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Recently, the interest in Direct Sequence Code Division Multiple Access (DS/CDMA) for mobile 

transmissions has significantly increased. In DS/CDMA systems, recovering the transmitted 

information requires despreading the received signal using a locally generated pseudo-random code 

(PN). This necessitates precise synchronization between the received codes and the locally generated 

ones before data detection. Therefore, rapid establishment of code synchronization is a crucial issue 

in DS/CDMA systems. 

    The synchronization process generally occurs in two stages: acquisition and tracking. Acquisition 

involves coarse synchronization of the received sequence with the locally generated sequences to 

within a fraction of chip duration (the bit duration of the PN sequence). The second stage, tracking, 

ensures fine alignment of the sequences, allowing the receiver to determine the start and end of each 

symbol. 

    In mobile systems, information transmission over the radio link can occur from a base station to a 

mobile device (downlink) or from a mobile device to a base station (uplink). Propagation conditions 

vary significantly depending on the environment, often necessitating initial code acquisition in highly 

degraded conditions. These environments may include very low signal-to-noise ratios, the presence 

of jammers, channel fading, and multi-access interference, making received signal levels 

unpredictable. 

    Fixed threshold techniques are not suitable in such contexts due to the high risk of false alarms. 

Therefore, it is essential to use adaptive techniques, where the threshold is determined based on the 

ambient noise power. Many Constant False Alarm Rate (CFAR) processors used in radar systems 

have also been applied to PN sequence acquisition problems in DS/CDMA systems to combat the 

variability and instability of the detection (Pd) and the false alarm (Pfa) probabilities. 

    The objective of this study is to acquire PN sequences using an adaptive threshold through the 

ATM-CFAR (Automatic Trimmed Mean-CFAR) using artificial neural network techniques in non-

homogeneous environments.  This algorithm ensures better performance in terms of detection 

probability, even in challenging propagation conditions
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I-1 Introduction: 

In this chapter, we will introduce the basic concepts of RF (Radio Frequency) communication and 

various phenomena related to the propagation of electromagnetic waves, methods of accessing networks, 

and the technique of spectrum spreading. Then, we will focus on several types of CFAR detectors. 

I-2 RF Wave: 

    The RF wave propagates through space in various directions and may encounter a number of obstacles. 

The different obstacles constituting the propagation medium allow the emitted wave to take multiple paths 

before reaching the receiving antenna. Each path follows a different trajectory with its own delay, phase, 

amplitude, and arrival angle. The received signal is the combination of these multiple paths. This 

phenomenon of multipath can limit the transmission speed in wireless networks. When encountering an 

obstacle, some of the energy of this radio wave is absorbed, some may be reflected, and some continue to 

propagate with attenuated power. This results in four main categories of phenomena that affect signal 

propagation: reflection, diffraction, scattering, and dispersion [1].  

 

Fig. I-1: Illustration of propagation mechanisms. 

I-3 Concept on Propagation Phenomena : 

  Reflection:  

This phenomenon occurs when an electromagnetic wave encounters a smooth surface, whose dimensions 

are much larger than the wavelength of the signal [1]. 

  Scattering:  

When the wave collides with an irregular surface or a surface whose dimensions are on the order of the 

wavelength, the reflected energy is scattered in all directions [1].  

 Diffraction:  
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When the path of the wave between the transmitter and the receiver is obstructed by a large-bodied object 

with dimensions much larger than the wavelength, secondary waves are formed behind the object [1].  

 Dispersion:  

It occurs when the wave encounters a non-smooth, multi-angle surface. This phenomenon occurs when a 

wave encounters a multitude of obstacles per unit volume with dimensions of the same order of magnitude 

or smaller than the wavelength λ. In this case, the incident wave is reflected in multiple directions with 

different attenuations [1]. 

I-4 Phenomenon of Multipath: 

    In a wireless communication system, the system's environment interferes with the transmitted wave 

through various mechanisms. The receiver may receive the wave reflected off surfaces such as the ground, 

buildings, ... etc. These replicas are more or less delayed depending on the path lengths and more or less 

attenuated depending on the distance travelled and encountered propagation phenomena. They combine at 

the receiver in a constructive or destructive manner, giving rise to fading [2].  

I-4-1 Positive Effect of Multipath: 

    Multipath propagation enables communication in cases where the transmitter and receiver are not in 

direct line of sight. When this condition is met, multiple paths allow radio waves to overcome obstacles to 

ensure some continuity of radio service [2].  

I-4-2 Negative Effect of Multipath: 

    Multipath propagation presents several drawbacks, the most significant of which are: 

a) Delay spread: In the channel, each path passes with different lengths. Thus, associated signals arrive 

with different delays [2].  

b) Rayleigh fading: Rayleigh fading occurs when the signal envelope varies. The channel transmits to 

the receiver a large number of multipath signals. Constructive interference of this phenomenon occurs when 

multiple received signals add up and produce a resulting signal stronger than the signal from the direct path 

alone. 

I-5 Frequency Shift (Doppler Shift) : 

    The movement of the transmitter or the receiver introduces spreading in the frequency domain, known 

as Doppler shift. If Fm represents the maximum Doppler shift, the Doppler spectrum bandwidth is given 

by: 𝐵𝑑 =  2𝐹𝑚. [2] 

I-6 Network Access Methods: 

    The three main multiple access methods used in communication systems are Frequency Division 

Multiple Access (FDMA), Time Division Multiple Access (TDMA), and Code Division Multiple Access 

(CDMA) [3].  
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1-6-1 Time Division Multiple Access (TDMA): 

    In TDMA systems, the bandwidth is shared among all users, but the division occurs in the time domain. 

A carrier frequency is shared among different subscribers in time slots. Most TDMA-based radio frequency 

systems are synchronous, meaning they allocate transmission periods to each user to avoid multiple access 

interference (MAI). Each signal requires a specific time interval allocated to it, and the receivers also adhere 

to the associated intervals to reconfigure the sequence of information as we observe in Figure (I-2). 

 

Fig.I-2: Time multiplexing (TDMA) scheme. 

I-6-2 Frequency Division Multiple Access (FDMA): 

    Frequency Division Multiple Access (FDMA) is a widely used multiplexing technique in radio frequency 

communication systems. It is considered the oldest multiple access method. FDMA involves dividing the 

channel bandwidth into U (number of users) bands of non-overlapping frequencies. Users transmit their 

signals continuously, with each signal being transmitted on a different frequency, as illustrated in Figure 

(I-3) [3].  

 

Fig.I-3: Diagram of a frequency multiplexing (FDMA). 
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I-6-3 Code Division Multiple Access (CDMA): 

     Code Division Multiple Access (CDMA) is a more recent multiplexing technique compared to TDMA 

and FDMA. In this technique, users share the same frequency space and transmit over the same time 

intervals, as depicted in Figure (I-4). Spread spectrum technique is used to assign each user a unique code 

or sequence, which determines the frequencies and powers used [3].  

 

Fig.I-4: Code Division Multiple Access (CDMA) Schema [4]. 

I-6-1-1 CDMA Advantages: 

 Excellent protection against noise and interference. 

 Greater flexibility compared to the other two techniques (TDMA and FDMA). 

 Wide coverage. 

 Frequency diversity. 

I-6-1-2 CDMA Disadvantages: 

 Time synchronization of codes is difficult. 

 The transmission rate may be affected if all codes are used in the same system due to potential 

code interference and increased noise. 

I-6-2 CDMA Characteristics: 

The main characteristics of this type of system are as follows [4]: 

 High frequency utilization: 7 to 10 times higher than current analog and TDMA/FDMA systems. 

 Larger coverage area: up to a radius of 30 km. 

 Universal frequency reuse: shared use of a single frequency band by all cell sites. 

 Interference reduction: strong resistance to noise, packet transmission.  

I-6-3 CDMA Principle: 

    The rapid rise of digital communication systems has contributed to the development of personal 

communication systems and cellular mobile radio systems such as wireless telephony. This has led to a 
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significant increase in the number of users, each with different transmission rates, who must share the same 

resources of such a system to access the same network for various services. Hence, the need for a more 

efficient multiple access technique, namely CDMA is necessary. In a CDMA system, the signal from each 

user is spread by its own spreading code and then transmitted through the radio channel. At the receiver, 

the received signal is despreaded by the same spreading code used at the transmitter to recover the originally 

transmitted data. 

    CDMA system based on spread spectrum not only improves the capacity of the communication system 

but also enables effective management of the available frequency band. Spread spectrum technique in 

CDMA is utilized by various methods. The most commonly used methods are FH-CDMA (Frequency 

Hopping-CDMA) and DS-CDMA (Direct Sequence-CDMA) [4]. 

a) FH-CDMA (Frequency Hopping-CDMA): In frequency hopping CDMA, data is transmitted on 

different frequencies that change periodically. This change indicated by the spreading code. There are two 

types of frequency hopping CDMA: 

1- Slow Frequency Hopping (SFH-CDMA): Multiple code sequences are transmitted at the same frequency. 

 2- Fast Frequency Hopping (FFH-CDMA): Chips of the same code are transmitted over   multiple 

frequencies. 

b) DS-CDMA (Direct Sequence-CDMA): In DS-CDMA systems, data is encoded directly. 

I.7 Spectrum spreading technique: 

    Emerging in the 1940s thanks to the information theory developed successively by N. Wiener and C.E. 

Shannon, spread spectrum techniques were initially intended for secure digital communications such as 

military telecommunications. With the rise of mobile radio-communication systems, spread spectrum 

techniques have become prevalent in various standards such as 𝐼𝑆 − 95, 𝑈𝑀𝑇𝑆, 𝐼𝐸𝐸𝐸802.1 [5]. 

I-7-1 Principle of Spread Spectrum: 

    Spread spectrum is, by definition, a means of transmitting a given signal using a much wider frequency 

band than that employed by conventional techniques, utilizing a code sequence. The properties of such   

transmission system are numerous. Figure (I-5) illustrates a schematic example of spreading a data signal. 

The data signal, with a symbol duration of 𝑇𝑠, is multiplied by the spreading sequence with a chip rate of 

𝑇𝑐. The ratio 𝑇𝑠/𝑇𝑐 is called the spreading factor 𝐺. At the receiver, the signal is multiplied by the code and 

integrated (correlated) to retrieve the transmitted information [5].  
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Fig.I-5: Spreading a data sequence. 

I-8 Direct Sequence Spread Spectrum (DS-SS): 

    Spread Spectrum by Direct Sequence (DS-SS) is the most widely used technique. It involves multiplying 

the transmitted information message, with a rate 𝑅𝑏, by a pseudo-random code with a lower rate, 𝑅𝑐. The 

ratio between the two defines the spreading gain: 𝐺 =  𝑅c / 𝑅b , thus 

 𝐺 =  𝑇b / 𝑇c                                                                         (I-1). 

    Where: 

 𝑇b =  1 / 𝑅𝑏 is the duration of a chip bit. 

 𝐺 is usually an integer greater than 1 since it measures spectrum spreading and represents the 

number of chips per information bit. 

 𝑇c =  1 / 𝑅𝑐 is the duration of a rectangular pulse of the code, also known as the information bit. 

This ratio is also referred to as the processing gain. In this sense, it represents a measure of resistance 

to interference and intentional jamming achieved by increasing the bandwidth of the transmitted 

signal [1,5].  

 

 

               Fig.I-6: General diagram of a DS spectrum spreading system [5]. 
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I-8-1 Advantages:  

 Utilization of a single carrier providing a simple frequency generator. 

 DS-CDMA exhibits high resistance to multipath fading. In this case, interference between different 

paths is reduced. 

 The increase in the number of users depends only on the number of codes used, not on the capacity 

of the radio channel, which remains limited and scarce. 

 Robustness against jammers.  

 

I-8-2 Disadvantages:  

 The spectral efficiency of DS-CDMA is low: the useful data rate per user is low compared to the 

occupied bandwidth. 

 DS-CDMA is susceptible to near-far effect: signals from users closest to the base station, and thus 

received with high power levels, interfere with the weaker signals from distant users. 

 A power control mechanism must be implemented to adjust the power levels of users based on their 

distance from the base station.  

 

I-9 Synchronization in DS-CDMA Systems: 

    Synchronization is a crucial task in direct sequence spread spectrum systems and is carried out in two 

stages: acquisition, which is the initial synchronization, and tracking, which is precise synchronization. 

Acquisition is the most important and the most challenging task. It synchronizes the received code with the 

locally generated code with a certain level of accuracy. Compared to acquisition, code tracking is a 

relatively simple task to accomplish; it can be performed using a Phase-Locked Loop (PLL). [6] 

I-10 Acquisition Phase: 

    The primary goal of PN code acquisition is to achieve coarse synchronization between the transmitter 

and the receiver. This is achieved by multiplying the received signal by shifted versions of the local code. 

A detector is used to perform this operation. Each relative position between the codes (of the transmitter 

and the receiver) is called a "cell." The total number of cells needed to verify the acquisition is called the 

"uncertainty region." This region is explored using a procedure known as a search strategy. PN code 

acquisition is a closed-loop process controlled by the search strategy block. 

    The purpose of acquisition is to synchronize the locally generated code with the received code. In this 

section, we will introduce various techniques used to achieve this alignment. They are all based on the 

principle described in Figure (I-7). The receiver assumes a phase for the spreading sequence and tries to 

despread the received signal using this same phase. If the proposed phase matches the sequence of the 

received signal, the wideband signal will be correctly despread, providing the original narrowband 
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information. A bandpass filter with a bandwidth similar to that of the narrowband signal is then used to 

recover the energy of the signal. Since the proposed phase is equal to that of the received signal, the 

bandpass filter will collect all the energy. In this case, the receiver concludes that coarse synchronization is 

achieved and activates the tracking loop to perform fine synchronization. Otherwise, if the proposed phase 

differs from that of the received signal, the bandpass filter will only recover a small portion of the energy. 

The receiver then concludes that the proposed phase is incorrect and retries with other phases .  

 

Fig.I-7: General Acquisition Circuit [6]. 

I-11 Search Strategies: 

    Acquisition methods can be classified according to the approved search strategy into three systems: 

Serial, Parallel, and Hybrid.  

I-11-1 Serial Search: 

    In this method, the acquisition circuit cycles through to test all possible phases, one after the other (in 

series), as shown in Figure (I-8). This type of circuit is not too complex. However, the time penalty 

associated with a missed hit is significant. Additionally, a longer integration time must be chosen to reduce 

the probability of misses. This results in a relatively long acquisition time [2].  

 

Fig.I-8: Principle of serial acquisition [2]. 

I-11-2 Parallel Search: 
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    In a fully parallel acquisition system, the code acquisition time can be significantly reduced compared to 

the first technique, so that all code test phases are simultaneously tested, as shown in Figure (I-9). Although 

this technique is more complex than the first strategy, it allows for the generation of exceptionally long PN 

codes. This is because the simultaneous placement of multiple detectors maximizes the number of 

obtainable PN codes[2] . 

 

Fig.I-9: Parallel acquisition principle. 

I-11-3 Hybrid Search: 

   A hybrid search results from a mixture of the two previous methods (serial and parallel searches). The 

goal is to reduce the acquisition time of the first technique and the complexity of the devices in the second 

method. In case of lack of synchronization, the search phase is updated by N cells until synchronization is 

detected [2].  
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Fig.I-10: Hybrid acquisition principle [2].  

I-12 CFAR Detection: 

    CFAR algorithms operate by deriving a threshold from the probability density function (pdf) of the non-

coherent detector’s output signal under the null hypothesis  𝐻0 , which assumes that no target is present in 

the detection cell. This threshold, crucial for signal detection, is determined by a multiplicative constant  𝑇 

, ensuring that the probability of false alarm 𝑃𝐹𝐴  remains at a predefined minimum level. Hence, the 

threshold equals the product of 𝑇 computed from the designated 𝑃𝐹𝐴  and the real-time estimated noise 

power  𝑋, which varies with the environmental conditions. 

      Fig I-11 illustrates the CFAR detection method involves serially processing samples from the quadratic 

detector through a shift register comprising 𝑁𝑐 + 1   cells. Among these cells,  𝑁𝑐 reference cells  𝑍𝑖  ( 𝑖 =

1, . . . , 𝑁𝑐  )  capture outputs from the non-coherent detector corresponding to various potential offsets 

(phases) of the PN sequence. The statistic X is then derived from the processing of these reference cells. 

The initial cell, labeled 𝑍0 and referred to as the 𝑐𝑒𝑙𝑙 𝑢𝑛𝑑𝑒𝑟 𝑡𝑒𝑠𝑡 (𝐶𝑈𝑇), signifies the detector output linked 

to the phase of the PN sequence being tested. 
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Fig.I-11: Block diagram of an adaptive detection system. 

    When 𝑍0 surpasses the adaptive threshold, it indicates synchronization between the locally generated PN 

sequence and the received one. Consequently, the tracking loop is engaged to refine synchronization 

between both PN sequences for decoding received information accurately. 

    Conversely, when 𝑍0 falls below the adaptive threshold, this signifies a lack of synchronization between 

the received PN code phase and the locally generated one. Consequently, the local PN code is temporally 

delayed to explore alternative cells. 

    Several continuous false alarm rate (CFAR) techniques have been used for obtaining the DS/CDMA 

code to combat change and instability in detection probability (Pd) and false alarm probability (PFA). Here 

are some CFAR detectors used in the field of detection that were later applied to the acquisition of PN 

sequences in DS/CDMA systems. 

I-12-1 CA-CFAR:  

    Finn and Johnson proposed this detector. This algorithm estimates the noise power in real-time, which 

is equal to the sum or arithmetic mean of samples within the reference window (see Fig I-12).  

 

Fig.I-12: Block diagram of conventional CFAR detectors. 
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I-12-2 GO-CFAR: 

    Hansen and Sawyers proposed this detector. This algorithm uses the maximum of the sums of outputs 

from two windows (upstream and downstream) located on both sides of the cell under test. The goal of this 

improvement is to correct the masking effect [5].  

I-12-3 OS-CFAR: 

    Rohling proposed the OS-CFAR (Order Statistics) detector, in which the samples from reference cells 

are ordered in ascending order, and the noise power is taken equal to the kth sample. This rank is chosen to 

maximize the probability of detection (see Fig I-13). [5].  

 

Fig.I-13: Functional diagram of the detector OS-CFAR. 

I-12-4 CMLD-CFAR:  

     Rickard and Dillard proposed the CMLD (Censored Mean Level Detector). The principle of this 

detector is to estimate the noise level by calculating the average of uncensored cells after censoring cells 

containing replicas of signals from multipath fading. The outputs of the reference cells are ranked based 

on their magnitudes in ascending order after censoring k interference cells. The remaining cells are 

collected to obtain an estimate of the noise level. The adaptive threshold value is determined through a 

multiplier T to obtain the desired probability of false alarm (see Fig I-14) .  
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Fig.I-14: Block diagram of the detector CMLD-CFAR. 

I-12-5 TM-CFAR:  

     The Trimmed Mean CFAR (TM-CFAR) detector has been presented as a hybrid between CA, OS-, and 

CMLD-CFAR. In this detector, the smallest and largest noise samples are censored, and the estimation of 

the noise level is obtained from the remaining noise samples (see Fig I-15). [7].  

 

Fig.I-15: Functional diagram of the detector TM-CFAR. 

I-12-6 ATM-CFAR: 

    In wireless communication systems, the type of environment in which the communication process takes 

place is crucial. The multipath environment affects the transmitted signal, as it often reflects off buildings, 

trees, and terrain in the environment, or may cause delay between users. 

    For this reason, researchers found that each detector among those proposed previously had a relative 

error that could lead to a flaw in signal detection. Consequently, Sofwan and Barkat proposed a new 
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algorithm called ATM CFAR (Automatic Trimmed-Mean CFAR), which is one of the most efficient 

detection algorithms in non-homogeneous environments [8].  

I-13 Conclusion: 

    In this chapter, we have presented the multiplexing techniques used in mobile radio systems. The 

principle of direct sequence spread spectrum is detailed, by describing its main advantages and 

disadvantages. We have also mentioned the principle of PN code spreading. Then, we introduced the 

principle of initial acquisition of the PN sequence and the different search strategies. 

    Finally, we have provided some types of CFAR detectors applied in PN sequence acquisition problems 

in DS/CDMA systems. 
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II-1 Introduction 

    In the realm of wireless communication, the efficient acquisition and synchronization of signals is 

paramount, particularly in environments plagued by noise and interference. The proposed system outlined 

in this chapter leverages a combination of automatic trimmed-mean constant false alarm rate (ATM-CFAR) 

detection and convolutional neural networks MLP(Multi-Layer Perceptron) to enhance the adaptive 

acquisition of pseudo-noise (PN) sequences. This innovative approach not only improves the detection 

accuracy in multipath environments but also dynamically adjusts to varying signal conditions, thereby 

ensuring robust performance. The system's architecture encompasses key processes such as signal 

correlation, neural network-based feature extraction, adaptive threshold setting, and iterative 

synchronization adjustments, all aimed at maintaining optimal signal acquisition. 
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Fig.II-1: Scheme of the proposed system.
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II-2 Application of ATM-CFAR to adaptive PN sequence acquisition: 

II-2-1 Description of the proposed system: 

    The block diagram of the proposed system is shown in Figure II-1. The diagram of the proposed system 

outlines a comprehensive signal detection and synchronization mechanism tailored to a communication 

system involving a single user. This process starts when the antenna receives the input signal.This signal is 

then mixed with the local oscillator signals √2 cos(𝑤𝑐𝑡) and √2 sin(𝑤𝑐𝑡) to produce in-phase (𝐼) and 

quadrature (𝑄) components, respectively. These components are directed through correlators to the filter 

and enhance certain aspects of the signal. 

    The squared output from the correlator generates a signal 𝑍𝑖 that acts as an input to the neural network 

estimation block, which in this case, is an 𝑀𝐿𝑃 (Multi-Layer Perceptron). The 𝑀𝐿𝑃 processes these squared 

signals through multiple layers to extract important features from the signals. These features are critical for 

estimating the adaptive thresholds required for accurate target detection. Based on the MLP's output, values 

for (𝐾1) and (𝐾2) are determined. They are then used to reference a selection table to set the appropriate 

adaptive threshold T(𝐾1, 𝐾2). 

    Following the estimation, the system calculates a series of weighted sums 𝑊𝑝  using the correlator output 

𝑍𝑝
′ . These weights are summed to produce the value 𝑈, which is a key factor in the decision-making process. 

The system then compares Z0 against the adaptive threshold 𝑈𝑇(𝐾1, 𝐾2). 𝑈 to determine the presence (𝐻1) 

or absence (𝐻0) of the signal. If the value 𝑍0 exceeds the adaptive threshold, the hypothesis 𝐻1 is declared, 

indicating that signal acquisition was successful. This will trigger the activation of the tracking loop to stay 

in sync. Conversely, if 𝑍0 does not exceed the threshold, then the hypothesis 𝐻0 is declared, which means 

there is no signal acquisition. In this scenario, the system re-initializes the process by adjusting the phase 

of the local PN code generator with ∆𝑇𝑐 to ensure that the PN code is properly aligned for subsequent signal 

detection attempts. 

    This cycle of correlation, parameter estimation, summation, comparison, and phase adjustment allow the 

system to continuously adapt and increase the possibility of accurate detection even in the presence of noise 

and interference. The integration of neural networks and adaptive threshold mechanisms for input parameter 

estimation provides robustness and flexibility. The system responds dynamically to changing signal 

conditions, and improves performance in signal acquisition. It allows you to maintain a high performance 

through the use of high-speed [9-11].  

II-3 System description and problem formulation: 

    The communication system model under consideration involves D users from simultaneous transmitters; 

with the first user regarded as the initial synchronization point whose performance is the subject of 
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investigation. Fig.II-1 depicts the block diagram of the proposed communication system model. The 

transmitted signal of the ith user is expressed as: 

𝑠𝑖(𝑡) = √2𝑃𝑇𝑖
𝑏𝑖(𝑡)𝑐𝑖 cos(𝜔𝑐𝑡 + 𝜉𝑖)                                 (II -1) 

    Where 𝑃𝑇𝑖
 represents the transmitted power of the ith signal, 𝑏𝑖 is the data waveform, 𝑐𝑖 is the spreading 

sequence, 𝜔𝑐 is the angular carrier frequency, and 𝜉𝑖  is the phase of the ith modulator from the transmitter. 

At the onset of each transmission, the transmitter emits a phase-coded carrier without data modulation to 

aid initial synchronization [12, 13].  

    Therefore, for simplicity, we assume that there is no data modulation on the initial synchronization 

signals. The user signals traverse through a communication channel assumed to be a Rayleigh fading 

multipath channel The output undergoes ATM-CFAR (Automatic Trimmed-Mean Constant False Alarm 

Rate) processing to make a final decision regarding acquisition. 

II-3-1 Received signal model: 

    The communication channel model considered in this work consists of 𝐿 tapped delay lines with a tap 

spacing of one chip  that correspond to the number of resolvable multipath with amplitudes ail and phases 

𝛼𝑖𝑙, 𝑖 =  1, … , 𝐷, 𝑙 =  0, … , 𝐿 −  1, where ail is Rayleigh random variable and 𝜉𝑖𝑙  is uniform random 

variable over [0, 2𝜋]. We assume that the fading amplitude is constant during an observation interval but 

changes from one to another. Moreover, we normalize the total fading power in all resolvable paths to unity. 

The average fading power in each path is defined as [14]: 

𝐸[𝛼𝑖𝑙
2 ] =

1 − exp(−𝜇)

1 − exp(−𝜇𝐿)
exp(−𝑙𝜇), 

𝑙 = 0,1,2 … , 𝐿 − 1;  𝜇 ≠ 0                               (II -2) 

where 𝐸[∙] is the statistical expectation and (II -2) is the exponential decay rate of the diffuse power in each 

path. The probability density function (pdf) of the distributed Rayleigh random variables  𝛼𝑖𝑙 is given . 

𝑓𝛼𝑖𝑙
(𝑥) = 2𝑥 𝜓𝑖𝑙 exp(− 𝑥2 𝜓𝑖𝑙⁄ )⁄ ,             𝑥 ≥0                                                           (II -3) 

Where,  𝜓𝑖𝑙 = 𝐸[𝑥𝑖𝑙
2], 𝑖 =  1, … , 𝐷, and 𝑙 =  0, … , 𝐿 −  1. The receiving antenna is a linear array of 

identical elements spaced 𝑑 apart, where 𝑑 = 0.5𝜆𝑐 and 𝜆𝑐 is the wavelength of the carrier transmitted 

signal. 

    The received signal consists of the signal from the first user, multiple access interferences (MAIs) from 

other users, and additive white Gaussian noise (AWGN) 𝑛(𝑡). Thus, the received signal at an antenna 

element can be expressed  . 
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𝑟(𝑡) = √2𝑃𝑠 {∑ 𝛼1𝑙𝑏1

𝐿−1

𝑙=0

(𝑡 − 𝜏1 − 𝑙𝑇𝑐)𝑐1(𝑡 − 𝜏1 − 𝑙𝑇𝑐) × cos(𝜔𝑐𝑡 + 𝜑1𝑙)exp (−𝑗𝜋 sin 𝜃𝑠)}

+ {∑ √2𝑃𝐼𝑖−1
∑ 𝛼𝑖𝑙𝑏𝑖(𝑡 − 𝜏𝑖 − 𝑙𝑇𝑐)𝑐𝑖(𝑡 − 𝜏𝑖 − 𝑙𝑇𝑐)

𝐿−1

𝑙=0

𝐷

𝑖=2

× cos(𝜔𝑐𝑡 + 𝜑𝑖𝑙) exp (−𝑗𝜋 sin 𝜃𝑖−1)} + 𝑛(𝑡): 

                                        (II − 4)                   

  Where: 

 𝑃𝑠 : Received signal power of the first user. 

 𝑃𝐼𝑖−1  : Received signal power of the interfering user 𝑖 –  1. 

 𝜏𝑖  : Relative time delay in the asynchronous communication channel model. 

 𝜑𝑖𝑙 = 𝜉𝑖 -𝜉𝑖𝑙 − 𝜔𝑐(𝜏𝐼 + 𝑙𝑇𝑐  )  :  Phase in the demodulator of the receiver for user 𝑖 and path 𝑙 ,which 𝑖 =

 2, 3, … , 𝐷, 𝑙 =  0, 1, … , 𝐿 –  1. 

𝑇𝑐 : Chip duration. 

 𝜃𝑠  : DOA angle if the first user signal. 

 𝜃𝑖−1  : DOA angle of the interfering user 𝑖 − 1 

II-3-2 Correlator: 

The correlator corresponding to the single antenna element is depicted in Figure 2. The baseband signal 

𝑟(𝐼′)(𝑡)at this correlator can be expressed as follows: 

𝑟(𝐼′)(𝑡) = 2√𝑃𝑠 {∑ 𝛼1𝑙𝑐1(𝑡 − 𝜏1 − 𝑙𝑇𝑐) cos(𝜔𝑐𝑡 + 𝜑
1𝑙

) × cos(𝜔𝑐𝑡)

𝐿−1

𝑙=0

}

+ 2 {∑ √𝑃𝐼𝑖−1

𝐷

𝑖=2

∑ 𝛼𝑖𝑙𝑐𝑖(𝑡 − 𝜏𝑖 − 𝑙𝑇𝑐) × cos(𝜔𝑐𝑡 + 𝜑
𝑖𝑙

) cos(𝜔𝑐𝑡)

𝐿=1

𝑙=0

} + 𝑛(𝑡)     

(II-5) 

 

    The in-phase and quadrature phase (𝐼 − 𝑄) parts of the correlator are multiplied by the locally generated 

pseudo-noise 𝑃𝑁 code 𝑐(𝑡 −  𝑗𝑐𝑇𝑐/2), where 𝑗𝑐 = 0.1, … , 𝑁𝑐 (Nc denotes the reference window size of 

the Constant False Alarm Rate (CFAR) processor). These components are then integrated over a dwell time 
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interval 𝜏𝐷 = 𝑁𝑇𝐶  𝑠, where 𝑁 is an integer representing the correlation length, resulting in the 𝐼 and 𝑄 

branch components 𝑌𝐼 and 𝑌𝑂, respectively. 

    Subsequently, the output 𝑌𝑚 from each branch of the correlator comprises the first user signal component, 

the Multiple Access Interference 𝑀𝐴𝐼, and the Additive White Gaussian Noise 𝐴𝑊𝐺𝑁, which can be 

mathematically expressed  as we observe in Fig.II-2: 

 

Fig.II-2: Correlator consists of in-phase (I) and quadrature-phase (Q) components. 

𝑌𝑚 = {∑(𝑌𝑆𝑙
𝐼 + 𝑗𝑌𝑆𝑙

𝑄)exp (−𝑗𝜋(𝑚 − 1) sin 𝜃𝑠)

𝐿−1

𝑙=0

}

+ {∑ ∑(𝑌𝑀𝐴𝐼 𝑖𝑙
𝐼 + 𝑗𝑌𝑀𝐴𝐼 𝑖𝑙

𝑄 ) × exp (−𝑗𝜋(𝑚 − 1) sin 𝜃𝑖−1)

𝐿−1

𝑙=0

𝐷

𝑖=2

} + 𝑛𝑚 

(II-6) 

    Where 𝑌𝑆𝐼
𝐼 + 𝐽𝑌𝑆𝐼

𝑄
 denotes 𝐼– 𝑄 component of the first user, 𝑌𝑀𝐴𝑙𝑖𝑙

𝐼 + 𝐽𝑌𝑀𝐴𝑙𝑖𝑙
𝑄 (𝑡) denotes 𝐼– 𝑄 component 

of the MAI, and 𝑛𝑚(𝑡) = 𝑁𝑚
𝐼 (𝑡) + 𝐽𝑁𝑚

𝑄(𝑡) denotes the thermal noise. The in-phase signal component in 

(II-6) due to the first user is given  , 

𝑌𝑆𝑙
𝐼 = √𝑃𝑆𝛼1𝑙 cos(𝜑1𝑙)[∆1𝑅𝑃(𝑗𝑐 , 𝑁 + 1) + (𝑇𝑐 − ∆1)𝑅𝑃(𝑗𝑐 , 𝑁)] = √𝑃𝑆𝑅𝑆𝑙

𝐼  

(II-7) 

where : 

𝑅𝑆𝑙
𝐼 = 𝛼1𝑙 cos(𝜑1𝑙)[∆1𝑅𝑃(𝑗𝑐 , 𝑁 + 1) + (𝑇𝑐 − ∆1)𝑅𝑃(𝑗𝑐 , 𝑁)]                 (II-8) 

    Δ1 represents a random variable uniformly distributed in the interval [0, 𝑇𝑐], and 𝑅𝑝(𝑗𝑐 , 𝑁) denotes the 

code partial autocorrelation function of the initial user. To derive the quadrature phase signal component 
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of the initial user, 𝑐𝑜𝑠(𝜑𝑖𝑙) in equation (II-7) is replaced by −𝑠𝑖𝑛(𝜑𝑖𝑙) . The in-phase term of multiple 

access interference 𝑀𝐴𝐼 can be defined as 

𝑌𝑀𝐴𝐼𝑖𝑙
𝐼 = √𝑃𝐼𝑖−1

𝛼𝑖𝑙 cos(𝜑𝑖𝑙)[∆𝑖𝑅𝑃
(𝑖)(𝑗𝑐 , 𝑁 + 1) + (𝑇𝑐 − ∆𝑖)𝑅𝑃

(𝑖)(𝑗𝑐 , 𝑁)] = √𝑃𝐼𝑖−1
𝑅𝑀𝐴𝐼𝑖𝑙

𝐼           (II-9) 

where : 

𝑅𝑀𝐴𝐼𝑖𝑙
𝐼 = 𝛼𝑖𝑙 cos(𝜑𝑖𝑙)[∆𝑙𝑅𝑃

(𝑖)(𝑗𝑐 , 𝑁 + 1) + (𝑇𝑐 − ∆𝐼)𝑅𝑃
(𝑖)(𝑗𝑐 , 𝑁)]                          (II-10) 

     Here, 𝑅𝑃
(𝑖)

(𝑗𝑐 , 𝑁) represents the code partial cross-correlation between the received sequence of the (i-

1)th user and the locally generated sequence. The 𝑅𝑀𝐴𝑙𝑖𝑙
𝐼  term reduces the power of the interfering signal 

exiting the correlator, influenced by a factor of 𝑅𝑝
(𝑖)

(𝑗𝑐 , 𝑁). To obtain the quadrature phase signal term of 

the multiple access interferences 𝑀𝐴𝐼𝑠, 𝑐𝑜𝑠(𝜑𝑖𝑙) in equation (II-9) is replaced by −𝑠𝑖𝑛(𝜑𝑖𝑙). The noise 

term is determined by 

𝑁𝑚
𝐼 = ∫ 𝑛𝑚

𝐼 𝑐1(𝑡 − 𝑗𝑇𝐶/2)√2 cos(𝜔𝑐𝑡)𝑑𝑡
𝑅𝑇𝑐

0
                                        (II-11) 

    The quadrature phase of the noise term is defined by replacing 𝑐𝑜𝑠(𝜑𝑖𝑙) by 𝑠𝑖𝑛(𝜑𝑖𝑙). 

II-3-3 ATM-CFAR detector: 

   In wireless communication systems, the nature of the environment greatly influences the communication 

process. The presence of multipath environments can distort transmitted signals, as they may be reflected 

off buildings, trees, or terrain before reaching the receiver. Additionally, multipath environments can 

introduce delays between users. 

   Recognizing the impact of environmental factors on signal detection, researchers observed that the 

previously proposed detectors exhibited relative errors that could compromise signal detection accuracy. 

Consequently, Sofwan and Barkat [15] introduced a novel algorithm termed 𝐴𝑇𝑀 − 𝐶𝐹𝐴𝑅 (Automatic 

Trimmed-Mean-CFAR), depicted in Figure 2.6. This algorithm represents one of the most recent and 

effective detection methods designed specifically for non-homogeneous environments . Using this 

algorithm, the estimation of k1 and k2 is made using a statistical method, which called ‘boxplot method. 

In the present work the estimation of this two parameters is made using an artificial neural network. 

    The bloc diagram of the neural network ATM-CFAR provides an overview of the signal detection and 

synchronization mechanisms of a communication system. It starts with the reception of the input signal 𝑍0 

and is processed through the correlator to produce the outputs 𝑍1  to  𝑍𝑁𝑐. The neural network estimates the 

parameters 𝑘1  and 𝑘2  that are used to determine the adaptive threshold 𝑇(𝐾2 , 𝐾1 ) from the selection table. 

The system uses the modified correlator output to calculate the weighted sums 𝑊𝑝   and then sums them up 

to produce 𝑈. Then compare the value 𝑈 with the threshold 𝑇 × 𝑈 to determine whether the signal exists 

(𝐻1 ) or not (𝐻0 ).When a signal is detected, the system synchronizes and continues tracking. If no signal 



 

 
26 

Chapter II                                                      Description of Neural Network ATM-CFAR Detector 

is found, it reinitializes the discovery process. This approach, which integrates neural networks with 

adaptive thresholds, improves signal detection accuracy under a variety of conditions . 

 Input Signal (𝒁𝟎): 

   Input signal is received and processed to extract important information for signal detection. 

 Correlator Outputs (𝒁𝟏, 𝒁𝟐, … , 𝒁𝑵𝒄) 

 The received signal is passed through correlators to produce the values 𝒁𝟏, 𝒁𝟐, … , 𝒁𝑵𝒄 

 Neural Network Estimation Block : 

 Here, a Multi-Layer Perceptron (MLP) is used to estimate the values  𝑘1 and 𝑘2. 

 Threshold Selection Table 𝑻(𝑲𝟏, 𝑲𝟐): 

 This table uses the estimated values 𝐾1 and 𝐾2, along with the desired probability of false alarm 

𝑃𝑓𝑎, to determine the value 𝑇(𝐾1, 𝐾2). 

 Calculation of Weighted Sums (𝑾𝒑): 

 The weighted sums 𝑊𝑝  are calculated using the modified correlator outputs 𝑍𝑝
′ : 

𝑊𝑝 = 𝑘𝑝
′ 𝑍𝑝

′  

where: 

𝑘𝑝
′ = 𝑁𝑐 − 𝑘1 − 𝑘2 + 1 − 𝑝 

𝑍1
′ = 𝑍(𝑘1+1) 

𝑍2
′ = 𝑍(𝑘1+2) − 𝑍(𝑘1+1) 

⋯ 

𝑍(𝑁𝑐−𝑘1−𝑘2)
′ = 𝑍(𝑁𝑐−𝑘2) − 𝑍(𝑁𝑐−𝑘2−1) 

 

 Calculation of the Value 𝑼: 

 The value 𝑈 is calculated by summing the weighted sums 𝑊𝑝  over the range 𝑝 = 1,2, … , 𝑁𝑐 −

𝑘1 − 𝑘2  : 

𝑈 = ∑ 𝑊𝑝

𝑀=𝑁𝑐−𝑘1−𝑘2

𝑝=1

 

 Décision Making: 

 The value of the cell under test is compared to the threshold  multiplied by a constant 𝑇(𝐾1, 𝐾2) to 

determine whether the signal is present (𝐻1) or absent (𝐻0). If it exceeds 𝑈 × 𝑇 

the hypothesis 𝐻1 is declared. 

 If value of the cell under test is less than or equal to the threshold, the hypothesis 𝐻0is declared. 

 

II-3-4 Neural networks:  
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    Neural networks are a program or machine learning model that makes decisions in a manner comparable 

to the human brain, using processes that mimic the way biological neurons work together to identify 

phenomena, evaluate options, and draw conclusions. 

    All neural networks consist of layers of nodes, or artificial neurons: an input layer, one or more hidden 

layers, and an output layer. Each node connects to another and has an associated weight and threshold. If        

the output of an individual node is greater than the specified threshold value, that node is enabled, sending 

the data to the next layer of the network. Otherwise, no data is transmitted to the next layer.  

    Neural networks rely on training data to learn and improve their accuracy over time. Once they reach an 

optimal level of accuracy, they are powerful allies in the fields of computing and artificial intelligence, 

which allow us to classify and group data at high speed. A speech or image recognition task that requires 

hours of research from a human expert can be completed in minutes. Google’s search algorithm is one of 

the best-known examples of neural networks. Among our types of neural networks there are: 

II-3-4-1 MLP network: 

   A multi-Layer perceptron (MLP) network, is a directed artificial neural network (as its name suggests) 

consisting of one intermediate layer called input layer, output layer, and hidden layers. Figure (II.4) shows 

an example of a network with n inputs, 2 hidden layers, and 1 output layer. 

 

Fig-II.3: Example of an MLP network. 

    The input layer always represents the virtual layer associated with the system's inputs. The neurons in 

this layer are connected to the outside world and all receive the same input vector (in fact, the neurons in 

the input layer pass the input without changing). The output of the last layer of neurons always corresponds 

to the output of the system and provides results. Finally, neurons in other layers (hidden layers) have nothing 

to do with the outside and are called hidden layers. In general, a multilayer perceptron can have multiple 

hidden layers and multiple neurons for each layer. In the case of artificial neural networks, training 

algorithms are often added to the model description. Models without learning are of little interest. In most 
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current algorithms, the variable changed during training is the weight of the connection. The next section 

is devoted to the definition and description of the learning algorithm. 

II-4 Learning algorithms: 

    All the information that can be included in the neural network is in the weight of the synapses. Therefore, 

training consists of adjusting these weights so that the network can correctly generate the corresponding 

output for each point in the input space. Thus, learning can be defined as a stage in the development of a 

neural network in which the behavior of the network changes until the desired behavior is achieved, and 

can distinguish between three types of learning. In the present work, the supervised learning is used. 

II-4-1 Supervised learning: 

    The professor provides a data pair (input, corresponding desired output) to the network. The network 

parameters are adjusted to minimize a certain standard of output error, which is composed by the difference 

between the actual output of the network and the corresponding desired value (provided by the professor). 

II-5 Backpropagation algorithm: 

    Using only input/output data, the back propagation algorithm changed the synaptic coefficient (𝑤 𝑖) of 

the network in the opposite direction of the error reference gradient, removed the learning example (𝑥 𝑖, 𝑦 𝑖) 

at each iteration, and changed the new estimate of the synaptic weight wi. This iteration consists of 2 phases: 

 Propagation: At each iteration, the elements of the training set are introduced through the input 

layer. Network outputs are evaluated layer by layer, from input to output. 

 Backpropagation: This step is similar to the previous step. However, the calculations are done in 

the opposite direction (from output to input). At the output of the network, a performance criterion E is 

formed according to the actual system output and its desired value. Then evaluate the gradient of E for 

different weights starting from the output layer and returning to the input layer. 

II-6 Random Search Method (Monte Carlo Method): 

   This is the simplest stochastic method. This method consists of drawing a random solution at each 

iteration. At this point the objective function f is evaluated. The new value is compared with the previous 

value. If it is better than the previous one, this value is recorded with the corresponding solution. And the 

process continues. Otherwise, it returns to the previous point and starts the process again until the stop 

condition is reached (see Fig.II-4). 
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Fig.II-4:  Random Search Algorithm. 

II-7 Analysis of the proposed system: 

II-7-1 Decision variables: 

The received signal is then processed by the in-phase and quadrature phase channels, assuming a 

correlated chi-square signal with two degrees of freedom embedded in Rayleigh fading channel , the 

probability density function “pdf” of the hypothesis H1, 𝐻1(𝑧/𝐻1), in the output of each non-coherent 

detector  can be expressed as 

𝑓𝑧(𝑧|𝐻1) =
1

1 + 𝜇
𝑒𝑥𝑝 (−

−𝑧

1 + 𝜇
) , z ≥ 0              (II − 31) 

 

where 𝜇 denotes the average signal to noise ratio (SNR), and the pdf of the sample H0 is  

Under assumption 𝐻0 : 

𝑓𝑧(𝑧│𝐻0) = 𝑒𝑥𝑝(−𝑧),    z ≥ 0                           (II − 32) 

Using the ATM-CFAR, the reference cells of each AD are ranked firstly in ascending order according 

to their magnitude to form the ordered samples 

𝑍(1) ≤ 𝑍(2) ≤ ⋯ ≤ 𝑍(𝑁𝑐)                                              (II-31) 
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II-7-2 Detection and false alarm probabilities: 

    The performance of this system can be evaluated through the probability of false alarm 𝑃𝑓𝑎 and the 

probability of detection 𝑃𝑑. The probability of false alarm in this scenario is determined as follows : 

𝑷𝒇𝒂 = ∏ 𝑴𝑽𝒊
(𝑻)

𝑵−𝑻𝟏−𝑻𝟐

𝒊=𝟏

                                       (𝐼𝐼 − 34) 

 Where,  

𝑴𝑽𝟏
(𝑻) =

𝑵!

𝑻𝟏!(𝑵−𝑻𝟏−𝟏)!(𝑵−𝑻𝟏−𝑻𝟐)
× ∑

(
𝑻𝟏

𝒋
)(−𝟏)𝑻𝟏−𝒋

𝑵−𝒋

(𝑵−𝑻𝟏−𝑻𝟐)
+𝑻

𝑻𝟏
𝒋=𝟎                        (II-35) 

And 𝑴𝑽𝒊
(𝑻) =

𝒂𝒊

𝒂𝒊+𝑻
    , 𝒊 = 𝟐, … , 𝑵 − 𝑻𝟏 − 𝑻𝟐. 

Where, 𝒂𝒊 = (𝑵 − 𝑻𝟏 − 𝒊 + 𝟏)(𝑵 − 𝑻𝟏 − 𝑻𝟐 − 𝒊 + 𝟏) .  

The detection probability 𝑝𝑑 is obtained by replacing 𝑇 with 𝑇/(1 + 𝜇) in (II-34) where 𝜇 is the signal to 

noise ratio. 

II-7-3 Mean acquisition time: 

    The effectiveness of this system can be evaluated using the average acquisition time, which is expressed 

in terms of Pd and Pfa. It is represented as follows : 

𝑇𝑎𝑐𝑞
̅̅ ̅̅ ̅ ≈

(2 − 𝑝𝑑) + (1 + 𝐾𝑃𝑓𝑎)

2𝑝𝑑

(𝑞𝑅𝑇𝑐)                            (II − 36) 

With: 

- 𝐾 : represents the penalty time associated with a false alarm. 

- 𝑅 : denotes the partial correlation length. 

- 𝑞 : is the period of the PN sequence. 

- 𝑇𝑐: represents the duration of a chip in the PN sequence. 

II-8 Conclusion: 

    In summary, the integration of ATM-CFAR detection with convolutional neural networks for adaptive 

PN sequence acquisition presents a significant advancement in communication systems. This method 

enhances the system's ability to detect and synchronize signals amidst challenging conditions, including 

multipath interference and noise. The use of neural networks for adaptive threshold estimation provides a 

flexible and robust mechanism for real-time signal processing. The iterative process of correlation, 

estimation, summation, and threshold comparison ensures continuous adaptation and high detection 

accuracy. As a result, this system holds promise for improving the performance of wireless communication 

networks, particularly in non-homogeneous and dynamic environments, thereby contributing to more 

reliable and efficient communication technologies. 



 
 

 

 

 

 

 

 

 

 

 

 

Chapter III: 

Results and Discussions 

 
 

 

 

 

 

 

 

 

 

 



 

 
32 

Chapter III                                                                                                    Results and Discussions 

III-1 Introduction : 

In this chapter, we simulate the Monte Carlo method and the 𝐴𝑁𝑁 network using MATLAB to investigate 

the influence of various parameters such as false alarm probability (𝑃𝑓𝑎), partial correlation length (𝑁), 

power ratio (𝜌), and the number of interfering cells (𝑟) on detection probability (𝑃𝑑) and acquisition time 

(𝑇𝑎𝑞). This analysis aims to compare the impact of these parameters on the improvement of results.  

III.2 Results and discussions : 

    In this section, we check the detection probability 𝑝𝑑 and 𝑡𝑎𝑞 , taking into account the following 

assumptions: 

1- False alarm rate values Pfa=10−3 , 10−4 and 10−5. 

2- The number of reference cells Nc=32. 

3- The number of interference cells r=2, 6 and 10. 

4- The partial correlation length N=64, 96 and128. 

5- The ratio of the interference power to the signal power 𝜌=0.3, 1 and 3. 

 After many attempts, the ANN was selected based on the smallest error in the output and network  (see 

Fig.III-1) 

 

Fig.III-1: Database training using the MLP network. 
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III.2.1 Effect of interfering cell number (r): 

Results obtained for the following parameters: 

 r=2 ,6 ,10 ; Nc=32 ; N=64 ; 𝝆=1 ; Pfa=𝟏𝟎−𝟒 

 

Fig.III-2: Probability of detection according to the (SNR/Chip) for different interfering cell numbers (r). 

 

Fig.III-3:  Time of acquisition according to the (SNR/Chip) for different interfering cell numbers (r). 

    In Fig(III.2) :  From the graph, it can be observed that decreasing r improves the signal detection 

performance (increases the value of 𝑃𝑑) at various levels of Signal-to-Noise Ratio per Chip (SNR/Chip). 

When 𝑟 is smaller (r=2), the detection performance is better compared to larger 𝑟 values. This means that 

decreasing 𝑟 correctly enhances signal detection over a wide range of SNR values. 
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    In Fig (III.3): From the second graph, it can be observed that decreasing 𝑟slightly improves the 

acquisition time 𝑇𝑎𝑞 at various levels of Signal-to-Noise Ratio per Chip (SNR/Chip). We notice that 𝑇𝑎𝑞 

decreases significantly with a decrease in 𝑟 at low SNR values (from -30 dB to -20 dB). After that, the 

differences between the three 𝑟 (2, 6, 10) become less noticeable as the SNR increases, with the values 

converging more closely. Overall, we can say that decreasing 𝑟 helps improve detection performance and 

reduce acquisition time 𝑇𝑎𝑞, especially in high noise conditions (low SNR values). 

III.2.2 Effect of partial correlation length N: 

Results obtained for the following parameters: 

 N=64 ,96 ,128 ; Nc=32 ; 𝝆=1 ; r=6 ; Pfa=𝟏𝟎−𝟒 

 

Fig.III-4:  Probability of detection according to the SNR/Chip for different partial correlation lengths (N). 

 

Fig.III-5: Time of acquisition according to the SNR/Chip for different partial correlation lengths (N). 



 

 
35 

Chapter III                                                                                                    Results and Discussions 

 In Fig (III.4) : The graph illustrates the effect of the partial correlation length 𝑁 on the probability of 

detection 𝑃𝑑 at various Signal-to-Noise Ratio per Chip (SNR/Chip) values. It is evident from the graph 

that 𝑃𝑑 improves with the increase of  𝑁. 

 (N = 64): At the lowest value of N (64), 𝑃𝑑 is relatively lower compared to higher values of 𝑁 at 

the same SNR. This indicates that detection performance is relatively weaker. 

 (N = 96): Increasing N to 96 improves detection performance, with 𝑃𝑑 being higher for each SNR 

value compared to the previous case. 

 (N = 128): At the highest N (128), detection performance is the best, showing the highest 𝑃𝑑 across 

all SNR values. 

    It is clear that increasing 𝑁 enhances the detection performance 𝑃𝑑 at all SNR values, thereby improving 

the system's ability to detect the signal in the presence of noise and interferences. 

    In Fig (III.5) : The graph illustrates the effect of 𝑁 on the acquisition time 𝑇𝑎𝑞 at various Signal-to-Noise 

Ratio per Chip (SNR/Chip) values. It is evident from the graph that the acquisition time decreases as 

decreases. 

  (N = 64): At the lowest N (64), the acquisition time 𝑇𝑎𝑞 is lower, especially at low SNR values. 

The performance is notably better compared to higher sample counts at the same SNR values. 

  (N = 96): Increasing N to 96 results in a slightly higher acquisition time compared to the previous 

case, but the performance remains relatively good. 

  (N = 128): At the highest N (128), the acquisition time is the highest among the three cases for the 

same SNR values, indicating that an increase in N leads to an increase in the acquisition time. 

    The graph clearly shows that reducing 𝑁 decreases the acquisition time 𝑇𝑎𝑞, meaning that the system 

can acquire the signal faster with a lower 𝑁. 

III.2.3 Effect of False Alarm Probability (Pfa): 

Results obtained for the following parameters: 

 Pfa= 𝟏𝟎−𝟑,𝟏𝟎−𝟒 , 𝟏𝟎−𝟓 ; Nc=32 ; N=64 ; 𝝆=1 ; r=6 
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Fig.III-6: Probability of detection according to (SNR/Chip) for different false alarm probabilities (Pfa). 

 

Fig.III-7: Time of acquisition according to (SNR/Chip) for different false alarm probabilities (Pfa). 

    In Fig (III.6): The impact of the false alarm probability (𝑃𝑓𝑎) on the detection probability (𝑃𝑑) is 

demonstrate. When comparing the three different values of false alarm probability (Pfa), the probability of 

detection (𝑃𝑑) is observed to be higher at smaller 𝑃𝑓𝑎 values 10−3 Compared to 10−4 and 10−5. 

    In Fig (III.7) : The graph illustrates the relationship between the Signal-to-Noise Ratio per Chip 

(SNR/Chip) and the acquisition time 𝑇𝑎𝑞 at three different values of the Probability of False Alarm 𝑃𝑓𝑎, 

which are 10−3, 10−4, and 10−5. It is observed that the acquisition time 𝑇𝑎𝑞 increases with an increase in 

the SNR/Chip for all three values of the Probability of False Alarm 𝑝𝑓𝑎.However, at the same SNR/Chip 

value, the acquisition time 𝑇𝑎𝑞 is longer when the Probability of False Alarm 𝑝𝑓𝑎 is higher. Therefore, 

reducing the Probability of False Alarm 𝑝𝑓𝑎 can lead to an improvement in the acquisition time 𝑇𝑎𝑞. 
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III.2.4 Effect of power ratio (𝝆): 

Results obtained for the following parameters: 

 𝝆=0,3 ,1 ,3 ; Nc=32 ; N=64 ; r=6 ; Pfa=𝟏𝟎−𝟒 

 

Fig.III-8: Probability of detection according to the SNR/Chip for different values of power ratio (𝜌). 

 
Fig.III-9: Time of acquisition according to the SNR/Chip for different values of power ratio (𝜌). 

    In Fig (III.8): The graph illustrates the effect of the parameter 𝜌  on the probability of detection 𝑃𝑑  at 

various Signal-to-Noise Ratio per Chip (SNR/Chip) values. From the graph, we observe that as 𝜌 increases, 

the probability of detection 𝑃𝑑 decreases for the same SNR values. Specifically, when 𝜌= 0.3, the detection 

probability is the highest, showing better performance across all SNR values. As 𝜌  increases to 1 and then 

to 3, 𝑃𝑑 progressively decreases, indicating that higher 𝜌 values result in lower detection probabilities. This 
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suggests that the system's ability to detect the signal diminishes with an increase in ro. The detection 

probability 𝑃𝑑 improves with higher SNR values regardless of 𝜌, but for each SNR value, lower ro 

consistently yields better detection performance. 

    In Fig (III.9): The graph shows the impact of the parameter 𝜌 on the acquisition time 𝑇𝑎𝑞 as a function 

of SNR/Chip values. As SNR/Chip increases, 𝑇𝑎𝑞 decreases significantly for all 𝜌 values. At high 

SNR/Chip (0 to 5 dB), 𝑇𝑎𝑞 is very low (below 0.01 ms) regardless of ro. In the medium range (-10 to 0 

dB), 𝑇𝑎𝑞 increases with decreasing SNR/Chip, more for higher 𝜌 values. At low SNR/Chip (-30 to -10 dB), 

𝑇𝑎𝑞 is markedly higher for larger 𝜌 values, indicating a significant dependency on 𝜌 under poor signal 

conditions , we can conclude that a lower 𝜌 value (such as 0.3) results in a better performance in terms of 

acquisition time 𝑇𝑎𝑞, especially under poor signal conditions (low SNR/Chip). When 𝜌 is above 1, 𝑇𝑎𝑞 is 

generally higher, indicating slower acquisition times. Therefore, a 𝜌 value of 0.3 is preferable for 

minimizing acquisition time across various SNR/Chip values. 

III.3 Conclusion : 

    Based on the analysis of the various figures, it is evident that optimizing system parameters such as 𝑟, 

𝑁, 𝑃𝑓𝑎, and 𝜌 significantly impacts both signal detection performance and acquisition time. Decreasing 𝑟 

enhances detection probability 𝑃𝑑 and reduces acquisition time 𝑇𝑎𝑞, especially in high noise conditions. 

Increasing the partial correlation length 𝑁 improves 𝑃𝑑 but also increases 𝑇𝑎𝑞 . Higher 𝑃𝑓𝑎  values 

improve 𝑃𝑑 but result in longer 𝑇𝑎𝑞. Lastly, a lower 𝜌 yields better  𝑃𝑑 and shorter 𝑇𝑎𝑞, particularly under 

low SNR conditions. Thus, careful tuning of these parameters can significantly enhance the overall 

performance of the signal detection system. 
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General Conclusion 

 

This study thoroughly explored the challenges and solutions associated with PN sequence acquisition in 

DS/CDMA systems, with a particular focus on the use of adaptive techniques to maintain a constant false 

alarm rate (CFAR). The primary contribution of this research is the development and evaluation of the 

ATM-CFAR algorithm, which significantly enhances detection performance in non-homogeneous and 

degraded environments. 

By incorporating an adaptive threshold mechanism, the ATM-CFAR algorithm dynamically adjusts to 

variations in noise and interference levels using artificial neural network. This adaptability reduces the 

incidence of false alarms and increases the reliability of initial synchronization processes.simulations 

demonstrated that this approach outperforms traditional fixed threshold methods, offering robust 

performance even in challenging propagation conditions. 

The results obtained from this study confirm the critical importance of using adaptive detection techniques 

in DS/CDMA systems, especially for mobile transmissions where channel conditions can vary 

significantly. The ATM-CFAR algorithm was shown to effectively enhance the probability of detection 

(𝑃𝑑) while managing the probability of false alarm (𝑃𝑓𝑎), thereby optimizing the overall system 

performance. Additionally, the algorithm's ability to adapt to varying signal-to-noise ratios (𝑆𝑁𝑅) and 

interference conditions ensures reliable performance in diverse operational scenarios. 

The analysis of various system parameters revealed that optimizing these parameters, such as the number 

of interfering cells (𝑟), partial correlation length (𝑁), false alarm probability (𝑃𝑓𝑎), and power ratio (𝜌), 

has a substantial impact on both signal detection performance and acquisition time. For instance, decreasing 

the number of interfering cells (𝑟) enhances detection probability and reduces acquisition time, particularly 

in high noise conditions. Similarly, increasing the partial correlation length (𝑁) improves detection 

probability but also increases acquisition time. Higher false alarm probabilities (𝑃𝑓𝑎) improve detection 

probability but result in longer acquisition times. Lastly, a lower power ratio (𝜌) yields better detection 

probabilities and shorter acquisition times, especially under low 𝑆𝑁𝑅 conditions. Thus, careful tuning of 

these parameters can significantly enhance the overall performance of the signal detection system. 

This study also paves the way for future research on improving synchronization algorithms by integrating 

traditional methods with artificial intelligence approaches, potentially leading to even more optimized 

performance. The use of neural networks for adaptive threshold estimation offers a flexible and robust 

mechanism for real-time signal processing, further enhancing the system's ability to detect and synchronize 

signals in dynamic and multipath environments. 

In conclusion, this research makes a significant contribution to the development of more efficient and 

reliable wireless communication systems by proposing a robust solution for PN sequence acquisition. The 
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General Conclusion 

ATM-CFAR algorithm, with its adaptability and improved performance, represents a major advancement 

in the field of telecommunications, meeting the growing demands for robustness and reliability in modern 

communication networks. The findings underscore the potential of adaptive detection techniques to 

significantly enhance the performance of DS/CDMA systems, ensuring more reliable and efficient 

communication technologies for future applications. 
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Abstract 

 

Abstract: 

 The primary objective of this study is to master and assess the performance of the Adaptive Trimmed mean 

Mechanism Constant False Alarm Rate (ATM-CFAR) detector. The system under investigation utilizes a 

straightforward serial search strategy and incorporates an adaptive detector based on multilayer artificial 

neural networks (ANNs), trained via the backpropagation algorithm. ANNs are computational models 

inspired by the human brain, capable of recognizing patterns and making decisions. These networks consist 

of interconnected layers of nodes (neurons) that process input data, learn from it, and improve detection 

capabilities over time. Our findings underscore the critical role and efficiency of systems employing 

automatic censoring algorithms in the acquisition process. Moreover, the proposed system demonstrates a 

superior detection probability, affirming its suitability for advanced applications across diverse 

technological fields. The study comprehensively explores the integration of neural networks in adaptive 

detection, highlighting significant improvements in detection capabilities and overall system performance. 

Key words: Adaptive Trimmed Mean Mechanism Constant False Alarm Rate (ATM-CFAR), artificial 

neural networks (ANNs), backpropagation algorithm, automatic censoring algorithms, detection 

probability. 

 :ملخص

 )ATM-الهدف الأساسي من هذه الدراسة هو إتقان وتقييم أداء كاشف آلية المتوسط المُعدل التكيفي ذات معدل الإنذار الكاذب الثابت

). CFAR ويشمل كاشفاً تكيفياً يعتمد على الشبكات العصبية الاصطناعية النظام الذي يتم التحقيق فيه يستخدم استراتيجية بحث تسلسلي بسيطة

، المدربة عبر خوارزمية التغذية العكسية. الشبكات العصبية الاصطناعية هي نماذج حسابية مستوحاة من الدماغ  )ANNs(متعددة الطبقات

بقات متصلة من العقد )العصبونات( التي تعالج بيانات البشري، قادرة على التعرف على الأنماط واتخاذ القرارات. تتكون هذه الشبكات من ط

الإدخال، وتتعلم منها، وتحسن قدرات الكشف بمرور الوقت. تؤكد نتائجنا على الدور الحاسم والكفاءة للأنظمة التي تستخدم خوارزميات 

ف فائقة، مما يؤكد ملاءمته للتطبيقات المتقدمة التصفية التلقائية في عملية الاستحواذ. علاوة على ذلك، يظهر النظام المقترح احتمالية كش

عبر مختلف المجالات التكنولوجية. تستكشف الدراسة بشكل شامل دمج الشبكات العصبية في الكشف التكيفي، مما يبرز التحسينات الكبيرة 

 .في قدرات الكشف والأداء العام للنظام

 ، الشبكات العصبية الاصطناعية )CFAR-ATM(معدل الإنذار الكاذب الثابتالكلمات الرئيسية: آلية المتوسط المُعدل التكيفي ذات 

)ANNs(خوارزمية التغذية العكسية، خوارزميات التصفية التلقائية، احتمالية الكشف ،. 

 

Résumé: 

L'objectif principal de cette étude est de maîtriser et d'évaluer les performances du détecteur Adaptive 

Trimmed Mean Mechanism Constant False Alarm Rate (ATM-CFAR). Le système étudié utilise une 



 

 
46 

Abstract 

stratégie de recherche sérielle simple et intègre un détecteur adaptatif basé sur des réseaux de neurones 

artificiels multicouches (ANNs), entraînés via l'algorithme de rétropropagation. Les réseaux de neurones 

artificiels sont des modèles computationnels inspirés par le cerveau humain, capables de reconnaître des 

motifs et de prendre des décisions. Ces réseaux sont constitués de couches interconnectées de nœuds 

(neurones) qui traitent les données d'entrée, apprennent de celles-ci et améliorent les capacités de détection 

au fil du temps. Nos résultats soulignent le rôle crucial et l'efficacité des systèmes utilisant des algorithmes 

de censure automatique dans le processus d'acquisition. De plus, le système proposé démontre une 

probabilité de détection supérieure, confirmant son aptitude pour des applications avancées dans divers 

domaines technologiques. L'étude explore de manière exhaustive l'intégration des réseaux de neurones dans 

la détection adaptative, mettant en évidence des améliorations significatives des capacités de détection et 

des performances globales du système. 

Mots-clés:Adaptive Trimmed Mean Mechanism Constant False Alarm Rate (ATM-CFAR), réseaux de 

neurones artificiels (ANNs), algorithme de rétropropagation, algorithmes de censure automatique, 

probabilité de détection. 

 


