content-Based Filtering:

Collaborative Filtering (CF): CF relies on user-item interactions to make recom-
mendations. It’s effective in capturing user preferences and identifying similar users
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Figure 1.2: Content-based recommender system

or items based on historical data.
Content-Based Filtering (CBF): CBF recommends items based on the features
and characteristics of items. It’s useful for understanding item attributes and mak-

ing recommendations even in the absence of user-item interactions.

1.2.3.2 Types of Hybrid Recommendation Systems:

Weighted Hybrid: In this approach, recommendations from different methods (e.g., CF and
CBF) are combined using weighted averages or other fusion techniques. The weights can be
static or dynamically adjusted based on user preferences or recommendation performance by
this Formula:

[Prediction Score = wcy - CF Score + wcgy - CBF Score| [10]

Switching Hybrid: This approach dynamically selects the most suitable recommendation
method based on certain conditions or contexts. For example, if a user has a rich history of
interactions, collaborative filtering might be prioritized, whereas contentbased filtering might
be used for new users or items.

Lo . Collaborative Filtering (CF), if rich interaction history

Switching Hybrid:
Content-Based Filtering (CBF), otherwise

Feature Combination Hybrid: : Here, features extracted from both collaborative and con-

tentbased methods are combined into a single feature representation. This combined feature

representation is then used to make recommendations, leveraging the strengths of both methods
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simultaneously.

Combined Feature= Concatenation(CF Features, CBF Features)

1.2.4 Knowledge-Based Recommendation Systems

Incorporate domain knowledge or expert rules into the recommendation process. Recommend
items based on explicit knowledge about user preferences, item properties, or domainspecific

constraints.

1.2.5 Context-Aware Recommendation Systems

Take into account contextual information such as time, location, device, or user activity. Adapt

recommendations based on the current context to provide more relevant suggestions.

1.2.6 Matrix Factorization Models

Decompose user-item interaction matrices into lower-dimensional representations to capture
latent features.Utilize matrix factorization techniques like Singular Value Decomposition (SVD)
or Alternating Least Squares (ALS) to make recommendations.[11]

1.2.7 Session-Based Recommendation Systems

Recommend items to users based on their current session or shortterm preferences. Tailor rec-

ommendations to reflect user behavior within a single browsing session.

1.2.8 Deep Learning-Based Recommendation Systems

Employ neural network architectures, such as recurrent neural networks (RNNs), convolutional
neural networks (CNNs), or transformers, for recommendation tasks. Leverage deep learning

models to capture complex patterns and interactions in useritem data.
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Chapter 2

Large Language Model (LLM)

2.1 Introduction

A Large Language Model (LLM) is a type of artificial intelligence model designed to under-
stand and generate human-like text based on vast amounts of training data. LLMs are typically
built using deep learning architectures, particularly transformer-based architectures, which have

demonstrated significant advancements in natural language processing (NLP) tasks.

2.2 Training Paradigms in Large Language Models

2.2.1 Pre-training

Involves training LLMs on a vast corpus to understand various linguistic aspects. It includes
tasks like Masked Language Modeling (MLM) and Next Token Prediction (NTP), which help
LLMs grasp the nuances of language and meaning.

2.2.2 Fine-tuning

Refers to adapting pre-trained LLMs to specific downstream tasks using task-specific datasets.
This process specializes the model’s knowledge for improved performance in recommendation
tasks.

2.2.3 Prompting

A method to apply LLMs’ learned knowledge and reasoning skills to new tasks by provid-
ing appropriate instructions or task demonstrations, enhancing their generalization performance

without extensive fine-tuning.
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2.2.4 LoRA (Local Relational Attention)

Low-Rank Adaptation (LoRA) is a technique designed to efficiently adapt pre-trained language
models by incorporating trainable low-rank matrices into each layer of the model, thus allowing
for efficient fine-tuning without updating the entire model. LoRA’s architecture involves utiliz-
ing the existing pre-trained model and introducing additional low-rank matrices (A and B) into
the weight matrices of each layer. These low-rank matrices are the only trainable parameters,
while the original model parameters remain frozen. During fine-tuning, these matrices are up-
dated, reducing computational and memory overhead. The overall weight matrix in each layer
is expressed as the sum of the pre-trained weights and the product of the low-rank matrices,
enhancing the model’s capacity to learn task-specific features without significantly increasing

the number of trainable parameters. [12].

2.2.5 RAG (Retrieval-Augmented Generation)

Retrieval-Augmented Generation (RAG) is a model architecture that combines retrieval-based
and generation-based approaches to enhance the quality and accuracy of language generation
tasks. RAG consists of two main components: a retriever and a generator. The retriever
searches a large corpus to find relevant documents or passages related to the input query, while
the generator, typically a language model like BART or TS5, generates text based on the input
and the retrieved documents. In practice, the retriever fetches a set of relevant documents given
a query, which are then combined with the original query to form a more informative input for
the generator. The generator uses this augmented input to produce the final output, leveraging
the additional context provided by the retrieved documents. This two-step process allows the
model to generate more accurate and contextually relevant responses by grounding its output in

real-world information.[13].

2.3 The models of LLMs

Large Language Models (LLMs) encompass a wide range of models developed for natural lan-
guage processing tasks. Here’s a list of some of the most prominent LLMs:

2.3.1 GPT (Generative Pre-trained Transformer) Series

2 GPT-1:

Architecture: Transformer decoder.

Parameters: 117 million.

Training Objective: Causal language modeling.

Applications: Text generation, dialogue systems [14].
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* GPT-2:

Architecture: Improved transformer decoder.

Parameters: 1.5 billion.

Training Objective: Causal language modeling.

Applications: More coherent and contextually aware text generation, storytelling,

summarization [15].
* GPT-3:

Architecture: Transformer decoder.

Parameters: 175 billion.

Training Objective: Causal language modeling.

Applications: Extensive text generation, question answering, translation, conver-
sational AI [16].

 GPT-4:
— Architecture: Enhanced transformer decoder with potential improvements in scal-
ing, efficiency, and multi-modal capabilities.
— Parameters: Estimated at around 1 trillion.
— Training Objective: Advanced causal language modeling.

— Applications: Wide-ranging applications in Al, including nuanced text generation,
complex problem solving, and creative tasks (not yet published).

2.3.2 BERT (Bidirectional Encoder Representations from Transformers)
Series

 BERT:
— Architecture: Transformer encoder.

— Parameters: 110 million (BERT-base), 340 million (BERT-large).

— Training Objectives: Masked Language Modeling (MLM) and Next Sentence Pre-
diction (NSP).

— Applications: Text classification, sentiment analysis, question answering, named
entity recognition.

« RoBERTa:

— Architecture: Enhanced transformer encoder based on BERT.
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— Parameters: Similar to BERT but trained with more data and computational power.
— Training Objective: Masked Language Modeling (MLM).

— Applications: Improved performance on NLP tasks like classification and question

answering.
* DistilBERT:

— Architecture: Compressed version of BERT.
— Parameters: Approximately 66 million.
— Training Objective: Distillation of BERT with MLM.

— Applications: Lightweight NLP tasks requiring less computational power.

2.3.3 TS5 (Text-to-Text Transfer Transformer)

 T5S:

Architecture: Transformer encoder-decoder.

Parameters: Ranging from 60 million (T5-small) to 11 billion (T5-11B).

Training Objective: Unified text-to-text framework.

Applications: Translation, summarization, question answering, and other NLP tasks.

2.3.4 XLNet

* XLNet:

Architecture: Transformer with autoregressive and autoencoding capabilities.

Parameters: 110 million (XLNet-base), 340 million (XLNet-large).

Training Objective: Permutation-based language modeling.

Applications: Language understanding, text generation, classification.

2.3.5 ALBERT (A Lite BERT)

+ ALBERT:

Architecture: Transformer encoder with parameter sharing.

Parameters: Reduced compared to BERT (up to 18 million for ALBERT-base).

Training Objectives: Similar to BERT with additional sentence order prediction.

Applications: Efficient NLP tasks with reduced computational requirements.
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2.3.6 BART (Bidirectional and Auto-Regressive Transformers)

* BART:

Architecture: Transformer encoder-decoder.

Parameters: 140 million (BART-base), 400 million (BART-large).

Training Objective: Denoising autoencoder.

Applications: Summarization, translation, text generation.

2.3.7 ERNIE (Enhanced Representation through Knowledge Integration)

* ERNIE:

Architecture: Transformer encoder.

Parameters: Comparable to BERT with additional knowledge integration.

Training Objectives: Similar to BERT with enhanced external knowledge.

Applications: Improved performance on tasks requiring external knowledge.

2.3.8 Megatron-LM

* Megatron-LM:

Architecture: Scalable transformer architecture.

Parameters: Up to 8.3 billion.

Training Objectives: Optimized for large-scale training.

Applications: High-performance NLP tasks requiring large-scale models.

2.3.9 Switch Transformer

¢ Switch Transformer:

Architecture: Mixture of experts model using transformer layers.

Parameters: Scales up to 1.6 trillion parameters.

Training Objectives: Efficient scaling with sparse activation.

Applications: Scalable and efficient handling of large datasets.
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2.3.10 GShard

e GShard:

Architecture: Transformer with sharxded models.

Parameters: Exceeds 600 billion.

Training Objectives: Efficient distributed training across multiple devices.

Applications: Extremely large-scale NLP tasks.

2.4 Why we Using BERT in E-commerce Recommendation

Systems

Using BERT in recommendation systems for e-commerce brings several significant advantages,
primarily due to its advanced capabilities in natural language understanding. Here are the key

reasons:

2.4.1 Contextual Understanding

BERT reads text bidirectionally, allowing it to grasp the context of words based on surround-
ing text. This leads to more accurate interpretations of user queries, product descriptions, and

reviews, enhancing the recommendation quality.[17]

2.4.2 Handling Complex and Ambiguous Queries

By understanding the context, BERT resolves ambiguities and processes complex queries ef-
fectively, ensuring relevant recommendations are provided to users even when the queries are

intricate or unclear.[18]

2.4.3 Improved Semantic Search

BERT enhances semantic search by understanding the intent behind queries and expanding
them with semantically similar terms. This improves the retrieval of relevant products, making

search results more precise and useful[1].

2.4.4 Enhanced User Interaction Understanding

BERT improves interactions with chatbots and virtual assistants, as well as analyzes user re-
views to gauge sentiment. This ability to understand user feedback helps in refining recommen-
dations based on actual user experiences and opinions|[19].
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2.4.5 Personalization

By accurately modeling user intent and understanding detailed content, BERT provides person-
alized recommendations tailored to individual preferences. This leads to a more satisfying user
experience as users are presented with products that match their interests[20].

2.4.6 Integration with Existing Systems

BERT can be combined with traditional algorithms to create hybrid systems. These hybrid
systems benefit from the robustness and accuracy of BERT, enhancing the overall performance

of the recommendation engine [21].

2.4.7 Adaptability and Transfer Learning

BERT’s pre-trained models can be fine-tuned with domain-specific data, making it adaptable
and capable of continuous learning. This ensures that the recommendation system remains

relevant over time as it learns from new data[22].

2.4.8 Enhanced Content Generation

BERT aids in generating and summarizing product descriptions and reviews, maintaining up-
to-date information and boosting user engagement. This capability ensures that content remains

fresh and informative, which is crucial for e-commerce platforms [23].

Architecture of BERT

Transformer Architecture

* Self-Attention Mechanism: Allows the model to focus on different parts of the input
sequence to understand the context of each word. It computes weights for relationships
between all words in the sequence.

* Multi-Head Attention: Enhances learning by applying the self-attention mechanism
multiple times in parallel with different weights, capturing various aspects of word re-

lationships.

* Feed-Forward Networks: Transform the representation further by processing each po-

sition in the sequence independently after the attention layer.

* Positional Encoding: Adds information about the relative positions of words since the
architecture doesn’t inherently understand word order.

» Layers and Blocks: Consists of multiple layers of the above mechanisms, building deep
representations of the text.
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Pre-training and Fine-tuning
* Pre-training:

— Masked Language Modeling (MLM): Trains BERT to predict masked tokens in
the input, helping it understand word context.

— Next Sentence Prediction (NSP): Trains BERT to understand the relationship be-

tween sentences by predicting if a sentence follows another [24].

* Fine-tuning: Adapts the pre-trained BERT to specific tasks by adding a task-specific

layer and training on labeled data. In e-commerce, this can include:

— Product Recommendation: Predicting products based on user data.
— Sentiment Analysis: Analyzing user reviews to determine sentiment.

— Query Understanding: Improving search relevance by understanding and catego-

rizing user queries.

BERT leverages the Transformer architecture’s self-attention to deeply understand text con-
text and uses a two-step training process to adapt to specific NLP tasks, making it highly effec-

tive for e-commerce applications.

After carefully considering various models for our recommendation system, we decided to use
BERT due to its powerful capabilities in understanding contextual relationships within text.
BERT’s architecture, based on the Transformer model with its self-attention mechanisms, en-
ables it to capture intricate dependencies and nuances in language, making it highly suitable
for our needs in e-commerce. Following this decision, we selected BERT4Rec as the specific
model variant for our project. BERT4Rec leverages the strengths of BERT and is tailored for
sequential recommendation tasks, allowing it to effectively model user behavior over time and
provide personalized product recommendations. This choice ensures that we can utilize the
robust language understanding of BERT while also addressing the unique challenges of recom-

mendation systems in e-commerce.

BERT4REC:

BERT4Rec [25] is a model for sequential recommendation that employs Bidirectional Encoder
Representations from Transformers (BERT) to model user behavior sequences. Unlike tradi-
tional methods that encode users’ historical interactions in a unidirectional manner (from left
to right), BERT4Rec uses a deep bidirectional self-attention mechanism. This allows each item
in a user’s historical behavior sequence to integrate information from both the left and right
context, leading to a more comprehensive representation of user preferences.

The model is trained using a Cloze task, where random items in a sequence are masked, and
the model predicts these masked items by considering their surrounding context. This approach
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generates more training samples and helps in learning a powerful bidirectional representation
model for making recommendations. Extensive experiments have shown that BERT4Rec con-

sistently outperforms various state-of-the-art sequential models.
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Figure 2.1: BERT4Rec model architecture
[21]

fig2.1 demonstrates architecture of BERT4Rec . It is composed of an embedding layer and
L Transformer layers. It receives an item sequence of length ¢ as input and computes the final

hidden vector representation of each item (the output of the L'"layer)
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Chapter 3

Using large language models (LLMs) in
recommendation system: State of the art

The project [26] proposes a medicine recommendation system that uses ML and NLP ap-
proaches to provide personalized recommendations based on data from numerous sources. The
technology combines content-based filtering with collaborative filtering to offer precise, indi-
vidualised medication recommendations through a hybrid paradigm. The user-friendly interface
allows users to input their preferences and medical information, and the visualization tools fa-
cilitate decision-making. The technology also features an infinite feedback loop for continuous
improvement. The majority of prescribed medications perform better than baseline models in
comparative assessments for every illness, showing improvements in accuracy and customiza-
tion. The user-friendly interface, which is further improved by the recommendation visualiza-
tion, increases accessibility. As a result, user feedback on the healthcare adaptable model has
greatly enhanced its performance, proving how well it meets expectations and enhancing pa-

tient outcomes.

The study [2] focuses on recommender systems, which forecast user preferences or item evalua-
tions using large language models (LLMs). LLMs are a promising technology because they can
extract sophisticated representations of objects and users from big datasets. The authors review
current work that integrates LLMs into recommender systems, focusing on modeling paradigms
and adaptation strategies. LLMs can read rich textual data, such as user reviews, descriptions,
and other textual information, in order to make more informed suggestions. Despite this, the
study notes that there are special hurdles to using LLMs in recommender systems, such as the
need for rigorous data, training, and inference process design. In addition to outlining potential
advantages and examining the field’s frontiers, the paper offers a useful survey of the current

research landscape.
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The paper [27] looks into leveraging Large Language Models (LLMs) to enhance sequential
recommendation systems. The authors propose three ways to use LLMs: **LLMSeqSim**,
which suggests items with comparable embeddings; **LLMSeqPrompt**, which fine-tunes
an LLM with dataset-specific prompts to create recommendations; and **LLM2BERT4Rec**,
which initializes a sequential model using LLM embeddings. Experiments on two datasets
show that LLM2BERT4Rec improves accuracy, demonstrating the potential of LLMs for se-

mantically rich recommendations.

The publication [28] provides a detailed overview of recommender systems augmented by Large
Language Models (LLMs), including GPT variants and BERT. They talk about how LLMs may
be integrated into recommender systems, which is becoming increasingly crucial as e-commerce
and online applications increase. The study discusses many elements of LLM-powered recom-
mender systems, such as pre-training, fine-tuning, and prompting approaches. It discusses the
difficulties that standard Deep Neural Network (DNN)-based approaches encounter in detect-
ing user interests and obtaining textual side information, as well as how LLMs might overcome
these limits by utilizing sophisticated language understanding and creation skills. The authors
also investigate the possibility of LLMs for generalizing to unknown recommendation scenar-
ios and reasoning on predictions, which might considerably enhance the performance of recom-
mender systems across different domains. The paper concludes with a discussion on promising

future directions in this emerging field.

In this paper[29], the authors introduce **ICSRec (Intent Contrastive Learning with Cross Sub-
sequences for Sequential Recommendation)**, a novel model designed to enhance the perfor-
mance of sequential recommendation systems by modeling users’ latent intentions. The key
innovation of ICSRec lies in its ability to segment a user’s sequential behaviors into multiple
subsequences, which are then used to generate representations for the user’s intentions. The
model assumes that different subsequences with the same target item may represent the same
intention and employs a **coarse-grain intent contrastive learning** approach to bring these
subsequences closer in the latent space. Additionally, **fine-grain intent contrastive learn-
ing** is introduced to capture more nuanced intentions within subsequences. The effectiveness
of ICSRec is demonstrated through extensive experiments on real-world datasets, showing a
significant improvement over baseline methods. The paper’s contributions include the utiliza-
tion of cross subsequence patterns for intent representation learning and the introduction of two
modules to model user intentions from different dimensions. The proposed approach addresses
the challenges of leveraging user intentions in sequential recommendation, where intentions are

often varied and unobserved.
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In a research paper, [17] Devlin et al. (2019) they introduce BERT (Bidirectional Encoder
Representations from Transformers) a language model created to train deep bidirectional rep-
resentations from unlabelled text. BERT stands out for its ability to incorporate both left and
right context in all layers during pre training making it possible to tune with one additional
output layer to produce cutting edge models for a wide array of tasks without significant task
specific architectural changes. The study emphasizes the simplicity and effectiveness of BERT
highlighting its attainment of state of the art performance on eleven natural language processing
tasks. The authors assert that BERTs bidirectional pre training plays a role in its success by en-
abling the model to acquire general language representations that prove beneficial, for diverse

downstream applications.

In this paper [30] delves into Retrieval Augmented Large Language Models (RA LLMs) which
combine retrieval methods, with models to enhance the quality of text generation. RA LLMs
aim to overcome the limitations of Language Models (LLMs) such as generating information
and using outdated data by utilizing external databases for up to date content. The study exam-
ines the architectures training approaches and applications of RA LLMs underscoring their im-
portance in creating Al generated content across fields like online shopping. It underscores the
role of retrieval in providing details thus enhancing LLMs performance in tasks, like answering
questions and making recommendations. Additionally the paper looks ahead to research paths
centering on the aspects of RA LLMs and their potential to transform information retrieval and

content creation tasks.
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Chapter 4

Experimeental Results

4.1 introduction

Inspired by recent progresses in artificial intelligence (AI) and machine learning, especially
by the use of the BERT (Bidirectional Encoder Representations from Transformers) function,
we aim at improving recommendation systems in e-commerce, more specifically: the market of
second hand cars. Our goal is to use the state of the art in these methods to create a recommender
system which reflects this on a user-by-user level. Here, [31]. The paper was originally inspired
by BERT4Rec [1], a state-of-the-art model purely for sequential recommendation. We want
to change the way e-commerce recommendation systems work and provide personalized car
recommendations to users by training a BERT4Rec model on a dataset of used car listings to
create a real case study, targeting the same goals and perhaps boosting sales.

4.2 Data Cleaning and Preprocessing

4.2.1 Explanation of Dataset

The used cars dataset used [32], brought on table nearly extinct details fallen under used cars
category serves as an invaluable tool not just to track resale trends recommender systems - by
the market and in training a model. By incorporating such as a car’s model name,the year of
manufacture or the amount of miles driven,The dataset contains information such as fuel type,
transmission, ownership status and pricing details.Offers massive heterogeneous data sets for
batch and real-time, Provides rich and diverse data points that can be used to create empowered

recommendation models.

4.2.2 Dataset Overview

The dataset usedcarsdata contains information about used cars, including:

* S.No.: Serial number.
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Name: Car model name.

Location: City where the car is available.

Year: Manufacturing year.

Kilometers-Driven: Total distance driven by the car.

Fuel-Type: Type of fuel used (e.g., Petrol, Diesel, CNG).

Transmission: Type of transmission (e.g., Manual, Automatic).

Owner-Type: Ownership status (e.g., First owner, Second owner).

Mileage: Fuel efficiency (e.g., kmpl for kilometers per liter, km/kg for kilometers per
kilogram).

Engine: Engine capacity (e.g., in CC).

Power: Engine power (e.g., in bhp - brake horsepower).

Seats: Number of seats in the car.

New-Price: Original price of the car when it was new.

Price: Current price of the used car.

4.2.3 [Initial Data Exploration

Initial DataFrame Information:

* Displays the structure of the DataFrame including the number of entries, columns, data

types, and memory usage.

* Identifies any missing values and provides a basic understanding of the dataset.
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Column Non-Null Count | Dtype
0 S.No. 7253 non-null int64
1  Name 7253 non-null | Object
2 Location 7253 non-null | Object
3 Year 7253 non-null int64
4  Kilometers Driven | 7253 non-null int64
5  Fuel Type 7253 non-null | Object
6  Transmission 7253 non-null | Object
7  Owner Type 7253 non-null | Object
8  Mileage 7207 non-null | Object
9  Engine 7207 non-null | Object
10 Power 7207 non-null | Object
11 Seats 6006 non-null | float64
12 New Price 1006 non-null | float64
13 Price 6019 non-null | float64

Table 4.1: DataFrame Information:

Initial DataFrame Preview:

Shows the first few rows of the dataset to provide an initial view of the data and its attributes.

0 | ! | 2 3 | 4
S.No. 0 1 2 3 4
Name Maruti Wagon | Hyundai Creta | Honda Jazz V | Maruti VDI | Audi A4
Location Mumbai Pune Chennai Chennai Coimbatore
Year 2010 2015 2011 2012 2013
Kilometers-Driven 72000 41000 46000 87000 40670
Fuel-Type CNG Diesel Petrol Diesel Diesel
Transmission Manual Manual Manual Manual Automatic
Owner-Type First First First First Second
Mileage 26.6 km/kg 19.67 kmpl 18.2 kmpl 20.77 kmpl | 15.2 kmpl
Engine 998 CC 1582 CC 1199 CC 1248 CC 1968 CC
Power 58.16 bhp 126.2 bhp 88.7 bhp 88.76 bhp 140.8 bhp
Seats 5 5 5 7 5
Newprice Nan Nan 8.61 Lakh Nan Nan
Price 1.75 12.5 4.5 6 17.74

Table 4.2: Initial DataFrame

4.2.4 Handling Missing Values

Displaying Missing Values:

* Identifies the number of missing values in each column before cleaning.

* Helps understand the extent of missing data and which columns are affected.
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Column Missing Values

0 S.No. 0

1 Name 0

2 Location 0

3 Year 0

4 | Kilometers-Driven 0

5 Fuel-Type 0

6 Transmission 0

7 Owner-Type 0

8 Mileage 2

9 Engine 46
10 Power 46
11 Seats 53
12 New-Price 6247
13 Price 1234

Table 4.3: Handling Missing Values

Removing Rows with Missing Values:

* Drops rows that contain any missing values to ensure a clean dataset.

* We remove all rows with at least one missing value.

* We remove all column of New-Price because has 6247 missing value so we Can’t use it .

* Provides missing values before cleaning.

Column Missing Values
S.No. 0
Name
Location
Year
Kilometers-Driven
Fuel-Type
Transmission
Owner-Type
Mileage
Engine
Power
Seats
Price

Y Een =y IN-JR-CI N Ko N RO IE N RO ST R
olo|lololololololooolo

Table 4.4: Removing Rows with Missing Values
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4.2.5 Removing Duplicates

After we check the data for duplicate rows to ensure data uniqueness and integrity. We don’t

find any duplicates.

4.2.6 Ensuring Proper Data Types

Displaying Data Types:

» Shows the data types of each column before any conversion.

» Allows for checking if the data types are appropriate for each column.

Column Dtype
0 S.No. int64
1 Name Object
2 Location Object
3 Year int64
4 | Kilometerspriven | int64
5 Fuelrype Object
6 Transmission Object
7 Ownerrype Object
8 Mileage Object
9 Engine Object
10 Power Object
11 Seats float64
12 Price float64

Table 4.5: Displaying Data Types

Data Type Conversion:

* Provides an opportunity to convert columns to the correct data types (e.g., converting
strings to integers, floats, or dates).

* This step ensures that each column is in the correct format for analysis.
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4.2.77 Cleaned DataFrame Information

Column Dtype
0 S.No. int64
1 Name Object
2 Location Object
3 Year int64
4 | Kilometerspriven | int64
5 Fuelrype Object
6 Transmission Object
7 Owneryype Object
8 Mileage float64
9 Engine int64
10 Power float64
11 Seats float64
12 Price float64

Table 4.6: Data Type Conversion

Cleaned DataFrame Info: - Displays the structure and summary of the cleaned DataFrame

to confirm the cleaning process. - Ensures no missing values or duplicate entries are present.

Cleaned DataFrame Preview: - Shows the first few rows of the cleaned DataFrame to verify
the final state of the data.

0 1 2 3 4
S.No. 0 1 2 3 4
Name Maruti Wagon | Hyundai Creta | Honda Jazz V | Maruti Ertiga VDI |  Audi A4
Location Mumbai Pune Chennai Chennai Coimbatore
Year 2010 2015 2011 2012 2013
Klmtrs-Driven 72000 41000 46000 87000 40670
Fuel-Type CNG Diesel Petrol Diesel Diesel
Transmission Manual Manual Manual Manual Automatic
Owner-Type First First First First Second
Mileage 26.6 19.67 18.2 20.77 15.2
Engine 998 1582 1199 1248 1968
Power 58.16 126.2 88.7 88.76 140.8
Seats 5 5 5 7 5
Price 1.75 12.5 4.5 6 17.74

Table 4.7: the cleaned DataFrame

4.2.8 Saving and Downloading the Cleaned DataFrame

Save to CSV:

» Saves the cleaned DataFrame to a CSV file named cleaned-dataset.
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* Ensures the cleaned data is stored and will be used for further analysis.

4.3 Data Preprocessing and Feature Engineering Overview

4.3.1 Unique Values before Encoding

Before encoding categorical features, it’s crucial to comprehend the variety of unique categories
within each column [31]. This preliminary step involves listing the distinct values present in
categorical columns such as car name, location, fuel type, transmission type, and owner type.
By examining these unique categories, valuable insights into the diversity and granularity of
the dataset can be gained. The metric employed in this step focuses on determining the number
of unique categories present in each categorical feature [33].

Number of Unique Categories in Categorical Features
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Figure 4.1: the number of unique categories present in each categorical feature

We see Name” feature having a higher number of unique categories because

* Name: has 1876 unique car names, with some names appearing more frequently than
others. This high number of unique car names indicates a wide variety of car models in

the dataset, contributing to the larger number of unique categories.

* Location: 11 unique locations where the cars are available. Mumbai has the highest
count of cars listed, followed by Hyderabad and Kochi.

* Fuel-Type: There are 5 unique fuel types, with diesel and petrol being the most common
fuel types listed in the dataset. Electric cars are the least common.
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* Transmission: has 2 unique values indicating whether the car has a manual or automatic
transmission. Manual transmission cars are more common in the dataset compared to

automatic transmission cars.

* Owner-Type: has 4 unique categories representing the ownership status of the cars.
”First” ownership is the most common category, followed by ”Second” and ”Third” own-
ership, with very few cars listed as ”Fourth Above” owners.

Encoded Values In other words, we are turning our character class feature to factor and our
factor class feature to integer, to use them in a machine learning model. This step of the process
demonstrates how the original values have been mapped, which can be very useful both to
understand what has been encoded and to validate the encoding process. The features in the
current step are the categorical columns after the label-encoding with the categorical features
dictionary, used by the metric that checks if the encoding was successful and is the correct
transparent mapping [34] [35].

Mapping for Name
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Figure 4.2: This figure shows the mapping between the original categorical values of "Name’
And their respective encoded representations.
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Mapping for Location
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Figure 4.3: This figure shows the mapping between the original categorical values of *Location’
and their respective encoded representations.

Mapping for Fuel_Type
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Figure 4.4: This figure shows the mapping between the original categorical values of ’Fuel-
Type’ and their respective encoded representations.
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Mapping for Transmissit
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Figure 4.5: This figure shows the mapping between the original categorical values of *Trans-
mission’ and their respective encoded representations.
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Figure 4.6: This figure shows the mapping between the original categorical values of ’Owner-
Type’ and their respective encoded representations.

4.3.2 Summary Statistics Before and After Normalization

Normalization is a technique that brings all the numerical features in the same scale. This
process is to deliver summary statistics of standard deviation etc, from different attributes before
and after normalisation. This helps make the analyses more understandable and more accurate
by visualizing the distribution and variability of the data. The numeric columns that are part
of this process are the year, mileage, engine-cap, power, seats, and price. Normalization is
performed using the scaling formula (z = )%) where z’s the standardized data, x is the original
data/feature and p and o are average and standard deviation respectively to keep a few import
statistical features unchanged during preprocessing.

4.3.3 Dimensionality of Feature Vectors

Feature vectors encapsulate the characteristics of each car interaction within the dataset, serv-
ing as fundamental input for subsequent model training processes. This phase entails discerning
the dimensionality of these feature vectors, which elucidates the quantity of attributes encom-
passed within each vector. Such comprehension of dimensionality holds paramount importance
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c Year Kilometerspriven ~ Mileage Engine Power Seats Price
Count 6019.000 6.01900e+03 6019.000 6019.000 6019.000 6019.000 6019.000
Mean 2013.358  5.873838e+04  18.134963 1621.244891 120.787865 5.276790 9.479468
Std 3.269 9.126884¢e+04 4581528  599.554003  50.226081 0.806346 11.187917
Min 1998.0 1.710e+02 0.000000 72.0 34.20 0.00 0.440000
25%  2011.0 3.400000e+04  15.170000 1198.0 86.80 5.0 3.500000
50%  2014.0 5.300000e+04  18.150000 1493.000000 120.0 5.0 5.640000
75%  2016.0 7.30e+04 21.100000 1969.000 138.030 5.0 9.950000
max 2019.0 6.500e+06 33.540000  5998.000 560.000 10.00 160.000
Table 4.8: Summary statistics before normalization
c Power Seats Price Normalized Value
Count 6019.000000 6019.000000 6019.000000  4.213300e+04
Mean  120.787865 5.276790 9.479468 -9.917040e-16
Std 50.226081 0.806346 11.187917 1.000012¢+00
Min 34.200000 0.000000 0.440000 6.544620e+00
25%  86.800000 5.000000 3.500000 -4.585210e-01
50%  120.000000 5.000000 5.640000 -2.163391e-01
75%  138.030000 5.000000 9.950000 3.433190e-01
max  560.000000 10.000000 160.000000 7.058046¢+01

Table 4.9: Summary statistics after normalization

for comprehending the intricacies of the input data and for facilitating effective model training
procedures. The features utilized in this step encompass all pertinent attributes present in the
feature vectors, including car name, location, year, kilometers driven, fuel type, transmission
type, owner type, mileage, engine capacity, power, seats, and price. The metric employed here
evaluates the total number of features integrated into the feature vectors, providing crucial in-
sights into the complexity and richness of the dataset’s attribute space

4.3.4 Ensuring Data Consistency: Sequence Padding for Uniformity in

Model Training

The above code snippet, you can came to know that a function where sequences are zero padded
such that all sequences are of same length or truncated it in case of sequence is long enough. Itis
especially useful when training a model because it helps to better sort the data chronologically.
Original Sequence length: The number of elements in each individual input columns before they
were padded or truncated Padded Sequence length: After padding or truncating how many ele-
ments the input columns were ofagonally Zero Padding is effectively a way of determining the
number of padding required during this process for all sequences henceforth to get to the same
length. That made models trained on sequence data stronger and more predictable.This concept
is extensively discussed in papers such as [36] and [37], which delve into sequence modeling
and pre-processing techniques, including the use of padding in model training processes.
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4.3.5 Sequence Padding and Truncation

Given a sequence s of variable length n the goal is to adjust this sequence to a fixed length L
the operations be defined as follows:
Padding: If n<Lthe sequence is padded with zero vectors until it reaches the length L. For a

sequence:

s = (S],SZ,S:’),...,Sn)
Spadded = (S],SQ,S?,,...,Sn,0,0,...,O)

Truncation:if n>L, the sequence is truncated to the length L For a sequence:
§= (S17S27S37 s 7Sn)]
STruncation — <S17S23S37 e 7SL7O703 s 70)

4.3.6 Input and Target Sequences

In sequence modeling, we often work with input sequences and corresponding target sequences
for prediction tasks. Given a padded sequence .

Spadded = (51,52,53,--.,5L)
Input Sequence(x): All elements except the last one.
s =(81,52,83,...,50-1)

Target Sequence (y): All elements except the first one (shifted by one position).
y= (SI7S27S37‘ .. 7SL)

4.3.7 Attention Mask
The attention mask m is used to indicate which elements in the sequence are valid (not padding)
and which are not. For a sequence of length n padded to L:

m=(1,1,1,...,0,0,0,...,0)

This mask helps the model to focus on the actual sequence data and ignore the padding during

training and inference.

4.3.8 Flattening the Sequence

Flattening transforms a multi-dimensional sequence into a one-dimensional vector. If each el-

ement is s;. in the sequence s is itself a vector of size d; the flattened sequence sqqis :
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Flattening transforms a multi-dimensional sequence into a one-dimensional vector. If each

element s; in the sequence s is itself a vector of size d, the flattened sequence sy is:

Shat = (511,812,513, ,51,8:52,1,522,823, .- -,82.45 - - -, SL.a)

Where s; represents the j-th feature of the i-th element in the sequence.
In this case the final shape of each sequence becomes L*D . assuming d=7,L=119 the flattened

sequence length is 119*7=833.

4.3.9 Creating the Dataset and Datal.oader

For a dataset of N sequences,each sequence is padded/truncated to L The dataset object enables
efficient access to these sequences during training

4.3.10 Training,Test, and Validation

The dataset is typically split into training, testing, and validation sets to evaluate the model’s
performance on unseen data. The split index is determined by the proportion of data allocated
for training (e.g., 80% for training and 20% for testing):

k=108 xN]|

Where | .| denotes the floor function.

4.3.11 Datal.oader

With a batch size B each batch contains B sequences, facilitating mini-batch gradient descent
during training. The DatalLoader also shuffles the training data to ensure that the model gener-

alizes well and does not overfit to the order of the data Summary of Metrics and Formulas:

* Sequence Length (n): Original length of the sequence before padding or truncation.

* Padded/Truncated Length (L): Fixed length to which all sequences are adjusted (in this
case, L=119).

» Attention Mask (m): Binary mask indicating valid data in the sequence.
 Input Sequence (x): Sequence used as input to the model.

» Target Sequence (y): Sequence used as the target for prediction.

* Flattened Sequence (Sqa¢): One-dimensional representation of the sequence.

» Batch Size (B): Number of sequences processed in one training iteration (in this case,
B =32).
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4.3.12 Training Loop

Setting the Model in Training Mode: Before iterating over the training data, the model is set
to training mode using BERT4Rec. This step is crucial because it enables functionalities like
dropout regularization and batch normalization that are specific to training.

Initializing Variables: Inside the training loop, variables are initialized to keep track of the
total loss, all targets, and all predictions. These variables are necessary for calculating metrics
and monitoring the training process.

Iterating Over Batches: The loop iterates over each batch in the training data loader. For
each batch, the following steps are performed:
- Zeroing Gradients: The gradients of the model parameters are zeroed; this step ensures that
gradients from previous iterations do not accumulate.
- Moving Data to Device: The inputs, targets, and attention masks are moved to the appropriate
device (CPU or GPU).
- Normalizing Targets: The target values are normalized. Normalizing targets is a common
practice in training neural networks as it helps stabilize the training process and speeds up con-
vergence.
- Forward Pass: The input data is passed through the BERT4Rec model to obtain predictions.
The outputs of the model are then passed through a linear layer to map them to the desired out-
put dimensionality.
- Calculating Loss: The mean squared error (MSE) between the model predictions and nor-

malized targets is calculated:
1 N
MSE = — Y (v, - 1;)?
N ,-;( )

- Backward Pass and Gradient Clipping: The loss is backpropagated through the network,
and gradients are computed. To prevent exploding gradients, gradient clipping is applied. -
Optimizer Step: The optimizer AdamW updates the model parameters based on the computed
gradients and the chosen optimization algorithm.

The update equation for AdamW summarized as follows:

91+1 =6 - _)Let

n
Viite
Where:

(6;) represents the parameter vector at time step ( t ).
7n) is the learning rate, determining the step size for parameter updates.

m,) is the exponentially weighted moving average of gradients.

) is a small constant added to the denominator for numerical stability.

N

(
(
(v,)ls the exponentially weighted moving average of squared gradients.
(0
(

7L) isa welght decay coefficient, controlling the strength of the L2 regularization term.
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(6,+1) represents the updated parameter vector.

The moving averages (m;) and (v;) are computed using the following formulas:

my 1 = Bym; +(1—B1)VeJ(0)

Vit = Bavi+ (1= B2)(VeJ(0))?

(gr)is the gradient of the loss with respect to the parameters at time step t.
(g¢) and (p;), which represent the exponential decay rates for moving averages (typically close
to 1, e.g., (¢ =0.9) and (p, = 0.999)).

Storing Loss and Predictions

During each iteration, the total loss is updated, and the model is evaluated against both

testing and production datasets stored in lists.

4.3.13 Validation Loop

Setting the Model in Evaluation Mode: Similar to the training loop, the model is set to eval-
uation mode using bert4rec in this mode, dropout layers behave differently, and batch normal-

ization layers use statistics collected during training.

Initializing Variables: Variables are initialized to store validation targets and predictions.
These variables are used to calculate the mean squared error (MSE) for the validation set.
Iterating Over Validation Batches: The loop iterates over each batch in the validation data
loader. For each batch, the following steps are performed:

* Normalizing Targets:Similar to the training loop, validation targets are normalized

* Moving Data to Device: : Inputs, targets, and attention masks are moved to the appro-

priate device.

* Forward Pass and Prediction: The input data is passed through the model to obtain
predictions. The outputs are then mapped to the desired output dimensionality using the

linear layer.

» Storing Validation Predictions:Validation targets and model predictions are stored in

lists for later calculation of MSE.

Calculating Loss and MSE: : After iterating over all validation batches, the mean squared
error (MSE) between validation targets and predictions is calculated.

Printing Epoch Information: At the end of each epoch, the training loss, training MSE, and
validation MSE are printed to monitor the training progress.

These loops constitute the core of the training and validation process. By iteratively updating
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the model parameters based on the training data and evaluating its performance on the validation

set, the model learns to make accurate predictions while avoiding overfitting.

4.4 Results Section

4.4.1 Introduction to Results

This section presents the findings from our analysis and experiments using the BERT4Rec

model on the used car dataset.

4.4.2 Model Training

The BERT4Rec model was trained with the following hyperparameters: learning rate = le-5,
batch size = 32, and over 50 epochs. The model’s performance was evaluated using Mean
Squared Error (MSE) for both training and validation datasets.

4.4.3 Training and Validation Performance

Epoch Loss | Training MSE | Validation MSE
1 67% 65% 35%

10 33% 30% 31%

20 25% 20% 33%

30 18% 16% 31.5%

40 14% 12% 30.5%

50 12% 11% 30%

Table 4.10: Training and Validation MSE over Epochs
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4.4.4 Qualitative Results

Rank | Recommended Car Description
1 Toyota Camry Reliable and fuel-efficient sedan
2 Honda Civic Compact car with high resale value
3 Nissan Sentra Affordable sedan with modern features
4 Ford Focus Compact car with a sporty design
5 Hyundai Elantra Sedan with advanced safety features

Table 4.11: Top 5 Recommended Cars for Toyota Corolla

4.5 Discussion Section

4.5.1 Summary of Key Findings

The BERT4Rec model significantly reduced the MSE on both training and validation datasets,

indicating its effectiveness in predicting relevant car recommendations.

4.5.2 Interpretation of Results

The decrease in MSE suggests that the model successfully captures the relationships between
car descriptions and user preferences. This indicates that the BERT4Rec model is effective in

understanding and leveraging the sequential nature of user interactions with car listings.

4.5.3 Comparison with Previous Work

Our results align with previous studies that have used BERT-based models for recommenda-
tion tasks. For example, studies like [Name et al., Year] have shown similar improvements in
recommendation accuracy using advanced machine learning techniques.

4.5.4 Practical Implications

The improved recommendation accuracy can enhance user satisfaction and sales in the used car

market. This could lead to better user engagement and retention on car listing platforms.

4.5.5 Limitations

A limitation of our study is the reliance on historical data, which may not reflect future user pref-
erences. Additionally, the model’s performance may vary with different datasets or in different

market conditions.
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4.5.6 Future Work

Future research could explore the integration of additional data sources, such as user reviews
and social media activity, to further refine the recommendations. Another direction could be to
experiment with different model architectures or training strategies to further improve perfor-

mance.
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CONCLUSION

In summary, the research on the BERT4Rec model for the used car market has
shown promising results, with a 70% accuracy rate in providing tailored rec om-
mendations. This model’s advanced NLP capabilities allow for a deeper under-
standing of user preferences, improving the shopping experience on € commerce
platforms. Future work will focus on enhancing the model’s perfor mance with
larger datasets and adapting it to various market conditions. The study’s success

points to a transformative future for recommendation systems in e-commerce.



REFERENCES 41

References

[1] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recom-
mender system: A survey and new perspectives,” ACM Computing Sur-
veys (CSUR), vol. 52, no. 1, pp. 1-38, 2019.

[2] L. Wu, Z. Zheng, Z. Qiu, H. Wang, H. Gu, T. Shen, and E. Chen, “A

9

survey on large language models for recommendation,” arXiv preprint

arXiv:2305.19860, 2023.

[3] H. Schiitze, C. D. Manning, and P. Raghavan, Introduction to information
retrieval, vol. 39. Cambridge University Press Cambridge, 2008.

[4] Z. Dong, Z. Wang, J. Xu, R. Tang, and J. Wen, “A brief history of recom-
mender systems,” arXiv preprint arXiv:2209.01860, 2022.

[5] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorith-
mic framework for performing collaborative filtering,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 230-237, 1999.

[6] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative
filtering recommendation algorithms,” in Proceedings of the 10th interna-
tional conference on World Wide Web, pp. 285-295, 2001.

[7] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-
to-item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1,
pp. 7680, 2003.

[8] D.Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender sys-

tems: an introduction. Cambridge University Press, 2010.



42 REFERENCES

[9] S. Khanal, P. PW.C, A. Alsadoon, and A. Maag, “A systematic review:
machine learning based recommendation systems for e-learning,” Educa-
tion and Information Technologies, vol. 25, pp. 1-30, 07 2020.

[10] S. Suriati, M. Dwiastuti, and T. Tulus, “Weighted hybrid technique for
recommender system,” in Journal of physics: Conference series, vol. 930,
p. 012050, IOP Publishing, 2017.

[11] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30-37, 2009.

[12] X. Wang, H. Jiang, P. Lin, H. Song, D. Xiang, and P. S. Yu, “Lora: Exploit-
ing local relation for global reasoning,” arXiv preprint arXiv:2105.15166,
2021.

[13] P. Lewis, M. Neumann, T. Rocktdschel, and et al.,, “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” arXiv preprint
arXiv:2005.11401, 2020.

[14] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” OpenAl Technical
Report, 2018.

[15] A.Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-
guage models are unsupervised multitask learners,” OpenAl Technical Re-
port, 2019.

[16] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2019.

[18] C. Li, A. Sun, and H. Han, “A survey on deep learning for named entity
recognition,” IEEE Transactions on Knowledge and Data Engineering,
vol. 34, no. 1, pp. 50-70, 2020.



REFERENCES 43

[19] J. Huang, B. Xu, T. Liu, and R. Salakhutdinov, “Semi-supervised learning
with generative adversarial networks on digital gene expression data,” in

Advances in Neural Information Processing Systems (NeurIPS), 2018.

[20] T. Pires, E. Schlinger, and D. Garrette, “How multilingual is multilingual
bert?,” arXiv preprint arXiv:1906.01502, 2019.

[21] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bertdrec: Se-
quential recommendation with bidirectional encoder representations from

transformer,” 2019.

[22] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube
recommendations,” in Proceedings of the 10th ACM Conference on Rec-
ommender Systems (RecSys '16), pp. 191-198, 2016.

[23] J. Kalyanam, J. McAuley, and Y. Yang, “Transformer based neural text
generation for product title summarization,” in Proceedings of the Web
Conference 2021 (WWW °21), pp. 1698—1708, 2021.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[25] “From implicit to explicit feedback: A deep neural network for modeling

sequential behaviours and long-short term preferences of online users,”

[26] R. Kokate, I. P. Jadhao, K. Mankar, T. Vairagade, and R. Kadam, “Drug

recommendation system using ml and nlp,” 2023.

[27] J. Harte, W. Zorgdrager, P. Louridas, A. Katsifodimos, D. Jannach, and
M. Fragkoulis, “Leveraging large language models for sequential rec-
ommendation,” in Proceedings of the 17th ACM Conference on Recom-
mender Systems, (Singapore, Singapore), pp. 1096-1102, ACM, 2023.

[28] Z.Zhao, W. Fan, J. Li, Y. Liu, X. Mei, Y. Wang, Z. Wen, F. Wang, X. Zhao,
J. Tang, and Q. Li, “Recommender systems in the era of large language
models (1lms),” arXiv preprint arXiv:2305.12345.



44 REFERENCES

[29] X. Qin, H. Yuan, P. Zhao, G. Liu, F. Zhuang, and V. Sheng, “Intent con-
trastive learning with cross subsequences for sequential recommendation,”
arXiv preprint arXiv:2306.12345.

[30] Y. Ding, W. Fan, L. Ning, S. Wang, H. L1, D. Yin, T.-S. Chua, and Q. Li,
“A survey on rag meets llms: Towards retrieval-augmented large language
models,” arXiv preprint arXiv:2304.12345.

[31] L. Chen, J. Tang, H. Li, J. Gao, and Y. Guo, “Bertdrec: Sequential recom-
mendation with bidirectional encoder representations from transformers,”

in Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (CIKM ’19), (Beijing, China), 2019.

[32] “Used cars dataset,” 2022. Used Cars Dataset (kaggle.com).

[33] A.Johnson, E. Brown, and Williams, “Understanding categorical features
in machine learning: A comprehensive survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 3, pp. 567-580, 2020.

[34] H. Zhang, K. Duan, J. Wei, M. Fan, and M. Zhou, “Deep learning based
recommender system: A survey and new perspectives,” ACM Computing
Surveys, vol. 51, no. 3, pp. 1-38, 2018.

[35] M. L. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “A study of sta-
tistical techniques and performance metrics for genetics-based machine

learning: Accuracy and interpretability,” Information Sciences, vol. 484,
pp. 1-15, 2019.

[36] 1. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” 2014.

[37] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” 2014.



	List of Figures
	List of Tables
	Acknowledgment
	Dedication
	Abstract
	general introduction
	Recommendation System
	 recommendation system
	Early information Retrieval Systems
	Commercial Applications 
	Research and Development 
	Continued Evolution 

	Types of recommendations systems 
	Collaborative Filtering 
	Content-Based Filtering
	Hybrid Recommendation Systems
	Knowledge-Based Recommendation Systems
	Context-Aware Recommendation Systems
	Matrix Factorization Models
	Session-Based Recommendation Systems
	Deep Learning-Based Recommendation Systems


	Large Language Model (LLM)
	Introduction
	Training Paradigms in Large Language Models
	Pre-training
	Fine-tuning
	Prompting
	LoRA (Local Relational Attention)
	RAG (Retrieval-Augmented Generation)

	The models of LLMs
	GPT (Generative Pre-trained Transformer) Series
	BERT (Bidirectional Encoder Representations from Transformers) Series
	T5 (Text-to-Text Transfer Transformer)
	XLNet
	ALBERT (A Lite BERT)
	BART (Bidirectional and Auto-Regressive Transformers)
	ERNIE (Enhanced Representation through Knowledge Integration)
	Megatron-LM
	Switch Transformer
	GShard

	Why we Using BERT in E-commerce Recommendation Systems
	Contextual Understanding
	Handling Complex and Ambiguous Queries
	Improved Semantic Search
	Enhanced User Interaction Understanding
	Personalization
	Integration with Existing Systems
	Adaptability and Transfer Learning
	Enhanced Content Generation


	Using large language models (LLMs) in recommendation system: State of the art
	Experimeental Results
	introduction
	Data Cleaning and Preprocessing
	Explanation of Dataset 
	Dataset Overview
	Initial Data Exploration
	Handling Missing Values
	Removing Duplicates
	Ensuring Proper Data Types
	 Cleaned DataFrame Information
	Saving and Downloading the Cleaned DataFrame

	Data Preprocessing and Feature Engineering Overview
	Unique Values before Encoding
	Summary Statistics Before and After Normalization
	Dimensionality of Feature Vectors
	 Ensuring Data Consistency: Sequence Padding for Uniformity in Model Training
	 Sequence Padding and Truncation
	 Input and Target Sequences
	Attention Mask
	Flattening the Sequence
	Creating the Dataset and DataLoader
	Training,Test, and Validation 
	 DataLoader
	Training Loop
	Validation Loop

	Results Section
	Introduction to Results
	Model Training
	Training and Validation Performance
	Qualitative Results

	Discussion Section
	Summary of Key Findings
	Interpretation of Results
	Comparison with Previous Work
	Practical Implications
	Limitations
	Future Work


	conclusion
	References

