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ABSTRACT 

This study introduces an improved Hybrid Genetic Algorithm (GA) combined with a Branch 

and Cut technique to find near-optimal solutions for the NP-hard Multidimensional 

Knapsack Problem (MKP). The MKP, a variant of the traditional 0-1 Knapsack problem, is 

a discrete optimization challenge used to model extensive issues such as network management, 

admission control in adaptive multimedia systems, telecommunications, and quality of service. 

Our hybrid approach leverages the global search potential of Genetic Algorithms alongside the 

precise optimization capabilities of Branch and Cut methods. This method is inspired by 

principles of evolutionary computation and mathematical optimization to efficiently navigate 

complex problem spaces. The enhancement involves incorporating a local search heuristic 

within the hybrid framework, ensuring both the exploration and exploitation capabilities of the 

Genetic Algorithm and local search are effectively utilized. Experimental results demonstrate 

that our Hybrid GA with Branch and Cut approach delivers superior performance in solution 

quality, significantly surpassing the current best-known results for the OR5x100-0.25 

benchmark. 

 

Keywords: Multidimensional-Knapsack Problem, Genetic Algorithm, Branch and Cut 
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 الملخص 

 

للعثور على حلول شبه مثالية لمشكلة حقيبة    الفرع والقطع مدمجة مع تقنية  هجينة محسنةخوارزمية جينية  تقدم هذه الدراسة  

، تحديًا 1-0، وهي نوع من مشكلة حقيبة الظهر التقليدية  NP-Hardمشكل من درجة   MKP عدي .الظهر متعددة الأبعاد

المتعددة  الوسائط  القبول في أنظمة  الشبكات، والتحكم في  إدارة  لنمذجة مشاكل واسعة مثل  التقديري تسُتخدم  التحسين  في 

تستفيد طريقتنا الهجينة من إمكانات البحث العالمية للخوارزميات الجينية مع قدرات  . التكيفية، والاتصالات، وجودة الخدمة

التحسين الدقيقة لأساليب "الفرع والقطع". تستند هذه الطريقة إلى مبادئ الحساب التطوري والتحسين الرياضي للتنقل بكفاءة  

ضمن التحسين دمج خوارزمية بحث محلية ضمن الإطار الهجين، مما يضمن الاستفادة في مساحات المشكلات المعقدة. يت

النتائج التجريبية أن نهجنا  الفعالة من قدرات الاستكشاف والاستغلال لكل من الخوارزمية الجينية والبحث المحلي. تظهر 

جودة الحل، متفوقًا بشكل كبير على أفضل    الهجين من الخوارزمية الجينية مع "الفرع والقطع" يقدم أداءً متفوقًا من حيث

  OR5x100-0.25. النتائج المعروفة للمرجعية

 الفرع و القطع  , خوارزمية جينية,حقيبة الظهر متعددة الأبعاد الكلمات المفتاحية:
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Résumé 
 

 

Cette étude présente un Algorithme Génétique Hybride (GA) amélioré combiné avec une 

approche de Branch and Cut pour trouver des solutions quasi-optimales au problème NP-

difficile du Sac à Dos Multidimensionnel (MKP). Le MKP, une variante du problème 

classique du Sac à Dos 0-1, est un défi d'optimisation discrète utilisé pour modéliser des 

problèmes étendus tels que la gestion de réseaux, le contrôle d'admission dans les systèmes 

multimédias adaptatifs, les télécommunications et la qualité de service (QoS). Notre approche 

hybride exploite le potentiel de recherche globale des Algorithmes Génétiques avec les 

capacités d'optimisation précises des méthodes Branch and Cut. Cette méthode s'inspire des 

principes de la computation évolutionnaire et de l'optimisation mathématique pour naviguer 

efficacement dans des espaces de problèmes complexes. L'amélioration consiste à intégrer une 

heuristique de recherche locale dans le cadre hybride, garantissant ainsi que les capacités 

d'exploration et d'exploitation de l'Algorithme Génétique et de la recherche locale sont 

efficacement utilisées. Les résultats expérimentaux démontrent que notre approche 

d'Algorithme Génétique Hybride avec Branch and Cut offre des performances supérieures en 

termes de qualité de solution, surpassant significativement les meilleurs résultats connus pour 

le benchmark OR5x100-0.25. 

Les mots Clé:   Problème du Sac à Dos Multidimensionnel, Algorithme Génétique, Branch 

and Cut 
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General Introduction 

 

General Introduction 

The field of combinatorial optimization has long been a focal point of research due to its vast 

array of applications in various domains, including logistics, finance, manufacturing, and 

telecommunications. At the heart of combinatorial optimization lies the challenge of making 

optimal decisions from a finite set of feasible solutions. These problems are often characterized 

by their NP-hard complexity, making them difficult to solve using conventional methods. 

Among these problems, the 0/1 Multidimensional Knapsack Problem (MKP) stands out due to 

its practical relevance and computational intensity. 

The 0/1 Multidimensional Knapsack Problem is a variant of the classical knapsack problem, 

where the goal is to maximize the total profit of items placed in a knapsack without exceeding 

the capacity constraints in multiple dimensions. This problem is representative of many real-

world scenarios, such as resource allocation, portfolio selection, and cargo loading, where 

multiple constraints must be considered simultaneously. 

Traditional methods for solving the MKP, such as dynamic programming and branch and 

bound, often fall short due to the exponential growth of the solution space with increasing 

problem size. Consequently, heuristic and meta-heuristic approaches, which provide near-

optimal solutions within a reasonable time frame, have gained prominence. Among these, 

genetic algorithms (GAs) have shown considerable promise due to their adaptability and 

robustness in exploring large solution spaces. 

However, genetic algorithms alone can sometimes struggle with convergence speed and 

solution accuracy. To address these limitations, hybrid approaches that combine the strengths  

of multiple methods have been proposed. One such approach is the integration of genetic 

algorithms with the branch and cut method, a powerful exact technique that systematically 

prunes the solution space and tightens the problem formulation using cutting planes. 

This thesis aims to develop and evaluate a hybrid algorithm that leverages the exploratory 

power of genetic algorithms and the precision of the branch and cut method to solve the 0/1 

Multidimensional Knapsack Problem more efficiently. The proposed approach seeks to strike 

a balance between exploration and exploitation, enhancing both the convergence rate and the 

quality of the solutions obtained. 

In this introductory chapter, we will first provide an overview of combinatorial optimization 

research, outlining its importance and the various types of problems it encompasses. We will 

then delve into the specific characteristics and challenges of the 0/1 Multidimensional 

Knapsack Problem. Following this, we will introduce genetic algorithms and the branch and 

cut method, highlighting their respective strengths and limitations. Finally, we will present an 

outline of the thesis, summarizing the content of each subsequent chapter. 
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Structure of the Thesis 

● Chapter 1: Combinatorial Optimization Research 

This chapter will explore the foundations of combinatorial optimization, discussing key 

concepts, methods, and problem types. It will provide a comprehensive background that 

contextualizes the relevance of the MKP. 

● Chapter 2: Multidimensional Knapsack Problem 

Here, we will delve into the specifics of the MKP, discussing its formulation, variants, 

and the inherent challenges in solving it. 

● Chapter 3: Genetic Algorithm 

This chapter will provide an in-depth look at genetic algorithms, their components, 

operations, and applications, setting the stage for their use in our hybrid approach. 

● Chapter 4: Branch and Cut 

We will introduce the branch and cut method, explaining its core concepts, algorithmic 

structure, and how it can be effectively combined with genetic algorithms. 

● Chapter 5: Proposed Approach 

This chapter will detail the development of our hybrid algorithm, including the 

integration process, enhancements, and theoretical justifications. 

● General Conclusion 

Finally, we will summarize our findings, discuss the implications of our research, and 

suggest directions for future work. 

By systematically addressing each of these areas, this thesis aims to contribute to the field of 

combinatorial optimization by providing a novel and effective solution to the 0/1 

Multidimensional Knapsack Problem, thereby advancing both theoretical understanding and 

practical application. 
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Chapter 1: Combinatorial Optimization Research 

1.1 Introduction to Combinatorial Optimization Research 

 

Operations Research (OR) is the discipline of applied mathematics that deals with questions of 

optimal resource utilization in industry and the public sector. Over the past decade, the scope 

of OR has expanded to include fields such as economics, finance, marketing, and business 

planning. More recently, OR has been used for managing healthcare and education systems, 

solving environmental problems, and in other areas of public interest. 

Optimization is a branch of applied mathematics and operations research. An optimization 

problem is defined as a search problem, which involves exploring a space containing all 

potential feasible solutions, with the aim of finding the optimal solution or the closest possible 

to the optimum, minimizing or maximizing an objective function. Decision variables can be 

either continuous, resulting in a continuous problem, or discrete, resulting in a combinatorial 

problem. 

A combinatorial optimization problem (COP: Combinatorial Optimization Problems) consists 

of a finite set of solutions, where each solution must satisfy a set of constraints related to the 

nature of the problem. Each solution is associated with a value, called the objective value, 

which is evaluated using an objective function. Combinatorial optimization problems can be 

single-objective, optimizing a single objective function, or multi-objective, optimizing multiple 

objective functions. 

Combinatorial optimization encompasses a broad class of problems with applications in many 

application domains, including the travelling salesman problem and the knapsack problem. 

The knapsack problem models a situation analogous to filling a backpack, which cannot 

support more than a certain weight, with all or part of a given set of objects, each with a weight 

and a value. The objects placed in the backpack must maximize the total value without 

exceeding the maximum weight. This problem will be described in more detail in the first 

chapter. 

Multi-objective optimization is an important area of study in operations research, due to the 

multi-objective nature of most real-world problems. The earliest work on multi-objective 

problems was conducted in the 19th century on studies in economics by Francis Y. Edgeworth 

(1845-1926), and it was more formally used by the Italian economist Vilfredo 

  



Chapter 1:                                                                 Combinatorial Optimization Research 

 

 

12 
 

Pareto (1848-1923). Multi-objective optimization allows for a proper understanding of the 

essential characteristics of real-world problems and enhances their perception by decision-

makers. 

There are several solution methods for multi-objective combinatorial optimization problems. 

These methods belong to two main families: 

- Exact methods (Branch and Bound, Dynamic Programming, cutting plane methods, two-

phase method...) 

- Approximate methods (simulated annealing, tabu search, genetic algorithms, ant colony 

algorithms...) 

The two-phase method is a general solving framework popularized by Ulungu in 1993, with 

the central idea of exploiting the specific structure of combinatorial optimization problems for 

their resolution in a multi-objective context. It has since been applied to a large number of 

problems, albeit limited to the bi-objective context. As the name suggests, this method is 

divided into two steps: the first consists of finding all supported solutions of the Pareto front, 

then the second phase searches among these solutions for unsupported Pareto solutions. 

1.1.1 Combinatorial Optimization Problem 

A combinatorial problem is any situation where one seeks a solution while respecting the 

presence of a set of constraints. The solution is the result of combining these constraints in a 

way that maximizes some and minimizes others. These constraints have a crucial characteristic: 

each constraint influences the others either when minimizing its value or maximizing it. In 

other words, we say that the constraints are conflicting. 

For example, the following scenario presents a combinatorial problem: one wants to buy a 

fashionable car while also keeping the price reasonable and within a certain limit. If we 

maximize the first constraint (a good car), we will have a maximum price; conversely, if we 

minimize the price, we might end up with a lower-quality car within the limits. In this example, 

we observe that it's challenging to reconcile these two constraints according to our needs. 

1.2 Definition and Main Concepts 

1.2.1 Definition 

A combinatorial optimization problem can be formally defined as follows: given a finite set of 

feasible solution S and an objective function 𝑓: 𝑆 → 𝑅, find a solution 𝑠 ∗ 𝜖 𝑆 such that  

𝑓(𝑠 ∗) ≤ 𝑓(𝑠) ∀ 𝑠 ∈ 𝑆 in a minimization problem, or 𝑓(𝑠 ∗)  ≥  𝑓 ∀ 𝑠 ∈  𝑆 in a maximization 

problem [2]. These problems are often represented by graphs, networks, or sets, and the goal 

is to find the optimal arrangement or subset that satisfies the given criteria. 

1.2.2 Main Concepts in COR 

Combinatorial optimization research (COR) encompasses several key concepts that form the 

basis of understanding and solving these problems. These concepts include: 
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Feasibility: A solution is feasible if it meets all the problem's constraints. For example, in the 

knapsack problem, a solution is feasible if the total weight of selected items does not exceed 

the knapsack's capacity [1]. 

Optimality: A feasible solution is optimal if it yields the best possible value of the objective 

function. In the context of the knapsack problem, an optimal solution maximizes the total value 

of the selected items while adhering to the weight constraint [2]. 

Search Space: The search space is the set of all possible solutions. In combinatorial 

optimization, this space is typically very large, making exhaustive search impractical for most 

problems. Efficient algorithms aim to explore this space effectively to find optimal or near-

optimal solutions [3]. 

Complexity: The computational complexity of a combinatorial optimization problem is a 

measure of the resources required to solve it, typically in terms of time or space. Many 

combinatorial optimization problems are NP-hard, indicating that no known polynomial-time 

algorithms can solve all instances of these problems [4]. 

 

Approximation: Due to the complexity of many combinatorial optimization problems, 

approximation algorithms are often used to find solutions that are close to optimal within a 

reasonable time frame. These algorithms provide guarantees on the quality of the solution 

relative to the optimal one [5]. 

Heuristics and Meta-heuristics: Heuristics are problem-specific strategies designed to find 

good solutions quickly. Meta-heuristics, on the other hand, are higher-level procedures that 

guide the search process, often combining multiple heuristics to explore the solution space 

more effectively. Examples include genetic algorithms, simulated annealing, and tabu search 

[6]. 

In summary, combinatorial optimization problems are defined by their finite set of feasible 

solutions and the objective to find the best solution under given constraints. Key concepts such 

as feasibility, optimality, search space, complexity, approximation, heuristics, and meta-

heuristics are central to understanding and solving these problems. The subsequent sections 

will delve deeper into specific methods and examples, illustrating how these concepts are 

applied in practice. 
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1.3 Solving Combinatorial Optimization Problems 

Solving combinatorial optimization problems involves finding the best possible solution from 

a finite set of feasible solutions. These problems are ubiquitous in various fields, including 

logistics, finance, engineering, and computer science, where optimal decision-making is 

crucial. Due to the NP-hard nature of many combinatorial optimization problems, a wide range 

of methods has been developed to tackle them, each with its own advantages and limitations 

[7]. 

 

Heuristic Methods 

Heuristic Methods are techniques designed for solving a problem more quickly when classic 

methods are too slow or for finding an approximate solution when classic methods fail to find any 

exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for 

speed. In a way, it can be considered a shortcut. 

 

Examples: 

 

• Simulated Annealing 

Simulated annealing is a probabilistic technique inspired by the annealing process in 

metallurgy. It explores the solution space by allowing occasional moves to worse 

solutions to escape local optima, gradually reducing these moves as the algorithm 

progresses. This method is particularly useful for large, complex problems where the 

search space is vast and multimodal [8]. 

 

• Tabu search 

Tabu search enhances local search methods by maintaining a list of recently visited 

solutions, known as the tabu list, to avoid cycling back to them. This approach allows 

the algorithm to explore new regions of the solution space and helps in escaping local 

optima. Tabu search is effective for various combinatorial optimization problems, 

including scheduling and routing [9]. 

 

Exact Methods 

Exact methods guarantee finding the optimal solution by exhaustively exploring the solution 

space. These methods are typically computationally intensive and are often feasible only for 

small to moderately sized problems. 
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Examples: 

 

• Branch and Bound 

The method of branch and bound utilizes two concepts: branching or the partitioning 

of the problem into sub-problems (represented by nodes), and the evaluation of these 

nodes using relaxation techniques (such as continuous or Lagrangian relaxation). The 

evaluation of a node involves bounding the solutions and pruning unnecessary nodes, 

as illustrated in Figure 1.1. It's worth noting that the effectiveness of the branch and 

bound method largely depends on the branching strategy, which can be breadth-first, 

depth-first, or best-first. Additionally, the branching method employed and the nature 

of the evaluation function used strongly influence this method. 

 

• The branch and bound algorithm developed by Horowitz and Sahni considers elements 

ordered according to the decreasing order of profit-to-weight ratio. Subsequently, the 

partitioning is performed on the next element. From each node of the tree, and for an 

element  j taken in the predefined order, two branches are developed: the first branch, 

𝑥𝑗 = 1 , corresponds to putting element j  into the knapsack, and the second branch, 

𝑥𝑗 =  0 , corresponds to excluding element  j . 

 

 

 

 

Figure 1.1:  Branch and Bound Method Scheme 

 

 

• Dynamic Programming (DP) 

Dynamic programming solves problems by breaking them down into simpler sub 

problems and solving each sub problem only once, storing the solutions for future 

reference. This method is particularly effective for problems with overlapping sub 

problems and optimal substructure, such as the knapsack problem and sequence 

alignment in bioinformatics [10]. 
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• Cutting Planes 

The cutting planes method involves iteratively adding linear constraints to tighten the 

feasible region of an optimization problem. By refining the problem formulation, this 

method progressively converges to the optimal integer solution. Cutting planes are 

commonly used in conjunction with branch and bound to solve integer programming 

problems more efficiently [11]. 

Approximate methods 

Approximate methods strike a balance between solution quality and computational effort, 

providing near-optimal solutions within a reasonable time frame. These methods are 

particularly valuable for large-scale, complex problems. 

Example: 

 

• Local Search 

Local Search is used by many meta-heuristic. It is about making incremental improvements to 

the current solution through a basic transformation until no improvement is possible. The 

solution is called local optimum found with respect to the transformation used, as shown in Fig 

 
 

Figure 1.2: Local Search 

 

 

1.4 Examples of Combinatorial Optimization Problems 

Combinatorial optimization problems are pervasive across many disciplines, each presenting 

unique challenges and requiring specialized algorithms for effective solutions. Here, we 

explore several classical examples that highlight the diversity and complexity of these 

problems. 

 

• Travelling Salesman Problem (TSP) 

The travelling salesman problem consists of a salesman and a collection of cities. The 

salesman has to visit each one of the cities starting from travelling salesman wants to 

minimize the total length of the trip. 
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• Vehicle Routing Problem (VRP) 

The Vehicle Routing Problem (VRP) involves finding the best routes for a fleet of 

vehicles starting from a depot to visit a set of customers. The evaluation of these routes 

is based on a predefined objective function, such as travel time, distance, or overall cost 

to minimize. This problem is a classic extension of the Travelling Salesman Problem, 

and like the latter, it belongs to the class of NP-Complete optimization problems. 

 

• Graph Colouring Problem (GCP) 

Vertex Colouring Problem is a fundamental combinatorial optimization problem. It 

involves assigning colours to vertices of a given graph so that adjacent vertices have 

different colours, using the minimum number of colours possible. This problem has 

been extensively studied over many decades due to its numerous applications in various 

domains, leading to the definition of several variants. One such variant is the Equitable 

Colouring Problem (ECP), which aims for a "balanced" vertex colouring where the 

sizes of any two colour classes differ by at most one. 

 

• 0/1 Knapsack Problem 

In a knapsack problem with m dimensions, there are n items. Each item is associated 

with a consumption for each dimension of the knapsack and a corresponding value. The 

objective is to select a subset of items to maximize the total value while ensuring that 

the combined consumption of each dimension does not exceed its limit. 

 

1.5. Complexity 
In computational complexity theory, decision problems are classified into various complexity classes 
based on the resources required to solve them. Understanding these classes helps in determining the 
feasibility and efficiency of algorithmic solutions. Below are brief descriptions of the primary 
complexity classes and their interrelations 

• Class P: A decision problem belongs to class P if there exists an algorithm capable of 

solving it in polynomial time. 

• Class NP: The class NP contains all decision problems for which we can associate a 

set of potential solutions (of at worst exponential cardinality) such that we can verify 

in polynomial time if a potential solution satisfies the posed question. Clearly, P ⊂ NP, 

which is commonly accepted. Moreover, this inclusion is strict, meaning P ≠ NP. 

• Co-NP Class: Co-NP stands for the complement of NP Class. It means if the answer 

to a problem in Co-NP is No, then there is proof that can be checked in polynomial 

time. 

• Class NP-complete: Within the NP class, we also distinguish the class of NP-complete 

problems. NP-completeness is based on the notion of polynomial reduction. 

• Class NP-hard: A problem is NP-hard if knowing how to solve it in polynomial time 

would imply that we can solve an NP-complete problem in polynomial time. NP-hard 

problems are therefore, in a sense, harder than NP-complete problems. This schema 

represents the relationship between problem classes. 
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This framework provides a foundation for understanding the complexity of combinatorial 

optimization problems and their classification based on computational difficulty. 

 

Figure 1.3: Relationship between problem classes. 
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Chapter 2: Multidimensional Knapsack Problem 

  
2.1 Introduction 

The Multidimensional Knapsack Problem (MKP) is a well-known and extensively studied 

problem in the field of combinatorial optimization. It is an extension of the classic 0/1 knapsack 

problem, which itself is a fundamental problem with numerous practical applications. The 

classical knapsack problem involves selecting a subset of items, each with a given weight and 

value, to maximize the total value without exceeding the capacity of the knapsack. In the MKP, 

this concept is extended to multiple constraints, making the problem significantly more 

complex and challenging to solve [12]. 

The origins of the knapsack problem can be traced back to early studies in resource allocation 

and financial decision-making. Its simplicity in formulation, yet complexity in solving, has 

made it a popular subject for researchers in operations research, computer science, and applied 

mathematics. The knapsack problem is often used as a benchmark for testing new algorithms 

and optimization techniques [13]. 

In a typical MKP, each item has multiple attributes, such as weight, volume, and other resource 

consumptions, each contributing to different constraints. The objective is to select a 

combination of items that maximizes the total profit while satisfying all the given constraints. 

This multidimensional aspect introduces a layer of complexity that makes exact solutions 

computationally expensive for large instances [14]. 

The MKP has practical significance in various fields. For example, in logistics, companies 

must decide the optimal set of goods to transport within limited cargo space and weight 

constraints. In finance, portfolio optimization involves selecting a mix of investments that 

maximizes returns while adhering to budget and risk constraints. In manufacturing, resource 

allocation problems require distributing limited resources across multiple projects to maximize 

efficiency and output [15]. 

Solving the MKP involves a blend of exact and heuristic methods. Exact methods, such as 

branch and bound and dynamic programming, can find the optimal solution but are often 

impractical for large problems due to their computational requirements. Heuristic and 

metaheuristic approaches, like genetic algorithms, simulated annealing, and particle swarm 

optimization, provide feasible solutions within a reasonable time frame, though they do not 

guarantee optimality [16]. 

The significance of the MKP extends beyond its practical applications; it also serves as a 

critical testbed for developing and evaluating new optimization algorithms. The complexity of 

the problem provides a robust challenge for algorithm designers, pushing the boundaries of 

what can be achieved in combinatorial optimization [17]. 

In this chapter, we will delve deeper into the significance of the MKP, explore various knapsack 

problem variations, present the integer linear programming (ILP) formulation of the MKP, and 

review case studies that illustrate its application in real-world scenarios. 
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Figure 2.1: Knapsack Problem. 

2.2 Knapsack Problem Variations 

The knapsack problem is a classic example of a combinatorial optimization problem with 

numerous variations, each adding different layers of complexity and applicability. 

Understanding these variations helps in grasping the multifaceted nature of resource allocation 

problems in various fields. 

2.2.1 0/1 Knapsack Problem 

The knapsack problem is a variant of the optimization problems.  

There is several practical applications for knapsack problem like The  knapsack problem (KP) 

can be formally defined as follows: Given an  instance of the knapsack problem with item set 

N, consisting of n items, N := {1, ..., n} j with profit 𝑝𝑗 and weight 𝑤𝑗 , and the capacity value 

c, (Usually, all those values are taken from the positives integer numbers.) 

Then the objective is to select a subset of N such that the total profit  of the selected items is 

maximized and the weights does not exceed c. Alternatively, a knapsack can be formulated as 

a solution of the following  linear integer programming formulation:  

(KP)   maximize ∑ 𝑝𝑗𝑥𝑗

n

j=1

               (1) 1 

subject ∑ 𝑤𝑗𝑥𝑗 ≤  𝑐,

n

j=1

       (1)2             

           

 

xj ∈ {0, 1} , j = 1, ..., n.       (1)3 
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2.2.2 Fractional Knapsack Problem 

The fractional knapsack problem allows the inclusion of fractions of items rather than the 

whole item, making it a continuous problem rather than a discrete one. This relaxation 

transforms the problem into a solvable one using a greedy algorithm that sorts items based on 

their value-to-weight ratio and adds them to the knapsack in decreasing order until the capacity 

is reached [18]. 

2.2.3 Multi-Choice Knapsack Problem 

In the multi-choice knapsack problem, items are grouped into classes, and the objective is to 

select one item from each class to maximize the total value while staying within the knapsack's 

capacity [19]. This variation is significant in scenarios where decisions are interdependent, 

such as selecting courses for a curriculum or components for a product design. 

 

2.2.4 Multiple Knapsack Problem 

The multiple knapsack problem extends the classic problem by introducing several knapsacks 

instead of one, each with its own capacity constraint. The objective is to maximize the total 

value packed into all knapsacks [20]. This variation is applicable in logistics and resource 

distribution scenarios where multiple containers or storage units are available. 

2.2.5 Multidimensional Knapsack Problem (MKP) 

Given a knapsack with M-dimensions, let 𝑐𝑗 be the capacity of the 𝑖𝑡ℎ dimension, 

 i = 1, 2, ...,m. There are n items. The 𝑗𝑡ℎ item requires 𝑤𝑖𝑗 units of the 𝑖𝑡ℎ dimension of the 

knapsack j, j = 1, 2, ..., n. The reward of including the item j in the knapsack is 𝑝𝑗 . The 

problem can formulated 

 

as follows: 

maxZ =  ∑ pjxj

n

j=1

              (2)1 

 

                                          subject to ∑ wijxj    

n

j=1

< cj,          i = 1,2, . . , m,                        (2)2  

 

The equations (2,1) and (2,2) represent the objective and the constraints  

respectively.  
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Such:  

•𝑥𝑗 is a binary value. Such 𝑥𝑗 = 1 if we put the item j into the  

knapsack and 𝑥𝑗 = 0 if we don’t.  

• j refers to the item, j ≤ n.   

2.2.6 Other Variations 

Other notable variations include: 

● Knapsack Problem with Conflict Graphs: Items are represented as vertices in a 

graph, with edges indicating conflicts. No two conflicting items can be included in the 

knapsack simultaneously [21]. 

● Subset-Sum Problem: A special case of the knapsack problem where the value of each 

item equals its weight, simplifying the problem to finding a subset that sums to a 

specific value [22]. 

In summary, these variations of the knapsack problem illustrate its versatility and the wide 

range of applications it can model. Each variation introduces unique constraints and 

complexities, necessitating different solution approaches and providing rich ground for 

research and innovation. 

2.3 Multidimensional Knapsack Problem ILP 

The Multidimensional Knapsack Problem (MKP) extends the classical knapsack problem by 

incorporating multiple constraints, making it significantly more challenging to solve. The 

Integer Linear Programming (ILP) formulation of the MKP provides a mathematical 

framework for understanding and addressing this complexity. In this section, we will present 

the ILP formulation, discuss its components, and outline the challenges associated with solving 

it. 

Problem Formulation 

The objective of the MKP is to select a subset of items to maximize the total value while 

satisfying multiple resource constraints. Formally, the MKP can be defined as follows: 

maximize ∑ vixi

n

i=1

                (3)1 

subject to ∑ wijxi

n

i=1

 ≤  wj∀j 1,2, . . , m            (3)2 

                        

𝑥𝑖  ∈ {0,1}                     (3)3 
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where: 

● 𝑣𝑖 is the value of item i, 

● 𝑤𝑖𝑗 is the weight of item iii in dimension j, 

● 𝑤𝑗 is the capacity of dimension j, 

● 𝑥𝑖 is a binary variable indicating whether item i is included in the knapsack (1) or not 

(0) [23]. 

This formulation captures the essence of the MKP, where the goal is to maximize the total 

value of the selected items without violating any of the multiple constraints. 

Components of the ILP Formulation 

1. Objective Function: The objective function   : 

∑ 𝑣𝑖𝑥𝑖

𝑛

𝑖=1

        (4)1 

 aims to maximize the total value of the items included in the knapsack. This linear 

function represents the primary goal of the optimization problem [24]. 

2. Constraints: The constraints : 

∑ 𝑤𝑖𝑗𝑥𝑖  ≤  𝑤𝑗∀𝑗  

𝑛

𝑖=1

= 1,2, . . , 𝑚           (5)1 

ensure that the total weight of the selected items does not exceed the capacity in any 

dimension. Each constraint corresponds to a different resource or capacity limit, adding to 

the problem's complexity [25]. 

3. Binary Decision Variables: The binary variables 𝑥𝑖  ∈ {0,1}  indicate whether each item 

is selected. These variables enforce the combinatorial nature of the problem, as each item 

can only be either included or excluded [26]. 

 

Challenges in Solving the MKP ILP 

The MKP ILP is a complex problem due to several factors: 

1. High Dimensionality: The presence of multiple constraints increases the dimensionality 

of the problem, making it harder to find feasible solutions that satisfy all constraints 

simultaneously [27]. 

2. Combinatorial Explosion: The number of possible combinations of items grows 

exponentially with the number of items, leading to a combinatorial explosion that makes 

exhaustive search impractical for large instances [28]. 

3. NP-Hard Nature: The MKP is NP-hard, meaning that there is no known polynomial-time 

algorithm to solve all instances of the problem exactly. This inherent difficulty necessitates 

the use of heuristic and meta-heuristic approaches for larger instances [29]. 
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Solution Techniques 

Various methods have been developed to solve the MKP ILP, including: 

● Exact Methods: Techniques such as branch and bound, cutting planes, and branch and 

cut provide exact solutions but are often computationally expensive and impractical for 

large problems [30]. 

● Heuristic Methods: Heuristics like greedy algorithms offer quick, though not 

necessarily optimal, solutions. These methods are useful for obtaining good solutions 

in a reasonable time frame [31]. 

● Meta-heuristic Methods: Meta-heuristics such as genetic algorithms, simulated 

annealing, and particle swarm optimization balance exploration and exploitation to find 

high-quality solutions efficiently. These methods are particularly effective for large, 

complex instances [32]. 

In summary, the ILP formulation of the MKP provides a structured way to model and solve 

this challenging problem. While exact methods can offer precise solutions, heuristic and meta-

heuristic approaches are often more practical for large-scale applications. Understanding the 

components and challenges of the ILP formulation is crucial for developing effective solution 

strategies. 

2.4 Case Studies 

Case studies provide practical insights into the application of the Multidimensional Knapsack 

Problem (MKP) in real-world scenarios. These studies illustrate how the theoretical concepts 

and solution techniques discussed earlier are implemented in various industries, highlighting 

the problem's significance and the effectiveness of different approaches. 

Logistics and Transportation 

In the logistics industry, companies face the challenge of optimizing the loading of goods into 

containers or vehicles. This problem often involves multiple constraints such as weight, 

volume, and delivery deadlines, making it an ideal application for the MKP. 

Example: A global shipping company needs to load containers with goods of varying weights 

and volumes while ensuring that the total weight and volume do not exceed the container's 

capacity. Additionally, some goods have specific delivery deadlines that must be met. 

Solution Approach: The company employed a genetic algorithm combined with branch and 

bound to solve the MKP. The genetic algorithm generated initial solutions, which were then 

refined using branch and bound to ensure that the constraints were strictly adhered to. 

Results: The hybrid approach significantly improved the loading efficiency, reducing the 

number of containers needed and ensuring timely deliveries. The company reported a 15% 

reduction in transportation costs and a 10% increase in customer satisfaction due to timely 

deliveries [33]. 
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Financial Portfolio Optimization 

In finance, portfolio optimization involves selecting a mix of investments that maximize returns 

while adhering to budget and risk constraints. The MKP framework is well-suited for 

modelling these complex decisions. 

Example: An investment firm aims to construct a portfolio from a set of potential investments, 

each with a different return, risk level, and cost. The goal is to maximize the total return without 

exceeding a specified budget and while maintaining a balanced risk profile. 

Solution Approach: The firm used a particle swarm optimization (PSO) algorithm to solve 

the MKP. The PSO algorithm efficiently explored the solution space, balancing the trade-off 

between risk and return to identify optimal investment combinations. 

Results: The optimized portfolio achieved a higher return compared to the firm's previous 

strategies, with a 12% increase in annual returns and a 5% reduction in overall portfolio risk. 

This success demonstrated the MKP's applicability in financial decision-making [34]. 

Manufacturing and Production 

In manufacturing, resource allocation problems often involve distributing limited resources 

such as materials, labor, and machinery across multiple production processes to maximize 

efficiency and output. 

Example: A manufacturing company needs to allocate raw materials and labor to various 

production lines, each producing different products with specific profit margins, while ensuring 

that the resource limits are not exceeded. 

Solution Approach: The company implemented a simulated annealing algorithm to solve the 

MKP. The algorithm iteratively adjusted the allocation of resources, gradually improving the 

solution by exploring different configurations and avoiding local optima. 

Results: The application of simulated annealing resulted in a 20% increase in production 

efficiency and a 25% rise in overall profit margins. The optimized resource allocation also 

reduced waste and improved the utilization of labor and materials [35]. 

Telecommunications and Network Design 

In telecommunications, network design problems often require optimizing the allocation of 

bandwidth and other resources across multiple channels and users to improve network 

performance and reliability. 

Example: A Telecom company needs to allocate bandwidth to various services and users in a 

way that maximizes overall network throughput while ensuring fair distribution and adherence 

to quality of service (QoS) constraints. 
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Solution Approach: The company used a Tabu search algorithm to address the MKP. The 

tabu search algorithm maintained a list of recently explored solutions to avoid revisiting 

them, thus effectively navigating the complex solution space. 

Results: The optimized bandwidth allocation led to a 30% improvement in network 

throughput and a 15% enhancement in QoS. This resulted in fewer service interruptions and 

higher customer satisfaction [36]. 

Summary of Case Studies 

These case studies demonstrate the versatility and effectiveness of the MKP in solving 

complex, real-world problems across various industries. By employing advanced algorithms 

such as genetic algorithms, particle swarm optimization, simulated annealing, and tabu 

search, companies can achieve significant improvements in efficiency, cost savings, and 

overall performance. The practical applications of the MKP underline its importance as a 

critical tool in combinatorial optimization. 
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Chapter 3: Genetic Algorithm 

 
3.1 Overview of the Genetic Algorithm   

The Genetic Algorithm (GA) is an evolutionary algorithm classified among metaheuristics 

inspired by the theory of natural evolution. It was first introduced by John Holland in 1975. 

GAs are search heuristics that mimic the process of natural selection, employing mechanisms 

such as selection, crossover, and mutation to evolve solutions to optimization and search 

problems. 

 

3.2 Genetic Algorithm 

 

3.2.1 Core Principles of Genetic Algorithms  

To apply a Genetic Algorithm to a specific problem, the following five components are 

essential: 

▪ Solution Encoding (Individuals)   

  Each point in the state space is associated with a data structure, usually following a 

mathematical modelling phase of the problem. Effective encoding is crucial for the 

algorithm's success. 

 

▪ Method for Generating the Initial Population   

  The initial population of individuals, which serves as the foundation for future generations, 

must be heterogeneous. 

 

▪ Optimization Function 

  Also known as the individual evaluation function, this function returns a real value called 

fitness, determining the selection probability of an individual. 

▪ Genetic Operators  

 

  These operators diversify the population across generations and explore the state space. 

Crossover recombines the genes of individuals, mutation introduces minor alterations to 

avoid rapid convergence, and selection favors the best individuals. 

 

▪ Sizing Parameters  

  This includes the population size, total number of generations or stop criterion, and the 

application probabilities of crossover and mutation operators.[37] 

 

 
 

Figure 3.1: The Main Steps of a Genetic Algorithm 
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3.2.2 Solution Encoding  

Genetic Algorithms operate on a population of individuals, each encoded by a chromosome 

or genotype. A population is thus represented by a set of chromosomes. Encoding involves 

finding a suitable data structure for individuals. Various encoding types are: 

▪ Binary Encoding   

  This elementary encoding represents solutions as a bit string, where each bit can be 0 or 1, 

making it widely used due to its advantages in gene manipulation. 
 

            
Figure 3.2: Binary-Coded Chromosome. 

 

▪  Real-Value Encoding  

  While binary encoding is useful, it becomes cumbersome with large parameter numbers. 

Real numbers can be used to encode genes, simplifying management of chromosomes.[38] 

 
 

 

Figure 3.3: Real-Value Chromosome. 

 

▪  Multi-Character Encoding   

  In contrast to binary and real-value encoding, multi-character encoding is often more natural 

and used in complex genetic algorithm applications.[39] 

 

                                    
 

Figure 3.4: Multiple Character Coding of a Chromosome. 
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▪ Tree Encoding   

  This uses a tree structure where each node can have multiple branches, suitable for problems 

without a finite solution size. Trees can grow to any size through crossover and mutations 

 

 

 

. 
 

 

 

        

 

  

                        X+1                  X+(X*2)                 𝑋2 − 1 

 
Figure 3.5: Tree coding: Three simple program trees of the sort normally used in Genetic 

Programming. 

 

3.2.3 Initial Population Creation   

The choice of the initial population strongly influences the algorithm's convergence speed. If 

the optimal position in the state space is unknown, individuals should be generated randomly 

using a uniform distribution. If prior information is available, individuals should be generated 

in a specific sub-domain to accelerate convergence. The population size must balance 

computation time and result quality; too large a population increases computational cost and 

memory requirements, while too small a population may lead to local optimal.[40] 

 

3.2.4 Evaluation Function (Fitness)   

The evaluation operator is crucial as it helps the selection operator choose which individuals 

to retain. It measures each individual's performance, corresponding to a given solution to the 

problem. The evaluation function quantifies an individual’s survival capability by assigning a 

fitness weight. The strength of each chromosome is calculated, with the fittest being retained 

for modification (crossover and mutation). The evaluation function's complexity depends on 

the problem and its constraints. Encoding and evaluation are the only problem-specific 

elements; once set, the Genetic Algorithm remains consistent.[41] 
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3.2.5 Operators 

 

• Selection Operator  

  Responsible for favouring the best individuals from the current population to create a new 

population. Methods include: 

 

 

 

▪ Biased Lottery or Roulette Wheel  

    This creates a biased lottery wheel where each individual occupies a section proportional to 

its fitness, giving even weaker individuals a survival chance. The probability p( 𝑥𝑖 ) for 

individual 𝑥𝑖 to be selected is: 

 

p(xi)  =
f(xi)

∑ f(xk)n
k=1

          (6)1 

For minimization problems, the selection probability p'(𝑥𝑖) for individual 𝑥𝑖 is: 

 

p′(xi)  =  
1 − p(xi)

N − 1
                  (6)2 

 
▪ Tournament Selection 

    This method involves choosing a sub-population of fixed size M, either predetermined or 

randomly. The best individual in this sub-population is selected for crossover and mutation, 

allowing lower-quality individuals a chance to contribute to population improvement.[42] 

 

▪ Rank Selection   

    Rank selection first sorts the population by fitness. Selection is similar to roulette but uses 

ranks instead of evaluation values.[42] 

 

▪ Elitism  

    Elitism retains a number of the best chromosomes each generation to prevent their loss 

through mutation, crossover, or selection, improving Genetic Algorithms by preserving top 

solutions.[42] 

 

 

 

• Crossover Operator 

New individuals are created by randomly taking gene segments from each parent. This process 

explores possible solution spaces. After selection, individuals are paired randomly, and parent 

chromosomes are copied and recombined to produce two offspring with characteristics from 

both parents. The number of crossover points and crossover probability determine whether 

parents are crossed or simply copied to the next population. Types include: 
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▪ N-Point Crossover   

    This involves choosing n crossover points, then exchanging gene fragments. Common types 

are 1-point and 2-point crossover.[43] 

   

 

 
Figure 3.4 : Example of a Single-Point Crossover. 

 

▪ Uniform Crossover  

This probabilistic crossover exchanges each gene between parents with a probability of 

0.5.[44] 

 
Figure 3.5: Example of a Uniform Crossover. 

 
• Mutation Operator  

  Mutation randomly changes one or more genes of a chromosome with a low probability p, 

maintaining diversity and avoiding local optima. Common mutation types are [45]. 

▪ 1-Point Mutation   

    Randomly changes a single gene value. 

 
Figure 3.6: Example of a Single-Point Mutation 

 

▪ 2-Point Mutation   

Alters multiple values on the chromosome.[45] 
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Figure3.7 : Example of a Two-Points Mutation 

 

• Replacement  

  Newly created individuals after crossover and mutation are reintroduced into the population 

based on their fitness. Methods include: 

 

▪ Stationary Replacement  

    Automatically replaces parents with offspring regardless of performance. 

 

▪ Elitist Replacement  

    Considers performance, keeping at least the most performant individual when transitioning 

generations. 

• Algorithm Convergence   

  Initial improvement is rapid (global search) and slows over time (local search). Noise in the 

average performance is mainly due to mutations. 

 

• Stopping Criteria   

  The generation-replacement cycle repeats until a stop criterion is met, such as a fixed number 

of iterations, maximum computation time, or a satisfactory solution. The evolutionary 

algorithm then returns the best solution(s) identified across generations.[46] 

 

Conclusion   

This chapter introduced the basic concepts and principles of Genetic Algorithms. The 

evaluation of solutions using the objective function ranks individuals by performance, and 

selection methods imitate natural reproduction processes. Based on the genetic information of 

selected pairs of chromosomes (individuals), the Genetic Algorithm generates new offspring, 

evolving the population over generations. 
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Chapter 4: Branch and Cut 

 
4.1. Introduction to Branch and Cut 

Our implementation is partly based on the work of Jean Maurice Clochard and Denis Naddef 

[CN93], as well as on the work of Padberg and Rinaldi [PR91]. The "Branch and Cut" method 

we present is a combination of the polyhedral cuts method, the "Branch and Bound" method, 

and the column generation method. Like any implicit enumeration method, the algorithm 

constructs a tree called the "Branch and Cut" tree. The subproblems that form the tree are called 

nodes. There are three types of nodes in the "Branch and Cut" tree: the current node, which is 

being processed; the active nodes, which are in the waiting list of problems; and the inactive 

nodes, which have been pruned during the algorithm's execution. 

 

Core Concepts: 

The Branch and Cut (B&C) algorithm is a sophisticated method that combines the principles 

of branch and bound with cutting planes to solve integer linear programming (ILP) problems 

efficiently. Understanding the core concepts of B&C is crucial for grasping how this method 

systematically explores the solution space and refines the feasible region to find optimal 

solutions. 

4.2. Problem Formulation 

The starting point for applying B&C is the formulation of the integer linear programming 

problem. An ILP can be expressed as follows: 

                                                          maximize cT x                   (7)1 

                                                       subject to Ax ≤  b                (7)2 

                                                                      x ∈  𝑍𝑛                        (7)3 

where: 

x is the vector of decision variables. 

c is the vector of coefficients for the objective function. 

A is the matrix of coefficients for the constraints. 

b is the vector of right-hand side values for the constraints. 

𝑍𝑛 indicates that the variables x are integers [47]. 

 

4.3 Branching: 

Branching is the process of recursively dividing the problem into smaller sub-problems. This 

is done by selecting a variable that does not satisfy the integrality constraint and creating two 

new sub-problems by fixing this variable to its lower and upper integer bounds. 

Selection of Branching Variable: The choice of the variable to branch on can significantly 

affect the efficiency of the B&C algorithm. Common strategies include: 
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Largest Fractional Part: This strategy involves branching on the variable with the 

largest fractional part in the current LP solution. The rationale is that the variable 

furthest from an integer value is most likely to impact the solution space significantly. 

 

Example: Suppose the current LP solution yields x1=1.5, x2=2.3 and x3=0.7. 

The variable x1 has the largest fractional part (0.5), so it would be selected for 

branching. 
◼ Strong Branching: This involves evaluating the potential impact of branching on several 

candidate variables before making a decision. For each candidate variable, two branches 

are created, and the LP relaxations of these branches are solved. The variable that shows 

the most promising potential in reducing the objective value is chosen for branching. 
◆ Example: Consider three candidate variables x1, x2, and x3. For each variable, two sub-

problems are created and solved: 

◼ For 𝑥1: Branch 𝑥1  ≤ 1 and 𝑥1  ≥ 2 

◼ For 𝑥2: Branch 𝑥2  ≤ 2 and 𝑥2  ≥ 3 

◼ For 𝑥3: Branch 𝑥3  ≤ 0 and 𝑥3  ≥ 1  

The variable with the highest reduction in the objective function is selected for branching.[48] 

Creation of Sub-problems 

Each selected variable leads to two new sub-problems by fixing the variable to its nearest 

integer values. This binary decision splits the feasible region into two smaller regions, each 

representing a node in the search tree[49]. 

 

Binary Decision: For a variable xix_ixi with a fractional value, two branches are 

created: 
Lower Branch: Add the constraint 𝑥𝑖  [𝑥𝑖]. 
Upper Branch: Add the constraint 𝑥𝑖 [𝑥𝑖]. 

Example: If the variable 𝑥1=1.5, the two sub-problems created would be: 

Lower Branch: 𝑥𝑖  ≤ 1 

Upper Branch: 𝑥𝑖  ≥ 2 
Tree Structure: This process continues recursively, creating a tree structure where 

each node corresponds to a sub-problem with additional constraints. The depth and 

breadth of this tree depend on the complexity of the problem and the branching 

decisions. 

4.4 Bounding and Pruning 

Bounding and pruning are crucial for maintaining the efficiency of the B&C algorithm by 

reducing the number of nodes that need to be explored. 

Bounding: Each node in the tree is associated with a bound on the objective function. If the 

bound of a node is worse than the current best (incumbent) solution, that node can be pruned. 
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Example: If the incumbent solution has an objective value of 100 and a node's 

LP relaxation yields a bound of 110, this node is pruned as it cannot lead to a 

better solution. 
Feasibility Check: Sub-problems that are infeasible are pruned immediately, as they 

cannot contribute to the optimal solution. 
Example: If adding the constraint x12 results in an infeasible LP problem, this 

branch is pruned. 
Incumbent Update: If a sub-problem yields a better feasible solution, the incumbent 

solution is updated, and sub-problems with worse bounds are pruned accordingly. 
Example: If a sub-problem results in a feasible solution with an objective value 

of 95, the incumbent is updated to this value, and nodes with bounds greater 

than 95 are pruned. 

 

4.5 Cutting planes: 

Cutting planes are linear inequalities added to the LP relaxation of the problem to exclude 

infeasible integer solutions without eliminating any feasible integer solutions. These cuts 

tighten the feasible region, improving the bounds and reducing the number of nodes that need 

to be explored. 

Gomory Cuts: Gomory Cuts, named after Ralph Gomory, are a type of cutting plane used in 

integer programming to eliminate fractional solutions from the feasible region of the linear 

relaxation of a mixed-integer programming (MIP) problem. 

Fractional Solutions: When solving the linear relaxation of an MIP, the solution may 

include fractional values for variables that should be integer. Gomory cuts are designed 

to cut off these fractional solutions without removing any integer feasible solutions. 

Generation: Gomory cuts are derived from the simplex tableau of the linear relaxation. 

For each basic variable that is fractional, a cut is generated by considering the fractional 

parts of the coefficients in the tableau row corresponding to that variable. 

Mathematical Form: If a variable xix_ixi  has a fractional value f (where 0 < f  < 1), 

the Gomory cut can be expressed as: 

∑{

𝑗∈𝐽

𝑎𝑖𝑗}𝑥𝑗  ≥  𝑓          (8)1 

Here, {𝑎𝑖𝑗} represents the fractional part of the coefficient 𝑎𝑖𝑗. 

Example: Consider the fractional solution x =1.5, y = 2.3. A Gomory cut might be: 

0.5x+0.3y0.8 

This cut removes the current fractional solution from the feasible region. 

 

 



Chapter 4:                                                                            Branch and Cut 

 
 
  

39 
 

Mixed Integer Rounding Cuts (MIR Cuts) 

Mixed Integer Rounding (MIR) Cuts are another type of cutting plane used in MIP problems 

to improve the linear relaxation. They generalize the concept of rounding cuts to mixed-integer 

problems, where some variables are integer and others are continuous. 

Construction: MIR cuts are constructed by taking a linear combination of the original 

constraints to form a new inequality. This new inequality is then rounded to create a 

valid cut. 

Application: MIR cuts are particularly useful for problems with both integer and 

continuous variables, providing a way to tighten the linear relaxation without excluding 

feasible integer solutions. 

Mathematical Form: If a constraint is of the form: 

                                                       

  ∑ 𝑎𝑗𝑥𝑗

𝑗∈𝐼

 + ∑ 𝑏𝑗𝑦𝑗

𝑗∈𝐶

 ≤  𝑏        (9)1 

   

where 𝑥𝑗 are integer variables and 𝑦𝑗 are continuous variables, the MIR cut can be derived by 

rounding the coefficients appropriately. 

Example: For the constraint 3x + 2.5y ≤ 7.5, where x is integer and y is continuous, 

an MIR cut could be: 

3x + 2y ≤ 7 

This cut is formed by appropriately rounding the coefficients and the right-hand side. 

Cover Cuts and Zero-Half Cuts 

Cover Cuts: 

Cover Sets: In the context of 0-1 integer programming, a cover is a subset of variables 

that, if all are set to 1, would violate a constraint. 

Construction: Cover cuts are derived from such cover sets to ensure that not all 

variables in the cover can be 1 simultaneously. These cuts are used to prevent infeasible 

solutions. 

Mathematical Form: Given a constraint 

∑ 𝑎𝑗𝑏𝑗

𝑗∈𝐶

 ≤  𝑏            (10)1 

and a cover C⊆S such that 

∑ 𝑎𝑗

𝑗∈𝐶

 >  𝑏               (10)2 
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a cover cut can be: 

∑ 𝑥𝑗

𝑗∈𝐶

 ≤  |𝐶|  − 1                   (10)3 

 

This cut ensures that not all variables in the cover can be 1 at the same time. 

Example: For the constraint 𝑥1 + 𝑥2 + 𝑥3  ≤ 2, the set {𝑥1, 𝑥2, 𝑥3} forms a cover. The 

cover cut is: 

𝑥1 + 𝑥2 + 𝑥3  ≤ 2 

If {𝑥1, 𝑥2, 𝑥3} were to form a cover with a sum greater than 2, a more restrictive cut like {𝑥1 +
𝑥2  ≤ 1 might be applied. 

Zero-Half Cuts: 

Definition: Zero-half cuts are derived from constraints where the coefficients of the 

variables are either 0 or 1. These cuts leverage the fact that certain combinations of 

variables must sum to either 0 or 1. 

Construction: Zero-half cuts are typically constructed from multiple constraints, 

identifying combinations of variables that must satisfy specific parity conditions. 

Mathematical Form: These cuts are often expressed as parity constraints, ensuring 

that certain sums of variables are restricted to specific values. 

Example: Consider the constraints 𝑥1 + 𝑥2  ≤ 1 and 𝑥1 + 𝑥3  ≤ 1. A zero-half cut 

might combine these to form: 

𝑥1 + 𝑥2 + 𝑥3  ≤ 2 

This cut restricts the combinations of 𝑥1, 𝑥2 𝑎𝑛𝑑 𝑥3 to ensure feasibility. 

Lift and Project Cuts 

Lift and Project Cuts are a type of cutting plane that strengthens the LP relaxation by projecting 

the feasible region into a higher-dimensional space and then lifting it back to the original space 

with tighter bounds. 

Concept: The idea is to take a linear combination of the original constraints and then 

project them into a higher-dimensional space where the feasible region can be more 

easily separated from the infeasible region. 

Process: This involves solving a series of linear programming problems to generate the 

cuts. The method iteratively improves the LP relaxation by tightening the feasible 

region. 

Mathematical Form: The cut is generated by lifting the original constraints into a 

higher-dimensional space and then projecting them back to form a tighter constraint. 

Example: Given the constraint  𝑥1  + 𝑥2  ≤ 1 and the integrality constraints 𝑥1, 𝑥2  ∈
{0,1}, the lift-and-project procedure might yield a cut such as: 
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0.5𝑥1 + 0.5 𝑥2  ≤ 0.5 

This cut effectively tightens the feasible region by excluding certain fractional solutions. 

 

• Cover Cuts: These cuts are based on the concept of cover inequalities, which are 

derived from subsets of constraints that are not satisfied by the current LP solution [51]. 

• Clique Cuts: These are used in problems involving binary variables and are based on 

finding cliques in a conflict graph that represents mutually exclusive decisions [52]. 

 

4.6 Algorithm Structure 

The Branch and Cut (B&C) algorithm combines the systematic exploration of branch and 

bound with the refinement capabilities of cutting planes to solve integer linear programming 

(ILP) problems efficiently. The structured approach of B&C ensures a thorough search of the 

solution space while progressively tightening the feasible region. This section outlines the key 

stages of the B&C algorithm, including initialization, branching strategy, cutting plane 

generation, and pruning. 

 

4.6.1 Initialization 

The initialization phase sets the stage for the B&C algorithm by solving the initial linear 

programming (LP) relaxation of the ILP problem. This involves: 

• Solving the LP Relaxation: The constraints are relaxed by allowing the integer 

variables to take continuous values, thus solving a linear programming problem. This 

provides a bound for the objective function and an initial feasible solution if one exists 

[53]. 

• Initial Feasible Solution: If an integer solution is found during this phase, it serves as 

an initial incumbent solution. Otherwise, heuristics may be employed to generate a 

feasible starting point [54]. 

 

4.6.2 Branching Strategy 

Branching is the process of dividing the problem into smaller sub-problems, creating a search 

tree where each node represents a sub-problem with additional constraints. The key elements 

of the branching strategy include: 

• Selection of Branching Variable: The variable chosen for branching can significantly 

impact the efficiency of the search. Common strategies include: 

o Branching on the variable with the largest fractional part in the current LP 

solution. 

o Using strong branching to evaluate the potential impact of branching on several 

candidate variables before making a decision [55]. 
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• Creation of Sub-problems: Each selected variable leads to two new sub-problems by 

fixing the variable to its nearest integer values. This binary decision splits the feasible 

region into two smaller regions, each representing a node in the search tree [56]. 

Example: If the variable 𝑥1=1.5, the two sub-problems created would be: 

Lower Branch: 𝑥1  ≤ 1 

Upper Branch: 𝑥1  ≥ 2 

 

4.6.3 Cutting Plane Generation 

Cutting planes are linear inequalities added to the LP relaxation to exclude infeasible integer 

solutions while retaining all feasible integer solutions. This step involves: 

• Identifying Cutting Planes: Various methods can generate effective cuts, including 

Gomory cuts, cover cuts, and clique cuts. These cuts are derived from the current LP 

solution and the problem constraints [57]. 

• Adding Cuts to the LP: Once identified, cutting planes are added to the LP relaxation, 

tightening the feasible region and improving the bounds. This process is iterative, with 

multiple cuts potentially added at each node [58]. 

• Re-solving the LP: After adding the cuts, the modified LP relaxation is re-solved to 

obtain a new bound and potentially a new feasible solution. This iterative process 

continues until no further effective cuts can be identified [59]. 

 

4.6.4 Pruning 

 

Pruning reduces the search space by eliminating sub-problems that cannot yield better solutions 

than the current best (incumbent) solution. Pruning strategies include: 

• Bounding: If the bound of a sub-problem is worse than the incumbent solution, the 

sub-problem is pruned as it cannot lead to an improved solution [60]. 

Example: If the incumbent solution has an objective value of 100 and a node's LP 

relaxation yields a bound of 110, this node is pruned as it cannot lead to a better 

solution. 

• Feasibility Check: Sub-problems that are infeasible are pruned immediately, as they 

cannot contribute to the optimal solution [61]. 

Example: If adding the constraint 𝑥1  ≥ 2 results in an infeasible LP problem, this 

branch is pruned. 

• Incumbent Update: If a sub-problem yields a better feasible solution, the incumbent 

solution is updated, and sub-problems with worse bounds are pruned accordingly [62]. 

Example: If a sub-problem results in a feasible solution with an objective value of 95, the 

incumbent is updated to this value, and nodes with bounds greater than 95 are pruned. 
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Integration of Heuristics 

Heuristics play a crucial role in enhancing the B&C algorithm's performance by providing good 

initial solutions and guiding the search process. They can be integrated at various stages: 

⚫ Initial Solution Heuristics: Used during initialization to find a feasible starting point, 

improving the overall efficiency of the algorithm [63]. 

⚫ Branching Heuristics: Help in selecting the most promising branching variables, thus 

reducing the number of sub-problems generated [64]. 

⚫ Cutting Plane Heuristics: Assist in identifying effective cuts, ensuring that the LP 

relaxation is efficiently tightened [65]. 

Conclusion  

the structure of the Branch and Cut algorithm involves a systematic process of initialization, 

branching, cutting plane generation, and pruning. Each stage is designed to explore and refine 

the solution space efficiently, ensuring that high-quality solutions are found for complex ILP 

problems. 
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Chapter 5: Proposed Approach 

5.1 Introduction: 

In this section, we propose a hybrid approach that combines the strengths of Genetic 

Algorithms (GA) and the Branch-and-Cut method using CPLEX. By leveraging the 

heuristic power of GA and the exact optimization capabilities of CPLEX, we aim to solve 

the Multidimensional Knapsack Problem (MKP) more efficiently. The GA provides a 

robust search mechanism through evolutionary principles, while the Branch-and-Cut 

method ensures the solution's optimality and feasibility     

5.2 Proposed Approach 

The hybridization of Genetic Algorithms and the Branch-and-Cut method offers a 

comprehensive solution to the MKP. 

·         Genetic Algorithms: 

❖ Strengths: 

• Efficiently searches large and complex solution spaces. 

• Good at finding near-optimal solutions quickly. 

• Provides a diverse set of solutions due to stochastic processes. 

❖ Weaknesses: 

• May struggle to find the exact optimal solution. 

• Can get stuck in local optima without proper diversification. 

 

·         Branch-and-Cut: 

 

❖ Strengths: 

• Provides exact solutions by systematically exploring the solution space. 

• Ensures feasibility and optimality of solutions through rigorous mathematical 

methods. 

❖ Weaknesses: 

• Computationally intensive for very large problems. 

• Can be slow if the initial solution is far from optimal. 

By combining these two methods, the GA first provides a good initial solution and explores 

the solution space heuristically. Then, CPLEX refines this solution using Branch and Cut 

and complimentary techniques, ensuring both feasibility and optimality. This hybrid 

approach exploits the strengths of both methods, providing balanced and efficient solution 

to the MKP. 
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Figure 5.1: Diagram of the Proposed Approach 
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Genetic Algorithm 

We chose the Genetic Algorithm (GA) for its ability to efficiently search large solution spaces 

by simulating the process of natural evolution. This heuristic method is particularly useful for 

solving complex combinatorial optimization problems like the Multidimensional Knapsack 

Problem (MKP). The GA uses mechanisms inspired by biological evolution, such as selection, 

crossover, mutation, and elitism, to iteratively improve the solution. 

Explanation of Functions and Functionalities with Examples 

1. Creating Individuals: 

Functionality: 

●       The create_individual function generates feasible initial solutions for the genetic 

algorithm by selecting high-efficiency items. 

 

2. Selection Function: 

Functionality : 

●       The selection function uses tournament selection to choose individuals from the 

current population based on their fitness values. 

Example: 

●       Population: [[0, 1, 0, 0], [1, 0, 1, 0], [1, 1, 0, 0], [0, 0, 1, 0]] 

●       Fitness Values: [10, 20, 15, 5] 

●       Tournament Size: 2 

●       Tournament Selection Process: 

○       First Selection: 

■       Randomly select two individuals: indices [0, 2] 

■       Tournament Values: [10, 15] 

■       Select the individual with the highest value: index 2 

■       Append [1, 1, 0, 0] to selected_population. 

○       Second Selection: 

■       Randomly select two individuals: indices [1, 3] 

■       Tournament Values: [20, 5] 

■       Select the individual with the highest value: index 1 

■       Append [1, 0, 1, 0] to selected_population. 

●       Repeat until the selected_population is the same size as the original population. 
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3. Crossover Function: 

Functionality: 

●       The crossover function creates two new individuals (children) from two parent 

individuals by swapping segments of their genetic material. 

Example: 

●       Parent Chromosomes: 

○       parent1 = [1, 0, 1, 1, 0, 0, 1, 0, 1, 0] 

○       parent2 = [0, 1, 0, 0, 1, 1, 0, 1, 0, 1] 

●       Selected Crossover Points: 

○       Assume the selected crossover points are [3, 7]. 

●       Initial Children: 

○       child1 = [1, 0, 1, 1, 0, 0, 1, 0, 1, 0] (copy of parent1) 

○       child2 = [0, 1, 0, 0, 1, 1, 0, 1, 0, 1] (copy of parent2) 

●       Crossover Process: 

○       For the first segment (before the first crossover point at position 3): 

■       child1[:3] becomes parent2[:3] → [0, 1, 0] 

■       child2[:3] becomes parent1[:3] → [1, 0, 1] 

■       child1 now is [0, 1, 0, 1, 0, 0, 1, 0, 1, 0] 

■       child2 now is [1, 0, 1, 0, 1, 1, 0, 1, 0, 1] 

○       For the second segment (between crossover points at positions 3 and 7): 

■       child1[3:7] becomes parent1[3:7] → [1, 0, 0, 1] 

■       child2[3:7] becomes parent2[3:7] → [0, 1, 1, 0] 

■       child1 now is [0, 1, 0, 0, 1, 1, 0, 0, 1, 0] 

■       child2 now is [1, 0, 1, 1, 0, 0, 1, 1, 0, 1] 

●       Final Children: 

○       child1 = [0, 1, 0, 0, 1, 1, 0, 0, 1, 0] 

○       child2 = [1, 0, 1, 1, 0, 0, 1, 1, 0, 1] 

  

4. Mutation Function: 

Functionality: 

●       The mutation function introduces randomness into the genetic algorithm by 

flipping bits in the binary vector of an individual based on a mutation rate. 

Example: 

●       Initial Individual: [0, 1, 0, 1, 1] 

●       Mutation Rate: 0.1 



Chapter 5:                                                                           Proposed Approach 

 
 
  

49 
 

●       Random Numbers Generated: [0.05, 0.15, 0.03, 0.2, 0.08] 

●       Mutation Decisions: 

○       0.05 < 0.1: flip the first bit → [1, 1, 0, 1, 1] 

○       0.15 >= 0.1: do not flip the second bit → [1, 1, 0, 1, 1] 

○       0.03 < 0.1: flip the third bit → [1, 1, 1, 1, 1] 

○       0.2 >= 0.1: do not flip the fourth bit → [1, 1, 1, 1, 1] 

○       0.08 < 0.1: flip the fifth bit → [1, 1, 1, 1, 0] 

●       Final Mutated Individual: [1, 1, 1, 1, 0]. 

5. Elitism: 

Functionality: 

●       The elitism process ensures that the best solutions found so far are preserved and 

carried over to the next generation. 

 

Example: 

●       Population Size: 10 

●       Elitism Size: 2 

●       Fitness Values: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 

●       Elite Indices: 

○       elite_indices = np.argsort(values)[-2:] 

○       elite_indices = [8, 9] (indices of the two best individuals) 

●       Select Elites: 

○       elites = [population[8], population[9]] 

●       Add Elites to New Population: 

○       new_population.extend(elites) 

○       The new population will start with these two elite individuals. 

6. Stagnation Mechanism: 

Functionality: 

●       The stagnation mechanism increases the mutation rate and introduces new 

immigrants if there has been no improvement in the best solution for a specified number 

of generations. 
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Pseudo-Code of the Genetic Algorithm 
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Branch and Cut Method 

The Branch and Cut method combines the traditional branch-and-bound approach with 

cutting plane techniques to solve integer programming problems efficiently. This method is 

especially effective for the Multidimensional Knapsack Problem (MKP) as it iteratively 

refines the feasible region of the problem by adding linear inequalities (cuts) to remove 

fractional solutions. Below, we explain the Branch and Cut method and various types of 

cutting planes used, illustrated with examples similar to the genetic algorithm operators. The 

Branch and Cut method operates by dividing the original problem into smaller subproblems 

(branching) and then tightening the feasible region of these subproblems by adding cuts. This 

hybrid method enhances the performance and accuracy of solving the MKP. 

Example: Suppose we have an MKP with three items and two constraints: 

• Profits: [10, 5, 15, 7, 6] 

• Weights: [[2, 3, 5, 7, 1], [1, 2, 3, 4, 1]] 

• Capacities: [10, 5] 

Initial Problem: 

𝑚𝑎𝑥 10𝑥1 + 5𝑥2 + 15𝑥3 + 7𝑥4 + 6𝑥5 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

2𝑥1 + 3𝑥2 + 5𝑥3 + 7𝑥4 + 𝑥5 ≤ 10 

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 𝑥5 ≤ 5 
0 ≤ 𝑥𝑖 ≤ 1 

Initial LP Relaxation: Suppose the LP relaxation gives the following fractional solution:  

x1=0.5 , x2=0.8 , x3=0.3 , x4=0.6 , x5=1 

Branch on xi: 

• Subproblem 1: x1=0 

• Subproblem 2: x1=1 

Subproblem 1: x1=0 

New LP relaxation solution:  

x2=0.7 , x3=0.5 , x4=0.4, x5=1 

Add a Flow Cover Cut: From the constraint:  

x2+x3+x4+x5=2.6 
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A flow cover cut can be: 

𝑥2 + 𝑥3 ≤ 1.2 
𝑥4 + 𝑥5 ≥ 1.4 

New LP relaxation after Flow Cover Cut:  

𝑥2 = 1, 𝑥3 = 0, 𝑥4 = 0, 𝑥5 = 1 

This solution is integer: 𝑥2 = 1, 𝑥3 = 0, 𝑥4 = 0, 𝑥5 = 1 

Subproblem 2: 𝒙𝟏 = 𝟏 

New LP relaxation solution:  

𝑥2 = 0.6 , 𝑥3 = 0.4 , 𝑥4 = 0.5 , 𝑥5 = 1 

Add a Gomory Cut: From the solution x2=0.6 , a Gomory cut can be: 

0.4𝑥2 + 0.4𝑥3 + 0.5𝑥4 + 𝑥51.5 

New LP relaxation after Gomory Cut:  

𝑥2 = 0, 𝑥3 = 1, 𝑥4 = 0, 𝑥5 = 1 

This solution is integer: 𝑥2 = 0, 𝑥3 = 1, 𝑥4 = 0, 𝑥5 = 1 

Combined Solution: 

The optimal solution is the one with the highest profit value among all feasible solutions 

found in the subproblems. 

Comparison of Solutions 

• Subproblem 1: 𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0, 𝑥4 = 0, 𝑥5 = 1 

o Profit: 5(1) + 6(1) = 11 

• Subproblem 2: 𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 1, 𝑥4 = 0, 𝑥5 = 1 

o Profit: 10(1) + 15(1) + 6(1) = 31 

Thus, the optimal solution is from Subproblem 2: 

• 𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 1, 𝑥4 = 0, 𝑥5 = 1 

• Optimal Profit: 31 

MKP CPLEX ILP 

Our approach leverages the power of the CPLEX solver to efficiently handle complex mixed-

integer programming (MIP) problems. We chose CPLEX for its robust capabilities, 

particularly its implementation of the branch-and-cut algorithm. This algorithm combines 

branch-and-bound with cutting planes to tighten the formulation and prune the search space 
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effectively, making it an ideal tool for solving large-scale and intricate optimization 

problems. By utilizing CPLEX's advanced mathematical programming techniques, we can 

systematically explore and refine feasible solutions, ensuring both optimality and efficiency. 

 

 

 

MKP ILP 

 

 

 



Chapter 5:                                                                           Proposed Approach 

 
 
  

54 
 

Explanation of the CPLEX ILP 

We chose CPLEX mainly for its robust branching and cutting planes, which are crucial for 

efficiently solving complex mixed-integer programming problems like the Multidimensional 

Knapsack Problem (MKP). These techniques allow CPLEX to systematically explore and 

tighten the feasible solution space. Alongside branching and cutting planes, CPLEX employs 

complementary techniques such as presolve, aggregation, and dynamic search strategies to 

enhance the solving process. 

Initialization and Setup 

Functionality: 

Initializes the CPLEX solver, sets the objective sense, and prepares the variables and 

constraints for the problem. 

·         Objective Sense: Sets the objective to maximization, indicating that the goal is 

to maximize the profit. 

Adding Variables and Constraints 

Functionality: 

Adds binary variables representing whether an item is included in the knapsack, also with 

constraints ensuring that the total weight of selected items does not exceed the capacities. 

·         Variables: Binary variables (x0, x1, x2, ...) are added, each representing an 

item. 

·         Constraints: Linear constraints ensure the sum of weights for selected items 

does not exceed the capacities in each dimension. 

Initial Solution 

Functionality: 

Provides an initial solution to the solver, potentially speeding up the optimization process by 

giving it a good starting point. 

·         MIP Starts: Adds the initial solution to the solver, which uses it to kickstart the 

search for the optimal solution. 

Branching and Cutting Planes 

Functionality: 

·         Various cuts and branching strategies are used by the solver to tighten the LP 

relaxation and prune the search tree. 
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Key Techniques 

·         Cover Cuts: Tighten the LP relaxation by covering sets of variables, reducing 

the feasible region. 

·         MIR Cuts: Remove fractional solutions from the LP relaxation, improving the 

solver's ability to find integer solutions. 

·         Lift and Project Cuts: Project high-dimensional constraints into lower 

dimensions, strengthening the formulation. 

·         Gomory Fractional Cuts: Eliminate fractional values, improving the integrality 

of the solutions. 

5.3 Experimental Setup 

For executing the approach, we have used: 

·           Dell laptop 

·           Installed RAM: 8.00 GB. 

·           System type: 64-bit operating system, x64-based processor. 

·           Operating system: Windows 10 Pro, version 21H2. 

·           Processor: Intel® Core™ i5-82500 CPU @ 1.60GHz   1.80GHz. 

·           GPU 1: Intel® UHD Graphics 620. 

5.4 Benchmarks 

Chu & Beasley’s benchmark library (Chu & Beasley 1998) for MKP. This library contains 

classes of randomly created instances for each combinations of n ∈ {100, 250, 500} items, m 

∈ {5, 10, 30} constraints, and tightness ratios: α = P n j=1  ∈ {0.25, 0.5, 0.75} We focus on 

the instances bellow:  

·         OR5x100-0.25-1  

·         OR5x250-0.25-1  

·         OR5x500-0.25-1  

·         OR10x100-0.25-1  

·         OR10x250-0.25-1  

·         OR10x500-0.25-1 
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5.5 Related Work 

The method explained in the paper "Guided genetic algorithm for the multidimensional 

knapsack problem" by Abdellah Rezoug, Mohamed Bader-El-Den, and Dalila Boughaci is a 

hybrid heuristic approach named Guided Genetic Algorithm (GGA). Here is a summary of 

the method: 

Guided Genetic Algorithm (GGA) 

Overview: GGA is a two-step memetic algorithm composed of a data pre-analysis and a 

modified Genetic Algorithm (GA). The approach leverages prior knowledge about the 

problem data to guide the evolutionary process towards promising areas of the solution space. 

Key Components: 

1. Data Pre-analysis: 

o An efficiency-based method is used to analyze the problem data and extract 

useful information. 

o This analysis helps identify items that are likely to appear in good solutions. 

 

 

2. Chromosome Design: 

o Each chromosome represents a feasible solution to the MKP, using integer 

representation where each gene presents an item ID. 

3. Guiding Information: 

o Items are sorted based on their efficiency, which is calculated considering both 

value and weight. 

o The sorted items are divided into three sets: high efficiency (X1), medium 

efficiency (Core), and low efficiency (X0). 

4. Initial Population: 

o A special initialization process generates a diverse initial population by 

combining items from X1 with randomly selected items. 

5. Fitness Evaluation: 

o The fitness function incorporates the efficiency of items, rewarding 

chromosomes that include high-efficiency items and penalizing those with 

low-efficiency items. 

o Four different formulations of the fitness function are examined, integrating 

efficiency and similarity with X1 and X0. 

6. Genetic Operators: 

o Standard genetic operators like crossover, mutation, and reproduction are 

used. 

o Tournament selection, random single-point crossover, and multiple-point bit-

flip mutation are employed. 
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5.6 Results Comparison 

The results of our approach were compared with those reported by Rezoug, Bader-El-Den, 

and Boughaci (2017) who used the Guided Genetic Algorithm (GGA) for the MKP. As 

shown in Table.[66] 

 

Data File Rezoug.A, 

Bader-El-Den. 

M& 

 Boughaci.D   

Our 

Scores 

Gap 

OR5x100-0.25_1 24000 24381 1.02% 

OR5x250-0.25_1 59000 59312 1.01% 

OR5x500-0.25_1 119000 120148 1.01% 

OR10x100-0.25_1 22800 23064 1.01% 

OR10x250-0.25_1 58800 59187 1.01% 

OR10x500-0.25_1 116300 117779 1.01% 

 

5.7 Results Discussion 

The comparative analysis between our method and the Guided Genetic Algorithm (GGA) 

proposed by Rezoug et al. (2017) clearly indicates that while their results are impressive, our 

approach has achieved higher scores on all of the benchmark instances thanks to our 

revolutionary hybrid approach. 

 

Conclusion 

The hybridization of Genetic Algorithms with the Branch and Cut method offers a powerful 

approach to solving the Multidimensional Knapsack Problem. The GA provides a robust initial 

solution, and the Branch and Cut method ensures the solution's quality and feasibility through 

systematic refinement. This combination leverages the strengths of both heuristic and exact 

methods, providing an efficient and effective solution to complex optimization problem



 

General Conclusion 

 

This thesis has explored the intricate challenges and innovative solutions related to the 0/1 

Multidimensional Knapsack Problem (MKP), a prominent issue in combinatorial optimization. 

By developing and evaluating a hybrid algorithm that combines the strengths of Genetic 

Algorithms (GA) and the Branch and Cut (B&C) method, we aimed to enhance both the 

efficiency and accuracy of solving the MKP. Our proposed hybrid approach leverages the 

exploratory power of GAs to generate high-quality initial solutions, which are then refined 

through the precision of B&C to achieve near-optimal results. This combination proved 

effective in balancing the trade-off between solution quality and computational effort, 

addressing the limitations inherent in using either method independently.  

The results demonstrated that the hybrid algorithm significantly improves computational 

efficiency and solution quality compared to standalone methods. The GA component 

effectively explores the solution space, providing a diverse set of potential solutions, while the 

B&C component ensures rigorous optimization by pruning infeasible regions and tightening 

constraints. This synergy has shown considerable promise in various applications, including 

logistics, finance, and manufacturing, where MKP-like problems are prevalent. Furthermore, 

the versatility of the hybrid algorithm was evident through its application in different case 

studies, which highlighted its potential to address complex real-world problems effectively. 

 The enhanced performance and adaptability of the hybrid method underscore its practical 

relevance and theoretical significance in the field of combinatorial optimization. In summary, 

this thesis contributes to the advancement of solving the MKP by introducing a robust and 

efficient hybrid algorithm. Future research could explore further enhancements to the hybrid 

approach, such as integrating additional heuristic methods or optimizing parameter settings 

through machine learning techniques. Additionally, extending the hybrid framework to other 

combinatorial problems could yield valuable insights and broader applicability. By addressing 

the multidimensional constraints and vast solution space of the MKP, our research not only 

pushes the boundaries of current optimization techniques but also provides a foundation for 

future advancements in solving complex optimization problems across various domains 
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