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Abstract: This thesis explores several important aspects of the oil and gas industry, focusing
on drilling techniques and selecting appropriate bits, as well as the use of artificial intelligence
to enhance exploration and production operations in oil fields. The thesis also provides general
information about drilling bits and highlights the crucial role they play in successful drilling
operations, as well as the complexities of selecting the right tools for various drilling
conditions. Additionally, the thesis delves into the exploration of artificial intelligence
applications in the oil and gas industry, indicating the significant opportunities these
technologies offer to improve production processes and reduce costs through big data analysis
and the implementation of machine learning algorithms. Furthermore, the thesis addresses
productivity related to the rate of penetration and the selection of drilling tools based on this
rate, emphasizing the importance of understanding drilling dynamics and using performance
indicators to make informed decisions. Overall, this thesis underscores the importance of
advanced technologies such as artificial intelligence in enhancing the efficiency of the oil and

gas industry and promoting sustainable resource extraction methods.

Key word : Drilling- Drilling bit — Artificial intelligence — Machine learning — Prediction-

Algorithm — Model.

Résumé : Ce mémoire explore plusieurs aspects importants de 1'industrie pétroliere et gaziere,
en mettant I'accent sur les techniques de forage et la sélection d'outils appropriés, ainsi que
sur l'utilisation de l'intelligence artificielle pour améliorer les opérations d'exploration et de
production. De plus, le mémoire donner des informations générales sur les outils de forage et
leurs rdle qu'ils jouent dans les opérations de forage réussies, ainsi que les complexités du

choix des bons outils pour différentes conditions de forage. De plus, le mémoire explore les



applications de l'intelligence artificielle dans 1'industrie pétroliére et gaziére, indiquant les
importantes opportunités offertes par ces technologies pour améliorer les processus de
production et réduire les colits grace a l'analyse des données et a la mise en ceuvre
d'algorithmes d'apprentissage automatique. Enfin, le mémoire aborde la productivité liée au
taux de pénétration et a la sélection des outils de forage en fonction de ce taux, en soulignant
I'importance de comprendre la dynamique du forage et d'utiliser des indicateurs de
performance pour prendre des décisions. Dans l'ensemble, ce mémoire met en évidence
l'importance des technologies avancées telles que 1'intelligence artificielle pour I'amélioration
de l'efficacité de l'industrie pétroliére et gaziére et la promotion de méthodes durables

d'extraction des ressources.

Mots clé : Forage — l'outil de forage — Intelligence artificielle — apprentissage

automatique — Prédiction — Algorithme — modéle .



Geneml I ntroduction

This thesis aims to explore and discuss several pivotal aspects related to the oil and
gas industry, focusing on modern drilling and extraction techniques. It encompasses three
main axes: general information on drill bits, drill bit selection, and the application of artificial

intelligence in oil fields.

Drill bits are among the most crucial elements in the process of oil and gas extraction.
Available in a variety of designs and materials, selecting the appropriate tool is vital to ensure

the success of the drilling operation. This thesis will review in

Chapter 1: The different types of drill bits and their characteristics, along with the

factors to consider when choosing the right bit for specific drilling conditions.
Chapter 2 : The traditional method to selecting drilling bit .

Chapter 3 : Given the tremendous advancements in technology, artificial intelligence
represents an intriguing field of interest in the oil and gas industry. Al technologies offer
significant opportunities to enhance exploration and production processes, reduce costs, and

increase production efficiency. Additionally,

Chapter 4 : will delve into modern Al applications in oil fields, including the
utilization of big data and its analysis, and the implementation of machine learning techniques

to improve drilling operations and by Improving rate of penetration.

In summary, this thesis looks forward to exploring and discussing how advanced drill
bit tools and Al techniques can enhance the efficiency of the oil and gas industry, improving

exploration and production processes.
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CHAPTER I: General information on bits

1 Introduction:

Drilling bit is the smallest but most important part of building an oil well. It is the first that
comes into contact with the formations traversed under the action of an axial load and driving

torque.

The cheapest bit is not necessarily the one with which you can make progress the fastest. The

usage and operating times must be taken into account.

The destruction of the rock and the speed of advancement essentially depend on the type of

tool and the drilling parameters applied to it.
Drilling parameters can be divided into two categories:

e Mechanical parameters:
1. Bittype.

2. Weight on the bit.

3. Rotation speed.

e Hydraulic parameters:
1. Flow rate.
2. Type of drilling fluid and its properties (density, viscosity and filtration).

Drilling bits have evolved over time to respond to the increasingly complex technical

problems involved in drilling well construction.

The aim of all of these developments was to increase the feed rate and tool life and thus

reduce drilling costs.
Drilling bits can be divided into two groups:
1. Roller bits.

2. Diamond bits.[3]

2 Objectives:
By the end of this Section, you should be able to:
* Recognize different bit types.
* Describe various design considerations for roller cone and PDC
Bits.

» Select bits for various formation types and drilling conditions.

Page | 1



CHAPTER I: General information on bits

« Grade bits using the IADC Dull Grading System
» Utilize the IADC code to describe and compare bits.

» Identify important operational aspects that effect bit performance [2]

3 Drill Bit Types:

e Roller Coin Bits
e Diamond Bits

3.1 Roller cone bits :

Roller cone bits are a common type of drilling bit used in oil and gas well drilling
operations. These bits consist of a metal body with several rolling cone-shaped cutters equipped
with cutting teeth that rotate when subjected to pressure and friction from rock formations during
drilling. Roller cone bits come in a wide range of designs and sizes, allowing engineers to select
the most suitable type for specific drilling conditions and the anticipated rock properties. The main
types of roller cone bits include milled tooth bits and insert tooth bits. (Figure 1.01) Milled tooth
bits have steel teeth milled directly into the cones, while insert tooth bits have tungsten carbide

inserts pressed into the cone surfaces for enhanced durability and performance. [2]

» Milled tooth bit > Insert bit

Cone #3

Gage Row _—— Inner Row

Figure 1.01: Roller cone bits. [4]
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3.2 Diamond Bits:

Diamond bits, also known as diamond core bits, are specialized drilling tools used primarily
in hard and abrasive rock formations. These bits feature industrial-grade diamond segments
embedded into the cutting face, providing exceptional hardness and abrasion resistance.

Diamond bits are classified into two main types: impregnated diamond bits and surface set
diamond bits. Impregnated diamond bits have diamond particles embedded throughout the matrix
of the bit, offering high durability and longevity. Surface set diamond bits have individual diamond
crystals set on the bit surface through a metal matrix, providing aggressive cutting action in
extremely hard formations.

Both types of diamond bits are widely used in geotechnical and mineral exploration drilling,
as well as in the oil and gas industry for drilling through challenging formations.[2]

a) Natural Diamond Bits:

The hardness and wear resistance of diamond made it an obvious material to be used for a
drilling bit. The diamond bit is really a type of drag bit since it has no moving cones and operates
as a single unit. Industrial diamonds have been used for many years in drill bits and in core heads
(Figure 1.02).

The cutting action of a diamond bit is achieved by scraping away the rock. The diamonds
are set in a specially designed pattern and bonded into a matrix material set on a steel body. Despite
its high wear resistance diamond is sensitive to shock and vibration and therefore great care must
be taken when running a diamond bit. Effective fluid circulation across the face of the bit is also
very important to prevent overheating of the diamonds and matrix material and to prevent the face
of the bit becoming smeared with the rock cuttings (bit balling).

Figure 1.02: Natural Diamond bits.[4]
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CHAPTER I: General information on bits

b) PDC Bits:

A new generation of diamond bits known as polycrystalline diamond compact (PDC) bits were
introduced in the 1980"s (Figure 1.03). These bits have the same advantages and disadvantages as
natural diamond bits but use small discs of synthetic diamond to provide the scraping cutting

surface. [ 6]

Figure 1.03: PDC (Poly crystalline Diamond Compacts) bits. [3]
c) TSP Bits:

A further development of the PDC bit concept was the introduction in the later 1980°s of
Thermally Stable Polycrystalline (TSP) diamond bits. These bits are manufactured in a similar
fashion to PDC bits but are tolerant of much higher temperatures than PDC bits. [ 7] (Figure 1.04)

Figure 1.04: TSP (Thermally Stable Poly crystalline) bits. [3]
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4 Bit design:

4.1 Journal angle, cone profile:
One of the main design features of roller cone bits is journal angle. The journal angle is the

angle formed by an axis of the journal relative to a horizontal plane. (Figure 1.05)

Bit axis

h Journal oxis

Figure 1.05: Journal angle [2]

There is a close relationship between cone profile and stability of the bit. Cones with
rounded profile provide a faster ROP, but are more labile. While cones with more flat profile are

more durable, yet deliver lower penetration.

The journal angle has a direct influence on the size of the cone, with its growth the cone

size declines.[2]

4.2 The journal angle depends on the type of rock:

e Soft formations — (journal angle 330) — allows greater penetration of the formation
¢ Medium formations — (journal angle 340 — 360) — decrease of cutter action
e Hard formations — (journal angle 390) — further decrease of cutter action

Page | 5
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Figure 1.06: Journal angles in roller cone bits [4]

4.3 Cone offset:

The “offset” specifies to a certain degree a drilling action of the roller cone bit (Figure 1.07)
illustrates cone offset. Shift of the cone’s axis to the centerline of the bit is defined as “offset”. The
roller cone bit with no offset has the intersection point of cones axis in the center of the bit. The
size of offset depends on the type of rock to be drilled. Its values range from 40 for soft formations

to O for hard formations. Angular measure of the offset is called skew angle.

Figure 1.07: Cone offset.[4]

The cone offset results in interim stops in rotation and break the hole like a drag bit. With

increasing the offset the bit wear increases proportionally.

Page | 6
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4.4 Cutting Mechanisms:

a) Shearing the formation : PDC bits use a shearing action to cut the
rock. The polycrystalline diamond cutters, which are very sharp
and hard, scrape and shear the rock as the bit rotates. TSP bits may
have cutters shaped similarly to PDC bits, but they are optimized

for thermal stability.

b) Ploughing / Grinding the formation : The weight on the bit (WOB)
and the rotational speed (RPM) are critical factors. The correct
combination ensures that the cutters maintain an optimal contact
with the formation for effective shearing.

c) Crushing the formation by putting the rock in compression as a
roller bit as the bit rotates, the cutters continuously contact the rock,
maintaining a constant shearing action.

5 TADC (International Association of Drilling Contractors):

5.1 TADC Classification of Roller Cone Bits:

Roller cone bit classification system consists of four characters (three digits and a letter)

and allows to classify all roller cone bits with milled teeth and inserts.

The first character: a digit from 1 to 8 (Table 1.01)

- a digit from 1 to 3: roller cone bit with milled teeth (soft formations).

- a digit from 4 to 8: roller cone bit with inserts (hard formations).

Table 1.01: Classification by type of formation of Roller Cone Bit [1]

The first number

Type of formation

1

Very soft formations

2

Medium soft formations

Page | 7
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3 Soft formations

4 Very slightly hard
formations

5 Slightly hard formations

6 Medium hard formations

7 Hard formations

9 Very hard formations

The second character: A digit from 1 to 4 that designates the hardness of each formation
group It is a sub-classification of the formation hardness in each of the 8 classes determined by
the 1st digit.

The third character: A digit from 1 to 9 that designates the characteristics of the roller
cone bit.

The fourth character: a letter of the alphabet that defines additional characteristics of the

roller cone bits.

The fifth character: sealed roller bearing with insert gauge protection.

5.2 TADC Classification of Diamond Bits:

A four-character coding system allows to classify all diamond bits.
The first character: Type of diamonds and matrix (Table 1.02)

Table 1.02: Classification by type of diamonds matrix of Diamond Bit.[1]

The first character Type of diamonds matrix
D natural diamond bit with a
tungsten
M PDC bit with a tungsten

carbide matrix

S PDC bit with a steel matrix

Page | 8
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L TSP bit with a tungsten

carbide matrix;

O For other types of fluid outlet

The second character: Bit profile: the bit profiles are coded using nine digits from 1 to 9

that represent the usual shapes of diamond bits.

The third character: Hydraulic characteristics it is a code using character that represent

the hydraulic characteristics of diamond bits. (Table 1.03)

Table 1.03: Classification by hydraulic characteristics of Diamond Bit.[1]

The third character Hydraulic characteristic’s
R for radial fluid outlet
X for central groove outlet
O for other types of fluid
outlet

The fourth character: Size and density of diamonds: nine digits (1 to 9) symbolize the type,
size and density of diamonds. The size of natural diamonds is based on the number of stones per
carat, while the size of synthetic diamonds is based on the dimension of the cutting edge. The
diamond density gives a relative indication of their number to distinguish the heavily loaded bits
from the lightly loaded ones).

Page | 9
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1 Introduction:

The optimal drill bit series, optimizing operating parameters, and identifying bit-related drilling
risks are all key factors in determining consistent well construction performance at the lowest possible
cost per foot. With many choices available today, selecting the proper bit for a particular application
can become quite confusing. There is a long list which includes, spade, drag and shear type bits, point
attack bits, PDC bits, milled tooth and TCI (tungsten carbide insert) roller cone bits. There are IADC
codes, soft, medium, and hard categories for each bit, sealed, non-sealed, roller, and friction bearings.
The real job to be done is choosing the appropriate bit which will help to optimize the ROP of the
operations thus enhancing the technical limit value. As stated, before the wrong method of bit selection
is often used by operators where the operator packages data (log data, offset dull grading etc.) and
gives this data to a drill bit contractor who uses this data to select the bit he thinks is most appropriate
to drill the section. Most times the choices made could be very wrong and will impact on the cost of
the well. This cost impact could be very high if the ROP reduces and a trip is needed out of hole to
change the drill bit. [ 8]

2 Importance of study:

Selection is one of activities the drilling engineer needs to do. the drilling engineer which
himself often isn't an expert on bit design has to relay on the recommendations from the bit
manufacturer expert. However, to choose between the different bit manufacturers recommendations
can be hard. Often selection is based on previously bit manufacturers experience in the field or based
on the bit manufacturers success with a new design elsewhere in the world. The decision criteria for
selection bit are often vague. And after the decision is made it is hard for the drilling engineer on an
objective basis justifying the bit selection, both to the internal organization and also to the other bit
companies who lost the tender. Oil companies have chosen different approaches to try to overcome
this problem. In some cases, the service companies have got the responsibility for bit selection by

engaging the service companies’ optimization engineers.
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3 Cost per foot:
The basic form of bit selection is normally done based on cost per foot. This method is simply
choosing the bit that will provide the lowest cost per foot over the upcoming interval. In addition to
that, other factors are taken into consideration as well such as offset, journal angle, and other design

aspects. This differentiates one bit to another according to the specific environments.

The CPF ($/ft) can be obtained using the following equation

Cbit+Crig(Tb+Tc+Tr)
F

CPF = IL1
Where:

Cbit: is the bit cost ($)

Crig: is rig cost per hour ($/h)

Th: is the bit running time (hr)

Tc: is connection time (hr)

Tr: is drilling trip time (hr)

F: is the length of section drilled (ft).

CPF: directly affects drilling economics, but it is not dependent on actual drilling parameters.

3.1 Commercial advancement:

Consider the inverse of the price per meter, as it has just been defined:

1 M

— = I1.2
Pm  Po+Ph(Tm+Tf)

Each term of this equality by the price of the probe hour Ph which is constant, it comes:
e — 1.3

— =
Pm —
Ph+(Tm+Tf)

This value is inversely proportional to the price per meter, which will be minimum when

commercial advancement will be maximum. [ 9][10]
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4 Application:

On a diagram the curve representing the cumulative advancement as a function of the rotation
time on this diagram, on the negative abscissa, carry a segment OA equal to the maneuvering time and
a segment AB equal to the price of the tool divided by the price per hour of the drilling rig: Po/Ph
(price of the bit in probe hours). After a rotation time OT, the tool has carried out a measurement M

represented by point m on the curve.

The slope of the line Bm represents the commercial advancement of the bit, we have:

Slope of
Bm=—2 114
BA+AO0+0OT
That we can write:
Bm = POL II.5
E+Tm+Tf

which is the commercial advancement of the bit. (Figure 11.01)

Meétrage (m) t

M m

>

Temps (h)

Be >

Po/Ph

>AaT
o}
v
—

Tm

Tr

Figure I1.01: The commercial advancement curves.[11]
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Consequently, the price per meter will be minimum or the commercial advancement maximum
when the slope of the line Bm is maximum, that is to say when this line is tangent to the advancement

curve.

5 Bit selection by Break Even method:

Break-even analysis is a useful tool to study the relationship between fixed costs, variable costs

and returns.

A break-even point defines when an investment will generate a positive return and can be

determined graphically or with simple mathematics.

Break-even price analysis computes the price necessary at a given level of production to cover
all costs. [5]

5.1 Drilling cost formula:

The most common application of drill cost formula is an evaluating the efficiency of a bit run.
A large fraction of the time required to complete a well is spent either drilling or making a trip to
replace the bit. The total time required to drill a given depth F, can be expressed as the sum of total

rotating time during the bit run Td, and trip time Tr.

The drilling cost formula is:

Cbit+Crig(Td+Tr)
F

CPF = I1.6

Were

Chit: is the bit cost ($)

Crig: is rig cost per hour ($/h)

Td: is the drilling time (hr)

Tr: is the maneuvering time (hr)

F: is the length of section drilling (m)

This formula does not take into account certain factors which can influence the price per meter
drilled (mud treatment, modification of the BHA, etc.), however it gives figures very close to the exact

values.
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The simplest case is to compare two tools, lowered to the same depth, in identical formations,

on two neighboring wells.

The firs bit A to perform a performance, all the elements of which are known. What should be

that of a second bit B so that it is more economical?
Bit B will be more profitable than tool A when: Pmb < Pma
For B, the break-even point will be reached when: Pmb = Pma, so:

CbitB + Crig(TdB + TrB)

CPFa =
@ Fb

=D

b= CbitB + Crig(TdB + TrB)
- CPFa

—

Cri CbitB+CrigTdB
TrB +
CPFa CPFa

Fb = IL.7

This is an equation of the type Y =aX + b

e With: Y= MB: length drilled by bit B at the break-even point.

e X =Tf: drilling time of bit B at the break-even point.
_ CbitB + CrigTdB

N CPFa

_ Crig
4= CPFa

In a Cartesian coordinate system where the drilled length (M) appears on the ordinate and the

abscissa shows the
drilling time (TT), the break-even point of one tool compared to another, is a line
To define a line, two points are sufficient:

Point X: Y=0
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CbitB + CrigTdB
X = _b/a = 9

Crig
PointY: X=0

_ CbitB + (CrigTdB
B CPFa

4 -
M Longucur forée

Droite d’équirentabilité

Zo rentable

Zone non rentable

X T

-

0 Temps de forage

Figure I1.02: the profitability curve using the Break-even method.[11]

Each point on the line (XY) represents a performance to be achieved by bit B so that its cost
per meter drilled is equal to the cost per meter drilled by bit A. All the points on the graph, located
above of the right (XY) represents the performances to be achieved by bit B so that its cost per meter
is lower than that of bit A. Those located below the right (XY represent all the performances for which

the bit B will not be cost-effective compared to the reference bit A. (Figure 11.02)

In a Cartesian reference frame showing the drilling time on the abscissa and the drilled length
on the ordinate, it is necessary to draw the line which represents all of the performances that the bits
to be evaluated must achieve, to be at least profitable in relation to the bit or reference bits. This line
separates the plane into two portions. The upper part represents all economic performances, and the

lower part represents all non-economic performances. It intersects the axes at two points X and Y.
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It is possible and recommended to improve the Break-Even method by joining the graph a
lithological section parallel to the ordinate axis, (Figure I11.03) which can sometimes avoid a raising the

bit too early.

Without the lithological cut this bit would surely have been reassembled around the sixth hour while
the tool crossed the very hard B formation.

H
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n——|——|——|——|\;'—|—
"_-'_-'_-'_-'_"‘\.-'_

-
T
I
T
-
I
I
T
-

Figure I1.03: Graph Break Even with a lithological section. [ 5]

Without the lithological section, this tool would surely have been dated around the hour h then

that the bit passed the very hard B formation.

5.2 Case of turbo drilling:

Two cases can arise:

In the case where the deference run is that of turbo drilling, the procedure for calculating the
price per meter is the same as previously. if the reference run is that of the tricone, we use the following

formula.

Cbit+P+Td(Crig+Cturbine)+(CrigXTr
CPF = (CrigrCarbime) (CrigxTn) 1.8
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Where:
P is the load attached to the turbine (stand-by, operators, etc.)
Cturbine is the turbine cost.
The equation of the equi-profitability line becomes:
Fp = Tdb.(Crig+Cturbine) n (Crig.Trb+Chit+P) IL9
CPFa CPFa

. o _(Crig.Trb + Chit + P)/
PointX:y = Oand x= (Crig + Cturbine)

q (Crig.Trb + Chit + P)/
CPFa

PointY : x = Oan
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CHAPTER III: Artificial intelligence and its applications in oil field

1 Introduction:

Oil and gas industry, a cornerstone of the global economy especially in Algeria, is facing the
challenge of meeting rising energy demands with dwindling resources. Traditionally, tasks like
identifying drilling locations and optimizing oil recovery have been expensive, time-consuming, and
often reliant on limited data. Artificial intelligence (Al) has emerged as a powerful tool to address this.
Al offers a more efficient and accurate solution by automating these processes and creating expert
systems that can analyze vast amounts of information. This approach not only leads to better solutions

but also allows for cost savings and parallel application across different aspects of the industry.

2 Study:

This chapter looks at the application of various Al techniques and tools within the hydrocarbon
industry. We will evaluate their effectiveness compared to traditional methods, quantifying both their

advantages and limitations.

This chapter will delve into various Al techniques and their potential impact on the hydrocarbon
sector, comparing their effectiveness to traditional methods and highlighting the potential for both

qualitative and quantitative improvements.

For the past few years, the hydrocarbons business has relied heavily on the application of
artificial intelligence (Al). This is because of the hydrocarbons industry's significant financial
importance in the modern world, which is mostly represented by oil and gas, as well as the ongoing

requirement to meet demand with the hydrocarbon reserves' finite resources.

Al seeks to develop expert systems that are capable of carrying out a wide range of tasks, from
determining the best areas for drilling to putting improved oil recovery systems into place. In the past,
humans have completed these jobs at tremendous expense, taking a long time, and frequently relying
heavily on conjecture based on scant information. Theoretically, artificial intelligence (Al) can offer
the best solution to these and other issues facing the hydrocarbons sector, frequently without requiring
a thorough comprehension of the intricate underlying mechanisms that are typically governed by the

laws of physics and chemistry. [12] [13]

Al can be used to do this by building process models and breaking the issue down into causal
and intuition-based components. This enables a more rigorous solution that concentrates on the

causative elements, which could have significant economic advantages because it can be paralleled to
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other sections of the industry process. Al offers and includes a range of techniques and resources for
problem-solving. The utility of these solvers/types in the hydrocarbons industry will be highlighted,
and a potential qualitative and quantitative evaluation of their efficacy in contrast to traditional

techniques will be conducted.

Here is a paraphrased version of the introduction about using Al tools in the hydrocarbon field,

along with highlighting the potential effects:

In recent years, the hydrocarbon industry, primarily represented by oil and gas, has heavily
depended on artificial intelligence (AI) applications. This reliance stems from the industry's substantial

economic importance globally and the ongoing need to meet demand with finite hydrocarbon reserves.

Al aims to develop expert systems capable of performing various tasks, from identifying optimal
drilling locations to implementing enhanced oil recovery techniques. Traditionally, these tasks were
undertaken by humans at considerable expense, time-consuming processes, and often relying heavily
on speculation due to limited information. Theoretically, Al can provide optimal solutions to the
challenges faced by the hydrocarbon sector without requiring a comprehensive understanding of the

complex underlying mechanisms governed by physical and chemical laws.

Al achieves this by constructing process models and breaking down problems into causal and
intuition-based components, enabling a more rigorous solution focused on the causative factors. This
approach could yield significant economic benefits as it can be parallelized across different stages of

the industry process. Al offers a range of techniques and resources for problem-solving.

The oil and gaz industry, heavily reliant on oil and gas, faces the challenge of meeting growing

demand while managing finite resources. To tackle this, Al has emerged as a game-changer.

Traditionally, tasks like identifying drilling locations and optimizing oil recovery have been
expensive, time-consuming, and often reliant on limited data. Al offers a more efficient and accurate
solution by automating these processes and creating expert systems that can analyze vast amounts of

information.

Al achieves this by building sophisticated models that break down problems into their

fundamental components, focusing on the key causal factors. This approach not only leads to better
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solutions but also allows for cost savings and parallel application across different aspects of the

industry.

This exploration will delve into various Al techniques and their potential impact on the
hydrocarbon sector, comparing their effectiveness to traditional methods and highlighting the potential

for both qualitative and quantitative improvements.

The oil and gas industry, a cornerstone of the global economy, is facing the challenge of meeting
rising energy demands with dwindling resources. To address this, artificial intelligence (Al) has
emerged as a powerful tool. Al can analyze vast amounts of data to optimize drilling locations, improve
oil recovery techniques, and automate tasks that were previously time-consuming and expensive for

humans. [5]

Traditional methods often relied on guesswork and limited data. Al, on the other hand, can create
sophisticated models that break down complex problems into manageable components, leading to more
accurate and cost-effective solutions. This approach leverages the power of physics and chemistry

without requiring deep, intricate understanding.

This research delves into the application of various Al techniques and tools within the
hydrocarbon industry. We will evaluate their effectiveness compared to traditional methods,

quantifying both their advantages and limitations. [6]
3 Effect of using Al tool:
The potential effects of using Al tools in the hydrocarbon field:

1. Cost savings: Al can potentially reduce the substantial expenses associated with traditional

human-driven processes.

2. Time efficiency: Al-based solutions could expedite tasks that typically take longer when

performed by humans.

3. Improved decision-making: By leveraging data and models, Al can provide more informed

and accurate decisions, reducing reliance on speculation.
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4. Enhanced resource management: Al can help optimize the utilization of finite hydrocarbon

reserves by identifying optimal drilling locations and implementing efficient recovery techniques.

5. Economic benefits: The rigorous, causal-based approach enabled by Al can lead to significant

economic advantages through parallelization across industry processes. [7]

The introduction suggests that the application of Al tools in the hydrocarbon field can potentially
enhance efficiency, decision-making, resource management, and economic benefits, while reducing

costs and time requirements compared to traditional methods.

4 Artificial Intelligence:

Artificial Intelligence

Machine learning

Deep

learning

Figure II1.01: Comprehensive overview of artificial intelligence (Al)
A comprehensive overview of artificial intelligence (Al):

Al is a branch of computer science that aims to create intelligent machines that can think and
learn like humans. The main goals of Al include reasoning, knowledge representation, planning,

natural language processing, perception, learning, and ability to move and manipulate objects.
There are several approaches to Al:

1. Rule-Based Systems use a set of rules and logic to solve problems. Expert systems are an example,

encoding the knowledge of human experts.
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2. Machine Learning algorithms allow systems to learn from data and make predictions/decisions
without being explicitly programmed. Key techniques include neural networks, decision trees,

clustering etc.

3. Deep Learning neural networks with many layers attempt to mimic the human brain in processing

data in a non-linear way to recognize patterns.
4. Natural Language Processing allows machines to analyze, understand and generate human language.
5. Computer Vision deals with processing, analyzing and understanding digital images/videos.

6. Robotics combines Al software with electromechanical systems to create robots that can sense,

reason and act.

Major applications of Al today include virtual assistants, predictive analytics, computer vision for self-
driving cars, recommendation engines, robotics, gaming, cybersecurity and more. Al techniques like

machine learning and deep learning are advancing rapidly.

However, Al also raises concerns around ethical issues like privacy, bias, transparency, and existential
risk if super intelligent Al systems become uncontrollable. Regulation and governance of Al

development are emerging topics.

Overall, Al has immense potential to transform many industries, while also posing challenges that need

to be carefully navigated. It is a broad and rapidly evolving field. [8]

4.1 An overview of how artificial intelligence (Al) is being applied in the oil field:

The hydrocarbons industry, which includes oil and gas exploration, production, refining, and
distribution, is leveraging Al technologies to optimize operations, improve safety, and reduce costs. Al
can analyze massive amounts of data from sensors, drilling logs, seismic surveys and more to drive

better decision making.
Upstream (Exploration and Production):

- Seismic interpretation - Al techniques like machine learning are used to automatically analyze large

seismic datasets to identify potential hydrocarbon reservoirs.

- Well planning - Al systems evaluate data like formation properties to optimize well locations and

drilling trajectories.
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- Production optimization - Al models examine multiple variables like reservoir characteristics

and surface facilities to maximize hydrocarbon recovery.

- Predictive maintenance - Machine learning detects anomalies in sensor data to predict

equipment failures before they occur.
Midstream (Transportation and Storage):

- Pipeline monitoring - Al vision systems and sensor data analysis tracks pipeline integrity and

detects leaks or defects.

- Terminal operations - Optimization and scheduling of storage tank activities using Al

planning.
Downstream (Refining and Distribution):

- Refinery operations - Al models optimize the refining process by adjusting multiple

parameters to increase efficiency.

- Supply chain - Al is used for demand forecasting, logistics route optimization, and inventory

management.
- Plant safety - Computer vision and audio analytics detect safety risks at facilities using Al

Across all segments, Al and machine learning are also being leveraged for analyzing

geoscience data, automating knowledge work, mitigating cyber risks, and other key applications.

While still emerging, Al is providing the oil and gas industry with new capabilities for data-driven

insights to improve productivity, profitability and sustainability. [9] [10]

As our work is based on the prediction of the ROP in order to specify the appropriate drilling bit, we

concentrate in this chapter on explaining the machine learning methods.

4.2 Machine learning:

Machine learning forms a subarea within the field of artificial intelligence, enabling systems to
automatically learn and improve based on experience and data exposure, without requiring explicit
programming. In the context of optimizing drilling operations, machine learning techniques prove
valuable for predicting the rate of penetration (ROP) and enhancing overall drilling efficiency. These

methods are particularly useful when the relationship between various drilling parameters and the
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resulting ROP exhibits complex, non-linear characteristics that are difficult to model using traditional

approaches.

By leveraging machine learning algorithms and models trained on historical drilling data, it
becomes possible to capture intricate patterns and interdependencies among factors influencing ROP.
This data-driven approach circumvents the need for manually programming explicit rules or equations
to describe the underlying dynamics. Instead, the machine learning system can automatically infer
these relationships from the data itself, enabling accurate predictions of ROP based on the specified
drilling conditions and parameters. Consequently, applying machine learning in this domain facilitates
more informed decision-making and operational adjustments to optimize drilling performance and

efficiency. [11]

As depicted in Figure 2, machine learning techniques can be broadly classified into two main

groups: supervised learning approaches and unsupervised learning approaches.

Machine
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Figure II1.02. Machine learning models
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Certainly, we can explain how various machine learning regression models like KNN Regressor,
XGBoost Regressor, Neural Network Regression, and Random Forest Regression can be used for

predictive purposes in the hydrocarbons field:
a) KNN (K-Nearest Neighbors) Regressor:

e How it works: KNN Regression is a non-parametric model that predicts a value for a new data
point based on the average of the values of its "k" nearest neighbors in the training dataset.
e Advantages: Simple, easy to understand, works well with complex datasets.
e Disadvantages: Can be slow for large datasets, sensitive to the choice of "k".
In the oil and gas industry, KNN regression can be used to predict continuous values like reservoir
pressure, flow rates, or production volumes based on historical data and known features (e.g., well
depth, porosity, etc.). KNN identifies the K closest data points to the new input in the feature space

and averages their output values for prediction.

Example in Hydrocarbons: Imagine you have a dataset of well locations with corresponding production
rates (oil/gas). To predict the production rate of a new well, KNN would find the "k" nearest wells
(based on factors like geological features, depth, etc.) and average their production rates to give you a

prediction.
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Figurelll.03. K-Nearest Neighbors Regressor.
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b) Random Forest Regression:

e How it works: A Random Forest is an ensemble method. It builds multiple decision trees,
each trained on a random subset of the data and features. The predictions are then averaged
across all the trees to create a final prediction.

o Advantages: Very accurate, works well with large datasets, relatively robust to outliers.

« Disadvantages: Can be less interpretable than simpler models.

This ensemble method based on multiple decision trees can be applied to predict continuous targets
like well productivity, remaining useful life of equipment, or reservoir characteristics. Random forests

reduce overfitting by training each tree on different subsets of data.

Example in Hydrocarbons: You can use a Random Forest to predict the optimal drilling depth for a

well based on geological features, seismic data, and historical data from other wells.
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Figure. I11.04 Random Forest Regressor

c) XGBoost (Extreme Gradient Boosting) Regressor:

e How it works: XGBoost is a powerful, tree-based ensemble method. It builds a series of
decision trees, each trying to correct the errors of the previous trees. The final prediction is a
weighted average of the predictions from all the trees.

e Advantages: Highly accurate, works well with large datasets, handles complex interactions

between features.
o Disadvantages: Can be more complex to understand and tune compared to simpler models.
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XGBoost is an advanced implementation of gradient boosted decision trees. In hydrocarbon
applications, it can predict quantities like remaining oil/gas reserves, drill time, or pipeline throughput.

XGBoost excels at capturing complex, non-linear relationships in data through ensemble learning.

Example in Hydrocarbons: You can use XGBoost to predict oil or gas production based on variables

like well location, geological characteristics, production history, and reservoir parameters.
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Figure. I11.05 XGBoost Regressor.
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d) Neural Network Regression:

o How it works: Neural networks are inspired by the structure of the human brain. They consist
of interconnected "neurons” organized in layers. During training, the network learns weights
for these connections to minimize prediction errors.

o Advantages: Can learn highly complex relationships, good for non-linear data.

« Disadvantages: Requires significant training data, can be computationally expensive, and

can be harder to interpret than simpler models.

Artificial neural networks are powerful for modeling highly non-linear and complex relationships,
making them suitable for tasks like forecasting future oil/gas prices or predicting drillbit wear based
on drilling parameters. Different network architectures (feedforward, recurrent, etc.) can be used based

on the problem.

Example in Hydrocarbons: You can train a neural network to predict the volume of oil recoverable

from a reservoir based on factors like reservoir size, porosity, permeability, and geological conditions.

[14]
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Figure. I11.06 Neural Network Regressor
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5 The general process:

The general process involves:

e Data Preparation: Historical data related to the prediction target is collected, cleaned, and
transformed into suitable feature representations.

e Model Training: The regression model is trained on this data, automatically learning the
complex mapping between input features and the continuous output variable of interest.

e Validation and Tuning: Models are evaluated using techniques like cross-validation.
Hyperparameters are tuned to optimize performance metrics like mean squared error.

e Prediction: Once accurately trained, the model can make predictions on new, unseen data by
applying the learned relationships to forecast future values, enable better decision making, and
optimize processes.

The choice of model depends on factors like the number of input features, data volume, variable
relationships, and trade-offs between model complexity, training time, and prediction accuracy
required. Ensemble techniques often outperform individual models. Proper data preparation and
validation are crucial for reliable predictive performance. But overall, these AI/ML techniques are

enhancing data-driven decision making across the hydrocarbon value chain.

Here's an explanation of how those machine learning models work, along with examples of how they

can be used in the hydrocarbons field:
1. KNN Regressor (k-Nearest Neighbors Regression):

o How itworks: KNN Regression is a non-parametric model that predicts a value for a new data
point based on the average of the values of its "k" nearest neighbors in the training dataset.

o Example in Hydrocarbons: Imagine you have a dataset of well locations with corresponding
production rates (oil/gas). To predict the production rate of a new well, KNN would find the
"k" nearest wells (based on factors like geological features, depth, etc.) and average their
production rates to give you a prediction.

o Advantages: Simple, easy to understand, works well with complex datasets.

« Disadvantages: Can be slow for large datasets, sensitive to the choice of "k".
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2. XGBoost Regressor (Extreme Gradient Boosting):

e How it works: XGBoost is a gradient boosting algorithm. It builds an ensemble of decision
trees. Each tree tries to correct the errors made by the previous ones, progressively improving
the model's accuracy.

o Example in Hydrocarbons: You can use XGBoost to predict oil or gas production based on
variables like well location, geological characteristics, production history, and reservoir
parameters.

o Advantages: Highly accurate, works well with large datasets, handles complex interactions
between features.

« Disadvantages: Can be more complex to understand and tune compared to simpler models.

3. Neural Network Regression:

e How it works: Neural networks are inspired by the structure of the human brain. They consist
of interconnected "neurons” organized in layers. During training, the network learns weights
for these connections to minimize prediction errors.

o Example in Hydrocarbons: You can train a neural network to predict the volume of oil
recoverable from a reservoir based on factors like reservoir size, porosity, permeability, and
geological conditions.

e Advantages: Can learn highly complex relationships, good for non-linear data.

« Disadvantages: Requires significant training data, can be computationally expensive, and can
be harder to interpret than simpler models.

4. Random Forest Regression:

e How itworks: A Random Forest is an ensemble method. It builds multiple decision trees, each
trained on a random subset of the data and features. The predictions are then averaged across
all the trees to create a final prediction.

o Example in Hydrocarbons: You can use a Random Forest to predict the optimal drilling depth
for a well based on geological features, seismic data, and historical data from other wells.

e Advantages: Very accurate, works well with large datasets, relatively robust to outliers.

o Disadvantages: Can be less interpretable than simpler models.
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5.1 Key Steps in Using ML for Prediction:

1. Data Collection and Preparation: Gathering relevant data from various sources (well logs,
seismic data, production data, etc.) and cleaning/preprocessing it.

2. Feature Engineering: Selecting the most relevant variables (features) for your model. This is
crucial for accuracy.

3. Model Selection: Choosing the right model based on the nature of your data, complexity of
relationships, and the desired accuracy.

4. Model Training: Training the chosen model using a labeled dataset where you have both input
features and corresponding output values (e.g., production rates).

5. Model Evaluation: Assessing the model's performance on unseen data using metrics like mean
squared error, R-squared, etc.

6. Deployment and Monitoring: Deploying the model to make predictions in real-world

scenarios and continuously monitoring its performance.
5.2 Important Considerations:

o Data Quality: The accuracy of your predictions is heavily dependent on the quality and
completeness of your data.

e Model Complexity: More complex models can lead to overfitting, where the model learns the
training data too well and performs poorly on unseen data.

e Interpretability: Understand how your model is making predictions to ensure it's making

sensible decisions.

By understanding these models and following a sound data science process, you can utilize Al to

predict various aspects of the hydrocarbons industry and improve decision-making. [15]

6 Al Models:

This is more detail about how each model works and provide examples of how they can be

specifically applied in the hydrocarbons industry.
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1. KNN Regressor (k-Nearest Neighbors Regression):

o How it Works: KNN is a "lazy learner," meaning it doesn't explicitly build a model during
training. Instead, it simply stores the training data. When predicting for a new data point, it
finds the "k™ nearest neighbors (those most similar based on features) and averages their target
values.

o Example in Hydrocarbons:

o Predicting Well Production: You have a dataset of well locations with corresponding
daily production rates (barrels of oil per day). You want to predict the production rate
of a newly drilled well.

o Steps:

1. Feature Selection: Consider features like well depth, geological formation,
reservoir pressure, and distance to existing wells.

2. KNN: Find the "k" (e.g., 5) nearest wells to the new well based on these
features.

3. Prediction: Average the production rates of those "k nearest wells to estimate
the production rate of the new well.

e Advantages:

o Simplicity: Easy to understand and implement.

o Flexibility: Works well with complex datasets and non-linear relationships.

o Disadvantages:

o Computational Cost: Can be slow for large datasets, especially when calculating
distances between all data points.

o Sensitivity to 'k™": The choice of "k" significantly impacts the prediction. Too small a
"k" leads to high variance (sensitive to outliers), while too large a "k™ leads to high bias

(too smooth predictions).
2. XGBoost Regressor (Extreme Gradient Boosting):

e How it Works: XGBoost is a powerful, tree-based ensemble method. It builds a series of
decision trees, each trying to correct the errors of the previous trees. The final prediction is a

weighted average of the predictions from all the trees.
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o Example in Hydrocarbons:
o Predicting Reservoir Recovery: You want to predict the total amount of oil
recoverable from a newly discovered reservoir.
o Steps:
1. Feature Engineering: ldentify relevant features like reservoir size, porosity,
permeability, and geological characteristics.
2. XGBoost Training: Train the XGBoost model on a dataset of known reservoirs
with corresponding recovery values.
3. Prediction: Input the features of the new reservoir into the trained XGBoost
model to obtain a prediction of the total recoverable oil.
e Advantages:
o High Accuracy: Generally, achieves high accuracy, especially with large datasets.
o Robustness: Less sensitive to outliers and handles missing data well.
o Feature Importance: Provides insights into which features are most important for
prediction.
« Disadvantages:
o Complexity: More complex to understand and tune than simpler models.
o Interpretability: Can be challenging to interpret the exact decision-making process of

the model.

3. Neural Network Regression:

« How it Works: Neural networks consist of interconnected "neurons” organized in layers. The
network learns weights for these connections during training to minimize errors in predictions.

o Example in Hydrocarbons:
o Predicting Well Production Decline: You want to predict the rate at which production

will decline from a well over time.
o Steps:
1. Feature Engineering: Use features like well production history, reservoir
pressure, and wellbore characteristics.

2. Neural Network Training: Train a neural network on a dataset of wells with

production decline curves.
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3. Prediction: Input the features of a new well into the trained network to obtain
a predicted decline curve.
e Advantages:
o Non-Linear Relationships: Can model highly complex and non-linear relationships
between features and target values.
o Feature Learning: Can automatically learn important features from raw data.
o Disadvantages:
o Data Requirements: Requires a significant amount of labeled training data to perform
well.
o Computational Cost: Training can be computationally expensive, especially for large
networks.

o Interpretability: Can be difficult to interpret the internal workings of the network.
4. Random Forest Regression:

o How it Works: Random Forest is an ensemble method that combines multiple decision trees.
Each tree is trained on a random subset of the data and features, and the final prediction is the
average of the predictions from all the trees.

« Example in Hydrocarbons:

o Predicting Oil Quality: You want to predict the API gravity (a measure of oil density)
of oil produced from a new well.
o Steps:
1. Feature Selection: Use features like geological formation, well depth, and
historical oil quality data from nearby wells.
2. Random Forest Training: Train a random forest on a dataset of wells with
known API gravity.
3. Prediction: Input the features of the new well into the trained forest to obtain a
predicted API gravity.
e Advantages:
o High Accuracy: Generally, achieves good accuracy and is robust to overfitting.
o Feature Importance: Provides insights into which features are most important for

prediction.
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o Handling Outliers: Less sensitive to outliers in the data than single decision trees.
o Disadvantages:
o Interpretability: Can be less interpretable than simpler models, as the predictions are

based on a combination of many trees.
Remember: The choice of the best model will depend on the specific problem, the availability of

Data, the desired level of accuracy and interpretability.
7 Specific examples of using Al in oil field:

Let's delve deeper into each model and provide more specific examples of how they can be applied in

the hydrocarbons field.
1. KNN Regressor (k-Nearest Neighbors Regression):

o How it works: KNN Regression, in its simplest form, finds the "k™ data points in the training
set that are closest to a new data point, based on a distance metric. Then it takes the average of
the target values (e.g., production rates) of these "k nearest neighbors to predict the value for
the new data point.

e Hydrocarbons Examples:

o Predicting Production Rates: Imagine you have a dataset of well locations with
corresponding production rates (oil/gas). You want to predict the production rate of a
new well at a specific location. KNN would:

= Calculate the distance between the new well location and all existing well
locations in the dataset.

= Select the "k" closest wells (e.g., k=5).

= Average the production rates of those "k" closest wells to predict the production
rate of the new well.

o Estimating Well Decline Rates: You can use KNN to predict how quickly a well's
production will decline over time based on the decline rates of similar wells. You'd
measure the similarity of wells based on factors like reservoir characteristics, well

depth, and production history.
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o Advantages:
o Simplicity: KNN is a very easy algorithm to understand and implement.
o No Assumptions: It makes no assumptions about the distribution of your data.
o Works Well with Complex Data: It can handle complex relationships between
features.
« Disadvantages:
o Computational Cost: Can be slow for large datasets, especially when calculating
distances between many data points.
o Sensitivity to "'k™: The choice of "k" can significantly impact the model's accuracy.
You need to carefully select the optimal value.
o Susceptible to Outliers: KNN is sensitive to outliers in the data because they can

disproportionately influence the average.
2. XGBoost Regressor (Extreme Gradient Boosting):

« How it works: XGBoost, in essence, builds a series of decision trees. Each tree tries to correct
the errors made by the previous ones. It uses a gradient descent algorithm to minimize the
prediction errors, making the model increasingly accurate.

e Hydrocarbons Examples:

o Predicting Oil/Gas Reserves: XGBoost can predict the volume of oil or gas reserves
in a reservoir based on factors like reservoir size, porosity, permeability, geological
structures, and historical production data.

o Optimizing Well Placement: You can use XGBoost to predict the best location for a
new well by considering factors like reservoir characteristics, proximity to existing
infrastructure, and potential for production.

o

e Advantages:

o High Accuracy: XGBoost is known for achieving very high accuracy on many
datasets.

o Handling Large Datasets: It is designed to handle large and complex datasets

efficiently.
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o Feature Interactions: It handles interactions between features very well, leading to
improved accuracy compared to models that only consider individual features.
o Disadvantages:
o Complexity: XGBoost is more complex than simpler models like KNN and can be
harder to understand and tune.
o Overfitting: It can overfit to the training data, especially if the dataset is small or if the

model is too complex.
3. Neural Network Regression:

e How it works: Neural networks are inspired by the structure of the human brain. They consist
of interconnected "neurons” organized in layers. During training, the network learns weights
for these connections to minimize prediction errors. Each neuron performs a simple calculation
(activation function) and passes the result to the next layer. The process repeats until the
network reaches the output layer, which provides the prediction.

e Hydrocarbons Examples:

o Predicting Production Decline Curves: You can train a neural network to predict how
the production rate of a well will decline over time, taking into account factors like
reservoir characteristics, well depth, and production history.

o Reservoir Simulation: Neural networks can be used to create highly complex models
of reservoir behavior, which can then be used to simulate various scenarios and make
decisions about production strategies.

e Advantages:

o Learning Complex Relationships: Neural networks are excellent at learning highly
complex and nonlinear relationships between features.

o Handling Large Datasets: They can handle very large datasets and learn from complex
patterns.

o Disadvantages:

o Data Requirements: Neural networks require a large amount of training data to
perform well.

o Computational Cost: Training can be computationally expensive, requiring powerful

hardware.
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o Black Box: It can be difficult to interpret how a neural network is making predictions,

which can make it harder to trust the results.
4. Random Forest Regression:

o How itworks: A Random Forest is an ensemble method. It builds multiple decision trees, each
trained on a random subset of the data and features. The predictions are then averaged across
all the trees to create a final prediction.

e Hydrocarbons Examples:

o Predicting Well Production: A Random Forest can predict the production rate of a
well based on factors like reservoir characteristics, geological formations, and well
depth.

o Optimizing Well Completions: You can use a Random Forest to predict the optimal
completion design for a well (e.g., the number and placement of perforations) to
maximize production.

e Advantages:

o High Accuracy: Random Forests are known for achieving high accuracy, particularly
on complex datasets.

o Robust to Outliers: They are relatively robust to outliers in the data, making them
suitable for datasets with noisy or missing values.

o Feature Importance: They can provide insight into the importance of different features
in making predictions.

« Disadvantages:

o Complexity: Can be more complex to understand than simpler models.

o Overfitting: Can overfit to the training data if the number of trees is too large.

o Computational Cost: Can be more computationally expensive than simpler models,

especially for very large datasets.
8 General Tips for Applying ML in the Hydrocarbons Field:

o Datais King: The quality of your data is paramount. Ensure that it is accurate, complete, and

representative of the problem you are trying to solve.
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o Feature Engineering is Key: The right features can make or break your model. Carefully
consider which features are likely to be most predictive of your target variable.

o Experiment and Iterate: Try different models and configurations to find the best one for your
specific problem.

o Start Small: Don't try to solve everything at once. Start with a simpler problem and build up
from there.

e Focus on Interpretability: Strive for models that are understandable and explainable, so you

can trust their predictions and make informed decisions.

By leveraging these ML techniques and following these tips, you can unlock the potential of Al to
make better predictions and drive more effective decision-making in the hydrocarbons industry. [16]

9 Importance of Artificial Intelligence in the oil and Gaz Industry:

In the fast-paced world of the twenty-first century, industries all over the world are undergoing
a dramatic transformation, mostly due to the unrelenting progress of technology. Among these, the oil
and gas industry, which was once seen to be a stronghold of conventional methods, is now leading the
way in a technological revolution. Artificial intelligence (Al), a tool that is not only altering the
industry's future but also reshaping its operating framework, is a major driving force behind this
revolution. Al is revolutionizing the sector in a number of areas, including environmental stewardship,
predictive maintenance, and exploration and production. Through the utilization of machine learning,
big data analytics, and sophisticated computing, the oil and gas industry is opening up previously
unimaginable opportunities. The application of Al is guaranteeing safer, more sustainable, and

economical methods in addition to improving operational efficiencies.

As we delve deeper into the transformative impact of Al in the oil and gas industry, we uncover
the myriad ways in which this technology is not just an add-on but a fundamental driver of change.
Whether it's through improved prediction accuracy in exploration, enhanced safety protocols, or the
development of sustainable practices, Al is undeniably a cornerstone in the modernization of the oil

and gas sector.

Because Al is able to solve problems in real time or on paper, it has emerged as the technology
with the greatest growth rate in recent years. Moving to the hydrocarbons sector, Al works to find the

best answer and offers many suggestions to produce high-quality outputs quickly.
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9.1 Benefits of artificial intelligence in Hydrocarbons industry

For oil and gas companies, I could open doors to insights throughout the entire value chain. It's
stimulating new efficiency in distribution, production, and exploration while assisting the industry in
realizing enormous benefits. However, there are still many tasks to be completed and difficulties to

overcome because the technology is still in its early phases of development and implementation. [17]
a) Increased efficiency:

There are many areas where Al continues to improve efficiency in the oil and gas industry, such
as equipment maintenance and reservoir modeling. For instance, Al-powered systems using machine

learning and deep learning can help in upstream operators find optimal wells.
b) Reduced costs:

The use of Al is seeing firms realize cost reduction in various ways. Operational efficiency is
achieved by using Al systems, helping to reduce costs while improving production. For instance,
predictive maintenance precisely and reliably identifies assets likely to fail, saving costs on scheduled

maintenance and costly aftermaths.
c¢) Reducing Non-Productive Time:

Non-productive time, a significant cost factor in oil and gas operations, accounts for 20 to 25%
of all rig operating time each year. Al applications have been developed to reduce this time

significantly, thereby saving billions of dollars in lost revenue for drill rigs.
d) Streamlining operations:

Al brings tremendous benefits to the back office, helping in decision making, repetitive task

management, and supply chain management and monitoring.

For example, it is possible to leverage machine learning to sift through large data sets to identify
patterns and provide recommendations to assist operators with various tasks. Analysis of transportation
routes can lead to road improvements, while weather and pothole data can lead to safer working

conditions.
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10 Applications of Artificial Intelligence in oil field:

The oil and gas industry is embracing Artificial Intelligence (Al), particularly Machine Learning

(ML) methods, to enhance efficiency, optimize operations, reduce costs, and mitigate risks. Here's a

breakdown of key applications and advantages:

10.1 Artificial Intelligence in the Oil and Gas Industry: A Summary of Key Applications:

Theme

Exploration and

Production

Refining and

Petrochemicals

Applications Advantages

- Reservoir detection - Improved
and mapping: accuracy and
Analyzing seismic speed of analysis
images, identifying
geological formations
- Production - Optimized
forecasting: production and
Analyzing well data, cost reduction
reservoir modeling

- Well management: - Increased well

Optimizing performance and
production, detecting  reduced

failures and anomalies ~downtime

- Process - Improved

optimization: Real- efficiency, safety,

time control of and profitability
production parameters,

predicting failures

- Inventory - Reduced
management: storage costs and

Optimizing inventory  losses
management,

predicting demand

Examples

- Machine learning
algorithms to
identify the most

promising areas

- Predictive models
to estimate the
amount of oil or gas
extractable

- Machine learning
systems to monitor
operations and
detect problems

- Predictive models
to identify optimal

operating conditions

- Machine learning
algorithms to predict
future needs and

optimize inventory

Sources ‘

[18,19,20]

[21,22]

[23,24]

[25,26]

[27,28]
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Distribution - Demand - Improved - Predictive models | [29,30]
and Marketing  forecasting: planning and to estimate future

Analyzing supply chain demand and

consumption data, management optimize distribution

market trends flows

- Logistics - Reduced - Optimization [31,32]
optimization: transportation algorithms to plan

Planning delivery costs and the most efficient

routes, managing delivery times routes and manage

inventory

inventory optimally

Note: This table is just a glimpse of the main applications of Al in the oil and gas industry. There are

many other applications and numerous additional information sources available on the subject.

10.2 Artificial Intelligence in the Oil and Gas Industry: Detailed Applications and Advantages

a) Exploration and Production:

Application

Description

(with References):

Advantages

References

Seismic Data

Analysis

Reservoir

Characterization

- Interpreting seismic
data to identify
potential oil and gas
reservoirs. - Using Al
to detect patterns and
anomalies that are
difficult for humans
to spot.

- Using Al to analyze
well logs, core
samples, and other
data to create a
detailed picture of the

reservoir. - This

- Increased

accuracy and

speed of analysis.

- Reduced time
and cost of

exploration.

- More accurate

reservoir models.

- Improved
understanding of
reservoir

behavior.

- Deep learning [33,34]
algorithms trained
on large datasets
of seismic data to
identify potential
reservoirs with
high confidence.

- Al models [35,36]
trained to predict

reservoir

properties such as

porosity,
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information is used to permeability, and
optimize production fluid saturation.
and recovery rates.
- Using Al to - Reduced drilling - Al algorithms to  [37,38,39]
optimize well costs. - Increased = optimize well
placement, drilling production rates. - = trajectory and
Well Planning parameters, and Reduced completion
production strategies. = environmental design.
and Optimization
- This results in more  impact.
efficient and cost-
effective well
development.
- Using Al to analyze | - Improved - Machine [40,41]
historical production | accuracy of learning models
data and predict production trained to predict
future production forecasts. - Better | production decline
Production rates. - This planning and curves and
Forecasting information is used to = resource optimize
plan production allocation. production
schedules and strategies.
optimize reservoir
management.
- Using Al to monitor - Reduced - Al systems to [42,43.,44]
well performance and = downtime. - monitor well
detect potential Increased well pressure, flow
Well Monitoring problems. - This uptime. - rates, and other
allows for early Improved safety.  parameters to

and Optimization

intervention to
prevent production
losses and safety

incidents.

detect anomalies
and alert

operators.

Page | 44



CHAPTER III: Artificial intelligence and its applications in oil field
- Using Al to - Increased - Autonomous [45,46]
automate drilling drilling speed. - drilling systems
operations, such as Reduced risk of | that use Al to

Drilling drilling trajectory accidents. optimize drilling
Automation control and mud parameters and

weight management.
- This improves

efficiency and safety.

b) Refining and Petrochemicals:

Application

Description

Advantages

minimize human

intervention.

Example References

Process

Optimization

Predictive

Maintenance

Product
Quality

Control

- Using Al to optimize
process parameters in
refineries and
petrochemical plants. -
This results in increased
efficiency, reduced
energy consumption,
and improved product
quality.

- Using Al to predict
equipment failures and
schedule maintenance
proactively. - This
reduces downtime,
improves safety, and
lowers maintenance
costs.

- Using Al to monitor
product quality and
identify potential

- Increased
production
efficiency. -
Reduced
operating costs. -
Improved

product quality.

- Reduced
downtime. -
Improved safety.
- Reduced
maintenance

costs.

- Improved
product quality. -

Reduced waste. -

- Al models to [47,48,49]
predict optimal

operating conditions

for different process

units.

- Machine learning | [50,51]
models to predict
equipment failures
based on sensor data
and historical
maintenance
records.

- Al systems to [52,53]
analyze product

samples and identify
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problems. - This ensures = Improved deviations from
that products meet customer quality
quality standards and satisfaction. specifications.

reduces the risk of

product defects.
- Using Al to optimize - Reduced - Al algorithms to [54,55]
inventory levels and storage costs. - optimize inventory
manage supply chains. - | Improved supply | levels based on
Inventory ) ) )
This reduces storage chain efficiency. = demand forecasts
Management
costs and ensures that and other factors.

there is always enough

product available.

c) Distribution and Marketing:

Application Description Advantages Example References
- Using Al to predict - Improved - Machine learning [56,57]
demand for petroleum  accuracy of models to predict
products. - This demand demand for different

Demand i o

information is used to forecasts. - petroleum products

Forecasting o ‘ ‘ o
optimize production, Better planning  based on historical
distribution, and pricing and resource data and market
strategies. allocation. trends.
- Using Al to optimize | - Improved - Al algorithms to [58,59]
pricing strategies for profitability. - dynamically adjust

Pri petroleum products. - Increased prices based on real-
rice

This takes into account = market share. time market data and

Optimization
factors such as demand, demand forecasts.
competition, and
market conditions.

Logistics - Using Al to optimize - Reduced - Al systems to plan [60,61]

Optimization logistics operations, transportation optimal transportation
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such as transportation costs. - routes, optimize
routes, inventory Improved inventory levels, and
management, and delivery times. - manage warehouse
warehouse operations. - Increased operations.

This reduces costs and  efficiency.

improves efficiency.

- Using Al to improve | - Improved - Al chatbots to [62,63]
customer service and customer answer customer
build relationships with | satisfaction. - inquiries and provide
Customer | customers. - This Increased personalized
Relationship | includes providing customer recommendations.
Management personalized loyalty.

recommendations and

responding to customer

inquiries.

d) Other Applications:

Application Description Advantages Example References
- Using Al to monitor - Improved - Al systems to [64,65]
environmental environmental monitor air and
conditions, such as air  performance. - water quality,
and water quality, in oil Reduced identify potential

Environmental and gas operations. - environmental environmental

Monitoring This helps to ensure risks. hazards, and
compliance with provide early
environmental warning alerts.

regulations and protect

the environment.

- Using Al to identify - Improved - Al systems to [66,67]
Safety and Risk _ o
potential safety hazards @ safety analyze historical
Management L ) )
and manage risks in oil | performance. - safety data, identify
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and gas operations. - Reduced
This improves safety accidents.
and reduces the risk of

accidents.

- Using Al to analyze - Improved

large datasets of oil and = decision-making.

gas data, such as - Increased

production data, efficiency.
Data Analytics financial data, and

environmental data. -

This provides valuable

insights that can be

used to improve

decision-making.

- Using Al to protect oil | - Improved

and gas infrastructure cybersecurity. -

from cyberattacks. - Reduced risk of

This includes detecting = cyberattacks.
Cybersecurity

malicious activity and
preventing
unauthorized access to

critical systems.

potential hazards,
and recommend

safety measures.

- Al tools to analyze [68,69]
data, identify

trends, and provide

insights to support

decision-making.

- Al systems to [70,71]
detect and prevent
cyberattacks,

identify

vulnerabilities, and

monitor network

traffic.

Al, particularly ML methods, is transforming the oil and gas industry, offering significant

benefits across the value chain. By embracing Al, the industry can optimize operations, reduce costs,

improve safety, and enhance environmental performance. However, it is crucial to address the

challenges associated with Al implementation to maximize its potential and ensure its responsible

deployment.
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11 Challenges and Limitations of Al in Hydrocarbons:
The limitations of artificial intelligence (Al) encompass various aspects that pose challenges to its
development, widespread adoption and application. Some of the key challenges and limitations

include:

11.1 Data Availability and Quality:

Al algorithms heavily rely on large volumes of high-quality data for training and decision-
making. However, acquiring and maintaining such data can be a daunting task. Issues such as data
scarcity, incompleteness, and inconsistency can hinder the performance of Al systems. Additionally,
concerns regarding data privacy and security arise when handling sensitive information. Striking a
delicate balance between data utility and privacy is essential to build trust and comply with regulations,

while still extracting valuable insights from data.

11.2 Interpretability and Explainability:

Many Al models, particularly deep learning algorithms, operate as "black boxes." They provide
outputs without clear explanations or insights into their decision-making process. This lack of
interpretability and explainability can be problematic, particularly in critical applications/domains such
as healthcare and finance where transparency and accountability are key. Researchers are actively
exploring methods to enhance interpretability and provide explanations for AI model outputs, aiming

to build trust and facilitate human-AlI collaboration.

11.3 Lack of Emotional Intelligence and Human Intuition:

Human decision-making often involves intuition, gut feelings, and instinctive judgments based on
subtle cues or prior experiences. Al systems rely on data and algorithms, lacking the intuitive leaps
that humans can make when faced with ambiguous or uncertain situations. This limitation hinders its
ability to understand and respond to complex human emotions, interpersonal dynamics, and subjective

aspects of decision-making that require empathy and intuition. [72]

12 Conclusion:
Based on the investigation of the application of Al in oilfield development, it could be concluded
that the intelligent oilfield is on its way towards integration of business application, coordination of
decision and deployment, real-time production management, visualization of comprehensive research

and sharing of information resources. In the end, Al oilfield will merge exploration, development,
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gathering, refining, and management, among other processes, to form an intelligent ecosystem.
Collaboration across all levels, geographies, and disciplines could be realized based on the ecosystem
in order to prolong the life cycle of the oilfield, enhance the effectiveness and caliber of decision-
making, lower costs and boost economic benefit, and ultimately complete the shift from digital to

artificial intelligence (Al).
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CHAPTER IV: Computational prediction of drill penetration rate (ROP) and optimization of drill bit selection

1 Introduction:

The rate of penetration (ROP) prediction is crucial for optimizing drilling operations, reducing
costs, and improving overall drilling efficiency. Traditional methods for ROP prediction often rely on
empirical correlations and expert knowledge, which can be limited by data availability and the

complexity of drilling processes.

This chapter explores the potential of machine learning techniques for enhancing ROP
prediction capabilities. We investigate four commonly used models: K-Nearest Neighbors (KNN),
Random Forest, XGBoost, and Artificial Neural Networks (ANN). These models offer a diverse range
of approaches for capturing complex relationships between input variables and the target variable,

ROP.

The objective is to compare the predictive performance of these models and assess the impact
of hyperparameter tuning and cross-validation on their accuracy. By analyzing model performance on
two distinct wells, we aim to identify the most promising technique for ROP prediction and provide

insights for future research and development.

The drill bit selection process is intricately tied to accurate ROP predictions. Drilling engineers
can improve drilling performance and efficiency by using the best predictive model to help them decide
which drill bit is best for a given set of geological circumstances. The ramifications of machine
learning-driven ROP predictions for drill bit selection are explored in this chapter. By contrasting the
four models, we want to find the best technique for ROP prediction as well as a methodical approach
to drill bit selection that maximizes drilling efficiency while minimizing operating expenses. Future
developments in drilling equipment and technique can be guided by the insights gathered from this

study, guaranteeing a more data-driven and effective approach to well design and execution.
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2 Study area:
2.1 Area:

The Rhourde Nouss region contains six major hydrocarbon producing fields. These are the
Rhourde Nouss Central, Rhourde Nouss Southwest, Rhourde Nouss Southeast, Rhourde Adra,
Rhourde Chouff, and Rhourde Hamra fields. For completeness, other small hydrocarbon
accumulations such as Rhourde Nouss Northeast, Meksem, and Dra Allal are included in this report.
Reference is also made to the Hamra field to the south for extension of the geologic trends from that
area. The term “Rhourde Nouss Complex” is used when referring specifically to the four central fields:
Rhourde Nouss Central, Rhourde Nouss Southwest, Rhourde Nouss Southeast, and Rhourde Adra.
They are grouped together because of their proximity and common development. There are numerous
productive reservoirs in the Rhourde Nouss region. They may be arranged vertically into three major
groups: the Triassic Argileux Greseux Superieur (TAGS), the Infra-TAGS, and the Ordovician. The
TAGS is subdivided into a basal sand and main reservoir. The main reservoir may be arbitrarily
subdivided into upper and lower, or braided stream and meandering stream, sections. For reservoir
modeling, the total TAGS has been divided into 15 layers. The Infra-TAGS is first divided by the
Hercynian unconformity into Triassic and Silurian reservoirs. Above the unconformity are the Triassic
Intermediate (TINT I and TINT II), and the Triassic Argileux Greseux Inferior (TAGI). Below are the
Silurian B2, B1, A2, and Al.

2.2 Wells situation:
oeWell 1 situation
Hole RHAS-1 is located at the bottom of the Rhourde Nouss North East structural axis,
at 3.07km north-east of the RNNE-2 well and 6.84km south-east of the EAD-1 well. It is

located at the the intersection of the seismic lines In line:1453 and X line: 6813 The coordinates
and altitude of the well platform are as follows

Table.IV.01: The coordinates and altitude of the well platform

Y Geographic Altitudes

X=291861.025m X =291 861.025m Longitude | Zsol =272.00m

Y =3300061.001m Latitude: 29° 48’ 56.837"” N | Ztable =281.00m
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e\Well 2 sitaution

The RHAS QH-1 well was installed below the culmination of the Rhourde Hamra Sud
trend, which lies between two anticlinal axes running north-east-south-west (Rhourde Hamra
axis and Rhourde Hamra Sud axis).

The RHAS QH-1 drilling site was chosen at the intersection of the 3D seismic sections
(Inline 1882 and Cross-line 6713 ), on the basis of the structural map produced at the top of the
Hamra Quartzites, the latter being established on the basis of the seismic attribute cubes,
variance, dip, dip azimuth, at the surface of the seismic horizons interpreted at the top of the

Hamra Quartzites.

Table.IV.02:The coordinates and altitude of the well platform

UuT™Mm

Geographic

Altitudes

X294 426.048 m

Longitude : 06° 52° 16.16572* E Zsol : 275 m

Y : 3308 482.934 m

Latitude : 29° 53 31.83297’ N | Ztab : 284 m

2.3 Wells description:

eWell 1 description

The table below shows several characteristics and information of RHAS-1

Table.IV.03: characteristics and information of RHAS-1

RHAS-1

Field HMD

Well classification Exploration

Operator Sonatrach

Drilling contractor Enafor

Drilling Rig Enafor #13

Surface Location LSA X= 291 861.025m Y= 3 300
Latitude 061.001m 29° 48’ 56.837” N 06°
Longitude 50’ 46.471" E

Well TD 4048m 4041m
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oeWell 2 description

The table below shows several characteristics and information of RHAS QH-1

Table.IV.04: characteristics and information of RHAS QS-1

Well name Rhourde Hamra south QH-1 ST1
Code RHAS QH-1 ST1

Country Algeria

Basin Berkine West

Permits Rhourde Nouss - Ain Amedjane
Block 246

Type of survey Exploration

UTM coordinates

X294 426.048 m Y : 3308 482.934 m

Geographical coordinates

Longitude : 06° 52° 16.16572>” E Latitude : 29° 53” 31.83297"’ N

Altitudes

Zsol : 275m Ztab : 284

Primary objectives

TAGS, Carbonate Triassic, TAGI, Silurian F6 (units: M2, M1, MO
and N1) and Hamra Quartzite Reservoir.

Drilling Rig ENF-13

Start of drilling 18/03/2015
End of drilling 22/09/2015

TD Diriller 4840 m

TD Logger TD not reached
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3 Problem formulation:

In the hydrocarbon exploration and production industry, drilling operations represent a substantial
portion of the total project cost. One of the critical factors influencing drilling efficiency is the rate of
penetration (ROP), which measures how quickly the drill bit can penetrate the rock formation. A higher
ROP generally translates to reduced drilling time and lower overall costs. However, predicting ROP

accurately is challenging due to the complex interplay of various factors, including:

» Geological factors: Rock type, formation hardness, and compressive strength.

» Drilling parameters: Weight on bit (WOB), rotary speed (RPM), and hydraulic horsepower.
» Bit design: Bit type, cutter size, and placement.

» Dirilling fluid properties: Mud weight, viscosity, and flow rate.

Additionally, selecting the most appropriate drilling bit for a given formation is crucial for maximizing
ROP. An incorrect bit choice can lead to premature bit wear, reduced ROP, or even catastrophic bit

failure, resulting in costly tripping operations and lost time.

The drilling process in hydrocarbon exploration is complex and expensive, heavily reliant on accurate
predictions of penetration rate and appropriate bit selection. Traditional methods for ROP prediction
and bit selection often rely on empirical models or rules of thumb, which may not capture the full
complexity of the problem or adapt well to varying geological conditions. This leads to suboptimal
drilling performance and increased costs. Current methods rely on empirical data and expert judgment,
often leading to inefficient drilling and costly downhole complications. This problem formulation
proposes leveraging machine learning to develop a predictive model that can improve drilling

performance by accurately forecasting penetration rate ROP and suggesting optimal bit selection.

3.1 Problem Statement:

Given (Inputs): A dataset, extracted from two wells, containing historical drilling data, including
geological formations, drilling parameters (e.g., weight on bit, rotational speed, mud properties, depth,

pressure, torque, etc.), and drilling performance metrics (e.g., penetration rate, bit wear).

Goal: Develop a machine learning model that can:
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e Predict the penetration rate for a given set of drilling parameters and geological conditions.
e Recommend the most appropriate drilling bit based on the predicted penetration rate and

geological characteristics.

3.2 Objectives:

The primary objectives of this project are:

o To Investigate and compare various machine learning algorithms, such as K nears-neighbors,
Random Forests, Extreme Gradient Boosting machines, and neural networks, to build
predictive models for ROP. The goal is to identify the most accurate and robust model that can
generalize well across different geological settings.

o To identify the key factors influencing the rate of penetration and their relative importance.

e To develop a decision-support system for selecting the most appropriate drilling bit (based on
geological and operational parameters.) for given drilling conditions.

e To improve overall drilling efficiency by minimizing downtime and optimizing bit selection.

e To validate the proposed models using real-world data from hydrocarbon drilling operations.

e To quantify the potential economic impact of the framework in terms of reduced drilling time,

cost savings, and improved project economics.

3.3 Hypothesis:

» Machine learning techniques can effectively predict the rate of penetration with a high degree
of accuracy using readily available drilling data and geological information.

» The inclusion of real-time drilling data improves the performance of ROP prediction models.

» A machine learning-based decision-support system can enhance the selection of drilling bits,

leading to better drilling performance and reduced costs.

Page | 56



CHAPTER IV: Computational prediction of drill penetration rate (ROP) and optimization of drill bit selection

4 Methodology Overview:

The methodology involves the following steps:

v

Data Collection: Gathering historical drilling data, geological information, and real-time
sensor readings, including ROP, bit type, geological parameters, and operational settings.
Data Preprocessing: Cleaning and preprocessing the data to handle missing values, outliers,
and normalization to ensure its accuracy and consistency.

Feature Selection: Selecting relevant features that influence ROP and bit performance.
Applying feature scaling and transformation techniques to optimize the performance of ML
models.

Model Development and evaluation: Training and testing various machine learning models to
predict ROP. Selecting the most suitable model based on performance metrics and model
interpretability.

Bit Selection Algorithm: Developing a machine learning-based algorithm that utilizes the
trained model’s predictions to recommend the optimal drilling bit for specific drilling
conditions.

Model Validation: Validating the models using a separate dataset and evaluating their

performance using appropriate metrics.

4.1 Expected Contributions:

This study is expected to provide valuable insights and tangible outcomes, including:

>
>

A robust machine learning model for accurate ROP prediction.

An intelligent decision-support system for optimal drilling bit selection based on predicted ROP
and other drilling conditions.

Insights into the key factors influencing drilling performance, aiding in better planning and
execution of drilling operations.

Enhanced drilling efficiency and reduced operational costs.

Improved safety and reduced drilling risks.
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By leveraging machine learning techniques, this work aims to enhance the efficiency and
effectiveness of drilling operations in the hydrocarbon industry. Accurate ROP predictions and optimal
bit selection can lead to significant cost savings, reduced drilling times, and improved overall
productivity. The findings of this study have the potential to drive innovation and technological
advancement in drilling practices, ultimately contributing to the sustainable and profitable extraction

of hydrocarbon resources

4.2 Methodology:
In this section, we will set out in detail the proposed approaches that we will take to achieve

the objectives of the study.

Data Collection ————— Data Preparation ———— Feature Selection

Alpgorithm Application
KNN, Random Forest, XGBoost, ANN

Model Tramning
Model Zij.lua!im
l
Before Hype(piameter Tuning After Hyperpamlmeter Tuning &
Cross Validation
l l
EMSE and R for Well 01 and Well 02 RMSE and R? for Well 01 and Well 02
I |
Models Clcmparison
Best Model Selection
Model Application
Results Analysis

Figure IV.01: Flow chart of the proposed approaches.
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5 Development Environment:

The machine learning models were developed and evaluated in Python using the Anaconda
distribution, leveraging libraries such as scikit-learn for machine learning algorithms, pandas for data
manipulation, NumPy for numerical computation, and matplotlib for data visualization. Jupiter
Notebooks provided an interactive environment for data manipulation, model training, and
visualization, enabling iterative development and code sharing. This environment facilitated the
efficient exploration and implementation of various machine learning algorithms, ultimately

contributing to the robust development and evaluation of the ROP prediction and bit selection system.

5.1 Data collection:
One of the most important steps in creating machine learning-based models is providing relevant
data; As a result, providing higher quality data with more samples can enhance the accuracy of these

estimators.

The necessary data was collected through reports submitted by Sonatrach, as the studied wells are

located in the Hassi Messaoud region (southern Algeria).

The data is presented in the form of a compressed file in (RAR) format that contains an Excel file
entitled (Drilling_Data) that contains a follow-up of the drilling process for each meter, in addition to
two PDF files, each of which contains a comprehensive description of the well and its location, the
drilling process for all geological, mechanical and hydraulic settings, and a description of all the

equipment used. As well as the operations that took place during drilling.

The study was allocated to include only the 16-inch technical layer, whose depth generally ranges

from (470 m to 2500 m).

Through the reports, 6 main inputs were taken, namely TVD, WOB, RPM, SPP, FLOW Pump, and
TORAQ, as they are the most important drilling data present in the reports and have a significant impact

on the drilling process.

Also, a single target was taken which is the ROP.
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Feature Name

Data Type

Description

Table.IV.05: data description

Range/Values

Units

Source

Formation_Type

Depth

ROP

WOB

RPM

Mud_Flow_Rate

UCS

Bit_Type

Cutter_Size

Categorical

Numerical
(Float)
Numerical
(Float)
Numerical
(Float)
Numerical
(Integer)
Numerical
(Float)
Numerical
(Float)

Categorical

Numerical
(Float)

Type of
geological
formation

Depth of
measurement
Rate of
Penetration
Weight on Bit
Rotary Speed
Drilling  Fluid
Flow Rate
Unconfined
Compressive
Strength

Type of Drilling
Bit
Size of PDC
Cutters

[Shale,
Sandstone,
Limestone, ...]
1000 - 15000
1-200

5-50

50 - 250

100 - 1000

1000 - 30000

[PDC, Roller
Cone, Hybrid, ...]

8-19

N/A

Ft

ft/hr

Klbs

Rpm

gal/min

Psi

N/A

Mm

Geological

Survey

Drilling Log

Real-time
Sensor
Real-time
Sensor
Real-time
Sensor
Real-time
Sensor
Lab Tests

Bit
Manufacturer
Bit

Specification
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Table.IV.06: A summary of real data for well 2

Depth WOB RPM TRQ FlowIn | SPP ROPH

count 2137 2137 2137 2137 2137 2137 2137
mean 1672 16.05 156 10236.4 | 3012.48 | 2340.05 | 36.87
std 617.04 4.61 16.18 2071.06 | 170.06 292.14 31.47
min 604 1 80 3334 1798 1337 34
25% 1138 13 154 8644 3012 2143 15.7
50% 1672 15 161 10096 3045 2447 26.7
75% 2206 20 166 11746 3083 2544 44.5
max 2740 27 179 15897 3167 2837 164.6

5.2 Data Preparation:
Data preparation is a critical phase in any machine learning project. It involves transforming
raw data into a format that machine learning algorithms can effectively use. Here’s what data

preparation typically involves in our work:
a) Data Cleaning:

Data cleaning is a crucial step to ensure the quality and integrity of the dataset. It involves

identifying, correcting, or removing errors, inconsistencies, and irrelevant information in the data.

® [dentify and remove duplicates: Find and eliminate duplicate data entries, which can skew/distort

analysis.

e Correct inconsistencies: Address typos, formatting errors, and data values that don’t fit expected

patterns (e.g., date formats, units).

® Handle outliers: 1dentify and manage extreme values that might be due to errors or represent
legitimate anomalies. Decide whether to remove them, transform them (e.g., using mean or log
transformations), or leave them depending on the context. Figure IV.02: shows an example of using a

Box plot to visualize outliers in the used dataset.
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Outliers in all dataset

? 8
| 1
-]
1 E %
-]
E ——
i 5
[e]
De;lth WbE RPIM TF%Q FID:NIH SI"P RO‘PH

Figure IV.02: Example of Box plot for detecting outliers
b) Handling Missing Values:

Missing values can significantly affect the performance of machine learning models. It’s
essential to handle them appropriately. The purpose of this step is to delete, replace, or impute missing

data points to maintain the integrity of the dataset.
c) Data Normalization and Scaling:

Normalization ensures that all numerical features contribute equally to the analysis and model
training by bringing them to a common scale. In our work, we used the Min-Max Scaling method that

transforms the values to a range between 0 and 1 (eq. 01).

X—Xmin
Xscaled = G ———— IV.1

Xmax—Xmin
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Depth WOB RPM TRQ FlowIn | SPP
Count 2137 2137 2137 2137 2137 2137
Mean 0.5 0.58 0.77 0.55 0.89 0.67
Std 0.29 0.18 0.16 0.16 0.12 0.19
Min 0 0 0 0 0 0
25% 0.25 0.46 0.75 0.42 0.89 0.54
50% 0.5 0.54 0.82 0.54 0.91 0.74
75% 0.75 0.73 0.87 0.67 0.94 0.8
Max 1 1 1 1 1 1

Data Normalization
E:LS,
I

0.0

0.4

0.3 4

Density

0.2

014

0.0

o

10

15

WOB

20

Data Standarization

Standarized WOB
Real_WOB

-5

[

Figure IV.03: Example of data normalization
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d) Exploratory Data Analysis:

This analysis is used to understand data distributions, correlations, and patterns.

LS

Ty
ouat shae &2

o |-

-oTmgss

o =2 o H ) "z ] =2 o z s
peptn wos RPM THY Flowin

Figure I1V.04: Example of data correlation (well 2)

Correlation of cleaned_data
-10

WoB Depth

RPM

TRQ

-0.2

FlowIn

spp

ROPH

Depth WOB RPM TRQ

Figure IV.05: Correlation matrix of well 2 values
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e) Data Splitting:
Splitting data means dividing this data into training, validation, and test sets:
» Training: to fit model parameters.
» Validation: to tune hyperparameters and prevent overfitting.
P Testing: to evaluate final model performance.

In our work, we first used the simple split method (70-15-15) and then the cross-validation method to

ensure that the splits represent the diversity of your data (stratified sampling).

5.3 Model Development:

The goal of this study is to develop and compare various machine learning models for predicting the
rate of penetration (ROP) in hydrocarbon drilling operations. Accurate ROP predictions can
significantly enhance drilling efficiency and reduce operational costs. This section outlines the
development and training of four different models: K-Nearest Neighbors (KNN), Random Forest,
XGBoost, and Artificial Neural Networks (ANN).

a) Models’ selection:

This research aims to evaluate the effectiveness of various machine-learning techniques for
ROP prediction. The chosen models offer a diverse range of approaches to capturing complex

relationships between input variables and the target variable.

® K-Nearest Neighbors (KNN): This non-parametric model classifies new data points based on their
proximity to existing data points in the feature space. KNN is suitable for handling non-linear
relationships and can be effective for ROP prediction due to its ability to identify similar drilling

conditions and predict their corresponding performance.

® Random Forest: This ensemble learning method combines multiple decision trees to improve
prediction accuracy and reduce overfitting. Random Forest excels at handling high-dimensional
datasets and can capture complex interactions between variables, making it a suitable choice for ROP

prediction.

o Extreme Gradient Boosting (XGBoost): This gradient boosting algorithm iteratively builds an

ensemble of decision trees, weighing the importance of each tree based on its predictive performance.
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XGBoost is known for its high accuracy and robustness, especially in complex datasets with numerous

features.

o Artificial Neural Networks (ANN): This powerful model is inspired by the structure of the human
brain and can learn complex non-linear relationships between input and output variables. ANNs have
shown promising results in various prediction tasks and could potentially offer superior accuracy

compared to other models.
b) Model Training and Evaluation:

The preprocessed dataset was split into training and testing sets, with 70% used for training
and 30% for testing. Each model was trained on the training set and subsequently evaluated on the
testing set. Performance was measured using the metrics: Root Mean Squared Error (RMSE) and R-

squared (R?) which are explained in Chapter II1.

The suggested machine learning algorithms necessitate user-defined initialization of specific
parameters (as outlined in Table.IV.07:). Within this framework, it becomes beneficial to devise an
experimental design or propose methodologies for identifying the optimal parameter combinations
automatically. Our approach involves exploring various techniques, including hyperparameter
selection methods, to determine the most suitable parameters for each algorithm. Subsequently, we aim
to compare the outcomes yielded by the default configuration of each algorithm against those achieved

through our proposed parameter selection methodology.
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Model

KNN

Random forests

XGBoosting

ANN

Table.IV.08: Initialization parameters for models.

Parameters
n_neighbors == The number of

neighbors in the voting process

N_estimators == The number of trees in
the ensemble

Max_depth == The maximum depth of
each tree

N_estimators == The number of trees in
the ensemble

Max_depth == The maximum depth of
each tree

Learning_rate == controls the step size
at each iteration

Batch_Size== The number of training
examples (in our case, drilling data
points) used in one iteration of model
training.

Epochs== One epoch is a complete pass

through your entire training dataset

Optimal value

9

100

20

200

20

0.1

10

100

To determine the optimal value of each model’s parameters, we performed a grid search method with

cross-validation.

6 Results and Discussion:

6.1 ROP prediction:

This section presents the performance evaluation of four machine learning models - KNN,

Random Forest, XGBoost, and ANN - for predicting the rate of penetration (ROP). The models

were evaluated on two wells (Well 01 and Well 02) using two experimental setups: 1) a simple split

without hyperparameter tuning and 2) a combination of hyperparameter tuning and cross-
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validation. The performance metrics used for comparison include Root Mean Squared Error
(RMSE) and R-squared (R?). The results, with and without hyperparameter tuning, are presented
in Table.IV.09.

Table.IV.09: Models’ performance metrics.

Without hyper-parameter | With hyper-parameters
Model Evaluation s tuning Simple split tuning and Cross Valid
metrics ation
Well 01 Well 02 Well 01 Well 02

KNN RMSE 12.789 18.730 12.551 19.220
R 2 76.352 65.576 77.222 63.752
Random RMSE 11.675 13.973 11.697 14.125
Forest RN2 80.291 80.839 80.217 80.422
XGBoost RMSE 12.297 14.111 12.056 13.232
RA2 78.136 80.460 78.986 82.818
ANN RMSE 12.810 18.785 12.593 18.697
RN2 76.275 65.373 77.073 65.697

Table.IV.09 presents the performance metrics of the four models used across both wells, with and

without hyperparameter tuning and cross-validation.

e Performance Without Hyperparameter Tuning

The results of the simple split evaluation without hyperparameter tuning show that Random Forest
consistently outperforms other models on both wells, achieving the lowest RMSE and highest R?
values. Notably, KNN and ANN exhibit similar performance, with lower R? values compared to
Random Forest and XGBoost. XGBoost demonstrates competitive performance on Well 02, achieving
an R? value comparable to Random Forest. However, on Well 01, its performance falls slightly behind

Random Forest.
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Performance with Hyperparameter Tuning and Cross-Validation

After incorporating hyperparameter tuning and cross-validation, the performance of the models

improved significantly. While the overall trends observed in the simple split experiment remain

consistent, the performance differences between models become more pronounced.

Random Forest: This model continues to demonstrate remarkable consistency,
achieving minimal improvement in performance after hyperparameter tuning. Its
stability across both wells and scenarios highlights its robustness and suitability for
ROP prediction.

XGBoost: XGBoost shows significant improvement with hyperparameter tuning,
particularly on Well 02, where its R? value surpasses the others by a substantial margin.
This suggests that XGBoost benefits greatly from careful optimization of its
hyperparameters, potentially due to its ability to learn complex relationships between
input variables.

KNN: Despite hyperparameter tuning, KNN’s performance remains relatively stable
compared to other models. While its R? value improves slightly, it still lags behind
XGBoost and Random Forest. This indicates that KNN’s effectiveness for ROP
prediction may be limited, especially when dealing with complex datasets with
numerous variables.

ANN: The performance of ANN improves with hyperparameter tuning, but the
improvement is less significant compared to XGBoost. ANN still struggles with
achieving high R? values, suggesting that this model might require further tuning and

possibly a larger dataset to improve its predictive accuracy for ROP.

General Observations:

Tuning Benefits: Hyperparameter tuning generally improved model performance,
particularly for XGBoost, underscoring the importance of parameter optimization in
enhancing model accuracy.

Well Variability: The models’ performance varied between the two wells, suggesting
that different geological or operational characteristics might affect predictive accuracy.
This highlights the need for tailored models or additional feature engineering to account

for well-specific factors.
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- Model Robustness: Random Forest emerged as the most robust model, consistently

performing well with both simple split and cross-validation, making it a reliable choice

for ROP prediction in varying conditions.

The evaluation results demonstrate the effectiveness of hyperparameter tuning and cross-

validation in improving the performance of machine learning models for ROP prediction. While

Random Forest consistently performs well across both scenarios, XGBoost shows significant potential

with appropriate optimization, especially in complex datasets.

This suggests that for accurate ROP prediction, more advanced algorithms like XGBoost and

Random Forest, capable of capturing complex interactions between features, may be preferable.

However, it is important to note that the choice of the best model may depend on specific dataset

characteristics and application requirements. Future research should focus on investigating the impact

of various feature engineering techniques on model performance, exploring the use of deeper ANN

architectures, and testing the models on a larger and more diverse dataset to assess their
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Figure IV.06: Visualization of the model’s performances (Well 01).
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Predicted values
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Figure IV.07: Visualization of the model’s performances (Well 02).
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Figure IV.08: Learning curves of our models: (a) welll, (b) well 2.
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Figure IV.08 shows the learning curves for four different machine learning models: K-Nearest
Neighbors (KNN), Random Forest, XGBoost, and Artificial Neural Network (ANN). These learning
curves are plotted for two different wells, labeled (a) and (b), to evaluate the models' performance in

predicting the rate of penetration during drilling operations.

In both cases, the x-axis represents the training examples, and the y-axis represents the score
or performance metric being used (likely some measure of error or accuracy). The learning curves for
each model are plotted using two lines: one showing the training score (typically the error on the

training data) and another showing the cross-validation score (the error on a held-out validation set).

For well (a), we can observe the following:

e The Random Forest model appears to perform the best overall, with the highest cross-validation
score and the smallest gap between training and validation scores, indicating good
generalization.

e The XGBoost model also performs reasonably well, with a slightly lower cross-validation score
than Random Forest but still better than KNN and ANN.

e The KNN and ANN models have larger gaps between their training and validation scores,

suggesting potential overfitting issues.

For well (b), the overall performance of the models is lower compared to well (a), indicating that this

well may be more challenging to predict. However, the relative performance of the models is similar:

e Random Forest and XGBoost still perform better than KNN and ANN.
e KNN and ANN exhibit larger gaps between training and validation scores, indicating potential

overfitting.

Based on these learning curves, the Random Forest and XGBoost models appear to be the most
promising for predicting the rate of penetration in these two wells. However, it's important to note that
these results may vary for different wells or datasets, and further evaluation and tuning of the models

may be necessary for optimal performance.
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6.2 Drilling Bit Selection Qutcomes:

The bit selection algorithm utilized in this study employed four distinct machine learning
models: K-Nearest Neighbors (KNN), Random Forest, XGBoost, and Artificial Neural Network
(ANN). Each model was trained to predict the Rate of Penetration (ROP) based on historical drilling
data. The performance of these models was evaluated using Root Mean Square Error (RMSE) and the

coefficient of determination (R?), both before and after hyper-parameter tuning and cross-validation.

e K-Nearest Neighbors (KNN):

The KNN model demonstrated moderate performance in predicting ROP. Before hyper-
parameter tuning, the RMSE for Well 01 was 12.789, with an R? value of 76.352%. For Well
02, the RMSE was 18.730 with an R? of 65.576%. After tuning, slight improvements were
observed in Well 01 (RMSE: 12.551, R%: 77.222%), while Well 02 showed a marginal decrease
in performance (RMSE: 19.220, R?: 63.752%). This indicates that KNN can be sensitive to

parameter settings and may require careful tuning for optimal performance.

o Random Forest:

The Random Forest model consistently outperformed the other models across both
wells. Without tuning, the RMSE for Well 01 was 11.675 with an R? of 80.291%, and for Well
02, the RMSE was 13.973 with an R? of 80.839%. Post tuning, the performance remained
stable, with a slight improvement in consistency (Well 01 RMSE: 11.697, R*: 80.217%; Well
02 RMSE: 14.125, R* 80.422%). These results suggest that Random Forest is robust and

effective in handling drilling data variability, making it a reliable choice for bit selection.

o XGBoost:

XGBoost also showed strong performance. Initially, the RMSE for Well 01 was 12.297
with an R? of 78.136%, and for Well 02, the RMSE was 14.111 with an R? of 80.460%. Hyper-
parameter tuning further enhanced the results, reducing the RMSE to 12.056 and increasing the

R to 78.986% for Well 01. Well 02 saw significant improvement with an RMSE of 13.232 and
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an R? of 82.818%. XGBoost's ability to handle complex relationships in the data and provide

high accuracy makes it a valuable tool for predicting ROP and selecting optimal drill bits.

o Artificial Neural Network (ANN):

The ANN model provided good results but was slightly less consistent compared to
Random Forest and XGBoost. Before tuning, well 01 had an RMSE of 12.810 with an R? of
76.275%, and Well 02 had an RMSE of 18.785 with an R? of 65.373%. Post tuning, the model
improved slightly, with Well 01 showing an RMSE of 12.593 and an R? of 77.073%, and Well
02 showing an RMSE of 18.697 and an R? of 65.697%. While ANN can capture non-linear

patterns effectively, it requires careful tuning and ample data to achieve optimal results.

The application of these machine learning models for bit selection significantly impacts drilling

performance. By accurately predicting ROP, the models enable more informed decisions regarding

bit selection, leading to improved drilling efficiency and reduced operational costs. Specifically,

Random Forest and XGBoost models have demonstrated high predictive accuracy, suggesting that

their use can optimize bit selection, minimize drilling time, and enhance overall well productivity.

The results indicate that integrating advanced algorithms into drilling operations can lead to

substantial performance improvements, making the drilling process more efficient and cost-

effective.

Bit Database: Create a database or dictionary containing information about different bit types,
their characteristics (e.g., diameter, tooth design, gauge, etc.), and their typical ROP
performance under different conditions. This database can be based on manufacturer
specifications, field data, or a combination of both.
Bit Selection Logic: You'll define a logic or algorithm that uses the predicted ROP and the bit
database to recommend the most suitable bit type for the upcoming drilling section. This logic
could consider factors like:

o Target ROP: If you have a desired ROP range for a specific formation, select a bit that

is likely to achieve that range based on its historical performance.
o Formation Properties: Consider the predicted ROP and the formation's hardness,

abrasiveness, etc. Choose a bit that is known to perform well in that type of formation.
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o Drilling Conditions: Factors like mud weight, rotary speed, and weight on bit
influence bit performance. Choose a bit that's well-suited to the expected drilling

conditions.

6.3 Discussion:

In the context of this project and based on the results presented, we proposed to use the Random

Forest model for the following reasons:

eRobust and stable performance: The model results showed excellent and consistent
performance in both wells, achieving the lowest (RMSE) and highest (R?) coefficient of
determination value compared to other models. This indicates that the random forest is able to

provide accurate predictions of the rate of penetration (ROP).

e Ability to handle diverse data: The random forest model is able to handle a variety
of inputs and complex factors, making it suitable for predicting drilling performance in different

geologic conditions.

eStability and reliability: The model showed high stability after adjusting parameters
and using cross-validation, which means that the results are repeatable and reliable in different

environments.

eEase of interpretation: Although the random forest is a fairly complex model, it
provides a good measure of the importance of features, which helps in understanding the key

factors that affect the penetration rate and making informed decisions on drill head selection.

Based on these advantages, the random forest model is the optimal choice for improving the
accuracy of penetration rate prediction and optimizing the drill head selection process, resulting in

improved drilling efficiency and reduced operational costs.

In this study, we use a trained Random Forest model to predict the Rate of Penetration (ROP) value
based on the input drilling data. This approach allows us to utilize the predictive capabilities of the
model to make informed decisions on the selection of the optimal drilling bit. The detailed steps of the

process are as follows:
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eEntering current drilling data: Drilling data related to the current well is collected, which
includes input variables such as drilling depth (TVD), rotation rate (RPM), torque (Torque), drill head
weight (WOB), flow rate (Flow), and pump pressure (spp).

ePredict the ROP value using the trained model: This data is fed into the trained model, and

the model calculates and predicts the expected ROP value for the current well.

eCompare the predicted ROP value with historical data: We compare the predicted ROP
value with the performance of different drill bit in previous wells. We have a database that contains
information on the performance of different drill bit in old wells, including the actual penetration rate

achieved with each drill bit.

Table.IV.10: the performance of drill bits

Well Name Drilling Phase 16" drill bit ROP
contractor Interval

RHAS QH-1 ST1 ENAFOR 479-2505(m) TFF913S 42.34

RHAS-1 ENAFOR 470-2495(m) Q609F 31.89

RHAQZH-2 ENAFOR 430-2229(m) TFF913S 49.89

RHAQZH-1 ENAFOR 449-2290(m) FX96R 34.32

RHAW-1 ENTP 603-2740(m) MM96R 20.51

e Analyze drill bit performance: We analyze the historical data of different drill bit to see
which drill bit has performed close to the predicted ROP value. The most appropriate drill bit is
determined based on how close the actual ROP is to the ROP predicted by the model.

eSelection of the optimal drilling bit: Based on the previous analysis, the drilling bit that has
shown better and more stable performance in similar geologic conditions, and has achieved a ROP
value close to expectations, is selected. This ensures that the drill bit selected is best suited to achieve

high drilling efficiency and minimize operational costs

eEvaluate performance and continuous improvement: The performance of the selected drill

head is monitored and compared to expectations. If the actual results are in line with the predictions,
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the model can be considered effective. If there are significant deviations, the causes are analyzed and

the model or data used is updated to improve the accuracy of future predictions.

The use of machine learning models can increase the accuracy of predictions compared to
traditional methods, which contributes to improving the overall performance of drilling operations. In
addition, selecting the optimal drilling head based on accurate predictions leads to reduced drilling
time and operating costs, and continuous performance analysis can be utilized to help develop and
improve prediction models, contributing to the advancement of technologies used in the drilling

industry.

7 Conclusion:

This chapter evaluated the performance of four machine learning models for ROP prediction:
KNN, Random Forest, XGBoost, and ANN. The results demonstrate that Random Forest consistently
outperforms other models, both with and without hyperparameter tuning. However, XGBoost shows

significant potential with appropriate optimization, particularly on complex datasets.

The findings highlight the importance of hyperparameter tuning and cross-validation for improving
model performance. While Random Forest offers reliable predictions across different scenarios,
XGBoost’s adaptability with optimization suggests it may be a more powerful tool for complex drilling

environments.

Future research should explore the impact of advanced feature engineering techniques, investigate
the effectiveness of deeper ANN architectures, and evaluate model performance on a larger and more
diverse dataset to assess generalizability. By leveraging the power of machine learning, we can develop
more accurate and robust ROP prediction models, leading to enhanced drilling efficiency, cost

optimization, and improved reservoir management.

In addition, drill bit selection is a key issue that can be optimized by using accurate predictions

of the rate of penetration (ROP) from the considered models. Adopting the Random Forest model as
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the main ROP prediction model can provide stable and reliable performance, contributing to the

selection of the most efficient drill bits for the specific geological conditions.

However, the potential of the XGBoost model should not be overlooked, especially in complex
environments where parameter tuning can significantly enhance the accuracy of the predictions. By
analyzing the historical performance of drill bits and comparing it to the predictions from these models,
the drill bits selection process can be optimized to achieve the best penetration rates and reduce the

time and costs associated with drilling operations.

By leveraging machine learning capabilities, more accurate and robust ROP prediction models
can be developed, leading to improved drilling efficiency, better reservoir management, and significant
operational cost savings. Achieving these goals will make the drilling industry more sophisticated and

innovative, and enhance the ability to deal with complex geological challenges more effectively.
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Conclusion

This research is aimed at optimizing the selection of drilling bit selection in drilling operations
by reviewing the evolution of this process from traditional methods to the use of modern artificial
intelligence techniques. Drill bits play a vital role in the success of drilling operations, as drilling
performance and efficiency are highly dependent on the quality and suitability of the drill bit used.
Traditional methods of selecting drill bits rely heavily on experience and empirical equations, which

are limited by the availability of data and their ability to deal with different geological complexities.

The study addressed the latest applications of artificial intelligence (Al) techniques in the field
of hydrocarbons, with a focus on rate of penetration (ROP) prediction using machine learning (ML)
models. The performance of four machine learning models was evaluated: K-Nearest Neighbors
(KNN), Random Forest, XGBoost, and Artificial Neural Networks (ANN). The results showed that the
Random Forest model offers superior performance in terms of prediction accuracy and stability in
different geological scenarios, while the XGBoost model showed promising potential when parameters

are properly tuned, especially when dealing with complex data.

These results demonstrate the importance of parameter tuning and cross-validation in
improving the performance of predictive models. The use of these techniques can enhance the accuracy
of predictions and thus improve the selection of drilling bits, leading to improved efficiency of drilling
operations and reduced operational costs. Considered machine learning models can provide accurate
predictions that help in making informed decisions on the selection of the most suitable drilling bits,

leading to improved overall drilling performance and significant financial savings.



R ecommendation

Based on the findings of this study, we make the following recommendations:

- This study was done only on the technical layer of drilling and its results are effective only
on the areas near the wells used in the study, so future studies may include the entire well or the scope

of the study can be expanded to include a larger geographical area.

- For more accurate and generalizable future research, machine learning models should be
created through collaboration between an expert in oil exploration and an expert in artificial

intelligence.

- Creating a global model covering a large geographical area requires a huge amount of data

that must be processed accurately in order to give more realistic and accurate results.

- Due to its superior performance in predicting the rate of penetration (ROP), Random Forest
is recommended as the main model for analyzing drilling data and predicting penetration rates in

various geological conditions.

- It is important to explore the potential of the XGBoost model deeper by tuning the parameters
and using cross-validation techniques. This model can be a powerful tool in complex geological

environments where it can provide accurate predictions after being optimized.

- Deeper and more complex artificial neural network (ANN) architectures should be studied
and developed to improve the accuracy of predictions in changing geologic conditions. This can

contribute to better results in complex geologic environments.

- Careful analyses should be conducted to assess the cost and benefit of applying Al
technologies to drilling operations. This will help ensure an optimal return on investment and

significant financial cost savings.
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Figure.3: Drilling Program RHAS QH-1



