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summary

A study has been conducted on image fusion methods in this field. After that, it was
decided to adopt one type of method and follow it to develop an effective image fusion
method.

Image merging, which involves combining two or more images from different or similar
sources to create a new image with more comprehensive information.

The research specifically focuses on comparing the effectiveness of the convolutional
neural networks (CNN) method with other techniques such as LATLRR and NSST when
applied to thermal and color image fusion. By evaluating six factors, it is clear that the
CNN method achieves the best results among the three methods.

The study also includes a comprehensive discussion of the types of image fusion, levels
of processing, and the importance of image fusion in multiple domains, in addition to
visual and quantitative evaluations of the performance of different fusion methods
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General Introduction
Image fusion is a process that involves merging multiple images of the same scene or

subject to create a single, comprehensive image. This technique is widely used in various
fields, including remote sensing, medical imaging, surveillance, and military applications.
In the context of thermal imaging, the technique utilizes infrared radiation to capture
heat emitted by an object or scene. [1]

Thermal imaging technology offers numerous benefits such as the ability to detect
hidden objects, identify potential hazards, and monitor temperature changes. To enhance
the quality and information content of thermal images, different image fusion techniques
are employed. Two common techniques used for this purpose are CNN (Convolutional
Neural Network) and LatLRR (Latent Low-Rank Representation).[2]

Additionally, the Non-Subsampled Shearlet Transform Convolutional Neural Network
(NSST-PCNN) technique is also used for image fusion, particularly in infrared applica-
tions. This method leverages advanced algorithms to merge infrared images and enhance
their quality, providing a more detailed and accurate representation of the scene. [3]

Overall, the combination of thermal imaging and image fusion techniques like CNN,
LatLRR, and NSST-CNN in infrared applications offers a powerful tool for various indus-
tries, allowing for improved detection capabilities, hazard identification, and temperature
monitoring. [4]

This study presents a novel multi-focus image fusion methodology that leverages
guided filter-based focus region detection to overcome the limitations associated with
spatial domain-based techniques. Initially, Using a guided filter based on focus region de-
tection to generate accurate focus maps . Subsequently, Applying the pixel-wise maximum
rule to match accurate focus maps and create an initial decision map the final Fusing the
source images with , the final decision map using pixel-wise weighted-averaging technique
. [5]

The rest of this study is organized as follows. In Chapter 1, we give information
about image fusion and image thermal on general. Chapter 2 chooses work on three
image merging techniques and choose the best one that gives a good and targeted result.
Finally, in Chapter 3, the experimental results and performance analysis are given.[6]
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An Overview of Thermal Solar
Panel and Image Fusion

I.1 Introduction
Image fusion combines infrared and visible images to create a more informative and

visually enhanced image. The process involves balancing the thermal information from
infrared images with the contextual information from visible images. Various techniques
and algorithms are used in image fusion, including weighted averaging, principal compo-
nent analysis, and multi-scale transform methods. The resulting fused image can have
numerous applications, including surveillance, remote sensing, medical imaging, and ma-
terial inspection, and can improve decision-making and situation awareness. Overall ,
image fusion is a powerful tool for extracting valuable insights from complex scenes.
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Chapter I. An Overview of Thermal Solar Panel and Image Fusion

I.2 Thermal Imaging
Thermal imaging involves using a thermal camera to capture infrared radiation emit-

ted by an object and creating a visual representation of it. This process falls under the
category of infrared imaging science. Thermography enables the observation of temper-
ature differences, with warm objects appearing prominently against cooler backgrounds
when viewed through a thermal imaging camera. Algorithms can be used to interpret
this data and generate an image. [7].

Fig. I.1: Thermal image of a solar panel

I.2.1 Thermal image analysis techniques
Using these features makes it easier to find what you want to highlight in the image.

The three most important functions for improving thermal images are thermal framing,
isotherms, and plates. [8]

Thermal framing
Thermal framing is the adjustment of the scale of the image to optimize the contrast

for the needs of the analysis. An example is shown in Fig. I.2. [9]

Fig. I.2: image automatically adjusted and thermally framed on the component

University of Kasdi Merbah Ouargla 3



Chapter I. An Overview of Thermal Solar Panel and Image Fusion

Isotherme
The isotherm only replaces one color range with another that contrasts more with the

colors used in the image. An example is shown in Fig. I.3. [9]

Fig. I.3: High voltage transformer head with an isotherm.

Pallets
A palette assigns different colors to mark defined apparent temperature levels. An

example is shown in Fig. I.4 [9]

Fig. I.4: Thermal imaging of the storage tank is taken from various platforms

I.2.2 The infrared camera
The infrared camera does not measure temperatures, but radiation, whereas, visualized

by the thermograph, the thermal image that the camera provides can be transformed
into thermograms, into temperature images. This is exactly what we are looking for to
determine the state of health of equipment and above all predict what will happen in the
future, in predictive maintenance. [10]

Fig. I.5: One of the used thermal imaging cameras

University of Kasdi Merbah Ouargla 4



Chapter I. An Overview of Thermal Solar Panel and Image Fusion

I.3 Solar Panel
What Is A Solar Panel ? A Solar panels (also known as "PV panels") is a device that

converts light from the sun, which is composed of particles of energy called "photons",
into electricity that can be used to power electrical loads. [11]

I.3.1 Types Solar Panel
Monocrystalline Solar Panels (Mono-SI)

This type of solar panels (made of monocrystalline silicon) is the purest one. You can
easily recognise them from the uniform dark look and the rounded edges.[12]

Fig. I.6: Monocrystalline Solar Panels (Mono-SI) .

Polycrystalline Solar Panels (p-SI)
You can quickly distinguish these panels because this type of solar panels has squares,

its angles are not cut, and it has a blue, speckled look. which is a faster and cheaper
process than that used for monocrystalline panels. [12]

Fig. I.7: Polycrystalline Solar Panels (p-SI) .

University of Kasdi Merbah Ouargla 5



Chapter I. An Overview of Thermal Solar Panel and Image Fusion

Thin-Film Solar Cells (TFSC)
These types of solar panels are the easiest to produce and economies of scale make them

cheaper than the alternatives due to less material being needed for its production.[12]

Fig. I.8: Thin-Film Solar Cells (TFSC).

Concentrated PV Cell (CVP and HCVP)
Those multi-junction types of solar panels have an efficiency rate of up to 41 , which

among all photovoltaic systems, is the highest sofar. [12]

Fig. I.9: Concentrated PV Cell (CVP and HCVP).

University of Kasdi Merbah Ouargla 6



Chapter I. An Overview of Thermal Solar Panel and Image Fusion

I.3.2 The efficiency of solar panels with its pros and cons

Solar Cell Type Efficiency Advantages Disadvantages
Monocrystalline Solar

Panels (Mono-SI)
20% High efficiency,

optimized for
commercial use,

high lifetime value

Expensive

Polycrystalline Solar
Panels (p-Si)

15% Lower price Sensitive to high
temperatures, lower
lifespan, slightly less

space efficiency
Thin-Film Amorphous

Silicon Solar Panels
(A-SI)

7-10% Relatively low
costs, easy to

produce, flexible

Shorter lifespan,
shorter warranties

Concentrated PV Cell
(CVP)

41% Very high
performance, very
high efficiency rate

Solar tracker and
cooling system needed

Table I.1: A table showing the advantages, disadvantages, and effectiveness of solar panels
[13]

I.4 fusion image
Image fusion The process of blending several images to produce an image with superior

details required for subjective as well as objective analysis. Normally two or more images
captured through various sensors and a composite image is generated having deep knowl-
edge of object and scene.[14] The objects in the resultant image are more clear, more
detectable and more recognizable. The goal behind this process is to extract valuable
and complementary details from a data set. A well-designed and optimal algorithm is
required, which will transfer maximum information from data set to a comoposite image.
These images cater to a variety of applications under different domains.[15]

Fig. I.10: General diagram of the image fusion process.

University of Kasdi Merbah Ouargla 7



Chapter I. An Overview of Thermal Solar Panel and Image Fusion

I.4.1 Categories of image fusion
I.4.1.1 Multi-focus image fusion (MFF)

Multi-focus image fusion (MFF) : is a multiple image compression technique using
input images with different focus depths to make one output image that preserves all
information [16]

Fig. I.11: Multi-focus image fusion (MFF).

I.4.1.2 Multi-exposure image fusion (MEF)

is a integrate images with multiple exposure levels into a full exposure image of high
quality. It is an economical and effective way to improve the dynamic range of the imaging
system and has broad application prospects. [17]

Fig. I.12: Multi-exposure image fusion (MEF).

I.4.1.3 Visible and Infrared ( Vis-IR) Image Fusion

Vis-IR image fusion exemplifies multimodal fusion. Various images from visible and
IR sensors are fused in this process.[18]

University of Kasdi Merbah Ouargla 8



Chapter I. An Overview of Thermal Solar Panel and Image Fusion

Fig. I.13: Visible and Infrared Image Fusion.png

I.4.1.4 Biomedical Image Fusion

Biomedical Image Fusion : is a combined together like information regarding hard
tissues are provided by (CT) and soft tissues specific position is provided by (SPECT)
imaging. All these fused thermal images show more depth of field. so in that case,
multimodal image fusion is a cheap and more patient-friendly method.[19] [18]

Fig. I.14: Visible and Infrared Image Fusion.png

I.4.2 The level of image fusion (Processing)
The processing of images involves a hierarchical approach, comprising three primary

stages: pixel-level processing, feature extraction, and decision-making. A detailed break-
down of each stage is provided below. [20] [21]

I.4.2.1 Pixel-level Fusion

Pixel-level methods combine two images by altering one of the images to maximize its
similarity with the other, as measured by a specific criteria. [20]

I.4.2.2 Feature-level Fusion

Feature-level fusion involves identifying and extracting relevant objects or features
from different image modalities, often using segmentation techniques. The resulting com-
parative features or regions from each modality are then combined and analyzed using
factual methods to gain a more comprehensive understanding.[20]

University of Kasdi Merbah Ouargla 9



Chapter I. An Overview of Thermal Solar Panel and Image Fusion

I.4.2.3 Decision-level Fusion

Decision-level fusion is a method of information extraction that combines labeled data
from independently processed images. By consolidating the data, this approach strength-
ens basic translation and provides a deeper understanding of the observed objects. The
key advantage of this method is that by leveraging higher-level representations, it enables
more robust and reliable fusion of multimodal data.[20]

I.4.3 Avantages and inconvenients of the fusion of images
I.4.3.1 Avantages

• it has a high resolution used for multi-scale images.

• Color image fusion is possible.

• Signal capacity is maintained in all domains during image fusion.

• Storage and transmission of data are eliminated with image fusion.

I.4.3.2 Disadvantages

• Not easily visible, primarily due to the camera.

• Visualization may not be effective if source images are not clear, impacting perfor-
mance.

• Normal risks associated with data manipulationduring image fusion.

• Image fusion may impact the quality of the final donation.[22]

I.5 Evaluation
To verify the effectiveness of a fusion algorithm we need some quantitative and qual-

itative measurements. Many fusion metrics have been proposed. These metrics work
according to the objective of image fusion. [23]

I.5.1 Visual evaluation
Visual analysis is necessary to check the quality of the images obtained by fusion, it

allows to identify and identify defects. These defects can affect the quality of the image
(high resolution, pixelated appearance, etc.), or the geometry (distortion of line elements,
blurring of lines, grouping of objects, etc.). [24]

I.5.2 Quantitative evaluation
In this work, we will use Petrovic statistics to provide more detailed information on

the advantages and disadvantages of the fusion method by estimating the informational
contribution of each image source such that (QG , QP , QY , QXY/F , LXY/F , NXY/F )

University of Kasdi Merbah Ouargla 10



Chapter I. An Overview of Thermal Solar Panel and Image Fusion

I.5.2.1 Edge-Based Metric QG

The QG gradient-based index evaluates the success of edge information transferred
from the source images to the fused image. QG is defined as follows: [24]

QG =
∑m

i=1
∑n

j=1(QAF (i, j)W A(i, j)+QBF (i, j)W B(i, j))∑m
i=1

∑n
j=1(W A(i, j)+W B(i, j)) (I.1)

where QAF (i, j) = QAF
g (i, j),while QAF

g (i, j) and QAF
O (i, j), denote the edge strength and

orientation preservation values at pixel (i, j), respectively. W A(i, j) is the weight coeffi-
cient for each edge that shows the importance of that edge.The size of each source image
is m x n. QBF (i, j) and W B(i, j) are similarly defined. The larger the value of QG is, the
more edge information will be transferred from the source images to the fused image

I.5.2.2 Metric based on phase congruence QP

This measure was proposed by Zhao et al. Based on the image match, this match
provides an absolute measure of an image feature to determine an evaluation metric.
QP consists of three basic correlation coefficients to measure the amount of edge and
angle information transferred from the source images to the fused image. Through these
parameters, this scale can be defined as follows:[24]

QP = (PP )α(PM )β(Pm)γ (I.2)

Where p, m and n denote the phase congruence, maximum and minimum moments,
respectively.

I.5.2.3 Metric based on structural similarity QY

Proposed the QY similarity measure which mainly relies on structural information
about the human visual system. This metric is based on SSIM to calculate the similarity
ratio between images, as shown in the following equation:[24]

QY =


λ(ω)SSIM(A,F | ω)+(1−λ(ω))SSIM(B,F | ω),SSIM(A,B | ω) ≥ 0.75

max(SSIM(A,F | ω),SSIM(B,F | ω)),SSIM(A,B | ω) < 0.75
(I.3)

Or :
λ = s(A | ω)

s(A | ω)+ s(B | ω) (I.4)

Here w represents a window size, (w) is a local weight while S(A| (w)) and S(B | (w))
are the variance of source images A and E in window w, respectively. SSIM(A,F) and
SSIM(B,F) represent the SSIM map calculated in a sliding manner between A and F.
For two source images X and Y, the definition of the structural similarity metric SSIM
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measure proposed by Wang et al. is given as follows:

SSIM(X,Y ) = (2µXµY +C1)(2σXσY +C2)
(µ2

X +µ2
Y +C1)(σXσY +C2) (I.5)

I.5.2.4 Total fusion performance QXY/F

Consider two source images X,Y and a merged image F.The total performance of the
fusion QXY/F of the source and merged images of size M × N is calculated by:[24]

QXY/F =
∑N

n=1
∑M

m=1(QXF (n,m)W X(n,m)+QY F (n,m)W Y (n,m))∑N
n=1

∑M
m=1(W X(n,m)+W Y (n,m))

(I.6)

The total performance of the fusion satisfies:

0 ≤ QXY/F ≤ 1 (I.7)

* If QXY/F = 0 then this implies a complete loss of source information.
* If QXY/F = 1 then indicates the ‘ideal fusion’ without loss of source information.

I.5.2.5 Loss of fusion LXY/F

It measures the edge information lost in the fusion task.This information is not pre-
sented in the merged image but in the source images. The mathematical expression is
given by:[24]

LXY/F =
∑N

n=1
∑M

m=1 r(n,m)((1−QXF (n,m)W X(n,m)+(1+QY F (n,m)W Y (n,m))∑N
n=1

∑M
m=1(W X(n,m)+W Y (n,m))

(I.8)
The fusion loss range is :

0 ≤ LXY/F ≤ 1 (I.9)

* If LXY/F = 0 the fusion loss is low.
* If LXY/F = 1 the fusion loss is high.
The value of LXY/F should be lower to obtain better performance from any fusion

algorithm.

I.5.2.6 Fusion Artifacts NXY/F

Unnecessary visual information may be introduced into the combined image that has
no relevance to the source images.These artifacts should be avoided. The mathematical
expression of NXY/F is given by: [24]

NXY/F =
∑

n
∑

m AMn,m((1−QXF (n,m)W X(n,m)+(1−QY F (n,m)W Y (n,m))∑
n

∑
m(W X(n,m)+W Y (n,m)) (I.10)
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This fusion metric satisfies :
0 ≤ NXY/F ≤ 1 (I.11)

* If NXY/F = 0 then there is no fusion artifacts.
* If NXY/F = 1 then there is a serious degradation in image quality due to noise or

artifacts.
It is found that the fusion information score, loss and fusion artifacts are complemen-

tary to each other. The sum of these measurements must give the unit:
QXY/F + LXY/F + NXY/F = 1

I.6 Conclusion
The significant progress in image fusion research indicates the importance of this

research in various real applications. combining multiple image fusion methods is also
observed to be successful in this field. there still exist many challenges in image fusion and
objective fusion performance evaluation, resulting from image noise, resolution difference
between images, and limitations of the imaging hardware. Therefore, it is expected that
novel researches on image fusion would continue to grow in the upcoming years. [25] [26]
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Some Image Fusion methods
II.1 Introdution

Over the last thirty years, a diverse array of techniques for the fusion of multi-focused
images has emerged. These are predominantly categorized into transform domain and
spatial domain methods. Within these methodologies, source images are decomposed into
various transform coefficients. [27]These are then merged according to defined criteria
within the transform domain fusion techniques. Subsequently, the combined image is
generated by reconstructing these fused coefficients. This study has reviewed a number of
methodologies applied in the domain of image fusion. This particular chapter will outline
the techniques utilized in the fusion of multi-focus images. [28]

II.2 Convolutional Neural Network (CNN)
A CNN is composed of multiple building blocks, known as layers, which work together

to form the architecture. In this section, we will delve into the details of these building
blocks and their roles in the CNN architecture.[29]

CNN is a type of Artificial Neural Network (ANN) that excels at processing spatial
data, such as images, with remarkable generalization abilities. Its deep feed-forward
architecture enables it to learn highly abstracted features of objects, making it more
efficient at identification. A deep CNN model consists of multiple processing layers that
learn various features of input data at different levels of abstraction. The initial layers
extract high-level features with lower abstraction, while the deeper layers extract low-level
features with higher abstraction.[30]
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II.2.1 Concepts of Convolutional Neural Network
A Convolutional Neural Network (CNN), also known as ConvNet, is a type of Artificial

Neural Network (ANN) with a deep feed-forward architecture. Compared to other net-
works with FC layers, CNN has exceptional generalization capability and can efficiently
learn and identify highly abstracted features of spatial data, particularly objects. A deep
CNN model is comprised of a finite number of processing layers that can learn various
features of input data, such as images, at multiple levels of abstraction. The initial layers
of the model learn and extract high-level features with lower abstraction, while the deeper
layers learn and extract low-level features with higher abstraction. The basic conceptual
model of CNN is depicted in Figure (II.1), with different types of layers explained in
subsequent sections.[30] [31]

Fig. II.1: Conceptual model of CNN

Why are Convolutional Neural Networks preferred over traditional neural networks in
the field of computer vision ?

• One of the main advantages of CNNs is their weight sharing feature, which reduces
the number of trainable parameters in the network, helping to prevent overfitting
and improve generalization.

• In CNNs, the classification and feature extraction layers work together, resulting in
a more organized output that is dependent on the extracted features.

• Implementing a large network is easier with CNNs compared to other types of neural
networks. CNNs have become a popular choice for various computer vision appli-
cations such as image classification, object detection, face detection, speech recog-
nition, vehicle recognition, facial expression recognition, and text recognition.[32]

CNN has become a popular tool for achieving successful outcomes in a variety of
computer vision tasks such as image classification, object detection, face detection, speech
recognition, vehicle recognition, facial expression recognition, and text analysis. [32]

Now, a brief overview of the various components or fundamental elements of CNN is
provided below.
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II.2.2 CNN architecture
CNNs are designed with a specific assumption in mind: that the input data will be

images. As a result, the architecture of CNNs is tailored to effectively process and analyze
this type of data.[33]

II.2.3 Network Layers
A Convolutional Neural Network (CNN) is composed of multiple building blocks,

known as layers, which work together to form the architecture. In this section, we will
delve into the details of these building blocks and their roles in the CNN architecture [33]

II.2.3.1 Convolutional Layer

The convolutional layer is a vital element in the architecture of any CNN. It comprises
a group of convolutional kernels, or filters, that are used on the input image (depicted as
N-dimensional matrices) to create an output feature map.

Fig. II.2: convolutional layer in cnn

II.2.3.2 Pooling Layer

Pooling layers in (CNNs) downsample feature maps produced by convolutional op-
erations, reducing their size while preserving the most important features. The pooling
process involves specifying the region size and stride, similar to convolution. Various
pooling techniques exist, including max pooling, min pooling, average pooling, and more,
with max pooling being the most widely used. However, a key limitation of pooling layers
is that they can compromise the overall performance of CNNs by focusing on feature
presence rather than their exact location in the input image.
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Fig. II.3: pooling layer in cnn

II.2.3.3 Activation Functions (Non-Linearty)

The primary role of an activation function in a neural network is to transform the
input into an output, which is calculated by combining the weighted sum of the neuron’s
inputs with a bias term (if applicable). Essentially, the activation function determines
whether a neuron is activated or not for a given input, producing a corresponding output.

In Convolutional Neural Network (CNN) architectures, non-linear activation layers are
typically used after each learnable layer (such as convolutional and fully connected layers).
These non-linear layers enable the CNN model to learn complex patterns and map inputs
to outputs in a non-linear fashion. A crucial property of an activation function is that it
must be differentiable, allowing for error backpropagation to train the model effectively.
The most popular activation functions used in deep neural networks, including CNNs, are
described below.

Fig. II.4: activation functions non-linearity in cnn

II.2.3.4 Fully Connected (FC) Layer

In most CNN architectures designed for classification, the final components are fully-
connected layers, where each neuron in a layer is linked to every neuron in the previous
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layer. The last fully-connected layer serves as the output layer, also known as the classifier,
of the CNN architecture.

Fully-connected layers are a type of feed-forward artificial neural network (ANN) that
follows the traditional multi-layer perceptron neural network (MLP) principle. They
receive input from the last convolutional or pooling layer, which is a set of feature maps.
These feature maps are then flattened into a vector, which is fed into the fully-connected
layer to produce the final output of the CNN.

Fig. II.5: The architecture of Fully Connected Layers

II.2.4 CNN model
A CNN is a common type of deep learning model designed to learn a complex hierarchy

of features in signal or image data. It is structured as a multi-stage neural network where
each stage represents a different level of abstraction. This network consists of feature maps
containing neurons that are connected through operations such as convolution, activation,
and pooling.In Convolutional Neural Networks (CNNs), three fundamental architectural
concepts are used: [34]

• Local Receptive Fields: Neurons in a layer are connected to a small group of neigh-
boring neurons from the previous layer, allowing for local convolutional operations.
This concept is inspired by the visual cortex organization in mammals.

• Shared Weights: The weights of a convolutional kernel are consistent across different
locations within a feature map at a given layer. This helps in reducing the number
of trainable weights significantly.

• Sub-sampling: This concept involves reducing the dimensions of the feature maps
by techniques like max-pooling, which helps in capturing the essential information
while reducing computational complexity.

These concepts together allow CNNs to efficiently process spatial data such as images.
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II.2.5 CNNs for image fusion
II.2.5.1 Feasibility

In summary, fusion in image processing can be seen as a classification problem, where
the activity level measurement is a form of feature extraction and the fusion rule acts
as a classifier. CNNs can be used for image fusion due to their end-to-end framework,
which includes convolutional layers for feature extraction and fully-connected layers for
classification. Existing fusion methods often involve designing local filters or using pre-
designed bases for activity level measurement, which can be seen as similar to convolving
with those bases in CNN architecture.[35]

II.2.5.2 Superiority

Similar to visual object classification applications, the CNN-based fusion method offers
two key advantages over existing methods.

Firstly, it eliminates the need for manually designing complex activity level measure-
ment and fusion rules, as the focus shifts to designing the network architecture instead.
With the availability of user-friendly CNN platforms like Caffe and MatConvNet, re-
searchers can easily implement the network design.

Secondly, the CNN model allows for the joint generation of activity level measurements
and fusion rules through learning. The resulting solution can be considered optimal to
some degree, making it likely to be more effective than manually designed rules. As a
result, the CNN-based method shows great potential for producing higher quality fusion
results compared to traditional methods.[35]

II.2.6 Fusion scheme
II.2.6.1 Focus detection

A and B are the names given to the two original image data sources. If the data
sources are colored images, they will be converted to grayscale before merging. Assume
A and B are grayscale versions of the original images, stored as A = A and B = B in
grayscale format. These grayscale versions are input into a trained CNN architecture
to generate a scale map, denoted as parameter S. Each value of S ranges from 0 to 1.
The adjusted versions of the images, A’ or B’, are determined based on the value of S
approaching 1 or 0. A 2-pixel footprint is overlaid on relevant sections of each source
image in S, representing two nearby parameters. The values of each parameter in S are
provided for all pixels within its corresponding patch in M, along with the average of the
overlaid pixels, to create a focus map of the same size as the original images. [36]
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Fig. II.6: Initial segmentation. (a) Focus map (b) binary segmentation map

In a set of 16x16 patches extracted from the source images, the more a value approaches
1 or 0, the more focused the corresponding patch from source images A^ or B^ appears.
Two adjacent coefficients in the set S align their patches in each source image with a
step of two pixels. To generate a focus map (referred to as M) with the same dimensions
as the source images, we map the value of each coefficient in S to all pixels within its
corresponding patch in M and compute the average over the overlapping pixels. In Figure
(II.10)(a), it is clear that the focus details are accurately captured. Areas with intricate
features tend to have values near 1 (white) or 0 (black), while simpler regions typically
have values closer to 0.5 (gray) based on intuition. [36]

II.2.7 Focus detection
The first step in segmentation In order to maintain the relevant information to the

highest extent, there is a need for additional processing of the focus map M.
In our approach, similar to many techniques for multi-focus image fusion in spatial

domain [20, 19, 18], we also employ the commonly used "choose-max" technique to handle
M. Specifically, we apply a constant threshold of 0.5 to divide M into a binary map T,
following the classification principle of the trained CNN model. This process essentially
involves segmenting the focus map.[36]

T (x,y) =


1 if M(x,y) ≥ 0.5

0 otherwise
(II.1)

The binary map obtained is displayed in Fig (II.6)(b). The optical illusion in the focus
map shown in Fig (II.6)(a) should be noted, where gray areas appear darker than their
actual intensity on a white background and brighter on a black background. The focus
map accurately classifies almost all gray pixels, showing that the trained CNN model
can achieve accurate performance even in areas without many features in the source
images.[36]
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II.2.7.1 Consistency verification

Observing Fig (II.6)(b) reveals that the binary segmented map is prone to including
certain misclassified pixels, which can be readily rectified through the small region removal
technique. Specifically, any region smaller than a specified area threshold is inverted
within the binary map. It is worth noting that in some instances, the source images may
contain exceedingly tiny voids. In such rare cases, individuals have the option to manually
adjust the threshold, even setting it to zero, thereby bypassing the region removal strategy.
In this study, the area threshold is consistently established at 0.01 × H × W, where H
and W represent the individual height and width of each source image, respectively.[36] .

Fig. II.7: (a) Initial Decision Map (b) Initial Fused Image (c) Final Decision Map (d)
Fused Image

In Fig (II.7)(a), you can see the initial decision map generated by following this
method. Fig (II.7)(b) shows the combined image created by applying the initial deci-
sion map using the weighted-average rule. It is apparent that there are some unwanted
flaws near the borders that separate the clear and blurry regions. Just like in prior studies
[18], we employ the guided filter to enhance the accuracy of the initial decision map. The
guided filter, recognized for its ability to maintain edges, transfers the structural charac-
teristics of a guide image to the filtered result of the input image. The initial fused image
acts as the guide image to direct the filtration process of the initial decision map. The
guided filtering procedure involves two adjustable parameters: the local window radius
noted as ’r’ and the regularization parameter. ,[36] denoted as ϵ

II.2.7.2 Fusion

At last, using the obtained decision map D, we compute the fused image F using the
pixel-wise weighted-average rule.[36]

F (x,y) = D(x,y)A(x,y)+(1−D(x,y))B(x,y) (II.2)
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II.3 Latent Low-Rank Representation (LATLRR)
Latent Low-Rank Representation (LatLRR) is a popular method for combining vis-

ible and infrared images. It breaks down images into three key components: the base,
salient, and sparse parts. While current approaches focus on merging the base and salient
parts, this study argues that all three components should be included in the fusion pro-
cess to achieve accurate image reconstruction. Additionally, incorporating Convolutional
Neural Networks (CNNs) with LatLRR is challenging, especially when sparse parts are
involved.The results show that incorporating sparse parts significantly improves fusion
performance. The proposed strategy involves using deep learning to fuse base and sparse
parts, and summation to combine salient parts. This approach enhances the performance
of LatLRR-based methods and provides valuable insights for future advancements in im-
age fusion.[37]

Fig. II.8: The framework of proposed method

II.3.1 Strategy LatLRR method
In this paragraph, we will explain the proposed image merging method in detail. The

approach involves decomposing input images into low-rank and salient parts using Latent
Low-Rank Representation (LatLRR), as illustrated in Fig.9. The decomposition process
yields a low-rank part (Xlrr) and a salient part (Xs) for each input image (X). The
proposed fusion method, shown in Fig.7, takes two source images (I1 and I2) as input
and applies LatLRR to obtain low-rank and salient parts for each image. The low-rank
and salient parts are then fused separately using a weighted-average strategy. Finally, the
fused image (F) is reconstructed by combining the fused low-rank part (Flrr) and salient
part (Fs).[37]
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Fig. II.9: The framework of proposed method

II.3.1.1 Fusion of low-rank parts

The low-rank components of the source images capture more general structural details
and overall brightness. Therefore, in our image fusion approach, we employ a weighted av-
eraging technique to combine these low-rank components. This fused low-rank component
is computed using Equation (II.3).[37]

Flrr(i, j) = w1I1lrr(i, j)+w2I2lrr(i, j) (II.3)

The low-rank components of the source images contain essential global structure and
brightness information. To effectively combine these components, our fusion method
employs a weighted average approach. Specifically, the fused low-rank component is cal-
culated using Equation (II.3), where the weights w1 and w2 are assigned to the coefficients
of the low-rank components of I1 and I2, respectively, at each position (i,j). This strategy
helps preserve the global structure and brightness information while minimizing redun-
dant information, we choose w1 = 0.5 and w2 = 0.5. [37]

II.3.1.2 Fusion of salient parts

The key components of the model incorporate both local structural details and promi-
nent characteristics, as illustrated in Fig.II.10

Fig. II.10: The fusion procedure of salient parts

The key point is that the salient parts of each source image, denoted as I1s and
I2s, contain complementary information that needs to be preserved in the fused image.
using a simple sum strategy to fuse the salient parts, as represented in Equation (II.4).In
other words, the idea is to add the salient features from each source image to create a

University of Kasdi Merbah Ouargla 23



Chapter II. Some Image Fusion methods

fused image that retains all the important information from both sources. This approach
ensures that no salient features are lost during the fusion process. [37]

Fs(i, j) = s1I1s(i, j)+ s2I2s(i, j) (II.4)

In Eq. (II.4), (i, j) is for coefficients of I1s, I2s, and Fs. Choosing s1 = 1, s2 = 1

II.3.1.3 The reason of choose sum strategy

In this section, we’ll justify our approach of using a simple summation strategy to
combine the salient parts. Specifically, we select coefficients from two salient parts that
are located in the same row, as shown in Fig. II.11(a) and Fig. II.11.4(b).

(a) (b)

Fig. II.11: The saliency part of infrared image(a) and The saliency part of visible image(b)

In Fig. II.11.(a) and Fig. II.11.(b), infrared salient part > visible part in red boxes.
Visible part > infrared in third red box. Salient features from source images must be in
fused image without loss (sum strategy retains features weight-average reduces them).[37]

II.3.1.4 Reconstruction

After calculating the fused low-rank part Flrr and salient part Fs using Equation (II.3)
and Equation (II.4), the fused image F is reconstructed through Equation (II.5)[37]

F (i, j) = Flrr(i, j)+Fs(i, j) (II.5)
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II.3.2 Summary
Here is a summary of the fusion method proposed based on LatLRR:

• The source images are decomposed by LatLRR into the low-rank parts IC lrr and
the salient parts IC lrr .

• Two fusion strategies, weighted-average fusion, and sum strategy, are utilized to fuse
the low-rank parts and salient parts. This results in the fused low-rank part Flrr
and the fused salient part Fs.

• Finally, the fused image F is obtained using Eq (II.5).[37]

II.4 NSST and Improved PCNN
In this study, we present a new algorithm for merging visible and infrared images., tak-

ing advantage of the unique characteristics of each type of image. The proposed method
uses a non-subsampled shearlet transform (NSST) to decompose the source images into
high and low frequency components. The low frequency components are then fused using
a modified spatial frequency approach, which incorporates a pulse-coupled neural network
(PCNN) and adaptive link strength adjustment. For the high frequency components, a
self-adaptive fusion rule is applied based on local area variance and gradient. Finally,
the fused low and high frequency components are reconstructed using the inverse NSST
transform, resulting in a fused image that effectively combines the important informa-
tion from both infrared and visible images. Experimental results demonstrate that the
proposed method outperforms other image fusion techniques based on non-subsampled
contourlet transform (NSCT) and NSST. [38]

II.4.1 Strategy NSST method
II.4.1.1 Low Frequency Components Fusion Rule

After applying the non-subsampled shearlet transform (NSST), the fundamental in-
formation of the image is extracted, which involves removing the texture and fine details.
Therefore, fusing the low-frequency components is crucial. While the adjacent domain
energy extraction method helps preserve the essential edges of the source image, it tends
to weaken the edge information in lower-brightness areas. To address this, a modified
spatial frequency (MSF) approach is employed to stimulate pulse-coupled neural net-
work (PCNN) neurons. This approach effectively mitigates the Gibbs phenomenon and
provides a more comprehensive representation of image details. The specific process is
outlined as follows:[38]
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Calculate the modified spatial frequency MSF

The spatial frequency (SF) method involves using a sliding window to extract low-
frequency components and calculating the gradient energy in both row and column di-
rections. The low-frequency components, denoted as I C (i, j), are obtained through
a Non-Subsampled Shearlet Transform (NSST) decomposition. The definition of MSF
(Multiscale Spatial Frequency) is as follows:

MSF I = 1
M ×N

M∑
i=1

N∑
j=1

(RF +CF +MDF +SDF ) (II.6)

In Equation (II.6). The variables RF, CF, MDF, and SDF represent row frequency,
column frequency, main pair angular frequency, and pair angular frequency, respectively.
Additionally, M and N signify the dimensions of the rectangular window used for I MSF.
[38]

Calculate the adaptive link coefficients

Reflects the average color gamut of the image. It can capture fine details such as
edges, borders and textures. Mathematically, the average gradient can be expressed as
follows:

G
I(i;j) = 1

(M −1)(N −1)

M−1∑
i=1

N−1∑
j=1

[(CI(i+1, j)−CI(i, j)2 +(CI(i, j +1)− (CI(i, j))2]/2

(II.7)
According to equation (II.8), the term B represents the variance.[39]

βI
ij = 1

1+ exp(−G
I(i, j))

(II.8)

Calculate low Frequency Fusion Components

Here is a paraphrased version:

• The adaptive connection coefficients I ij are calculated using the method described
earlier.

• The parameters of the PCNN model are initialized, with L(0) = U(0) = Y(0) =
T(0), and the maximum number of iterations set to N max.

• The input images are fed into the PCNN model as motivational signals, and the
total number of firings for the two source images are recorded as T(n) and T(n) at
each iteration.

• The low-frequency fusion result is obtained by applying Equation (II.9) to the PCNN
output.[38]
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CF (i, j) =


CA(i, j),T A

ij (n) ≥ T B
ij (n)

(CB(i, j),otherwise
(II.9)

II.4.1.2 High Frequency Components Fusion Rule

Following the decomposition of NSST, the high frequency components primarily rep-
resent the edge details and texture information in images, significantly impacting the
overall visual quality of the fusion image. The variability of the local area indicates the
magnitude of changes within regional components, serving as a measure of image clarity
in that specific area. Furthermore, the local average gradient provides insight into finer
details such as boundaries and textures in the region. Therefore, in order to enhance
the high frequency components, an adaptive weighting method based on local average
gradient and variance is employed.[38]

II.5 Conclusion
Image fusion is a critical area of study in image processing, with a primary focus on

pixel-level fusion currently. This process involves combining multiple images from various
sensors to create a new image with enhanced information suitable for tasks like target
recognition and image comprehension. This chapter introduces methods such as LATLRR
and NSST for image fusion, and also utilizes the CNN method for hot spots images in
our research.[40]
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Result and discussion
III.1 Introduction

In this chapter we will present the simulation results of the method CNN which it
combines the advantages of several techniques to provide better quality image. Finally,
we will compare it with other methods on the same database.

III.2 Experiment
In this section, we present a comparative study of image fusion for solar panels. The

performance of 3 representative fusion methods is evaluated on 6 pairs of solar panel
images, using 6 objective metrics.

III.3 Proposed working method for CNN
In this chapter we studied a image fusion for solar panels method based on focus

region detection using Convolutional Neural Networks(CNN). So we have to determine
the fusion of the images to get a more clean and precise images using the CNN method.
The important steps of this method are summarized as follows:

• Loading and Preparation: Data is loaded, variables are initialized, and model
weights and biases are prepared.

• Layer 1: Data is passed through the first layer of the neural network with the ReLU
activation function applied to obtain the layer’s output.

• Layer 2: Repeat the previous steps for the second layer while calculating the new
data input and output.

• Layer 3: Combine the data from the previous two layers and pass it through this
layer to get the final output.

• Feature layer: Apply feature extraction to the data collected from the previous layer.
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• Softmax output layer: Calculate the final results by applying the softmax function
to the previous outputs.

• Create a concentration map: Calculate the concentration map using the final results.

• Image Merging: Use the output map to combine images using the specified merging
technique.

• Calculate performance metrics: Calculate merger performance metrics such as QG,
QP, QY, QXY/F, LXY/F, NXY/F.

• Display results: Display the merged image and different metrics to evaluate the
quality of the merge.

III.4 Data collection
In our study of this experiment, we need a thermal camera and solar panels to collect

data. In our search for thermal camera, we found it at Sonelgaz Foundation. After taking
the necessary administrative measures, it was agreed to take the camera outside the insti-
tution to photograph solar panels from another institution (Zergoun green energy), which
specializes in manufacturing them. After it became clear that the data was insufficient
to complete the study, we went to the photovoltaic power station in the Al- hadjira area,
where we were received after taking the necessary procedures and photographed using the
institution’s camera, which took thermal and color images .

III.5 Parameters setting
During experiment, we use 6 pairs solar panel images as test images, and calculate the

above six objective evaluation metrics (view chapter1)to evaluate the influence of three
parameters on fusion performace Besides, considering the parameters of the compared
fusion methods have been already optimized by their authors in program codes, so we
keep them unchangeable in the experiments.

III.6 Method validation
The assessment of the fused image quality is based on visual analysis and quantitative

analysis. In quantitative analysis we used several statistical metrics (QG , QP , QY ,
QXY/F , LXY/F , NXY/F ). In qualitative analysis, it depends on visuality to locate and
identify faults that may affect the image quality, deformation of linear elements, smearing
of contours, aggregation of objects, color saturation or dominant colors. This analysis is
necessary to verify the quality of the images obtained by the fusion.

University of Kasdi Merbah Ouargla 29



Chapter III. Result and discussion

III.7 Experimental settings
In order to evaluate the performance of the studied method, 6 pairs of solar panel

images used as test images are shown in fig(III.1). The studied fusion method (CNN) is
compared with two resentative methods, which are : NSST stands for Non-Subsampled
Shearlet Transform and it analyzes images by analyzing lines and edges at different slant
angles. NSST is characterized by its ability to effectively represent irregular shapes and
enhance image details. LATLRR stands for Local Activity-tuned Low Rank and Sparse
Representation and focuses on representing data using the concept of low-rank and sparse
representation. LATLRR relies on improving image quality by combining low-rank and
sparse information. To obtain the results of these methods, we use the original codes of
these methods, which are provided onine by their authors.

(a) Pair (b) Pair

(c) Pair (d) Pair

(e) Pair (f) Pair

Fig. III.1: 6 pairs of solar panel images used as test images.
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III.8 Comparison with other image fusion methods
In this subsection, we compare with the fused images obtained by different fusion

methods both in visual effect and objective evaluation metrics.

III.8.1 Quantitative analysis
The objective performance evaluation is included in this subsection, like shown in table

(III.2), Table(III.3), Table(III.4) List of values for the six objective evaluation metrics QG

, QP , QY , QXY/F , LXY/F , NXY/F with different methods CNN, LATLRR, NSST,
respectively on 6 pairs solar panel images. Meanwhile, Table(III.1) Average values of
the six metrics above with the three methods.The better results are shown in bold. It
can be seen that the metric values of the three fusion methods can be divided into two
levels. First level, the value of LATLRR are small, which indicate that the fused images
of transform domain methods lose more image spatial information than spatial domain
methods. Second level, the values of CNN and NSST methods are larger than the above
methods. This indicates the fused images of CNN have better effects, which is consistent
with subjective analysis. The fused images of the proposed fusion method CNN perform
well in both subjective and objective evaluation, and present satisfactory fusion effects.

Table III.1: Average evaluation metrics of different methods on 6 pairs of color and thermal
images

Metrics QG QP QY QXY/F LXY/F NXY/F

Methods
CNN 0,6390 0,7834 0,7591 0,9751 0,0194 0,0047
LATLRR 0,4807 0,5657 0,7293 0,9401 0,0588 0.0016
NSST 0,6032 0,5864 0,8325 0,9547 0,0414 0,0147

Table III.2: Evaluation metrics for CNN methods on 6 pairs of color and thermal images

Metrics QG QP QY QXY/F LXY/F NXY/F

Pairs
A 0.5905 0.7346 0.7453 0.9717 0.0230 0.0053
B 0.6355 0.7803 0.7327 0.9784 0.0172 0.0044
C 0.5846 0.8277 0.6970 0.9856 0.0118 0.0016
D 0.7206 0.7706 0.8566 0.9664 0.0260 0.0076
E 0.5949 0.7824 0.7326 0.9698 0.0241 0.0060
F 0.7084 0.8053 0.7905 0.9818 0.0145 0.0037

University of Kasdi Merbah Ouargla 31



Chapter III. Result and discussion

Table III.3: Evaluation metrics for LATLRR methods on 6 pairs of color and thermal
images

Metrics QG QP QY QXY/F LXY/F NXY/F

Pairs
A 0.4949 0.5763 0.7327 0.9284 0.0703 0.0012
B 0.5000 0.6228 0.7134 0.9334 0.0657 0.0008
C 0.4467 0.4594 0.7080 0.9512 0.0476 0.0021
D 0.5063 0.6607 0.7605 0.9395 0.0585 0.0020
E 0.4680 0.5607 0.7374 0.9203 0.0782 0.0014
F 0.4688 0.5144 0.7263 0.9638 0.0339 0.0023

Table III.4: Evaluation metrics for NSST methods on 6 pairs of color and thermal images

Metrics QG QP QY QXY/F LXY/F NXY/F

Pairs
A 0.5772 0.6128 0.8032 0.9403 0.0527 0.0070
B 0.6109 0.6377 0.7886 0.9518 0.0431 0.0051
C 0.5610 0.4830 0.8268 0.9588 0.0384 0.0028
D 0.6502 0.7027 0.8673 0.9563 0.0410 0.0027
E 0.5819 0.5714 0.8440 0.9454 0.0500 0.0045
F 0.6385 0.5111 0.8661 0.9741 0.0234 0.0005

III.8.2 Qualitative analysis
The combined results of the different merging methods for these two examples are

shown in Figure III.2-3. In Figures (Figure III.2) and (Figure III.3), subfigures (a) and
(b) show a color image and a thermal image, and the combined results obtained by the
CNN, LATLRR and NSST fusion methods are shown in subfigures (c), (d), and (e),
respectively.

These images and combined results are analyzed and discussed in detail below.
Figure III.2 shows the source images and the combined results of the “solar panel”

images. The white frame is also observed in the figure, and it can be found that the clarity
and contrast of the temperature gradient in the white frame region are well preserved by
LATLRR and NSST, as shown in subfigures (d) and (e), respectively. It can be seen from
subfigure (c) that the temperature gradient in the white frame area in the image fused
by CNN is more pronounced than the above two methods.

Figure III.3 shows the source images and the merged results of the “other solar panel”
images, as noted by the white frame in the figure. NSST can get good visual effect.
Through careful observation, it can be seen that the temperature gradient contrast in
the white frame area in Figure (III.3) outperforms the clarity and contrast of LATLRR
compared to CNN, as shown in Figure (d) and Figure (c).
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(a) Source(A) (b) Source(A) (c) CNN (d) LATLRR (e) NSST

Fig. III.2: source images and fused images by different methods

(a) Source(E) (b) Source(E) (c) CNN (d) LATLRR (e) NSST

Fig. III.3: source images and fused images by different methods.

Fig. III.4: Objective performance of different fusion methods on metric QG
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Fig. III.5: Objective performance of different fusion methods on metric QP

Fig. III.6: Objective performance of different fusion methods on metric QY
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Fig. III.7: Objective performance of different fusion methods on metric QXY/F

Fig. III.8: Average some evaluation metrics for different methods
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Figure (III.4),(III.5),(III.6), (III.7), and (III.8 ) provide further insights into the ob-
jective performance of different merging methods on a single dataset. These figures show
a hexagonal grid diagram (radar) used to compare the performance of three different
models: CNN, LATLRR, and NSST.

In Figure (III.4), (III.5), (III.6), and Figure (III.7), six axes (A, B, C, D, E, F) represent
the studied merged images, where it is noted that the blood CNN method Its area in the
radar chart is greater than LATLRR and NSST in the three scales (QG, QP , QXY/F ),
with the exception of the scale (QY ), which gives a good result for the NSST integration
method, as shown in the figure. (III.6), this indicates that the CNN fusion method gives
most of the data in the images fusion between color and thermal images.

As for Figure (III.8), which represents the average of some of the four metrics studied
(QG, QP , QXY/F , QY ), we notice that the CNN fusion method prevails in the three met-
rics, and thus the This method gives the best fusion results compared to other methods.

III.9 Conclusion
Image fusion is the process of fusion two or more images from different or same sources

to create a new image with more comprehensive information. The final section of the study
focused on comparing the effectiveness of the CNN method with other techniques such as
LATLRR and NSST when applied to color and thermal images. By evaluating six factors,
it was clear that the CNN method achieved the best results among the three methods.
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Final conclusion
Image fusion plays a vital role in various fields, including merging thermal images

with color images, which is considered an important field of research. Being an effective
way to collect information, combining thermal images with color images has attracted the
attention of researchers in the field of image processing. This approach is widely used in
the field of medicine, but in this case our attention was directed to another field, namely
renewable energy, where we fused thermal images with color images, and then discussed
the different methods and types of image fusion.

Many methods address the problem of image fusion, one of which is merging thermal
and color images. In order to discover this, we took a method (CNN) that can be used to
analyze both thermal and color images. For thermal images, artificial neural networks can
learn efficient representations of thermal data and identify regions of interest in images.
For color images, it can be used to classify objects in images and reveal patterns and
relationships between different elements. In short, it can also be used to analyze and
process images regardless of their type. The functioning of a (CNN) includes several
layers of transformations and filters that are used to extract important visual features from
images. The process begins with the convolutional layer. Then followed by the Pooling
layer. Followed by Pooling and Activation layers. Next, Fully Connected layers are used
for final classification of the image based on the features extracted from it. Among several
image fusion methods, we compared our CNN method to two representative methods.
Specifically, in transform domain methods: (NSST), (LATLRR). In our experience, we
clearly saw that the (CNN) method has the best results according to the results provided
qualitatively (merged image results) and quantitatively (target evaluation metrics).

Due to time constraints, we could not conduct further experiments with other param-
eter setting values. In future work, we may address this issue and compare it with more
image fusion methods using more metrics for better evaluation.
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