
People’s Democratic Republic of Algeria
اܳލأٴ٭۰ اஓ୷ᄴᄟިڢݠاޗ٭۰ ل۰ اࠍ੊ݞا߉ߵ ل۰ ا۳৵৩ৠިر

Ministry of Higher Education and Scientific Research
اܳأగఒ޶ اܳٴۜت و ሒᇿ؇اܳأ اܳٺأܹࡗࡲ وزارة

ᄭᄥورڢ ਵਦً؇ح ڢ؇ݬڎي ༥؇݁أ۰
Kasdi Merbah University of Ouargla

Academic Master Thesis
To obtain a master’s degree in Computer Science

Major: Fundamental Computing

An Opposition-Based Great Wall
Construction Metaheuristic

Algorithm with Gaussian Mutation
for Feature Selection

Released by: Supervised by:
Bassimane Anfal Dr.Farouq Zitouni

Hammadi Madjda (UKMO)
Presented in June 2024, in front of the jury composed of:

Dr.Mezati Massouad : UKMO - President
Miz.Khlili Farida : UKMO - Examiner

Promotion: 2023/2024

Dedication

؇ୖ୒؇َ ... ؇ୖ୒ أَ؇ ڢ؇ل ݆݁
؇ዛኞ أ྘ོب ؇ዛዊ؜ ً ؇ᆇᅡر ೑ಸأ وᎂن ؇ୖ୒ وأَ؇

واࠍ੅ٺ؇م اܳٴڎء আॻ༟ وا݁ٺٷ؇َ؇ ً وނଲ୍ا ً ۋٴ؇ Մ៰Ղ ا৵৥ৠڎ
(َඔ൹ِ ৎَ ৊؇َْاܳأ ربَِّ ِՄ ّ֟ ՃِՂ ُ ৵َڎْ ৥ৠْا نِ ᕚأ ْܾ ُ د؜َْިا۱َ ُ රඝَِوآ)

৖৑ اᄳᄟي وا๤ཏܳاج ሒᇀدر أَ؇ر اᄳᄟي اܳٷިر ሌᇿا وا๤ཛྷ৙৑ار، ଫଊܳݱ؇ً ৖৑إ ሒᇆ؊ل ৖৑ اܳٷ༶؇ح أن มฃగఒ༟و ۏٴ྘ٷ۬ اܳأݠق ၯ၍ܭ ݆݁ ሌᇿا
(اܳأݞߌ߳ ሒᇀأ) ሒᇆࢻࣕا وا଩ଐ༟ازي ሒᇆިڢ ݁ٷ۬ ೑ಱڎಣಕᕬوا واܳٷڰ྘ݴ ሒᇿ؇اܳ؞ ࢻࣕل ݆݁ أࢻࣖاً، ม฀ًܹگ َިره ਍ಱޚࠕࠫ

ॷड़दߓߵؤ ؇ዛዊ؜٭ ّگݠ أن ஓ஄ٷب ؇ৎ৊؇ޗ มฆܳا اܳأޙ٭۰݄ ۰َ؇૭૙৖৑ا ሌᇿا ،؇ዛኔ؇༟ࣖࢻ اܳލڎاࢱࣖ ሒᇿ وዝངܹب ؇ዛᔻأڢڎا ොູب اࠍ੊ٷ۰ Մ៰Ղا ۏأܭ ݆݁ ሌᇿا
(اࠍ੆ٴ྘ٴ۰ ሒᇧأ) มฆ݄۳ܹ݁ ሌᇿإ ۳៺ڍا، لިم ሒᇭ

(ሒᇕأ)... اۊޚ۱ި؇ ۊޚިة ႟၍ ሒᇭ ሒᇿ ݁ފ؇༟ڎ و ً وݿٷڎا ً ؇ᆇᅦدا ً ؇ஓ୷ ாண ݁أޚ؇ء Ⴄ၍ن ؇ৎ৊؇ܳޚ اᄳᄟي ا௯௫௵۳ިل اࠍ੊ٷڎي ሌᇿا
ڢݠة ሌᇿا ؇ዛኤިوݬڰ ሒᇧ؇أل ଫଃ༠ة ሌᇿا ،؇ዛዊ݁ أرّިي ؕਃಸ؇਍ಱ ሒᇿ ިَႤၽڣ ܾዛኞ ؜ݯڎي ނڎدت ݆݁ ሌᇿا ،ሒᇧ؇أل وأ݁؇ن ೑ಸ؇اܳټ ௧ਤܹݪ ሌᇿا

(ඔ൹ـ੊ُࠍ و ݁ـݠام มฆاۊ ਍ಸ؇ت و ሒᇆأۊިا) ،มฃ؜٭
(෠੼ڎة) ؇ஓ୴دا ॷॖर؇෠ຳ وڢڰب ݆݁ ሌᇿا اܳٷ༶؇ح و ᄭᄥ༡ීෂا ݬڎلگ۰ ,ม฀ܹڢ رڣ٭گ۰ اܳأޙࡗࡲ, اܳڰݯܭ ݬ؇ۋٴ۰ ሌᇿا

ሌᇿإ ، وا৙৑ز݁؇ت اܳލڎاࢱࣖ وأොේ؇ب ඔ൹اܳފٷ ورڣگ؇ء ا৙৑وڣ٭؇ء ఋዳዧݬڎڢ؇ء ... لݑ اܳޚݠ ۱ڍا ሒᇭ ً وݿٷڎا ً ؜ިَ؇ Ⴄ၍ن ݆݁ ႟ၽܳ
(۰੆اܳـݱ؇ࠍ มฆـٴොේُ)

(ඔ൹ڣܹފޚ) ،؇݁ఈఃݿــ لــި݁؇ رأت ؇݁ و ይዧފـَـــఈఃم ۊُـــܹگب أرضٍ ሌᇿإ و ڣݯــ؇ء), (ᕦَدي ؇਍ಱد؇َ اܳݱ؞ଫଃة، ؇਍ಾݠஓஇ ሌᇿإ
وأن ، มฃو۱ٴ ؇݁ আॻ༟ Մ៰Ղ ڣ؇৵৥ৠڎ ، و༥ܭ ਲ਼؜ Մ៰Ղا ݆݁ ًڰݯܭ ஓஇݠاّ۬ أول أஓ஄݄ب اܳ٭ިم أَ؇ ؇۱ ،ሒᇖ؇෠ຶ وஓஇݠة ا෠ຶ৕৑؇ز ۱ڍا ુળأ۱ڎل

܋ٷب. ؇റഠ೭أ ᄎც݁ٴ؇ر มฃܹأ෠ຬو มฃྡྷلأ٭

ً؇ಣಈᕬ؇ن اَڰ؇ل

i

Dedication

ًأڎ ا݁؇ Մ៰Ղا ॷॖर আॻ༟ وݿఈఃم اܳݱఈఃة و Մ៰Ղ ا৵৥ৠڎ
Մ៰Ղ ا৵৥ৠڎ ୒ୖڍا มฃوڣگ اᄳᄟي Մ៰Ղ ا৵৥ৠڎ Մ៰Ղا... ৖৑ا ؇ୖ୒؇༡ لأ޺޾ ৖৑و ඔ൹اܳފٷ ّ۬؇۱ ޗިال وراًޚب و༥؇۱ڎت ೑ಸر؇༡ มฆܳا ๴ཏَڰ ሌᇿا

لݑ اܳޚݠ රඝآ ሒᇿިܳިݬ
ان ஓ஄ٷ྘ب ቕመ اܳٷ༶؇ح ୒ୖڍا ๤ཟොຬ ݆݁ اول ሒᇃިّܝ ان ஓ஄ٷ྘ب ቕመ ؇٪྘ނ ؇ዛዊ݁ اৎ৊ں ቕረو ر༡ܹب มฆܳا ሒᇧأ ሌᇿا اܳ؞؇ܳ٭؇ن واᄴᄟل؇ ሌᇿإ

...اࠍ੆ٴ྘ص ሒᇀا ሌᇿا اܳٷ؇س আॻ༚ا ل؇ ዻዧ ঌॻ݁ފٺگٴ ႟၍و ۱ڍا ሒᇚݠෛູو ۱ڍا ݁ލިاري ඔ൹اܳފٷ ّ۬؇۱ ޗިال ሒᇿ واܳأިن اܳފٷڎ ሒᇃިّܝ
اࠍ੊ٷ۰ ؇ᆇᆅ݁ټިا واۏأܭ ؇݄۳ᆇᅵار ܾ۳ይዧا ೑ಸ؇اܳټ اܳޙܹؕ ሌᇿا

ا෠ຶٴب ݆݁ আॻ༚ا ل؇ มฆاۊ... ਍ಸ؇ت ሌᇿا اࠍ੆٭؇ة ّ۬؇۱ ሒᇭ ݿٷڎي ሒᇃأۊިا ሌᇿا ݿأ٭ڎة) وا݁؇ل أఈః༡م اࠍ੆ٴ྘ٴ؇ت(ሒᇆأۊިا ሌᇿا
෠ຶ؇ح) ܋ިߜߵ ݬڰ؇ء (ݿߺࠊى اܳ؞؇ܳ٭۰

(اَڰ؇ل).. Մ៰Ղا ۱ڎال؇ وأڣݯܭ ۱ڍا ݁ލިاري وݬڎلگ۰ اෂීوح ورڣ٭گ۰ اᄴᄟرب رڣ٭گ۰ ሌᇿا
..۰గၵၽً وܳި ௧ਤ݁ وڢژ ݆݁ ႟၍ ሌᇿا ๴ངراᄴᄟا ݁ލިاري ޗިال มฃᆇᅦود ሒᇃࣖݿ؇ࢾ ݆݁ ሌᇿᎂو اࠍ੆ٴ྘ٴ؇ت ሒᇆ؇ݬڎلگ ႟၍ ሌᇿᎂو

اܳأ݄ܭ... ۱ڍا ુળا۱ڎل

ᆇᅵ؇دي ෠੼ڎة

ii

Acknowledgment

Firstly, we express our gratitude to the Almighty God for providing us with the
strength, patience, and courage necessary for our studies and the completion of this work.
We also extend our thanks to our parents, who have been a source of encouragement and
motivation throughout our educational journey. We sincerely appreciate the continuous
support, guidance, and motivation provided by our supervisor, Dr.Farouq Zitouni, in
addressing our research challenges. We are especially grateful for the confidence he has
shown in our abilities. Similarly, we would like to convey our respectful appreciation to
the members of the jury for their involvement in the evaluation process of our work. We
recognize and value their participation and examination of our dissertation.It would be
remiss of us not to acknowledge all of our teachers in the Department of Information
Technology at Kasdi Merbah Ouargla University, whose guidance has been instrumental
over the past five years. We offer a special thanks to our family members and friends who
have consistently supported us. Finally, we express our deep gratitude and respect to all
those who have assisted us, whether near or far, throughout our academic journey and in
the preparation of this dissertation. We extend our sincere thanks to everyone who has
played a part in our studies.

iii

Abstract

The feature selection problem involves selecting a subset of relevant features to en-
hance the performance of machine learning models, crucial for achieving model accuracy.
Its complexity arises from the vast search space, necessitating the application of meta-
heuristic methods to efficiently identify optimal feature subsets. In this work, we em-
ployed a recently proposed metaheuristic algorithm named the Great Wall Construction
Algorithm to address this challenge – a powerful optimizer with promising results. To
enhance the algorithm’s performance in terms of exploration, exploitation, and avoid-
ance of local optima, we integrated opposition-based learning and Gaussian mutation
techniques. The proposed algorithm underwent a comprehensive comparative analysis
against ten influential state-of-the-art methodologies, encompassing seven contemporary
algorithms and three classical counterparts. The evaluation covered 22 datasets of varying
sizes, ranging from 9 to 856 features, and included the utilization of six distinct evalu-
ation metrics related to accuracy, classification error rate, number of selected features,
and completion time to facilitate comprehensive comparisons. The obtained numerical
results underwent rigorous scrutiny through several non-parametric statistical tests, in-
cluding the Friedman test, the post hoc Dunn’s test, and the Wilcoxon signed ranks test.
The resulting mean ranks and p-values unequivocally demonstrate the superior efficacy
of the proposed algorithm in addressing the feature selection problem.

keywords

Feature Selection Problem (FS), Great Wall Construction Metaheuristic Algorithm(GWCMA),
Opposition-Based Learning, Gaussian Mutation.

iv

Résumé

Le problème de sélection des caractéristiques implique la sélection d’un sous-ensemble
de caractéristiques pertinentes afin d’améliorer les performances des modèles d’apprentissage
automatique, ce qui est crucial pour atteindre la précision du modèle. Sa complexité
provient du vaste espace de recherche, ce qui nécessite l’application de méthodes méta-
heuristiques pour identifier efficacement des sous-ensembles de caractéristiques optimaux.
Dans ce travail, nous avons utilisé un algorithme métaheuristique récemment proposé ap-
pelé algorithme de construction de la Grande Muraille pour relever ce défi - un optimiseur
puissant avec des résultats prometteurs. Pour améliorer les performances de l’algorithme
en termes d’exploration, d’exploitation et d’évitement des optima locaux, nous avons in-
tégré des techniques d’apprentissage basées sur l’opposition et de mutation gaussienne.
L’algorithme proposé a fait l’objet d’une analyse comparative approfondie par rapport à
dix méthodologies d’avant-garde influentes, englobant sept algorithmes contemporains et
trois homologues classiques. L’évaluation a porté sur 22 ensembles de données de tailles
variables, allant de 9 à 856 caractéristiques, et a inclus l’utilisation de six métriques
d’évaluation distinctes liées à la précision, au taux d’erreur de classification, au nombre
de caractéristiques sélectionnées et au temps d’exécution pour faciliter des comparaisons
complètes. Les résultats numériques obtenus ont été soumis à un examen rigoureux au
moyen de plusieurs tests statistiques non paramétriques, notamment le test de Friedman,
le test post-hoc de Dunn et le test des rangs signés de Wilcoxon. Les rangs moyens et les
valeurs de p résultantes démontrent sans équivoque l’efficacité supérieure de l’algorithme
proposé pour résoudre le problème de sélection des caractéristiques.

Mots clés

Feature Selection Problem, Great Wall Construction Metaheuristic Algorithm, Opposition-
Based Learning, Gaussian Mutation.

v

ܹ݁ۛݧ
و۱ި ، ሒᇿ৚৑ا اܳٺأ޺޾ ஓ஁؇ذج أداء ඔ൹ܳٺۜފ ᄭᄥاܳݱ ذات ا଩ଃৎ৊ات ݆݁ ڣݠ؜٭۰ ۰༟ިᆇ୞୘ ොູڎࢴࣖ ا଩ଃৎ৊ات اۊٺ٭؇ر ᄭႍၽ݁ލ ਐಾݯ݄݆
ܳٺ༲ڎࢴࣖ ل۰ ݁٭ٺ؇۱ިر ޗݠق ّޚٴ٭ݑ ૭૏ٺܹݞم ؇ᆙᆘ ، اܳލ؇ݿأ۰ اܳٴۜت ۰༡؇݁ފ ݆݁ ّأگ٭ڎه ཯ྡྷލ؊ اࡺ࢕ࢦިذج. دڢ۰ ܳٺۜگ٭ݑ ๤ཚوري ਵਦأ
ۊިارز݁٭۰ ް݄૭૜ มฆܳوا ؇ً਒ಱڎ༡ ۰༡ଫଐگৎ৊ا ل۰ ݁٭ٺ؇۱ިر ۊިارز݁٭۰ ਐಸިޖ٭ژ ᆇᅪٷ؇ ، اܳأ݄ܭ ۱ڍا ሒᇭ ًܝڰ؇ءة. اৎ৊ټ؇ܳ٭۰ ا଩ଃৎ৊ات ༟ިᆇ୞୘؇ت
ۋ٭ت ݆݁ اࠍ੅ިارز݁٭۰ أداء ඔ൹ܳٺۜފ وا༟ڎة. ༇຀؇ਐ಻ ොູگݑ ل۰ ڢި ඔ൹ފොູ أداة ሒሃو اܳٺ༲ڎي ۱ڍا ۰੊أ؇ࠍৎ৊ اܳأޙࡗࡲ ඔ൹اܳݱ ݿިر ਍ಸ؇ء
اܳ؞؇وݿ٭۰. واܳޚڰݠات اৎ৊أ؇رݪ۰ আॻ༟ ቕሶ؇اܳگ اܳٺأ޺޾ ّگٷ٭؇ت ༇ံࣖࢻ ᆇᅪٷ؇ ، আॻټৎ৊ا ا௱௯௫ܹ٭۰ اࠍ੆ߺࠊل و෠ູٷص وا৖৑ݿٺ؞ఈఃل ا৖৑ݿٺܝލ؇ف
݁أ؇๤ཛྷة ۊިارز݁٭؇ت ݿٴؕ ૰૜݄ܭ ، اܳڰ݆ ሒᇭ ݁ޝߜߵة ༇ဋ؇݁ٷ ๤དྷ؜ ݁گ؇ًܭ ނ؇݁ܭ ݁گ؇رن ܳٺ༲ܹ٭ܭ ۰༡ଫଐگৎ৊ا اࠍ੅ިارز݁٭۰ ۊݯأب
اݿٺ༱ڎام وᆙᆍܭ ، ଩ଃ݁ة 856 ሌᇿإ 9 ݆݁ ଫଐّاوح ، ෛ੼ٺܹڰ۰ ً؊࿭੗؇م ਃಸ؇َ؇ت ۰༟ިᆇ୞୘ 22 اܳٺگ٭ࡗࡲ ᆙᆍܭ ఈ႙၍ݿ٭ܝ٭۰. َޙଫଃات وఈఃٔث
اৎ৊گ؇رَ؇ت ዝཏྥܳ٭ܭ اპაႰ৕৑ل ووڢب ا௱௯௫ڎدة ا଩ଃৎ৊ات و༟ڎد اܳٺݱྡྷ٭ژ ۊޚ؊ و݁أڎل ً؇ᄴᄟڢ۰ ݁ٺأܹگ۰ ଩ଃᆙᆘة ّگ٭ࡗࡲ ݁گ؇྘཯ݴ ݿٺ۰
، اৎ৊أగఒ؇ت ଫଃ༚ ۰ਃಮ؇إۋݱ اۊٺٴ؇رات ༟ڎة ఈః༠ل ݆݁ دڢ٭ݑ ܳڰۜݧ ؇ዛዀܹ༟ اࠍ੆ݱިل ቕቆ มฆܳا اܳأڎدل۰ ༇຀؇اܳٷٺ ۊݯأب .ᄭᄥ݁؇اܳލ
ೞಾීෂا ّޙ۳ݠ اৎ৊ިڢأ۰. ܋ިފިن لܹـܝ و ఈః༟݁؇ت ೞಾر واۊٺٴ؇ر ، ఈዳዧۊٺٴ؇ر ሒᇿ؇اܳٺ دان واۊٺٴ؇ر ، ڣݠࢴࣖ݁؇ن اۊٺٴ؇ر ዻዧذ ሒᇭ ؇ஓ୾
ا଩ଃৎ৊ات. اۊٺ٭؇ر ᄭႍၽ݁ލ ۰੊݁أ؇ࠍ ሒᇭ ۰༡ଫଐگৎ৊ا ࠯࠵࠹ިارز݁٭۰ اܳڰ؇فگ۰ اܳڰأ؇ܳ٭۰ ڣ٭۬ ܳྟݴ ৖৑ ႟ၽ૰૖ ۰෠ູ؇اܳٷ ا৖৑ۋٺ݄؇ܳ٭۰ واܳگࡗࡲ اৎ৊ٺިݿޚ۰

اिऻء׫ոؼמ١ اڤոஈ࿦࿮ت
༚؇وݿ٭۰ ޗڰݠة اৎ৊أ؇رݪ۰، আॻ༟ ቕሶ؇ڢ ّأ޺޾ ل۰، ݁٭ٺ؇۱ިر ۊިارز݁٭۰ ؜ޙࡗࡲ، ݿިر ਍ಸ؇ء ۊިارز݁٭۰ ا଩ଃৎ৊ات، اۊٺ٭؇ر ᄭႍၽ݁ލ

vi

Contents

Dedication i

Dedication ii

Acknowledgment iii

Abstract iv

Résumé v

ڲڪٌۘ vi

General Introduction 1

Chapter 1: Introduction to Metaheuristics 2

1.1 Introduction . 3
1.2 Definition of Metaheuristics . 3
1.3 When Using Metaheuristic . 3
1.4 Search Behavior . 4

1.4.1 Exploration . 4
1.4.2 Exploitation . 5
1.4.3 Local Optima . 5
1.4.4 Global Optima . 5

1.5 Classification of Metaheurstic Algorithms 6
1.5.1 Population-Based Search vs Single-Solution Based Search 6
1.5.2 Deterministic vs Stochastic . 7
1.5.3 Iterative vs Greedy . 7
1.5.4 Evolutionary Algorithms . 7
1.5.5 Swarm-Intelligence-Based Algorithms 8

1.6 Applications of Metaheuristics . 9
1.7 Conclusion . 10

vii

Chapter 2: Introduction to Feature Selection 12

2.1 Introduction . 13
2.2 Definition of Feature Selection . 14
2.3 Importance of Feature Selection . 14
2.4 Approaches of Feature Selection . 15

2.4.1 Filter Approaches . 15
2.4.2 Wrapper Approaches . 15
2.4.3 Embedded Approaches . 15

2.5 Mathematical Formulation of FS Problems 16
2.6 Application of Feature Selection in Real World 17

2.6.1 Text Categorization . 17
2.6.2 Remote Sensing . 17
2.6.3 Intrusion Detection . 18
2.6.4 Genomic Analysis . 18
2.6.5 Image Retrieval . 18

2.7 Related Work . 19
2.8 Conclusion . 22

Chapter 3: An Opposition-Based Great Wall Construction Metaheuris-
tic Algorithm with Gaussian Mutation 23

3.1 Introduction . 24
3.2 Background . 26

3.2.1 Great Wall Construction Algorithm 26
3.2.2 Opposition-Based Learning . 31
3.2.3 Gaussian Mutation . 33
3.2.4 K-Nearest Neighbors . 33
3.2.5 Evaluation Metrics . 37

3.3 Proposed Algorithm . 39
3.4 Experimental Study and Discussion . 40

3.4.1 Used Datasets and Parameters Setting 40
3.4.2 Benchmark Algorithms . 42
3.4.3 Numerical Results and Discussion 45

3.5 Conclusion . 61
3.6 Table of used symbols . 63

General Conclusion 64

viii

List of Figures

1.1 Global and local optima in a search space. [1] 5
1.2 Metaheuristics Classifications. Source: [2] 6

2.1 Components of pattern recognition . 14

3.1 The box-and-whisker plot for all the optimizers over all the datasets for
ACA values. 51

3.2 The box-and-whisker plot for all the optimizers over all the datasets for
AFV values . 52

3.3 Convergence analysis of fitness values across optimizers for small dataset
(d1 to d6). 58

3.3 Convergence analysis of fitness values across optimizers for small dataset
(d7 to d9). 59

3.4 Convergence analysis of fitness values across optimizers for medium datasets
(d10 to d15). 60

3.4 Convergence analysis of fitness values across optimizers for medium datasets
(d16 to d17). 61

3.5 Convergence analysis of fitness values across optimizers for large datasets
d18 to d22. 62

ix

List of Tables

3.1 The parameters used in the GWCA. 27
3.2 The parameters used in Algorithms 6 and 7. 32
3.3 The description of datasets used in the comparative study. 42
3.4 The parameters used in the proposed algorithm. 43
3.5 The parameters’ values of the algorithms used for the comparative study. 44
3.6 The values of various metrics when considering all features. 46
3.7 The values of various metrics obtained by the proposed algorithm. 46
3.8 Summary of the Friedman test results. 47
3.9 Summary of the Kruskal-Wallis test results. 47
3.10 The ACA values for all algorithms. 48
3.11 The AFV values for all algorithms. 48
3.12 The MiFV values for all algorithms. 49
3.13 The MaFV values for all algorithms. 49
3.14 The ASF values for all algorithms. 50
3.15 The ACT values for all algorithms. 50
3.16 The p-values obtained by the post hoc Dunn’s test for Table 3.10. 53
3.17 The p-values obtained by the post hoc Dunn’s test for Table 3.11. 53
3.18 The p-values obtained by the post hoc Dunn’s test for Table 3.12. 54
3.19 The p-values obtained by the post hoc Dunn’s test for Table 3.13. 54
3.20 The p-values obtained by the post hoc Dunn’s test for Table 3.14. 55
3.21 The p-values obtained by the post hoc Dunn’s test for Table 3.15. 55
3.22 The p-values obtained by the post hoc Dunn’s test for Table 3.15. 56
3.23 The p-values obtained by the Wilcoxon signed ranks test for Table 3.10. 56
3.24 The p-values obtained by the Wilcoxon signed ranks test for Table 3.11. 56
3.25 The p-values obtained by the Wilcoxon signed ranks test for Table 3.12. 56
3.26 The p-values obtained by the Wilcoxon signed ranks test for Table 3.13. 56
3.27 The p-values obtained by the Wilcoxon signed ranks test for Table 3.14. 56
3.28 The p-values obtained by the Wilcoxon signed ranks test for Table 3.15. 56
3.29 The list of symbols used in the paper. 63

x

List of Algorithms

1 The Wrapper Algorithm. 16

2 The selection mechanism. 29
3 Pseudocode of the GWCA. 30
4 The boundary checker. 30
5 The memory updating process. 31
6 The first OBL technique. 34
7 The second OBL technique.. 35
8 The multiple exponential recombination algorithm. 36
9 The Gaussian mutation process. 37
10 Pseudocode of the proposed algorithm. 41
11 The opposition-based learning. 42

xi

General Introduction

Context

Metaheuristic algorithms are optimization techniques that can be applied to a wide range
of problems without needing to know the specific details of the problem. These algo-
rithms are general-purpose and can be used to solve combinatorial optimization prob-
lems, such as feature selection, scheduling, routing, and more.Metaheuristics are iterative
and stochastic in nature, meaning they use randomness to explore the search space and
find solutions. They are typically inspired by natural phenomena or human behavior and
aim to efficiently explore a large solution space to find near-optimal solutions.

Problematic

Feature selection is a critical step in machine learning and data analysis, as it involves
choosing the most relevant and informative features from a dataset. However, this process
can be challenging due to a variety of problems that can arise. One common issue is the
curse of dimensionality, where the number of features in a dataset is so large, This can
lead to overfitting and poor generalization performance. Another problem is the presence
of irrelevant or redundant features, which can introduce noise and reduce the model’s
accuracy. Additionally, feature selection can be computationally expensive, especially
when dealing with high-dimensional data. Despite these challenges, selecting the right
set of features is essential for building accurate and interpretable machine learning models.

Contribution

Our thesis aims to make a valuable contribution by Employing a recently proposed Meta-
heuristic algorithm called Great Wall Construction algorithm. Initially, We make the
proposed algorithm underwent a comprehensive comparative analysis against ten well-
known metaheuristic algorithm , than applying it at 22 datasets of varying sizes. This
comparative analysis aims to evaluate the performance and effectiveness of the proposed
algorithm in addressing the feature selection problem.

xii

General Introduction

Structure

This dissertation is organized into three chapters as follows:
In the first chapter, we provide an overview of the field of meta-heuristic algorithms,

we start by defining the meaning of the meta-heuristic algorithms and discussing when
to use this algorithm, we discovered it Classification and we present a real application of
this meta-heuristic .

In the second chapter, we provide an overview of the field of feature selection, we cover
the life cycle of fs problem and it importance. We explore the approaches and provide
the mathematical formulation, we present some of the Applications and related work to
feature selection.

In the third chapter, we represent the partical part of the proposed algorithm and
techniques used. Next we introduced our meta-heuristic implementation and pseudo code.
Finally, we delivers the results of the performance and effectiveness of solving continuous
feature selection problem.

1

Chapter 1

Introduction to Metaheuristics

1.1 Introduction . 3
1.2 Definition of Metaheuristics . 3
1.3 When Using Metaheuristic . 3
1.4 Search Behavior . 4

1.4.1 Exploration . 4
1.4.2 Exploitation . 5
1.4.3 Local Optima . 5
1.4.4 Global Optima . 5

1.5 Classification of Metaheurstic Algorithms 6
1.5.1 Population-Based Search vs Single-Solution Based Search 6
1.5.2 Deterministic vs Stochastic . 7
1.5.3 Iterative vs Greedy . 7
1.5.4 Evolutionary Algorithms . 7
1.5.5 Swarm-Intelligence-Based Algorithms 8

1.6 Applications of Metaheuristics . 9
1.7 Conclusion . 10

2

Chapter 1. Introduction to Metaheuristics

1.1 Introduction
Metaheuristic algorithms have gained significant attention in the field of optimization and
problem-solving due to their ability to efficiently find near-optimal solutions to complex
problems. These algorithms are inspired by natural phenomena or abstract mathematical
concepts and are designed to explore the solution space in a heuristic manner, making
them suitable for a wide range of optimization problems where traditional methods may
struggle. Metaheuristic algorithms are characterized by their flexibility, adaptability,
and robustness in handling various types of optimization problems, including combinato-
rial optimization, continuous optimization, and multi-objective optimization. They are
often used when the problem is NP-hard or when the search space is too large to be
exhaustively explored.

In this chapter, we will delve into the fundamentals of metaheuristic algorithms,
exploring their underlying principles, common classifications. We will also discuss the
importance of these algorithms and highlight some of the key considerations when se-
lecting and implementing them for solving real-world problems. By understanding the
core concepts of metaheuristic algorithms, researchers and practitioners can leverage their
power to tackle complex optimization challenges effectively.

1.2 Definition of Metaheuristics
The words of “meta” and ‘‘heuristic” are Greek where, “meta” is “higher level” or“beyond”
and heuristics means ‘‘to find”, ‘‘to know”, ‘‘to guide an investigation” or ‘‘to dis-
cover”. Heuristics are methods to find good (near-) optimal solutions in a reasonable
computational cost without guaranteeing feasibility or optimality[3]. In other words,
A meta-heuristic is an iterative generation process which guides a subordinate heuris-
tic by combining intelligently different concepts for exploring and exploiting the search
spaces using learning strategies to structure information in order to find efficiently near-
optimal solutions[4]. Notable examples of metaheuristics include genetic/evolutionary
algorithms[5], tabu search[6], simulated annealing[7], and ant colony optimization[8], al-
though many more exist.

1.3 When Using Metaheuristic
The factors to be taken into account when applying metaheuristics to optimization is-
sues are covered in this section. A problem’s complexity might reveal information about
how difficult it is, and it is crucial to take the size of the input instances into account.
Precise methods can effectively address small instances of hard problems.Instance struc-

3

Chapter 1. Introduction to Metaheuristics

ture is particularly important since some large or medium-sized instances with particular
topologies can be solved optimally with precise methods.

A key consideration when selecting an optimization algorithm is the amount of time
needed to search for a solution to a problem. It is not a good idea to use metaheuristics
to solve issues when there are efficient exact procedures available. Examples of such
circumstances are optimization problems belonging to the P-hard class. When precise
algorithms are able to resolve target instances in a reasonable Metaheuristics are no
longer needed when precise algorithms are able to solve target instances in a reasonable
amount of time. For example, known polynomial-time precise algorithms can be used to
effectively tackle graph problems such as determining the shortest path or least spanning
tree.

Consequently, even if some researchers and engineers continue to use metaheuristics
for polynomial optimization issues, they are rarely applied to simple optimization prob-
lems. Analyzing the problem’s complexity is the first step in fixing a problem. If the issue
can be reduced to a well-known or already resolved issue in the literature, it is advisable
to investigate the most recent optimization techniques that have been applied to that
issue.Similar approaches used to solve related issues should be taken into consideration
if there are no direct solutions accessible.

1.4 Search Behavior
For every metaheuristic algorithm, exploration and exploitation represent the most im-
portant characteristics for attaining success when solving a particular optimization prob-
lem. Achieving the best of both exploration and exploitation simultaneously in a single
algorithm is a complex task. Researchers have indeed explored various approaches to
address this trade-off, and the choice of methods depends on the problem at hand and
the characteristics of the algorithm being used.

1.4.1 Exploration

Exploration refers to the ability of a search algorithm to discover a diverse assortment
of solutions, spread within different regions of the search space[9]. it is also called Di-
versification which means generating diverse solutions so as to explore the search space
on the global scale. On the other hand, the diversification via randomization increases
the diversity of the solutions while keeping the solutions from being trapped at local
optima[10].

4

Chapter 1. Introduction to Metaheuristics

1.4.2 Exploitation

Exploitation phase emphasizes the idea of intensifying the search process over promising
regions of the solution space with the aim of finding better solutions or improving the
existing ones[9]. Exploitation is often viewed as an intensification phase which means
focusing on the search in a local region by exploiting the information that a current good
solution is found in this region[10].

1.4.3 Local Optima

A local optimum is an extrema (maximum or minimum) point of the objective function
for a certain region of the input space[11]. More formally, for the minimization case xlocal

is a local minimum of the objective function f(x) if:
f(x) ≥ f(xlocal) for all values of x in range [xlocal − ϵ, xlocal + ϵ].

1.4.4 Global Optima

A global optimum is the maximum or minimum value the objective function can take
in all the input space[11]. More formally, for the minimization case xglobal is a global
minimum of the objective function f(x) if:

f(x) > f(xglobal) for all values of x. In the image below, we can see an example of a
local and a global maximum:

Figure 1.1: Global and local optima in a search space. [1]

5

Chapter 1. Introduction to Metaheuristics

1.5 Classification of Metaheurstic Algorithms
Different ways based on the selected characteristics have been proposed to classify meta-
heuristics as shown in Fig 1.2 .

This section briefly summarizes the most important classes including population-based
against single point search, nature-inspired against non-nature inspired, memory usage
against memory-less methods , deterministic against stochastic,Iterative against greedy
,Evolutionary algorithms , swarm intelligence based algorithms.

Figure 1.2: Metaheuristics Classifications. Source: [2]

1.5.1 Population-Based Search vs Single-Solution Based Search

Single-solution based algorithms (e.g., local search, simulated annealing) manipulate and
transform a single solution during the search while in population-based algorithms (e.g.,
particle swarm, evolutionary algorithms) a whole population of solutions is evolved. These
two families have complementary characteristics: single-solution based metaheuristics
are exploitation oriented, they have the power to inten- sify the search in local regions.
Population-based metaheuristics are exploration oriented, they allow a better diversifi-

6

Chapter 1. Introduction to Metaheuristics

cation in the whole search space. In the next chapters of this book, we have mainly
used this classification. In fact, the algorithms belonging to each family of metaheuristics
share many search mechanisms[12].

1.5.2 Deterministic vs Stochastic

A deterministic metaheuristic solves an optimization problem by making deterministic
decisions (e.g., local search, tabu search). In stochastic metaheuristics, some random
rules are applied during the search (e.g., simulated annealing, evolutionary algorithms).
In deterministic algorithms, using the same initial solution will lead to the same final
solution, whereas in stochastic metaheuristics, different final solutions may be obtained
from the same initial solution. This characteristic must be taken into account in the
performance evaluation of metaheuristic algorithms[12].

1.5.3 Iterative vs Greedy

In iterative algorithms, we start with a complete solution (or population of solutions) and
transform it at each iteration using some search operators. Greedy algorithms start from
an empty solution, and at each step a decision variable of the problem is assigned until
a complete solution is obtained. Most of the metaheuristics are iterative algorithms[12].

1.5.4 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are stochastic search methods that mimic the natural
biological evolution and/or the social behavior of species. Such algorithms have been
developed to arrive at near-optimum solutions to large-scale optimization problems, for
which traditional mathematical techniques may fail[13]. The most popular evolutionary
techniques are Genetic Algorithm (GA)[5] this algorithm based on theory of Darwin for
evolution. GAs have some operators to evaluate it is initial population generated ran-
domly which are crossover, mutation and selection. the I Ching Algorithm (ICA)[14],
for optimization problem-solving. The algorithm incorporates unique operators inspired
by the principles of the I Ching, an ancient Chinese cultural system. In addition, the
algorithm utilizes transformation methods such as the penalty method and the multi-
plier method. The Red Deer Algorithm(RDA)[15], takes inspiration from the behavior
of male red deer during the mating season. Male red deer engage in competition to se-
cure a large harem of females for mating purposes.The Quantum-inspired Evolutionary
algorithm(QE)[16] is designed to handle continuous optimization problems while pre-
serving the concept of superposition states. To achieve this, the algorithm incorporates a
recursive sampling technique that progressively tightens the search space. By iteratively
refining the search space.

7

Chapter 1. Introduction to Metaheuristics

1.5.5 Swarm-Intelligence-Based Algorithms

Swarm intelligence algorithms are nature-inspired algorithms developed based on organ-
isms such as flocks of birds, ants, and fish[17]. These functions help algorithms in fitness
functions in combination and numerical optimization problems from covering a wide
range of search space, The Pity Beetle Algorithm (PBA)[18], developed by Kallioras is
inspired by the gathering behavior and foraging strategies of Pityogenes chalcographus
beetles, which have the ability to congregate on host trees and efficiently search for op-
timal nest sites and food sources using specific behaviors and communication patterns.
The Sailfish Optimizer(SFO)[19], The algorithm you are referring to, which is inspired
by a group of hunting sailfish, utilizes two types of populations: a sailfish population for
intensification and a sardines population for diversification. is inspired by the behavior
of sooty terns, a species of seabirds known for their remarkable navigation and foraging
abilities. Sooty Tern Optimization Algorithm (STOA)[20], The algorithm mimics the
foraging behavior of these birds to solve optimization problems. Chimp Optimization Al-
gorithm (COA)khishe2020chimp a metaheuristic optimization algorithm inspired by the
behavior and social structure of chimpanzees, one of the closest relatives of humans. The
Archerfish Hunting Optimizer(AHO)[21], takes inspiration from the archerfish’s ability
to accurately target and shoot down insects by spitting water from its mouth. Dandelion
Optimizer(DO)[22], is inspired by the characteristics and behavior of dandelion plants.
Dandelions are known for their resilience, adaptability, and efficient dispersal of seeds.
The DO algorithm aims to mimic these qualities in the optimization process.

Mountain Gazelle Optimizer(MGO)[23], is inspired by the behavior and character-
istics of mountain gazelles. Mountain gazelles are known for their agility, speed, and
efficient navigation through complex terrains. Golden eagle optimizer(GEO)[24], is a
nature-inspired metaheuristic algorithm inspired by the hunting and foraging behavior
of golden eagles. Golden eagles are known for their powerful flight, keen vision, and
efficient hunting strategies. Beluga whale optimization(BWO)[25] ,is a inspired by the
social behavior and foraging strategies of beluga whales. Beluga whales are known for
their cooperative hunting. The Coati Optimization algorithm (COA)[14], is a nature-
inspired metaheuristic algorithm that mimics the foraging behavior and social interaction
of coatis. Coatis, also known as coatimundis, are small mammals found in the Americas
and are known for their efficient foraging strategies and group coordination. Water strider
algorithm(WSA)[26], is a metaheuristic optimization algorithm inspired by the behavior
of water striders, a type of insect that can walk on the surface of water. The algorithm
mimics the movement and foraging strategies of water striders to solve optimization prob-
lems. Mouth Brooding Fish (MBF)[27], is a nature-inspired optimization algorithm that
draws inspiration from the behavior of mouth brooding fish species. Mouth brooding
fish, also known as parental fish, exhibit a unique reproductive strategy where the female

8

Chapter 1. Introduction to Metaheuristics

fish carries and incubates the fertilized eggs in her mouth until they hatch. is takes inspi-
ration from the foraging behavior of nutcracker birds. Nutcracker optimizer(NOA)[28],
Nutcracker birds are known for their unique feeding strategy, where they gather and store
food for future consumption.

1.6 Applications of Metaheuristics
As fundamental research progress in a way that is somewhat defined by certain bench-
mark tests, a more positive development can be observed on the various applications of
metaheuristic algorithms in real life applications.

In the area of artificial intelligence, various classical classification methods were
found to be optimized using metaheuristic optimization techniques. It is observed that
there were a lot of interest in optimization of neural networks using evolutionary al-
gorithm. This group of works can be generally be termed as ‘Neuroevolution’. In[29],
multi objective evolutionary optimizations were applied to optimize ensemble of neural
networks. Results tested on UCI datasets also showed increase classification rate as com-
pared to single objective optimization. In[30], DE was applied to train neural networks
with a specific case of missing data. The report states robustness and improvement de-
spite missing data. This was reported and compared to standard backpropagation and
PSO. This could reinforce the notion that certain algorithms works better for specific
sets of problem, as demonstrated in the case of[30].

With the dominance of Deep learning in the last decade, it is an obvious area to
apply metaheuristic methods. Gradient methods seemingly dominate the field of weight
optimization in Deep learning such as Convolutional Neural Network CNN and deep be-
lief network. However, in[31], a multi objective evolutionary algorithm was proposed to
achieve better generalization deep learning neural networks considering the contradic-
tory nature between the representation ability and the network connecting sparsity. [31]
Is a good example of how evolutionary algorithms were used to optimize deep leaning
networks, in this case to increase generalization.

Engineering controller designs are another application that has dominated appli-
cation of metaheuristics. In[32] PSO were used to optimize integration of alkali fuel cell
PID controls. Authors in[33] presented the feed forward controller plus feedback algo-
rithm based on Prandtl-Ishlinskii hysteresis model and analyzed by PSO. The result was
compared with traditional feed forward PID scheme. However, the parameterization can
be improved by Prandtl-Ishlinskii hysteresis model to the PSO. Authors in[34] proposed
a new Hybrid Jump PSO (HJPSO) to mutate the global best particles for regenerating
new local and global best particle for next generation in tuning PI controller for the boiler
turbine unit. In[35], researchers developed PSO analysis to obtain the optimal duty cycle
to the Booster converter for sustaining output voltage regardless to power quantities pro-

9

Chapter 1. Introduction to Metaheuristics

duced by the solar panels. In[36], authors applied Leader Particle Swarm Optimization
(LPSO) analysis in determining a global maximum power point tracking system for the
Photovoltaic system that enabling LPSO produce hasty convergence within 0.5s under
any shade conditions.

Robotics have also been applying metaheuristics specifically evolutionary algorithms.
In fact, evolutionary robotics has been widely regarded as main area of research with mul-
tiple journals dedicated to this area of research. Evolutionary robotics generally divided
into hardware and software optimization. In hardware optimization, the structure of the
robots (height, width and other physical parameters) are often optimized using math-
ematical models for improvement. Authors in[37] reported an improvement when it is
compared to GA for optimization of robot structure. This is another case of example
in which certain problems are better optimized with certain algorithms. The software
optimization are often in robotic controllers such as gait controls. This is demonstrated
in[38] and[39]. The limitation of such application is ‘reality gap’ in which the mathemat-
ical model that was used for optimization is not accurate causing flaw when translated to
real hardware. This issue has been constantly discussed with some reverting to optimiza-
tion evaluation using real robotic hardware (hardware in loop). However, this method
is time consuming. Often ahybrid of both are considered in considering the trade-off
between reality Gap and training time. One significant area that was highly commer-
cialized metaheuristic application is in the area of scheduling. Scheduling optimization
may include worker schedule, exam schedule and even vessel scheduling can be optimized
to reduce resources. In[40], yard crane scheduling was optimized to reduce resources us-
ing GA. In[41], diesel generator scheduling was reportedly optimized using GA. Flight
scheduling was also considered to optimization in view of limited airport resources as
demonstrated in[42]. This was perform using a combination of ant colony optimization
demonstrating its efficiency in such problem domains.

1.7 Conclusion
In conclusion, metaheuristic algorithms have proven to be powerful and versatile tools
in solving complex optimization problems in the real world. They offer efficient and
effective solutions across a wide range of applications, including engineering, finance,
logistics, and more. While there are various metaheuristic algorithms available, each
with its own strengths and weaknesses, their ability to adapt and evolve makes them
well-suited for tackling diverse and dynamic optimization challenges. By leveraging the
strengths of metaheuristic algorithms and combining them with domain expertise, re-
searchers and practitioners can harness their potential to drive innovation and improve
decision-making in real-world scenarios. Metaheuristic algorithms are versatile optimiza-
tion techniques that can be applied to a wide range of problems. They offer a flexible

10

Chapter 1. Introduction to Metaheuristics

and efficient approach to finding high quality solutions in complex search spaces. By
combining exploration and exploitation strategies, it can effectively balance the trade-off
between global and local search. Overall, metaheuristic algorithms are a powerful tool
for solving optimization problems in various domains.

11

Chapter 2

Introduction to Feature Selection

2.1 Introduction . 13
2.2 Definition of Feature Selection . 14
2.3 Importance of Feature Selection . 14
2.4 Approaches of Feature Selection . 15

2.4.1 Filter Approaches . 15
2.4.2 Wrapper Approaches . 15
2.4.3 Embedded Approaches . 15

2.5 Mathematical Formulation of FS Problems 16
2.6 Application of Feature Selection in Real World 17

2.6.1 Text Categorization . 17
2.6.2 Remote Sensing . 17
2.6.3 Intrusion Detection . 18
2.6.4 Genomic Analysis . 18
2.6.5 Image Retrieval . 18

2.7 Related Work . 19
2.8 Conclusion . 22

12

Chapter 2. Introduction to Feature Selection

2.1 Introduction
Feature selection is a fundamental aspect of machine learning and data analysis that
involves choosing a subset of relevant features from a dataset to build predictive mod-
els. The goal of feature selection is to improve model performance, reduce overfitting,
increase interpretability, and enhance computational efficiency by eliminating irrelevant
or redundant features.

In many real-world applications, datasets can contain a large number of features,
some of which may not contribute significantly to the predictive power of the model. In-
cluding these irrelevant features can lead to increased complexity, longer training times,
and reduced generalization performance. Feature selection helps address these issues
by identifying and selecting the most informative features that are essential for making
accurate predictions. There are various approaches to feature selection, each with its
own strengths and limitations. Some common methods include filter methods, wrapper
methods, embedded methods, and hybrid methods. Filter methods assess the relevance of
features based on statistical measures such as correlation or mutual information. Wrapper
methods evaluate feature subsets by training and evaluating models using different com-
binations of features. Embedded methods incorporate feature selection into the model
training process, allowing the model to automatically select the most relevant features
during training.

Feature selection is crucial in high-dimensional datasets where the number of features
exceeds the number of observations. In such cases, feature selection helps prevent overfit-
ting and improves the model’s ability to generalize to unseen data. Additionally, feature
selection can enhance the interpretability of the model by focusing on the most important
predictors that drive the predictions.Choosing the right feature selection method depends
on factors such as the dataset size, the number of features, the nature of the data, and the
modeling task at hand. It is important to carefully consider these factors when selecting
a feature selection technique to ensure that the resulting model is accurate, efficient, and
interpretable.

Overall, feature selection is a critical step in the machine learning pipeline that can
significantly impact the performance and effectiveness of predictive models. By selecting
the most relevant features and eliminating noise and redundancy, we can build more
robust and efficient models that provide valuable insights from complex datasets.

This chapter is an introduction to the feature selection. It is organized as follows,
starting by overview about life cycle of machine learning, and definition of feature se-
lection and its importance. We present approaches and mathematical formulation of FS
Problems and explor the application of Feature Selection in Real World. Therefor we
provides an overview of the current state-of-the-art meta-heuristic-based approaches de-
signed to address the FS problem, shedding light on the latest advancements in this field.

13

Chapter 2. Introduction to Feature Selection

Here is the life cycle of feature selection problem and we will focus on feature selection
step because it is a very important, in this step the process of reducing data will be done
(shown in Figure 2.1 bellow).

Figure 2.1: Components of pattern recognition

2.2 Definition of Feature Selection
Feature selection refers to the process of selecting a subset from the actual set of features
or attributes from a given data set while ignoring the redundant or irrelevant features.
The best feature subset (called the optimal) is measured based on an evaluation condition.
However, discovering the optimal feature is generally intractable this is due to the fact
that the increase in dimensionality increases the number of features as well. Numerous
problems connected to feature selection are proved to be NP-hard[43].

2.3 Importance of Feature Selection
Feature selection is the process of identifying and selecting a subset of the most relevant
features (input variables) to include in the model. This technique can help improve the

14

Chapter 2. Introduction to Feature Selection

performance of a machine learning model by removing irrelevant or redundant features,
which can reduce overfitting and improve generalization. There are several feature selec-
tion techniques, including forward selection, backward elimination, and principal compo-
nent analysis (PCA). Forward selection involves starting with an empty set of features
and gradually adding the most important ones, while backward elimination starts with
all the features and removes the least important ones. PCA involves transforming the
original features into a smaller set of uncorrelated features that explain the most variance
in the data. In addition to feature selection techniques, feature importance methods are
used to rank the importance of individual features in a model. These methods can be
used to identify the features that have the strongest relationship with the target variable
and can be particularly useful when dealing with large numbers of features. By using
feature selection and feature importance methods, you can create new views of your data
to explore with modelling algorithms and gain insights into the most important factors
driving your model’s predictions.

2.4 Approaches of Feature Selection
Feature selection approach can be classified into three main categories filter, wrapper,
embedded:

2.4.1 Filter Approaches

The filter approach incorporates an independent measure for evaluating features subsets
without involving a learning algorithm. This approach is efficient and fast to compute
(computationally efficient). However, filter methods can miss features that are not useful
by themselves but can be very useful when combined with others[38].

2.4.2 Wrapper Approaches

The wrapper approach to feature subset selection is based on using the classifier as a
”black box”. A search algorithm (such as hill climbing) is used to search for a ”good”
subset and the classifier is used to find the error rate with a particular subset. However,
the true error rate of the classifier with a given subset is hard to compute and an estimate
obtained using cross-validation or bootstrap based methods[10]. A general algorithm for
wrapper approaches is shown in Algorithm 1.

2.4.3 Embedded Approaches

This approach interacts with learning algorithm at a lower computational cost than the
wrapper approach. It also captures feature dependencies. It considers not only relations

15

Chapter 2. Introduction to Feature Selection

Algorithm 1: The Wrapper Algorithm.
Input: D = {X,L}: A training data set with n number of features where X = {f1, . . . , fN}

and L labels.
Input: X ′: Predefined initial feature subset {X ′ ⊂ X or X ′ = {∅}}
Input: 0: A stopping criterion.
Output: X ′

opt: An optimal subset.
1 Xopt = X ′;
2 φopt = E(X ′, A) ; //evaluate X ′ by using algorithm A
3 repeat
4 Xg = generate(X); //Subset generation for evalution
5 φ = E(Xg, A); //Xg current subset evaluation by A
6 if (φ > φopt) then
7 φopt = φ;
8 X ′

opt = Xg;
9 end

10 until (∅ is reached);
11 return X ′

opt ;

between one input features and the output feature, but also searches locally for features
that allow better local discrimination. It uses the independent criteria to decide the
optimal subsets for a known cardinality. And then, the learning algorithm is used to
select the final optimal subset among the optimal subsets across different cardinality[38].

2.5 Mathematical Formulation of FS Problems
The feature selection problem is about selecting a subset of features from a larger set
while aiming to achieve a certain optimization goal, such as improving model performance
or reducing complexity. The mathematical formulation can vary based on the specific
objective and constraints of the problem. In the following, we give a mathematical
formulation for the FS problem.In the FS problem, we assume a dataset with N instances
and D features: X = {x1, . . . , xN}, where xi, is a D-dimensional feature vector, and a
response variable y. The goal is to select a subset of features from the original D features
that maximizes or minimizes a certain objective function. The objective function can
be defined based on various criteria, such as model performance (e.g., accuracy, F1-
score), model complexity (e.g., number of selected features), or other domain-specific
considerations. The general FS problem, used in this work, is mathematically formulated
using Equations 2.1, 2.2 and 2.3.

Minimize:
α× CER + (1− α)× |R|

|D|
(2.1)

where CER represents the classification error rate computed using Equation 3.20, α is
a random number sampled from the uniform distribution, |R| denotes the number of
selected features, and |D| refers to the total number of features.

16

Chapter 2. Introduction to Feature Selection

Subject to:
D∑
j=1

xi,j ≤ K , i ∈ {1, . . . , N} (2.2)

where K is the maximum number of selected features (if there are constraints on limiting
the number of selected features).

With:
xi,j ∈ {0, 1} , i ∈ {1, . . . , N} , j ∈ {1, . . . , D} (2.3)

where xi,j is a binary decision variable that represents whether feature j is selected for
instance i. If xi,j = 1, the feature is selected; if xi,j = 0, the feature is not selected.

2.6 Application of Feature Selection in Real World
During data collection, many problems are often encountered such as a high dependency
of features, too many features, or redundant and irrelevant features. To deal with the
mentioned problem, feature selection provides a tool to select a feature subset or feature
to learn algorithms effectively. Therefore, in the literature, the applications of feature
selection are used frequently in many research areas.

2.6.1 Text Categorization

The massive volume of online text data on the Internet such as emails, social sites,
and libraries is increasing. Therefore, automatic text categorization and clustering are
important tasks. A major problem with text classification or clustering is the high dimen-
sionality of the document features. A moderate size text document may have hundreds
of thousands of features. Therefore, feature selection (dimension reduction) is highly
enviable for the efficient use of mining algorithms. In the literature, many applications
of feature selection techniques are effectively used in the area of text mining. Feature
selections using the information Gain Ratio (GR) is used for lyrics and poems for text
data classification. Many feature selection techniques are used for feature reduction, then
evaluated and compared to the classification problem[38].

2.6.2 Remote Sensing

Feature selection is one of the important tasks in the remote sensing image classification.
The challenges and various issues in feature selection and hyper spectral remote sens-
ing image analysis is explained. Pre-processing techniques have been proposed for hyper
spectral images in which feature extraction and feature selection have been emphasized as
important components in hyper spectral image classification. Feature selection guided by
evolutionary algorithms has been proposed, and use a self-adaptive differential evolution

17

Chapter 2. Introduction to Feature Selection

for feature subset generation. Generated feature subsets are evaluated by the wrapper
method with the help of fuzzy k-nearest neighbor classifier. Shijin Li, Hao Wu, Ding-
sheng, and Wan Jiali Zhu have developed a hybrid approach for feature selection using
support vector machine and genetic algorithm. They have used the wrapper method to
select the optimal number of features in order to obtain better accuracy, a novel tech-
nique has been proposed to select a subset of bands from a hyper spectral image to
improve the performance of the classification. It utilizes spatial and spectral information
simultaneously to improve the discrimination capability of the classifier[38].

2.6.3 Intrusion Detection

In this modern age, information sharing, distribution, or communication is widely done by
network-based computer systems. Therefore, the security of the system is an important
issue protecting communication networks from intrusion by enemies and criminals. One
of the ways to protect communication networks (computer systems) is intrusion detection.
Feature selection plays an important role to classifying system activity as legitimate or an
intrusion, data mining techniques and feature selection techniques are used for intrusion
detection[38].

2.6.4 Genomic Analysis

A large quantity of genomic and proteomic data is produced by microarray and mass
spectrometry technology for understanding of function of an organism, and the behavior,
dynamics, and characteristics of diseases. Tens of thousands of genes are measured in a
typical microarray assay and mass spectrometry proteomic profile. Special data analysis
is demanded because of the high dimensionality of the microarray data. One of the
common ways to handle high dimensionality is identification of the most relevant features
in the data. Therefore, in the literature, feature selection has been done successfully on
full microarray data. The Filter, Wrapper, and Embedded methods have been used
for feature selection and dimensionality reduction. The techniques covered by them are
the most effective for proteomics data and genomic analysis. Comparative studies of 8
feature selection for classification task and their combinations have been done based on
gene expression data. It is also shown that classification accuracy can be significantly
boosted by a small number of genes by using a feature selection method[38].

2.6.5 Image Retrieval

Recently, the amount of image collections from military and civilian equipment has in-
creased. To access the images or make use of the information, images should be organized
in a way that allows effective browsing, retrieving, and searching. As stated, content-

18

Chapter 2. Introduction to Feature Selection

based image retrieval is scalable for the large size of images, but it is also cursed by high
dimensionality. Therefore, feature selection is an important task for effective browsing,
searching, and retrieval, content-based image retrieval is proposed that annotates images
by their own colors, textures, and shape[38].

2.7 Related Work
Several survey papers have been published to investigate and review studies address-
ing the FS problem[44, 45]. In this section, we present a comprehensive overview of
metaheuristic-based FS methodologies that have been published recently. Our emphasis
lies in elucidating the introduced algorithms, the transfer functions, the classifier and
the metrics employed for evaluating their efficacy, and the diverse advantages and dis-
advantages of each approach. By illuminating these facets, we aim to provide a good
understanding of the evolving landscape of FS techniques and their practical implemen-
tation across a spectrum of datasets. In the comprehensive landscape of FS algorithms,
a multitude of innovative approaches have been explored to address the challenges posed
by high-dimensional datasets. The algorithms will be categorized into two approaches
for FS, specifically binary and hybrid metaheuristic methods.

The algorithm outlined in[46] employs the binary bat algorithm for FS problem res-
olution, incorporating S and V shape transfer functions. It utilizes the support vector
machine classifier, yielding an accuracy of 98.25%. While excelling with large datasets,
this algorithm experiences a slower convergence time. In[47], the binary grasshopper op-
timization algorithm is utilized to address the FS problem, integrating S and V shape
transfer functions. It incorporates the k-nearest neighbours classifier, achieving an accu-
racy of 97.9%. This algorithm boasts a swift convergence time and effective FS, but its
performance is constrained in high-dimensional datasets. The algorithm in[48] employs
the binary grey wolf optimizer for FS problem-solving, utilizing S and V shape transfer
functions with the k-nearest neighbours classifier, resulting in an accuracy of 84.20%.
While demonstrating rapid convergence and effective FS, it may become entangled in
local optimums. In[49], the binary firefly algorithm is applied for FS, incorporating an
aggregation function and k-nearest neighbours, naive Bayes, and linear discriminant anal-
ysis classifiers, achieving an accuracy of 97.78%. This algorithm exhibits fast convergence
and robust FS, but it may face challenges with local optimums. Furthermore, [50] utilizes
binary particle swarm optimization for FS, incorporating the sigmoid transfer function
and the decision tree classifier, achieving an accuracy of 98.17%. While excelling with
small datasets, it encounters limitations with larger datasets and potential entrapment in
local optimums. The algorithm in[51] employs S-shaped and V-shaped gaining–sharing
knowledge-based algorithms for FS problem-solving, utilizing S and V shape transfer
functions. It integrates the k-nearest neighbours classifier, resulting in an accuracy of

19

Chapter 2. Introduction to Feature Selection

99.6%. This algorithm performs well with high-dimensional datasets and adaptive pa-
rameter tuning, although additional parameter tuning may be necessary. In[52], the
binary sine-cosine algorithm is utilized for FS problem resolution, employing S and V
shape transfer functions with the k-nearest neighbours classifier, achieving an accuracy
of 98.23%. It proves efficient for high-dimensional problems but may require fine-tuning.
The algorithm in[53] uses the binary Giza pyramids construction algorithm for FS, in-
corporating S and V shape transfer functions with the k-nearest neighbours classifier,
achieving an accuracy of 98.75%. This algorithm demonstrates swift convergence and
strong performance with large datasets, yet it may not be suitable for smaller datasets.
For[54], the binary ant lion algorithm is employed for FS problem-solving, using S and V
shape transfer functions with the k-nearest neighbours classifier, resulting in an accuracy
of 96.37%. While effectively handling high dimensionality or non-linearity, it may suffer
from slow convergence and potential entrapment in local optimums, requiring significant
computational resources for optimal performance. The work described in[55] applies the
binary salp swarm algorithm for FS, utilizing S and V shape transfer functions with the
k-nearest neighbours classifier, achieving an accuracy of 95.26%. While adept at address-
ing problems with complex search spaces or multiple objectives, this algorithm can be
sensitive to parameter choices and may demand substantial computational resources for
optimal performance. The algorithm outlined in[56] utilizes the binary cuckoo search
algorithm for FS problem resolution, employing the sigmoid transfer function. It in-
corporates the optimum-path forest classifier, achieving an accuracy of 97.33%. While
effectively managing problems with multimodal search spaces or noisy objective functions,
it may be sensitive to parameter choices and susceptible to local optimums. Finally, the
binary equilibrium optimizer in[57] is employed for FS problem-solving, utilizing S and V
shape transfer functions with the k-nearest neighbours classifier, achieving an accuracy
of 97.01%. This algorithm has demonstrated effectiveness in finding global optimums,
performing well with a relatively small population size. However, it may be sensitive to
parameter choices and could require a larger population size for optimal performance.

On the other hand, the algorithm introduced in[58] employs the binary chaotic bat
algorithm to address the FS problem, utilizing V shape transfer functions. It incorpo-
rates random forest and k-nearest neighbours classifiers, achieving an accuracy of 96.97%.
This algorithm adeptly manages challenges posed by intricate search spaces or multiple
objectives. The integration of chaotic dynamics enhances its search capacity, preventing
entrapment in local optimums. Nonetheless, sensitivity to the choice of chaotic func-
tion and a potential necessity for a sizable population size for optimal performance are
noteworthy considerations. In[59], a similar approach is taken with the utilization of
the binary chaotic dragonfly algorithm, incorporating chaotic transfer functions and the
k-nearest neighbours classifier, resulting in an accuracy of 96.72%. While effectively
handling complex search spaces or multiple objectives, this algorithm also displays sen-

20

Chapter 2. Introduction to Feature Selection

sitivity to the chosen chaotic function. The binary chaotic vortex algorithm, detailed
in[60], leverages chaotic transfer functions and the k-nearest neighbours classifier, achiev-
ing an accuracy of 97.45%. Performance relies heavily on parameter settings, such as
population size and maximum iteration number, necessitating careful tuning. However,
computational expenses may arise, particularly for large datasets, due to multiple fit-
ness function evaluations. In[46], the binary chaotic black hole algorithm integrates
chaotic transfer functions and the k-nearest neighbours classifier, boasting an accuracy
of 98.33%. Although promising for FS, its performance is contingent on parameter set-
tings and specific applications. The binary chaotic moth–flame optimization algorithm,
outlined in[61], applies chaotic transfer functions and the k-nearest neighbours classifier,
yielding an accuracy of 96.62%. While effective in handling complex search spaces or
multiple objectives, sensitivity to the chaotic function, potential slow convergence, and
susceptibility to local optimums are potential drawbacks. The work in[62] introduces the
fractional chaotic order marine predator algorithm, utilizing the k-nearest neighbours
classifier with an accuracy of 97.13%. This promising FS method incorporates fractional
calculus to enhance exploration and exploitation abilities, but computational expenses
and potential reliance on a large population size are considerations. The island-based
genetic algorithm in[63] employs support vector machine, k-nearest neighbours, decision
tree, and multilayer perceptron classifiers, achieving an accuracy of 93.51%. Combin-
ing global and local search techniques enhances its search capability, but computational
expenses are a concern. The optimizer described in[64] introduces the quantum whale
optimization algorithm, utilizing the k-nearest neighbours, linear discriminant classifier,
support vector machine, and decision tree classifiers, achieving an accuracy of 98.75%.
Quantum-inspired operators enhance its search capability, but sensitivity to parameters
and potential need for a large number of iterations are noted. Lastly, the approach in[65]
combines the technique for order of preference by similarity to ideal solution with the
binary JAYA algorithm, incorporating time-varying transfer functions. Using the Gaus-
sian Naïve Bayes classifier, it attains an accuracy of 98.08%. While a hybrid algorithm
effectively handling multiple objectives, it may require a substantial number of iterations
and pose computational expenses for large-scale problems. This survey of diverse FS
algorithms highlights their unique strengths and limitations, offering a rich spectrum of
choices for researchers addressing the complexities of FS in various domains.

In the realm of FS, it is essential to recognize that achieving perfection remains elusive.
Despite the proposal of numerous commendable solutions and their exceptional perfor-
mance, the field continually calls for enhancements. This reality aligns with the principle
articulated in the No-Free-Lunch theorem[66], emphasizing that no universally superior
solution exists. Therefore, the door remains open for the exploration and development of
new algorithms and solutions to address the ever-evolving challenges of the FS problem.
In this vein, several promising avenues for further investigation emerge, including the ex-

21

Chapter 2. Introduction to Feature Selection

ploration of algorithms such as the remora optimization algorithm[67] and the dynamic
Harris Hawks optimization with a mutation mechanism[68]. These avenues promise to
contribute valuable insights and advancements to the ongoing quest for optimizing FS
methodologies.

2.8 Conclusion
In conclusion, feature selection is a crucial step in the machine learning process that in-
volves selecting the most relevant and informative features from the dataset. By selecting
the right features, we can improve model performance, reduce overfitting, and enhance in-
terpretability. There are various techniques available for feature selection, including filter
methods, wrapper methods, and embedded methods. It is essential to carefully consider
the characteristics of the dataset and the specific goals of the model when choosing a
feature selection method. Overall, feature selection plays a significant role in optimizing
model performance and enhancing the efficiency of machine learning algorithms.

22

Chapter 3

An Opposition-Based Great Wall Con-
struction Metaheuristic Algorithm with
Gaussian Mutation

3.1 Introduction . 24
3.2 Background . 26

3.2.1 Great Wall Construction Algorithm 26
3.2.2 Opposition-Based Learning . 31
3.2.3 Gaussian Mutation . 33
3.2.4 K-Nearest Neighbors . 33
3.2.5 Evaluation Metrics . 37

3.3 Proposed Algorithm . 39
3.4 Experimental Study and Discussion . 40

3.4.1 Used Datasets and Parameters Setting 40
3.4.2 Benchmark Algorithms . 42
3.4.3 Numerical Results and Discussion 45

3.5 Conclusion . 61
3.6 Table of used symbols . 63

23

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

3.1 Introduction
the era of big data and complex datasets, Machine Learning (ML) has emerged as a pow-
erful tool for extracting valuable insights and making data-driven decisions[69, 70, 71, 72].
However, with the ever-increasing dimensionality of data, the curse of dimensionality has
become a significant challenge in developing accurate and efficient predictive models[73].
This is where the crucial role of Feature Selection (FS) comes into play. FS, also known as
attribute selection or variable selection, is the process of identifying and choosing the most
relevant and informative subset of features from a vast pool of input variables[74, 44].
The primary objective is to enhance the performance of ML algorithms by eliminating
irrelevant, redundant, or noisy features that might negatively impact model accuracy,
increase computational costs, and/or reduce interpretability.

The importance of FS lies in its ability to not only improve predictive model perfor-
mance but also enhance the efficiency and generalization of ML algorithms[75, 76, 77].
By selecting a subset of the most discriminative features, FS not only reduces the risk of
overfitting but also mitigates the computational burden associated with processing large
volumes of data. Moreover, in many real-world applications, interpreting the model’s
decision-making process is crucial to gain trust and acceptance. By selecting a concise
set of meaningful features, FS facilitates model interpretability, enabling domain experts
and non-technical users to comprehend the factors influencing the model’s predictions.
This emphasizes the significance of FS in ML. Whether it is in the realm of predictive
modelling, classification, regression, or any other ML task, FS serves as a critical pre-
processing step to unlock the full potential of ML algorithms. Through careful selection
of relevant features, data scientists can build more accurate, efficient, and interpretable
models, paving the way for actionable insights and informed decision-making.

The FS problem, known to be NP-hard, is increasingly tackled using Metaheuristic
Algorithms (MAs)[45, 78, 44] instead of exact methods due to several compelling reasons.
One key factor is the exponential increase in the number of possible feature subsets with
the growing dimensionality of data. Exact methods typically suffer from combinatorial
explosion, making them computationally infeasible for large-scale datasets. By contrast,
MAs excel at efficiently exploring complex search spaces, providing near-optimal solutions
within a reasonable time frame. Their ability to strike a balance between exploration and
exploitation[79, 9, 80] allows them to effectively navigate through vast feature subsets and
discover promising combinations that yield improved model performance. Moreover, MAs
are inherently adaptive, making them suitable for a wide range of optimization problems,
including FS, without relying on domain-specific knowledge. As a result, the use of MAs
has become a preferred approach in addressing the FS problem, offering researchers a
practical and scalable solution to enhance the accuracy, efficiency, and interpretability of
ML models.

24

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

The pivotal role of FS in the ML process is evident in the seven-step framework, play-
ing a crucial part in refining prediction accuracy. Thus, numerous scholars have dedicated
extensive efforts to this phase, as evidenced by various research works. For instance, the
study referenced in[81] addresses cancer classification, employing the kernel Shapley value
rooted in cooperative game theory for feature extraction from high-dimensional gene ex-
pression data. Another notable work, referenced as[82], focuses on cancer prediction and
combines spider monkey optimization with cuckoo search algorithm for hybridized feature
selection. Additionally, [83] and[84] contribute valuable insights into FS across diverse
ML classification tasks.

In the context of our research, we have harnessed the power of a cutting-edge meta-
heuristic algorithm, known as the Great Wall Construction Algorithm[85], to address the
NP-hard FS problem. This algorithm has garnered considerable attention for its excep-
tional performance across a wide spectrum of challenges, including both constrained and
unconstrained benchmark problems. To further bolster its capabilities, we have taken the
initiative to augment the fundamental version of this algorithm by introducing several
key enhancements. These additions are strategically designed to amplify its prowess in
exploring solution spaces, exploiting promising regions, and adeptly steering clear of local
optimums, all of which are critical attributes for effective problem-solving. The enhanced
algorithm underwent a comprehensive evaluation by being juxtaposed with ten influential
metaheuristic algorithms commonly employed in solving feature selection problems. This
comparative study encompassed key metrics such as classification accuracy and fitness
value. The results unequivocally demonstrate the superior performance of the proposed
enhanced algorithm, surpassing the effectiveness of the other metaheuristics across these
evaluative criteria. The following three points summarize the main improvements added
to the Great Wall Construction Algorithm:

• We employed an efficient opposition-based learning technique[86] to enrich our ap-
proach. This technique enhanced exploration and diversification through the gen-
eration of opposite or complementary solutions, facilitated escape from local opti-
mums by offering alternative starting points or directions in the search space, and
expedited convergence, enhancing the speed of our metaheuristic algorithm.

• We incorporated Gaussian mutation[87] into our approach to bolster local search
capabilities and prevent entrapment in local optimums.

• We used the step function to discretize continuous values into a binary range, as it
offers a straightforward and easily implementable method.

The chapter is structured into five distinct sections, each contributing to a compre-
hensive understanding of our research. In Section 3.2, we delve into the fundamental
concepts and methodologies underpinning the development of our solution, establishing

25

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

the theoretical groundwork for our approach. Section 3.3 is dedicated to presenting our
proposed solution in detail, elucidating the various steps involved and discussing their
significance in tackling the FS problem. The experimental aspect is addressed in Sec-
tion 3.4, where we present the results of our empirical study and conduct a comparative
investigation to evaluate the performance of our solution. Finally, in Section 3.5, we
conclude by summarizing our primary contributions and offering insights into potential
future directions for this research.

3.2 Background
In this section, we introduce the various concepts employed in the proposed methodology
for addressing the FS problem. First, in Sections 3.2.1, 3.2.2, and 3.2.3, we explain the
working principles of the concepts related to MAs. Then, in Sections 3.2.4 and 3.2.5, we
describe the ML algorithm and metrics used to evaluate the performance.

3.2.1 Great Wall Construction Algorithm

The Great Wall Construction Algorithm (GWCA) represents a novel metaheuristic op-
timizer introduced by Ziyu Guan and his colleagues[85]. Its draws inspiration from the
historical competition and elimination mechanisms observed among workers during the
construction of the ancient Great Wall. The GWCA optimizer incorporates these princi-
ples into its optimization strategy. Besides, the algorithm prioritizes performance-driven
methodologies over metaphorical aspects, leveraging the competitive spirit of the work-
force that contributed to the Great Wall’s construction. With this unique approach, the
GWCA algorithm aims to efficiently tackle complex optimization problems while emulat-
ing the effectiveness and resource management exhibited during the historical construc-
tion process. Table 3.1 summarizes the parameters utilized in the definition of the GWCA
algorithm. In the following sections, we describe the phases of the GWCA optimizer.

3.2.1.1 Initialization

Equation 3.1 is employed to initialize the individuals in the first population, where the
parameter λ governs the growth rate of the logistic map (set to 4), and the parameter α

is a uniformly distributed random number within the range [0, 1] (excluding the values
0.25, 0.5, 0.75, and 1).

26

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.1: The parameters used in the GWCA.
Parameter Signification

N The population size
D The dimensionality of the search space
LB A D-dimensional vector representing the lower boundaries of the search space
UB A D-dimensional vector representing the upper boundaries of the search space
Tmax The maximum number of iterations
t The current iteration
X

(t)
i,j The component j of the individual i at iteration t

Mi The memory of an agent i used to save its best location found so far
X

(t)
b,j The component j of the best solution at iteration t

X
(t)
n⟨i⟩,j The jth component of the nearest individual to agent i at iteration t

f (.) The objective function to be minimized
α1, . . . , α5 Uniformly distributed random numbers within the range [0, 1]
T The force produced by the tool (thrust)
m The weight of the rock
g The gravitational acceleration
θ The angle between the worker’s position on the slope and the horizon (random within the range [0, 80])

G (t, P,Q)
The gamma distribution’s probability density function – P controls the shape of the distribution (P > 0),
and Q scales the distribution (Q > 0)

Cmin and Cmax Two constant numbers controlling the step size

X
(0)
i,j = φi,j × (UBj − LBj) + LBj (3.1)

φi,j =

{
α , i = 1

λφi−1,j (1− φi−1,j) , 1 < i ≤ N

i ∈ {1, . . . , N} and j ∈ {1, . . . , D}

3.2.1.2 Exploitation

Equation 3.2 is employed to exploit the search space during the swarming process, where
the parameter k is a uniformly distributed random number sampled from a uniform
distribution over the set {0, 1}, and the parameter ϵ is an infinitely small number set to
2.22E-16.

X
(t+1)
i,j = α1 × υ ×X

(t)
i,j +R

(t)
i,j +X

(t)
b,j (3.2)

υ =

(
T × TL

m
− g × H (t)

sin (θ)

)
× C (t)×G (t, P,Q)

H (t) = 1− t

Tmax

C (t) = log
(
(Cmax − Cmin)×

Tmax − t

Tmax
+ Cmin

)

R
(t)
i,j = (−1)k × α2 ×

(
X

(t)
b,j −X

(t)
i,j

)

27

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

TL = 1− t

Tmax
+ ϵ

3.2.1.3 Exploration

Equation 3.3 is employed to explore the search space during the swarming process, where
the parameter ϵ is an infinitely small number set to 2.22E-16.

X
(t+1)
i,j = X

(t)
i,j + α3 × T1 + α4 × υ × sign (T2)× T3 (3.3)

T1 = X
(t)
b,j −X

(t)
i,j

T2 = f
(
X

(t)
n⟨i⟩

)
− f

(
X

(t)
i

)

T3 = X
(t)
n⟨i⟩,j −X

(t)
i,j

υ = m× g × H (t)

sin (θ)
× C (t)×G (t, P,Q)

H (t) = 1− t

Tmax
+ ϵ

C (t) = log
(
(Cmax − Cmin)×

Tmax − t

Tmax
+ Cmin

)

sign (x) =


−1 , x < 0

0 , x = 0

1 , x > 0

3.2.1.4 Balance between Exploitation and Exploration

Equation 3.4 is employed to bias the search towards better solutions, promoting conver-
gence towards the optimal or near-optimal solutions in the search space, and overcome
the issue of getting trapped in local optimums during the optimization process.

X
(t+1)
i,j = X

(t)
i,j + 2× α5 × T1 + T2 ×G (t, P,Q) (3.4)

T1 = X
(t)
b,j −X

(t)
i,j

28

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

T2 = Mi,j −X
(t)
i,j

3.2.1.5 Selection

Algorithm 2 is used to determine which individuals from the current population are more
likely to be chosen to appear in the next generation (i.e., eliminate the worst solutions).
The worst solution are replaced with new ones generated using Equation 3.5. It is worth
mentioning that the coefficients r1, . . . , rD are uniformly distributed random numbers
within the range [0, 1].

X = [r1 × T1, . . . , rD × TD] (3.5)


T1 = (UB1 − LB1) + LB1

...
TD = (UBD − LBD) + LBD

Algorithm 2: The selection mechanism.
Input: ρ: The percentage of individuals to be eliminated.
Input: P = {X1, . . . , XN}: The population of individuals.
Output: P = {X1, . . . , XN}: The updated population of individuals.

1 k ← 1;
2 while k ≤ ⌈ρ×N⌉ do

3 P ← P −

{
argmax

i∈{1,...,|P |}
{f (Xi)}

}
;

4 k ← k + 1;
5 end
6 while |P | < N do
7 Generate a candidate solution X using Equation 3.5;
8 P ← P ∪ {X};
9 end

3.2.1.6 GWCA’s Pseudocode and Time Complexity

This section provides a comprehensive overview of the GWCA, focusing on both its
pseudocode representation and its time complexity. The time complexity of a function
evaluation is O(D), and the time complexity of the swarming behaviour is O(Tmax×N ×
D). Since the function evaluation step is included into the swarming loops, it means that
the time complexity of the GWCA is O(n4). The pseudocode depicted in Algorithm 3
describes the different steps of the GWCA.

29

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Algorithm 3: Pseudocode of the GWCA.
Input: Initialize the parameters of the GWCA.
Input: P = {X1, . . . , XN}: The population of individuals.
Input: M = {M1, . . . ,MN}: The memory of individuals.
Output: X∗: The best solution.

1 for i← 1 to N do
2 for j ← 1 to D do
3 X

(0)
i,j is initialized using Equation 3.1;

4 Mi,j ← Xi,j ;
5 end
6 end
7 for t← 1 to Tmax do
8 for i← 1 to N do
9 Generate a random integer number I ∈ {1, 2, 3};

10 if I = 1 then
11 for j ← 1 to D do
12 X

(t)
i,j is updated using Equation 3.2;

13 end
14 else if I = 2 then
15 for j ← 1 to D do
16 X

(t)
i,j is updated using Equation 3.3;

17 end
18 else
19 for j ← 1 to D do
20 X

(t)
i,j is updated using Equation 3.4;

21 end
22 for j ← 1 to D do
23 X

(t)
i,j is updated using Algorithm 4;

24 end
25 Mi is updated using Algorithm 5;
26 end
27 Replace undesired individuals using Algorithm 2;
28 end
29 X∗ ← argmin

i∈{1,...,N}

{
f
(
X

(t)
i

)}
;

Algorithm 4: The boundary checker.
Input: X

(t)
i,j : The solution to be checked.

Input: LB: The vector of lower boundaries.
Input: UB: The vector of upper boundaries.
Output: X

(t)
i,j : The checked solution.

1 if X
(t)
i,j < LBj then

2 X
(t)
i,j ← LBj ;

3 end
4 if X

(t)
i,j > UBj then

5 X
(t)
i,j ← UBj

6 end

30

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Algorithm 5: The memory updating process.
Input: X

(t)
i : The current solution.

Input: Mi: The memory to be updated.
Output: Mi: The updated memory.

1 if
(
f
(
X

(t)
i

)
< f (Mi)

)
then

2 for j ← 1 to D do
3 Mi,j ← X

(t)
i,j ;

4 end
5 end

3.2.2 Opposition-Based Learning

Opposition-Based Learning (OBL)[88] stands as an emerging notion within the field of
MAs, drawing inspiration from the contrasting dynamics observed among different en-
tities. The inception of the opposition concept in 2005 marked a significant milestone,
garnering substantial attention from researchers over the subsequent decade. Diverse
algorithms in the field of soft computing, including optimization techniques, reinforce-
ment learning, artificial neural networks, and fuzzy systems, have embraced the principles
of OBL to enhance and elevate their operational efficiency. At the core of OBL lies the
foundational idea of concurrently examining the current solution and its contrasting coun-
terpart to achieve efficient problem-solving[89]. In simpler terms, when an optimization
algorithm aims to discover the best possible outcome for an objective function, the in-
corporation of both a candidate solution and its opposite can be proven advantageous,
thereby augmenting the algorithm’s overall effectiveness.Starting from January 2005, over
400 academic works have been disseminated pertaining to the concept of OBL[88]. These
research contributions have found their home within various platforms including confer-
ences, journals, and books, all situated within the domains of soft computing. Within
this compilation, approximately 60% manifest as journal papers, 38% materialize as con-
ference papers, while the remaining 2% comprise books or theses.

Definition 3.1 Let X = (x1, . . . , xD) be a candidate solution in the search space, where
xj ∈ (LBj,UBj) and j ∈ {1, . . . , D}. The opposite candidate solution of X is denoted by
X̆ and is computed by Equation 3.6 [89].

X̆ = LB + UB−X (3.6)

Since the introduction of the initial OBL concept, a series of works have emerged. In
this context, we delve into a straightforward yet highly efficient OBL approach, as de-
tailed in the publication[86]. This technique serves as a cornerstone within our proposed
algorithm, specifically designed to address the FS problem. In the following section, we
describe the working principle of the OBL technique described in[86]. This approach

31

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

employs a pair of algorithms, namely Algorithms 6 and 7, to calculate contrasting so-
lutions. The goal is to minimize the waste of function evaluations. The choice between
these algorithms depends on the diversity of the current population. When the diversity,
computed using Equation 3.7, surpasses a predefined threshold, Algorithm 6 is executed.
Conversely, if it falls below the threshold, Algorithm 7 is employed. On the one hand,
Algorithm 6 has demonstrated its ability to accelerate the convergence speed of MAs by
fully leveraging opposing information. On the other hand, Algorithm 7 has been shown
to enhance the diversity of MAs by partially incorporating opposing information. Ta-
ble 3.2 summarizes the parameters utilized in the definition of Algorithms 6 and 7, and
Equations 3.7 to 3.15.

Table 3.2: The parameters used in Algorithms 6 and 7.
Parameter Signification
N The population size
D The dimensionality of the search space
LB A D-dimensional vector representing the lower boundaries of the search space
UB A D-dimensional vector representing the upper boundaries of the search space
Xi,j The component j of the candidate solution i

X̆i,j The component j of the opposite candidate solution i

B (α, β)
The beta function – the values of α and β determine the shape of the beta
function’s graph (α > 0, β > 0)

N(0, 0.5) The Gaussian distribution of mean 0 and standard deviation 0.5

normDiv =
1

N

N∑
i=1

D∑
j=1

√
1

D

(
Xi,j − X̄j

UBj − LBj

)2

(3.7)

X̄ =
1

N
(X1 + . . .+XN)

X̆i,j = B(α, β)× (UBj − LBj) + LBj (3.8)

i ∈ {1, . . . , N} and j ∈ {1, . . . , D}

B(α, β) =
∫ 1

0

tα−1 (1− t)β−1 dt

α =

{
spread× peak , mode < 0.5

spread , otherwise
(3.9)

β =

{
spread , mode < 0.5

spread× peak , otherwise
(3.10)

spread =

(
1√

normDiv

)1+N(0,0.5)

(3.11)

32

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

peak =

{
(spread−2)×mode+1

spread×(1−mode) , mode < 0.5
2−spread

spread + spread−1
spread×mode , otherwise

(3.12)

mode =
UBj −Xi,j

UBj − LBj

(3.13)

spread = 0.1×
√

normDiv + 0.9 (3.14)

mode =
Xi,j − LBj

UBj − LBj

(3.15)

3.2.3 Gaussian Mutation

The Gaussian Mutation (GM)[87] operator introduces random perturbations to the cur-
rent solution by sampling from a Gaussian distribution. The GM is commonly utilized
to make slight adjustments to the values of the solution variables. Algorithm 9 depicts
the pseudocode of the GM operator.

Two parameters govern the extent of mutation: the mutation rate (γ) and the muta-
tion strength (δ). The former determines the probability of mutation for each solution
variable (i.e., increasing the mutation rate raises the chances of mutation taking place);
while the latter determines the magnitude of perturbations applied to the solution vari-
ables (i.e., higher mutation strength results in more significant variations across the search
space). The normal distribution is referred to as N(µ, σ), where µ and σ are its mean
and its standard deviation, respectively.

3.2.4 K-Nearest Neighbors

The K-Nearest Neighbors (KNN)[90] is a simple yet effective ML algorithm used for
classification and regression tasks. The working principle of KNN revolves around the
idea of proximity-based prediction. Given a new data point, the algorithm identifies its
k closest neighbours within the training dataset based on a chosen distance metric, often
Euclidean distance. The value of k, the number of neighbours, is a crucial parameter
that influences the algorithm’s performance and generalization. Smaller k values result
in more flexible, potentially noisy predictions, while larger k values lead to smoother
but potentially oversimplified predictions. KNN is easy to understand and implement,
making it a valuable tool for various tasks, but its efficiency can decrease with larger
datasets due to the need to calculate distances for each query point.

33

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Algorithm 6: The first OBL technique.
Input: P = {X1, . . . , XN}: The population of individuals.
Input: LB: Lower boundaries of the search space.
Input: UB: Upper boundaries of the search space.
Input: N : The population size.
Input: D: The dimensionality of the search space.
Input: f (.): The objective function to be minimized.
Output: P = {X1, . . . , XN}: The population of individuals.

1 Define a zero matrix A = (aij)1≤i≤N,1≤j≤D;
2 for i← 1 to N do
3 for j ← 1 to D do
4 aij ← Xi,j ;
5 end
6 end
7 Compute the covariance matrix C of A;
8 Compute the matrix V whose columns are the eigenvectors of C;
9 U ← ∅;

10 Compute normDiv using Equation 3.7;
11 for i← 1 to N do
12 for j ← 1 to D do
13 if rand(0, 1) ≤ 0.5 then
14 Compute mode using Equation 3.13;
15 Compute spread using Equation 3.11;
16 end
17 else
18 Compute mode using Equation 3.15;
19 Compute spread using Equation 3.14;
20 end
21 Compute peak using Equation 3.12;
22 Compute α using Equation 3.9;
23 Compute β using Equation 3.10;
24 Compute X̆i,j using Equation 3.8;
25 end
26 X ′

i ←
(
V T ×XT

i

)T ;

27 X̆ ′
i ←

(
V T × X̆T

i

)T

;
28 Compute U1 using Algorithm 8 (X ′

i, X̆ ′
i, Cr = 0.1);

29 Compute U2 using Algorithm 8 (X ′
i, X̆ ′

i, Cr = 0.9);
30

(
V × UT

1

)T is updated using Algorithm 4;
31

(
V × UT

2

)T is updated using Algorithm 4;
32 U ← U ∪

{(
V × UT

1

)T
,
(
V × UT

2

)T};
33 end
34 U ← U ∪ P ;
35 P ← ∅;
36 while |P | < N do

37 B ←

{
argmin

i∈{1,...,|U |}
{f (Ui)}

}
;

38 U ← U − {B};
39 P ← P ∪ {B};
40 end

34

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Algorithm 7: The second OBL technique..
Input: P = {X1, . . . , XN}: The population of individuals.
Input: LB: Lower boundaries of the search space.
Input: UB: Upper boundaries of the search space.
Input: N : The population size.
Input: D: The dimensionality of the search space.
Input: f (.): The objective function to be minimized.
Output: P = {X1, . . . , XN}: The population of individuals.

1 Define a zero matrix A = (aij)1≤i≤N,1≤j≤D;
2 for i← 1 to N do
3 for j ← 1 to D do
4 aij ← Xi,j ;
5 end
6 end
7 Compute the covariance matrix C of A;
8 Compute the matrix V whose columns are the eigenvectors of C;
9 Compute the median m of the series: f (X1) , . . . , f (XN);

10 U ← ∅;
11 Compute normDiv using Equation 3.7;
12 for i← to N do
13 if f (Xi) ≥ m then
14 for j ← 1 to D do
15 if rand(0, 1) ≤ 0.5 then
16 Compute mode using Equation 3.13;
17 Compute spread using Equation 3.11;
18 end
19 else
20 Compute mode using Equation 3.15;
21 Compute spread using Equation 3.14;
22 end
23 Compute peak using Equation 3.12;
24 Compute α using Equation 3.9;
25 Compute β using Equation 3.10;
26 Compute X̆i,j using Equation 3.8;
27 end
28 X ′

i ←
(
V T ×XT

i

)T ;

29 X̆ ′
i ←

(
V T × X̆T

i

)T

;
30 Compute U1 using Algorithm 8 (X ′

i, X̆ ′
i, Cr = 0.1);

31 Compute U2 using Algorithm 8 (X ′
i, X̆ ′

i, Cr = 0.9);
32 U1 ←

(
V × UT

1

)T ;
33 U2 ←

(
V × UT

2

)T ;
34 U1 is updated using Algorithm 4;
35 U2 is updated using Algorithm 4;

36 U ← U ∪
{

argmin {f (U1) , f (U2) , f (Xi)}
}

;

37 end
38 else
39 U ← U ∪ {Xi};
40 end
41 end
42 P ← U ;

35

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Algorithm 8: The multiple exponential recombination algorithm.
Input: X1: The first parent solution.
Input: X2: The second parent solution.
Input: D: The dimensionality of the search space.
Input: Cr: Mutation probability.
Input: T : Length of exchanged segments (T = 2).
Output: X3: The offspring solution.

1 Em ← T × Cr;
2 Es ← T × (1− Cr);
3 Generate a random integer number n ∈ {1, . . . , D};
4 k ← 1;
5 flag← 1;
6 while k ≤ D do
7 if flag = 1 then
8 while k ≤ D and rand(0, 1) ≤ Em

Em+1 do
9 j ← 0;

10 if n ≤ D then
11 j ← n;
12 end
13 else
14 j ← n−D;
15 end
16 X3,j ← X2,j ;
17 k ← k + 1;
18 n← n+ 1;
19 end
20 flag← 0;
21 end
22 else
23 while k ≤ D and rand(0, 1) ≤ Es

Es+1 do
24 j ← 0;
25 if n ≤ D then
26 j ← n;
27 end
28 else
29 j ← n−D;
30 end
31 X3,j ← X1,j ;
32 k ← k + 1;
33 n← n+ 1;
34 end
35 flag← 1;
36 end
37 end

36

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Algorithm 9: The Gaussian mutation process.
Input: Xi: The solution to be mutated.
Input: γ: The mutation rate.
Input: δ: The mutation strength.
Input: µ: The Gaussian distribution’s mean.
Input: σ: The Gaussian distribution’s standard deviation.
Output: Xi: The mutated solution.

1 for j ← 1 to D do
2 if (rand(0, 1) < γ) then
3 Xi,j ← Xi,j + N(µ, σ)× δ;
4 Xi,j is updated using Algorithm 4;
5 end
6 end

3.2.5 Evaluation Metrics

In classification tasks in ML, various evaluation metrics are used to assess the perfor-
mance of model’s predictions[91]. These metrics provide insights into how well the model
is classifying different classes and help quantify its strengths and weaknesses. These
metrics provide a comprehensive view of a classifier’s performance from different angles.
The choice of metric depends on the specific characteristics of the problem, the class
distribution, and the goals of the application. It is often recommended to consider mul-
tiple metrics to get a well-rounded assessment of a model’s performance. Some common
evaluation metrics for classification tasks are given in the following sections.

3.2.5.1 Confusion Matrix

A confusion matrix provides a detailed breakdown of True Positives (TP) – the model
identifies a positive case correctly, True Negatives (TN) – the model correctly identifies
a negative case, False Positives (FP) – the model predicts a positive outcome when it
should have predicted a negative outcome, and False Negatives (FN) – the model fails to
predict a positive outcome when it should have, which are essential for calculating the
subsequent metrics.

3.2.5.2 Accuracy

Accuracy is the ratio of correctly predicted instances to the total number of instances in
the dataset. While easy to understand, accuracy might not be suitable for imbalanced
datasets where one class dominates the others. Its mathematical expression is given by
Equation 3.16.

accuracy =
TP + TN

TP + TN + FP + FN (3.16)

37

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

3.2.5.3 Precision

Precision measures the ratio of correctly predicted positive observations to the total
predicted positives. It focuses on the correctness of positive predictions and helps in
scenarios where false positives are costly. Its mathematical representation is defined by
Equation 3.17.

precision =
TP

TP + FP (3.17)

3.2.5.4 Recall

Recall calculates the ratio of correctly predicted positive observations to the actual pos-
itives. It is useful when the emphasis is on minimizing false negatives. Equation 3.18
provides its mathematical formulation.

recall = TP
TP + FN (3.18)

3.2.5.5 F1-Score

The F1-score is the harmonic mean of precision and recall. It provides a balance between
precision and recall, which can be valuable when you need to consider both false positives
and false negatives. Its mathematical formula is expressed in Equation 3.19.

F1-score =
2× (precision× recall)

precision + recall (3.19)

3.2.5.6 Classification Error Rate

The classification error rate in ML is a fundamental performance metric that quantifies
the proportion of incorrectly classified instances in a dataset, comparing the number of
misclassified data points to the total number of instances. It serves as a straightforward
indicator of a classification model’s accuracy, with lower error rates indicating better
performance and higher rates reflecting lower accuracy. However, the classification error
rate has limitations, such as not distinguishing between different types of errors (e.g., false
positives and false negatives) and not accounting for class imbalances. As a result, it is
often used in combination with other metrics to provide a more comprehensive assessment
of a model’s classification capabilities. Equation 3.20 gives its mathematical expression.

CER =
FP + FN

TP + TN + FP + FN (3.20)

38

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

3.3 Proposed Algorithm
In this section, we present and elucidate the algorithm that embodies our proposed
methodology for addressing the FS problem. Algorithm 10 provides a comprehensive
overview of the distinct steps involved in its formulation. This algorithm serves as a vital
roadmap for understanding the intricacies of our method and its practical implementa-
tion. Through the following discussion, we aim to provide a clear and detailed account
of our approach, allowing for a deeper insight into the methodology’s inner workings.

In our algorithm, we have employed the transfer function defined by Equation 3.21 to
facilitate the mapping of candidate solutions from a continuous space to a binary space.
This transfer function is called the step transfer function, and it plays a pivotal role
in transforming the real-valued outputs into binary decisions, allowing us to effectively
navigate the discrete nature of the FS problem and make meaningful decisions based on
the continuous input data.

Y
(t)
i,j =

{
0 , if X(t)

i,j ≤ 0.5

1 , otherwise
(3.21)

The various stages of the proposed algorithm can be elucidated as follows:

• Initially, the algorithm commences by initializing and inputting the values of con-
trolling parameters, which are detailed in Table 3.4.

• Lines 1 to 6 of the algorithm involve the initialization of the initial population of
candidate solutions through the utilization of chaotic maps. This approach aims
to promote diversity within the population, facilitating exploration across a broad
spectrum of values and potentially covering diverse regions within the solution
space.

• Between lines 7 and 37, the algorithm carries out the swarming process in an inter-
active manner. The cessation of this process can be determined by various stopping
criteria, such as a predefined maximum number of generations, a set maximum for
function evaluations, or a threshold for objective function values, among other pos-
sibilities.

• Within the algorithmic framework, specifically in lines 8 to 11, the execution of
either Algorithm 6 or 7 is determined based on the population diversity’s value.
Algorithm 6 is designed to expedite the convergence speed of the proposed algo-
rithm by fully exploiting opposing information, while Algorithm 7 aims to amplify
the diversity of the algorithm by selectively incorporating opposing information.
Subsequently, in the span of lines 12 to 34, the swarming behavior of the GWCA

39

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

is considered, orchestrating movement within the search space. It is worth point-
ing out that the transition between the preceding phases is conducted randomly,
contributing an element of stochasticity to the algorithmic process.

• In line 35, Gaussian mutation is executed to enhance the diversity of solutions and
avoid getting trapped in local optimums.

• It is worth highlighting that lines 10, 30, 33, and 36 are used to save the best
solution encountered by the various agents during the swarming process. This
process plays a crucial role in guiding the algorithm toward better solutions over
successive iterations.

• Finally, at line 38, the best solution found so far is returned, representing the set
of selected features.

We scrutinize the time complexity of the proposed algorithm (Algorithm 10), observ-
ing that Algorithm 2 has a time complexity of O(n), Algorithm 4 has a time complexity
of O(1), Algorithm 5 has a time complexity of O(n), Algorithm 9 has a time complexity
of O(n), and Algorithm 11 has a time complexity of O(n4). Based on the elementary
time complexities discussed earlier, we conclude that the time complexity of the improved
version of the GWCA is O(n5).

3.4 Experimental Study and Discussion
Within this section, our focus centers on the rigorous evaluation of the proposed al-
gorithm’s efficacy in addressing the FS problem. Section 3.4.1 lays the foundation by
providing a comprehensive overview of both the datasets employed in our comparative
study and the parameter settings configured for optimal performance of our proposed
optimizer. Subsequently, Section 3.4.2 meticulously delineates the diverse algorithms
included in the comparative study, shedding light on their respective parameter con-
figurations. The culmination of this evaluation is encapsulated in Section 3.4.3, where
a detailed presentation of the comparative study unfolds. This section systematically
delves into the selected criteria, offering a nuanced exploration of the obtained numerical
results.

3.4.1 Used Datasets and Parameters Setting

Table 3.3 provides a comprehensive overview of the key characteristics of the 22 datasets
employed in our comparative study. Access to the datasets can be obtained through
the link https://archive.ics.uci.edu/datasets. The datasets are categorized into
three groups – small, medium, and large – based on the number of features, with datasets

40

https://archive.ics.uci.edu/datasets

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Algorithm 10: Pseudocode of the proposed algorithm.
Input: P = {X1, . . . , XN}: The population of individuals.
Input: M = {M1, . . . ,MN}: The memory of individuals.
Input: LB: Lower boundaries of the search space.
Input: UB: Upper boundaries of the search space.
Input: N : The population size.
Input: D: The dimensionality of the search space.
Input: JR: The jumping rate.
Input: Initialize the parameters of the GWCA.
Output: X∗: The best solution.

1 for i← 1 to N do
2 for j ← 1 to D do
3 X

(0)
i,j is initialized using Equation 3.1;

4 Mi,j ← Xi,j ;
5 end
6 end
7 while Termination Condition is not Satisfied do
8 if rand(0, 1) ≤ JR then
9 Update the population P using Algorithm 11;

10 Update individuals’ memory using Algorithm 5;
11 end
12 else
13 for i← 1 to N do
14 Generate a random integer number I ∈ {1, 2, 3};
15 if I = 1 then
16 for j ← 1 to D do
17 X

(t)
i,j is updated using Equation 3.2;

18 end
19 else if I = 2 then
20 for j ← 1 to D do
21 X

(t)
i,j is updated using Equation 3.3;

22 end
23 else
24 for j ← 1 to D do
25 X

(t)
i,j is updated using Equation 3.4;

26 end
27 for j ← 1 to D do
28 X

(t)
i,j is updated using Algorithm 4;

29 end
30 Mi is updated using Algorithm 5;
31 end
32 Replace undesired individuals using Algorithm 2;
33 Update individuals’ memory using Algorithm 5;
34 end
35 Update the population P using Algorithm 9;
36 Update individuals’ memory using Algorithm 5;
37 end
38 X∗ ← argmin

i∈{1,...,N}

{
f
(
X

(t)
i

)}
;

41

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Algorithm 11: The opposition-based learning.
Input: P = {X1, . . . , XN}: The population of individuals.
Input: DT: The diversity threshold.
Output: P = {X1, . . . , XN}: The updated population of individuals.

1 Compute the population’s diversity normDiv using Equation 3.7;
2 if normDiv > DT then
3 Update the individuals within P using Algorithm 6;
4 end
5 else
6 Update the individuals within P using Algorithm 7;
7 end

having fewer than 20 features classified as small, those with 21 to 100 features as medium,
and datasets with more than 100 features categorized as large. To evaluate the impact
of selected feature subsets, each dataset underwent division into training, testing, and
validation sets using the cross-validation method. Subsequently, the KNN classifier was
applied to calculate the objective function as defined by Equation 2.1 (the number of
neighbours to use is 5).

Table 3.3: The description of datasets used in the comparative study.
ID Name Number of features Number of instances Number of classes

Small datasets
d1 Tic-Tac-Toe Endgame 9 958 2
d2 Breast Cancer Wisconsin (Original) 10 699 2
d3 Statlog (Heart) 13 270 2
d4 Wine 13 178 3
d5 Congressional Voting Records 16 435 2
d6 Zoo 16 101 7
d7 Lymphography 18 148 4
d8 Hepatitis 19 155 2
d9 German Credit Dataset Analysis 20 1000 2

Medium datasets
d10 Waveform 21 5000 3
d11 Breast Cancer Wisconsin (Diagnostic) 30 569 2
d12 Ionosphere 34 351 2
d13 Dermatology 34 366 6
d14 Soybean (Small) 35 47 4
d15 Lung Cancer 56 32 3
d16 Connectionist Bench (Sonar, Mines vs. Rocks) 60 208 2
d17 Hill-Valley 100 1212 2

Large datasets
d18 Musk Version 1 166 476 2
d19 Semeion Handwritten Digit 265 1593 2
d20 Malware Executable Detection 531 373 2
d21 Parkinson’s Disease Classification 754 756 2
d22 CNAE-9 856 1080 3

In Table 3.4, a comprehensive overview of the parameter settings for the various
variables employed in our proposed algorithm dedicated to addressing the FS problem is
presented.

3.4.2 Benchmark Algorithms

In evaluating the efficacy of the suggested algorithm, a comprehensive performance anal-
ysis was conducted through a comparative study with ten prominent state-of-the-art
methodologies. Seven of the algorithms are novel methods introduced between 2020 and

42

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.4: The parameters used in the proposed algorithm.

Parameter Value
N 30
D The number of features present in the considered dataset.
LB 0
UB 1
Tmax 100
T 8.3
m 3
g 9.8
P 9
Q 6
Cmin e2

Cmax e3

ρ 0.25
JR 0.05
DT 10−6

α Random in the range [0, 1]
γ 0.05
δ 1
µ 0
σ 0.5

2023, while the remaining three are classical approaches, including particle swarm op-
timization, genetic algorithms, and differential evolution. The selected algorithms were
scrutinized in depth, and their respective parameter configurations have been succinctly
outlined in Table 3.5 for clarity and reference. It is worth pointing out that these param-
eters have been extracted from the original published papers.

1. Binary Arithmetic Optimization Algorithm (BAOA)[92].

2. Binary Sand Cat Swarm Optimization algorithm (BSCSO)[93].

3. Improved Bald Eagle Search algorithm (IBES)[94].

4. Chaotic Binary Reptile Search Algorithm (CBRSA)[95].

5. Chaotic Vortex Search Algorithm (CVSA)[60] .

6. Chaotic Gaining Sharing Knowledge-based optimization algorithm (CBi-GSK)[96].

7. Chaotic Atom Search Optimization (CASO)[97].

8. Particle Swarm Optimization (PSO)[98].

9. Differential Evolution (DE)[99].

10. Genetic Algorithm (GA)[100].

43

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.5: The parameters’ values of the algorithms used for the comparative study.

Parameter Value
BAOA

MinMOA 0.2
MinMOA 1
µ 0.49
α 5

BSCSO
rG [2, 0]
R [−2rG, 2rG]

IBES
a 10
R 1.5

CBRSA
α 0.1
β 0.005

CVSA
µ0 0.5

CBi-GSK
ρ 0.1
K 10
Np(≤ 20) 50
Np(≥ 20) 100

CASO
α 50
β 0.2

PSO
c1 2
c2 2
w [0.2, 0.9]

DE
F 0.7
Cr 0.8

GA
Pc 0.7
Pm 0.1

44

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

3.4.3 Numerical Results and Discussion

To assess and compare the performance of the various algorithms employed in the com-
parative study, we utilized a set of evaluation metrics. These metrics were chosen to
provide a comprehensive analysis of algorithmic effectiveness and efficiency, enabling a
thorough examination of their performance across different criteria.

1. Average of Classification Accuracy (ACA): It furnishes the average of accuracy
values calculated through Equation 3.16 over the specified number of runs.

2. Average of Fitness Values (AFV): It presents the mean of fitness values derived
from Equation 2.1 across the designated number of runs.

3. Minimum of Fitness Values (MiFV): It gives the minimum of fitness values calcu-
lated from Equation 2.1 across the designated number of runs.

4. Maximum of Fitness Values (MaFV): It provides the maximums of fitness values
computed from Equation 2.1 across the designated number of runs.

5. Average of Selected Features (ASF): It offers the average number of selected features
over the specified runs.

6. Average of Completion Time (ACT): It provides the mean of completion times over
the designated number of runs. The time is given in seconds.

To evaluate the impact of reducing the number of features on the performance of the
preceding metrics, we additionally calculated various average values when considering
the inclusion of all available features. The obtained numerical results are summarized in
Table 3.6. Furthermore, Table 3.7 provides a comprehensive summary of the values for
various metrics achieved through the proposed algorithm.

Tables 3.10, 3.11, 3.12, 3.13, 3.14, and 3.15 showcase diverse metric values derived
from the algorithms under consideration for the comparative study. Each table serves as
input for the Friedman and the Wilcoxon signed ranks tests, facilitating the examination
of subtle differences among the algorithms concerning the specified evaluation criteria.
It is worth noting that the best values for each metric are presented in bold font. The
initial observation reveals that the accuracy values achieved by the proposed algorithm
surpass those attained when utilizing all features, indicating a substantial positive impact
on performance due to the reduction in the number of features. For each table, we have
considered small, medium, and large datasets separately to perform the Friedman and
Kruskal-Wallis tests and compute the mean ranks. First, the Friedman test is a non-
parametric statistical test used to detect differences in treatments across multiple related
groups. It is often employed when the data violate the assumptions of normal distribution

45

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.6: The values of various metrics when considering all features.

ID ACA AFV MiFV MaFV ASF ACT
d1 0.8211 0.1872 0.1872 0.1872 9.0000 0.1369
d2 0.5362 0.4691 0.4691 0.4691 10.0000 0.0095
d3 0.6296 0.3767 0.3767 0.3767 13.0000 0.0208
d4 0.6471 0.3594 0.3594 0.3594 13.0000 0.0068
d5 0.9302 0.0791 0.0791 0.0791 16.0000 0.0065
d6 0.9000 0.1090 0.1090 0.1090 16.0000 0.0109
d7 0.5000 0.5050 0.5050 0.5050 18.0000 0.0065
d8 0.6000 0.4060 0.4060 0.4060 19.0000 0.0065
d9 0.6300 0.3763 0.3763 0.3763 20.0000 0.0073
d10 0.8260 0.1823 0.1823 0.1823 21.0000 0.0176
d11 0.9821 0.0277 0.0277 0.0277 30.0000 0.0067
d12 0.9143 0.0949 0.0949 0.0949 34.0000 0.0068
d13 0.8889 0.1200 0.1200 0.1200 34.0000 0.0067
d14 1.0000 0.0100 0.0100 0.0100 35.0000 0.0065
d15 0.6667 0.3400 0.3400 0.3400 56.0000 0.0063
d16 0.8500 0.1585 0.1585 0.1585 60.0000 0.0069
d17 0.5702 0.4355 0.4355 0.4355 100.0000 0.0108
d18 0.8511 0.1574 0.1574 0.1574 166.0000 0.0076
d19 0.9811 0.0287 0.0287 0.0287 265.0000 0.0253
d20 0.9459 0.0635 0.0635 0.0635 531.0000 0.0104
d21 0.7600 0.2476 0.2476 0.2476 754.0000 0.0216
d22 0.9352 0.0742 0.0742 0.0742 856.0000 0.0367

Table 3.7: The values of various metrics obtained by the proposed algorithm.

ID ACA AFV MiFV MaFV ASF ACT
d1 0.8842 0.1202 0.1202 0.1202 5.0000 28.7156
d2 0.9913 0.0122 0.0060 0.0163 3.6000 25.1408
d3 0.9185 0.0842 0.0764 0.1131 4.6000 23.3756
d4 1.0000 0.0015 0.0015 0.0015 2.0000 22.6313
d5 1.0000 0.0019 0.0019 0.0019 3.0000 24.1523
d6 0.9600 0.0421 0.0025 0.1015 4.0000 22.7894
d7 1.0000 0.0017 0.0017 0.0017 3.0000 22.5171
d8 1.0000 0.0005 0.0005 0.0005 1.0000 22.6201
d9 0.8560 0.1457 0.1327 0.1515 6.2000 27.0323
d10 0.8584 0.1456 0.1404 0.1537 11.4000 56.0294
d11 1.0000 0.0007 0.0007 0.0007 2.0000 23.4479
d12 1.0000 0.0006 0.0006 0.0009 2.2000 22.3402
d13 1.0000 0.0012 0.0012 0.0012 4.0000 22.0240
d14 1.0000 0.0003 0.0003 0.0003 1.0000 21.5273
d15 1.0000 0.0004 0.0004 0.0004 2.0000 20.7130
d16 1.0000 0.0007 0.0007 0.0008 4.2000 21.7060
d17 0.7256 0.2724 0.2545 0.2951 7.4000 29.1522
d18 1.0000 0.0004 0.0004 0.0004 6.6000 24.5433
d19 1.0000 0.0004 0.0002 0.0006 9.8000 58.7090
d20 1.0000 0.0000 0.0000 0.0000 1.2000 29.0329
d21 0.8640 0.1347 0.1189 0.1717 7.0000 53.4145
d22 0.9648 0.0362 0.0192 0.0468 115.0000 89.7991

46

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

or when the data are measured on an ordinal scale. Second, the Kruskal-Wallis test is
a non-parametric statistical test used to determine whether there are any statistically
significant differences between the medians of three or more independent (unrelated)
groups. It is an extension of the Wilcoxon rank-sum test (Mann-Whitney U test) for
two groups to multiple groups. We consider the null hypothesis (H0), representing the
statement of no effect or no difference, and the alternative hypothesis (H1), representing
the statement that contradicts the null hypothesis (i.e., suggesting the presence of an
effect or difference). The significance level, denoted as α, is the probability of rejecting
the null hypothesis when it is actually true. In our study, α is set to 0.05. Tables
3.8 and 3.9 summarize the p-values associated with the Friedman and Kruskal-Wallis
tests, respectively, indicating the likelihood of obtaining the observed differences among
the groups due to random chance. In other words, if the p-value is less than the chosen
significance level (i.e., 0.05), the null hypothesis is rejected. From Table 3.8, it is observed
that all the p-values are less than 0.05, which suggests to reject the null hypothesis. From
Table 3.9, it is observed that all the p-values are less than 0.05, which suggests to reject
the null hypothesis, except for large datasets suggesting to retain the null hypothesis.
On the other side, mean ranks refer to the average ranks assigned to each treatment
or group across different levels of the independent variable: Mean Rank 1 and Mean
Rank 2 are computed using the Friedman and Kruskal-Wallis tests, respectively. They
provide a summary measure of the average performance or rank order of each treatment
under varying conditions. Higher mean ranks, signifying smaller values, indicate superior
performance or a higher position in the rank order. As observed in Tables 3.10, 3.11,
3.12, and 3.13, BGWCA consistently secures the first place, reflecting the best values
in terms of accuracy and fitness, as computed using Equations 3.16 and 2.1. However,
according to Table 3.15, BGWCA attains medium ranks in the majority of cases (i.e.,
either the fourth or the sixth place out of the 11 algorithms). This behavior arises from
the conflicting relationship between optimality and computing time.

Table 3.8: Summary of the Friedman test results.

ACA AFV MiFV MaFV ASF ACT
Small datasets 7.4397e-10 6.2937e-10 7.8794e-09 7.8722e-10 3.4652e-11 8.4144e-15
Medium datasets 1.4949e-09 6.0471e-10 4.7091e-07 1.9101e-09 5.4992e-11 1.3981e-12
Large datasets 0.0029 0.0019 0.0083 7.3662e-04 2.1260e-06 7.2312e-07

Table 3.9: Summary of the Kruskal-Wallis test results.

ACA AFV MiFV MaFV ASF ACT
Small datasets 3.2282e-09 1.6740e-09 0.0012 4.3553e-10 9.7190e-11 7.2472e-16
Medium datasets 1.2725e-04 3.2282e-05 0.0056 1.7810e-06 1.6376e-08 2.4180e-11
Large datasets 0.1650 0.0974 0.6199 0.0478 6.9207e-04 1.9551e-05

Figures 3.1 and 3.2 represent box-and-whisker plots for small, medium and large
datasets for all the optimizers. The box-and-whisker plots shown in Figure 3.1 reveal dis-

47

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.10: The ACA values for all algorithms.
ID BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA ALL

Small datasets
d1 0.8842 0.7095 0.3979 0.7474 0.8084 0.6842 0.6779 0.7958 0.7495 0.8632 0.7368 0.8211
d2 0.9913 0.9594 0.5507 0.5362 0.7942 0.8203 0.7623 0.9884 0.8319 1.0000 0.7623 0.5362
d3 0.9185 0.8444 0.5778 0.7630 0.5630 0.7111 0.6667 0.8889 0.8074 0.9630 0.6593 0.6296
d4 1.0000 0.8471 0.3412 0.6235 0.7765 0.8941 0.7882 0.9294 0.9059 1.0000 0.8000 0.6471
d5 1.0000 0.9628 0.5395 0.7070 0.9442 0.8744 0.9395 0.9907 0.9953 0.9767 0.9302 0.9302
d6 0.9600 0.8600 0.3600 0.5200 0.8000 0.8600 0.8600 0.9800 1.0000 1.0000 0.9800 0.9000
d7 1.0000 0.7143 0.6286 0.5714 0.7857 0.6143 0.8286 0.9286 0.6286 0.9714 0.7143 0.5000
d8 1.0000 0.9200 0.5600 0.4000 0.6667 0.7733 0.8000 0.7600 0.7467 0.9733 0.7333 0.6000
d9 0.8560 0.7200 0.3920 0.6940 0.6600 0.6520 0.6360 0.8220 0.6540 0.8420 0.7620 0.6300
Mean Ranks 1 1.7222 5.3889 10.3889 9.0000 7.3333 7.4444 7.3889 3.5000 5.1111 1.8889 6.8333

1 5 11 10 7 9 8 3 4 2 6
Mean Ranks 2 16.2222 43.1667 92.6111 80.0000 57.9444 56.7778 55.1111 30.5000 46.7778 17.1667 53.7222

1 4 11 10 9 8 7 3 5 2 6
Medium datasets

d10 0.8584 0.7488 0.2316 0.6168 0.8064 0.7320 0.7832 0.8152 0.8240 0.8416 0.7680 0.8260
d11 1.0000 0.9321 0.7929 0.6679 0.9250 0.8643 0.9107 0.9536 0.9143 0.9893 0.8500 0.9821
d12 1.0000 0.9371 0.6914 0.8914 0.8743 0.8914 0.8229 0.9429 0.8971 0.9829 0.8571 0.9143
d13 1.0000 0.8944 0.4444 0.7889 0.8444 0.8278 0.9444 0.9833 0.9500 1.0000 0.8889 0.8889
d14 1.0000 1.0000 0.2500 0.9000 1.0000 0.9000 0.9000 1.0000 0.9500 1.0000 0.8500 1.0000
d15 1.0000 0.8000 0.4000 0.6000 0.9333 0.7333 0.4667 0.8000 0.8667 1.0000 0.4000 0.6667
d16 1.0000 0.8900 0.7500 0.6500 0.7600 0.7800 0.8900 0.8900 0.8900 0.9800 0.7700 0.8500
d17 0.7256 0.5421 0.4479 0.5074 0.5355 0.5554 0.4314 0.5190 0.6215 0.6347 0.5702 0.5702
Mean Ranks 1 1.3750 5.1250 10.5625 9.1875 6.0000 7.4375 7.5625 4.2500 4.4375 2.0000 8.0625

1 5 11 10 6 7 8 3 4 2 9
Mean Ranks 2 18.6250 39.5625 76.5625 60.6875 41.8125 52.4375 48.3125 35.0625 36.6875 22.8125 56.9375

1 5 11 10 6 8 7 3 4 2 9
Large datasets

d18 1.0000 0.8596 0.8383 0.8936 0.8255 0.8340 0.8340 0.9319 0.8553 0.9660 0.8723 0.8511
d19 1.0000 0.9774 0.7572 0.9371 0.9849 0.9610 0.9623 0.9836 0.9899 0.9987 0.9736 0.9811
d20 1.0000 0.9892 0.5784 0.8324 1.0000 0.9946 1.0000 0.9459 0.9730 1.0000 0.9838 0.9459
d21 0.8640 0.7653 0.7760 0.6747 0.6773 0.6800 0.8533 0.7120 0.7733 0.8347 0.6933 0.7600
d22 0.9648 0.6167 0.2407 0.5093 0.8019 0.6222 0.6889 0.8556 0.6667 0.8093 0.7093 0.9352
Mean Ranks 1 1.3000 6.6000 9.0000 9.0000 6.3000 8.1000 5.6000 5.2000 6.0000 2.5000 6.4000

1 8 11 11 6 9 4 3 5 2 7
Mean Ranks 2 10.9000 28.8000 44.0000 36.8000 27.3000 31.9000 26.4000 25.6000 28.8000 19.3000 28.2000

1 7 11 10 5 9 4 3 8 2 6

Table 3.11: The AFV values for all algorithms.
ID BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA ALL

Small datasets
d1 0.1202 0.2907 40.2008 0.2561 0.1977 0.3177 0.3238 0.2071 0.2538 0.1410 0.2670 0.1872
d2 0.0122 0.0430 40.0494 40.0667 0.2101 0.1829 0.2417 0.0165 0.1712 0.0020 0.2383 0.4691
d3 0.0842 0.1555 20.2206 0.2404 0.4417 0.2906 0.3345 0.1143 0.1948 0.0390 0.3418 0.3767
d4 0.0015 0.1536 60.0589 20.1789 0.2281 0.1094 0.2141 0.0728 0.0975 0.0023 0.2025 0.3594
d5 0.0019 0.0392 20.2585 20.0978 0.0610 0.1283 0.0661 0.0125 0.0087 0.0236 0.0733 0.0791
d6 0.0421 0.1412 40.2381 40.0841 0.2035 0.1422 0.1450 0.0236 0.0037 0.0019 0.0233 0.1090
d7 0.0017 0.2843 0.3684 20.2320 0.2196 0.3863 0.1747 0.0742 0.3723 0.0297 0.2871 0.5050
d8 0.0005 0.0810 20.2380 40.2019 0.3377 0.2283 0.2027 0.2418 0.2550 0.0286 0.2676 0.4060
d9 0.1457 0.2798 40.2062 0.3075 0.3423 0.3485 0.3654 0.1810 0.3464 0.1594 0.2403 0.3763
Mean Ranks 1 1.6667 5.2222 10.4444 9.0000 7.2222 7.4444 7.5556 3.5556 5.2222 1.8889 6.7778

1 5 11 10 7 8 9 3 5 2 6
Mean Ranks 2 15.3889 43.0000 92.4444 82.2222 57.6667 56.3333 55.0000 30.4444 46.7778 17.6111 53.1111

1 4 11 10 9 8 7 3 5 2 6
Medium datasets

d10 0.1456 0.2522 60.1670 20.1870 0.1995 0.2701 0.2203 0.1893 0.1803 0.1616 0.2349 0.1823
d11 0.0007 0.0689 0.2055 20.1359 0.0824 0.1381 0.0939 0.0494 0.0901 0.0114 0.1537 0.0277
d12 0.0006 0.0641 20.1078 0.1114 0.1320 0.1115 0.1808 0.0612 0.1064 0.0181 0.1460 0.0949
d13 0.0012 0.1074 0.5506 0.2156 0.1607 0.1747 0.0599 0.0214 0.0542 0.0025 0.1152 0.1200
d14 0.0003 0.0019 0.7428 0.1055 0.0065 0.1030 0.1041 0.0026 0.0545 0.0006 0.1525 0.0100
d15 0.0004 0.2003 20.3961 0.4014 0.0724 0.2677 0.5333 0.2021 0.1373 0.0004 0.5985 0.3400
d16 0.0007 0.1111 0.2479 20.1537 0.2431 0.2216 0.1140 0.1132 0.1141 0.0216 0.2320 0.1585
d17 0.2724 0.4560 20.3487 0.4911 0.4653 0.4440 0.5681 0.4810 0.3794 0.3635 0.4304 0.4355
Mean Ranks 1 1.0000 4.8750 10.7500 9.2500 6.2500 7.3750 7.5000 4.3750 4.6250 2.0000 8.0000

1 5 11 10 6 7 8 3 4 2 9
Mean Ranks 2 17.3750 38.7500 77.6250 64.8750 42.1250 52.0000 47.2500 35.2500 36.5000 22.0000 55.7500

1 5 11 10 6 8 7 3 4 2 9
Large datasets

d18 0.0004 0.1415 0.1604 0.1116 0.1797 0.1685 0.1694 0.0722 0.1481 0.0359 0.1315 0.1574
d19 0.0004 0.0251 20.0425 0.0671 0.0222 0.0432 0.0423 0.0209 0.0148 0.0032 0.0309 0.0287
d20 0.0000 0.0131 0.4175 0.1707 0.0074 0.0098 0.0049 0.0579 0.0316 0.0006 0.0209 0.0635
d21 0.1347 0.2348 0.2218 0.3259 0.3273 0.3214 0.1502 0.2898 0.2292 0.1650 0.3083 0.2476
d22 0.0362 0.3822 0.7519 0.4898 0.2040 0.3784 0.3129 0.1480 0.3350 0.1913 0.2928 0.0742
Mean Ranks 1 1.0000 6.6000 9.0000 8.8000 7.0000 8.0000 5.8000 5.0000 6.0000 2.4000 6.4000

1 7 11 10 8 9 4 3 5 2 6
Mean Ranks 2 10.0000 28.4000 46.2000 36.2000 28.4000 31.4000 26.8000 25.2000 28.8000 19.0000 27.6000

1 6 11 10 7 9 4 3 8 2 5

48

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.12: The MiFV values for all algorithms.
ID BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA ALL

Small datasets
d1 0.1202 0.2036 0.3346 0.2173 0.1142 0.2661 0.2754 0.1920 0.1663 0.1410 0.2080 0.1872
d2 0.0060 0.0327 0.0584 0.0193 0.0347 0.0347 0.0357 0.0050 0.0183 0.0020 0.0460 0.4691
d3 0.0764 0.1123 0.2574 0.1505 0.3369 0.1528 0.2597 0.0428 0.1115 0.0390 0.2979 0.3767
d4 0.0015 0.0015 0.1188 0.0621 0.0621 0.0015 0.1211 0.0598 0.0031 0.0023 0.0621 0.3594
d5 0.0019 0.0268 0.2539 0.0952 0.0268 0.0529 0.0299 0.0019 0.0031 0.0236 0.0044 0.0791
d6 0.0025 0.1015 0.1993 0.1084 0.1040 0.0037 0.1052 0.0037 0.0025 0.0019 0.0031 0.1090
d7 0.0017 0.1431 0.3541 0.2205 0.0779 0.2884 0.0757 0.0033 0.2149 0.0017 0.0757 0.5050
d8 0.0005 0.0665 0.2645 0.2661 0.2687 0.2001 0.1357 0.0692 0.1352 0.0021 0.2012 0.4060
d9 0.1327 0.2505 0.3173 0.2525 0.3253 0.2911 0.3223 0.1649 0.2698 0.1421 0.1827 0.3763
Mean Ranks 1 1.9444 5.2778 10.1111 8.0000 7.7778 7.2222 8.5000 3.5556 4.7222 2.2778 6.6111

1 5 11 9 8 7 10 3 4 2 6
Mean Ranks 2 24.3333 47.6111 78.5556 62.1111 59.6667 55.5556 61.0556 36.0556 46.5556 25.9444 52.5556

1 5 11 10 8 7 9 3 4 2 6
Medium datasets

d10 0.1404 0.2008 0.3178 0.1834 0.1575 0.1972 0.1952 0.1442 0.1562 0.1483 0.1670 0.1823
d11 0.0007 0.0540 0.1421 0.0617 0.0604 0.1111 0.0744 0.0384 0.0574 0.0010 0.0397 0.0277
d12 0.0006 0.0015 0.0569 0.0884 0.0902 0.0625 0.1473 0.0330 0.0321 0.0012 0.1173 0.0949
d13 0.0012 0.0576 0.3590 0.0872 0.0609 0.0328 0.0047 0.0044 0.0041 0.0021 0.0065 0.1200
d14 0.0003 0.0014 0.4953 0.0031 0.0031 0.0023 0.0043 0.0014 0.0037 0.0006 0.0034 0.0100
d15 0.0004 0.0018 0.3302 0.3305 0.0045 0.0036 0.3346 0.0045 0.0052 0.0004 0.3334 0.3400
d16 0.0007 0.0515 0.1488 0.1020 0.1528 0.1510 0.0050 0.0535 0.0052 0.0013 0.1525 0.1585
d17 0.2545 0.4117 0.4011 0.4603 0.4412 0.4208 0.5453 0.4469 0.3159 0.3451 0.4060 0.4355
Mean Ranks 1 1.0625 5.4375 8.7500 8.1875 7.6250 7.2500 8.5000 4.7500 4.8750 2.1875 7.3750

1 5 11 9 8 6 10 3 4 2 7
Mean Ranks 2 19.6250 39.3125 68.7500 55.4375 49.6250 48.1250 52.5000 39.5000 39.6250 23.5000 53.5000

1 3 11 10 7 6 8 4 5 2 9
Large datasets

d18 0.0004 0.1076 0.1059 0.0701 0.1571 0.1315 0.1313 0.0473 0.0888 0.0231 0.1106 0.1574
d19 0.0002 0.0210 0.0376 0.0407 0.0174 0.0300 0.0300 0.0167 0.0048 0.0015 0.0106 0.0287
d20 0.0000 0.0020 0.0269 0.0003 0.0048 0.0037 0.0046 0.0577 0.0312 0.0003 0.0048 0.0635
d21 0.1189 0.1479 0.1848 0.3049 0.3219 0.3202 0.1501 0.2555 0.2289 0.1334 0.3082 0.2476
d22 0.0192 0.2960 0.5139 0.1815 0.1473 0.2340 0.2708 0.0692 0.2340 0.1581 0.2524 0.0742
Mean Ranks 1 1.0000 6.2000 8.2000 6.1000 7.7000 7.8000 7.4000 5.6000 6.2000 2.5000 7.3000

1 6 11 4 9 10 8 3 6 2 7
Mean Ranks 2 11.4000 28.6000 34.0000 29.7000 31.5000 32.2000 30.4000 28.0000 30.2000 20.9000 31.1000

1 4 11 5 9 10 7 3 6 2 8

Table 3.13: The MaFV values for all algorithms.
ID BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA ALL

Small datasets
d1 0.1202 0.3253 100.0000 0.2891 0.2869 0.3483 0.3483 0.2244 0.3055 0.1410 0.3193 0.1872
d2 0.0163 0.0470 100.0000 100.0000 0.3247 0.3914 0.3810 0.0327 0.3800 0.0020 0.3627 0.4691
d3 0.1131 0.1841 100.0000 0.3315 0.5226 0.4821 0.4821 0.1856 0.2995 0.0390 0.4079 0.3767
d4 0.0015 0.3517 100.0000 100.0000 0.3594 0.2376 0.2958 0.1195 0.3571 0.0023 0.2414 0.3594
d5 0.0019 0.0479 100.0000 100.0000 0.1425 0.2327 0.0965 0.0517 0.0286 0.0236 0.1649 0.0791
d6 0.1015 0.1993 100.0000 100.0000 0.3014 0.4975 0.2036 0.1009 0.0056 0.0019 0.1009 0.1090
d7 0.0017 0.4956 0.4254 100.0000 0.2929 0.4989 0.2183 0.1459 0.4994 0.0718 0.4994 0.5050
d8 0.0005 0.1341 100.0000 100.0000 0.4060 0.2698 0.3368 0.3353 0.4657 0.0681 0.3347 0.4060
d9 0.1515 0.3079 100.0000 0.4361 0.3525 0.3980 0.3896 0.2035 0.4198 0.1718 0.3203 0.3763
Mean Ranks 1 1.6667 5.1111 10.1667 9.3889 6.8889 7.6667 7.0000 3.7222 6.5000 1.6667 6.2222

1 3 10 9 6 8 7 2 5 1 4
Mean Ranks 2 13.2778 41.2222 90.5556 81.3333 56.2222 63.0000 52.8889 29.8333 53.6111 14.9444 53.1111

1 4 11 10 8 9 5 3 7 2 6
Medium datasets

d10 0.1537 0.2781 100.0000 100.0000 0.3009 0.3315 0.2523 0.2795 0.2002 0.1706 0.3573 0.1823
d11 0.0007 0.0904 0.3362 100.0000 0.1284 0.1801 0.1284 0.0734 0.1131 0.0183 0.2165 0.0277
d12 0.0009 0.1429 100.0000 0.1231 0.1771 0.1724 0.2307 0.0904 0.1747 0.0295 0.1744 0.0949
d13 0.0012 0.1682 0.7428 0.6056 0.4160 0.3063 0.1688 0.0585 0.1697 0.0026 0.2794 0.1200
d14 0.0003 0.0026 0.9903 0.2575 0.0100 0.4996 0.4993 0.0040 0.2526 0.0006 0.7468 0.0100
d15 0.0004 0.6625 100.0000 0.6664 0.3366 0.6637 0.6659 0.3343 0.3361 0.0005 0.9955 0.3400
d16 0.0008 0.1508 0.4952 100.0000 0.3507 0.3005 0.2532 0.2018 0.3512 0.0512 0.3020 0.1585
d17 0.2951 0.4775 100.0000 0.5162 0.5040 0.4628 0.5952 0.5121 0.4132 0.3867 0.4717 0.4355
Mean Ranks 1 1.0000 4.5000 10.6875 8.9375 7.0625 7.0000 7.0625 4.2500 5.5000 2.0000 8.0000

1 4 11 10 8 6 8 3 5 2 9
Mean Ranks 2 12.7500 35.7500 77.3750 67.5000 45.1875 52.8750 48.3125 33.6250 41.5000 18.6250 56.0000

1 4 11 10 6 8 7 3 5 2 9
Large datasets

d18 0.0004 0.1704 0.2741 0.1706 0.2155 0.2152 0.2165 0.0891 0.2157 0.0654 0.1521 0.1574
d19 0.0006 0.0338 100.0000 0.1309 0.0283 0.0560 0.0488 0.0298 0.0236 0.0082 0.0483 0.0287
d20 0.0000 0.0292 0.6422 0.8295 0.0096 0.0308 0.0051 0.0581 0.0317 0.0008 0.0316 0.0635
d21 0.1717 0.2664 0.2509 0.3454 0.3349 0.3230 0.1503 0.3216 0.2296 0.1860 0.3085 0.2476
d22 0.0468 0.4701 0.8893 0.8710 0.2984 0.4265 0.4174 0.2617 0.4084 0.2141 0.3718 0.0742
Mean Ranks 1 1.2000 6.2000 9.6000 9.6000 6.0000 7.8000 5.8000 5.6000 6.0000 2.2000 6.0000

1 8 11 11 6 9 4 3 6 2 6
Mean Ranks 2 10.0000 27.8000 47.0000 40.0000 26.4000 30.8000 25.8000 26.4000 27.4000 18.0000 28.4000

1 7 11 10 4 9 3 5 6 2 8

49

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.14: The ASF values for all algorithms.
ID BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Small datasets
d1 5.0000 2.8000 0.6000 5.4000 7.2000 4.6000 4.4000 4.4000 5.2000 5.0000 5.8000
d2 3.6000 2.8000 0.6000 3.6000 6.4000 5.0000 6.4000 5.0000 4.8000 2.0000 3.0000
d3 4.6000 2.0000 0.8000 7.4000 11.8000 6.0000 5.8000 5.6000 5.4000 3.0000 5.8000
d4 2.0000 2.8000 0.8000 5.4000 8.8000 6.0000 5.8000 3.8000 5.6000 3.0000 5.8000
d5 3.0000 3.8000 1.0000 9.2000 9.2000 6.4000 10.0000 5.2000 6.6000 1.0000 6.8000
d6 4.0000 4.2000 0.8000 7.8000 8.8000 5.8000 10.2000 6.0000 6.0000 3.0000 5.6000
d7 3.0000 2.6000 1.2000 10.2000 13.4000 8.0000 9.0000 6.2000 8.2000 2.6000 7.6000
d8 1.0000 3.4000 0.8000 7.4000 14.6000 7.4000 9.0000 8.0000 8.0000 4.2000 6.8000
d9 6.2000 5.2000 0.6000 9.2000 11.4000 8.0000 10.0000 9.6000 7.8000 6.0000 9.4000
Mean Ranks 1 3.7778 2.8333 1.0556 8.0556 10.6667 7.1111 9.0000 6.4444 7.0000 3.1667 6.8889

4 2 1 9 11 8 10 5 7 3 6
Mean Ranks 2 29.5556 23.8333 5.3333 68.2778 86.8889 61.0556 73.3333 54.7222 60.5556 26.4444 60.0000

4 2 1 9 11 8 10 5 7 3 6
Medium datasets

d10 11.4000 7.4000 0.6000 11.8000 16.4000 10.0000 12.0000 13.4000 12.8000 10.0000 11.0000
d11 2.0000 5.2000 1.4000 15.2000 24.6000 11.2000 16.4000 10.4000 15.8000 2.4000 15.6000
d12 2.2000 6.2000 1.2000 13.4000 25.6000 13.6000 18.4000 15.6000 15.4000 4.0000 15.4000
d13 4.0000 9.8000 2.2000 22.4000 22.8000 14.4000 16.8000 16.6000 16.0000 8.4000 17.6000
d14 1.0000 6.8000 1.0000 22.6000 22.6000 14.0000 17.8000 9.2000 17.4000 2.0000 14.0000
d15 2.0000 12.8000 0.8000 30.0000 35.8000 21.0000 29.6000 22.8000 29.6000 2.2000 25.4000
d16 4.2000 13.2000 2.2000 31.0000 33.2000 22.6000 30.6000 25.8000 31.2000 10.8000 25.6000
d17 7.4000 27.4000 1.4000 34.2000 54.8000 38.6000 51.8000 48.2000 46.8000 18.8000 49.8000
Mean Ranks 1 2.4375 3.7500 1.0625 7.9375 10.9375 5.3750 8.9375 7.1250 8.1250 3.0625 7.2500

2 4 1 8 11 5 10 6 9 3 7
Mean Ranks 2 15.5000 32.0000 6.1875 59.9375 71.4375 49.3750 62.2500 52.4375 59.6875 24.3125 56.3750

2 4 1 9 11 5 10 6 8 3 7
Large datasets

d18 6.6000 41.4000 5.6000 103.8000 116.2000 70.0000 84.6000 79.8000 81.0000 36.4000 84.8000
d19 9.8000 71.8000 4.2000 129.2000 192.8000 123.0000 130.2000 125.2000 129.0000 51.4000 124.8000
d20 1.2000 129.0000 3.4000 253.0000 394.2000 234.8000 262.0000 234.0000 257.8000 29.4000 254.8000
d21 7.0000 185.4000 6.2000 285.2000 591.8000 347.0000 379.0000 351.4000 360.6000 100.6000 354.8000
d22 115.0000 234.2000 17.0000 341.8000 666.4000 379.6000 423.2000 427.2000 425.4000 211.4000 426.6000
Mean Ranks 1 1.8000 4.0000 1.2000 7.2000 11.0000 5.6000 9.0000 7.0000 8.2000 3.0000 8.0000

2 4 1 7 11 5 10 6 9 3 8
Mean Ranks 2 8.8000 24.1000 4.6000 34.0000 42.6000 33.0000 37.0000 34.6000 36.1000 17.4000 35.8000

2 4 1 6 11 5 10 7 9 3 8

Table 3.15: The ACT values for all algorithms.
ID BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Small datasets
d1 28.7156 38.0384 41.6302 118.2242 27.0558 10.2790 106.9746 52.4825 71.5778 14.6554 63.8113
d2 25.1408 36.9417 24.9287 102.5099 17.3524 8.2044 86.9156 47.1840 51.9768 12.8589 44.1263
d3 23.3756 36.3869 30.5004 91.5272 16.7273 7.7271 79.5666 44.7517 47.3552 12.2842 42.2124
d4 22.6313 36.6425 21.3329 88.7779 14.9685 7.3813 77.1497 42.2566 46.1027 11.6944 40.5524
d5 24.1523 38.1455 34.1675 95.6723 17.3903 8.0237 82.5427 46.8641 48.9759 11.6226 42.7269
d6 22.7894 36.2016 28.9366 91.3360 15.1493 7.3505 75.9122 42.1123 48.0479 11.3167 33.8477
d7 22.5171 37.2596 36.5782 94.9737 15.2269 7.3926 76.6874 42.2797 48.1238 11.8195 39.8507
d8 22.6201 36.1458 31.6999 92.7664 15.1530 7.3565 75.3608 40.4018 46.7110 12.1871 40.7094
d9 27.0323 43.2949 31.8707 106.6652 17.5505 8.8556 87.3392 47.5865 53.8650 13.9367 46.2095
Mean Ranks 1 4.2222 6.0000 4.8889 11.0000 3.0000 1.0000 10.0000 7.7778 9.0000 2.0000 7.1111

4 6 5 11 3 1 10 8 9 2 7
Mean Ranks 2 32.4444 50.7778 41.4444 94.1111 24.1111 5.0000 86.8889 66.1111 74.4444 14.0000 60.6667

4 6 5 11 3 1 10 8 9 2 7
Medium datasets

d10 56.0294 89.2570 46.8782 246.5173 41.3572 19.9459 216.2988 112.0510 127.1671 32.2413 104.1206
d11 23.4479 41.5256 41.5889 101.5365 15.3877 7.5935 76.6837 41.9898 46.5929 12.6921 40.3735
d12 22.3402 40.0553 32.6971 100.6279 17.0740 7.3215 75.0268 39.6506 47.1553 12.5177 39.3907
d13 22.0240 40.6899 39.7109 99.4054 17.1199 7.3724 75.8701 39.7341 45.8135 12.1673 41.0414
d14 21.5273 36.8123 35.1491 94.0244 15.7149 6.8368 70.7577 37.8871 42.4545 10.9314 37.0902
d15 20.7130 37.7596 28.4173 96.2899 17.4421 6.7944 70.5405 36.9916 41.7841 10.6181 36.7558
d16 21.7060 39.3899 38.4887 100.4231 17.4111 7.1343 74.1653 38.8706 43.8900 10.6436 41.8556
d17 29.1522 47.5488 41.0740 142.6224 24.6003 9.2286 98.7750 51.6531 60.1765 12.7464 55.2281
Mean Ranks 1 4.1250 6.7500 5.1250 11.0000 3.0000 1.0000 10.0000 7.1250 9.0000 2.0000 6.8750

4 6 5 11 3 1 10 8 9 2 7
Mean Ranks 2 30.5000 50.3750 43.2500 81.1250 23.1250 6.1250 74.2500 51.5000 63.6250 13.5000 52.1250

4 6 5 11 3 1 10 7 9 2 8
Large datasets

d18 24.5433 41.4347 43.5527 115.6920 20.1663 7.8200 82.6446 43.0339 49.6717 11.8932 46.9283
d19 58.7090 56.5792 48.1766 308.0451 51.1045 17.1175 199.0906 103.8325 121.9219 18.7708 110.8297
d20 29.0329 41.9633 42.4373 140.5478 24.9949 8.7386 92.7163 48.0460 55.1904 11.8685 51.7729
d21 53.4145 52.0373 49.1810 254.5666 53.1255 16.3041 176.7385 90.0803 104.7303 16.8776 96.5373
d22 89.7991 74.9907 59.4617 438.3906 79.0751 26.0981 287.7076 150.7883 170.5160 30.6294 155.4842
Mean Ranks 1 5.2000 4.6000 4.4000 11.0000 4.0000 1.0000 10.0000 6.8000 9.0000 2.0000 8.0000

6 5 4 11 3 1 10 7 9 2 8
Mean Ranks 2 24.2000 24.6000 22.8000 50.2000 21.6000 5.4000 45.8000 33.0000 38.0000 7.0000 35.4000

5 6 4 11 3 1 10 7 9 2 8

50

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

tinct patterns in the distribution of the ACA values. For the left figure, the majority of
data is clustered around zero, with a small interquartile range and whiskers extending to
a maximum value of 0.1440. Two non-zero values, 0.0087 and 0.0400, could be considered
potential outliers. The middle figure shows a concentration of values around zero, with
a small interquartile range and whiskers extending to a maximum value of 0.2744. The
right figure consists mainly of zero values, with a larger interquartile range and whiskers
extending from the minimum to the maximum values of 0 and 0.1360, respectively. The
presence of a non-zero value, 0.0352, could be considered an outlier in the context of this
figure. The box-and-whisker plots shown in Figure 3.2 divulge insights into the distri-
bution of the AFV values. For the left figure, the majority of the data is concentrated
around zero, with a small interquartile range and whiskers extending to a maximum value
of 0.1457. The middle figure exhibits a concentration of values near zero, with a small
interquartile range and whiskers extending to a maximum value of 0.2724. In the right
figure, the data is primarily composed of zero values, with a larger interquartile range and
whiskers extending from the minimum to the maximum values of 0 and 0.1347, respec-
tively. The presence of a non-zero value, 0.0362, in the right figure could be considered
an outlier. In conclusion, these box-and-whisker plots provide a visual summary of the
central tendency, spread, and potential outliers in each figure, aiding in the comparison
of their respective distributions.

Figure 3.1: The box-and-whisker plot for all the optimizers over all the datasets for ACA
values.

According to Table 3.8, it is obvious that the Friedman test indicates significant
differences. Therefore, we opted to apply the Dunn’s post-hoc test in order to identify
specific pairs of treatments that are significantly different from each other after finding
a significant result in the Friedman test. Tables 3.16, 3.17, 3.18, 3.19, 3.20, and 3.22
summarize the p-values computed by the Dunn’s post-hoc test. The p-values obtained
from the Dunn’s test provide information about the significance of the differences between
specific pairs of groups. P-values below the significance threshold of 0.05 are emphasized
in bold font. To interpret a particular value at the intersection of a row (representing an
algorithm, e.g., BGWCA) and a column (representing another algorithm, e.g., IBES), if

51

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Figure 3.2: The box-and-whisker plot for all the optimizers over all the datasets for AFV
values

the associated p-value is less than 0.05, it signifies a significant difference between these
algorithms, suggesting that the algorithm denoted by the row label outperforms the one
denoted by the column label. Conversely, if the p-value is greater than or equal to 0.05,
we infer nearly similar performance between the two algorithms.

Tables 3.23, 3.24, 3.25, 3.26, 3.27, and 3.28 summarize the p-values obtained by the
Wilcoxon signed ranks test. As evident from the results, the algorithm put forward
demonstrates superior performance in addressing the FS problem compared to all other
contenders across datasets of varying sizes, considering a predetermined threshold of
α = 0.05.

Tables 3.23, 3.24, 3.25, 3.26, 3.27, and 3.28 summarize the p-values obtained by the
Wilcoxon signed ranks test. As evident from the results, the algorithm put forward
demonstrates superior performance in addressing the FS problem compared to all other
contenders across datasets of varying sizes, considering a predetermined threshold of
α = 0.05.

In Figures 3.3, 3.4, and 3.5, the convergence curves of fitness values over 100 itera-
tions, calculated using Equation 2.1, are depicted for each dataset across the range of
considered optimizers. These visualizations offer a comprehensive view of the optimiza-
tion process, showcasing how the fitness values evolve over iterations. The comparison
across multiple optimizers provides insights into their respective convergence behaviors
and performance on diverse datasets. Figures 3.3, 3.4, and 3.5 clearly illustrate the high
convergence rates achieved across various datasets, demonstrating the efficacy of the pro-
posed algorithm. Importantly, the algorithm maintains optimal solutions throughout
the convergence process, underscoring its reliability. Notably, the algorithm success-
fully avoids premature convergence in the majority of cases, a critical aspect in ensuring

52

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.16: The p-values obtained by the post hoc Dunn’s test for Table 3.10.
BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Samll

BGWCA 0.6462 0.0000 0.0002 0.0175 0.0133 0.0153 1.0000 0.8104 1.0000 0.0560
BAOA 0.0714 0.6814 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 1.0000
BSCSO 1.0000 0.9407 0.9648 0.9539 0.0005 0.0385 0.0000 0.7158
IBES 1.0000 1.0000 1.0000 0.0229 0.5033 0.0003 0.9999
CBRSA 1.0000 1.0000 0.5387 0.9999 0.0261 1.0000
CVSA 1.0000 0.4686 0.9996 0.0200 1.0000
DE 0.5033 0.9998 0.0229 1.0000
CASO 1.0000 1.0000 0.8381
BPSO 0.8866 1.0000
CBi-GSK 0.0804
GA

Medium

BGWCA 0.7092 0.0000 0.0001 0.2324 0.0119 0.0088 0.9895 0.9701 1.0000 0.0025
BAOA 0.0490 0.5194 1.0000 0.9999 0.9997 1.0000 1.0000 0.9596 0.9848
BSCSO 1.0000 0.2575 0.9596 0.9784 0.0065 0.0103 0.0000 0.9994
IBES 0.9467 1.0000 1.0000 0.1336 0.1877 0.0006 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.5576 1.0000
CVSA 1.0000 0.9467 0.9784 0.0490 1.0000
DE 0.9128 0.9596 0.0374 1.0000
CASO 1.0000 1.0000 0.6722
BPSO 0.9997 0.7789
CBi-GSK 0.0119
GA

Large

BGWCA 0.4589 0.0123 0.0123 0.6015 0.0599 0.8902 0.9698 0.7419 1.0000 0.5532
BAOA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9386 1.0000
BSCSO 1.0000 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
IBES 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000
CVSA 1.0000 0.9999 1.0000 0.3314 1.0000
DE 1.0000 1.0000 0.9997 1.0000
CASO 1.0000 1.0000 1.0000
BPSO 0.9955 1.0000
CBi-GSK 0.9698
GA

Table 3.17: The p-values obtained by the post hoc Dunn’s test for Table 3.11.
BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Samll

BGWCA 0.6462 0.0000 0.0002 0.0175 0.0133 0.0153 1.0000 0.8104 1.0000 0.0560
BAOA 0.0714 0.6814 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 1.0000
BSCSO 1.0000 0.9407 0.9648 0.9539 0.0005 0.0385 0.0000 0.7158
IBES 1.0000 1.0000 1.0000 0.0229 0.5033 0.0003 0.9999
CBRSA 1.0000 1.0000 0.5387 0.9999 0.0261 1.0000
CVSA 1.0000 0.4686 0.9996 0.0200 1.0000
DE 0.5033 0.9998 0.0229 1.0000
CASO 1.0000 1.0000 0.8381
BPSO 0.8866 1.0000
CBi-GSK 0.0804
GA

Medium

BGWCA 0.7092 0.0000 0.0001 0.2324 0.0119 0.0088 0.9895 0.9701 1.0000 0.0025
BAOA 0.0490 0.5194 1.0000 0.9999 0.9997 1.0000 1.0000 0.9596 0.9848
BSCSO 1.0000 0.2575 0.9596 0.9784 0.0065 0.0103 0.0000 0.9994
IBES 0.9467 1.0000 1.0000 0.1336 0.1877 0.0006 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.5576 1.0000
CVSA 1.0000 0.9467 0.9784 0.0490 1.0000
DE 0.9128 0.9596 0.0374 1.0000
CASO 1.0000 1.0000 0.6722
BPSO 0.9997 0.7789
CBi-GSK 0.0119
GA

Large

BGWCA 0.4589 0.0123 0.0123 0.6015 0.0599 0.8902 0.9698 0.7419 1.0000 0.5532
BAOA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9386 1.0000
BSCSO 1.0000 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
IBES 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000
CVSA 1.0000 0.9999 1.0000 0.3314 1.0000
DE 1.0000 1.0000 0.9997 1.0000
CASO 1.0000 1.0000 1.0000
BPSO 0.9955 1.0000
CBi-GSK 0.9698
GA

53

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.18: The p-values obtained by the post hoc Dunn’s test for Table 3.12.
BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Samll

BGWCA 0.6462 0.0000 0.0002 0.0175 0.0133 0.0153 1.0000 0.8104 1.0000 0.0560
BAOA 0.0714 0.6814 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 1.0000
BSCSO 1.0000 0.9407 0.9648 0.9539 0.0005 0.0385 0.0000 0.7158
IBES 1.0000 1.0000 1.0000 0.0229 0.5033 0.0003 0.9999
CBRSA 1.0000 1.0000 0.5387 0.9999 0.0261 1.0000
CVSA 1.0000 0.4686 0.9996 0.0200 1.0000
DE 0.5033 0.9998 0.0229 1.0000
CASO 1.0000 1.0000 0.8381
BPSO 0.8866 1.0000
CBi-GSK 0.0804
GA

Medium

BGWCA 0.7092 0.0000 0.0001 0.2324 0.0119 0.0088 0.9895 0.9701 1.0000 0.0025
BAOA 0.0490 0.5194 1.0000 0.9999 0.9997 1.0000 1.0000 0.9596 0.9848
BSCSO 1.0000 0.2575 0.9596 0.9784 0.0065 0.0103 0.0000 0.9994
IBES 0.9467 1.0000 1.0000 0.1336 0.1877 0.0006 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.5576 1.0000
CVSA 1.0000 0.9467 0.9784 0.0490 1.0000
DE 0.9128 0.9596 0.0374 1.0000
CASO 1.0000 1.0000 0.6722
BPSO 0.9997 0.7789
CBi-GSK 0.0119
GA

Large

BGWCA 0.4589 0.0123 0.0123 0.6015 0.0599 0.8902 0.9698 0.7419 1.0000 0.5532
BAOA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9386 1.0000
BSCSO 1.0000 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
IBES 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000
CVSA 1.0000 0.9999 1.0000 0.3314 1.0000
DE 1.0000 1.0000 0.9997 1.0000
CASO 1.0000 1.0000 1.0000
BPSO 0.9955 1.0000
CBi-GSK 0.9698
GA

Table 3.19: The p-values obtained by the post hoc Dunn’s test for Table 3.13.
BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Samll

BGWCA 0.6462 0.0000 0.0002 0.0175 0.0133 0.0153 1.0000 0.8104 1.0000 0.0560
BAOA 0.0714 0.6814 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 1.0000
BSCSO 1.0000 0.9407 0.9648 0.9539 0.0005 0.0385 0.0000 0.7158
IBES 1.0000 1.0000 1.0000 0.0229 0.5033 0.0003 0.9999
CBRSA 1.0000 1.0000 0.5387 0.9999 0.0261 1.0000
CVSA 1.0000 0.4686 0.9996 0.0200 1.0000
DE 0.5033 0.9998 0.0229 1.0000
CASO 1.0000 1.0000 0.8381
BPSO 0.8866 1.0000
CBi-GSK 0.0804
GA

Medium

BGWCA 0.7092 0.0000 0.0001 0.2324 0.0119 0.0088 0.9895 0.9701 1.0000 0.0025
BAOA 0.0490 0.5194 1.0000 0.9999 0.9997 1.0000 1.0000 0.9596 0.9848
BSCSO 1.0000 0.2575 0.9596 0.9784 0.0065 0.0103 0.0000 0.9994
IBES 0.9467 1.0000 1.0000 0.1336 0.1877 0.0006 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.5576 1.0000
CVSA 1.0000 0.9467 0.9784 0.0490 1.0000
DE 0.9128 0.9596 0.0374 1.0000
CASO 1.0000 1.0000 0.6722
BPSO 0.9997 0.7789
CBi-GSK 0.0119
GA

Large

BGWCA 0.4589 0.0123 0.0123 0.6015 0.0599 0.8902 0.9698 0.7419 1.0000 0.5532
BAOA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9386 1.0000
BSCSO 1.0000 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
IBES 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000
CVSA 1.0000 0.9999 1.0000 0.3314 1.0000
DE 1.0000 1.0000 0.9997 1.0000
CASO 1.0000 1.0000 1.0000
BPSO 0.9955 1.0000
CBi-GSK 0.9698
GA

54

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.20: The p-values obtained by the post hoc Dunn’s test for Table 3.14.
BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Samll

BGWCA 0.6462 0.0000 0.0002 0.0175 0.0133 0.0153 1.0000 0.8104 1.0000 0.0560
BAOA 0.0714 0.6814 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 1.0000
BSCSO 1.0000 0.9407 0.9648 0.9539 0.0005 0.0385 0.0000 0.7158
IBES 1.0000 1.0000 1.0000 0.0229 0.5033 0.0003 0.9999
CBRSA 1.0000 1.0000 0.5387 0.9999 0.0261 1.0000
CVSA 1.0000 0.4686 0.9996 0.0200 1.0000
DE 0.5033 0.9998 0.0229 1.0000
CASO 1.0000 1.0000 0.8381
BPSO 0.8866 1.0000
CBi-GSK 0.0804
GA

Medium

BGWCA 0.7092 0.0000 0.0001 0.2324 0.0119 0.0088 0.9895 0.9701 1.0000 0.0025
BAOA 0.0490 0.5194 1.0000 0.9999 0.9997 1.0000 1.0000 0.9596 0.9848
BSCSO 1.0000 0.2575 0.9596 0.9784 0.0065 0.0103 0.0000 0.9994
IBES 0.9467 1.0000 1.0000 0.1336 0.1877 0.0006 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.5576 1.0000
CVSA 1.0000 0.9467 0.9784 0.0490 1.0000
DE 0.9128 0.9596 0.0374 1.0000
CASO 1.0000 1.0000 0.6722
BPSO 0.9997 0.7789
CBi-GSK 0.0119
GA

Large

BGWCA 0.4589 0.0123 0.0123 0.6015 0.0599 0.8902 0.9698 0.7419 1.0000 0.5532
BAOA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9386 1.0000
BSCSO 1.0000 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
IBES 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000
CVSA 1.0000 0.9999 1.0000 0.3314 1.0000
DE 1.0000 1.0000 0.9997 1.0000
CASO 1.0000 1.0000 1.0000
BPSO 0.9955 1.0000
CBi-GSK 0.9698
GA

Table 3.21: The p-values obtained by the post hoc Dunn’s test for Table 3.15.
BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Samll

BGWCA 0.6462 0.0000 0.0002 0.0175 0.0133 0.0153 1.0000 0.8104 1.0000 0.0560
BAOA 0.0714 0.6814 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 1.0000
BSCSO 1.0000 0.9407 0.9648 0.9539 0.0005 0.0385 0.0000 0.7158
IBES 1.0000 1.0000 1.0000 0.0229 0.5033 0.0003 0.9999
CBRSA 1.0000 1.0000 0.5387 0.9999 0.0261 1.0000
CVSA 1.0000 0.4686 0.9996 0.0200 1.0000
DE 0.5033 0.9998 0.0229 1.0000
CASO 1.0000 1.0000 0.8381
BPSO 0.8866 1.0000
CBi-GSK 0.0804
GA

Medium

BGWCA 0.7092 0.0000 0.0001 0.2324 0.0119 0.0088 0.9895 0.9701 1.0000 0.0025
BAOA 0.0490 0.5194 1.0000 0.9999 0.9997 1.0000 1.0000 0.9596 0.9848
BSCSO 1.0000 0.2575 0.9596 0.9784 0.0065 0.0103 0.0000 0.9994
IBES 0.9467 1.0000 1.0000 0.1336 0.1877 0.0006 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.5576 1.0000
CVSA 1.0000 0.9467 0.9784 0.0490 1.0000
DE 0.9128 0.9596 0.0374 1.0000
CASO 1.0000 1.0000 0.6722
BPSO 0.9997 0.7789
CBi-GSK 0.0119
GA

Large

BGWCA 0.4589 0.0123 0.0123 0.6015 0.0599 0.8902 0.9698 0.7419 1.0000 0.5532
BAOA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9386 1.0000
BSCSO 1.0000 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
IBES 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000
CVSA 1.0000 0.9999 1.0000 0.3314 1.0000
DE 1.0000 1.0000 0.9997 1.0000
CASO 1.0000 1.0000 1.0000
BPSO 0.9955 1.0000
CBi-GSK 0.9698
GA

55

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

Table 3.22: The p-values obtained by the post hoc Dunn’s test for Table 3.15.
BGWCA BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

Samll

BGWCA 0.6462 0.0000 0.0002 0.0175 0.0133 0.0153 1.0000 0.8104 1.0000 0.0560
BAOA 0.0714 0.6814 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 1.0000
BSCSO 1.0000 0.9407 0.9648 0.9539 0.0005 0.0385 0.0000 0.7158
IBES 1.0000 1.0000 1.0000 0.0229 0.5033 0.0003 0.9999
CBRSA 1.0000 1.0000 0.5387 0.9999 0.0261 1.0000
CVSA 1.0000 0.4686 0.9996 0.0200 1.0000
DE 0.5033 0.9998 0.0229 1.0000
CASO 1.0000 1.0000 0.8381
BPSO 0.8866 1.0000
CBi-GSK 0.0804
GA

Medium

BGWCA 0.7092 0.0000 0.0001 0.2324 0.0119 0.0088 0.9895 0.9701 1.0000 0.0025
BAOA 0.0490 0.5194 1.0000 0.9999 0.9997 1.0000 1.0000 0.9596 0.9848
BSCSO 1.0000 0.2575 0.9596 0.9784 0.0065 0.0103 0.0000 0.9994
IBES 0.9467 1.0000 1.0000 0.1336 0.1877 0.0006 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.5576 1.0000
CVSA 1.0000 0.9467 0.9784 0.0490 1.0000
DE 0.9128 0.9596 0.0374 1.0000
CASO 1.0000 1.0000 0.6722
BPSO 0.9997 0.7789
CBi-GSK 0.0119
GA

Large

BGWCA 0.4589 0.0123 0.0123 0.6015 0.0599 0.8902 0.9698 0.7419 1.0000 0.5532
BAOA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9386 1.0000
BSCSO 1.0000 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
IBES 1.0000 1.0000 0.9975 0.9800 0.9999 0.0965 1.0000
CBRSA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000
CVSA 1.0000 0.9999 1.0000 0.3314 1.0000
DE 1.0000 1.0000 0.9997 1.0000
CASO 1.0000 1.0000 1.0000
BPSO 0.9955 1.0000
CBi-GSK 0.9698
GA

Table 3.23: The p-values obtained by the Wilcoxon signed ranks test for Table 3.10.
BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

BGWCA
Small 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0209 0.0152 0.7794 0.0109
Medium 0.0180 0.0117 0.0117 0.0180 0.0117 0.0117 0.0180 0.0116 0.0431 0.0116
Medium 0.0431 0.0431 0.0431 0.0679 0.0431 0.0679 0.0431 0.0431 0.0679 0.0431

Table 3.24: The p-values obtained by the Wilcoxon signed ranks test for Table 3.11.
BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

BGWCA
Small 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0209 0.0152 0.6784 0.0109
Medium 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117
Medium 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431

Table 3.25: The p-values obtained by the Wilcoxon signed ranks test for Table 3.12.
BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

BGWCA
Small 0.0117 0.0077 0.0077 0.0109 0.0117 0.0077 0.0929 0.0117 0.4838 0.0077
Medium 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0180 0.0117
Medium 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431

Table 3.26: The p-values obtained by the Wilcoxon signed ranks test for Table 3.13.
BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

BGWCA
Small 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0109 0.0152 0.6784 0.0109
Medium 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117
Medium 0.0431 0.0431 0.0431 0.0431 0.0431 0.1380 0.0431 0.0431 0.0431 0.0431

Table 3.27: The p-values obtained by the Wilcoxon signed ranks test for Table 3.14.
BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

BGWCA
Small 0.5132 0.0077 0.0117 0.0077 0.0107 0.0108 0.0109 0.0076 0.3615 0.0108
Medium 0.0296 0.0180 0.0116 0.0117 0.0173 0.0117 0.0117 0.0117 0.0499 0.0172
Medium 0.0431 0.2249 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431

Table 3.28: The p-values obtained by the Wilcoxon signed ranks test for Table 3.15.
BAOA BSCSO IBES CBRSA CVSA DE CASO BPSO CBi-GSK GA

BGWCA
Small 0.0077 0.0209 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077
Medium 0.0117 0.0251 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117
Medium 0.8927 0.8927 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431

56

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

robust optimization. The incorporation of opposition-based learning and Gaussian mu-
tation emerges as a key contributing factor to the enhanced performance of the GWCA.
This conclusion highlights the significance of these innovative techniques in improving
the algorithm’s convergence behavior and overall effectiveness in solving the FS problem
across diverse datasets.

57

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

(a) Convergence analysis of fitness values
for dataset d1.

(b) Convergence analysis of fitness values
for dataset d2.

(c) Convergence analysis of fitness values
for dataset d3.

(d) Convergence analysis of fitness values
for dataset d4.

(e) Convergence analysis of fitness values
for dataset d5.

(f) Convergence analysis of fitness values
for dataset d6.

Figure 3.3: Convergence analysis of fitness values across optimizers for small dataset (d1
to d6).

58

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

(g) Convergence analysis of fitness values
for dataset d7.

(h) Convergence analysis of fitness values
for dataset d8.

(i) Convergence analysis of fitness values
for dataset d9.

Figure 3.3: Convergence analysis of fitness values across optimizers for small dataset (d7
to d9).

59

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

(a) Convergence analysis of fitness values
for dataset d10.

(b) Convergence analysis of fitness values
for dataset d11.

(c) Convergence analysis of fitness values
for dataset d12.

(d) Convergence analysis of fitness values
for dataset d13.

(e) Convergence analysis of fitness values
for dataset d14.

(f) Convergence analysis of fitness values
for dataset d15.

Figure 3.4: Convergence analysis of fitness values across optimizers for medium datasets
(d10 to d15).

60

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

(g) Convergence analysis of fitness values
for dataset d16.

(h) Convergence analysis of fitness values
for dataset d17.

Figure 3.4: Convergence analysis of fitness values across optimizers for medium datasets
(d16 to d17).

3.5 Conclusion
In conclusion, we presented a comprehensive exploration of the feature selection prob-
lem, emphasizing the critical role of selecting relevant features for enhancing machine
learning model performance. The inherent complexity of this problem, stemming from
a vast search space, was tackled through the utilization of the Great Wall Construc-
tion Algorithm, a recently proposed metaheuristic approach. To further augment the
algorithm’s effectiveness, opposition-based learning and Gaussian mutation techniques
were integrated, addressing challenges related to exploration, exploitation, and local op-
tima avoidance.The empirical evaluation of the proposed algorithm involved a thorough
comparative analysis against ten state-of-the-art methodologies, encompassing both con-
temporary and classical algorithms. The assessment spanned 22 datasets of varying sizes,
providing a diverse testing ground ranging from 9 to 856 features. Six distinct evaluation
metrics, covering aspects such as accuracy, classification error rate, number of selected
features, and completion time, were employed to ensure a comprehensive understanding
of the algorithm’s performance.

The rigorous validation of results was conducted through non-parametric statistical
tests, including the Friedman test, post hoc Dunn’s test, and the Wilcoxon signed ranks
test. The obtained mean ranks and p-values conclusively demonstrated the superior effi-
cacy of the proposed algorithm in addressing the feature selection problem. The algorithm
showcased its prowess by outperforming competing methodologies across multiple met-
rics, establishing itself as a robust and promising solution for enhancing the efficiency and
accuracy of feature selection in machine learning models. The findings of this research
contribute valuable insights to the field, offering a compelling approach to addressing one
of the fundamental challenges in machine learning model optimization.

61

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

(a) Convergence analysis of fitness values
for dataset d18.

(b) Convergence analysis of fitness values
for dataset d19.

(c) Convergence analysis of fitness values
for dataset d20.

(d) Convergence analysis of fitness values
for dataset d21.

(e) Convergence analysis of fitness values
for dataset d22.

Figure 3.5: Convergence analysis of fitness values across optimizers for large datasets d18
to d22.

62

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

3.6 Table of used symbols
Table 3.29 serves to summarize and elucidate the list of symbols utilized in the paper,
aiming to enhance the clarity and ease of comprehension for readers.

Table 3.29: The list of symbols used in the paper.

Symbol Explanation
ML Machine Learning
FS Feature Selection
MA Metaheuristic Algorithm
GWCA Great Wall Construction Algorithm
OBL Opposition-Based Learning
GM Gaussian Mutation
KNN K-Nearest Neighbors
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
CER Classification Error Rate

63

General Conclusion and Perspectives

Our thesis has delved into the field of metaheuristics and its fundamental concepts in
Chapter 1.We focused on a comprehensive study of metaheuristics classification .We un-
cover the root of our problem, which is feature selection and its approaches in chapter 2.
Chapter 3 fully clarifies the algorithm used to solve our problem of selecting feature and
provides an outline of the inspiration, mathematical formulation, and code implemen-
tation of the new proposed great wall construction algorithm. Furthermore, the novel
proposed great wall construction algorithm was extensively evaluated by conducting ex-
periments on 22 of diverse set from varing sizes (9 to 856 features). The performance of the
great wall construction algorithm was rigorously analyzed using several non-parametric
statistical tests, including the Friedman test, the post hoc Dunn’s test,and the Wilcoxon
signed ranks test , providing statistical evidence of its efficacy and competitiveness in
solving feature selection problems .

Future research in the field of meta-heuristic algorithm can focus on several directions,
firstly they can solve many problems by optimizing them or combining them with other
algorithms, making them able to improve their performance. Furthermore, experiment-
ing with the widespread feature selection problem will provide insights into scalability
and durability great wall construction metahuristic algorithme,expanding the areas of
application of this algorithm to cover diverse real-world problems can prove effective and
efficient. In general, these future research trends will contribute to the development of
great wall construction metahuristic algorithme which allows to solve the problems of
feature selection.

64

Bibliography

[1] Filippo Venezia. Design principles of plant photosensory networks: quantitative
analysis and modelling of phytochrome dimer dynamics in Arabidopsis thaliana.
PhD thesis, Dissertation, Albert-Ludwigs-Universität Freiburg, 2016, 2016.

[2] Absalom E Ezugwu, Amit K Shukla, Rahul Nath, Andronicus A Akinyelu, Jef-
fery O Agushaka, Haruna Chiroma, and Pranab K Muhuri. Metaheuristics: a
comprehensive overview and classification along with bibliometric analysis. Artifi-
cial Intelligence Review, 54:4237–4316, 2021.

[3] Zahra Beheshti and Siti Mariyam Hj Shamsuddin. A review of population-based
meta-heuristic algorithms. Int. j. adv. soft comput. appl, 5(1):1–35, 2013.

[4] I.H. Osman and J.P. Kelly. Meta-Heuristics: Theory and Applications. Springer
US, 2012.

[5] Darrell Whitley. Genetic algorithms and evolutionary computing. Van Nostrand’s
Scientific Encyclopedia, 2002.

[6] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[7] Emile Aarts, Jan Korst, and Wil Michiels. Simulated annealing. Search methodolo-
gies: introductory tutorials in optimization and decision support techniques, pages
187–210, 2005.

[8] Marco Dorigo. Ant colony optimization. Scholarpedia, 2(3):1461, 2007.

[9] Bernardo Morales-Castañeda, Daniel Zaldivar, Erik Cuevas, Fernando Fausto, and
Alma Rodríguez. A better balance in metaheuristic algorithms: Does it exist?
Swarm and Evolutionary Computation, 54:100671, 2020.

[10] E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley Series on
Parallel and Distributed Computing. Wiley, 2005.

[11] Optimization: Local vs. Global Optima. https://www.baeldung.com/cs/
optimization-local-global-optima. Accessed: 2024-04-04.

65

https://www.baeldung.com/cs/optimization-local-global-optima
https://www.baeldung.com/cs/optimization-local-global-optima

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[12] El-Ghazali Talbi. Metaheuristics: from design to implementation. John Wiley &
Sons, 2009.

[13] Emad Elbeltagi, Tarek Hegazy, and Donald Grierson. Comparison among five
evolutionary-based optimization algorithms. Advanced engineering informatics,
19(1):43–53, 2005.

[14] CL Philip Chen, Tong Zhang, and Sik Chung Tam. A novel evolutionary algorithm
solving optimization problems. In 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 557–561. IEEE, 2014.

[15] Amir Mohammad Fathollahi-Fard, Mostafa Hajiaghaei-Keshteli, and Reza
Tavakkoli-Moghaddam. Red deer algorithm (rda): a new nature-inspired meta-
heuristic. Soft computing, 24:14637–14665, 2020.

[16] Hichem Talbi and Amer Draa. A new real-coded quantum-inspired evolutionary
algorithm for continuous optimization. Applied Soft Computing, 61:765–791, 2017.

[17] Basavaraj M Angadi, Mahabaleshwar S Kakkasageri, and Sunilkumar S Manvi.
Computational intelligence techniques for localization and clustering in wireless
sensor networks. In Recent trends in computational intelligence enabled research,
pages 23–40. Elsevier, 2021.

[18] Nikos Ath Kallioras, Nikos D Lagaros, and Dimitrios N Avtzis. Pity beetle
algorithm–a new metaheuristic inspired by the behavior of bark beetles. Advances
in engineering software, 121:147–166, 2018.

[19] Soudeh Shadravan, Hamid Reza Naji, and Vahid Khatibi Bardsiri. The sailfish
optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained
engineering optimization problems. Engineering Applications of Artificial Intelli-
gence, 80:20–34, 2019.

[20] Abha Singh, Abhishek Sharma, Shailendra Rajput, Amit Kumar Mondal, Amar-
nath Bose, and Mangey Ram. Parameter extraction of solar module using the sooty
tern optimization algorithm. Electronics, 11(4):564, 2022.

[21] Farouq Zitouni, Saad Harous, Abdelghani Belkeram, and Lokman Elhakim Baba
Hammou. The archerfish hunting optimizer: A novel metaheuristic algorithm for
global optimization. Arabian Journal for Science and Engineering, 47(2):2513–2553,
2022.

[22] Shijie Zhao, Tianran Zhang, Shilin Ma, and Miao Chen. Dandelion optimizer: A
nature-inspired metaheuristic algorithm for engineering applications. Engineering
Applications of Artificial Intelligence, 114:105075, 2022.

66

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[23] Benyamin Abdollahzadeh, Farhad Soleimanian Gharehchopogh, Nima Khodadadi,
and Seyedali Mirjalili. Mountain gazelle optimizer: a new nature-inspired meta-
heuristic algorithm for global optimization problems. Advances in Engineering
Software, 174:103282, 2022.

[24] Abdolkarim Mohammadi-Balani, Mahmoud Dehghan Nayeri, Adel Azar, and Mo-
hammadreza Taghizadeh-Yazdi. Golden eagle optimizer: A nature-inspired meta-
heuristic algorithm. Computers & Industrial Engineering, 152:107050, 2021.

[25] Changting Zhong, Gang Li, and Zeng Meng. Beluga whale optimization: A novel
nature-inspired metaheuristic algorithm. Knowledge-Based Systems, 251:109215,
2022.

[26] A Kaveh and A Dadras Eslamlou. Water strider algorithm: A new metaheuristic
and applications. In Structures, volume 25, pages 520–541. Elsevier, 2020.

[27] Ehsan Jahani and Mohammad Chizari. Tackling global optimization problems with
a novel algorithm–mouth brooding fish algorithm. Applied Soft Computing, 62:987–
1002, 2018.

[28] Mohamed Abdel-Basset, Reda Mohamed, Mohammed Jameel, and Mohamed
Abouhawwash. Nutcracker optimizer: A novel nature-inspired metaheuristic algo-
rithm for global optimization and engineering design problems. Knowledge-Based
Systems, 262:110248, 2023.

[29] Chien-Yuan Chiu and Brijesh Verma. Multi-objective evolutionary algorithm based
optimization of neural network ensemble classifier. In 2014 8th International Con-
ference on Signal Processing and Communication Systems (ICSPCS), pages 1–5.
IEEE, 2014.

[30] Daiji Sakurai, Yoshikazu Fukuyama, Yu Kawamura, Kenya Murakami, Adamo San-
tana, Tatsuya Iizaka, and Tetsuro Matsui. Differential evolutionary particle swarm
optimization based ann training for estimation of missing data of refrigerated show-
case. In 2018 57th Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE), pages 1370–1375. IEEE, 2018.

[31] Jia Liu, Maoguo Gong, Qiguang Miao, Xiaogang Wang, and Hao Li. Structure
learning for deep neural networks based on multiobjective optimization. IEEE
transactions on neural networks and learning systems, 29(6):2450–2463, 2017.

[32] Yogita Dwivedi and Vijay Kumar Tayal. Dynamic stability improvement of alkali
fuel cell integrated system using pso optimized pid control design. In 2017 Recent
Developments in Control, Automation & Power Engineering (RDCAPE), pages
499–504. IEEE, 2017.

67

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[33] Jin-Wei Lian and Hung-Yi Chen. Feedforward and feedback control for
piezoelectric-actuated systems using inverse prandtl-ishlinskii model and particle
swarm optimization. In Proceedings of the 2014 international conference on ad-
vanced mechatronic systems, pages 313–318. IEEE, 2014.

[34] Mohamed Sayed, Sawsan Morkos Gharghory, and Hanan Ahmed Kamal. Gain
tuning pi controllers for boiler turbine unit using a new hybrid jump pso. Journal
of Electrical Systems and Information Technology, 2(1):99–110, 2015.

[35] M Balamurugan, S Narendiran, Sarat Kumar Sahoo, Raja Das, and Ashwin Ku-
mar Sahoo. Application of particle swarm optimization for maximum power point
tracking in pv system. In 2016 3rd International Conference on Electrical Energy
Systems (ICEES), pages 35–38. IEEE, 2016.

[36] J Prasanth Ram and N Rajasekar. A new robust, mutated and fast tracking lpso
method for solar pv maximum power point tracking under partial shaded conditions.
Applied energy, 201:45–59, 2017.

[37] István Kecskés, Ervin Burkus, and Péter Odry. Swarm-based optimizations in
hexapod robot walking. In 2014 IEEE 9th IEEE International Symposium on
Applied Computational Intelligence and Informatics (SACI), pages 123–127. IEEE,
2014.

[38] Vipin Kumar and Sonajharia Minz. Feature selection: a literature review.
SmartCR, 4(3):211–229, 2014.

[39] Abdulrahman Renawi, Mohammad A Jaradat, and Mamoun Abdel-Hafez. Ros
validation for non-holonomic differential robot modeling and control: Case study:
Kobuki robot trajectory tracking controller. In 2017 7th International Conference
on Modeling, Simulation, and Applied Optimization (ICMSAO), pages 1–5. IEEE,
2017.

[40] Pengliang Cao, Hongran Zhao, and Guiyan Jiang. Integrated scheduling opti-
mization of yard crane and yard truck in ship-loading operation. In 2017 4th In-
ternational Conference on Transportation Information and Safety (ICTIS), pages
595–599. IEEE, 2017.

[41] Priyesh J Chauhan, K Srinivasa Rao, Sanjib K Panda, Gary Wilson, Xiong Liu,
and Amit Kumar Gupta. Fuel efficiency improvement by optimal scheduling of
diesel generators using pso in offshore support vessel with dc power system archi-
tecture. In 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference
(APPEEC), pages 1–6. IEEE, 2015.

68

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[42] Wenkuai Liang and Yi Li. Research on optimization of flight scheduling problem
based on the combination of ant colony optimization and genetic algorithm. In 2014
IEEE 5th International Conference on Software Engineering and Service Science,
pages 296–299. IEEE, 2014.

[43] Ali Muhammad Usman, Umi Kalsom Yusof, Syibrah Naim, and S Naim. Cuckoo
inspired algorithms for feature selection in heart disease prediction. International
Journal of Advances in Intelligent Informatics, 4(2):95–106, 2018.

[44] Prachi Agrawal, Hattan F Abutarboush, Talari Ganesh, and Ali Wagdy Mohamed.
Metaheuristic algorithms on feature selection: A survey of one decade of research
(2009-2019). Ieee Access, 9:26766–26791, 2021.

[45] Maha Nssibi, Ghaith Manita, and Ouajdi Korbaa. Advances in nature-inspired
metaheuristic optimization for feature selection problem: A comprehensive survey.
Computer Science Review, 49:100559, 2023.

[46] Omar Saber Qasim and Zakariya Y Algamal. Feature selection using different
transfer functions for binary bat algorithm. International Journal of Mathematical,
Engineering and Management Sciences, 5(4):697, 2020.

[47] Majdi Mafarja, Ibrahim Aljarah, Hossam Faris, Abdelaziz I Hammouri, Al-Zoubi
Ala’M, and Seyedali Mirjalili. Binary grasshopper optimisation algorithm ap-
proaches for feature selection problems. Expert Systems with Applications, 117:267–
286, 2019.

[48] Hamouda Chantar, Majdi Mafarja, Hamad Alsawalqah, Ali Asghar Heidari,
Ibrahim Aljarah, and Hossam Faris. Feature selection using binary grey wolf op-
timizer with elite-based crossover for arabic text classification. Neural Computing
and Applications, 32:12201–12220, 2020.

[49] MAZA Sofiane and Djaafar Zouache. Binary firefly algorithm for feature selection
in classification. In 2019 international conference on theoretical and applicative
aspects of computer science (ICTAACS), volume 1, pages 1–6. IEEE, 2019.

[50] Liam Cervante, Bing Xue, Mengjie Zhang, and Lin Shang. Binary particle swarm
optimisation for feature selection: A filter based approach. In 2012 IEEE Congress
on Evolutionary Computation, pages 1–8. IEEE, 2012.

[51] Prachi Agrawal, Talari Ganesh, Diego Oliva, and Ali Wagdy Mohamed. S-shaped
and v-shaped gaining-sharing knowledge-based algorithm for feature selection. Ap-
plied Intelligence, pages 1–32, 2022.

69

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[52] Ahmed Ibrahem Hafez, Hossam M Zawbaa, Eid Emary, and Aboul Ella Hassanien.
Sine cosine optimization algorithm for feature selection. In 2016 international sym-
posium on innovations in intelligent systems and applications (INISTA), pages 1–5.
IEEE, 2016.

[53] Maha Nssibi, Ghaith Manita, and Ouajdi Korbaa. Binary giza pyramids construc-
tion for feature selection. Procedia Computer Science, 192:676–687, 2021.

[54] Eid Emary, Hossam M Zawbaa, and Aboul Ella Hassanien. Binary ant lion ap-
proaches for feature selection. Neurocomputing, 213:54–65, 2016.

[55] Hossam Faris, Majdi M Mafarja, Ali Asghar Heidari, Ibrahim Aljarah, Al-Zoubi
Ala’m, Seyedali Mirjalili, and Hamido Fujita. An efficient binary salp swarm al-
gorithm with crossover scheme for feature selection problems. Knowledge-Based
Systems, 154:43–67, 2018.

[56] Sadegh Salesi and Georgina Cosma. A novel extended binary cuckoo search al-
gorithm for feature selection. In 2017 2nd international conference on knowledge
engineering and applications (ICKEA), pages 6–12. IEEE, 2017.

[57] Yuanyuan Gao, Yongquan Zhou, and Qifang Luo. An efficient binary equilibrium
optimizer algorithm for feature selection. IEEE Access, 8:140936–140963, 2020.

[58] Ying Li, Xueting Cui, Jiahao Fan, and Tan Wang. Global chaotic bat algorithm
for feature selection. The Journal of Supercomputing, 78(17):18754–18776, 2022.

[59] Gehad Ismail Sayed, Alaa Tharwat, and Aboul Ella Hassanien. Chaotic dragon-
fly algorithm: an improved metaheuristic algorithm for feature selection. Applied
Intelligence, 49:188–205, 2019.

[60] Farhad Soleimanian Gharehchopogh, Isa Maleki, and Zahra Asheghi Dizaji. Chaotic
vortex search algorithm: metaheuristic algorithm for feature selection. Evolutionary
Intelligence, 15(3):1777–1808, 2022.

[61] Ruba Abu Khurma, Ibrahim Aljarah, and Ahmad Sharieh. An efficient moth flame
optimization algorithm using chaotic maps for feature selection in the medical ap-
plications. In ICPRAM, pages 175–182, 2020.

[62] Dalia Yousri, Mohamed Abd Elaziz, Diego Oliva, Ajith Abraham, Majed A
Alotaibi, and Md Alamgir Hossain. Fractional-order comprehensive learning marine
predators algorithm for global optimization and feature selection. Knowledge-Based
Systems, 235:107603, 2022.

70

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[63] Yue Liu, Adam Ghandar, and Georgios Theodoropoulos. Island model genetic
algorithm for feature selection in non-traditional credit risk evaluation. In 2019
IEEE congress on evolutionary computation (CEC), pages 2771–2778. IEEE, 2019.

[64] RK Agrawal, Baljeet Kaur, and Surbhi Sharma. Quantum based whale optimization
algorithm for wrapper feature selection. Applied Soft Computing, 89:106092, 2020.

[65] Abhilasha Chaudhuri and Tirath Prasad Sahu. A hybrid feature selection method
based on binary jaya algorithm for micro-array data classification. Computers &
Electrical Engineering, 90:106963, 2021.

[66] David H Wolpert and William G Macready. No free lunch theorems for optimiza-
tion. IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[67] Heming Jia, Xiaoxu Peng, and Chunbo Lang. Remora optimization algorithm.
Expert Systems with Applications, 185:115665, 2021.

[68] Heming Jia, Chunbo Lang, Diego Oliva, Wenlong Song, and Xiaoxu Peng. Dynamic
harris hawks optimization with mutation mechanism for satellite image segmenta-
tion. Remote sensing, 11(12):1421, 2019.

[69] Francesco Musumeci, Cristina Rottondi, Avishek Nag, Irene Macaluso, Darko Zibar,
Marco Ruffini, and Massimo Tornatore. An overview on application of machine
learning techniques in optical networks. IEEE Communications Surveys & Tutori-
als, 21(2):1383–1408, 2018.

[70] M Dhinu Lal and Ramesh Varadarajan. A review of machine learning approaches
in synchrophasor technology. IEEE Access, 2023.

[71] AN Wilson, Khushi Gupta, Balu Harshavardan Koduru, Abhinav Kumar, Ajit
Jha, and Linga Reddy Cenkeramaddi. Recent advances in thermal imaging and its
applications using machine learning: A review. IEEE Sensors Journal, 2023.

[72] Hamidreza Mosaffa, Mojtaba Sadeghi, Iman Mallakpour, Mojtaba Naghdyzadegan
Jahromi, and Hamid Reza Pourghasemi. Application of machine learning algo-
rithms in hydrology. In Computers in earth and environmental sciences, pages
585–591. Elsevier, 2022.

[73] Michel Verleysen and Damien François. The curse of dimensionality in data mining
and time series prediction. In International work-conference on artificial neural
networks, pages 758–770. Springer, 2005.

[74] Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods.
Computers & Electrical Engineering, 40(1):16–28, 2014.

71

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[75] Faheem Khan, Ilhan Tarimer, Hathal Salamah Alwageed, Buse Cennet Karadağ,
Muhammad Fayaz, Akmalbek Bobomirzaevich Abdusalomov, and Young-Im Cho.
Effect of feature selection on the accuracy of music popularity classification using
machine learning algorithms. Electronics, 11(21):3518, 2022.

[76] Samina Khalid, Tehmina Khalil, and Shamila Nasreen. A survey of feature selec-
tion and feature extraction techniques in machine learning. In 2014 science and
information conference, pages 372–378. IEEE, 2014.

[77] Sotiris Kotsiantis. Feature selection for machine learning classification problems: a
recent overview. Artificial Intelligence Review, 42(1):157–176, 2011.

[78] Zohre Sadeghian, Ebrahim Akbari, Hossein Nematzadeh, and Homayun Motameni.
A review of feature selection methods based on meta-heuristic algorithms. Journal
of Experimental & Theoretical Artificial Intelligence, pages 1–51, 2023.

[79] Mohd Najib Mohd Salleh, Kashif Hussain, Shi Cheng, Yuhui Shi, Arshad Muham-
mad, Ghufran Ullah, and Rashid Naseem. Exploration and exploitation measure-
ment in swarm-based metaheuristic algorithms: An empirical analysis. In Recent
Advances on Soft Computing and Data Mining: Proceedings of the Third Inter-
national Conference on Soft Computing and Data Mining (SCDM 2018), Johor,
Malaysia, February 06-07, 2018, pages 24–32. Springer, 2018.

[80] Junqin Xu and Jihui Zhang. Exploration-exploitation tradeoffs in metaheuristics:
Survey and analysis. In Proceedings of the 33rd Chinese control conference, pages
8633–8638. IEEE, 2014.

[81] Sana Afreen, Ajay Kumar Bhurjee, and Rabia Musheer Aziz. Gene selection with
game shapley harris hawks optimizer for cancer classification. Chemometrics and
Intelligent Laboratory Systems, 242:104989, 2023.

[82] Rajul Mahto, Saboor Uddin Ahmed, Rizwan ur Rahman, Rabia Musheer Aziz,
Priyanka Roy, Saurav Mallik, Aimin Li, and Mohd Asif Shah. A novel and inno-
vative cancer classification framework through a consecutive utilization of hybrid
feature selection. BMC bioinformatics, 24(1):479, 2023.

[83] Rabia Musheer Aziz, Rajul Mahto, Aryan Das, Saboor Uddin Ahmed, Priyanka
Roy, Saurav Mallik, and Aimin Li. Co-woa: Novel optimization approach for deep
learning classification of fish image. Chemistry & Biodiversity, 20(8):e202201123,
2023.

[84] Amol Avinash Joshi and Rabia Musheer Aziz. Deep learning approach for brain
tumor classification using metaheuristic optimization with gene expression data.
International Journal of Imaging Systems and Technology, page e23007, 2023.

72

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[85] Ziyu Guan, Changjiang Ren, Jingtai Niu, Peixi Wang, and Yizi Shang. Great wall
construction algorithm: A novel meta-heuristic algorithm for engineer problems.
Expert Systems with Applications, 233:120905, 2023.

[86] Tae Jong Choi. A rotationally invariant stochastic opposition-based learning using
a beta distribution in differential evolution. Expert Systems with Applications, page
120658, 2023.

[87] Kuo-Torng Lan and Chun-Hsiung Lan. Notes on the distinction of gaussian and
cauchy mutations. In 2008 Eighth International Conference on Intelligent Systems
Design and Applications, volume 1, pages 272–277. IEEE, 2008.

[88] Sedigheh Mahdavi, Shahryar Rahnamayan, and Kalyanmoy Deb. Opposition based
learning: A literature review. Swarm and evolutionary computation, 39:1–23, 2018.

[89] Shahryar Rahnamayan, Hamid R Tizhoosh, and Magdy MA Salama. Opposition-
based differential evolution. IEEE Transactions on Evolutionary computation,
12(1):64–79, 2008.

[90] Jorma Laaksonen and Erkki Oja. Classification with learning k-nearest neighbors.
In Proceedings of international conference on neural networks (ICNN’96), volume 3,
pages 1480–1483. IEEE, 1996.

[91] Jianlong Zhou, Amir H Gandomi, Fang Chen, and Andreas Holzinger. Evaluating
the quality of machine learning explanations: A survey on methods and metrics.
Electronics, 10(5):593, 2021.

[92] Nima Khodadadi, Ehsan Khodadadii, Qasem Al-Tashi, El-Sayed M El-Kenawy,
Laith Abualigah, Said Jadid Abdulkadir, Alawi Alqushaibi, and Seyedali Mirjalili.
Baoa: binary arithmetic optimization algorithm with k-nearest neighbor classifier
for feature selection. IEEE Access, 2023.

[93] Amir Seyyedabbasi. Binary sand cat swarm optimization algorithm for wrapper
feature selection on biological data. Biomimetics, 8(3):310, 2023.

[94] Amit Chhabra, Abdelazim G Hussien, and Fatma A Hashim. Improved bald eagle
search algorithm for global optimization and feature selection. Alexandria Engi-
neering Journal, 68:141–180, 2023.

[95] Laith Abualigah and Ali Diabat. Chaotic binary reptile search algorithm and its
feature selection applications. Journal of Ambient Intelligence and Humanized
Computing, 14(10):13931–13947, 2023.

73

Chapter3. An Opposition-Based GWCA with Gaussian Mutation

[96] Prachi Agrawal, Talari Ganesh, and Ali Wagdy Mohamed. Chaotic gaining sharing
knowledge-based optimization algorithm: an improved metaheuristic algorithm for
feature selection. Soft Computing, 25(14):9505–9528, 2021.

[97] Jingwei Too and Abdul Rahim Abdullah. Chaotic atom search optimization for
feature selection. Arabian Journal for Science and Engineering, 45(8):6063–6079,
2020.

[98] Mojtaba Ahmadieh Khanesar, Mohammad Teshnehlab, and Mahdi Aliyari Shoore-
hdeli. A novel binary particle swarm optimization. In 2007 Mediterranean confer-
ence on control & automation, pages 1–6. IEEE, 2007.

[99] Zhenyu Yang, Ke Tang, and Xin Yao. Differential evolution for high-dimensional
function optimization. In 2007 IEEE congress on evolutionary computation, pages
3523–3530. IEEE, 2007.

[100] Randy L Haupt. An introduction to genetic algorithms for electromagnetics. IEEE
Antennas and Propagation Magazine, 37(2):7–15, 1995.

74

	Dedication
	Dedication
	Acknowledgment
	Abstract
	Résumé
	ملخص
	General Introduction
	Introduction to Metaheuristics
	Introduction
	Definition of Metaheuristics
	When Using Metaheuristic
	Search Behavior
	Exploration
	Exploitation
	Local Optima
	Global Optima

	Classification of Metaheurstic Algorithms
	Population-Based Search vs Single-Solution Based Search
	Deterministic vs Stochastic
	Iterative vs Greedy
	Evolutionary Algorithms
	Swarm-Intelligence-Based Algorithms

	Applications of Metaheuristics
	Conclusion

	Introduction to Feature Selection
	Introduction
	Definition of Feature Selection
	Importance of Feature Selection
	Approaches of Feature Selection
	Filter Approaches
	Wrapper Approaches
	Embedded Approaches

	Mathematical Formulation of FS Problems
	Application of Feature Selection in Real World
	Text Categorization
	Remote Sensing
	Intrusion Detection
	Genomic Analysis
	Image Retrieval

	Related Work
	Conclusion

	An Opposition-Based Great Wall Construction Metaheuristic Algorithm with Gaussian Mutation
	Introduction
	Background
	Great Wall Construction Algorithm
	Opposition-Based Learning
	Gaussian Mutation
	K-Nearest Neighbors
	Evaluation Metrics

	Proposed Algorithm
	Experimental Study and Discussion
	Used Datasets and Parameters Setting
	Benchmark Algorithms
	Numerical Results and Discussion

	Conclusion
	Table of used symbols

	General Conclusion

