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ABSTRACT

The Adam optimizer is widely regarded as a highly effective algorithm for training deep

learning models. However, there are instances where Adam may not perform optimally

and could lead to poor generalization. To address these limitations, several variants of

Adam have been introduced to mitigate its drawbacks. For example, AdaMod, AdaBound,

R-Adan and N-Adam. this thesis aims to introducing the best optimizer and which Adam

limitations addressed that has impact to its performance by providing comparative study

of these variants include AdaMod, Adabound, R-Adam, AdaMax, AMSGrad, AdaBeleif, E-

Adam, YOGI, AdamW, N-Adam, ND-Adam, MSVAG, T-Adam, and Ro-Adam. The results

shows that when we employ a basic CNN and ResNet34 trained on the MNIST and CIFAR10

datasets respectively, AdaMod and AMSGRAD achieves the highest performance with accu-

racy scores 98.8%, 73.4% respectively. These optimizers behave similarly and achieve nearly

the same results. To better understand and ensure the selection of the best optimizer, we

utilized an LSTM architecture to train a sentence completion model on the Penn Treebank

dataset and a time series forecasting model using the Amazon stock dataset. We found that

AdamW and T-Adam outperformed the other optimizers.

Key words: Adam, Adam variants, optimizers, comparative study.
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GENERAL INTRODUCTION

1 INTRODUCTION

Optimization is the backbone of deep learning, ensuring that neural networks learn effi-

ciently and effectively from data. Fundamentally, it’s the process of fine-tuning the param-

eters of a neural network to minimize the difference between the predicted output and the

actual output[19].

Optimization methods are crucial due to the widespread success of deep learning mod-

els across various domains. However, the complexity of these models and the vast amounts

of data have made the optimization process challenging. This complexity necessitates ad-

vanced optimization algorithms that can effectively handle large datasets and intricate

model architectures[36].

The first-order optimization methods have become the most commonly used algorithms

for training deep learning models due to their high performance. These methods can be

categorized into two classes: the first class includes methods with a fixed step size towards

the optimum, such as SGD[31] and NAG[27], while the second class includes methods that

update the step size for each parameter, like AdaGrad[10], RMSProp[39], and Adam[6].

Adam is the default optimizer for many deep learning applications due to its stability

and fast convergence. It combines the benefits of AdaGrad and RMSProp, maintaining their

advantages. However, many studies have shown that Adam can exhibit poor generalization

in certain scenarios, because of the extreme learning rates and sensitivity to noise, which

can reduce its performance.
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GENERAL INTRODUCTION 2

Several variants of Adam have been proposed to overcome its limitations in different

ways, including AdaBound[24], T-Adam[17], N-Adam[9], and R-Adam[20]. These modi-

fied versions have demonstrated their effectiveness in enhancing performance. While each

variant addresses specific issues, the optimal choice of optimizer often depends on the par-

ticular use case, dataset, and model architecture. Therefore, empirical comparisons are

crucial to identify the most suitable optimizer for a given scenario [4].

While many comparative studies focus on similar objectives, they typically include only

one or a few variants of the Adam algorithm. For instance, the authors in [34, 37] included

the five most popular algorithms—SGD, Adagrad, AdaDelta, RMSprop, and Adam—but

did not use any Adam variants. In contrast, Dogo et al. [8] included two Adam variants,

AdaMax and N-Adam, while Derya [35] included three Adam variants: AdaMax, N-Adam,

and AMSGrad.

Our study aims to formally assess the selection of the optimal optimizer among 14

variants of Adam across three distinct tasks: image classification, language modeling, and

time series forecasting with various data structures. The objective is to determine which

approach significantly enhances performance in each task.

2 THESIS STRUCTURE

The format of our thesis is as follows:

The chapter 1 begins with an introduction to the models employed in our study. We

delve into their descriptions and highlight their relevance to our research objectives. Fol-

lowing this, we emphasize the significance of optimization methods in the training process,

discussing several widely adopted techniques. Lastly, we address the challenges encoun-

tered during model training, providing insights into the complexities and issues that arise.

In the chapter 2, we delve deeply into the Adam optimizer, discussing its intricacies and

highlighting several of its limitations. Additionally, we present various modified versions of

Adam, categorized based on their specific adjustments aimed at addressing different Adam

challenges.

The chapter 3 details the essential experimental setup requirements for a comparative

study across three tasks, encompassing data selection and preprocessing, model architec-

ture, and evaluation metrics.
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The outcomes of our experimental work are detailed in Chapter 4 of the study, where

we provide a comprehensive presentation of the results. This chapter also includes an

extensive discussion to analyze and interpret the findings in context.



CHAPTER 1

EXPLORING MODEL ARCHITECTURES AND

LEARNING PROCESSES IN DEEP LEARNING

1 INTRODUCTION

The effectiveness of deep learning models relies primarily on three factors: data, model

architecture, and the learning process. Firstly, the quality and quantity of data influence

the model’s ability to generalize and adapt to different tasks. Secondly, the design of the

model’s architecture determines its capacity to capture and extract meaningful features

from the input data. Furthermore, the learning process, including optimization algorithms

and training strategies, plays a crucial role in refining the model’s parameters and improv-

ing its performance.

In this chapter, we focus on two key factors: model architectures and the learning pro-

cess. First, we provide a brief overview of several architectures utilized across various tasks

relevant to this work. Next, we shift our attention to the learning process, with particular

emphasis on the optimization methods used to train deep learning models. Finally, we dis-

cuss potential challenges encountered during the training process and strategies to address

them.

The figure 1.1 illustrates the three factors that influence the performance of a deep

learning model.

4
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Figure 1.1: Model training factors

2 MODEL ARCHITECTURE

Within the domain of deep learning, a model denotes an architectural or framework de-

signed to process and learn from data. It consists of layers of interconnected nodes, struc-

tured in a specific configuration to perform various tasks[2].

The following models are the primary focus of this study and will be briefly explained

in the next subsection.

2.1 CONVOLUTIONAL NEURAL NETWORK

A Convolutional Neural Network (CNN)[41, 42] is a type of deep neural network com-

monly used in computer vision tasks such as image classification, object detection, and

image segmentation. CNNs are designed, as depicted in the figure 1.2, to automatically

and adaptively learn spatial hierarchies of features from input images through the use of

convolutional layers. The key components and concepts of CNNs:

Convolutional Layers: are the core building blocks of CNNs. They consist of learn-

able filters (also called kernels or weights) that are convolved with the input image to

produce feature maps. Each filter detects specific patterns or features, such as edges, tex-

tures, or object parts.

Pooling Layers: are often used after convolutional layers to reduce the spatial dimen-

sions of feature maps while retaining important information.
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Fully Connected Layers: also known as dense layers, are typically placed at the end

of the CNN architecture. These layers connect every neuron in one layer to every neuron

in the next layer, enabling high-level feature representation and classification.

Activation Functions: introduce non-linearities into the network, allowing it to learn

complex mappings between inputs and outputs. For example RELU, Sigmoid and tanh.

Figure 1.2: CNN Architecture

2.2 RESNET

ResNet[15], short for Residual Network, is a deep neural network architecture shown in

the figure 1.3, that was designed to address the problem of vanishing gradients in very deep

neural networks, which can hinder training and limit the network’s ability to learn complex

patterns. ResNet model consists of several residual blocks, each containing multiple convo-

lutional layers, batch normalization, ReLU activation functions and shortcut connections.

ResNet variants like ResNet50, ResNet34 have been widely used in various computer vision

tasks, such as image classification, object detection.

Figure 1.3: ResNet Architecture
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2.3 LONG SHORT-TERM MEMORY

LSTM [16, 48], a form of recurrent neural network (RNN) architecture, addresses the

vanishing gradient problem and captures long-term dependencies within sequential data.

As a reminder, RNNs [42, 48] are designed for processing sequential data, functioning

as connectionist models that capture sequence dynamics via cyclic patterns within their

node network. They maintain a state capable of encoding information from a context win-

dow of any length, enabling them to theoretically map from the entire history of previous

inputs to each output.

Each RNN comprises multiple instances (across time) of the same network, with each

instance conveying information to the subsequent one. The trainable parameters of an

RNN, including weights and biases, are shared across all time-steps.

Within the LSTM architecture, memory cells like in the figure 1.4, are accompanied by

three essential gates: the input gate, the forget gate, and the output gate. These gates

regulate the flow of information into and out of the memory cells, enabling the network to

remember or forget information selectively.

Input Gate : is responsible for deciding which information from the input should be

stored within the memory cell.

Forget Gate: determines which information to discard from the cell state

Output Gate: controls what information should be output from the memory cell to

the rest of the network

Figure 1.4: LSTM Unit Cell Architecture
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3 LEARNING PROCESS

Learning process refer to the process of training a deep learning model for a specific task.

It involves a series of organized steps such as selecting a loss function, choosing an opti-

mization algorithm for parameter adjustment, and evaluating the model. For the purpose

of this work, we specifically emphasize the optimization algorithms in deep learning.

Optimization methods are crucial in training deep learning models. Their importance

can be presented by:

Improved Performance: Optimization algorithms play a pivotal role in enhancing

the performance of deep learning models by diminishing errors and increasing accuracy.

Through the identification of the optimal parameter set, the model becomes more adept at

capturing intricate patterns within the data [12].

Faster Convergence Efficient optimization techniques speed up the learning process

by reaching an optimal solution in fewer iterations. This is important for training deep

learning models with extensive datasets, saving both time and computational resources[11].

Robustness: Well-optimized models are more robust to variations and noise in the

data [3].

DL models often have millions of parameters, making the optimization problem highly

complex. Hence, iterative algorithms are used to dissect this complexity, breaking down

the optimization task into manageable steps[40]. These algorithms iteratively adjust the

model’s parameters to minimize the loss function, using gradients that signify the steepest

descent direction in the loss landscape. Consequently, they guide the optimization process

toward attaining the optimal solution.

4 GRADIENT DESCENT OPTIMIZATION ALGORITHMS

Gradient descent[32] is one of the most popular algorithms to perform optimization in

deep learning. It’s an algorithm that minimize an objective function f(θ), where θ repre-
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sents the parameters of the model in D-dimensional space, by iteratively updating these

parameters in the opposite direction of the gradient of the objective function ∇θf(θ) with

respect to θ.

It uses the following formula (known as the updating rule) to adjust the parameters θ

where The learning rate, denoted by α, determines the magnitude of the steps we take to

reach a (local) minimum.

θt = θt−1 − α · ∇θf(θt) (1.1)

Gradient descent methods encompass two complementary categories essential for opti-

mizing deep learning models:

Data-aware Gradient Calculation: These methods adapt gradient computations based

on the volume and characteristics of data employed. The trade-off between them is the ac-

curacy of the gradient versus the time complexity to perform each parameter’s update.

Parameter Update Strategies: These methods leverage gradients to iteratively adjust

model parameters during training, aiming to seep up the convergence and improve the

model performance.

These categories collaborate during training to ensure efficient gradient computation

and optimal parameter adjustments, leading to enhanced model optimization. For further

details, refer to the figure 1.5.

Figure 1.5: Gradient Descent Optimization Algorithms
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4.1 DATA-AWARE GRADIENT CALCULATION

Gradient descent has three types based on the amount of data used to compute the gra-

dient of the objective function. When dealing with large amounts of data, we balance the

accuracy of parameter updates against the time required to complete them.

4.1.1 BATCH GRADIENT DESCENT

Batch gradient descent[32] uses the whole dataset to compute the gradient of the objective

function at each iteration.

θt = θt−1 − α · ∇θf(θ) (1.2)

This method provides correct parameter changes, however, it can be sluggish and compu-

tationally expensive, particularly for big datasets.

4.1.2 STOCHASTIC GRADIENT DESCENT

Instead of using the entire dataset to compute the gradient of the objective function f(θ),

SGD uses only a single random example at each iteration[31].

θt = θt−1 − α · ∇θf(θ, x, y) (1.3)

Where x is a sample from the dataset and y is its label.

This method introduces randomness into the parameter updates, which can help escape

local minima and speed up convergence, especially in large datasets. However, it may result

in more noisy updates (fluctuation) compared to batch gradient descent.

4.1.3 MINI-BATCH GRADIENT DESCENT

mini-batch gradient descent[32] computes the gradient of the objective function f(θ) using

a mini-batch of data samples at each iteration.

θt = θt − α · ∇θf(θ,Xi, Yi) (1.4)

Where Xi are data samples of ith batch and Yi are its labels.
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This method reduces the noisy updates, which can lead to more stable convergence

and it strikes a balance between the accuracy of parameter updates and computational

efficiency, making it widely used in practice for training neural networks.

4.2 PARAMETER UPDATE STRATEGIES

Also known as gradient descent optimizers, are adaptations of the gradient descent al-

gorithm designed to mitigate its shortcomings. These methods tackle challenges such as

selecting an appropriate learning rate or mini-batch size, both of which significantly impact

the training process and the model’s performance.

In the following, we will cover some of the commonly used optimizers in Deep Learning,

categorized into two groups.

4.2.1 NON-ADAPTIVE METHODS

Non-adaptive methods in optimization refer to techniques that do not adjust the learning

rate during training based on the observed behavior of the optimization process.

Momentum Is a technique for accelerating gradient descent by adding the momentum

term which helps in smoothing out the noisy gradients[29].

vt = βvt−1 + (1− β)∇θf(θt) (1.5)

θt = θt−1 − αvt (1.6)

Where vt is the velocity,∇θf(θ) is the gradient of the objective function at θt, α is the learn-

ing rate, β is the momentum hyper-parameter that controls the influence of past gradients

on the current update.

By doing so, The momentum term increases for dimensions with consistent gradient

directions and reduces updates for dimensions where gradients change direction. Conse-

quently, this leads to fast convergence and diminished oscillation.

Nesterov Accelerated Gradient (NAG) In order to enhancing the effectiveness of Mo-

mentum, NAG[27] computes the gradient not at the current position θt but at an estimated
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of the next position θt − βvt−1

vt = βvt−1 + α∇θf(θt − βvt−1) (1.7)

θt = θt−1 − vt (1.8)

Such as vt is the velocity,∇θf(θ) is the gradients at θt, α the learning rate and β is the

momentum term.

This approach often results in faster convergence and improved stability compared to

stochastic gradient descent and Momentum.

Limitations Non-adaptive methods, while simpler and often easier to implement, present

several limitations that require attention.

Selecting an appropriate learning rate poses a challenge. A learning rate that is overly

small results in slow convergence, whereas one that is excessively large can hinde conver-

gence and induce fluctuations or divergence in the loss function around the minimum[32].

The figure1.6 depicts the effect of the learning rate on the optimizer’s behavior.

Figure 1.6: The impact of the Learning Rate

Learning rate schedules modify the training rates using techniques like annealing or a

predefined strategy, reducing the rate when the objective function drops below a certain

threshold. However, these schedules and thresholds are predetermined, which means they

cannot dynamically adapt to the unique characteristics of the dataset being used. This

limitation can reduce the effectiveness of the training process[5].

Furthermore, when employing a uniform learning rate, all parameter updates are sub-

jected to the same rate. In scenarios where data is sparse and features exhibit varying

frequencies, it may be preferable to adjust parameters differentially[32].
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Addressing these limitations often involves moving towards adaptive methods that can

adjust to varying conditions and provide more robust performance across different scenar-

ios.

4.2.2 ADAPTIVE METHODS

Adaptive methods dynamically modify the learning rate throughout training, enabling

them to adapt to the specific characteristics of both the optimization problem and the

dataset.

Adaptive Gradient (AdaGrad) AdaGrad[10] is an algorithm for gradient-based opti-

mization that customizes the learning rate based on parameter frequencies, executing

larger updates for infrequent parameters and smaller ones for frequent ones. Consequently,

it proves particularly effective in handling sparse data.

vt =
t∑

i=0

∇θtf(θt,i)
2 (1.9)

αt =
αt−1√
vt + ϵ

(1.10)

θt = θt−1 − αt∇θtf(θt,i) (1.11)

Such as vt is the accumulated sum of squared gradients, αt is the adaptive learning rate at

t and ϵ is a small constant added to avoid division by zero.

AdaGrad may suffer from a diminishing learning rate problem. During training neural

networks. The learning rate gets scaled down so much that the algorithm ends up stopping

entirely before reaching the global optimum.

Root Mean Square Propagation (RMSProp) The RMSProp[39] optimizer shares sim-

ilarities with AdaGrad but offers improvements, particularly in non convex scenarios. It

achieves this by replacing gradient accumulation with an exponentially weighted moving

average, leading to enhanced performance.

vt = βvt−1 + (1− β)∇θtf(θt,i)
2 (1.12)
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θt = θt−1 −
α

√
vt + ϵ

∇θtf(θt,i) (1.13)

where vt is the moving average of the squared gradients, β is decay rate, α the learning

rate and ϵ is a small constant.

Adaptive Moment Estimation (ADAM) Adam[6] combines the strengths of the AdaGrad

and RMSProp optimizers to calculate adaptive learning rates for each parameter. This

approach helps accelerate convergence and improve performance.

gt = ∇θf(θt−1) (1.14)

mt = β1mt−1 + (1− β1)gt (1.15)

vt = β2vt−1 + (1− β2)g
2
t (1.16)

m̂t =
mt

1− βt
1

(1.17)

v̂t =
vt

1− βt
2

(1.18)

θt = θt−1 − α
m̂t√
v̂t + ϵ

(1.19)

Where mt and vt are the first and the second moments, β1, β2 ∈ [0, 1] are smoothing pa-

rameters that control mt and vt respectively. m̂t and v̂t are the bias correction of mt and vt

respectively.

We provide a detailed explanation of Adam in the next chapter.

Gradient descent and its variants are widely adopted for improving model performance.

However, during the training process, these methods encounter various challenges.

5 CHALLENGES DURING TRAINING PROCESS

Throughout the training of deep learning models, numerous challenges and issues may

emerge, impeding the optimization process and influencing the model’s efficacy. Some

common problems include:
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5.1 VANISHING GRADIENT

The issue of unstable gradients, commonly known as the vanishing gradient [28], poses

a significant challenge in training neural networks. Specifically, it affects the weights in

earlier layers of the network. During training, optimizer like Stochastic Gradient Descent

(SGD) compute gradients of the loss function with respect to the model parameters. How-

ever, sometimes these gradients become exceedingly small, causing the optimizer to update

the weights proportionally to the gradient’s magnitude. If the gradient diminishes to a very

small value, the weight update becomes negligible. Consequently, the updated weight

barely deviates from its original value, offering minimal contribution to reducing the loss.

This stunted progress results in the weight remaining stuck, unable to approach its opti-

mal value. This stagnation affects subsequent layers of the network, hindering the overall

learning process.

5.2 EXPLODING GRADIENT

Training very deep neural networks can encounter a challenge known as exploding gra-

dients [28], wherein the derivatives or slopes become excessively large, complicating the

training process. When gradients become extremely large, the optimizer’s update step also

becomes magnified, potentially resulting in detrimental parameter updates where values

oscillate wildly or even become infinite (inf) or undefined (NaN). In such cases, training

may necessitate restarting from a prior checkpoint.

A straightforward solution to mitigate exploding gradients is a technique known as gra-

dient clipping. This approach involves setting a predefined threshold, a hyperparameter

chosen by the user. If the norm of the gradient exceeds this threshold, it is scaled down

before being applied in the optimizer update step. By clipping gradients to a manageable

range, gradient clipping helps stabilize the training process and prevents excessively large

updates that can lead to instability or convergence issues.

Algorithm 1 gradient clipping
gt ← ∇θft(θt−1)
if ∥gt|| > threshold then

gt ← threshold
∥gt|| gt

end if
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5.3 UNDERFITTING

Underfitting[26], a prevalent issue in machine learning, typically arises when the model

hasn’t been sufficiently trained with adequate data. Consequently, it fails to capture the

essential patterns necessary for accurate predictions. Underfitting may also stem from an

ill-suited model choice. This issue can often be mitigated by selecting a different model,

allocating more time for training, or augmenting the training dataset.

To address this problem, we can increase the model complexity by adding layers, using

a deeper neural network.

5.4 OVERFITTING

While underfitting is relatively straightforward to understand, overfitting[26] is often less

intuitive. It occurs when the model becomes excessively accurate, essentially memorizing

patterns present only in the training data. Consequently, its performance on new data

significantly diminishes. Overfitting can be identified by comparing error rates between

training and validation datasets. When the model performs exceptionally well on the train-

ing data but poorly on the validation data, it indicates an overfitting issue.

Some recommended solutions include employing data augmentation or applying regu-

larization techniques such as L1,L2 regularization or dropout to decrease model complexity.

Figure 1.7: Overfitting vs Underfitting
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6 CONCLUSION

The training of deep learning models often demands extensive computational resources

and time due to the complexity of their architectures and the scale of datasets involved.

Additionally, challenges such as vanishing and exploding gradients, overfitting, and un-

derfitting can impede the optimization process. Addressing these challenges requires the

application of regularization techniques, careful data preprocessing, and thoughtful model

architecture design. Despite these obstacles, optimizing deep learning models is pivotal

for achieving state-of-the-art performance in diverse domains, driving advancements in

artificial intelligence and facilitating the development of innovative applications.

In this chapter, we focus on several models and discuss various optimization methods

used for training deep learning models. Finally, we delve into common issues that arise

during the training process.



CHAPTER 2

ADAM-BASED OPTIMIZERS

1 INTRODUCTION

Adam is a widely popular optimization algorithm in deep learning due to its effectiveness

and ease of use. However, many variants have been proposed to improve its generaliza-

tion and address its drawbacks. In this chapter, we detail the Adam algorithm, outline

some of its limitations, and then present several of its variants, categorized based on their

modifications or the specific issues they address.

2 ADAPTIVE MOMENT ESTIMATION (ADAM)

Adam [6, 18] is an algorithm that combine AdaGrad optimizer which performs effectively

with sparse gradients. With RMSProp optimizer which is suitable for both online and

non-stationary settings. First of all, it computes the partial derivative (gradient) of the

objective function f w.r.t its parameters θ, simply because the gradient indicates the impact

of changing the parameter θ on the function f .

gt = ∇θft(θt−1) (2.1)

18
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Then, using the exponential moving averages method, it computes the first and the second

moments of the gradient mt and vt which represent the mean and uncenter variance of the

gradient direction respectively.

mt = β1mt−1 + (1− β1)gt (2.2)

vt = β2vt−1 + (1− β2)g
2
t (2.3)

Simply because the first moment provide more precise directional information, making the

second moment a superior choice for scaling learning rates. And since the initialization

of moving averages as 0’s pushes moment estimations towards zero, especially during the

initial time-steps, it computes bias-corrected versions m̂t and v̂t.

m̂t =
mt

1− βt
1

(2.4)

v̂t =
vt

1− βt
2

(2.5)

Finally, we update the parameters using the following update rule:

θt = θt−1 − α
m̂t√
v̂t + ϵ

(2.6)

with α is learning rate, and ϵ is just a small constant that is added in the denominator for

numerical stability.

Adam uses smoothing parameters β1, β2 to reduce the variance of parameter updates,

thereby improving training stability and convergence.

β1 : This parameter controls the exponential decay rate for the first moment estimate

mt of the gradients. A typical value for β1 is 0.9. By using a value less than 1, the optimizer

gives more weight to recent gradients, helping to adapt to changes in the gradient direction.

β2 : This parameter controls the exponential decay rate for the second moment estimate

vt of the gradients. A typical value for β2 is 0.999. Similar to β1 , using a value less than

1 gives more weight to recent squared gradients, which helps to adaptively adjust the

learning rates for each parameter.
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Algorithm 2 Adam Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← mt

1−βt
1

v̂t ← vt
1−βt

2

θt ← θt−1 − α m̂t√
v̂t+ϵ

end while

3 ADAM’S LIMITATIONS

While the Adam optimizer is commonly used and effective in various deep learning appli-

cations, it is not without its own challenges and potential drawbacks. Recognizing these

obstacles is essential for making well-informed decisions when selecting an optimization

algorithm. The following presents an outline of certain issues associated with Adam:

3.1 MEMORY REQUIREMENTS

Adam requires more memory compared to simpler optimizers like SGD because it main-

tains two moving averages per parameter. This additional memory usage is attributed to

storing both the exponentially decaying average of past gradients (first moment) and the

exponentially decaying average of past squared gradients (second moment)[33].

3.2 POOR GENERALIZATION

Generalization denotes how well a solution θ performs across a wider population. For

example, in classification tasks, generalization is usually defined by the classification error

instead of the cross-entropy. And the generalization bound(gap) represents the difference

between the error on a training set and the error on an unseen data point for a model [14,

44].

It has been observed that Adam can sometimes converge to a solution with a worse

test error in many deep learning tasks, rendering it no better than a random guess. This
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issue arises due to Adam’s behavior during the training process. In the early stages, Adam

is more likely to fit the noise in the data. As training progresses, it retains the learned

patterns and tends to converge at a local stationary point. Consequently, Adam achieves an

excellent training error but performs poorly in terms of generalization on the test set[51].

This issue can be caused by the following limitations of Adam:

3.3 REGULARIZATION

There are two regularization techniques that we use to addressing the overfitting issues in

machine learning:

Weight Decay Regularization: applies a decay factor (1 − λ) to the parameters at the

previous step t

θt = (1− λ)θt−1 − α∇θf(θt−1) (2.7)

L2 Regularization: defines a loss term which is:

L(θt) = f(θt) +
λ

2
||θt||22 (2.8)

so we have:

∇θL(θt) = ∇θf(θt) + λθt (2.9)

However, under SGD optimization, L2 regularization is equivalent to re-parameterized

weight decay regularization. We can see this equivalence if we rewrite the L2 regular-

ization as bellow:

θt = θt−1 − α(∇θf(θt−1) + λθt−1) (2.10)

Due to this equivalence, most deep learning frameworks typically only implement L2 reg-

ularization. However, in the context of Adam optimization, these two techniques are not

equivalent. Utilizing L2 regularization can result in weights with substantial gradients be-

ing less regulated compared to when using weight decay [22, 23].

3.4 EXPONENTIAL AVERAGING

In Adam, the moving average of the squared gradients is used to update the learning rate

for each parameter. However, in such scenarios, it’s commonly noted that certain mini-
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batches provide significant gradients, but not very often. Although these gradients offer

valuable information, their impact in learning rate diminishes rapidly due to exponential

averaging (second moment) leading to poor convergence[30].

3.5 THE DIRECTION MISSING PROBLEM

The issue known as the "direction missing problem"[44] in Adam describes a scenario

wherein the vector for parameter updates loses correlation with the descent direction

across the training loss landscape. This can potentially result in divergence during the

training of large language models. In other words, Adam adapts the global learning rate to

each scalar parameter independently, such that the gradient of each parameter is normal-

ized by a running average of its magnitudes, which changes the direction of the gradient.

3.6 THE ILL-CONDITIONING PROBLEM:

Ill-conditioning [13] refers to situations where small changes in input parameters lead to

significant changes in the output, due to interactions with other parameters, such as the

scaling factors in batch normalization. This sensitivity can cause instability in the training

process, leading to issues like slow convergence or divergence of the model. Therefore,

when considering different magnitudes of an input weight vector, the updates provided by

Adam may produce differing impacts on the overall network function.

3.7 SIGN DESCENT

In scenarios with low variance, Adam uses the "Sign Descent" approach instead of the

"gradient descent" approach which lead to a deviation from the true gradient direction.[1]

Given the following assumptions:

• presuming gt is drawn from a stationary distribution, hence after bias correction we

have E(vt) = E(gt)
2 + V ar(gt)

• low-noise assumption, assume E(gt)
2 ≫ V ar(gt)

• Assume βt
1 is small. Then:
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∆θAdam
t = −α mt√

vt + ϵ
≈ −α E(gt)√

E(gt)2 + V ar(gt) + ϵ
≈ −α E(gt)

||E(gt)||
≈ −αSign(E(gt))

(2.11)

3.8 THE SIGN OF GRADIENT

In the Adam optimization algorithm, the update direction for a weight is dictated by the

sign of the stochastic gradients. In simpler terms, if the gradient is positive, the weight

will be adjusted in one direction, and if it’s negative, it will be adjusted in the opposite

direction. However, in certain cases, when the optimizer oscillates in the one direction

and continually increases in other one, Adam only uses the magnitude of the gradient and

ignore its sign [50].

3.9 INFLUENCE OF NOISE

Adam can be sensitive to the presence of outliers or extreme values in the gradients. Out-

liers may disproportionately affect the calculation of the moving averages, leading to sub-

optimal updates and impacting the overall performance of the optimizer[17].

These limitations impact the performance of the Adam optimizer, leading to the devel-

opment of several variants aimed at addressing these issues.

4 ADAM’S VARIANTS

Researchers have developed several variants of Adam to address specific challenges or

improve its performance in various scenarios. These variants often aim to mitigate issues

like convergence speed, robustness to noise, or generalization capabilities.

We classify these versions according to the changes made or the strategies employed to

address the same problem. As illustrated in the figure2.1.

4.1 LEARNING RATE MODIFIERS

Adam may results in extreme learning rates which lead to convergence issues and unstable

training. In this category we introduce Adam’s variants that reduce the variance of the
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Figure 2.1: Adam’s Variants

adaptive step-sizes in different manner.

4.1.1 ADAMOD OPTIMIZER

The idea behind AdaMod [7] (Adaptive and Momental Bound) is to restrict the adaptive

learning rates with adaptive and momental upper bound in order to smoothing out the un-

expected large learning rates which make AdaMod more stable during the training process.

AdaMod introduces two key modifications:

Applying the exponentail moving average to the adaptive learning rates computed by

Adam to get smoothed learning rates using the following operation:

st = β3st−1 + (1− β3)ηt (2.12)

Using the smoothed learning rates as an adaptive upper bound on the original learning

rates to eliminate extremely large values using:

η̂t = min(ηt, st) (2.13)

This "Long-Term Memory" of past gradients in the form of smoothed learning rates is in-

tended to improve the stability of the training process and get better generalization perfor-

mance.
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Algorithm 3 AdaMod Optimizer
Set m0 ← 0, v0 ← 0,st ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← mt

1−βt
1

v̂t ← vt
1−βt

2

ηt ← α√
v̂t+ϵ

st ← β3st−1 + (1− β3)ηt
η̂t ← min(ηt, st)
θtgetsθt−1 − η̂tm̂t

end while

with ηt, η̂t are the learning rates and st is the moving average of the learning rates.

4.1.2 ADABOUND OPTIMIZER

AdaBound [24] tries to clip the learning rates dynamically to keep them within a desired

range. Using the same estimates mt, vt as in Adam, AdaBound computes the initial learning

rate using this equation :

η′t =
α
√
vt

(2.14)

Then, AdaBound will clip this adjusted learning rate to ensure that it’s within the lower ηl
and the upper ηu bounds, which can be a constant or a function of step t.

η̂t = Clip(η′t, ηl, ηu) (2.15)

After obtaining the bounded learning rate η′t, we scale it using

ηt =
η̂t√
t

(2.16)

Then we use it in the updating rule:

θt = θt−1 − ηtmt (2.17)
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Algorithm 4 AdaBound Optimizer
m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

η′t ← α√
vt

η̂t ← Clip(η′t, ηl, ηu)
ηt ← η̂t√

t
θt ← θt−1 − ηtmt

end while

4.1.3 R-ADAM OPTIMIZER

R-Adam[20] introduces a rectification mechanism that dynamically adjusts the learning

rate, making it more robust and less sensitive to the choice of hyper-parameters. The main

idea behind R-Adam is to address the variance of the adaptive learning rate at the begin-

ning of the training.

Early in training, the variance of the adaptive learning rates can be very high, leading to

unstable and inefficient training. R-Adam introduces a term called the "variance rectifica-

tion term" based on the ratio of the magnitude of the current gradient to the magnitude of

the gradients up to that point, which helps stabilize the training in the initial phases.

If the variance is tractable, R-Adam calculates the rectifier term using this equation:

rt =

√
(ρt − 4)(ρt − 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρt

(2.18)

with

ρt = ρ∞ − 2t
βt
2

1− βt
2

(2.19)

ρ∞ =
2

1− β2

− 1 (2.20)
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Then,it reduces the learning rate to avoid overshooting the minimum using:

lt =

√
1− βt

2

vt
(2.21)

The updating rule will be like:

θt = θt−1 − αrtm̂tlt (2.22)

For the other case(the variance isn’t large), the only thing that has changed between Adam

and R-Adam is the updating rule formula

θt ← θt−1 − αm̂t (2.23)

Algorithm 5 R-Adam Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← mt

1−βt
1

ρ∞ ← 2
1−β2
− 1

ρt ← ρ∞ − 2t
βt
2

1−βt
2

if the variance is large i.e. ρt > 4 then

lt ←
√

1−βt
2

vt

rt ←
√

(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt

θt ← θt−1 − αrtm̂tlt
else

θt ← θt−1 − αm̂t

end if
end while

4.2 ENHANCED VELOCITY CONTROL

The velocity term (second moment vt) in Adam plays a crucial role in determining the mag-

nitude of parameter updates (step-size). It integrates both the current gradient and the mo-
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mentum from previous steps, fostering smoother and more precise adjustments throughout

the optimization process. Several variants of the Adam optimizer have been developed to

modify the calculation of the second moment for achieving more controlled adjustments

during training. Then improve the performance and stability of the optimization process.

below we enumerate some of these variants.

4.2.1 ADAMAX OPTIMIZER

AdaMax [6] is a variant of Adam based on the infinity norm. It updates the exponentially

weighted infinity norm which make it simply and stable than Adam.

AdaMax uses the estimate of the first moment mt the same way as Adam, but instead of

the second moment vt it uses the infinity norm of the gradients.

The second moment vt is the L2 norm of the gradients and it can be generalized to Lp norm

where p > 2, so, in this case it would represent the running average of the Lp norm of the

gradients and it’s computed using :

vt = βp
2vt−1 + (1− βp

2)|gt|p (2.24)

With this generalization formulation for vt, AdaMax lets p = ∞ which results in very

simple and stable optimizer. So, it uses ut instead of vt which is computed using :

ut = max(β2ut−1, |gt|) (2.25)

After that, it applies the bias correction only to the first moment m̂ then the update rule is

very simple:

θt = θt−1 − α
m̂t

ut

(2.26)
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Algorithm 6 AdaMax Optimizer
Set m0 ← 0, u0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
ut ← max(β2ut−1, |gt|)
m̂t ← mt

1−βt
1

θt ← θt−1 − α m̂t

ut

end while

4.2.2 AMSGRAD OPTIMIZER

AMSGrad [30] is derived from "Adaptive Moment Estimation with a Stable Gradient". It

uses the same estimate of the first mt and the second vt moments, but instead of Adam’s

bias correction it simply takes the maximum of all previous and current estimates of the

second moment

v̂t = max(v̂t−1, vt) (2.27)

To have non-increasing step-size avoiding the exponential averaging problem of Adam.

The updating rule is similar to Adam which is:

θt = θt−1 − α
m̂t√
vt + ϵ

(2.28)

Algorithm 7 AMSGrad Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← mt

1−βt
1

v̂t ← max( ˆvt−1, vt)
θt ← θt−1 − α m̂t√

v̂t+ϵ

end while
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4.2.3 E-ADAM OPTIMIZER

E-Adam [46] focuses on the impact of the constant ϵ. It provides a simple modification

without requiring addition hyper-parameters or computational costs.

The constant ϵ in E-Adam is added directly to the second moment vt before the bias cor-

rected v̂t as in the original Adam. This modification allows E-Adam to take smaller steps

when the parameters θ are close to the global minimum, which can help avoid overshoot-

ing. Additionally, E-Adam incorporates an adaptive ϵ rather than a fixed constant as in

Adam.

Algorithm 8 E-Adam Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t+ϵ

m̂t ← mt

1−βt
1

v̂t ← vt
1−βt

2

θt ← θt−1 − α m̂t√
v̂t

end while

4.2.4 ADAMOMENTUM OPTIMIZER

Expanding on the Adam optimizer, AdaMomentum [43] replaces the gradient within the

velocity term vt with its momentum mt, thereby enhancing the smoothing of the exponen-

tially moving average (EMA), and changing the location of ϵ like in E-Adam optimizer. This

alteration can enhance training by offering better control over step sizes, thereby mitigating

the issue of overshooting.
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Algorithm 9 AdaMomentum Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2) m

2
t + ϵ

m̂t ← mt

1−βt
1

v̂t ← vt
1−βt

2

θt ← θt−1 − α m̂t√
v̂t

end while

4.2.5 ADABELIEF OPTIMIZER

AdaBelief [50] tries to reduce the generalization gap between the SGD and the adaptive

methods by dynamically adjusting the step-size in Adam, based on the "belief" correction

between the actual gradient gt and the predicted gradient mt. When gt significantly di-

verges from mt, indicating a tentative belief in gt, the optimizer proceeds cautiously with

a small step. However, when gt closely aligns with mt, signaling strong belief in gt, it

confidently takes larger steps.

Algorithm 10 AdaBelief Optimizer
Set m0 ← 0, s0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1 + (1− β2)(gt −mt)

2

m̂t ← mt

1−βt
1

ŝt ← st
1−βt

2

θt ← θt−1 − α m̂t√
ŝt+ϵ

end while

4.2.6 YOGI OPTIMIZER

YOGI [47] is proposed to address the convergence issues especially in non-convex stochas-

tic optimization problems. It uses the same estimate mt as in Adam, but for the second
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moment vt YOGI adds a factor which is sign(vt−1−g2t ) and the rest (bias correction, update

rule) are the same.

vt ← β2vt−1 + (1− β2)sign(vt−1 − g2t )g
2
t (2.29)

to understand how this modification affects the estimate of vt, we need to take look at the

change in vt − vt−1 vector and see how they are different between Adam and YOGI.

Table 2.1: The different between Adam and YOGI.

Optimizer Adam YOGI
vt − vt−1 −(1− β2)(vt−1 − g2t ) −(1− β2)Sign(vt−1 − g2t )g

2
t

When vt−1 − g2t < 0, it results in increasing vt in both Adam and YOGI. However, in

Adam the magnitude of the change is depends on vt−1 − g2t , but in YOGI, it’s only depends

on g2t resulting in controlled increase/ decrease of the learning rates.

Algorithm 11 YOGI Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2) sign(vt−1 − g2t ) g

2
t

m̂t ← mt

1−βt
1

v̂t ← vt
1−βt

2

θt ← θt−1 − α m̂t√
v̂t+ϵ

end while

4.3 ADAM CORPORATION ENHANCED

Below, we provide a list of some modified versions of Adam that aim to enhance its perfor-

mance by introducing additional terms.
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4.3.1 ADAMW OPTIMIZER

When we are using adaptive methods like Adam for training, it’s best to use weight decay

regularization instead of L2 regularization. That’s where AdamW [21] comes in to modify

the updating rule for incorporating weight decay regularization in Adam.

Most of the steps such as the estimates mt, vt and applying bias correction are the same as in

Adam. The only difference is in the update equation where we will add the regularization

term λθt and it will be :

θt = θt−1 − α
m̂t√
vt + ϵ

+ λθt−1 (2.30)

Algorithm 12 AdamW Optimizer
m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← mt

1−βt
1

v̂t ← vt
1−βt

2

θt = θt−1 − α m̂t√
vt+ϵ

+λθt−1

end while

4.3.2 A-ADAM OPTIMIZER

The Accelerate Adam (A-Adam) [38] algorithm which build on the Adam optimizer by

keeping track of the exponentially decaying average of the past updates .

In addition to the first mt and the second vt moments of the gradients as in Adam, the

current update rule incorporates a small value d proportional to the sign of the previous

updates which is meant to accelerate the process along dimensions where the gradients

consistently point in the same direction.
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Algorithm 13 A-Adam Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← mt

1−βt
1

v̂t ← vt
1−βt

2

d← ∆θt−1 ∗ sing(gt)(1− β1)
θt = θt−1 − (α β1m̂t√

v̂t+ϵ
+d)

end while

4.3.3 N-ADAM OPTIMIZER

N-Adam [9] aims to improve the speed of convergence and the quality of the learned

models by modifying Adam’s momentum component with Nesterov accelerated gradient

(NAG). It proves to be a favorable optimizer for training models with sparse gradients.

With N-Adam, when performing the bias correction for the first moment mt, we also include

the current gradients gt as in the formula:

m̂t =
β1

1− βt+1
1

mt +
(1− β1)

1− βt
1

gt (2.31)

Algorithm 14 N-Adam Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← β1

1−βt+1
1

mt +
(1−β1)
1−βt

1
gt

v̂t ← vt
1−βt

2

θt ← θt−1 − α m̂t√
v̂t+ϵ

end while
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4.3.4 ND-ADAM OPTIMIZER

ND-Adam[49] It fixes the direction missing problem by adapting the learning rate to each

weight vector rather than to each individual weight. This is achieved by making the learn-

ing rate a linear combination of historical gradients. Specifically, the bias-corrected first

moment m̂t of Adam is generalized from a scalar to a vector:

m̂t(wi) =
mt(wi)

1− βt
1

(2.32)

This approach ensures that the learning rate adjustment considers the entire weight vector’s

history, thereby maintaining the correct update direction.

It addresses the ill-conditioning problem by explicitly normalizing each weight vector:

wi,t =
ŵi,t

||ŵi,t||2
(2.33)

Additionally, it preserves only the gradient component that is orthogonal to wi,t−1 using:

gt(wi) = ĝt(wi)− (ĝt(wi).wi,t−1)wi,t−1 (2.34)

This optimization focuses solely on the direction of the weight vector, allowing for precise

control of the effective learning rate.

ND-Adam divides the trainable parameters θ, into two sets, θv and θs, such that θv =

{wi | i ∈ N} which includes the weight vectors, and θs = {θ|θv} which includes all other

parameters. The θv set is updated using the previously described rules, while the θs set is

updated using the standard Adam rules. The learning rates for the two sets of parameters

are denoted by αv
t and αs

t respectively.
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Algorithm 15 ND-Adam Optimizer
Set t← 0
for i ∈ N do

wi,0 ← wi,0

||wi,0||2
m0 ← 0
v0 ← 0

end for
while t < T do

t← t+ 1
for i ∈ N do

ĝt(wi)← ∇θft(wi)
gt(wi)← ĝt(wi)− (ĝt(wi).wi,t−1)wi,t−1

mt(wi)← β1mt−1(wi) + (1− β1)gt(wi)
vt(wi)← β2vt−1(wi) + (1− β2)||gt(wi)||22
m̂t(wi)← mt(wi)

1−βt
1

v̂t(wi)← vt(wi)
1−βt

2

ŵi,t ← wi,t−1 − αv
t

m̂t(wi)√
v̂t(wi)+ϵ

wi,t ← ŵi,t

||ŵi,t||2
end for
θst ← AdamUpdate(θst−1, α

s
t )

end while

4.3.5 MSVAG OPTIMIZER

The Momentum Sign Variance Adapted Gradient (MSVAG)[1] combines momentum-based

optimization with adaptive learning rate adjustment based on the sing variance of the

gradient. The main idea is to monitor the gradients during train process, because the sign

variance reflects how much the gradients are fluctuating in different directions. e.i high

sign variance indicates that the gradients are changing rapidly and erratically, while low

sign variance suggests a more stable gradient direction.

Like Adam, MSVAG compute the first mt and the second vt moments and their bias

correction versions m̂t and v̂t. However, it adds

ρ(β, t) :=
(1− β)(1 + βt+1)

(1 + β)(1− βt+1)
(2.35)
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Then use it to calculate :

st =
1

1− ρ(β, t)
(vt − m̂t

2) (2.36)

γ =
m̂t

2

m̂t
2 + ρ(β, t)st

(2.37)

The update rule of MSVAG is:

θt = θt−1 − α(γ · m̂t) (2.38)

Algorithm 16 MSVAG Optimizer
Set m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← βmt−1 + (1− β)gt
vt ← βvt−1 + (1− β)g2t
m̂t ← mt

1−βt

v̂t ← vt
1−βt

ρ(β, t)← (1−β)(1+βt+1)
(1+β)(1−βt+1)

st ← 1
1−ρ(β,t)

(vt − m̂t
2)

γ ← m̂t
2

m̂t
2+ρ(β,t)st

θt ← θt−1 − α (γ · m̂t)
end while

MSVAG exposes only two hyper-parameters, α and β.

4.4 NOISE SENSITIVITY REDUCERS

In environments with high levels of noise, where gradients fluctuate widely due to ran-

dom perturbations, the standard Adam optimizer’s performance may suffer. The presence

of noise can result in imprecise gradient estimates, thereby disrupting the optimization

process. Here are some versions of Adam specifically designed to address this issue.

4.4.1 RO-ADAM OPTIMIZER

Robust Adam [45] is online gradient learning method for time series prediction that mod-

ifies Adam to detect the outliers and adaptively tunes the learning rate using a relative
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prediction error term rt which indicates whether the point is an outlier or not. A higher

value of rt indicates that the current point is more likely to be an outlier. We calculate this

term using:

rt =

min
{
max

{
k,
∥∥∥f(θt−1)
f(θt−2)

∥∥∥} , K
}

if ||f(θt−1)|| > ||f(θt−2)||

min
{
max

{
1
K
,
∥∥∥f(θt−1)
f(θt−2)

∥∥∥} , 1
k

}
otherwise

(2.39)

Where k and K are the lower and upper thresholds. We then compute the moving average

of rt to obtain a smoother estimation.

dt = β3dt−1 + (1− β3)rt (2.40)

Adding the estimation dt to the updating rule allows to control the adaptive learning rate

θt = θt−1 − α
m̂t

dt
√
v̂t + ϵ

(2.41)

Algorithm 17 Ro-Adam Optimizer

Set m0 ← 0, v0 ← 0, t← 0,d0 ← 1, f(θ0) = f(θ−1)← 1
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1)
mt ← βmt−1 + (1− β)gt
vt ← βvt−1 + (1− β)g2t
m̂t ← mt

1−βt

v̂t ← vt
1−βt

if ||f(θt−1)|| > ||f(θt−2)|| then
rt ← min

{
max

{
k,
∥∥∥f(θt−1)
f(θt−2)

∥∥∥} , K
}

else
rt = min

{
max

{
1
K
,
∥∥∥f(θt−1)
f(θt−2)

∥∥∥} , 1
k

}
end if
dt ← β3dt−1 + (1− β3)rt
θt ← θt−1 − α m̂t

dt
√
v̂t+ϵ

end while



CHAPTER 2. ADAM-BASED OPTIMIZERS 39

4.4.2 T-ADAM OPTIMIZER

The moving average estimators mt and vt in Adam make the gradients come from the Gaus-

sian distribution which is sensitive to outliers and noise. That’s why Adam’s performance

tends to degrade when trained on a dataset with a high level of noise.

T-Adam[17] is a variant of Adam that substitutes the Gaussian distribution with the Stu-

dent T distribution, known for its robust properties in probability distributions. The key

distinction between Adam and T-Adam lies in their computation of the first moment, which

T-Adam calculates using the following formula:

mt =
Wt−1

Wt−1 + wt

mt−1 +
wt

Wt−1 + wt

gt (2.42)

where:

wt = (ν + d)

(
ν +

∑
j

(gtj −mt−1
j )2

vt−1 + ϵ

)−1

(2.43)

And

Wt =
2β1 − 1

β1

Wt−1 + wt (2.44)

T-Adam require two additional hyper-parameters, the degrees of freedom ν which control

the robustness, and d is the dimension of the gradients gt.

Algorithm 18 T-Adam Optimizer
Set m0 ← 0, v0 ← 0, t← 0
W0 ← β1

1−β1

while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1)

wt ← (ν + d)

(
ν +

∑
j

(gtj−mt−1
j )2

vt−1+ϵ

)−1

mt ← Wt−1

Wt−1+wt
mt−1 +

wt

Wt−1+wt
gt

Wt ← 2β1−1
β1

Wt−1 + wt

vt ← βvt−1 + (1− β)g2t
m̂t ← mt

1−βt

v̂t ← vt
1−βt

θt ← θt−1 − α m̂t√
v̂t+ϵ

end while
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5 CONCLUSION

To summarize, Adam and its variations are powerful optimization algorithms that have

significantly contributed to the success of deep learning. Their flexibility and effectiveness

make them popular choices for neural network training. In this chapter, we detail the

Adam algorithm, outline some of its limitations, and then present several of its variants,

categorized based on their modifications or the specific issues they address.



CHAPTER 3

METHODOLOGY OF COMPARATIVE STUDY

1 INTRODUCTION

In this study, we use various Adam variants to train different models in order to iden-

tify the best-performing optimizer among the following 15 options: Adam, AdaMod, Ad-

aBound, R-Adam, AdaBelief, AdaMax, AMSGrad, E-Adam, YOGI, AdamW, N-Adam, ND-

Adam, MSVAG, T-Adam, and Ro-Adam.

This chapter details the experimental setup requirements for a comparative study across

three tasks: image classification, language modeling, and time series forecasting. It covers

the datasets and their preprocessing methods, the training configurations, and the evalua-

tion metrics utilized

2 IMAGE CLASSIFICATION TASK

Image classification represents a core task in computer vision, aiming to categorize images

into predefined classes or categories. In this study, we employ the following configuration.

41
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2.1 DATASETS

MNIST Dataset: It1 is one of the most well-known benchmark in computer vision. It

contains 60,000 training images and 10,000 testing images, each of which is a grayscale

image of size 28x28 pixels. Each image corresponds to a handwritten digit from 0 to 9.

We use this dataset because it exhibits sparse characteristics, with each image typically

having a black background and the digit occupying only a small portion of it.

CIFAR10 Dataset: It2 is another widely used benchmark. It contains 60,000 32x32

color images in 10 different classes, with 6,000 images per class. These classes include

common objects such as airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships,

and trucks.

CIFAR10 has dense characteristics, making it more complex. This increased complexity

helps in enhancing model performance and robustness.

2.2 PREPROCESSING

We apply identical preprocessing steps to both datasets by scaling the data to a range of 0

to 1 and dividing them into 32 batches.

2.3 MODEL’S ARCHITECTURE

Two models are trained. The first model is a simple CNN with 5 layers, as illustrated in

the figure 3.1, and trained on the MNIST dataset. The idea behind using this model is

to demonstrate that Adam’s limitations are primarily observed in deeper models. Employ-

ing a straightforward model allows us to assess the modifications’ effects without being

influenced by these limitations.

The second model is a ResNet34 architecture, trained on the CIFAR10 dataset. ResNet

addresses the vanishing/exploding gradient problem during training by leveraging two

fundamental properties. Firstly, each block in the network augments the data, streamlining

1https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html
2https://pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.

htmltorchvision.datasets.CIFAR10

https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html
https://pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.htmltorchvision.datasets.CIFAR10
https://pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.htmltorchvision.datasets.CIFAR10
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Figure 3.1: simple CNN

learning and improving information preservation. Secondly, ResNet incorporates skip con-

nections, leading to shorter gradient paths, thereby facilitating more seamless and efficient

training.

2.4 LOSS FUNCTIONS:

Cross Entropy Loss: Also known as log loss, is a commonly used loss function for

classification tasks, including multi-class classification. It measures the difference between

the predicted probability distribution and the actual probability distribution of the classes.

its formula is:

CrossEntropyLoss = − 1

N

N∑
i=1

C∑
j=1

yi,j log(pi,j)

such as N is the number of examples in the batch.

C is the number of classes.

yi,j is a binary indicator of whether class j is the correct classification for example i

pi,j is the predicted probability that example i belongs to class j.
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2.5 EVALUATION METRICS

Accuracy score: It refers to a metric used to evaluate the performance of a classifica-

tion model. It measures the percentage of predictions made by the model that match the

actual labels in the dataset. It’s computed using

Accuracy =
Number of correct predictions
Total number of predictions

× 100%

High accuracy scores indicate that the model is making correct predictions most of the

time.

Precision: It represents the proportion of correctly predicted positive instances (true

positives) out of all instances predicted as positive (true positives and false positives). It’s

calculated using the formula:

Precision =
True Positives

True Positives + False Positives

High precision indicates that the model is making accurate positive predictions and has

a low rate of falsely classifying negative instances as positive.

Recall: Also known as sensitivity or true positive rate. It measures the ability of the

model to correctly identify positive instances out of all actual positive instances. It is cal-

culated using the formula:

Recall =
True Positives

True Positives + False Negatives

High recall indicates that the model is effectively capturing a large percentage of actual

positive instances, minimizing the number of false negatives (instances incorrectly classi-

fied as negative).

F1 score: It is the harmonic mean of precision and recall. It provides a balance be-

tween precision (the ability of the classifier not to label a negative sample as positive)

and recall (the ability of the classifier to find all the positive samples). The formula for

calculating the F1 score is:
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F1 = 2× Precision× Recall
Precision + Recall

High F1 scores indicate that the model has both high precision and high recall, meaning

it is making accurate positive predictions while also capturing a high percentage of actual

positive instances

Matthews Correlation Coefficient: It is a measure used in machine learning to eval-

uate the quality of binary classification predictions, particularly in imbalanced datasets. Its

ranges from [−1, 1], where 1 indicates perfect prediction, 0 indicates random prediction,

and −1 indicates total disagreement between prediction and observation. We can compute

the MCC score using this formula:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

3 LANGUAGE MODELING TASK

Language modeling, an essential task in natural language processing (NLP), revolves around

predicting the next word or sequence of words within a given context. Its principal ob-

jective is to grasp the structure and patterns of a language, enabling the generation of

meaningful text. In our work, we use the following setting for this task.

3.1 DATASET

Penn Treebank dataset: It3 is a widely used corpus in natural language processing

(NLP) and computational linguistics. It consists of a large collection of English text derived

from various sources, including newspaper articles, transcripts of spoken language, and

literature. It is known for its manually annotated syntactic structures, particularly parse

trees, which represent the grammatical structure of sentences.

3https://pytorch.org/text/stable/datasets.html?highlight=penn+treebanktorchtext.

datasets.PennTreebank

https://pytorch.org/text/stable/datasets.html?highlight=penn+treebanktorchtext.datasets.PennTreebank
https://pytorch.org/text/stable/datasets.html?highlight=penn+treebanktorchtext.datasets.PennTreebank
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3.2 PREPROCESSING

We segment it into sentences and further divide these into 128 batches. The target is the

last word of each sentence, while the input consists of the remaining words.

3.3 MODEL’S ARCHITECTURE

We train an autosentence completion model using an LSTM architecture. This model con-

sists of an embedding layer, followed by three LSTM layers, each with 128 nodes, and a

final dense layer for generating the output.

3.4 LOSS FUNCTIONS

Categorical Cross Entropy Loss It’s a specific adaptation of cross-entropy loss ap-

plied to multi-class classification tasks, particularly when labels are encoded in a one-hot

format. Widely employed in language modeling, it’s valued for its efficacy in quantifying

the disparity between predicted probability distributions and actual ground truths.

H(p, q) =
n∑

i=1

p(xi) log q(xi)

Where q(xi) and p(xi) represent the probability distributions of predictions and targets

respectively and xi is an input vector.

3.5 EVALUATION METRICS

perplexity: It[25] measures how well a probability distribution or model predicts a

sample. In the context of language modeling, it quantifies how well a language model

predicts a sequence of tokens (e.g., words or characters). A lower perplexity indicates

better performance, as it means the model assigns higher probabilities to the actual tokens

in the sequence.

Given a sequence of tokens w1, w2, ...., wn, the perplexity is calculated as

PP = n

√
1∏n

i=1 P (wi|w1, w2, ...., wi−1)
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or

PP = Exp(CrossEntropyLoss)

In addition to the matrix below, we also utilize the accuracy and F1 score that were

mentioned earlier.

4 TIME SERIES FORECASTING TASK

Time series forecasting is a branch of statistical analysis and machine learning focused on

predicting future values based on historical data points that are ordered chronologically.

It’s used across various domains like finance, economics, weather forecasting, and more.

For this task, we use the following configurations.

4.1 DATASET

Amazon Stock Dataset: It4 refers to a collection of historical data related to the trad-

ing activity of Amazon.com Inc. (ticker symbol: AMZN) on stock exchanges. Such datasets

usually include information such as the opening price, closing price, highest price, lowest

price, trading volume, and adjusted closing price of Amazon stock for each trading day.

4.2 PREPROCESSING

We generate a time series dataset comprising 8 columns extracted from its "data" and "close"

columns. The input consists of a vector representing the closing prices of the previous 7

days, while the target represents the closing price of the current day. The data is divided

into 16 batches.

4.3 MODEL’S ARCHITECTURE

The model consists of two LSTM layers, each comprising 4 nodes, followed by a dense layer

for the output.

4https://drive.google.com/file/d/1MqY9yaql1XQbodFSngsHxGbyLdWRhVXj/view

https://drive.google.com/file/d/1MqY9yaql1XQbodFSngsHxGbyLdWRhVXj/view
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4.4 LOSS FUNCTIONS:

Mean Squared Error also known as the L2 loss, is a common loss function used in

regression tasks. It quantifies the magnitude of the error between a model’s predictions ŷi

and the actual output yi. It’s given by:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2

4.5 EVALUATION METRICS

Mean Absolute Error (MAE): measures the average magnitude of the errors in a set

of predictions, without considering their direction. It’s computed using:

MAE =
1

n

n∑
i=1

|yi − ŷi|

where:

n is the number of observations.

yi are the actual values and ŷi are the predicted values.

Mean Squared Error (MSE): measures the average squared difference between the

predicted values ŷi and the actual values yi. Its formula is :

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

Coefficient of determination: or R2, indicates the proportion of the variance in the

dependent variable that is predictable from the independent variables. It ranges from 0 to

1, with 1 signifying that the regression predictions perfectly fit the data. It can be calculated

using:

R2 = 1−
∑n

i=1(yi − ȳ)2∑n
i=1(yi − ŷi)2

Such that: ȳ represents the mean of the observed values yi and ŷi represents the predicted

values.
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Mean Absolute Percentage Error (MAPE): measures the average absolute percent-

age difference between actual yi and predicted ŷi values.Its formula is:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%

Table 3.1: Summaries of the models utilized for our experiments.

Task Model Dataset
Image
Classification

CNN MNIST
ResNet34 CIFAR 10

Language modeling 3 LSTM Layers Penn Treebank
Time Series Forecasting 2 LSTM Layers Amazon Stock

5 TRAINING

We utilize Kaggle platforms for conducting our experiments with the following hardware

specifications:

GPU : NVIDIA TESLA P100 GPU and NVIDIA TESLA T4 x2 GPU

RAM: 15GB memory.

Every model was trained with each of the 15 optimizers, using the recommended de-

fault hyperparameters: α = 10−3, (β1, β2, β3) = (0.9, 0.999, 0.9999), ϵ = 10−8, for AdamW

we use λ = 10−2 as weight decay, also RoAdam’s thresholds are (k,K) = (0.1, 10), and for

T-Adam we use ν = 1,d = dim(∇θft(θ)). For AdaBound we use as boundaries this two

functions:

ηl(t) =

(
1− 1

(1− γ)(t+ 1)

)
α

ηu(t) =

(
1 +

1

(1− γ)t

)
α

With γ = 10−3
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6 CONCLUSION

In this chapter, we outline the experimental settings for three different tasks employed in

this study. We begin with a description of the datasets utilized in each task, along with

their preprocessing steps. Subsequently, we detail the model architectures, the choice of

loss functions, and the evaluation metrics employed. The next chapter will explore and

analyze the obtained results.



CHAPTER 4

EXPERIMENTAL RESULTS

1 INTRODUCTION

In this chapter, we’ll offer a comparative study of optimization methods rooted in Adam to

underscore how different optimizers impact the efficacy and performance of deep learning

models.

2 RESULTS AND DISCUSSION

We present the results of our experiments and provide a detailed discussion within the

context of specific tasks, for each category, and in relation to other categories.

2.1 IMAGE CLASSIFICATION TASK

The tables (4.1,4.2) present the accuracy, recall, precision, F1-score, MCC and training time

of training CNN and ResNet34 models with 14 optimizers respectively. The figures (4.1,4.2,

4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10,4.11, 4.12, 4.13, 4.14) and (4.15, 4.16, 4.17, 4.18,

4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28) provides a visual representation

of the training loss and accuracy achieved by each optimizer.

51
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Table 4.1: The results of training CNN using MNIST dataset for 150 epochs

Optimizers Accuracy Recall Precision F1 MCC Training Time

Adam 98.59 0.9859 0.9859 0.9858 0.9843 24 min 50 sec

AdaMod 98.80 0.988 0.9880 0.9879 0.9866 29 min 1 sec

AdaBound 98.52 0.9852 0.9852 0.9851 0.9835 27 min 56 sec

R-Adam 98.76 0.9876 0.9876 0.9875 0.9862 25 min 9 sec

AdaMax 98.42 0.9842 0.9842 0.9841 0.9824 27 min 14 sec

AMSGrdad 98.52 0.9852 0.9852 0.9851 0.9835 26 min 31 sec

E-Adam 98.44 0.9844 0.9844 0.9844 0.9826 26 min 52 sec

AdaBelief 98.49 0.9849 0.9849 0.9848 0.9832 27 min 35 sec

YOGI 98.51 0.9851 0.9851 0.9850 0.9834 28 min 37 sec

AdamW 98.76 0.9876 0.9876 0.9875 0.9862 24 min 54 sec

N-Adam 98.45 0.9845 0.9846 0.9844 0.9827 25 min 22 sec

ND-Adam 98.64 0.9864 0.9864 0.9863 0.9848 26 min 23 sec

MSVAG 98.21 0.9821 0.9821 0.9820 0.9801 32 min 26 sec

T-Adam 98.44 0.9844 0.9844 0.9843 0.9826 32 min 49 sec

Figure 4.1: Adam with CNN Figure 4.2: AdaMod with CNN
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Figure 4.3: AdaBound with CNN Figure 4.4: R-Adam with CNN

Figure 4.5: AdaMax with CNN Figure 4.6: AMSGrad with CNN

Figure 4.7: E-Adam with CNN Figure 4.8: AdaBelief with CNN
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Figure 4.9: YOGI with CNN Figure 4.10: AdamW with CNN

Figure 4.11: N-Adam with CNN Figure 4.12: ND-Adam with CNN

Figure 4.13: MSVAG with CNN Figure 4.14: TAdam with CNN

2.1.1 CNN MODEL

We can observe from training a simple model that:
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• From the table 4.1 and the figure4.2, it is evident that AdaMod outperforms the

other optimizers, irrespective of the time required. Additionally, it effectively addresses the

overfitting problem, as demonstrated by the favorable loss function curve.

• The Learning Rate Modifiers outperforms the others with closely comparable results,

likely because of their shared strategy of adjusting the learning rate during the training

process, which results in reduced fluctuations in the loss function curve as illustrated in

figures: 4.2,4.3,4.4 .

• The performance of the Enhanced Velocity Control optimizers has been notably

poorer compared to other optimizers, particularly Adam. Additionally,These methods also

demonstrate susceptibility to overfitting, as evidenced by their significant generalization

gap. This can be attributed to the inadequacy of their modifications to the second moment

of Adam, particularly when applied to simpler models such as our CNN.

• In the Adam Corporation Enhanced category, AdamW and NDAdam outperform the

standard Adam optimizer with only minor differences. This is may be attributed to the

enhancements introduced by AdamW, which incorporates a regularization term into the

updating rule of Adam. Similarly, NDAdam optimizes the updating direction, contributing

to its improved performance compared to traditional Adam.

• For the Noise Sensitivity Reducers, The replacement of the Gaussian distribution

in T-Adam doesn’t significantly impact performance increases the processing time, which is

why T-Adam’s performance is similar to Adam for this model. However, it helps in reducing

fluctuations in the loss curve figure 4.14.

• Adam proves to be the quickest optimizer among its variants, while T-Adam lags

behind, taking approximately 8 minutes longer.
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Table 4.2: The results of training ResNet using CIFAR10 dataset for 150 epochs

Optimizers Accuracy Recall Precision F1 MCC Training Time

Adam 71.48 0.7144 0.7165 0.7141 0.6829 90 min 10 sec

AdaMod 70.53 0.7052 0.7092 0.7092 0.6727 126 min 17 sec

AdaBound 72.44 0.7243 0.7235 0.7236 0.6937 111 min 46 sec

R-Adam 70.08 0.7006 0.7031 0.7008 0.6675 94 min 20 sec

AdaMax 69.23 0.6923 0.6952 0.6923 0.6584 98 min 29 sec

AMSGrdad 73.41 0.734 0.7338 0.7336 0.7045 90 min 54 sec

E-Adam 71.37 0.7136 0.7178 0.7139 0.6822 100 min 57 sec

AdaBelief 71.69 0.7169 0.7192 0.7170 0.6856 114 min 39 sec

YOGI 69.51 0.6951 0.6945 0.6944 0.6613 109 min 41 sec

AdamW 71.59 0.716 0.7213 0.7149 0.6852 94 min 4 sec

N-Adam 62.81 0.628 0.6301 0.6283 0.5868 96 min 17 sec

ND-Adam 69.57 0.6956 0.7078 0.6956 0.6630 94 min 32 sec

MSVAG 60.03 0.6005 0.5986 0.5993 0.5561 147 min 54 sec

T-Adam 72.38 0.7239 0.7223 0.7228 0.6932 201 min 27 sec

Figure 4.15: Adam with ResNet Figure 4.16: AdaMod with ResNet
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Figure 4.17: AdaBound with ResNet Figure 4.18: R-Adam with ResNet

Figure 4.19: AdaMax with ResNet Figure 4.20: AMSGrad with ResNet

Figure 4.21: E-Adam with ResNet Figure 4.22: AdaBelief with ResNet
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Figure 4.23: YOGI with ResNet Figure 4.24: AdamW with ResNet

Figure 4.25: N-Adam with ResNet Figure 4.26: ND-Adam with ResNet

Figure 4.27: MSVAG with ResNet Figure 4.28: T-Adam with ResNet

2.1.2 RESNET34 MODEL

For a deep model like ResNet, we found different results and observed that:
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• Overall, the AMSGrad optimizer demonstrates superior performance compared to

other optimizers, ranking as the second fastest after Adam. This superiority is likely due

to its ability to control the step size by modifying the second moment in Adam. Following

AMSGrad, AdaBound and T-Adam perform similarly, with only a slight difference in their

effectiveness.

• All optimizers face challenges with overfitting and are computationally intensive;

they perform well on the training data but fail to generalize to the validation data. This

issue is particularly pronounced in T-Adam, which exhibits a substantial gap in generaliza-

tion and requires extended processing time.

• For the Learning Rate Modifiers, AdaBound demonstrates outstanding performance,

ranking as the second fastest optimizer after R-Adam. Its technique for controlling the

learning rate makes it more stable during the training process.

• In the Enhanced Velocity Control category, two optimizers, AMSGrad (the fastset)

and AdaBelief (the slowest) demonstrate superior performance compared to Adam. They

address overfitting by controlling the learning rate through modification of the second

moment using historical gradient information.

• Similar to the previous model (CNN), AdamW demonstrates significantly improved

performance and speed compared to the optimizers in the Adam Corporation Enhanced

category.However, T-Adam shows better performance than Adam when applied to ResNet,

regardless of the duration, suggesting that its technique may be particularly effective in

deep models.

• There is a significant time difference between the fastest and slowest optimizer,

approximately 111 minutes longer.

2.2 LANGUAGE MODELING TASK

The table 4.3 represent the accuracy, perplexity, F1 scores and training time obtained by

training LSTM model on Penn Treebank dataset for 200 epoch. the highest value of the
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accuracy and f1 score the lowest value of the perplexity indicate the well trained opti-

mizer. the figures (4.29,4.30,4.31,4.32,4.33,4.34,4.35, 4.36,4.38,4.39,4.40) visualize the

perplexity and accuracy curves.

Table 4.3: The results of training LSTM using Penn Treebank dataset for 200 epochs

Optimizers Accuracy Perplexity F1 Training Time

Adam 92.52 1.872 0.9194 77 min 39 sec

AdaMod 92.29 1.949 0.9171 89 min 30 sec

AdaBound 92.06 1.781 0.9137 83 min 38 sec

R-Adam 92.53 1.881 0.9197 79 min 40 sec

AdaMax 92.41 1.865 0.9173 81 min 43 sec

AMSGrdad 92.06 3.127 0.9207 78 min 3 sec

E-Adam 92.28 1.768 0.9158 80 min 38 sec

AdaBelief 92.56 2.127 0.9196 83 min 38 sec

YOGI 92.17 1.869 0.9158 84 min 6 sec

AdamW 92.71 1.760 0.9220 77 min 28 sec

N-Adam 92.38 1.918 0.9180 79 min 37 sec

ND-Adam 92.38 1.929 0.9180 78 min 25 sec

MSVAG 91.06 2.031 0.9 96 min 53 sec

T-Adam 92.26 1.906 0.916 118 min 13 sec

Figure 4.29: Adam with LSTM Figure 4.30: AdaMod with LSTM
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Figure 4.31: AdaBound with LSTM Figure 4.32: R-Adam with LSTM

Figure 4.33: AdaMax with LSTN Figure 4.34: AMSGrad with LSTM

Figure 4.35: E-Adam with LSTM Figure 4.36: AdaBelief with LSTM
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Figure 4.37: YOGI with LSTM Figure 4.38: AdamW with LSTM

Figure 4.39: N-Adam with LSTM Figure 4.40: ND-Adam with LSTM

Figure 4.41: MSVAG with LSTM Figure 4.42: T-Adam with LSTM

2.2.1 DISCUSSION

• The AdamW optimizer achieves better performance and operates more efficiently

by directly applying weight decay to the parameters θ, which results in more accurate
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gradient updates and reduced overfitting. Following AdamW, RAdam and AdaBelief also

outperform the traditional Adam optimizer, offering better stability and improved training

dynamics.

• All of these optimizers have closely comparable scores, but most perform worse than

Adam. This suggests that their modifications may not be effective for this specific task or

data.

• For the Learning Rate Modifiers, R-Adam stands out as the top performer. This

superior performance is likely due to its rectifier term which mitigates the high variance of

learning rates, especially during the initial training phases, which helps in achieving stable

convergence. However, the model trained with Adabound exhibits a lower perplexity score,

indicating proficiency in predicting and generating text solely within the confines of the

training data.

• Adabelief optimizes step sizes effectively through its incorporation of a belief term in

the second moment, resulting in the highest accuracy and F1 scores among the optimizers

in the Enhanced Velocity Control category. Conversely, E-Adam achieves the top perplexity

score, indicating its strong generalization capabilities generating text.

• The Adam Corporation Enhanced optimizers are among the fastest compared to

others, closely approaching the speed and performance of Adam. However, MSVAG is

time-consuming and performs poorly.

2.3 TIME SERIES FORECASTING TASK

MAE, MSE, R2, and MAPE metrics and the training time are collected in the table4.4 after

training the LSTM model on the Amazon stock dataset with 15 optimizers. The lowest

values for MAE, MSE, and MAPE indicate that the model is well trained, while the highest

value for R2 also signifies good model performance. The following figures illustrate the

training loss curve(right) and predictions(left) for each optimizer.
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Table 4.4: The results of training LSTM using Amazon Stock dataset for 150 epochs

Optimizers MAE MSE R2 MAPE Training Time

Adam 0.0293 0.0016 0.9780 34.74 1 min 48 sec

AdaMod 0.0313 0.0017 0.9764 46.49 2 min 52 sec

AdaBound 0.0411 0.0028 0.9624 53.46 2 min 31 sec

R-Adam 0.0288 0.0015 0.9787 37.28 1 min 51 sec

AdaMax 0.039 0.0025 0.9656 51.65 2 min 18 sec

AMSGrdad 0.0417 0.0029 0.9601 54.19 1 min 49 sec

E-Adam 0.0294 0.0016 0.9786 34.45 2 min 19 sec

AdaBelief 0.0286 0.0015 0.9787 35.34 2 min 32 sec

YOGI 0.0352 0.0020 0.9724 39.78 2 min 23 sec

AdamW 0.0294 0.0016 0.9786 34.45 1 min 49 sec

N-Adam 0.0293 0.0016 0.9781 37.82 1 min 53 sec

ND-Adam 0.0289 0.0015 0.9787 35.36 2 min 10 sec

MSVAG 0.1258 0.0211 0.7177 331.27 3 min 16 sec

T-Adam 0.0287 0.0015 0.9792 35.47 3 min 52 sec

Ro-Adam 0.0353 0.0021 0.9718 41.84 3 min 39 sec

Figure 4.43: Adam with LSTM Figure 4.44: AdaMod with LSTM
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Figure 4.45: AdaBound with LSTM Figure 4.46: R-Adam with LSTM

Figure 4.47: AdaMax with LSTN Figure 4.48: AMSGrad with LSTM

Figure 4.49: E-Adam with LSTM Figure 4.50: AdaBelief with LSTM
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Figure 4.51: YOGI with LSTM Figure 4.52: AdamW with LSTM

Figure 4.53: N-Adam with LSTM Figure 4.54: ND-Adam with LSTM

Figure 4.55: MSVAG with LSTM Figure 4.56: TAdam with LSTM

Figure 4.57: RoAdam with LSTM
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2.3.1 DISCUSSION

• For the MAE score, AdaBelief has the lowest value, indicating it performs well re-

gardless of the direction of the errors. Additionally, T-Adam achieves the best score in the

R2 metric, indicating it fits the data well with very small variance. However, for the MARE

score, AdamW has the lowest value, demonstrating its reliability in predictions.

• Seven out of fourteen optimizers exhibit superior performance compared to Adam,

including R-Adam, AdaBelief, E-Adam, AdamW, N-Adam, ND-Adam, and T-Adam. These

optimizers demonstrate excellent data fitting capabilities, yielding predictions that closely

align with the actual data.

• The MSVAG optimizer displays the poorest performance, struggling to accurately fit

the data and yielding random predictions. Conversely, the other optimizers in the Adam

Corporation Enhanced category demonstrate strong performance, consistently outperform-

ing expectations.

• for the Noise Sensitivity Reducers, T-Adam achieves best performance due to its

robust properties.

Here, we summarize the key findings of this study:

• The MSVAG optimizer demonstrates the poorest performance and is time-consuming

among the three tasks, facing challenges in accurately fitting the data and producing un-

predictable predictions. This could be attributed to the sensitivity of its performance to

hyper-parameter tuning.

• AdaMod and AMSGrad excel in optimizing neural networks for image classification

tasks, showcasing superior performance. However, Adam remains the fastest optimizer.
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• AdamW stands out as the premier option for language modeling tasks. Its weight

decay mechanism significantly improves the model’s capacity to generalize and produce

coherent text, outperforming other Adam variants in both perplexity scores and predictive

accuracy.

• AdaBelief and T-Adam demonstrate exceptional performance in time series fore-

casting despite the significant amount of time required. These variants excel in capturing

temporal dependencies and reliably predicting future trends, making them particularly ef-

fective for models tailored to time series data.

3 CONCLUSION

In conclusion, this comparative study has underscored the diverse strengths of various

Adam variants across different tasks and emphasized the criticality of choosing an opti-

mizer that aligns with the specific characteristics and demands of each task.



GENERAL CONCLUSION

This thesis aims to evaluate the performance of Adam variants across a diverse set of

datasets and tasks to better understand the generalizability of each optimizer. By con-

ducting a comparative study on three distinct tasks—image classification, language model-

ing, and time series forecasting—we identify the optimal Adam variant and elucidate the

strengths and weaknesses of each optimizer.

In the first chapter, we offered an overview of various architectures applied to different

tasks pertinent to this study. We emphasized the significance of optimization methods in

training deep learning models.

In the second chapter, we provide a detailed overview of the Adam algorithm, discuss

its limitations, and introduce several of its variants, categorized by their modifications and

the specific issues they address.

The third chapter details a comparative study on image classification, language mod-

eling, and time series forecasting, describing datasets, preprocessing methods, training

configurations, and performance metrics.

The last chapter presents a comparative analysis of Adam-based optimizers to demon-

strate how these optimizers impact the effectiveness and performance of deep learning

models.

We could not include certain Adam variations in this comparative analysis due to time

and technical limitations. Our future work will explore these variations more extensively

with additional optimizers.
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