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Abstract
Solar energy continues to be the most promising renewable energy source for generating electricity
due to its abundance on Earth’s surface and non-polluting nature. Photovoltaic (PV) models used
to generate electricity from solar energy are among the most popular renewable energy systems.
To obtain maximum efficiency from PV models, their parameters should be estimated in an op-
timal way. Metaheuristic algorithms have emerged as promising alternatives, offering robustness
and efficiency in solving complex optimization problems. However, the effectiveness of these al-
gorithms can vary significantly, necessitating a comprehensive comparative analysis to identify the
most suitable methods for PV parameter estimation. Therefore, we present a comparative study
of metaheuristic algorithms for parameter estimation in two PV modules, namely the single diode
model and the double diode model. Specifically, the analysis contrasts the performance of Red-tailed
Hawk Optimizer (RTH), One-to-One based Optimizer (OOBO), Dung Beetle Optimizer (DBO), and
Sand Cat Swarm Optimization (SCSO). The root mean square error (RMSE) value between the
simulated data and the actual data is used as the objective function.Accordingly, it is observed that
the best estimation accuracy is reached by the RTH algorithm with a value of 9.86E-04 for both
models. Consequently, the present paper reports that RTH is an efficient and powerful method for
parameter extraction in solar photovoltaic models.

Keywords: parameter estimation, optimization, metaheuristic algorithms, single diode mode,
double diode mode, red-tailed hawk optimizer, one-to-one based optimizer, sand cat swarm opti-
mization, and dung beetle optimizer.
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Résumé
L’énergie solaire reste la source d’énergie renouvelable la plus prometteuse pour la production
d’électricité en raison de son abondance à la surface de la Terre et de sa nature non polluante.
Les modèles photovoltaïques (PV) utilisés pour produire de l’électricité à partir de l’énergie solaire
sont parmi les systèmes d’énergie renouvelable les plus populaires. Pour obtenir une efficacité max-
imale des modèles photovoltaïques, leurs paramètres doivent être estimés de manière optimale. Les
algorithmes métaheuristiques sont apparus comme des alternatives prometteuses, offrant robustesse
et efficacité dans la résolution de problèmes d’optimisation complexes. Cependant, l’efficacité de ces
algorithmes peut varier de manière significative, ce qui nécessite une analyse comparative complète
afin d’identifier les méthodes les plus appropriées pour l’estimation des paramètres photovoltaïques.
Nous présentons donc une étude comparative des algorithmes métaheuristiques pour l’estimation
des paramètres de deux modules photovoltaïques, à savoir le modèle à diode unique et le modèle
à double diode. Plus précisément, l’analyse compare les performances de l’optimiseur de la buse
à queue rousse (RTH), de l’optimiseur basé sur la méthode One-to-One (OOBO), de l’optimiseur
du bousier (DBO) et de l’optimisation de l’essaim de chats des sables (SCSO). La valeur de l’erreur
quadratique moyenne (RMSE) entre les données simulées et les données réelles est utilisée comme
fonction objective. En conséquence, il est observé que la meilleure précision d’estimation est atteinte
par l’algorithme RTH avec une valeur de 9.86E-04 pour les deux modèles. Par conséquent, le présent
document indique que l’algorithme RTH est une méthode efficace et puissante pour l’extraction des
paramètres dans les modèles solaires photovoltaïques.

Mots clés: estimation des paramètres, optimisation, algorithmes métaheuristiques, mode à diode
unique, mode à double diode, optimiseur de buse à queue rousse, optimiseur basé sur le principe du
un pour un, optimisation de l’essaim de chats des sables et optimiseur de bousier.
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و رض ا و ء ـ ا ة ا ا دة ا ا در أ ا ا ال
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General Introduction

context
The global shift to renewable energy has accelerated research and innovation in photovoltaic (PV) systems,
which use solar energy to generate electricity. The necessity for accurate modeling and optimization to
ensure maximum efficiency is growing along with the deployment of PV systems. PV system performance is
largely dependent on accurate parameter estimation, which is critical for designing, managing, and predict-
ing PV module behavior. The nonlinear and complex nature of PV models presents challenges for traditional
parameter estimation methods, which has led to the exploration of modern computational methods.

Metaheuristic algorithms, inspired by natural processes and behaviors, offer flexibility and adaptability
in solving optimization problems. They have been successfully applied in various fields, including engi-
neering, economics, and artificial intelligence, due to their robustness and efficiency. In the context of PV
systems, metaheuristic algorithms can significantly enhance the accuracy of parameter estimation, thereby
improving the overall efficiency and reliability of PV installations. However, given the diversity of meta-
heuristic approaches, it is crucial to perform a comparative analysis to determine which algorithms are most
effective for specific PV model parameter estimation tasks. This research aims to fill this gap by systemati-
cally evaluating the performance of four distinct metaheuristic algorithms on single-diode and double-diode
PV models.

Problematic
Despite advances in PV technology, one of the most critical issues remains the accurate estimate of the
parameters that characterize the electrical characteristics of PV cells. Traditional methods, such as curve
fitting and analytical approaches, frequently have difficulty identifying the underlying nonlinearity and
multiple local minima in the parameter space. This leads to suboptimal performance and reduced efficiency
for PV systems. Metaheuristic algorithms have emerged as potential alternatives, providing both robustness
and efficiency in tackling complex optimization problems. However, the effectiveness of these algorithms
varies significantly, requiring a comprehensive comparative analysis to identify the best algorithms for PV
parameter estimation.
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General Introduction

Contribution
This thesis contributes to the field of PV parameter estimation by conducting a thorough comparative study
of four metaheuristic algorithms: One-to-One based Optimizer (OOBO), Sand Cat swarm optimization
(SCSO), Red-tailed hawk Optimizer (RTH), and Dung Beetle Optimizer (DBO). The research evaluates
these algorithms in the context of single-diode (SD) and double-diode (DD) PV models, analyzing their
performance in terms of accuracy, convergence speed, and robustness.

Structure
This thesis is structured as follows:

In the first chapter”Introduction to Optimization”, we provide an overview of the field of optimiza-
tion. We define optimization problems and discuss their characteristics, with a particular emphasis on
constraints handling. Additionally, we present a taxonomy of methods commonly employed to solve opti-
mization problems. To illustrate these methods, we provide examples of algorithms belonging to each class.

In the second chapter ”Introduction to Metaheuristics”, we begin by providing the definition of meta-
heuristics. We then delve into various classifications of solution initializers when utilizing metaheuristics.
Additionally, we explore the search behavior exhibited by metaheuristics. We discuss the ”No-Free-Lunch
Theorem,” which sheds light on the limitations of optimization algorithms. The chapter also covers popular
randomization walks employed in metaheuristics. Finally, we provide an overview of the state of the art in
the field of metaheuristics.

The third chapter of the thesis focuses on the practical aspect ”Parameter Estimation in Photovoltaic
Systems.” In this chapter, we provide a detailed background on the optimization algorithms used in the
study: One-to-One-Based Optimizer (OOBO), Sand Cat Swarm Optimization (SCSO), Dung Beetle Opti-
mizer (DBO), and Red-Tailed Hawk Optimizer (RTH). We discuss related work in the context of photovoltaic
models and present the problem formulation. The chapter concludes with a comprehensive discussion of the
results obtained from applying these algorithms to single-diode and double-diode PV models, highlighting
their performance and effectiveness.

2



Chapter 1
Introduction to optimization
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Chapter 1. Introduction to Optimization

1.1 Introduction
In today’s dynamic world,efficiency and resourcefulness are paramount. Across every field of human en-
deavors, from engineering marvels to commercial strategies,the continuous search for optimal solutions
guides our daily actions.Optimization,a sophisticated mathematical framework,is a key component in this
pursuit.It enables us to traverse complicated decision-making processes in an organized way,achieving the
best results possible with limited resources.

Optimization is mainly concerned with functions,which are mathematical entities that connect certain
inputs (variables) to related outputs.The essence of optimization is the deliberate modification of these
variables to get the desired outcome.This typically entails either minimizing a function,such as reducing
production costs,or maximizing it,such as raising profit margins.However,when constraints are present,the
true potential of optimization emerges.These constraints represent real-world limitations, such as physical
material restrictions or project financial constraints. Finding the optimum solution within these constraints
is a mental challenge that necessitates a combination of analytical precision and creative problem-solving.

Optimization applications cover the entire spectrum of human activity. Optimization algorithms are
the invisible hands that guide optimal outcomes,from designing strong yet cost-effective bridges to creating
efficient logistics networks.In finance,optimization models drive investment strategies, whereas in health-
care,they guide treatment decisions that improve patient well-being.The widespread use of optimization
emphasizes its basic function as a universal language for addressing complicated decision-making problems
across multiple fields.

This chapter is divided into four sections.The first section recalls some fundamentals of optimization
problems, including the definition and modeling of problems.The second section deals with the classification
of optimization problems based on three criteria (objective function,decision variables,and constraints).The
third section delves into the complexity classes,and the last section provides an overview of optimization
algorithms (exact and approximate).

1.2 Optimization Problems
In today’s world,where data has an ubiquitous influence,getting the optimal outcomes possible has become a
top priority.Optimization problems,which are a fundamental component of applied mathematics and com-
puter science,provide a strong framework for reaching this goal.They propose a systematic approach to
navigating complex decision-making processes,allowing for the extraction of the best results from limited
resources.

At their core,these problems imply a systematic attempt to minimize or maximize an objective func-
tion by carefully selecting values for decision variables from a permissible set[1].This goal is frequently
constrained by a variety of problems,including resource limitations,technology constraints,and regulatory
requirements,which add layers of complexity to the optimization effort.

The overall purpose of optimization is to find the best configuration or course of action for balancing
competing objectives or constraints, maximizing utility, efficiency, or performance while minimizing costs,
risks, or resource use.This concept emphasizes the multidisciplinary nature of optimization problems,which
pervade various domains such as operations research, management science, and industrial engineering,and
provides a structured way to address multifarious decision-making challenges.
An optimization problem have three major components: decision variables, objective function, and con-
straints.

4



Chapter 1. Introduction to Optimization

1. Decision variables are physical quantities controlled by the decision maker and represented by math-
ematical symbols.For example,the decision variable xj can represent the number of pounds of product j
that a company will produce during some month.Decision variables take on any of a set of possible values.
2. Objective function defines the criterion for evaluating the solution.It is a mathematical function
of the decision variables that converts a solution into a numerical evaluation of that solution.For exam-
ple,the objective function may measure the profit or cost that occurs as a function of the amounts of various
products produced.The objective function also specifies a direction of optimization,either to maximize or
minimize.An optimal solution for the model is the best solution as measured by that criterion.
3. Constraints(if the problem is constrained) are a set of functional equalities or inequalities that
represent physical, economic, technological, legal, ethical, or other restrictions on what numerical values
can be assigned to the decision variables.For example, constraints might ensure that no more input is used
than is available.Constraints can be definitional,defining the number of employees at the start of a period
t + 1 as equal to the number of employees at the start of period t,plus those added during period t minus
those leaving the organization during period t.In constrained optimization models we find values for the
decision variables that maximize or minimize the objective function and satisfy all constraints.

• Mathematical Formulation
In mathematical terms,optimization refers to the process of minimizing or maximizing a function while
taking into account constraints on its variables.We use this notation[2]:

- x is the vector of variables, also called unknowns or parameters.
- f is the objectivefunction, a (scalar) function of x that we want to maximize or minimize.
- ci are constraintfunctions, which are scalar functions of x that define certain equations and in-

equalities that the unknown vector x must satisfy.
Using this notation, the optimization problem can be written as follows:

minf(x)x∈Rn subject to ci(x) = 0, i ∈ ϵ,

ci(x) ≥ 0, i ∈ λ.

Here λ and ϵ are sets of indices for equality and inequality constraints, respectively.

Figure 1.1 shows the contours of the objective function, that is, the set of points for which f(x) has a
constant value. It also illustrates the feasible region, which is the set of points satisfying all the constraints (the
area between the two constraint boundaries), and the point x∗ which is the solution of the problem.Note
that the “infeasible side” of the inequality constraints is shaded.
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Chapter 1. Introduction to Optimization

Figure 1.1: Geometrical representation of the problem

1.3 Classification of optimization problems
Some characteristics,including the form of the objective function, the type of decision variables, and the
presence of constraints,may be used to classify optimizing problems.This is a classification according to
these criteria:

1.3.1 Type of Objective Function
Linear
A linear program is an optimization problem in which the objective function is linear in the unknowns
and the constraints consist of linear equalities and linear inequalities[3].In other words,a linear program-
ming problem is concerned with determining the optimal value (maximum or minimum) of a linear func-
tion of numerous variables,provided that the variables are non-negative and satisfy a set of linear con-
straints.Variables,sometimes known as decision variables, are non-negative.

The standard mathematical formulation of a linear programming (LP) problem is as follows:
Minimize cTx

Subject to:
Ax ≤ b

x ≥ 0

6
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Where:
x : The vector of decision variables (x1, x2, · · ·, xn).
c : The vector of coefficients in the objective function (c1, c2, · · ·, cn).
A : Matrix (m× n) of coefficients representing the constraints.
b : An m-dimensional column vector (b1, b2, · · ·, bm).
x ≥ 0 : Denotes the non-negativity constraints on the decision variables.

In this formulation:
• The objective is to minimize the linear objective function cTx , where cTx represents the dot product

of the coefficient vectorcand the decision variable vectorx.
• The constraints are represented by linear inequalities of the form Ax ≤ b, where Ax represents the

matrix-vector product of A and x.
• The non-negativity constraints x ≥ 0 ensure that the decision variables are non-negative.

Linear programs can be studied algebraically and geometrically.Both methods are equal,although one or the
other may be more convenient for resolving a specific problem related to a linear program.For example,we
might ask about the rank of the matrix or for a representation of its null space.It is this algebraic approach
that is used in the simplex method[4].

Nonlinear
A nonlinear optimization model (also referred to as a “nonlinear program”) consists of the optimization
of a function subject to constraints,where any of the functions may be nonlinear[4].Unlike linear objective
functions,which adhere to additive and proportional relationships,nonlinear functions introduce complexi-
ties that necessitate specialized optimization techniques for their solution[5].

A general mathematical formulation of a nonlinear programming (NLP) problem can be expressed as
follows:

Minimize f(x)

Subject to:
gi(x) ≤ 0, i = 1, 2, · · ·,m

hj(x) = 0, j = 1, 2, · · ·, p

7
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Where:
x : The vector of decision variables (x1, x2, · · ·, xn).
f(x) : The objective function that need to be minimized or maximized.
gi(x) : Inequality constraints, defining m constraints that must be satisfied with gi(x) ≤ 0.
hj(x) : equality constraints, defining p constraints that must be satisfied with hj(x) = 0.

• The objective is to find the values of the decision variables x that minimize the objective function
f(x) , subject to the constraints gi(x) and hj(x).

Some common methods for solving optimization problems with nonlinear objective functions include:(Gradient-
Based Methods,Quadratic Programming,Global Optimization).

1.3.2 Type of Decision Variables
continuous
In continuous optimization,the variables in the model are nominally allowed to take on a continuous range
of values, usually real numbers[6].

In mathematical terms, a continuous decision variable xi can be defined within a continuous domain
[ai, bi], where ai and bi are the lower and upper bounds, respectively.The variable xi can take on any value
within this range,including fractional values.

Continuous optimization problems are normally easier to solve because the smoothness of the functions
makes it possible to use objective and constraint information at a particular point x to deduce information
about the function’s behavior at all points close to x[2].Continuous optimization problems frequently solved
using algorithms that generate a series of variable values,known as iterates,that converge to a solution. The
algorithm uses knowledge gained from past iterates,as well as information about the model at the current
iterate,maybe including information about its sensitivity to perturbations in the variables,to decide how to
go from one iteration to the next.

Discrete
Discrete decision variables are variables that can only take on integer values from a predefined set or
range.Unlike continuous variables,which can take on any real value within a specified range,discrete variables
are restricted to specific,distinct values[7].

In mathematical terms,a discrete decision variable xi can be defined within a discrete domain {ai, ai +
1, · · ·, bi}, where ai and bi are the lower and upper bounds,respectively.The variable xi can only take on
integer values within this set.

Discrete problems,the behavior of the objective and constraints may change significantly as we move
from one feasible point to another,even if the two points are “close” by some measure.The feasible sets
for discrete optimization problems can be thought of as exhibiting an extreme form of non convexity,as a
convex combination of two feasible points is in general not feasible[2].

Solving optimization problems with discrete decision variables often requires the use of specialized
methods such as integer programming, constraint programming,or metaheuristic algorithms such as genetic
algorithms or simulated annealing.These methods are intended to manage the combinatorial nature of
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discrete optimization problems while effectively searching the solution space for the best or near-optimal
solution.

1.3.3 Presence of constraints
Many real-life optimization problems have certain constraints/rules that cannot be violated while finding
an optimized solution.

Constrained Optimization Problem
A constrained optimization problem involves optimizing an objective function subject to one or more
constraints.In mathematical terms,the goal is to minimize or maximize the objective function f(x) while
satisfying constraints gi(x) and hj(x)(could be equality or inequality constraints).They are encountered
in numerous applications,spanning various scientific fields such as structural optimization,engineering de-
sign,economics,and allocation and location problems[8][9].

Constrained optimization problems arise from models in which constraints play an essential role[2].These
constraints establish the limits, restrictions,or conditions that the solution must satisfy.Additionally, Con-
straints can have a major impact on the optimization problem by restricting the feasible solution space.

The most common approach for solving CO problems is the use of a penalty function.The constrained
problem is transformed to an unconstrained one,by penalizing the constraints and building a single objective
function,which in turn is minimized using an unconstrained optimization algorithm[10].However,there are
other methods can be used such as interior-point methods,sequential quadratic programming (SQP),augmented
Lagrangian methods, and penalty methods.

Unconstrained Optimization Problem
An unconstrained optimization problem refers to the task of minimizing or maximizing a function without
any restrictions or constraints on the decision variables[11].In mathematical terms,it involves finding the
minimum or maximum of an objective function f(x) over the entire feasible space of the decision variables
x,without being subject to any constraints.

Unconstrained optimization problems occur directly in many real-world applications. Even for some
problems with natural constraints on the variables,it may be safe to disregard them as they do not affect
the solution and do not interfere with algorithms[2].

There exist two important classes of iterative methods—line search methods (such as Gradient De-
scent,Newton’s Method, and quasi-Newton Methods) and trust-region methods—made with the aim of
solving the unconstrained optimization problem[12].

Unconstrained optimization has a variety of applications, including machine learning and medical imag-
ing, emphasizing its importance in today’s optimization challenges. As computer resources develop, un-
constrained optimization methods will become increasingly relevant in handling complex optimization
problems spanning several domains.
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1.4 Complexity Classes
Computational complexity theory divides decision problems into complexity classes based on the com-
putational resources needed to solve them.These classes represent sets of functions that can be computed
within specific resource constraints,such as time and memory[13]. In the following, we’ll present the various
complexity classes.

1.4.1 P Class
The complexity class P , which is also known as the ”Polynomial Time” class,refers to the set of selection
problems that can be solved with a deterministic in polynomial time[14].This means that there exists an
algorithm capable of solving problems in P with a time complexity bound by a polynomial function relative
to the size of the input.

Problems of class P are regarded manageable and desirable for problem-solving because effective al-
gorithms exist to solve them in a reasonable amount of time, even with large inputs. Sorting, searching,
and graph traversal are examples of class P problems that can be effectively solved by algorithms such as
quicksort, binary search, and breadth-first search. The efficient solvability of problems in class P makes it
an important and well-studied complexity class in theoretical computer science.

1.4.2 NP Class
The complexity class NP , which is also known as the ”Nondeterministic Polynomial Time” class,refers to
The set of all problems that can be solved by a nondeterministic algorithm in polynomial time[14].

In NP , a given solution may be checked deterministically in polynomial time, implying that once
provided, its correctness can be efficiently validated. However, the lack of a proven effective algorithm
for finding solutions is what characterizes NP . This class contains many important computing problems,
including the traveling salesman problem and the Boolean satisfiability problem.There are also NP-Hard
and NP-Complete sets, which we use to express more sophisticated problems. In the case of rating from
easy to hard, we might label these as ”easy”, ”medium”,”hard”, and finally ”hardest”. And we can visualize
their relationship, too:

Figure 1.2: Complexity Classes.
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The relationship between the complexity classes P and NP is a focal point in computational theory,
with the unresolved question of whether P equals NP still one of the most critical open problems in
computer science. At its core, this research tries to determine if problems that are efficiently verifiable by
nondeterministic algorithms in polynomial time may also be effectively solved by deterministic algorithms
in the same time frame.

1.5 Optimization Algorithms
Optimization algorithms are computational methodologies crafted to identify the optimal solution among
a set of potential solutions for a given problem. Their primary objective is to minimize or maximize an
objective function, all while ensuring adherence to specific constraints[15]. One way to classify optimization
algorithms is based on their approach to finding the optimal solution. Two broad categories emerge from
this classification:exact algorithms and approximate algorithms.

Mind that whatever the classification of an algorithm is, we have to make the right choice to use it
correctly, and sometimes a proper combination of algorithms may achieve better results[16].

1.5.1 Exact Algorithms
The exact algorithm refers to an algorithm that can solve combinatorial optimization problems with a
computational complexity that is bounded by a function growing polynomially in the size of the instance
to be solved[17]. These algorithms systematically explore the entire feasible solution space to identify the
globally optimal solution, ensuring that no better solution exists within the problem’s constraints.

In practice,exact algorithms are commonly used in a variety of domains, including operations research,
logistics, scheduling, and network design, where finding the globally optimal solution is critical. They give
vital insights into the structure of optimization problems and help grasp the fundamental aspects of feasible
remedies.

Enumeration
The enumeration technique is the most basic strategy to solve a pure integer optimization problem, in-
volving the enumeration of all finitely various possibilities within a defined problem space. This technique
carefully explores all possible solutions to the problem[18]. This technique is particularly useful for rela-
tively small instances of combinatorial problems where it is feasible to enumerate all possible combinations
or permutations. Enumeration guarantees that the optimal solution will be found because it exhaustively
checks every possible solution[19].

Dynamic Programming
Dynamic programming is a fundamental technique in the field of optimization,it was proposed by Richard
Bellman in 1953[20].

Dynamic programming solves a complex problem by dividing it into smaller, more manageable sub-
problems, solving each one just once, storing the solutions, and then combining them to find the optimal
solution to the original problem. This method is frequently used in many fields to solve optimization prob-
lems since it computes optimal solutions efficiently.
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Due to its ability to solve complex problems, it is widely used in versatile applications across various
domains, including graph theory, game theory, AI and machine learning, economics and finance problems,
bioinformatics,as well as calculating the shortest path, which is used in GPS. Dynamic programming is also
used in laptops and phones to store data through caches so that it does not need to retrieve data from the
servers when data is needed. In fact, you may be using dynamic programming without realizing that you
are.

Branch and Bound
Branch-and-bound algorithms are an important tool for tackling discrete optimization problems because
they provide a systematic technique for efficiently exploring the feasible region of a problem[21]. The algo-
rithm uses a tree search strategy to implicitly enumerate all possible solutions to a given problem,applying
pruning rules to eliminate regions of the search space that cannot lead to a better solution[22].Two tools
are required to perform the branch-and-bound technique.
1.Branching:
The feasible region can be covered by multiple smaller feasible sub-regions. This can be done recursively
for each sub-region, and this leads to sub-regions naturally forming a tree structure known as a branch-
and-bound tree or search tree. Its nodes are the constructed sub-regions.
2. Bounding:
This technique quickly determines upper and lower bounds for the optimal solution within a feasible region.

There are three algorithmic components in B&B that can be specified by the user to fine-tune the be-
havior of the algorithm. These components are the search strategy, the branching strategy, and the pruning
rules.each play a distinct role with respect to the search phase and the verification phase.

Overall, branch-and-bound algorithms have been effectively extended to a variety of optimization prob-
lems other than integer programming, demonstrating their adaptability and effectiveness in handling com-
plicated combinatorial optimization tasks.

1.5.2 Approximate Algorithms
Approximation algorithms are an essential concepts in computer science and optimization theory.Their goal
is to efficiently find near-optimal solutions to computationally challenging problems(commonly problems of
class NP − hard)[23].They prioritize efficiency and practicality over the guarantee of finding the absolute
best solution.

Approximation algorithms typically have two characteristics. First, they offer a feasible solution to a
problem in polynomial time. In most circumstances, it is not difficult to devise a procedure that provides
a feasible solution. The second characteristic that differentiates approximation algorithms is the need for
some assurance of solution quality. The quality of an approximation method is the maximum ”distance”
between its solutions and the optimal solutions,evaluated over all possible instances of the problem.

Greedy Algorithms
The greedy algorithms are an important class of computer algorithms with self-reducibility for solving
combinatorial optimization problems. They use the greedy strategy in the construction of an optimal
solution[20]. Employing a strategy of prioritizing locally optimal choices at each step,they aspire to construct
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an optimal solution incrementally[24].
It is important to note that while greedy algorithms are efficient and simple, they may not always

produce the optimal solution. Despite this limitation, greedy algorithms are widely used in a variety of
fields, including scheduling, network routing, and computational biology.Nonetheless,it is a useful tool for
tackling many real-world problems due to their intuitive nature and efficiency, although it is necessary to
carefully consider the applicability and correctness of these technologies in each specific context.

Among the various versions of greedy algorithms, the pure greedy, orthogonal greedy, relaxed greedy,
and stepwise projection algorithms stand out as the most commonly utilized, denoted by the acronyms
PGA, OGA, RGA, and SPA, respectively[25].

Heuristic algorithms
Heuristic algorithms are a type of problem-solving algorithm that finds efficient solutions to complex prob-
lems. They are frequently employed when there is no known algorithm capable of providing an exact
solution or when using an exact approach is extremely computationally expensive[26].Typically, it operates
in 5 phases, including problem formulation, solution representation, heuristic selection, search, and opti-
mization, followed by solution evaluation and refinement.

Heuristic algorithms provide several advantages, including scalability, adaptation to real-world con-
straints, and the capacity to handle huge, complicated problem sets. They are typically faster than exact
algorithms and can produce acceptable results in a reasonable amount of time. Furthermore, heuristic algo-
rithms are adaptive and may be customized to specific problem domains, making them effective problem-
solving tools.

Metaheuristic Algorithms
Metaheuristics are general-purpose algorithms that can be applied to solve almost any optimization problem.
They may be viewed as upper-level general methodologies that can be used as a guiding strategy in designing
underlying heuristics to solve specific optimization problems[27]. While computationally more difficult, they
excel at solving complicated, nonlinear optimization problems with various constraints[28].Metaheuristics
have grown in popularity over the last two decades due to their efficiency and efficacy in dealing with
large-scale and complex problems in a variety of applications. This popularity emphasizes their importance
as effective tools for navigating the intricacies of current optimization environments. The next chapter will
provide further insights into various metaheuristics.

1.6 Conclusion
In conclusion,optimization is a fundamental concept with several applications. Optimizing everything is
the objective of nearly every technical and industrial application, be it maximizing profit, production, per-
formance, or efficiency, or minimizing cost and energy consumption. In this chapter,we have laid the
groundwork for understanding optimization by discussing key concepts and classifications based on vari-
ous characteristics.Additionally, we briefly discussed complexity classes, distinguishing between P and NP
class problems. Finally, we introduced optimization algorithms and classified them as exact and approxi-
mate approaches.
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Afterwards, exploring optimization algorithms,including both exact and approximate approaches, pro-
vides us with the tools we need to effectively navigate and solve optimization challenges. Overall,a com-
prehensive understanding of optimization problems is required for developing efficient solutions to solve a
variety of real-world challenges and optimize outcomes.
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2.1 Introduction
Real-world issues are often becoming more complicated, to the point that standard mathematical program-
ming techniques are unable to adequately solve and optimize them. In real-life optimization, most problems
are nonlinear, complex, multimodal, and have incompatible objective functions. Finding an optimal solu-
tion, or even one that is close to optimal, can be a very challenging task, even for simple, linear objective
functions. In general, there is no guarantee of finding an optimal solution for real-life problems. The meta-
heuristic algorithms’ usefulness is shown here. It is possible to address challenging optimization problems
with a variety of metaheuristic optimization methods that are currently being researched.

This chapter focuses on metaheuristics, a flexible approach to problem-solving. It delves into the classi-
fication of metaheuristics, exploring their search strategies and introducing the ”No-Free-Lunch Theorem,”
which underscores the constraints of individual metaheuristic methods. Additionally, it exposes typical
randomization techniques utilized in metaheuristics and offers a comprehensive summary of the latest state
of the art in the field. Finally, the chapter concludes by reviewing the key characteristics of metaheuristic
algorithms.

2.2 Metaheuristics
In the realm of optimization, where the goal is to find the most favorable solution from a set of alternatives,
traditional methods can become computationally intractable for complex problems with vast search spaces.
Here, metaheuristics emerge as a powerful and versatile class of optimization algorithms that excel at tack-
ling such challenges[29]. Unlike exact methods that guarantee finding the optimal solution, metaheuristics
operate under the principle of ”good enough” solutions, aiming to identify high-quality solutions within a
reasonable time frame. This characteristic makes them particularly well-suited for real-world optimization
problems with practical constraints[30].

Metaheuristics are inspired by many natural phenomena and human problem-solving methodologies.Some
well-known examples include genetic algorithms, which mimic the process of natural selection to evolve
solutions; simulated annealing, which draws on the principles of physical annealing in materials science;
and swarm intelligence algorithms, which are inspired by the collective behavior of social insects such as
ant colonies or bird flocks[31].Metaheuristics iteratively explore the search space by incorporating bio-
inspired or human-inspired heuristics, navigating to promising areas while avoiding getting trapped in local
optima.This stochastic (randomized) nature enables them to escape from plateaus and potentially discover
globally optimal solutions, even for extremely nonlinear and discontinuous problems.

While metaheuristics provide a compelling alternative to standard methods for hard optimization tasks,
it is critical to recognize the inherent trade-offs. The quality of the solution is determined by factors such
as the algorithm used, its parameter settings, and the specific problem being solved.Furthermore, unlike ex-
act algorithms, metaheuristics rarely guarantee optimality. However, their flexibility, computational speed,
and capacity to handle large and complex search spaces often make them the best choice for practical
optimization problems when obtaining a ”good enough” solution in a reasonable time frame is critical.

16



Chapter 2. Introduction to Metaheuristics

2.3 Classification of metaheuristics
Metaheuristic algorithms can be classified in several ways based on different criteria. Here are some common
classifications:

2.3.1 Nature-inspired vs. non-nature-inspired
Metaheuristics are classified based on their inspiration from natural processes or not. Nature-inspired
metaheuristics include genetic algorithms, particle swarm optimization, and ant colony optimization. Non-
nature-inspired metaheuristics include simulated annealing and tabu search.

2.3.2 Deterministic vs. stochastic
Deterministic metaheuristics produce and assess candidate solutions using a deterministic process that usu-
ally involves methodical solution space search. Hill climbing and tabu searching are two examples.Randomness
is introduced into the search process via stochastic metaheuristics, which frequently employ probabilistic
techniques for the generation, evaluation, or selection of solutions. Genetic algorithms and simulated an-
nealing are two such examples.

2.3.3 Trajectory-based vs. population-based
Metaheuristics can be classified based on whether they aim to identify a single or several solutions. Trajectory-
based metaheuristics aim to find a single solution and refine it iteratively. Examples include hill climbing
and simulated annealing. Population-based metaheuristics utilize a set of solutions to explore the search
space. Examples include genetic algorithms and particle-swarm optimization.

2.3.4 Local search-based vs. global search-based
Local search metaheuristics aim to improve a single solution by making incremental modifications to it while
examining the nearby surroundings of the existing solution. Examples include hill climbing and gradient
decrease.Global search metaheuristics search a larger area of the solution space for the global optimum,
frequently foregoing efficiency in favor of the capacity to avoid local optimums. Examples include genetic
algorithms and simulated annealing.
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Figure 2.1: Generalized classifications of metaheuristics search techniques (De Castro and Von Zuben 2000).

2.4 Search strategy
The search strategy of metaheuristic algorithms involves iteratively navigating the trade-off between ex-
ploration and exploitation. This delicate balance allows metaheuristic algorithms to effectively explore
complex solution spaces and find high-quality solutions to optimization problems. Let’s delve into each of
these components:

2.4.1 Exploration
Exploration is the process of looking for new and diverse solutions in the solution space, which is com-
monly accomplished by introducing randomness or perturbations to existing solutions. It entails exploring
previously unknown areas in order to identify potentially better answers that may be situated far from the
present search trajectory.

2.4.2 Exploitation
Exploitation is the use of local knowledge in the search.And solutions have been found so far so that
new search moves concentrate on the local regions or neighborhoods where The optimality may be close;
however, this local optimum may not be the global optimality[32]. Exploitation often employs significant
local information, such as gradients, the shape of the mode, such as convexity, and the history of the search
process. A typical strategy is ”hill-climbing,” which makes extensive use of local slopes or derivatives.
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Figure 2.2: Exploitation and Exploration flowchart.

To identify the best solution effectively, an algorithm must be capable of both exploration and exploita-
tion. If the exploration ability is weak, the algorithm may struggle to find the region holding the optimal
solution, possibly becoming trapped in areas with local optima. As a result, the exploitation capabilities
would be limited to the locations found during exploration. As a result, prioritizing a strong exploration
capacity is critical for any algorithm before assessing its exploitation potential. Figure 2.2 illustrates the
exploitation and exploration flowchart.

2.5 Random Walks
By analyzing the main characteristics of metaheuristic algorithms, we know that randomization plays an
important role in both exploration and exploitation.

randomization prevents solutions from getting trapped in local optima while also increasing solution va-
riety. A solid combination of best selection and randomization guarantees that global optimality is achieved.
and one of the most effective methods of randomization is using a random walk (RW).

A random walk is a random process that consists of taking a series of consecutive random steps[33].
Let SN denote the sum of each consecutive random step Xi, then SN forms a random walk.

SN =
N∑
i=1

Xi = X1 + · · ·+XN =
N−1∑
i=1

Xi +XN = SN−1 +XN (2.1)

where Xi is a random step drawn from a random distribution. This relationship can also be considered as
a recursive formula. That is, the next state SN will only depend on the current existing state SN−1 and the
motion or transition XN from the existing state to the next state.

As RWs are widely used for randomization and local search, a proper step size is very important.The step
size in RW determines how much distance a random walker can travel for a given number of iterations[34].
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2.5.1 Lévy flight
Lévy flights (LFs) are a class of non-Gaussian random processes whose stationary increments are distributed
according to a Lévy stable distribution [33]. Additionally, various studies have shown that the flight behavior
of many animals and insects has demonstrated the typical characteristics of Lévy flights. Subsequently, such
behavior has been applied to optimization and optimal search, and preliminary results show its promising
capability [35].

In general, the Lévy distribution is stable and can be defined in terms of a characteristic function or the
following Fourier transform:

F (k) = exp [−α|k|β], 0 < β ≤ 2 (2.2)
where α is a scale parameter.

2.5.2 Gaussian Walk
Gaussian random walks are a search method for optimization problems. They work by making small,
random changes to a prospective solution, similar to taking an uncertain walk. These random steps allow
the algorithm to explore different sections of the search space in the same way that a walker could discover
new pathways. This randomness is critical because it helps the algorithm avoid dead ends (local optima)
and maybe uncover even better solutions.

2.6 No-Free-Lunch Theorem
There are the so-called ‘No free lunch theorems’, which can have significant implications in the field of
optimization (Wolpert and Macready, 1997). One of the theorems states that if algorithm A outperforms
than algorithm B for some optimization functions, then B will be superior to A for other functions[36].In
other words, no one-size-fits-all solution exists. An algorithm that works brilliantly for one sort of problem
may not work as well for another. It’s similar to having several tools in a toolbox; each one is valuable for
a certain purpose, but none of them can do everything properly.

2.7 Applications of metaheuristics algorithms
Metaheuristic algorithms have been utilized to tackle a wide range of optimization problems across indus-
tries such as engineering, finance, logistics, and healthcare.Some widely used applications include:

• Engineering
Metaheuristics are extremely useful in optimizing complicated systems such as manufacturing processes and
production schedules. They help find designs that fit numerous constraints while improving performance.
For example, in structural design, methods such as genetic algorithms and particle swarm optimization
are used to modify the shape and material of structures with the goal of reducing weight and increasing
efficiency. In manufacturing, simulated annealing is used to enhance CNC machine cutting settings, while
ant colony optimization is used to optimize production line architecture.
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• Data Mining and Machine Learning
Data Mining and Machine Learning: Metaheuristics are employed for feature selection, parameter tuning,
and model optimization in machine learning and data mining tasks. such as neural networks and support
vector machines.For example, particle-swarm optimization can be used to optimize the weights and biases
of a neural network for image classification. It also improves the performance of predictive models and
enhances decision-making processes.

• Logistics
Metaheuristics are extremely useful in optimizing complex systems such as manufacturing processes and
production schedules. They help to find designs that improve performance while satisfying different con-
straints. For example, in structural design, techniques such as particle swarm optimization and genetic
algorithms are applied to optimize the material and shape of structures in order to reduce weight and
maximize efficiency.

• Healthcare
Metaheuristic algorithms have shown effectiveness in healthcare domains including diagnosis, treatment
planning, drug improvement, and management. Ant colony optimization has been used to optimize radia-
tion therapy for cancer patients, reducing side effects and improving results.Genetic algorithms can detect
diabetes using patient data, including age, weight, and blood glucose levels.

• Energy Systems
Metaheuristic algorithms play a crucial role in enhancing the efficiency of power generation systems, in-
cluding thermal power plants, hydroelectric dams, wind farms, and solar plants. Their utilization aids in
optimizing energy production by considering factors like fuel expenses, equipment limitations, and envi-
ronmental compliance measures, ultimately maximizing output. In the next chapter, we’ll delve deeper into
a specific application of this concept—parameter estimation in photovoltaic (PV) systems—to illustrate how
metaheuristics can be harnessed to optimize the performance of solar power plants.

2.8 Conclusion
In conclusion, the history of metaheuristic algorithms spans several decades and includes the development of
numerous optimization algorithms inspired by natural systems. Metaheuristic algorithms have proven to be
an effective tool in solving complex optimization problems in a variety of sectors, and they are expected to
play an increasingly important role in the development of new technologies and applications.Metaheuristic
algorithms have been used to solve a wide range of scientific, engineering, logistics, healthcare, and energy
systems challenges, demonstrating their usefulness in identifying near-optimal solutions.

In this study, we present a contrastive analysis between the performance of four metaheuristic algorithms
for parameter estimation in photovoltaic models. Algorithms are compared on the basis of the objective
function and type of diode model used.
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3.1 Introduction
Solar energy has emerged as a viable renewable resource with the ability to meet global energy needs while
transitioning to a more sustainable future. Photovoltaic (PV) systems, which convert sunlight directly into
electricity, are crucial for utilizing this clean energy source. Accurate estimation of important parameters
is critical for ensuring maximum performance and efficient power generation in PV systems. These param-
eters influence the system’s electrical properties and its capacity to convert solar radiation into electricity.

Traditional parameter estimation methods for PV systems (Method of Moments (MoM), Ordinary Least
Squares, Maximum Likelihood Estimation (MLE), ... ) frequently use single- or double-diode models. Al-
though these methods provide a fundamental framework, they are not without limits. In practice, issues
such as non-ideal operating circumstances, environmental fluctuations, and aging effects might create com-
plications that traditional methods fail to capture. This can lead to erroneous parameter estimates, limiting
the ability to enhance PV system performance.

To solve these limitations and obtain a more robust parameter estimate, researchers explored the use of
metaheuristic algorithms. These powerful optimization methods are based on natural phenomena or human
problem-solving strategies. They excel at dealing with complex problems involving nonlinear relationships,
making them well-suited to the challenges of estimating PV system parameters.

To assess the efficacy of various metaheuristic algorithms in estimating PV system parameters, an exten-
sive literature review was undertaken. The findings will be presented in table (3.1),providing a structured
analysis of existing research. This table will compare different algorithms, including: hybrid kepler opti-
mization algorithm (HKOA), generalized normal distribution optimization (GNDO), hybrid gazelle-Nelder-
Mead (GOANM), opposition-based exponential distribution optimizer (OBEDO), hyprid of single candidate
optimizer and the chaotic sand cat optimizer (CSCSC), adaptive sine-cosine particle swarm optimization
algorithm (ASCA-PSO), Improved Cheetah Optimizer (ICO), Growth Optimization (GO), enhanced sine-
cosine algorithm (ESCA), and Mountain Gazelle Optimizer (MGO). For each algorithm, the table will detail
the specific methods employed and, most importantly, the achieved Root Mean Square Error (RMSE) for
both the single-diode (SD) and double-diode (DD) models. This emphasis on RMSE values will allow for
a direct comparison of the accuracy achieved in estimating parameters for these two prevalent PV system
models. This systematic organization will facilitate the identification of trends and strengths within various
metaheuristic approaches for PV parameter estimation.

Building upon the comprehensive review of metaheuristic algorithms presented in the table, this chapter
delves into a comparative analysis of four prominent algorithms for parameter estimation in photovoltaic
(PV) systems. Our objective is to identify the most effective approach for achieving accurate and efficient
parameter estimation within this context. Through an analytical contrastive study, we will evaluate the per-
formance of each algorithm, considering factors like accuracy. This in-depth analysis will provide valuable
insights into the strengths and weaknesses of each algorithm, ultimately guiding the selection of the most
suitable approach for specific PV system parameter estimation tasks.
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Table 3.1: Some metaheuristic algorithms proposed recently for the parameter estimation of PV models
Year Algorithm Used Method RMSE

(SDM)
RMSE
(DDM) References

2024 HKOA
Integrating the Kepler optimization algori
thm (KOA) with the ranking-based updat-
e and exploitation improvement mechan-
isms.

7.73006E − 04 7.326E − 04 [37]

2024 GNDO
metaheuristic optimization algorithm that
utilizes a simple structure and the traditi-
onal generalized normal distribution for-
mula to update the individual’s locations
based on population location information

9.8602E − 04 9.8248E − 04 [38]

2024 GOANM
combines the Gazelle Optimization Algo-
rithm (GOA) with the Nelder-Mead (NM)
algorithm.

7.7299E − 04 7.4339E − 04 [39]

2024 OBEDO
combines the principles of opposition-
based learning (OBL) with the expone-
ntial distribution optimizer

9.8602E − 04 9.8250E − 04 [40]

2024 CSCSC
hybrid approach that combines the Sin-
gle Candidate Optimizer (SCO) with the
Chaotic Sand Cat Optimizer (CSCO)

9.86021E − 04 9.82508E − 04 [41]

2024 ASCA-PSO
combines the strengths of the Sine–cosine
algorithm and Particle swarm optimization
algorithm in a two-tier process

9.89E − 04 9.97E − 04 [42]
2023 ICO Based on improving the cheetah optimizer 9.860218E − 04 9.824860E − 04 [43]
2023 GO

developed and simulated from humans lea-
rning and reflection capacities in social gr-
owing activities

9.8602E − 04 9.8602E − 04 [44]

2023 ESCA

introduces the concept of population aver-
age position to increase the population ex-
ploration ability, and at the same time int-
roduces the personal destination agent m-
utation mechanism and competitive sele-
ction mechanisminto SCA to provide
more search directions for ESCA while
ensuring the search accuracy and diver-
sity maintenance

9.860218E − 04 9.824848E − 04 [45]

2023 MGO
The method used is inspired by the social
life and hierarchy of mountain gazelles in
the wild.

2.042717E − 03 1.387641E − 03 [46]
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3.2 Background
3.2.1 One-to-One-Based Optimizer
The One-to-One-Based Optimizer (OOBO) is a new optimization technique for solving optimization prob-
lems in various scientific areas[47].Unlike other algorithms, OOBO does not rely on specific members of
the population for updates but instead effectively utilizes the knowledge of all population members in the
process of updating. This allows for a more accurate scanning of the problem’s search space, preventing
convergence towards local optimal areas. The algorithm operates in an iteration-based process, using the
power of population search to find effective solutions to optimization problems. Additionally, OOBO does
not have any control parameters, making it a convenient and efficient approach for solving optimization
problems.The One-to-One Based Optimizer (OOBO) algorithm consists of the following steps:

Initialization
In OOBO, each population member is mathematically represented by a vector with the same number of
elements as the number of decision variables. A population member can be represented using:

X⃗i = [xi,1, . . . , xi,d, . . . , xi,m], i = 1, . . . , N. (3.1)
To generate the initial population of OOBO, population members are randomly positioned in the search
space utilizing:

xi,d = lbd + rand() · (ubd − lbd), d = 1, . . . ,m, (3.2)

Where
X⃗i : The ith population member (that is, the proposed solution).
xi,d : Position of the ith population member in the dth dimension.
rand : A function generating a random number from [0, 1].
N : The size of the population.
ubd : The Upper bound for the position in the dth dimension.
lbd : The Lower bound for the position in the dth dimension.

In OOBO, the algorithm population is represented using a matrix according to

X⃗ =


X⃗1...⃗
Xi...⃗
XN

 =


x1,1 · · · x1,d · · · x1,m... . . . ... ... ...
xi,1 · · · xi,d · · · xi,m... ... ... . . . ...
xN,1 · · · xN,d · · · xN,m


N×M

(3.3)
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The optimization problem’s objective function can be assessed based on each population member, which
is a proposed solution. Thus, different values for the objective function are acquired in each iteration equal
to the number of population members, which can be mathematically described by:

F⃗ =


f1...
fi...
fN


N×1

=


f(X⃗1)...
f(X⃗i)...
f(X⃗N)


N×1

(3.4)

where F⃗ is the objective function vector and fi is the objective function value for the ith proposed solution.

Mathematical Modeling
OOBO utilizes a one-to-one correspondence model for updating population members’ positions. Each
member is selected only once and randomly to guide a different member in the search space.To model a
one-to-one correspondence, the member position number in the population matrix is used. The random
process of forming the set k⃗ as “the set of the positions of guiding members” is modeled by

K⃗ =
{
[k1, · · · , k↕, · · · , kN ] ∈ PN ; ∀ ↕ ∈ N : k↕ ̸=↕

} (3.5)
where N = {1, · · · , N}, PN is the set of all permutations of the set N , and k↕ is the ↕th element of the
vector K⃗ .
OOBO guide the population towards better solutions in the search space.It works by:

• Comparing members: Selecting two members (Xi and Xki) and comparing their ”fitness” based on
the objective function.

• Moving towards better solutions: If Xki is ”better” (higher objective function value), Xi is moved
closer to it in the search space. This encourages finding solutions similar to successful ones.

• Exploring the search space: If Xi is better, it moves away from Xki, exploring different areas to
potentially find even better solutions.

The process of calculating the new positions of population members and updating them in the search space
is modeled by Equations (3.6) and (3.8).

xnew
i,d =

{
xi,d + rand() · (xki,d − Ixi,d) , fki < fi;
xi,d + rand() · (xi,d − xki,d) , otherwise ,

(3.6)
I = rand(1 + rand()). (3.7)

Xi =

{
Xnew

i , f new
i < fi;

Xi, otherwise ,
(3.8)
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Where
xnew
i,d : The new suggested status of the ith member in the dth dimension.

xki,d : The dth dimension of the selected member to guide the ith member.
fki : The objective function value obtained based on Xk,i.
I : Variable takes values from the set {1, 2}.
Xnew

i,d : The new suggested status in the search space for the ith population member.
f new
i : The value of the objective function of the ith population member.

Computational Complexity and Pseudocode of OOBO
The computational complexity of the One-to-One-Based Optimizer (OOBO) algorithm can be analyzed in
terms of time complexity and space complexity.

• The total time complexity is O(NTm), where N is the number of population members, T is the
number of iterations, and m is the number of decision variables.

• The space complexity of the OOBO algorithm is O(Nm), where N is the number of population
members and m is the number of decision variables.

Algorithm 1 . Pseudocode of OOBO
Start OOBO
Input optimization problem information
Set N and T
Create an initial population matrix
Evaluate the objective function
for t← 1 To T do

Update K⃗ based on Equation (3.5)
for i← 1 To N do

Calculate Xnew
i based on Equations (3.6) and (3.7)

Compute f new
i based on Xnew

iUpdate Xi using Equation (3.8)
end for
Save the best solution found so far

end for
Output the best quasi-optimal solution
End OOBO

3.2.2 Sand Cat swarm optimization
Sand cat swarm optimization (SCSO) is a new nature-inspired algorithm that mimics the sand cat behavior
that tries to survive in nature[48]. The algorithm is designed to balance exploration and exploitation phases,
and it has been shown to perform well in finding solutions with fewer parameters and operations. Inspired
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by the sand cat’s ability to detect low frequencies below 2 kHz and its remarkable hunting skills, the SCSO
algorithm consists of two main phases: search and attack. It is designed to control the transitions between
these phases in a balanced manner to effectively find optimal solutions.

Figure 3.1: Working mechanism of SCSO in initial and definition phase

Initial Population
In the SCSO algorithm, the population is initialized as a matrix of sand cats, with each cat being represented
as a 1×d array, where d is the number of dimensions in the optimization problem, and is defined as
shown in Figure (3.1).The initial population is created according to the size of the problem (Npop × Nd),
(pop = 1, · · · , n), with each sand cat’s position being represented by a set of floating-point numbers
(x1, x2, · · · , xd) indicating the values of the problem variables. These values must fall within the specified
lower and upper boundaries for each variable (∀xi ∈ [lower, upper]).
The fitness of each sand cat in the initial population is determined based on its position and its ability to
provide a viable solution to the optimization problem.

Exploration
The exploration phase is a crucial part of this process, where the sand cats actively search for promising
areas within the entire solution space. This phase utilizes several equations and parameters to guide the
movement of these virtual predators. It begins with the creation of a ”candidate matrix” representing the
current population of sand cat positions, each corresponding to a potential solution. Each sand cat’s fitness
is then evaluated using a specific function that assesses its effectiveness in solving the problem at hand.

A key aspect of the exploration phase is ensuring the sand cats don’t get trapped in areas with sub-
optimal solutions (local optima). The algorithm achieves this through an ”adaptive strategy” that utilizes two
parameters: r⃗G and R. The r⃗G value (Equation (3.9)) represents the overall sensitivity range for the entire
population and decreases linearly throughout the search. The R vector, derived from Equation (3.10),
controls the transition between exploration and exploitation (refining current solutions). This balanced
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approach helps the sand cats explore new areas while also focusing on promising regions identified earlier.
The sensitivity range for each sand cat is diferent, to avoid the local optimum trap and it is realized by
Equation (3.11). Therefore, the r⃗G indicates the general sensitivity range that is decreased linearly from
2 to 0. Besides, r⃗ demonstrates sensitivity range of each cat.In addition, iter c is current iteration and
iter Max is maximum iterations.

−→rG = sM −
(

2× SM × iter c

iter Max + iter max

)
, (3.9)

R⃗ = 2×−→rG × rand(0, 1)−−→rG, (3.10)

r⃗ = −→rG × rand(0, 1). (3.11)

During exploration, Each search agent (sand cat) updates its own position based on the best-candidate
position (−−→Posbc) and its current position (−−→Posc) and its sensitivity range (r⃗). Therefore, the sand cats able
to find the possible other best prey position (Equation (3.12)). This randomness allows the sand cats to
investigate different parts of the search space and avoid settling for readily available but potentially sub-
optimal solutions.

−→Pos(t+ 1) = r⃗ ·
(−−→Posbc(t)− rand(0, 1) · −−→Posc(t)

) . (3.12)

Exploitation
Following the exploration phase where sand cats search a vast area, the SCSO algorithm transitions to an
exploitation phase focused on refining promising solutions. This phase employs Equation 3.13 to calculate
the distance between the current best position (potential prey) and each sand cat’s location. The sand cat’s
sensitivity range is modeled as a circle, and the Roulette Wheel selection algorithm picks a random angle
within that circle to introduce beneficial randomness (between -1 and 1). This not only avoids local optima
traps but also guides each sand cat towards the optimal solution from various circular directions within the
search space.

−−−→Posrnd =
∣∣∣rand(0, 1) · −−→Posb(t)−−−→Posc(t)

∣∣∣
−→Pos(t+ 1) =

−−→Posb(t)− r⃗ · −−−→Posrnd · cos(θ)
(3.13)

Equation 3.13 factors in the distance, random angle, and other parameters to update each sand cat’s
position, effectively steering them closer to the prey as iterations progress as seen in Figure (3.2).

In essence, the exploitation phase strategically refines solutions through calculated distances, random
directional movement, and targeted position updates, ultimately leading the sand cats to converge on the
optimal solution
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(a) Position updating in iterationi. (b) Position updating in iterationi+1.
Figure 3.2: Position updating mechanism in SCSO.

Balance between exploration and exploitation
The SCSO algorithm strikes a balance between exploration and exploitation through the dynamic duo of
rG and R parameters. rG, mimicking a sand cat’s narrowing focus, decreases linearly with iterations. R,
derived from rG, controls the switching between phases and falls within a range determined by rG. The
beauty lies in how a well-balanced rG translates to a well-balanced R, ensuring smooth transitions between
exploring new areas and exploiting promising solutions. Equation 3.14 plays a crucial role here. When
the absolute value of Ris ≤ 1, the equation steers the sand cats towards exploiting the current best area.
Otherwise, it encourages exploration for new possibilities.

X⃗(t+ 1) =

{ −−→Posb(t)−−−−→Posrnd · cos(θ) · r⃗ |R| ≤ 1; exploitation
r⃗ ·

(−−→Posbc(t)− rand(0, 1) · −−→Posc(t)
)
|R| > 1; exploration (3.14)

Computational Complexity and The pseudocode of SCSO
The SCSO algorithm’s computational complexity is O(n2), where n represents the population size. This
signifies that the calculation time increases as the square of the population size. While initializing the
algorithm and updating positions also contribute to the complexity, their impact is considered less signifi-
cant, especially when n and m (problem size) have similar values. In simpler terms, the SCSO algorithm’s
efficiency scales with the square of the population size.
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Algorithm 2 . Pseudocode of SCSO
Initialize the population
Calculate the fitness function based on the objective function
Initialize the r, rG, R
while (t≤ maximum iteration) do

for each search agent do
Get a random angle based on the Roulette Wheel Selection (0◦≤θ≤360◦ )
if (abs(R)≤1) then

Update the search agent position based on the Eq (3.13) ;
−−−→Pos b(t)−

−−−−→Pos rnd · cos(θ) · r⃗
else

Update the search agent position based on the Eq (3.12) ; r⃗ ·
−−−→
(Posbc (t)− rand(0, 1) · −−→Posc

)
end if

end for
t = t++

end while

3.2.3 Dung Beetle Optimizer
The dung beetle optimizer (DBO) is a novel population-based technique inspired by the behaviors of
dung beetles in nature (ball-rolling, dancing, foraging, stealing, and reproduction)[49]. The algorithm uses
behavior-inspired rules to update the positions of agents (dung beetles) in the search space, aiming to find a
balance between global exploration and local exploitation. The DBO technique uses iterative optimization
and dynamic parameters to effectively search for high-quality solutions in copmlex optimization problems.

The Dung Beetle Optimizer algorithm operates through a series of steps to efficiently search for optimal
solutions in optimization problems.

Initialization
The algorithm starts by initializing a population of dung beetles within the search space. Each dung beetle
represents a potential solution to the optimization problem. The position vector of the ith dung beetle at
iteration t is denoted in Equation 3.15 where D is the dimension of the search space.

xi(t) = (xi1(t), xi2(t), . . . , xiD(t)) (3.15)

Movement of Dung Beetles
The movement of dung beetles is crucial because it mimics their natural activities. The positions of dung
beetles are updated using dynamic equations based on their foraging, rolling, and reproductive behaviors.The
specific equation for updating the position of the brood ball can be expressed as:

Bi(t+ 1) = X∗ + b1 × (Bi(t)− Lb∗) + b2 × (Bi(t)− Ub∗) (3.16)
Where Bi(t + 1) represents the updated position of the brood ball dung beetle i at the next iteration

t + 1, X∗ is a calculated value that influences the movement of the brood ball, b1 and b2 are independent
random vectors that introduce stochasticity into the movement, Bi(t) is the current position of the brood
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ball dung beetle at iteration t, Lb∗ and Ub∗ are calculated values based on optimal foraging areas, which
guide the movement of the brood ball towards promising regions in the search space.

Exploration and Exploitation
The DBO algorithm achieves a balance between exploration and exploitation by dynamically adjusting
parameters. This adaptive strategy allows the algorithm to explore the search space thoroughly and exploit
promising regions effectively, leading to improved optimization performance and the discovery of high-
quality solutions.

Figure 3.3: Flowchart of dung beetle optimization algorithm.
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3.2.4 Red‑tailed hawk Optimizer
The Red-tailed Hawk algorithm (RTH) is a nature-inspired metaheuristic optimization algorithm developed
to address a variety of optimization problems[50]. This algorithm is based on the red-tailed hawk’s hunting
strategy; it mimics the stages of a hawk’s hunt, such as high soaring, low soaring, stooping and swooping.
These steps represent the hawk’s exploration of the search space, selection of the prey position, and final
attack on the target.

Mathematical Model
The RTH algorithm consists of three key stages mirroring the red-tailed hawk’s hunting behavior.

1. High soaring
Red-tailed hawks soar far into the sky to find the best food source. Figure 3.4 shows the behavior of
red-tailed hawks during the high soaring stage, whereas Eq.(3.17) represents the mathematical model for
this stage.

X(t) = Xbest + (Xmean −X(t− 1)) · Levy(dim) · TF (t) (3.17)

Where
X(t) : The red-tailed hawk position at the iteration t

Xbest : The best-obtained position.
Xmean : The positions’ mean.
Levy : The levy fight distribution function that is calculated in Eq.(3.18)
TF (t) : The transition factor function that is calculated in Eq.(3.19).

Levy(dim) = s
µ · σ
|v|β−1 ; σ =

(
Γ(1 + β) · sin(πβ/2)

Γ(1 + β/2) · β · 2(1−β/2)

)
(3.18)

TF (t) = 1 + sin (2.5 + (t/Tmax)) (3.19)

where s is a constant (0.01), dim is the problem dimension, β is a constant (1.5), u, and v are random
numbers [0 to 1], and Tmax represents the max number of iterations.

2. Low soaring
The hawk surrounds the prey by flying extremely close to the ground in a spiraling motion. Figure 3.5
illustrates this stage and its model, which can be expressed as:

33



Chapter 3. Parameter Estimation in Photovoltaic Systems

Figure 3.4: Behavior of red-tailed hawk during high soaring stage.

X(t) = Xbest + (x(t) + y(t)) · StepSize(t)
StepSize (t) = X(t)−Xmean

(3.20)

where x and y are direction coordinates, which can be calculated as follows:{
x(t) = R(t) · sin(θ(t))
y(t) = R(t) · cos(θ(t))

{
R(t) = R0 · (r − t/Tmax) · rand
θ(t) = A · (1− t/Tmax) · rand

{
x(t) = x(t)/max |x(t)|
y(t) = y(t)/max |y(t)| (3.21)

where R0 represents the initial value of the radius [0.5–3], A denotes the angel gain [5–15], rand is a
random gain [0–1], and r is a control gain [1, 2]. These parameters help the hawk fly around the prey with
spiral movements.

Figure 3.5: Behavior of red-tailed hawk during low soaring stage.
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3. Stooping and Swooping
During this stage, the hawk stoops to attack the prey from its best low-soaring position. Figure 3.6 illus-
trates the behavior of red-tailed hawks at this stage . It can be represented as follows:

X(t) = α(t) ·Xbest + x(t) · StepSize 1(t) + y(t) · StepSize 2(t) (3.22)

where each step size can be calculated as follows:
StepSize1 (t) = X(t)− TF (t) ·Xmean
StepSize2 (t) = G(t) ·X(t)− TF (t) ·Xbest

(3.23)

where α represents the hawk’s acceleration that increases with the increase of t to enhance the convergence
speed, and G is the gravity effect that decreases to reduce the exploitation diversity when the hawk is much
near the prey.They can be defined as follows:

α(t) = sin2 (2.5− t/Tmax)
G(t) = 2 · (1− t/Tmax)

(3.24)

Figure 3.6: Behavior of red-tailed hawk during stooping and swooping stages.
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Algorithm 3 . Pseudocode of RTH
Initialization: random generation within the search space.
while t < Tmax do

High soaring stage:
for i = 1 : Npop doCalculate Levy flight distribution Eq(3.18)

Calculate the transition factor TF Eq(3.19)
Update positions Eq(3.17)

end for
Low soaring stage:
for i = 1 : Npop doCalculate direction coordinates Eq(3.21)

Update positions Eq(3.20)
end for
Stooping and Swooping stage:
for i = 1 : Npop doCalculate the acceleration and the gravity factors Eq(3.24)

Calculate the step size Eq(3.23)
Update positions Eq(3.22)

end for
end while

3.3 Related Work
3.3.1 Photovoltaic models
Designing solar cells (SCs) and photovoltaic (PV) modules requires a precise mathematical model to accu-
rately extract the solar cell’s parameters[51]. This model is then used to design an electronic circuit with
diodes that mimics the solar cell’s behavior. A crucial step in achieving an accurate design is selecting
an appropriate mathematical model. Subsequently, search strategies can be employed to find the optimal
parameter values for the chosen model.

Commonly, electrical equivalent circuits are used to represent PV cells or modules.These circuits typi-
cally include a current source, a diode, and resistors. Three main types of models are used to create these
equivalent circuits: the single-diode model (SDM), the double-diode model (DDM), the Photovoltaic mod-
ule model (PVM), and the triple-diode model (TDM)[52]. Each model offers advantages and disadvantages,
with the number of diodes directly impacting the accuracy of the predicted current-voltage (I-V) curve.

Single-Diode Model
The simplicity and accuracy make the single diode model as the simplest PV model[51].Its structure is given
in Figure (3.7). The current output IL can be calculated by Equation (3.25) .

IL = Iph − Isd ·
[
exp

(
q · (VL +RS · IL)

n · k · T

)
− 1

]
− VL +RS · IL

Rsh

(3.25)
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Where
Iph : The photo-generated current.
Isd : The reverse saturation current of diode.
VL : The value the output voltage.
Rs : The value the series resistance.
Rsh : The shunt resistance.
T : The cell temperature (◦K) .
n : The diode ideality factor .
k : The Boltzmann constant (k = 1.3806503× 10−23 J/K).
q : The electron charge (q = 1.60217646× 10−19 C).

It can be seen that there are five unknown parameters (Iph, Isd, Rs,Rsh, n) need to be estimated in the
SD model.

Figure 3.7: The schematic diagram of the SD model.

Double-Diode Model
The DD model is also commonly used in practice and literature, is more complex than the single-diode
model, and includes two diodes to account for recombination currents in the solar cell[53]. As presented
in Figure 3.8 , its output current is computed based on Equation (3.26).

IL =Iph − Isd1 ·
[
exp

(
q · (VL +RS · IL)

n1 · k · T

)
− 1

]
− Isd2 ·

[
exp

(
q · (VL +RS · IL)

n2 · k · T

)
− 1

]
− VL +RS · IL

Rsh

(3.26)
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where Isd1 and Isd2 are used to denote the diffusion and saturation currents, respectively. n1 and n2are the ideal factors for the diffusion diode and the recombination diode, respectively.
Compared with the SD model, more parameters (Iph, Isd1, Isd2, Rs, Rsh, n1, n2) should be identified

accurately in the DD model.

Figure 3.8: The schematic diagram of the DD model.

Photovoltaic module model
Different from the above two models, the PV module typically includes several solar cells connected in
parallel or in series[53].Its structure is given in Figure 3.9. The output current can be calculated by Equation
(3.27).

IL/Np = Iph − Isd ·
[
exp

(
q · (VL/NS +RS · IL/Np)

n · k · T

)
− 1

]
− VL/NS +RS · IL/Np

Rsh

(3.27)
where Np and NS indicate the size of solar cells used in parallel and series, respectively. It is clear that

there exist five unknown parameters(Iph, Isd, RS , Rsh, n) in the PV module.

Figure 3.9: The schematic diagram of the PV module model.
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Triple-diode model
This is the most complex and accurate PV model. It includes three diodes to account for different types
of recombination currents in the solar cell and is more appropriate for industrial applications[51]. The
equivalent circuit of the TD model after the parallel connection of the third diode is shown in Figure
3.10.The TDM’s output current could be estimated by:

IL =Iph − Isd1

[
exp

(
q · (VL +Rs · IL)

n1 · k · T

)
− 1

]
− Isd2

[
exp

(
q · (VL +Rs · IL)

n2 · k · T

)
− 1

]
− Isd3

[
exp

(
q · (VL +Rs · IL)

n3 · k · T

)
− 1

]
− VL +Rs · IL

Rsh

(3.28)

where Isd3 is the current through the third diode, and n3 represents the third diode’s ideality factor.The
TDM’s mathematical model has nine unknown parameters that need to be accurately estimated to maximize
the performance of the solar cell. These parameters are namely Iph,Isd1,Isd2,Isd3, Rs, Rsh, n1, n2, and n3.

Figure 3.10: The schematic diagram of the TD model.

3.3.2 problem formulation
Accurate modeling of photovoltaic (PV) cells is critical for optimizing performance and predicting energy
production. Parameter estimation is a critical phase in this process, in which mathematical equations are
employed to determine values that represent the cell’s characteristics. However, just knowing equations is
not enough. We need a method to determine how accurate these estimated parameters are. This is where
the objective function comes in. It is desired that the measured parameter values can approximate the
experimental data as much as possible; that is, the error between them is as small as possible. Equations
3.29 and 3.30 show the calculation method for the SD and DD models[53], respectively. In Equation 3.31
[53], the root mean square error (RMSE) is used to calculate the overall error, used to measure the differ-
ences between values predicted by a model or an estimator and the actual values, leading to a more reliable
and accurate representation of the PV cell’s behavior, ultimately enabling optimal performance and energy
prediction.
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{
fk (VL, IL, x) = Iph − Isd ·

[exp( q·(VL+RS··IL)
n·k·T

)
− 1

]
− VL+RS·IL

Rsh
− IL

x = {Iph, Isd, RS, RSh, n}
(3.29)


fk (VL, IL, x) =Iph − Isd1 ·

[
exp

(
q · (VL +RS · IL)

n1 · k · T

)
− 1

]
− Isd2 ·

[
exp

(
q · (VL +RS · LL)

n2 · k · T

)
− 1

]
− VL +RS · IL

Rsh

− IL

x = {Iph, Isd1, Isd2, RS, RSh, n1, n2}

(3.30)

RMSE(x) =
√√√√ 1

N

N∑
k=1

fk (VL, IL, x)2 (3.31)

where N shows the number of experimental data.

3.4 Results and discussion
This section summarizes and discusses the optimization results of the solar PV cell parameter extraction
problem. In the study, the electrical parameters of the single-diode cell model and the double-diode cell
model were optimized with OOBO, SCSO, RTH, and DBO algorithms.

• The I-V data of single-diode and double-diode solar cells were taken from [53]. The data was
measured on a 57-mm-diameter RTC France commercial silicon solar cell under 1000 W/m2 at 33
◦C .

• For all algorithms, the population size and maximum iteration number were set to 30 and 1000,
respectively, throughout the simulation studies. Furthermore, each algorithm was executed 30 times
in MATLAB online to remedy its stochastic nature.The configuration of the lower (LB) and upper
(UB) bounds for the SD and DD models are displayed in Table 3.2.

The outcomes are analyzed in terms of several performance metrics, such as standard deviation (std), best
RMSE, average (Avg) RMSE, and worst RMSE. In addition, the I-V and P-V curves These curves help in
determining the efficiency, power output, and behavior of the solar cells under different conditions. Also, a
convergence curve is used in the comparison to disclose the convergence speed of each algorithm.
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Table 3.2: Parameters ranges of PV models
Parameter Single/Double diode

Lower bound Upper bound

Iph (A) 0 1
Isd, Isd1, Isd2(µA) 0 1
RS(Ω) 0 0.5
Rsh(Ω) 0 100
n, n1, n2 1 2

Result on single diode model
The OOBO, SCSO, RTH, and DBO algorithms are applied to extract the electrical parameters of the single-
diode solar cell. Accordingly, the optimized solar cell parameters and the corresponding RMSE results are
given in Table ??. As can be seen from the table, the RTH algorithm obtained the minimum RMSE result with
a value of 9.86E-04, followed by the OOBO (1.03E-03), SCSO (3.94E-03), and DBO (8.34E-03) algorithms.
Figures 3.12 and 3.13 highlight that the simulated data (I-V and P-V) of three algorithms (RTH,OOBO,SCSO)
are in good agreement with the experimental data points, thereby proving their effectiveness.For the DBO, its
simulated data are not completely identical to the experimental data, which makes it less effective compared
to the other algorithms.

The parameter estimation algorithms OOBO, SCSO, and RTH show promising performance, as shown
in Figure 3.11. Their convergence curves demonstrate a steady decrease in RMSE with increasing itera-
tions, their ability to effectively minimize the difference between the simulated data and the actual data.
This implies that these algorithms have the ability to find parameter values that result in a good fit, which
might lead to reliable parameter estimate. In comparison, the DBO curve performs less efficiently, resulting
in a greater RMSE value. This implies that DBO may not be as good at identifying optimal parameter
values, perhaps resulting in less accurate parameter estimates.

Table 3.3: Comparison of experimental results for SD Model.
Parameters OOBO SCSO RTH DBO

Iph 0.7606656152 0.7660362261 0.7607755310 0.7665235979
Isd 2.966E-04 3724E-07 3230E-07 57623E-06
RS 0.0366811638 0.0345825476 0.0363770918 0.0238527017
Rsh 50.0913102768 23.7943504934 53.7185209972 100.0000000000
n 1.4726864715 1.4970033356 1.4811836076 1.8434713087

RMSE 1.0363550777E-03 3.9488531675E-03 9.8602187789E-04 8.3468571895E-03
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(a) Convergence curve of OOBO. (b) Convergence curve of SCSO.

(c) Convergence curve of RTH. (d) Convergence curve of DBO.
Figure 3.11: Convergence curves of the algorithms for the SD model.
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(a) I-V curve of OOBO. (b) I-V curve of SCSO.

(c) I-V curve of RTH. (d) I-V curve of DBO.
Figure 3.12: I-V curves of the algorithms for the SD model.
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(a) P-V curve of OOBO. (b) P-V curve of SCSO.

(c) P-V curve of RTH. (d) P-V curve of DBO.
Figure 3.13: P-V curves of the algorithms for the SD model.
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Result on double diode model
In this solar cell model, there are seven parameters that need to be estimated. Table ?? gives simulation
results for the double-diode solar cell. Considering the results reported in the table, it is seen that the RTH
algorithm exhibited the best prediction performance with an RMSE value of 9.86E-04, while DBO gave
the worst performance. The performance of the OOBO and SCSO algorithms is remarkable.

Based on Figure 3.14 the RMSE curves for OOBO, SCSO, and RTH show a significant decrease as
the iteration number increases. This shows they are efficient at estimating parameter values that lead to a
strong model fit (possibly leading to faster convergence). When comparing the DBO curve to the others, it
shows a slower RMSE drop and a higher ultimate value. This indicates that DBO might be unable to find
optimal parameters, resulting in a less accurate model.

In Figures 3.15 and 3.16, the values of I and P obtained by RTH, OOBO, and SCSO are in high
accordance with measured data for the DD model. These results clearly show that they are effective for
parameter estimation for the DD model. DBO, on the other hand, may need additional exploration due to
its lower accuracy in parameter estimation.

Table 3.4: Comparison of experimental results for DD Model.
Parameters OOBO SCSO RTH DBO

Iph 0.7605491031 0.7640579341 0.7607755298 0.7600669549
Isd1 3.160E-07 4.650E-07 3.230E-07 9.196E-07
RS 0.0361515074 0.0340217816 0.0363770931 0.0341941053
Rsh 58.3600164972 31.6347804509 53.7185209972 54.8165430770
n1 1.4807402669 1.5197613887 1.4811835836 1.6174424750
Isd2 2.512E-07 0.0000000000 0.4730620660 2.223E-07
n2 1.9943475199 1.2299299218 1.0122550941 1.6414478431

RMSE 1.0057923010E-03 2.8076644646E-03 9.8602187789E-04 8.8522404440E-03
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(a) Convergence curve of OOBO. (b) Convergence curve of SCSO.

(c) Convergence curve of RTH. (d) Convergence curve of DBO.
Figure 3.14: Convergence curves of the algorithms for the DD model.
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(a) I-V curve of OOBO. (b) I-V curve of SCSO.

(c) I-V curve of RTH. (d) I-V curve of DBO.
Figure 3.15: I-V curves of the algorithms for the DD model.
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(a) P-V curve of OOBO. (b) P-V curve of SCSO.

(c) P-V curve of RTH. (d) P-V curve of DBO.
Figure 3.16: P-V curves of the algorithms for the DD model.
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To compare the performance of the algorithms, we ran each one for 30 executions and gathered descrip-
tive data for each test case, including SDM and DDM. Each of these test cases has the following information:
the average of the best outcomes (Avg), the best result (Min), the worst result (Max), and the standard devi-
ation (Std). The results of these two tests are reported in table 3.5. The statistics shown in this table show
that the RTH algorithm produced exceptionally good results for both cases, followed by OOBO, SCSO, and
DBO.

Table 3.5: Statistical results obtained by all algorithms on two PV models
Models Algorithm RMSE

Min Max Avg Std

SD model
OOBO 1.0363550777E-03 2.2286139909E-01 2.0809294872E-01 5.6203193859E-02
SCSO 3.9488531675E-03 2.2286139909E-01 1.7888224652E-01 9.8340374745E-02
RTH 9.8602187789E-04 2.2286139909E-01 1.8588216956E-01 8.4101644692E-02
DBO 8.3468571895E-03 3.0105827309E-01 1.5814760427E-01 8.4101644692E-02

DD model
OOBO 1.0057923010E-03 2.2286139909E-01 1.7143632750E-01 9.4812842612E-02
SCSO 2.8076644646E-03 2.2286404236E-01 1.3637742992E-01 9.2113603702E-02
RTH 9.8602187789E-04 2.2286139909E-01 1.7848632365E-01 9.0267357385E-02
DBO 8.8522404440E-03 6.3074169621E-01 1.8902501009E-01 1.1742927870E-01

Discussion
The results demonstrated the distinct hierarchy in which the parameter estimation algorithms operate. RTH
consistently had the lowest root mean square error (RMSE) in both single-diode (9.86E-04) and double-
diode models, demonstrating its effectiveness in reducing the difference between simulated and measured
data.

OOBO and SCSO performed similarly in both models, with a much lower RMSE than DBO. Their
effectiveness in estimating the parameters for both models is demonstrated by the I-V and P-V curves
in Figures 3.12, 3.13, 3.15, and 3.16, which closely match the simulated and experimental data. Their
effective convergence is further demonstrated in Figure 3.14, where a strong model fit is established by a
rapid decrease in RMSE as the number of iterations increases.

DBO, on the other hand, constantly had the highest RMSE of all the models, demonstrating a poor fit
between the simulated and experimental data. Differences between simulated and experimental data appear
to be visible, as seen in Figures 3.13 and 3.16 (P-V curves) ,3.12 and 3.15 (I-V curves). The slower decline
in RMSE within the DBO convergence curve (Figures 3.14,3.11), which could result in less accurate models,
suggests that finding the ideal parameter values may be difficult.

In conclusion, RTH is the best algorithm, with OOBO and SCSO ranking second and third. DBO’s
poor performance warrants additional study due to its lower parameter estimation accuracy.This shows
that RTH may be the best strategy for determining the best parameter values.
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3.5 Conclusion
This paper presents a comparative performance analysis of metaheuristic search algorithms for parameter
extraction in photovoltaic solar cells. In the paper, the single-diode solar cell model and the double-diode
solar cell model were used. The electrical parameters of solar PV models are extracted with OOBO, SCSO,
RTH, and DBO algorithms.The analysis used Root Mean Squar Error (RMSE) as the key metric to evaluate
each algorithm’s efficacy in minimizing the difference between simulated and measured data. In addition,
I-V and P-V curves were used to visually compare the agreement between simulated and experimental
data.Given that all the results are together, it is evident that the RTH algorithm offered the lower RMSE
value for all solar cell models. From the I-V and P-V curves, it is observed that the calculated data by the
RTH algorithm is highly coincident with the measured data. As a result, this paper reports that RTH is an
effective and powerful metaheuristic to deal with the parameter optimization of different solar cell models.
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General Conclusion
This thesis has provided a thorough contrastive analysis of four metaheuristic search algorithms for pa-
rameter estimation in photovoltaic (PV) models: Red-tailed Hawk Optimizer (RTH), One-to-One Based
Optimizer (OOBO), Sand Cat Swarm Optimization (SCSO), and Dung Beetle Optimizer (DBO). The single
diode model and the double diode model, two common PV models, were the specific focus of the study.

The major goal was to determine the algorithms’ efficacy and accuracy in estimating the parameters that
optimize the efficiency of PV models. The root mean square error (RMSE) between simulated and actual
data was used as the objective function to evaluate each algorithm’s performance.

Our extensive experiments demonstrated that the Red-tailed Hawk Optimizer (RTH) consistently achieved
superior performance, providing the best estimation accuracy with an RMSE value of 9.86E-04 for both
PV models. This demonstrates that RTH successfully balances exploration and exploitation, making it a
reliable and efficient approach for extracting parameters in PV systems.

Perspectives
The findings of this study make a significant contribution to the field of renewable energy, particularly in
terms of improving the efficiency of solar energy systems through optimized parameter estimation. This
work improves academic understanding by determining the most effective algorithm, while also providing
practical insights for the development and deployment of more efficient photovoltaic systems.

Future research could involve extending this analysis to include more metaheuristic algorithms and
testing their performance in different types of renewable energy systems. Furthermore, real-world applica-
tions and long-term performance assessments would be useful in determining the practical value of these
findings.
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