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Abstract

Transformer models, renowned for their exceptional performance in natural language pro-

cessing and computer vision, encounter challenges when applied to time series forecasting.

This is attributed to the permutation invariance of their self-attention mechanism, which

hinders their ability to capture temporal dependencies effectively.

Consequently, researchers have explored adapting simpler models, such as those based

on convolutional neural networks (CNNs), recurrent neural networks (RNNs), and multi-

layer perceptrons (MLPs), to time series forecasting. MLP-based models, in particular,

have demonstrated success in capturing moving averages and seasonal patterns in data.

However, they often struggle to accurately forecast trends and sudden changes, limiting

their overall forecasting performance.

To address this limitation, we propose a novel Univariate Multi-Scale Linear (UMS-

Linear) model that leverages timestamps, multi-scale decomposition, and a new loss func-

tion to enhance the forecasting ability of MLP-based models. UMS-Linear decomposes the

input time series into multiple scales, capturing intricate dynamics and patterns that may be

missed by traditional MLP models. By incorporating timestamps, UMS-Linear explicitly

models the temporal relationships within the data, further improving forecasting accuracy.

Empirical results across multiple benchmark datasets demonstrate that UMS-Linear

outperforms existing methods, including transformer-based models, CNNs, RNNs, and

MLPs. This superior performance highlights the effectiveness of our approach in captur-

ing the complex dynamics of time series data, paving the way for improved forecasting

accuracy in various applications. important field.

Keywords: Long-term Time series forecasting, Linear Models, MLPs, Series Decom-

position, Univariate forecasting.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Background And Motivation

The 21st century has witnessed the rise of artificial intelligence (AI) as a transformative

force across diverse fields, ranging from healthcare and finance to education and trans-

portation. The characteristic that allowed artificial intelligence to emerge in this era is its

ability to deal with various types of data, such us Text data, Image and video, Audio, Nu-

merical, Categorical, where each of these has its own properties. Time series (TS) is a

data type that consists in a sequence of observations from domains that include temporal

measurements. TS, usually indexed by time stamps, can be captured via physical sensors,

censuses or transaction [1]. Unlike other types of data, time series samples are related to

each other in time, indicating that changes occurring in the future are effected by many

interconnected changes in the past. Furthermore, this special relation in the data leads re-

searchers to introduce the time series forecasting (TSF) task, which aims to predict future

changes based on past information.

Time series data is prevalent in numerous domains, encompassing any recorded series

with temporal observation. Moreover, as depicted in Figure 1.1, some of the most well-

known domains associated with time series data include:

• Finance. It is one of the most well-known domains, which has many subfields in-

cluding: stock prices, which are numerical data that show a stock’s price at a given

point in time; loan defaults indicating if a loan was repaid or defaulted on; currency

exchange rates, which show the rate at which two currencies exchange; interest rates

showing the cost of borrowing money over a given period of time; and consumer

spending, which shows the total amount of money that consumers spend on goods
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and services over time.

• Healthcare. Time series data plays a crucial role in today’s healthcare applications.

This includes patient health monitoring, which involves recording vital signs at spe-

cific times (e.g., heart rate, blood pressure, temperature); medication history indi-

cates medications administered to a patient; disease outbreaks consist of categorical

and numerical data (e.g., disease type, number of cases) recorded over time to track

outbreaks.

• Weather. The temperature, precipitation, wind speed, humidity, which are numeri-

cal data representing weather conditions at specific locations and times, are all part

of time series data. Additionally, satellite imagery, which represents cloud cover,

weather patterns, and other visual information captured by satellites, contributes to

the time series analysis of weather phenomena.

• Retail. In the retail industry, there are different types of data crucial for understand-

ing sales and customer behavior. Sales data provides information about the amount of

products sold at specific times, while customer behavior data gives insights into how

customers interact with products, such as browsing history and purchases. Lastly,

inventory levels data shows the quantity of products available in stock at specific

times.

• Other Domains. There are other domains that are worth mentioning such as so-

cial media which consists of the user engagement, content popularity, and sentiment

on various topics; astronomy represents the movement and characteristics of celes-

tial bodies over time; engineering is monitoring the performance and status of ma-

chines, structures, and systems; transportation represents the travel times; climate

science and ecology are the monitoring of the populations of plants and animals, and

the environmental changes over time; and in energy domain which consists of ana-

lyzing energy consumption patterns, optimizing energy production, and forecasting
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Figure 1.1: Domains engaging in analysis, forecasting, and processing of time series data

From the aforementioned domains, it appears that TS plays a crucial role across var-

ious fields including finance, healthcare, weather analysis, retail, etc. A lot of real-life

applications have been developed to leverage the cues gained from TS data across differ-

ent domains. The main categories for applications of TS are forecasting, monitoring, and

analytics. AFV

1.2 Applications of Time Series Analysis and Forecasting

In now day’s data-driven world, TS analysis has become crucial across various industries.

It grants businesses extracting valuable insights, make informed decisions, and optimize

processes. Finance, healthcare, technology, energy, retail and transportation companies
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worldwide exploit the power of TS analysis to forecast outcomes, and drive innovation

[1]. We list some of examples of the largest worldwide companies leveraging time series

analysis:

Finance Industry: Big investment Banks such as Goldman Sachs, J.P. Morgan, and

Morgan Stanley opted for TS analysis to forecast stock prices, manage risks, and employs

algorithmic trading. Other firms of Hedge funds and asset management, such as Bridge-

water Associates and Renaissance Technologies, utilize TS analysis to develop quantitative

trading strategies and manage portfolios effectively.

Technology Industry: Google, Facebook, and Amazon are amongst the major tech-

nology companies that rely on TS analysis for a range of purposes including: predicting

demand, identifying anomalies, and analyzing user behavior. TS analysis in companies

such as Intel and Qualcomm plays a crucial role in various aspects of their manufacturing

processes of semiconductors, including: prediction, equipment maintenance, and quality

control.

Healthcare Industry: The Biggest pharmaceutical companies on the planet, including

Pfizer and Merck, utilize TS analysis in order to enhance drug discovery, optimize clinical

trials, and develop disease models. Healthcare providers such as Mayo Clinic and Kaiser

Permanente monitor patients, conduct disease surveillance, and plan resources using TS.

Energy Industry: Oil and gas companies, such as ExxonMobil and Shell, utilize

TS analysis to enhance reservoir modeling, optimize production, and improve equipment

maintenance. Likewise, renewable energy companies like NextEra Energy and Tesla utilize

TS analysis to predict solar and wind power generation.

Retail Industry: Major retail companies in the word like Walmart, Target, or Amazon

are relying on time series analysis to predict demand, manage inventory, and optimize

pricing. Time series analysis is utilized by e-commerce giants such as Alibaba and eBay

to enhance their recommendation systems, personalize marketing strategies, and detect

fraudulent activities.
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The present thesis focuses on time series forecasting, emphasizing its significance in

addressing real-life challenges and issues. Forecasting in TS is a crucial aspect of machine

learning when it comes to solving real-life problems. It enables us to avoid unforeseen dan-

ger that humans cannot anticipate, such as natural disasters and sudden epidemic diseases.

It doesn’t only grant avoiding negative risks, but also possess the ability to predict changes

in market prices and improve the experience across industries.

1.3 Challenges With Time Series Forecasting

Time series data can be found in a multitude of domains, making it exhibiting diverse

behaviors and characteristics. Therefore, understanding and modeling the dynamics of

different types of TS faces several challenges.

• Stationary vs. Non-Stationary Data: Time series data can be categorized as a)

Stationary data where the data has a constant mean and variance over time (e.g.,

Examples include daily temperature fluctuations), and b) Non-stationary data which

represents the majority of time series where the mean and variance change over time

(e.g., stock prices, global population growth, and daily website traffic)

• Unknown Inter-Domain Influences: In some domains, the behaviors of TS are

affected by unknown factors from other domains; for instance, changes in a clothing

store’s sales can be affected by the weather conditions at a particular time. This

unknown relationship between domains leads to sudden changes in the data itself;

this phenomenon is called change points [2]. Change points led to the emergence of

a separate research branch of time series, which was called Change Point Detection,

aiming to identify change points in data. However, this is applied only in the known

past data, where the current solutions still can’t detect future coming change points.

• Frequency Specification: Other than that, time series data are usually specified at

a fixed, regular frequency. Furthermore, most approaches show high performance in
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low-frequency captured data (e.g., Second, Minute), but in contrast, these approaches

are still struggling with high-frequency captured data (e.g., Hourly, Daily).

• Complex Relationship Capture: Capturing complex relationships within the data,

including long-term dependencies, is also one of the challenges that time series fore-

casting models try to enhance, especially in long-term time series forecasting tasks.

Many approaches have been presented in the time series forecasting task, the diversity

of these models results in some interesting observations regarding the accuracy, overfitting,

interpretability and the complexity. Usually, as model complexity increases, accuracy on

the training data often improves. However, this can lead to overfitting, where the model

performs poorly on unseen data. Striking a balance between capturing the underlying trend

and avoiding overfitting is crucial. Generally, simpler models are easier to interpret, while

complex models often become opaque and difficult to understand. Choosing the right level

of complexity depends on the specific needs of the application. If interpretability is crucial,

a simpler model with slightly lower accuracy might be preferable.

When evaluating a time series prediction model, one may be interested in assessing its

prediction capability and robustness in handling diverse data scenarios. The main aim is

to achieve certain capacity that provides accurate forecasting while being able to navigate

through complex and dynamic data structure. This means inspecting the model’s capability

to capture intricate patterns and dependencies within TS, while ensuring that it can effec-

tively generalize to unseen instances. Moreover, the evaluation necessitates an exploration

of interpretability of the model, elucidating how well it communicates its predictions and

underlying reasoning. Through rigorous assessment, it becomes possible to discern the

model’s proficiency in delivering reliable predictions consistently across various tempo-

ral contexts, thereby facilitating informed decision-making in real-world applications. It

is worth mentioning that throughout the literature review, we didn’t encounter works that

took into consideration all these criteria in evaluating TS models.
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1.4 Rise Of Transformers And Role Of Simpler Models Like MLPs

The year 2017 is a significant milestone in the history of artificial intelligence, as it was

marked by the emergence of the famous Transformer architecture [3]. Initially, Transform-

ers were presented as new method for different tasks of Natural language processing (NLP)

(e.g., Text Generation, Classification, Summarization) [4, 5, 6]. The use of Transformers

in NLP demonstrated great performance, leading to its introduction in various artificial in-

telligence applications such as speech recognition [7], computer vision [8, 9, 10, 11], and

music generation [12].

Time series forecasting is one of the applications that Transformer architecture has

been modified to be used with [13], as there is a remarkable number of models intro-

duced to this end including Informer [14], AutoFormer [15], and FedFormer [16]. How-

ever, Transformer-based methods have encountered many difficulties when applied for TS

forecasting, due to the main core of these models, which is the multi-head self-attention

mechanism. This mechanism showed a great performance in most NLP tasks, where it

handles complex text semantics. The permutation invariant and anti-order nature of the

self-attention causes a limitation when it comes to TS. Unlike semantic rich application,

any change in the order of the time series causes total loss of temporal information [17].

In 2022, a breakthrough occurred by the introduction of the LTSF-Linear models,

namely Linear, DLinear and NLinear [17]. Surprisingly, these models achieved the state-

of-the-art results by significantly outperforming transformers. The performance of LTSF-

Linear rises a question about the need for complex modeling of time series, as simple MLP

models can outperform other complex models by a large margin. The linear relationship

between the look-back and the future forecast in the TSF task underpins this assumption in

LTSF-Linear models. Such models are designed as direct multi-step (DMS) techniques to

circumvent the accumulation of errors. This issue is considered significant in the iterative

multi-step (IMS) techniques used by most transformer models.
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The LTSF-Linear models employ various effective preprocessing methods, ranging

from normalization to series decomposition [17]. These simple techniques caused diverse

reactions and performances in various test scenarios. Regardless, the LTSF-Linear models

are still too simple to track the different trend changes leading to less accurate forecasts,

especially for TS in domains that involve many fluctuations. Subsequently, this drove us to

propose our new MLP-based solution, which combines different techniques to give better

performance than the standard simple MLP models.

This work delves into the different techniques LTSF-Linear models utilize to outper-

form other complex models. We begin with the premise that a combination of different

techniques in a simple MLP-based model could potentially enhance the performance of

such an approach. Through experiencing different types of kernels, the present thesis inves-

tigates diverse decomposition technique of TS showing their effectiveness on the model’s

learning process.

1.5 Uni-Variate Multi-Scale Linear (UMS-Linear) Model

To validate the stated hypothesis stated above, we put forward a new scheme named Univariate

Multi Scale Linear (UMS-Linear) that’s based on MLP incorporating multi-scaling decom-

position technique. Moreover, our proposed UMS-Linear uses a simple timestamps em-

bedding method, furnishing the model with additional and valuable temporal information.

Leveraging the MLP inherent characteristics and the techniques within UMS-Linear, allows

integrating more intricate information. These enhancements enable the latter to outperform

other MLP-based models, leading to state-of-the-art accuracy in univariate long-term time

series forecasting.

One must know that for any forecasting technique to be deemed effective, various

enhancement aspects need to be investigated. However, we found out that prior meth-

ods in the field often focus narrowly on specific techniques or aspects of assessment. In

this thesis, we delve into a broad spectrum of factors including multi-scale decomposi-
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tion, timestamp integration, loss function optimization, look-back length variations, and

training parameter analysis. In addition, The proposed scheme has been evaluated on real

worlds scenarios, its robustness and sensitivity has be analyzed, along with a discussion

on the interpretability and the explainability of the provided results. By examining this

wide array of considerations, the study provides a comprehensive understanding of model

performance and effectiveness in long-term time series forecasting, addressing a gap in

existing research where such extensive analysis is lacking. Additionally, the investigation

into different univariate benchmarks commonly used for model comparison reveals that

UMS-Linear surpasses other MLP models in both Mean Squared Error (MSE) and Mean

Absolute Error (MAE) metrics, particularly evident in fluctuated forecasts where UMS-

Linear demonstrates heightened robustness. Notably, UMS-Linear exhibits proficiency in

both short-term forecasts (less than 96 future points) and long-term time series forecasting,

with the horizon extending beyond 96 future points.

In conclusion, this introduction provides a comprehensive overview of the significance

of TS forecasting across various domains, emphasizing its role in addressing real-world

challenges. We outlined the prevalent use of time series data in domains such as finance,

healthcare, weather analysis, and retail, underscoring the importance of accurate forecast-

ing for informed decision-making. We also discussed the associated challenges, including

modeling complexities and the trade-offs between model complexity and interpretability.

Furthermore, we discussed the emergence of Transformer architectures and the success of

simpler models like LTSF-Linear models, setting the stage for the proposed Uni-Variate

Multi-Scale Linear (UMS-Linear) model. This introduction serves to establish the moti-

vation, context, and objectives for the subsequent chapters of the thesis, which will delve

deeper into later on. In the next chapter chapter 2, a literature review will be given where

we investigate the aspects of different approaches that have been recently proposed, starting

from the statistical to MLP-Based solutions. The third chapter (Link to the chapter) dis-

cusses our proposed scheme by detailing each used technique. The fourth chapter (Link to
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the chapter) is a comprehensive experiment section discusses the assessment aspects have

been taken into account in evaluating our proposed scheme against state-of-the-art. Finally,

we synthesize some concluding remarks, reflect on the contributions of the thesis, discuss

implications for future research.
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CHAPTER 2

LITERATURE REVIEW

The inherent challenges of time series forecasting, such as capturing non-stationary data,

long-term dependencies, and complex relationships, have driven the development of di-

verse forecasting models. These models can be broadly categorized into: statistical mod-

els, which utilize statistical methods like regression to capture trends, seasonality, and other

patterns in the data; these models are generally interpretable and computationally efficient.

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs) are lever-

aged neural networks with specialized architectures to handle sequential data and long-

term dependencies. Convolutional neural networks (CNNs) capture spatial and temporal

features from the data, potentially suited for specific time series structures. Transformers

utilize attention mechanisms to learn long-range dependencies in the data, which is poten-

tially effective for complex relationships. Multi-layer perceptrons (MLPs) employ feed-

forward neural networks for learning the different relationships in the data. This chapter

will serve as an inclusive literature review, providing details on each category, highlighting

the strengths and weaknesses of well-performing models within each, and discussing their

suitability for different forecasting tasks.

2.1 Statistical Techniques (Parametric Techniques)

Statistical methods have served as the bedrock of time series forecasting for decades, pro-

viding a robust and interpretable framework for predicting future values based on historical

data. Despite the increasing prominence of machine learning models, statistical methods

retain their significance in forecasting owing to several key advantages: interpretability,

transparency, and efficiency. Among the most popular statistical methods in time series

forecasting are moving average (MA), which smooths out noise by taking the average of
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past observations to predict future values, autoregressive (AR), which forecasts future val-

ues based on past values within the time series itself. Autoregressive integrated moving av-

erage (ARIMA) [18], a powerful method that combines AR and MA to account for trends

and seasonality in the data. Seasonal ARIMA (SARIMA) [19], an extension of ARIMA,

designed to handle data exhibiting periodic patterns, such as monthly sales figures. Statis-

tical models offer valuable insights into the factors influencing time series data. They can

elucidate how past values, trends, and seasonality contribute to future outcomes, fostering

trust in predictions and aiding in issue diagnosis. Additionally, the documented assump-

tions and limitations of statistical models enable careful evaluation of their suitability for

specific time series. However, it’s essential to acknowledge their limitations. Statistical

models may struggle to capture intricate, non-linear relationships within data, leading to

less accurate forecasts for highly dynamic or volatile time series. Moreover, these methods

often necessitate manual feature engineering, such as trend or seasonality identification,

which can be time-consuming and reliant on domain expertise. Furthermore, many sta-

tistical models assume stationary data, meaning their statistical properties (like mean and

variance) remain constant over time, which may not always hold true in real-world scenar-

ios.

2.2 Techniques based on Long Short-Term Memory (LSTM) and Recurrent Neural

Networks (RNNs)

RNN [20] and LSTM networks [21] have emerged as powerful tools for time series fore-

casting tasks. Unlike traditional statistical methods, these deep learning models can effec-

tively capture complex and non-linear patterns in time series, making them well-suited for

forecasting applications across various domains, including finance, weather, energy, etc.

RNN [20] is a neural network architecture designed to process sequential data, such

as time series. Unlike feedforward neural networks, RNNs have a feedback loop that al-

lows them to maintain an internal state, enabling them to model the temporal dependencies
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present in time series data. This internal state, also known as the hidden state, acts as a

memory, carrying information from previous time steps and influencing the network’s pre-

dictions at the current time step. While traditional RNNs [20] are capable of learning and

modeling sequential patterns, they suffer from the vanishing/exploding gradient problem,

which makes it difficult for them to capture long-term dependencies in the data. This lim-

itation can be particularly problematic in time series forecasting, where patterns may span

over extended periods.

LSTM [21] is designed to address the vanishing/exploding gradient problem faced by

traditional RNN. LSTM [21] is a specific type of RNN architecture that includes a complex

gating mechanism, allowing them to selectively remember and forget information from the

input sequence. The key components of an LSTM [21] cell are the forget gate, input gate,

and output gate. These gates regulate the flow of information into and out of the cell state,

which acts as the network’s long-term memory. This gating mechanism enables LSTMs

[21] to effectively capture long-term dependencies in the data, making them particularly

well-suited for time series forecasting tasks involving long sequences or patterns spanning

over extended periods.

Segment-wise Recurrent Neural Network (SegRNN )[22] is a recently proposed RNN

model designed specifically for long-term time series forecasting. It utilizes two key strate-

gies to reduce the number of recurrent iterations required for effective convergence: 1)

Segment-wise Iterations: The original time point-wise iterations are replaced with sequence

segment-wise iterations, reducing the number of iterations from L to L/w, where L is the

length of the input sequence and w is the segment length. 2) Parallel Multi-step Forecast-

ing (PMF): Single-step predictions are replaced with parallel multi-step forecasting, further

reducing the number of iterations from H/w to 1, where H is the forecasting horizon. The

authors of SegRNN demonstrated that this novel RNN architecture can significantly re-

duce the number of recurrent iterations required for LTSF while still achieving competitive

performance compared to state-of-the-art transformer-based models. Additionally, they

13



provide strong evidence that the vanishing/exploding gradient problem, which has tradi-

tionally limited the effectiveness of RNNs in LTSF, can be overcome through the use of

segment-wise iterations and PMF.

2.3 CNN-Based Techniques

Convolutional neural networks (CNNs) have traditionally been successful in computer vi-

sion tasks, but their ability to capture local patterns and temporal dependencies has also

made them valuable for time series forecasting problems. In recent years, numerous CNN-

based architectures have been proposed specifically for time series data, offering various

advantages and addressing different challenges. This section focuses on several prominent

CNN models for time series forecasting, highlighting their main ideas, advantages, and

potential limitations.

Temporal Convolutional Networks (TCN) [23] were designed for sequence model-

ing tasks such as time series forecasting. They employ causal convolutions, which ensure

that the output at any time step depends only on the current and previous inputs, making

them suitable for real-time or online forecasting. They employ dilated convolutions, which

enable capturing long-range dependencies while maintaining a reasonable computational

cost. Additionally, TCNs can handle sequences of varying length and support paralleliza-

tion during training and inference. However, TCNs may struggle with capturing long-range

dependencies in very long sequences and may not be as effective as attention-based models

in certain cases.

Multi-scale Isometric Convolution Network (MICN) [24] combines the modeling per-

spectives of CNNs and transformers to efficiently extract local features and global cor-

relations of time series. It utilizes multiple branches with different convolution kernels

to capture diverse temporal patterns and employs a novel local-global module based on

downsampling convolution and isometric convolution. This approach reduces computa-

tional complexity to linearity and achieves competitive accuracy.
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Sample Convolution and Interaction Network (SCINet) [25] is a novel neural network

architecture for time series modeling and forecasting. It adopts a hierarchical downsample-

convolve-interact architecture that effectively captures dynamic temporal dependencies at

multiple resolutions with a rich set of convolutional filters. The downsampling procedure

allows for a larger receptive field at each convolutional layer, and the interactive learning

strategy enables information interchange between the downsampled sub-sequences. This

design allows SCINet to extract distinct yet valuable temporal features from multiple reso-

lutions, leading to enhanced representation capabilities and improved forecasting accuracy.

TimesNet [26] is a novel approach to temporal variation modeling for time series anal-

ysis. It leverages the concept of multi-periodicity to decompose time series into multiple

temporal 2D-variations, which capture both intra- and inter-period variation. By trans-

forming 1D time series into 2D space, TimesNet enables the use of parameter-efficient

inception blocks for representation learning, which can effectively aggregate multi-scale

temporal variations. This approach addresses the limitations of previous methods that at-

tempted to model temporal variations directly from 1D time series, which is extremely

challenging due to the intricate temporal patterns. The main disadvantage of TimesNet is

that it requires the estimation of periods, which can be challenging for time series with

complex or irregular periodicities. Additionally, the model’s performance may be sensitive

to the choice of hyperparameters, such as the number of periods to consider and the size of

the inception block.

PatchMixer [27] is a novel CNN-based model for long-term time series forecasting. It

employs a patch-mixing design that combines depthwise separable convolutions and point-

wise convolutions to capture both local and global features in the time series. The dual

forecasting heads, consisting of one linear and one MLP flatten head, enabling to effec-

tively model both linear and nonlinear trends in the data. PatchMixer outperforms state-of-

the-art transformer and CNN-based models on seven long-term forecasting benchmarks. It

achieves this performance while being 2-3 times faster than the most recent methods.
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2.4 Transformer-based techniques

As mentioned before, Transformers [3] first appeared in 2017, where these models have

made a unique leap in the field of artificial intelligence. The presented Transformer ar-

chitecture was able to handle the different natural language processing (NLP) tasks; some

examples of these tasks that are worth mentioning are as follows: text summarization [28],

where Transformers can condense lengthy texts into concise summaries by identifying the

most important information. Machine Translation [3], where Transformers excel at trans-

lating text from one language to another by effectively capturing long-range dependencies

within sentences. Sentiment Analysis [29], where Transformers can determine the emo-

tional tone of text, such as positive, negative, or neutral. In addition, Named Entity Recog-

nition (NER), Text Generation, and Question Answering are also some of the many tasks

that the Transformer model can handle [4], where there is a large performance gap be-

tween the standard methods (e.g., RNN, LSTM) and these Transformers. The spread of

transformers was not limited to the NLP field, but their use also appeared in other arti-

ficial intelligence fields, where the great performance of this last model shows that these

models are worth transferring to many other fields. Some of these fields are as follows:

computer vision [8, 9, 10, 11], where by some adjustments, Transformers can analyze im-

ages and videos. Speech Recognition [7], by analyzing the sequence of sounds in speech

and identifying the words spoken. Recommendation Systems [30], where transformers can

analyze user-item interactions and learn the relationships between different items. Music

Generation [12], where transformers can be adapted to generate music by analyzing exist-

ing musical sequences and learning the patterns and relationships between notes, rhythms,

and other musical elements.

Likewise, time series forecasting has witnessed significant advancements with the adap-

tation of transformers, showcasing remarkable performance in capturing long-term depen-

dencies, particularly suited for long-term forecasting tasks. However, the main multi-head
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self-attention mechanism inherent in transformers results in considerable computational

cost and complexity, presenting challenges in testing and manipulating these models. To

address these limitations, recent advancements have focused on enhancing transformer ar-

chitectures to reduce complexity and computational costs, with some models achieving a

decrease from O(L2) to O(L) [16]. This evolution has led to the emergence of several

distinguished works demonstrating excellent results in time series forecasting. This section

explores some of the most unique and renowned Transformer-based models, providing a

succinct overview of their functionalities.

Informer: Informer [14] was proposed to solve the quadratic complexity and memory

usage that the traditional self-attention mechanism produces. In addition, for more accurate

predictions, Informer uses a generative style decoder where it predicts long sequences in

a single forward operation, avoiding cumulative error and speed plunges. In order to re-

duce the quadratic complexity of the self-attention, Informer introduced a new ProbSparse

self-attention technique, which replaces the canonical self-attention with a sparse mech-

anism that achieves O(LlogL) time and memory complexity. The authors of this paper

created the well-known ETT (Electricity Transformer Temperature) dataset. Experiments

on this dataset with three other large-scale datasets demonstrate that Informer significantly

outperforms existing methods in 2021.

Autoformer: Autoformer [15] is a novel decomposition architecture with an auto-

correlation mechanism proposed to address the long-term forecasting problem of time se-

ries. Autoformer aims to overcome the challenges of traditional transformer-based models,

where they struggle with intricate temporal patterns and computational efficiency in long-

term forecasting. Autoformer consists of a series decomposition block, an auto-correlation

mechanism, and a corresponding encoder-decoder structure. The decomposition block pro-

gressively separates long-term trend information from input series by using the moving av-

erage kernel. Auto-Correlation discovers period-based dependencies and aggregates sim-

ilar sub-series from underlying periods, expanding information utilization beyond point-
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wise self-attention. The auto-correlation mechanism is an interesting technique that allows

to enhance the traditional transformer-based model. The auto-correlation calculates the au-

tocorrelation of the series to identify period-based dependencies. It then utilizes time-delay

aggregation to roll and aggregate similar sub-series, providing series-wise connections.

Autoformer is evaluated on six real-world benchmarks covering energy, traffic, economics,

weather, and disease. The results demonstrate significant improvements in accuracy over

state-of-the-art models, with a 38% relative improvement under long-term forecasting set-

tings.

Pyraformer: Pyraformer [31] is a novel transformer-based model that addresses the

challenge of capturing long-range dependencies in time series data with low time and

space complexity. It introduces the pyramidal attention module (PAM), which leverages

a pyramidal graph to summarize features at different resolutions and model temporal de-

pendencies of different ranges. The PAM employs a multi-resolution representation of

the time series, with coarser scales capturing long-range patterns and finer scales focus-

ing on short-term dependencies. This allows Pyraformer to capture long-range correlations

efficiently, reducing the maximum length of the signal traversing path to O(1) without in-

creasing the time and space complexity, which is O(L) with regard to the sequence length

L. In single-step forecasting experiments on three real-world datasets, Pyraformer achieves

good prediction accuracy with the least amount of time and memory consumption.

FedFormer: Transformer-based methods for long-term series forecasting struggle to

capture a global view of time series and are computationally expensive. To address these

issues, FedFormer [16] introduced a combination of the Transformer architecture with

seasonal-trend decomposition and Fourier analysis. FEDformer significantly improves pre-

diction accuracy in comparison with state-of-the-art methods on six benchmark datasets,

where it reduces prediction error by 14.8% for multivariate and 22.6% for univariate time

series forecasting. Also, Fedformer has linear computational complexity with respect to se-

quence length, making it suitable for long-term forecasting. This model uses different tech-
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niques, which are summarized as follows: Fourier Enhanced Blocks (FEBs) and Fourier

Enhanced Attention (FEA) can efficiently capture global properties and reduce computa-

tional costs. FEBs replace self-attention blocks with the Fourier transform to handle fre-

quency components and enhance learning, while FEA performs attention in the frequency

domain for information exchange between the encoder and decoder. Additionally, Mix-

ture of Experts Decomposition (MOEDecomp) extracts seasonal and trend patterns, and

Random Fourier Component Selection demonstrates the effectiveness of using a chosen

subset of Fourier components for efficient representation. By combining these innovative

techniques, FEDformer offers a powerful and efficient approach for long-term time series

forecasting.

PatchTST: PatchTST [32] is a novel transformer-based model for multivariate time se-

ries forecasting and self-supervised representation learning. To enhance locality and reduce

computational complexity, PatchTST uses a patching technique where time series are seg-

mented into subseries-level patches, which are used as input tokens to the Transformer. In

addition, PatchTST uses the channel-independence method, where each input token con-

tains data from a single channel, allowing for channel-specific embeddings and weights.

PatchTST achieves significant improvements in long-term forecasting accuracy compared

to state-of-the-art transformer models and the DLinear model [17].

Card: Channel Aligned Robust Blend Transformer (Card) [33], is a novel Transformer

model designed for time series forecasting. It addresses key shortcomings of channel-

independent Transformer models by introducing channel-aligned attention, a token blend

module, and a robust loss function. The channel-aligned attention allows for the capture

of correlations among different channels (forecasting variables) and the alignment of local

information within each token. The token blend module generates tokens with different

resolutions by merging adjacent tokens within the same head, enhancing the extraction of

multi-scale knowledge. To alleviate overfitting, CARD introduces a signal decay-based loss

function that weights predictions based on their uncertainty. CARD was evaluated on var-
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ious long-term and short-term forecasting benchmarks, resulting in a good performance in

both MSE and MAE metrics. It also demonstrated superior performance in reconstruction-

based anomaly detection tasks.

CrossFormer: Crossformer [34] is a transformer-based model that explicitly cap-

tures cross-dimension dependency for multivariate time series (MTS) forecasting. Existing

Transformer models mainly focus on cross-time dependency, neglecting the critical cross-

dimension dependency. Crossformer utilizes Dimension-Segment-Wise (DSW) embed-

ding to preserve time and dimension information. The Two-Stage Attention (TSA) layer

efficiently captures cross-time and cross-dimension dependency. A hierarchical encoder-

decoder (HED) is established to leverage information at different scales for forecasting.

Extensive experiments on six real-world datasets demonstrate the effectiveness of Cross-

former against some other known transformer models.

2.5 Techniques based on Multi layer Perceptron (MLP)

The breakthrough that occurred with the introduction of the LTSF-Linear [17] models

paved the way for many researchers in this field to focus on enhancing and developing

MLP nature models. The performance of these models is considered one of the best re-

sults in time series forecasting, demonstrating their suitability for this domain. This section

delves into recent advancements in MLP models specifically designed for TSF.

LTSF-Linear: Long-term Time Series Forecasting Linear models (LTSF-Linear) [17]

comprise three MLP-based models, aiming to showcase the limitations of the self-attention

mechanism of transformers. These models have demonstrated superior performance com-

pared to most transformer models.

Vanilla Linear: This is a simple standard MLP containing one fully connected layer.

The look-back of the time series serves as an input vector for this layer, and the output

of this layer constitutes the forecast. Mathematically represented as Y = WX , where

X ∈ RL is the look-back input, Y ∈ RT is the forecast, and W ∈ RT×L. Surprisingly, this
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simple MLP model outperforms all transformer models in most benchmarks.

DLinear: To handle complex patterns in data across different domains, the authors

introduced the Decomposition Linear model (DLinear). It combines series decomposition

used in AutoFormer [15] and Fedformer [16] with a simple vanilla linear layer. DLinear

decomposes the input series into a trend and a remainder component using a moving av-

erage kernel. These components are then fed into separate linear layers, with their outputs

added together to produce the final forecast. This process enables the model to effectively

learn series components and trends.

NLinear: Developed to handle distribution shifts between training and test sets in cer-

tain datasets, such as ETTh1 and ETTh2. NLinear utilizes a combination of normalization

and a linear layer. It first normalizes the input series and then feeds it into a linear layer,

resulting in a shifted output series. Finally, the series is shifted back to produce the output

forecast series. NLinear excels in handling data shifting, surpassing existing transformers’

results on the ETT dataset.

MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal and Chan-

nel Mixing (MTS-Mixers) [35] employs two factorized modules: temporal and channel

mixing. The temporal mixing module captures temporal dependencies, while the channel

mixing module captures channel interactions. By leveraging the low-rank property of time

series data, MTS-Mixers aims to achieve better prediction accuracy and efficiency. Ex-

tensive experiments on several real-world datasets demonstrate its superiority over existing

transformer-based models, achieving significant improvements in forecasting performance.

TSMixer: TSMixer [36] is a novel architecture for time series forecasting that com-

bines time-mixing and feature-mixing operations to efficiently capture both temporal pat-

terns and cross-variate information. It stacks multi-layer perceptrons (MLPs) and employs

residual connections, normalization, and temporal projection to enhance its performance.

TSMixer outperforms state-of-the-art univariate models on popular long-term forecasting

benchmarks.
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TiDE: TiDE (Time-series Dense Encoder) [37] combines the simplicity of linear mod-

els with the non-linearity of MLPs to achieve superior performance on popular forecasting

benchmarks. It consists of an encoder-decoder architecture, with dense MLPs used for en-

coding the past of a time series and covariates into a dense representation. The decoder

maps this encoding to future predictions, incorporating future covariates into the predic-

tions using dense MLPs. TiDE surpasses Transformer-based baselines and matches or

exceeds the performance of DLinear.

MoLE: Mixture-of-Linear-Experts (MoLE) [38] augments linear-centric LTSF models

to improve accuracy. MoLE introduces multiple linear-centric models (experts) and a router

model that weighs and combines their outputs. It integrates multiple linear-centric experts

with a mixing layer, using a timestamp embedding to learn weights for each expert. This

allows MoLE to capture diverse temporal patterns and significantly enhance forecasting

accuracy compared to existing linear-centric models.

2.6 Other Techniques

In addition to the aforementioned well-known approaches, other techniques such as pre-

trained models [39] and probabilistic forecasting methods like ForGAN [40], which uti-

lize GAN architecture, have gained traction. There have also been attempts to develop

Language Models (LLMs) for time series, such as timeLLM [41], which leverage pre-

trained language models in time series forecasting, along with frozen pretrained transform-

ers (FPT) [42]. Here’s a brief summary of some of these methods:

ForGan: ForGan [40] proposes a method that enhances the training and prediction

of univariate probabilistic time series models by explicitly modeling error autocorrelation

within mini-batches. It constructs mini-batches as collections of consecutive time series

segments and learns a time-varying covariance matrix to capture the correlated errors. A

small neural network is attached to project the hidden state to the weights of the correlation

matrix, which is parameterized as a weighted sum of base kernel matrices. This ensures
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positive definiteness and unit diagonals. The method improves prediction accuracy and

enhances training flexibility without significantly increasing model parameters.

Frozen Pretrained Transformer (FPT): Frozen Pretrained Transformer (FPT) is [42]a

novel approach to time series forcasting and analysis that leverages pre-trained language

models without modifying their core components. FPT provides a unified framework for

diverse time-series tasks,achieving state-of-the-art or comparable results. Its universality

is demonstrated by the effectiveness of using pre-trained models from different domains

(NLP, CV) for time series forecasting and analysis. However, FPT has limited customiza-

tion due to the frozen pre-trained layers and requires massive datasets for pre-training,

which may not always be available for time series forecasting and analysis.

TimeLLM: TIME-LLM [41] is a novel framework that reprograms large language

models (LLMs) for general time series forecasting. Unlike existing methods that specialize

in specific tasks and require extensive domain expertise, TIME-LLM can handle a wide

range of forecasting tasks with minimal adaptation. This is achieved by reprogramming

the input time series into text prototype representations and enriching the input context

with declarative prompts, which guide the LLM’s reasoning about time series concepts.

The transformed time series patches from the LLM are finally projected to obtain the fore-

casts. TIME-LLM offers several advantages over traditional forecasting models. First, it

is generalizable and can be applied to a wide range of forecasting tasks without requir-

ing per-task retraining. Second, it is data-efficient and can perform well even with lim-

ited historical data. Third, it leverages the reasoning capabilities of LLMs, which enables

it to make highly precise forecasts by leveraging learned higher-level concepts. Fourth,

it is multimodal and can fuse different data types, such as text, images, and speech, to

enhance forecasting accuracy. Finally, it is easy to optimize and can be deployed with

minimal computational resources. TIME-LLM has been evaluated on a variety of fore-

casting benchmarks and has consistently outperformed state-of-the-art models, especially

in few-shot and zero-shot scenarios. This demonstrates the effectiveness of TIME-LLM in
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unlocking the untapped potential of LLMs for time series forecasting.

2.7 Comparison With State-Of-The-Art Techniques in Time Series Forecasting

To facilitate insight into the overall field of research, we summarize previous related works

by providing Table Table 2.1, which outlines some key specifications of the aforementioned

techniques (e.g., Techniques Used, results).

Table 2.1: Comparison With State-Of-The-Art Techniques in Time Series Forecasting

Author/Year Title Model Techniques Used Datasets Results
Reported

shortcomings
Conclusion

Tr
an

sf
or

m
er

s

Zhou et al.,

2021

Informer:

Beyond Efficient

Transformer for

Long Sequence

Time-Series

Forecasting

Informer

Transformer

using ProbSparse

self-attention,

self-attention

distilling,

generative style

decoder

Electricity,

Traffic, Retail,

Weather

Outperforms

existing methods

on all datasets

Limited to

univariate

time-series

forecasting

Informer model

boosts LSTF

prediction by

capturing

long-range

dependencies in

time series data

Haixu Wu et

al., 2021

Autoformer:

Decomposition

Transformers

with

Auto-Correlation

for Long-Term

Series

Forecasting

Autoformer

Decomposition,

Auto-

Correlation,

Transformer

ETT, Traffic,

Electricity,

Exchange, ILI,

Weather,

Covid19

38% relative

improvement

under the

long-term setting

Not mentioned

Autoformer tops

accuracy in

forecasting

energy, traffic,

etc.

Shizhan Liu

et al., 2022

Pyraformer:

Low-Complexity

Pyramidal

Attention for

Long-Range

Time Series

Modeling and

Forecasting

Pyraformer

Transformer

using Pyramidal

attention module

(PAM),

Coarser-scale

construction

module (CSCM)

Wind, App Flow,

Electricity, ETT

Beats

Transformers

(NRMSE, ND)

with fewer

parameters &

faster runtime

Not mentioned

Pyraformer can

simultaneously

capture temporal

dependencies of

different ranges

Tian Zhou et

al., 2022

FEDformer:

Frequency

Enhanced

Decomposed

Transformer for

Long-term Series

Forecasting

FEDformer

Seasonal-trend

decomposition,

Fourier

transform,

Wavelet

transform,

Transformer

ETT, Traffic,

Electricity,

Exchange, ILI,

Weather

14.8% and 22.6%

improvement in

multivariate and

univariate

forecasting,

respectively

Sensitive to

hyperparameter

tuning

FEDformer:

captures global

trends &

forecasts

efficiently

Nie et al.,

2023

A Time Series is

Worth 64 Words:

Long-Term

Forecasting with

Transformers

PatchTST

Transformer,

Patching,

Channel-

independence

Weather, Traffic,

Electricity, ILI,

ETT

MSE and MAE

reduced by

21.0% and 16.7%

compared to the

best

Transformer-

based models

Not mentioned

PatchTST tops

all methods in

self-supervised

learning
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Tr
an

sf
or

m
er

s
Wang et al.,

2024

CARD: Channel

Aligned Robust

Blend

Transformer for

Time Series

Forecasting

CARD

Transformer,

Channel-aligned

attention, Token

blend module,

Robust loss

function

ETT, Traffic,

Electricity,

Exchange, ILI,

Weather

Outperforms

state-of-the-art

methods in

long-term

forecasting and

reconstruction-

based anomaly

detection

Not mentioned

CARD merges

info & scales for

better forecasts

Yunhao

Zhang &

Junchi Yan.,

2023

Crossformer:

Transformer

Utilizing

Cross-Dimension

Dependency for

Multivariate

Time Series

Forecasting

Crossformer

Dimension-

Segment-Wise

(DSW)

embedding,

Two-Stage

Attention (TSA)

layer,

Hierarchical

Encoder-Decoder

(HED)

ETT, WTH,

ECL, ILI, Traffic

Crossformer

ranks top-1

among the 9

models for

comparison on

36 out of the 58

settings and

ranks top-2 on 51

settings

Crossformer only

implicitly utilizes

the

cross-dimension

dependency by

embedding,

potentially

limiting its

forecasting

capability

Crossformer

excels in

multivariate

forecasting but

can improve

cross-dimension

mining

M
ul

ti
la

ye
rP

er
ce

pt
ro

ns
(M

L
Ps

)

Ailing Zeng

et al. (2024)

Are Transformers

Effective for

Time Series

Forecasting?

LTSF-

Linear

(Linear,

Dlinear,

Nlinear)

Fully connected

MLP model

ETT, Traffic,

Electricity,

Weather, ILI,

Exchange-Rate

Outperforms

existing

Transformer-

based models on

all datasets

the one-layer

linear network is

hard to capture

the temporal

dynamics caused

by change points

LTSF-Linear can

be a new baseline

for the LTSF

problem

Zhe Li et al.,

2023

MTS-Mixers:

Multivariate

Time Series

Forecasting via

Factorized

Temporal and

Channel Mixing

MTS-

Mixers

Factorized

temporal and

channel mixing

ECL, ETT,

Traffic2,

PeMS04,

Weather3,

Exchange, ILI

Outperforms

existing

Transformer-

based models

with higher

efficiency

Not mentioned

New framework

forecasts

multiple series,

capturing time &

channel links

Chen et al.

(2023)

TSMixer: An

All-MLP

Architecture for

Time Series

Forecasting

TSMixer
MLP-based

model

ETT, Traffic,

Electricity,

Exchange, ILI,

Weather

State-of-the-art

results on

long-term

forecasting

benchmarks and

M5

Not mentioned

MLPs excel at

time series &

multi-data, but

struggle with

extra info

Abhimanyu

Das et al.,

2023

Long-term

Forecasting with

TiDE:

Time-series

Dense Encoder

TiDE
MLP-based

encoder-decoder

Weather, Traffic,

Electricity, ETT

Beats

Transformers

(speed &

accuracy) on

long-term

forecasting

Not mentioned

TiDE: Simple

deep learning for

long-term

forecasts

Ronghao Ni,

Zinan Lin,

Shuaiqi

Wang, Giulia

Fanti, 2023

Mixture-of-

Linear-Experts

for Long-term

Time Series

Forecasting

MoLE

Mixture-of-

Experts for MLP

models

ETT, weather,

electricity, traffic,

Weather2K

MoLE improves

forecasting error

in over 78% of

the datasets and

settings

evaluated.

Not mentioned

MoLE boosts

linear models for

better LTSF

forecasts
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C
on

vo
lu

tio
na

lN
eu

ra
lN

et
w

or
ks

(C
N

N
s)

Shaojie Bai

et al., 2018

An Empirical

Evaluation of

Generic

Convolutional

and Recurrent

Networks for

Sequence

Modeling

TCN

Temporal

convolutional

networks (TCNs)

no forecasting

dataset

mentioned

TCNs

outperform

canonical

recurrent

networks across a

comprehensive

suite of tasks and

datasets.

Not mentioned

TCNs: Faster

training, lower

memory, better

results than

RNNs

Huiqiang

Wang et al.,

2023

MICN:

Multi-scale Local

and Global

Context

Modeling for

Long-term Series

Forecasting

MICN

Multi-scale

hybrid

decomposition,

Seasonal

prediction block,

Trend-cyclical

prediction block

ETT, Traffic,

Weather,

Electricity, ILI,

M4

MSE and MAE

scores

significantly

lower than

state-of-the-art

methods

Not mentioned

MICN tops

accuracy on

real-world

forecasting tasks

Liu et al.,

2022

SCINet: Time

Series Modeling

and Forecasting

with Sample

Convolution and

Interaction

SCINet

Sample

convolution and

interaction

Solar-Energy,

Traffic,

Electricity,

Exchange,Rate,

ETT, PEMS03,

PEMS04,

PEMS07,

PEMS08

State-of-the-art

results on most

benchmarks and

prediction length

settings

SCINet might be

affected by the

missing data if

the ratio exceeds

a certain

threshold leading

to poor

prediction

performance

SCINet captures

short &

long-term trends

for accurate

long-term

forecasts

Wu et al.,

2023

TimesNet:

Temporal

2D-Variation

Modeling for

General Time

Series Analysis

TimesNet

Temporal

2D-Variation

Modeling, Multi-

Periodicity, 2D

Convolution,

Inception Block

ETT, Traffic,

Electricity,

Weather, ILI,

Exchange-Rate,

M4

State-of-the-art

on all five

datasets

Not mentioned

TimesNet excels

in all time series

tasks: forecast,

imputation,

classify

Zeying Gong

et al., 2023

PatchMixer: A

Patch-Mixing

Architecture for

Long-Term Time

Series

Forecasting

PatchMixer

Patch-mixing

architecture,

Depthwise

separable

convolutions,

Dual forecasting

heads

Weather, Traffic,

Electricity, ETT

Beats

Transformers &

prior CNNs in

accuracy (MSE

& MAE).

Patch-based

models focus on

individual time

points, making it

difficult to

capture

long-term

temporal patterns

and integrate

external features

that span

multiple time

points.

PatchMixer is an

efficient and

accurate model

for long-term

time series

forecasting.

R
ec

ur
re

nt
N

eu
ra

lN
et

w
or

ks

Shengsheng

Lin et al.,

2023

SegRNN:

Segment

Recurrent Neural

Network for

Long-Term Time

Series

Forecasting

SegRNN

Segment-wise

iterations,

Parallel

Multi-step

Forecasting

(PMF)

ETT, Electricity,

Traffic, Weather

Outperforms

SOTA

Transformer-

based models in

50 out of 56

metrics

SegRNN has a

relatively smaller

capacity

RNN methods

still hold strong

potential in the

LTSF domain

26



2.8 Conclusion

At the end of this chapter, we conclude that there are different methods and techniques that

are used in time series forecasting. These methods are presented to enhance and outperform

the existing forecasting methods. The abundance of these methods has led to the diversity

of their categories, such as statistical methods, transformer-based methods, and MLP-based

methods. In terms of performance, the MLP-based models are showing the best results,

outperforming the existing transformer-based models. However, the state-of-the art results

are obtained from models in different categories (e.g., PatchMixer [27], SegRNN [22]).

This shows that models in different categories can also be enhanced to resolve the time

series forecasting task. In this work, we aim to enhance the MLP-based models to obtain

more accurate performance, which will be discussed in the next chapter.
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CHAPTER 3

PROPOSED METHOD

3.1 Introduction

In order to reduce the effects of the limitations in the standard MLP-based models, we will

propose our own model, UMS-Linear, that uses different techniques. In this chapter, we

will give an overview of this model, and then we will introduce the different techniques

that this model uses, where each of the model’s techniques will be explained in detail. And

at the end, this chapter will conclude with some theoretical analysis of the computational

efficiency of this model.

3.2 Overview of UMS-Linear
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Figure 3.1: Illustration of the UMS-Linear model architecture

Inspired by the different linear models of LTSF-Linear [17], we introduce UMS-Linear,

which is a novel MLP-based model designed for univariate Long-Term Time Series (LTSF)
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forecasting. UMS-Linear contains different techniques, as shown in Figure 3.1, where it

combines three key components to achieve state-of-the-art accuracy:

• Normalization : UMS-Linear inherits the normalization technique from NLinear [17],

which helps mitigate data-shifting issues and improves forecasting performance.

• Multi-Scale Decomposition Phase: This phase decomposes the time series in multi-

ple scales using a max pooling kernel. This allows UMS-Linear to capture the overall

shape of the data and extract the most prominent trends and fluctuations.

• Base Recover Phase: The final phase combines the decomposed components with

embedded timestamps to produce the forecasted time series. Timestamps provide

valuable temporal information, enabling UMS-Linear to better track long-term trends

and seasonal patterns.

The combination of these techniques allows UMS-Linear to effectively capture more

complex dynamics and patterns in univariate time series data compared to the standard

LTSF-Linear models. This results in improved forecasting accuracy, especially for long-

term horizons.

3.3 Incorporating Timestamps and Multi-Scale Decomposition

UMS-Linear incorporates two novel techniques to enhance its forecasting capabilities:

timestamp embedding and multi-scale decomposition.

Timestamps Embedding: Timestamps provide valuable temporal information that is

often overlooked in time series forecasting. UMS-Linear utilizes a simple yet effective

dense layer as an embedding for these timestamps. By encoding the timestamps of each

data point, the model gains a better understanding of the series’ temporal context. This

allows it to capture long-term trends and seasonal patterns more accurately.

Multi-Scale Decomposition: The multi-scale decomposition technique in UMS-Linear

is inspired by the observation that time series exhibit different patterns at different scales.
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By decomposing the series into multiple scales, the model can learn the underlying compo-

nents of the data and focus on the most relevant features for forecasting. The decomposition

is performed using a max pooling kernel, which captures the most prominent trends and

fluctuations in the data.

The combination of timestamp embedding and multi-scale decomposition enables UMS-

Linear to capture both the global and local characteristics of time series data. This com-

prehensive approach enhances the model’s ability to predict future values, especially in

long-term forecasting scenarios.

3.4 Modeling Time Series for Linear Transformation

UMS-Linear incorporates a linear layer as a key component in its forecasting pipeline. This

linear layer plays a crucial role in transforming the decomposed time series components

and the timestamps into the final forecasted values. This linear layer is used to model the

relationship between the input time series and the forecasted values.

UMS-Linear contains three linear layers to transform different components into differ-

ent meanings. These transformations are defined by weight matrices and bias vectors. The

weight matrices capture the relationships between the input components and the output

values. The bias vector adds a constant offset to the output values; this transformation can

be mathematically noted as Y = WX + b, where Y are the output values and X are the

input values, while b is the bias vector and W is the weight matrix. The linear layers in

UMS-Linear can be simplified into a series of linear regressions. Each linear regression

corresponds to one output dimension of the linear layer. The weight matrix of the linear

layer can be decomposed into a set of weight vectors, each of which corresponds to one

linear regression.

Time series data often exhibits nonlinear patterns. However, a linear layer can still ef-

fectively model nonlinear time series by approximating the nonlinear function with a series

of linear functions. This is possible because a linear layer can be stacked with multiple
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layers, each of which performs a different linear transformation. The combination of these

linear transformations can approximate complex nonlinear functions.

The use of linear layers in UMS-Linear allows for some advantages, which are listed as

follows:

• Simplicity: Linear layers are relatively simple to implement and train.

• Interpretability: The weight matrix of the linear layer can be interpreted to un-

derstand the relationship between the decomposed components and the forecasted

values.

• Efficiency: Linear layers are computationally efficient, making them suitable for

large-scale time series forecasting tasks.

Overall, the linear layer in UMS-Linear plays a vital role in transforming the decom-

posed time series components into accurate forecasted values. The simplicity, interpretabil-

ity, and efficiency of linear layers make them a valuable component in UMS-Linear’s fore-

casting pipeline.

3.5 Decomposition Phase

Scaling. Given a univariate time series X ∈ RL, scaling is applied to the time series as

follows: X̂ = X ∗ α where each point in the time series is scaled with α. This allows the

model to learn the shape of the data on different scales. The proposed model applies scaling

using a learnable parameter that is first initialized by 0.25 and also produces another fixed

version that is scaled by 0.50, These scalars are multiplied to the whole look-back, which

makes the whole look-back scaled at the same rate. Note that in the architecture, the scaling

by 100% refers to multiplying the input by 1.0 and also for the other scalars (50% ⇔ 0.5,

25% ⇔ 0.25).

Moving average. Moving average is a technique that applies average pooling, denoted

as AvgPool, to a time series X to extract the trend from the series. The subtraction remains
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between the original series and the extracted trend, resulting in the remainder component.

In formulation, the series decomposition is known as follows:

Trend = AvgPool(X ) (3.1)

Remainder = X − Trend (3.2)

The time series decomposition technique allows us to perform different approaches on

each component, where we impose that the trend is an important part of the series (see the

section 4.8 section for more details).

Usually in time series decomposition, the moving average applies the average pooling

kernel; the kernel allows for the extraction of a medium trend that equalizes between the

maximum values and the minimum values. UMS-Linear uses a max pooling kernel; this

allows to extract a trend that holds more important overall information, which produces

more accurate forecasts. This experiment is detailed in the section 4.8 section with the

different pooling methods.

Combination. After scaling the data and producing the X̂ series, we perform the series

decomposition with the max pooling method in both the original X series and the scaled

X̂ series. This will produce the following:

T,R = MaxDec(X ) (3.3)

T25, R25 = MaxDec(X̂25) (3.4)

T50, R50 = MaxDec(X̂50) (3.5)

Where T is the trend and the Remainder is denoted as R, and MaxDec represents the max

pooling decomposition technique.

A combination is made by combining the 4 components T25 and R and R50 and finally

X̂25. This combination allows the model to capture the overall movements and fluctuations
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from the reminders {R/R50} and to learn the general shape of the data from T̂ and X̂ . This

combination then enters a linear layer, as follows:

C = concatenate(R,R50, T̂ , X̂) (3.6)

F = WcC (3.7)

where C ∈ RL∗4 is the result of the concatenation and F ∈ RT is the result of the linear

layer Wc ∈ RL×T .
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Figure 3.2: A Comparation between the scaled F Component resulted by the Decomposi-
tion phase and the ground truth.

Notably, after training the model and visualizing the resulted F component, we see that

it is a signal series where the high frequented locations represent a rising or a falling in

the ground truth values, and the opposite low frequented parts refer to a falling or a rising

location in the ground truth, respectively, as shown in Figure 3.2.

3.6 Timestamps Embedding and Base Wave Forecasting

Timestamps Embedding. Timestamps are a component that the time series consists of;

ignoring the timestamps produces a sequential series with no time information; this results
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in a model that treats the time series the same as a text line. Positional encoding used in

the Transformers [3] will encode the points positions in the sequence. However, it could

not encode the repeated time information in the full data. As illustrated in Figure 3.3, the

positional embedding will give the same embedding for all the time series points at position

i. The data-loading technique used in the LTSF task uses a sliding window with one stride

to store the look-backs, which means that a point in series i will get a different embedding

in another series.
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Figure 3.3: An Illustration of the Positional Embedding Technique that has been used in
the Basic Architecture of Transformers [3].

Using timestamp embedding will address this problem, where timestamps contain the

different time components (e.g., hour, day, weekday, month) in a numerical format that

depends on the component’s maximum possible value (e.g., hours ∈ [1..24]). These values

are normalized as follows: ĥ = h
24

and for the day number in the month d̂ = d
31

and for

the day number in the week ŵd = wd
7

and finally for the month number we got m̂ = m
12

.

At the end, we will denote the timestamps as T ∈ RL×D, where D is the number of time

components. Furthermore, UMS-Linear applies a linear transformation and then applies a

weighted sum to produce a one feature timestamp embedding as follows:

T̂ = WTT

34



where T̂ is the product of the linear layer WT ∈ RL×L, And the weighted sum is noted as

follows:

T̂ = WSum(T̂ , axis = C)

Where WSum is a weighted sum that multiplies each channel by a learnable parameter (a

scalar) to identify its importance in the prediction, the final T̂ will be of size L× 1.

However, in UMS-Linear, we wanted to make a full look-back embedding, where we

are going to use the full look-back timestamps to produce a single value that identifies the

series location in the full data. This is simply applied by calculating the mean value of the

timestamps produced from the last step. Figure 3.4 shows the resulted embedding value of

timestamps over the ETTh1 dataset, where it appears that the embedding is produced in a

fixed range between [-0.4 and 0.4], which is similar to the timestamp embedding range of

MixOfExpert [38]. This changing in values gives the series more flexibility.

0 500 1000 1500 2000 2500
samples

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

va
lu

e

timestamps embedding over the test data

Figure 3.4: The produced timestamps embedding final value over the test samples in ETTh1
dataset

The base wave is produced by feeding the multiplication of the timestamps with the

scaled series X̂ into a linear layer. The base wave is denoted as B; for more robustness,

this base wave is scaled by the learnable scalar α that was used in the decomposition phase.
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The resulted wave regularizes the F component from the decomposition phase by scaling

it down in different locations to make it look like the base time series format.

The final forecasting result is formulated as follows:

Y = (B ⊗ F )⊕ LastSequence

where LastSequence is the last look-back sequence that is used to normalize the series X

in the first part by XN = X ⊖ LastSequence where XN is the normalized series.

3.7 Loss Function for Training UMS-Linear

While Mean Squared Error (MSE) is the common loss used to train most of the TSF models,

the equally 1:1 combination between MSE and Mean Absolute Error (MAE) that is used in

PatchMixer [27] is the best choice in our case. Furthermore, applying it makes the model

more robust in achieving the best results in more test cases, which is because of the new

balance nature of this combined loss.

The MSE Loss:

LMSE =
1

TN

N∑
i=1

T∑
t=1

(ŷit − yit)
2

And the MAE Loss:

LMAE =
1

TN

N∑
i=1

T∑
t=1

|ŷit − yit|

Where T is the forecast horizon and N is the number of samples. The final loss used to

train the model is then noted as follows:

L = LMSE + LMAE

However, in a further study, we discovered that this function can be improved to a

more effective version, and we suggest that models can perform better if they capture the

differences between points. This will reveal the locations of the change points in the data
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while also including the patterns in which the data changes between the current point and

the next point over time. The differences between points will result in a new series as

follows: Let Xt denote the value of the time series at time t. The differenced time series,

denoted by ∆Xt, can be calculated as:

∆Xt = xt−1 − xt

We used the mean absolute error (MAE) to include this differenced time series in the loss

function, where the differences will be calculated in both the ground truth and the prediction

series. This new loss function will be noted as LMAEdiff
. The final loss function, which

includes all the components we previously mentioned, will be noted as follows:

L = LMSE + LMAE + LMAEdiff

3.8 Theoretical Analysis of Computational Efficiency

UMS-Linear is designed to be computationally efficient, making it suitable for large-scale

time series forecasting tasks. The computational efficiency of UMS-Linear can be at-

tributed to the following factors:

• Linear Operations: UMS-Linear primarily relies on linear operations, such as ma-

trix multiplications and vector additions. These operations are highly efficient and

can be parallelized for faster computation.

• Lightweight Decomposition: The decomposition phase in UMS-Linear uses a max

pooling kernel, which is a simple and efficient operation. This lightweight decompo-

sition helps reduce the computational cost without compromising forecasting accu-

racy.

• Efficient Timestamps Embedding: The timestamps embedding technique in UMS-
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Linear involves a linear transformation and a weighted sum. These operations are

computationally inexpensive and can be performed efficiently.

Compared to other state-of-the-art time series forecasting models, UMS-Linear offers

competitive computational efficiency. For example, transformer-based models, such as In-

former and Autoformer, have higher computational costs due to their complex self-attention

mechanisms. UMS-Linear, on the other hand, avoids self-attention and relies on simpler

linear operations, resulting in faster training and inference times.

The computational efficiency of UMS-Linear makes it scalable for large datasets and

long forecasting horizons. As the size of the dataset or the forecasting horizon increases,

UMS-Linear maintains its efficiency due to its lightweight architecture and efficient opera-

tions. This scalability allows UMS-Linear to be applied to a wide range of real-world time

series forecasting problems.

UMS-Linear’s computational efficiency is a key advantage that enables it to handle

large-scale time series forecasting tasks effectively. The model’s reliance on linear opera-

tions, lightweight decomposition, and efficient timestamp embedding contributes to its fast

training and inference times. This efficiency makes UMS-Linear a practical and scalable

solution for real-world time series forecasting applications.

3.9 Conclusion

UMS-Linear, a novel MLP-based model for univariate Long-Term Time Series (LTSF)

forecasting, is proposed in this chapter. UMS-Linear incorporates timestamp embedding

and multi-scale decomposition to capture both the temporal and structural characteristics

of time series data. The linear layer in UMS-Linear performs a linear transformation on the

decomposed components to produce the forecasted values. UMS-Linear is computationally

efficient due to its lightweight decomposition phase and efficient timestamp embedding

technique. This efficiency makes it suitable for large-scale time series forecasting tasks, as

will be shown in the next experimental chapter.
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CHAPTER 4

EXPERIMENTAL EVALUATION AND DISCUSSION

In the end of this thesis and in order to prove the efficiency of our presented model, we

provide different experiments and analyses, where we discuss the different ideas and the

advantages that led to the final model. This chapter will first include the experimental

setup, dataset and reprocessing, baseline models, and used metrics. It will then contain the

different results with multiple visualizations, and finally, this chapter will conclude with a

discussion on the interpretability and the explainability.

4.1 Experimental Setup

All the included experiments and results are implemented using PyTorch and executed in

colab using one NVIDIA T4 GPU, which is equipped with 16GB of memory. For the

model settings, UMS-Linear may perform better results using specific settings in different

benchmarks, but the general configuration of UMS-Linear consists of a look-back size of

512, a batch size of 128, and a learning rate of 0.001. The model is usually trained with 10

to 15 epochs and early stopping with a patience of 3.

4.2 Dataset Description and Preprocessing

Different datasets have been introduced over the years to create new challenges for the

TSF models. However, in our model, we only focused on univariate LTSF, where we

used the ETT (Electricity Transformer Temperature) [14]1 dataset for comparison with

other baseline models, where it is the most used dataset for univariate forecasting tasks.

This dataset is collected from electricity transformers from July 2016 to July 2018 in two

separated counties in China, each data point consists of a target point called oil temperature
1https://github.com/zhouhaoyi/ETDataset

39

https://github.com/zhouhaoyi/ETDataset


and six power load features. This dataset has been created to explore the granularity of the

Long Sequence Time-Series Forecasting (LSTF) problem; thus, two subsets have been

created from it, the first is a two hourly-level dataset (ETTh) and the second is a two 15-

minute-level dataset (ETTm). The statistics of these datasets are provided in Table 4.1.

Table 4.1: Statistics on the ETT datasets used for the experiments in UMS-Linear

Datasets ETTh1 ETTh2 ETTm1 ETTm2
Variables 7 7 7 7
Timesteps 17420 17420 69680 69680

Frequencies 1hour 1hour 15min 15min

In addition, we included some other datasets that are used to test our proposed model

in real-world applications. These datasets are representative of a wide range of real-world

applications, including weather forecasting, financial forecasting, and energy forecasting.

The datasets vary in terms of their frequency, from hourly to monthly. These datasets can

be summarized as follows:

• Algeria Exchange rate2. This is a monthly dataset that was collected from 1970

to November 2023 by the Food and Agriculture Organization (FAO). This dataset

consists of the different values of the Algerian dinar against the US dollar over the

years.

• Algeria COVID 193. This dataset is a global daily confirmed case of the COVID-

19 virus collected by the Johns Hopkins University Center for Systems Science and

Engineering (JHU CCSE) from various sources. The data has been collected since

the year 2020, and it was stopped by Jack JHU on March 10, 2023.

• Algeria Fire alerts [43]4. This is a weekly dataset collected by the Global Forest

Watch on January 2, 2012. This dataset consists of different confidence types of

alerts, which are the high, normal, and low confidence alert levels.
2https://data.humdata.org/dataset/faostat-food-prices-for-algeria
3https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
4https://www.globalforestwatch.org/dashboards/country/DZA/
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• Algeria Rainfall Indicator5. This dataset is a 10-day frequency Algerian rainfall

indicator computed from Climate Hazards Group Infrared Precipitation satellite im-

agery with in-situ station data (CHIRPS).

• Algeria Weather Indicators6. This is a daily dataset that provides historical weather

data for Algiers, the capital city of Algeria, covering the period from January 2002

to August 2023. The data includes a variety of weather-related variables.

• Food Price7. The FFPI consists of the average of five commodity group price in-

dices weighted by the average export shares of each of the groups over the period

2014–2016. The five commodity groups are cereals, meat, dairy, oils, and sugar.

• Diesel Retail Price8. This dataset offers weekly average diesel prices (USD/gallon)

from October 2007 for New York State, including breakdowns for eight specific

metropolitan regions.

• Energy Demand Generation[44]9. This is an hourly dataset that offers four years of

Spanish electrical consumption, generation, and pricing data. The consumption and

generation information come from a public source (ENTSOE), while pricing data is

from the Spanish TSO (Red Eléctrica España).

Table 4.2: Statistics on the real-world applications datasets used for the experiments in
UMS-Linear

Datasets
Algeria

Exchange rate
Algeria

COVID 19
Algeria Fire

Alerts
Algeria
Rainfall

Algeria
Weather

Food Price
Index

Diesel Retail
Price

Energy Demand
Generation

Variables 1 1 3 9 17 6 17 23
Timesteps 753 1142 632 2296812 7913 410 856 35064

Frequencies 1month 1day 1week 10days 1day 1month 1 week 1hour

Table 4.2 provides statistics on these real-world application datasets. We use these

datasets to demonstrate the effectiveness of our approach for forecasting real-world time
5https://data.humdata.org/dataset/dza-rainfall-subnational
6https://www.kaggle.com/datasets/bekkarmerwan/algiers-weather-data-2002-2023
7https://www.fao.org/worldfoodsituation/foodpricesindex/en/
8https://www.fao.org/worldfoodsituation/foodpricesindex/en/
9https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
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series data, where these datasets vary in terms of their size, complexity, and frequency.

Usually, the existing methods in the time series forecasting task use a normalization

technique as the only preprocessing step. The most commonly used normalization tech-

niques are the max-min normalization and the standard normalization (standardization).

Both of them aim to transform features within a dataset onto a similar scale. In our model,

we used the standardization, which can be mathematically denoted as follows:

X =
X − µ

σ

Where X are the data points, µ is the mean of the full data, and σ is the standard deviation

(std) of the data. This technique transforms the data to have a zero mean and a unit standard

deviation. This makes the data follow a standard normal distribution.

4.3 Benchmark Methods Selection and Rationale

As a comparison model, we chose the same MLP nature LTSF-Linear [17] models (DLin-

ear, NLinear), and in addition, we compared UMS-Linear with some other baseline mod-

els, which are PatchTST [32], TimesNet [26], AutoFormer [15], Informer [14] and Fed-

Former [16]. These baseline models represent a diverse range of approaches to time se-

ries forecasting, including transformer-based models, convolutional neural networks, and

MLP-based models. By comparing UMS-Linear to these baseline models, we can evaluate

its performance relative to other state-of-the-art methods.

4.4 Used Metrics

The metrics used to compare the models are the Mean Squared Error (MSE) and Mean

Absolute Error (MAE), which are commonly used in the LTSF task. These metrics measure

the difference between the forecasted values and the actual values. MSE is the average of

the squared differences, while MAE is the average of the absolute differences.
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MSE is sensitive to outliers, as it squares the differences between the forecasted values

and the actual values. MAE, on the other hand, is not as sensitive to outliers, as it only

takes the absolute value of the differences.

In the LTSF task, both MSE and MAE are important metrics to consider. MSE is useful

for evaluating the overall accuracy of the forecasts, while MAE is useful for evaluating the

robustness of the forecasts to outliers.

4.5 Results and Comparative Analysis with Baseline Models

The univariate Long-term time series forecasting results of UMS-Linear are shown in Ta-

ble Table 4.3. Surprisingly, UMS-Linear achieved the best results in all 32 metrics. Re-

markably, our model manages to achieve better results than the unincluded state-of-the-art

(SOTA) models in both the ETTh1 and ETTm1 datasets. This shows that UMS-Linear is

capable of handling difficult changes, even though its accuracy is still not perfect. However,

it provides a promising starting point for future work.

Table 4.3: Univariate long-term forecasting results with UMS-Linear. ETT datasets are
used with prediction lengths T ∈ {96, 192, 336, 720}. The best results are in bold and the
second best results are in underlined.

Methods UMS-Linear NLinear DLinear PatchTST TimesNet FEDformer Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.048 0.168 0.053 0.177 0.056 0.18 0.059 0.189 0.056 0.182 0.079 0.215 0.071 0.206 0.193 0.377
192 0.06 0.191 0.069 0.204 0.071 0.204 0.074 0.212 0.072 0.209 0.104 0.245 0.114 0.262 0.217 0.395
336 0.066 0.203 0.081 0.226 0.098 0.244 0.076 0.22 0.086 0.229 0.119 0.27 0.107 0.258 0.202 0.381
720 0.072 0.213 0.08 0.226 0.189 0.359 0.087 0.236 0.082 0.228 0.142 0.299 0.126 0.283 0.183 0.355

ETTh2

96 0.119 0.27 0.129 0.278 0.131 0.279 0.131 0.284 0.136 0.286 0.128 0.271 0.153 0.306 0.213 0.373
192 0.155 0.312 0.169 0.324 0.176 0.329 0.171 0.329 0.186 0.34 0.185 0.33 0.204 0.351 0.227 0.387
336 0.169 0.329 0.194 0.355 0.209 0.367 0.171 0.336 0.22 0.373 0.231 0.378 0.246 0.389 0.242 0.401
720 0.184 0.345 0.225 0.381 0.276 0.426 0.223 0.38 0.241 0.392 0.278 0.42 0.268 0.409 0.291 0.439

ETTm1

96 0.025 0.12 0.026 0.122 0.028 0.123 0.026 0.123 0.029 0.127 0.033 0.14 0.056 0.183 0.109 0.277
192 0.038 0.149 0.039 0.149 0.045 0.156 0.04 0.151 0.047 0.163 0.058 0.186 0.081 0.216 0.151 0.31
336 0.051 0.171 0.052 0.172 0.061 0.182 0.053 0.174 0.08 0.214 0.084 0.231 0.076 0.218 0.427 0.591
720 0.069 0.203 0.073 0.207 0.08 0.21 0.073 0.206 0.084 0.222 0.102 0.25 0.11 0.267 0.438 0.586

ETTm2

96 0.059 0.174 0.063 0.182 0.063 0.183 0.065 0.187 0.066 0.187 0.067 0.198 0.065 0.189 0.088 0.225
192 0.088 0.22 0.09 0.223 0.092 0.227 0.093 0.231 0.113 0.25 0.102 0.245 0.118 0.256 0.132 0.283
336 0.114 0.255 0.117 0.259 0.119 0.261 0.121 0.266 0.133 0.277 0.13 0.279 0.154 0.305 0.18 0.336
720 0.157 0.311 0.17 0.318 0.175 0.32 0.172 0.322 0.182 0.333 0.178 0.325 0.182 0.335 0.3 0.435

Count 32 22 2 8 0 2 0 0
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4.6 Case Studies or Real-World Applications

In this section, we present real-world applications of our proposed UMS-Linear model.

We show how the model can be used to solve real-world problems and provide valuable

insights; this will increase the credibility of the model and make it more likely to be adopted

by practitioners. The real-world applications that will be included in this chapter will range

from Algerian to global applications.

4.6.1 Algeria Exchange rate

The Algerian exchange rate is an important economic indicator that affects a wide range of

businesses and individuals. By forecasting the exchange rate, we can help businesses and

individuals make better decisions.
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Figure 4.1: Visualisation of the forecasting prediction of UMS-Linear in the Algerian Ex-
change rate dataset using a forecasting horizon of 60 time steps

Figure 4.1 shows the result of using UMS-Linear in this Algerian exchange rate dataset,

where we can see that the model can perfectly predict the overall trend of the data, but it

still has some limitations in predicting the seasonal patterns of this dataset. This problem in

predicting seasonal patterns is caused by a lack of data, and this problem cannot be avoided

in such datasets.
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4.6.2 Algerian COVID 19

The number of daily COVID-19 cases has been an important public health indicator in

the past few years and could help policymakers make decisions about how to contain the

spread of the virus. By forecasting the number of cases, we can help policymakers prepare

for future waves of the virus and allocate resources accordingly.
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Figure 4.2: Visualisation of the forecasting prediction of UMS-Linear in the Algerian
COVID 19 dataset using a forecasting horizon of 60 time steps

Figure 4.2 shows using UMS-Linear in this COVID 19 dataset, the lack of trend in this

dataset caused the model to have problems in predicting the sudden waves of the virus.

However, the model can predict the end of this waves normally, it is possible that UMS-

Linear is able to predict the general shape and general pattern of the data and the times at

which these patterns will be repeated.

4.6.3 Algerian Fire alerts

The number of weekly or daily fire alerts is an important indicator of the risk of wildfires.

By forecasting the number of fire alerts, we can help policymakers take steps to prevent

wildfires and protect lives and property.

This dataset has 3 different confidence level alerts, and as shown in Figure 4.3, our
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Figure 4.3: Visualisation of the forecasting prediction of UMS-Linear in the weekly Alge-
rian fire alerts dataset using a forecasting horizon of 60 time steps

proposed UMS-Linear can predict the exact locations where fire alerts are increasing at a

higher rate. This means that our model can track trends and seasonal patterns better in this

real-world application, which will allow us to save more lives and properties by predicting

the periods of time when fire rates are higher.

4.6.4 Algerian Rainfall Indicator

The next real-world application that we experimented with is the Algerian rainfall indicator,

where the rainfall is an important indicator of the climate and water resources of a region.

By forecasting rainfall, we can help farmers, water managers, and other stakeholders make

better decisions. The dataset used contains different features, such as 10-day rainfall [mm]

and rainfall 3-month anomaly [%]. In our case, we used only the 10-day rainfall [mm] (rfh)

and the rainfall anomaly [%] (rfq), where these two features seem to contain no outliers

or missing values. This will help the model get more accurate information to use in the

prediction process.
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(a) 10 day rainfall [mm] (rfh)
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(b) rainfall anomaly [%] (rfq)

Figure 4.4: Visualisation of the forecasting prediction of UMS-Linear in the weekly Alge-
rian Rainfall Indicator dataset using a forecasting horizon of 336 time steps

From Figure 4.4, we can observe that the UMS-Linear model is able to capture the

seasonal and long-term trends in the rainfall data. The model also performs well in fore-

casting the rainfall trends of the data during periods of high and low rainfall. In the rainfall

anomaly feature, we can clearly see that the data contains much more noise because of its

nature. Even though UMS-Linear can predict the overall shape of it, it can also predict

some of the sudden changes in this data.

4.6.5 Algerian Weather Indicators

Another application of time series forecasting is the weather forecasting task, which aims

to predict the different values of the weather indicators, such as the maximum temperature

and the apparent temperature. Usually, weather indicators have similar repeated patterns

over the year, which are caused by the four seasons. This allows the models to better

predict the future values of the values of the indicators.. However, weather forecasting is

still an important task that can help people plan their activities and stay safe. By forecasting

weather variables, we can help people make better decisions about when to go outside, what

to wear, and how to prepare for severe weather events.

In Figure 4.5, we can clearly see that UMS-Linear can easily predict the trend of the

data, where, as we mentioned before, these weather indicators have similar repeated trend

forms, such as the increase in temperature during the summer months and the increase in
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(b) Maximum Temperature
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(c) Shortwave Radiation Sum
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Figure 4.5: Visualisation of the forecasting prediction of UMS-Linear in the Algerian
Weather Indicators datasets using a forecasting horizon of 720 time steps

precipitation during the winter months. However, the model cannot track the details, which

include small fluctuations, which is not an important thing where these fluctuations could

be just noise in the data, where identifying the overall shape of the data is more important.

4.6.6 Food Prices

Food prices is one of the many important applications in time series forecasting, where

forecasting food prices can help businesses and consumers to make better decisions. This

food prices can vary from different categories such as sugar, oils, meat and dairy.

As shown in Figure 4.6, the UMS-Linear model is able to capture the overall trend

of the food price data well in the multiple food price types. The model also captures the

seasonal patterns in the data, such as the increase in prices. However, this dataset is so

small that the model cannot learn the different patterns in it, which confirms the limitations

of UMS-Linear and linear models in small datasets. There is still room for improvement

in the accuracy of the forecasts, where we can try using a more complex model or using a
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Figure 4.6: Visualisation of the forecasting prediction of UMS-Linear in the global food
price indexes dataset using a forecasting horizon of 40 time steps

method to increase the dataset size, and we can also try extracting more features from the

data.

4.6.7 Diesel Retail Price

Diesel is a type of fuel that is used in a variety of vehicles, including trucks, buses, and

cars. The price of diesel is an important factor in the cost of transportation. By forecasting

the diesel retail price, we can help businesses and consumers make better decisions.

In our case, we used the average New York City and Utica-Rome diesel prices. As

shown in Figure 4.7, our proposed UMS-Linear is able to capture the overall trend of the

diesel retail price data well for both cities. However, in further experiments, we find that

the model struggles to predict the increasing changes in some periods of time; this could

be caused by the high values in the data.
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Figure 4.7: Visualisation of the forecasting prediction of UMS-Linear in the Diesel Retail
Prices dataset using a forecasting horizon of 40 time steps

4.6.8 Energy Generation

There are countless other applications in which we can use our model, but in this part we

only discussed the important applications that were available during the creation of this

research, and to conclude these applications, we chose energy generation forecasting to

test our proposed model. Energy generation forecasting is an important task that can help

grid operators ensure that there is enough electricity to meet demand. By forecasting energy

generation, grid operators can make better decisions about when to dispatch different power

plants.

As shown in Figure 4.8, we can use UMS-Linear in forecasting renewable energy gen-

eration, where we can clearly see that UMS-Linear is able to capture the trends in the dif-

ferent datasets. The model also captures the seasonal patterns in the data, which confirms

the usability of our model in such datasets.

In addition to forecasting renewable energies, we can also forecast fossil fuel-based

energy generations. As shown in Figure 4.9, our proposed model is able to predict trends

and the overall shape of the data better. This performance in these types of energy gener-

ation datasets shows that UMS-Linear is an effective tool in time series forecasting that is

energy-related.

And at the end, we will observe two additional features from this promising energy

dataset, which are the average prices and the total load of the generated energy. And as
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(a) Biomass
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(c) Wind Onshore
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(d) Hydro Water Reservoir

0 200 400 600 800 1000 1200
time

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

va
lu

e

Ground Truth
Prediction

(e) Hydro run-of-river and poundage
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Figure 4.8: Visualisation of the forecasting predictions of UMS-Linear in the renewable
energy generation dataset using a forecasting horizon of 720 time steps

shown in Figure 4.10, UMS-Linear can predict the seasonal patterns and the overall shape

of the data, even though it’s different from the other variables that were mentioned before.

This confirms that our model is able to handle multiple types of data, even if they include

fluctuations or noise.

The real-world application presented in this section demonstrates the effectiveness of

the UMS-Linear model in forecasting real-world time series data. The model is able to

capture complex patterns in the data and make accurate forecasts. This makes the model

a valuable tool for decision-making in a variety of forecasting problems. We believe that
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(a) Fossil Gas
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(b) Fossil Oil
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Figure 4.9: Visualisation of the forecasting predictions of UMS-Linear in the Fossil fuel-
based generation dataset using a forecasting horizon of 720 time steps

the UMS-Linear model can be used to forecast a wide range of other real-world time se-

ries data. The model is simple to use and can be easily adapted to different forecasting

problems.

4.7 Robustness and Sensitivity Analysis

In this section, we conduct a robustness and sensitivity analysis of our proposed UMS-

Linear model. We first train the model on multiple forecast horizons from 8 to 2500 and

visualize the MSE loss. We then analyze the number of parameters in the model and the

training time in both the ETTh1 and ETTh2 datasets. This will allow us to better understand

how our model handles large scales and types of data, and it will also give us confirmation

about the usability of UMS-Linear in real-world datasets.

Figure 4.11 shows comparison results between NLinear and UMS-Linear in the ETTh1

and ETTh2 datasets in multiple short-term and long-term forecasting horizons. Because
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(b) Actual Price

Figure 4.10: Visualisation of the forecasting predictions of UMS-Linear in the additional
Demand & Cost features of the energy dataset using a forecasting horizon of 720 time steps
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Figure 4.11: A comparision between the performance of UMS-Linear against NLinear in
both ETTh1 and ETTh2 dataset in multiple forecasting horizons

of the shared nature between these two, the results are similar, where we can clearly see

that with each time the forecasting horizon increases, the MSE loss increases at a slow

rate. This proportionality forms a curve similar to the log curve. In the ETTh1 dataset we

can observe that in the last larger forecasting horizons, the NLinear model manages to get

better results, which might be caused by a mismatch in the training parameter. Our model,

on the other hand, shows a good performance in larger forecasting horizons in ETTh2. This

is because of the fewer fluctuations in the data, where the model could perform better on

learning its overall shape.

Most models from different categories (e.g., RNN, CNN, Transformers) contain mil-
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Table 4.4: Comparison of performance metrics between UMS-Linear, NLinear and DLin-
ear on ETTh1 and ETTh2 datasets with a single NVIDIA T4 GPU. The look-back is 336
and the horizon is 720.

Method UMS-Linear Nlinear Dlinear
Training Time

(s/epoch)
ETTh1 0,046 0,045 0,041
ETTh2 0,048 0,044 0,044

Parameters
(M)

ETTh1 2.1 0.36 0.73
ETTh2 2.1 0.36 0.73

lions of parameters, which results in a long training time of up to minutes. Linear models

are more efficient in time series forecasting where training time per epoch is counted by

fractions of a second, and mostly these linear models consist of a smaller number of pa-

rameters, which makes them better for larger long-term forecasting tasks. The three linear

layers in our model result in a higher parameter number, as shown in Table 4.4, but this

does not really affect the training time, where the difference between the training model

and the one layered NLinear model in the ETTh1 dataset in a forecast horizon of 720 is

only 0.001second. Overall, the UMS-Linear model is a robust and efficient model for time

series forecasting.

4.8 Experiments

4.8.1 Multi-Scale decomposition in linear models

Scaling in general is considered a preprocessing technique that is used to transform the

values of a dataset so that they are all within a similar range. This can be useful for im-

proving the performance of machine learning models, as many models are sensitive to the

scale of the data. One simple way to scale data is to multiply all of the values by a constant

factor, as used in UMS-Linear. This type of scaling can improve the model performance

and reduce overfitting, as it makes it less likely that the model will learn the specific values

of the data rather than the underlying patterns. In some cases, scaling the data can also

help to improve the interpretability of the model, as it makes it easier to see the underlying
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patterns and trends.
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Figure 4.12: The effect of scaling the data by factor multiplication in ETTh1 dataset

As can be seen from Figure 4.12, scaling the original time series has a significant effect

on its shape. The scaled time series is more compressed and has a smaller range of values,

whereas scaling the original time series can help reduce the impact of outliers and extreme

values. Decomposing the data into trend and remainder will give us more interpretability,

where, as shown in Figure 4.13, scaling the remainder can help to remove noise from the

time series. While scaling the trend can help make the time series more stationary,.
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Figure 4.13: The effect of scaling the data components (left: Trend, right: Remainder) by
factor multiplication in ETTh1 dataset

In order to prove that combining different data components on multiple scales will im-

prove the forecasts in some scenarios, we replaced the decomposition in DLinear by the
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multi-scale decomposition phase of UMS-Linear, but for a fair comparison, we used the

standard moving average that DLinear used. Using the standard moving average will reduce

the effect of the multi-scaling process, where the model will not pick the important changes

that occur in the data; instead, the moving average will smooth out the sharp changes in

the data. However, in special cases where the forecast contains change points, the modi-

fied DLinear model shows better ability than the original DLinear model in tracking data.

Figure 4.14 shows one of these special cases in the ETTm1 dataset where the multi-scale

decomposition model improved the original DLinear model prediction by 0.2214 in terms

of the MSE loss. If we take a deep look at the new multi-scale model forecast, we can

clearly observe that the model could literally predict the general shape of the forecast even

though the amplitude of prediction is still quite far from the truth values.
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Figure 4.14: The improvement between using the Multi-Scale Decomposition and the orig-
inal DLinear model in ETTm1 dataset at the forecast horizon of 720

Another observation of the effect of using this technique in special cases can be seen in

the ETTm2 dataset in Figure 4.15, where the modified model could improve the forecast

prediction MSE loss of the DLinear model by 0.2427. Specifically, the linear model with

multiscale decomposition is able to capture the sharp decrease in the time series at around
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time step 500. The linear DLinear, on the other hand, is not able to capture this decrease

as well. This confirms that multiscale decomposition can be particularly helpful for time

series that have sudden changes or sharp increases or decreases.
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Figure 4.15: The improvement between using the Multi-Scale Decomposition and the orig-
inal DLinear model in ETTm2 dataset at the forecast horizon of 720

4.8.2 Merging timestamps with linear models

In long-term time series forecasting, models struggle to capture the patterns produced by

similar input data, where over time the data may produce new or different patterns from

similar known patterns. The use of timestamps will result in additional time information

that helps the model identify the time period of the current forecast. This will allow the

model to distinguish similar patterns to create the required forecasts for a specific period

of time. To prove this assumption, we combined the timestamp embedding with the input

data, similar to the process when using positional encoding, where if we denote the input

data at time t as X and the timestamp embedding for this data point as Et, then we could
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combine this embedding with the data as a simple addition as follows:

X̂ = Xt + Et

This will produce a new series that we could use to predict the forecast values. In order to

show the effect of using the timestamps, we will provide a long-term time series comparison

with a simple one-layer linear model. It is worth noting that we tried to use the positional

encoding technique as a comparison, but it achieved bad results.

Table 4.5: A comparison between using timestamps and the original simple linear model
in ETT dataset at long-term forecasts horizon T ∈ {720, 1500}

Methods IMP TimeStamps Linear Linear
Metric MSE MSE MAE MSE MAE

ETTh1
720 34,60% 0,115 0,267 0,176 0,345

1500 75,30% 0,141 0,3 0,572 0,662

ETTh2
720 22,40% 0,225 0,379 0,29 0,438

1500 57% 0,218 0,375 0,507 0,59

ETTm1
720 0% 0,085 0,218 0,081 0,212

1500 11,30% 0,102 0,24 0,115 0,264

ETTm2
720 6,80% 0,164 0,308 0,176 0,321

1500 12,30% 0,213 0,357 0,243 0,39

Table 4.5 shows the result of this comparison, where the timestamps model manages

to improve the linear model’s predictions, especially in ETTh1 and ETTh2 datasets, where

these improvements are up to 75% in terms of MSE loss. The improvements in the ETTm

dataset are not that big, but they’re still a remarkable improvement, especially because of

the nature of this dataset.

It is clear that the forecasting results of the vanilla linear model are improved when we

combine the timestamp embedding with this simple model. Figure 4.16 can give us con-

firmation of this result, where the timestamps model is able to handle the sudden decrease

in the middle of the forecast, while on the other hand, the standard linear model could not

give us any information about the trend changes in the forecast. In a special location of this

visualization, we can clearly see that the timestamps model is managed to perfectly predict

the future values (e.g., between 1100 and 1200). This shows that we could use timestamps
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Figure 4.16: Visualisation of the impact of using timestamps in a vanilla linear model in
ETTm1 dataset at a forecast horizon of 1500

in a different, enhanced way to predict more realistic and accurate future values.

Also, in Figure 4.17, which represents a visualization of the standard linear model with

and without the timestamp embedding, we can see that the standard linear model without

the timestamps produced a repeatedly forecast where we cannot benefit from it because it is

devoid of trends. Using timestamps allows the model to learn more underlying patterns and

trends from small inputs. We can conclude that this experiment shows that incorporating

timestamps into our simple linear model improves its accuracy. This is because timestamps

provide the model with additional information about the temporal relationships between

the data points.

4.8.3 Impact of the new Loss function

The loss function is an important component in training models in deep learning tasks,

where training a model in a special task with a specific loss function will produce differ-

ent results than training it with another loss function. This is also the case in time series

forecasting, where models could perform better when using specific loss functions that cor-
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Figure 4.17: Visualisation of the impact of using timestamps in a vanilla linear model in
ETTm2 dataset at a forecast horizon of 1500

respond to the nature of the used model. In this experiment, we will prove and study the

impact of using the different loss functions that we mentioned in section 3.7, where we will

train UMS-Linear, NLinear, and DLinear using these loss functions.

Starting with the univariate results, Table 4.6 shows the comparison we mentioned be-

fore, where we compare the results of each model separately when training with different

loss functions. Our proposed loss function is more effective for time series forecasting be-

cause it takes into account incremental changes. This loss function achieved the best results

in total of 72 out of 96 metrics, which is 75%. The difference that is used in our proposed

loss function is important for time series forecasting, as it can help the model learn the un-

derlying patterns and trends in the data. The MSE loss function only takes into account the

squared error between the predicted and actual values. This can lead to the model learning

to predict the mean of the data rather than the underlying patterns and trends. The com-

bined MSE/MAE loss function takes into account both the squared error and the absolute

error between the predicted and actual values. This can help the model learn to predict the

mean of the data as well as the underlying patterns and trends. However, it does not take
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Table 4.6: A separately comparison between training UMS-Linear, NLinear and DLinear
[17] using different loss function where loss 1 is the default MSE loss, loss 2 is the com-
bined MSE/MAE loss and finally loss3 is our presented MSE/MAE/Difference loss, results
are in bold and the second best results are in underlined.

Methods UMS-Linear NLinear DLinear
Train Loss Loss 3 Loss 2 Loss 1 Loss 3 Loss 2 Loss 1 Loss 3 Loss 2 Loss 1

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0,049 0,17 0,05 0,173 0,052 0,174 0,053 0,177 0,053 0,177 0,053 0,177 0,059 0,183 0,059 0,182 0,056 0,18
192 0,062 0,194 0,067 0,204 0,064 0,196 0,068 0,203 0,068 0,203 0,069 0,204 0,072 0,205 0,08 0,214 0,071 0,204
336 0,069 0,207 0,07 0,209 0,072 0,212 0,08 0,225 0,08 0,226 0,081 0,226 0,086 0,232 0,092 0,238 0,098 0,244
720 0,074 0,214 0,077 0,218 0,073 0,215 0,081 0,227 0,081 0,227 0,08 0,226 0,18 0,349 0,181 0,351 0,189 0,359

E
T

T
h2

96 0,127 0,28 0,132 0,284 0,13 0,284 0,128 0,276 0,128 0,276 0,129 0,278 0,13 0,277 0,13 0,277 0,131 0,279
192 0,16 0,318 0,163 0,32 0,157 0,315 0,168 0,322 0,167 0,322 0,169 0,324 0,171 0,325 0,171 0,325 0,176 0,329
336 0,178 0,339 0,182 0,341 0,187 0,346 0,193 0,353 0,192 0,353 0,194 0,355 0,204 0,363 0,204 0,363 0,209 0,367
720 0,194 0,354 0,198 0,356 0,201 0,359 0,221 0,377 0,221 0,377 0,225 0,381 0,284 0,433 0,282 0,431 0,276 0,426

E
T

T
m

1 96 0,026 0,121 0,026 0,122 0,025 0,121 0,026 0,121 0,026 0,121 0,026 0,122 0,028 0,125 0,029 0,125 0,028 0,123
192 0,039 0,151 0,04 0,152 0,04 0,152 0,039 0,148 0,039 0,148 0,039 0,149 0,046 0,159 0,056 0,175 0,045 0,156
336 0,053 0,175 0,052 0,175 0,052 0,176 0,052 0,171 0,052 0,172 0,052 0,172 0,064 0,187 0,064 0,188 0,061 0,182
720 0,07 0,205 0,071 0,205 0,07 0,205 0,072 0,205 0,072 0,205 0,073 0,207 0,082 0,213 0,081 0,212 0,08 0,21

E
T

T
m

2 96 0,06 0,176 0,06 0,176 0,062 0,18 0,063 0,181 0,063 0,181 0,063 0,182 0,063 0,181 0,063 0,181 0,063 0,183
192 0,089 0,221 0,089 0,221 0,092 0,228 0,09 0,223 0,09 0,223 0,09 0,223 0,091 0,225 0,091 0,225 0,092 0,227
336 0,122 0,265 0,122 0,266 0,123 0,268 0,116 0,257 0,117 0,259 0,117 0,259 0,118 0,259 0,118 0,259 0,119 0,261
720 0,165 0,316 0,166 0,317 0,169 0,311 0,169 0,318 0,169 0,317 0,17 0,318 0,172 0,317 0,172 0,317 0,175 0,32

Count 26 8 9 27 26 8 19 14 15

into account the difference between the predicted and actual values. Our proposed loss

function takes into account the squared error, the absolute error, and the difference in the

incremental changes. This allows the model to learn to predict the mean of the data, the

underlying patterns and trends, and the incremental changes in patterns.

Table 4.7: A comparison between training NLinear [17] using different loss functions in
multivariate in ETT dataset using a forecasting horizon of T ∈ {96, 720}, results are in
bold and the second best results are in underlined.

Methods NLinear
Train Loss Loss 3 Loss 2 Loss 1

Metric MSE MAE MSE MAE MSE MAE

ETTh1
96 0,368 0,389 0,368 0,389 0,373 0,394
720 0,43 0,447 0,431 0,447 0.441 0,453

ETTh2
96 0,276 0,333 0,278 0,335 0,283 0,342
720 0,392 0,428 0,467 0,473 0,398 0,437

ETTm1
96 0,299 0,341 0,301 0,343 0,305 0,347
720 0,427 0,415 0,431 0,418 0,433 0,421

ETTm2
96 0,162 0,249 0,163 0,249 0,164 0,254
720 0,366 0,381 0,367 0,381 0,368 0,384

Count 16 4 0

Using our proposed loss function is clearly better in training the linear models, but for a

more robust experiment, we trained the NLinear [17] model in the multivariate time series

forecasting task, where we can clearly see from Table 4.7 that our proposed loss function

(Loss 3) outperforms the MSE loss function (Loss 1) and the combined MSE/MAE loss
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function (Loss 2) in terms of both MSE and MAE on all four datasets. This shows that our

proposed loss function is more effective for multivariate time series forecasting.
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Figure 4.18: Visualisation of the impact of using different loss functions in UMS-Linear in
ETTm1 dataset at a forecast horizon of 336 in MULL channel

In Figure 4.18 we can see a simple comparison between training UMS-Linear in ETTm1

dataset in MULL channel, where we can clearly see that the prediction of UMS-Linear that

is trained with the default MSE loss function does not handle the sudden changes, which

result in a less accurate prediction. On the other hand, the combined MSE/MAE loss and

our proposed loss show a good capability in predicting the overall shape of the data while

handling the change points.

4.8.4 Impact of look-back length

To verify that our linear-based model could handle large look-backs and doesn’t suffer

from the same problems with long-term information as transformer-based models [17], we

trained our model with different look-backs and compared it to the NLinear model on the

ETTh1 and ETTh2 datasets. As illustrated in Figure Figure 4.19, our model performs better

when increasing the look-back window size, leading to more accurate predictions. This is
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in contrast to transformer-based models, which can suffer from performance degradation

when the look-back window size is too large. This shows that our linear-based model is

able to effectively handle long-term information in time series data and is not as sensitive

to the look-back window size as transformer-based models.
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Figure 4.19: The forecast MSE error of UMS-Linear with different look-back length on
ETTh1 and ETTh2 datasets. The horizon is 720.

Also, if we compare the predictions of UMS-Linear in different look-backs, we can

clearly see the difference, where, as seen in Figure 4.20, the predictions of our model

become more accurate as the look-back window size increases. This is because a larger

look-back window allows the model to gain more information about the data, whereas

predictions with small window sizes contain fewer trends. In a bigger look-back, it is clear

that the model can predict better trends.

One possible explanation for the superior performance of our linear-based model on

large look-back windows is that it is able to learn the underlying patterns and trends in

the data more effectively. This is because of the different components that UMS-Linear

used, which help it learn the underlying dynamics of the data. Transformer-based models,

on the other hand, may have difficulty learning the underlying patterns and trends in data

with large look-back windows. This is because transformer-based models rely on attention

mechanisms, which can become less effective when the look-back window size is too large.
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Figure 4.20: Visualisation of the impact of using different look-back window sizes T ∈
{48, 94, 336, 720} in UMS-Linear in ETTm1 dataset at a forecast horizon of 336

Overall, our results show that our linear-based model is able to effectively handle large

look-back windows and is not as sensitive to the look-back window size as transformer-

based models. This makes our model a good choice for time-series forecasting tasks with

long-term dependencies. However, it is important to note that there is a trade-off between

look-back length and computational cost. A longer look-back length will require more

computational resources to train and use the model. Therefore, it is important to choose

a look-back length that is long enough to capture the important patterns and trends in the

data but not so long that the computational cost becomes prohibitive.

4.8.5 Impact of Training parameters

We experimented with different training parameters to find the best settings for our model.

We used a grid search approach to find the best learning rates and batch sizes; this will

allow us to see how our model performs under different parameters.

Learning Rate. We experimented with different learning rates, ranging from 0.005 to

0.09. This will give us an overview of whether the model needs a high learning rate or a low

learning rate. As can be seen from Figure 4.21, the MSE loss decreases as the learning rate
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decreases. This is because a high learning rate can cause the model to overfit the training

data. Also, the nature of our model, which contains two separate phases, may cause one

phase to converge before the other, which results in bad results caused by random peaks in

the predictions. Using small learning rates will ensure equality in learning among the two

phases.
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Figure 4.21: Illustration of the impact of using different learning rates in training UMS-
Linear in ETTh1 and ETTm2 datasets at a forecast horizon of 720

It is important to note that the optimal learning rate may vary depending on the dataset

and the model. Therefore, it is important to experiment with different learning rates to find

the best settings for your specific application. However, our results suggest that a learning

rate in the range of 0.015 is a good starting point for training linear models for time series

forecasting. prevent the model from overfitting or underfitting the data.

Batch Size. We experimented with different batch sizes ranging from 8 to 512 to find

the optimal batch size for our model, where in general the batch size is an important hyper-

parameter that can affect the performance of any model. A too small batch size can lead to

overfitting, while a too large batch size can lead to underfitting.

As can be seen from Figure 4.22, the MSE loss decreases as the batch size increases.

However, the MSE loss starts to increase again when the batch size is too large. This is a

sign that a too large batch size may cause the model to underfit the training data. In general,
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Figure 4.22: Illustration of the impact of using different batch sizes in training UMS-Linear
in ETTh1 datasets at a forecast horizon of 720

we found that our model requires a batch size of 128 or higher, which gave the best results

on the most datasets. Also, a larger batch size will lead to faster training times. However, a

larger batch size can also lead to higher memory usage. Therefore, it is important to choose

a batch size that is large enough to improve the performance of your model without causing

any memory issues.

4.8.6 Contribution of Trend & Remainder to the error

The series decomposition technique using the moving average approach allows us to extract

the trend and residual components from the time series. This could give us a view of the

component that the model could learn and the one that it struggles with. Furthermore, to

apply this idea, we trained the original DLinear model on the full univariate ETT dataset.

The results of this experiment are shown in Table Table 4.8, where, as expected, the trend

component is causing 80% of the full loss, while the remainder causes only 20% of the

full loss. This is caused by the fact that the trend component contains an overview of the

data movements, which includes the change points that most models struggle with, while

the remainder contains only the fluctuations that the series have, which allows the model

to easily predict them. These results could tell us the new direction that future research
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should aim towards.

Table 4.8: Contribution of Trend & Remainder to the error in ETT dataset using the original
DLinear [17].

Loss Values Contributing to the error Average Contributing to the error Average
Component Trend Remainder Trend Remainder

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.0454 0.1582 0.0068 0.0637 86% 71%

76.25%

13% 28%

22.75%
192 0.0644 0.1885 0.0071 0.0649 90% 74% 9% 25%
336 0.0803 0.2212 0.0068 0.0635 92% 77% 7% 22%
720 0.1574 0.3263 0.007 0.0642 95% 83% 4% 16%

ETTh2

96 0.0918 0.2277 0.0319 0.1382 74% 62%

67%

25% 37%

32%
192 0.1332 0.2815 0.0355 0.1472 78% 65% 21% 34%
336 0.1683 0.3282 0.0362 0.1487 82% 68% 17% 31%
720 0.2537 0.4113 0.0346 0.1464 87% 73% 12% 26%

ETTm1

96 0.0249 0.1154 0.0019 0.0326 92% 77%

81.75

7% 22%

17.25%
192 0.049 0.1605 0.0021 0.0345 95% 82% 4% 17%
336 0.0585 0.1764 0.002 0.033 96% 84% 3% 15%
720 0.0737 0.2014 0.0023 0.0357 96% 84% 3% 15%

ETTm2

96 0.0562 0.1725 0.0017 0.0297 97% 85%

87.50%

2% 14%

11.50%
192 0.083 0.2149 0.0019 0.0311 97% 87% 2% 12%
336 0.1114 0.2523 0.0021 0.0323 98% 88% 1% 11%
720 0.1603 0.3051 0.0023 0.0337 98% 90% 1% 9%

4.8.7 The Effect of Decomposition in Learning the series components

The time series decomposition technique used in DLinear [17] allows the model to learn

the series components separately. This results in more robust results, as the model is able to

focus on learning each component individually. This can be simply shown by removing the

decomposition from DLinear and changing the two layers input into the original X series.

The results in Table 4.9 show that using two separated linear layers with the same input

series is not as good as using decomposition. This means that if we could possibly apply

another type of complex decomposition, we may reach more accurate results.

One possible explanation for this is that the decomposition technique used in DLinear

is able to capture the different characteristics of the trend and remainder components. The

trend component is typically smooth and slowly varying, while the remainder component

is typically more volatile and unpredictable. By learning these components separately, the

model is able to better capture the overall dynamics of the time series. Another possible

explanation is that the decomposition technique helps to reduce the complexity of the input

data. This can make it easier for the model to learn the underlying patterns and trends in
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Table 4.9: A comparation between the original DLinear [17] and the Non decomposition
version in univariate ETT dataset.

Methods Dublicated DLinear
Component Trend Remainder Trend Remainder

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96
192
336
720

0.0462 0.1631 0.0081 0.0697 0.0454 0.1582 0.0068 0.0637
0.0675 0.1948 0.0128 0.089 0.0644 0.1885 0.0071 0.0649
0.0754 0.2162 0.0077 0.0679 0.0803 0.2212 0.0068 0.0635
0.143 0.3076 0.0083 0.0709 0.1574 0.3263 0.007 0.0642

ETTh2

96
192
336
720

0.0927 0.2294 0.0327 0.14 0.0918 0.2277 0.0319 0.1382
0.1341 0.2828 0.0362 0.1486 0.1332 0.2815 0.0355 0.1472
0.1694 0.3292 0.0369 0.1502 0.1683 0.3282 0.0362 0.1487
0.2551 0.4128 0.0353 0.148 0.2537 0.4113 0.0346 0.1464

ETTm1

96
192
336
720

0.0256 0.117 0.0021 0.0343 0.0249 0.1154 0.0019 0.0326
0.0399 0.1454 0.0021 0.0346 0.049 0.1605 0.0021 0.0345
0.0568 0.1735 0.0022 0.0349 0.0585 0.1764 0.002 0.033
0.0782 0.2066 0.0022 0.035 0.0737 0.2014 0.0023 0.0357

ETTm2

96
192
336
720

0.0558 0.1728 0.0018 0.031 0.0562 0.1725 0.0017 0.0297
0.0828 0.2148 0.002 0.0321 0.083 0.2149 0.0019 0.0311
0.1185 0.261 0.0024 0.0357 0.1114 0.2523 0.0021 0.0323
0.1604 0.3055 0.0024 0.0347 0.1603 0.3051 0.0023 0.0337

the data. Overall, the results in Table Table 4.9 confirm that the decomposition technique

used in DLinear is an important factor in its success. By learning the series components

separately, the model is able to achieve more accurate and robust results. One possible

direction for future work is to explore the use of different decomposition techniques. There

are many different decomposition techniques available, each with its own strengths and

weaknesses. It is possible that a different decomposition technique could lead to even

better results.

4.8.8 Series Decomposition Kernels

In the DLinear model [17], the series decomposition kernel is used to extract the trend

and remainder components of the time series data. The default kernel is a moving average

kernel, which computes the average of the past k values in the time series. However, we

found that changing the series decomposition kernel can lead to significant improvements

in performance. This is because different pooling kernels are better suited for different
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types of time series data. Figure 4.23 shows the different methods that we used in this

experiment, where Max pooling is a type of pooling that takes the maximum value from

a window of data. This makes it a good choice for time series data with multiple upper

change points. This is because max pooling is able to capture the highest values in the time

series, which are often associated with change points. Min pooling is a type of pooling

that takes the minimum value from a window of data. This makes it a good choice for

time series data with low change points. This is because min pooling is able to capture the

lowest values in the time series, which are often associated with low change points. We

also used a combined version that combines max pooling and average pooling. This kernel

takes the maximum value from a window of data and then computes the average of the

remaining values. This makes it a good choice for time series data with a mix of change

points.
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Figure 4.23: Series Decomposition using different kernel techniques in ETTh1 dataset.

In terms of results, Table 4.10 shows that max pooling generally outperforms the other

pooling techniques. This is especially true for the ETTh1 and ETTm1 datasets, which

have multiple upper change points. On the other hand, the min pooling kernels show good

performance in the ETTh2 and ETTm2 datasets, which, in contrast, have multiple under

change points. The choice of series decomposition kernel is an important factor in the
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performance of the model. By choosing the right kernel, we can improve the model’s

ability to capture the important features of the time series data and make more accurate

predictions.

Table 4.10: Results of different pooling technique in the original DLinear [17]

Type Separated Combination
Methods Average Pooling Max Pooling Min Pooling Max / Average Min / Average
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.056 0.178 0.051 0.174 0.075 0.219 0.051 0.174 0.067 0.207
192 0.076 0.208 0.067 0.201 0.104 0.261 0.067 0.201 0.109 0.266
336 0.096 0.242 0.083 0.225 0.087 0.237 0.081 0.223 0.085 0.236
720 0.185 0.356 0.156 0.318 0.099 0.251 0.154 0.316 0.098 0.249

ETTh2

96 0.13 0.279 0.123 0.276 0.118 0.27 0.123 0.276 0.119 0.271
192 0.175 0.328 0.163 0.321 0.162 0.32 0.165 0.323 0.168 0.325
336 0.21 0.368 0.209 0.37 0.21 0.371 0.207 0.368 0.211 0.372
720 0.294 0.441 0.305 0.451 0.236 0.393 0.309 0.454 0.304 0.446

ETTm1

96 0.028 0.124 0.025 0.12 0.028 0.126 0.026 0.121 0.026 0.12
192 0.044 0.156 0.041 0.152 0.039 0.149 0.039 0.15 0.039 0.148
336 0.059 0.179 0.065 0.191 0.05 0.168 0.048 0.167 0.05 0.169
720 0.081 0.212 0.064 0.197 0.07 0.207 0.066 0.199 0.071 0.207

ETTm2

96 0.063 0.183 0.063 0.182 0.064 0.184 0.063 0.181 0.063 0.181
192 0.093 0.228 0.09 0.224 0.091 0.224 0.089 0.22 0.089 0.222
336 0.119 0.261 0.113 0.253 0.115 0.256 0.115 0.256 0.115 0.256
720 0.174 0.319 0.167 0.314 0.164 0.313 0.167 0.314 0.167 0.314

4.9 Visualization of Forecasting Results

In this section, we visualize the forecasting results of our proposed UMS-Linear model on

the ETTh1, ETTh2, ETTm1, and ETTm2 datasets. We visualize the forecasting results with

a forecasting horizon of 720. This visualization will allow us to gain a better understanding

of the performance of the model and identify any potential problems. This will help us

improve the model’s accuracy and make it more useful for forecasting time series data.

From Figure 4.24, we can observe that the UMS-Linear model can capture the overall

trend of the data well. However, there are still some errors in the details. For example,

in ETTh1 and ETTm1 datasets, the model underestimates the values in some time steps,

while in ETTh2 and ETTm2, the model overestimates the values in multiple time steps.

This problem could be due to the nature of the data. In ETTh1 and ETTm1, we can see that

70



0 200 400 600 800 1000 1200
time

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

va
lu

e

Ground Truth
Prediction

(a) ETTh1

0 200 400 600 800 1000 1200
time

2.0

1.5

1.0

0.5

0.0

0.5

va
lu

e

Ground Truth
Prediction

(b) ETTh2

0 200 400 600 800 1000 1200
time

2.2

2.0

1.8

1.6

1.4

1.2

va
lu

e

Ground Truth
Prediction

(c) ETTm1

0 200 400 600 800 1000 1200
time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

va
lu

e

Ground Truth
Prediction

(d) ETTm2

Figure 4.24: Visualisations of the forecasting results of UMS-Linear in the different ETT
datasets in a forecasting horizon of 720

the data contains a lot of fluctuations that include some change points, which will make

predicting the exact values harder. For ETTh2 and ETTm2, we can see the different nature

of the data, which consists of repeated waves with different amplitudes. This will cause

limitations for the model to find the exact amplitude of the wave at a certain time step.

However, in all the datasets, we can see that the model can predict the exact small, wavy

increases and decreases. Overall, the visualization of the forecasting results shows that the

UMS-Linear model can capture the overall trend of the data well. However, there is still

room for improvement in future work.

In addition, we can also compare our model to other linear models, where the shared

linearity nature of our model and the LTSF-Linear models results in similar forecast shapes.

However, our model manages to track better the trend of the prediction, which can be a

great benefit in some real-life serious cases. Figure Figure 4.25 shows a comparison plot

between ETTh1 and ETTm2, where UMS-Linear generates more accurate predictions.
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Figure 4.25: A comparison between the forecast of UMS-Linear, NLinear and DLinear
models in ETTh1 and ETTm2 for a forecast horizon of 720

4.10 Discussion on Interpretability and Explainability

One benefit of using linear models is their interpretability, which consists of dense layers

that are mathematically noted as matrix multiplication between the input and the weights

of a specific layer. This weight can be visualized to reveal characteristics and patterns from

the data that the used model learns. In our case, UMS-Linear contains 3 different dense

layers, which are the timestamp embedding layer, the decomposition phase layer, and the

base wave layer. We visualize the weights in this layer for ETTh1 and ETTm1 datasets

in different forecasting horizons from 96 to 720 using a look-back window of 96, We also

follow [17] by initializing the weights with 1/L rather than random initialization to smooth

weights and produce clear visualizations.

Figure 4.26 visualizes the weights of each linear layer in the UMS-Linear model trained

on the ETTH1 dataset. The weights are visualized as a heatmap, where the x-axis represents

the time steps in the input sequence and the y-axis represents the features in the input data.

The color of each cell in the heatmap represents the magnitude of the weight, with darker

colors indicating larger weights. From this figure, we can observe that the model learns

to focus on specific time steps and features in the input sequence. For example, in the

base wave phase layer, the model assigns larger weights to the time steps in the pattern

0, 23, 47, 71, 95...719. Where the model has learned that these time steps are important for

predicting future values, the ETTh1 dataset is an hourly dataset, which means that 24 time
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Figure 4.26: Visualization of the weights(T*L) of each linear layer in UMS-Linear on
ETTh1 dataset. Models are trained with a look-back window L (X-axis) and different
forecasting time steps T (Y-axis).

steps represent days. This indicates that ETTh1 has a daily periodicity. Also, there are

some forecasts around 225 and around 550; these two require negative inputs. In terms of

time steps, 225 represents nearly 10 days and 550 nearly represents 24 days; these two do

not have a specific meaning, but they might refer to holidays. The weights of the timestamp

embedding layer reveal the pattern that the model used to indicate the current forecasting

periods in time.

We also visualized the weights in the ETTm1 dataset, as shown in Figure 4.27. We

can observe that the base phase layer of the model learns to focus on specific periodic time

steps. This high weight is repeated in a pattern of 0, 100, 200, .., 700; each 100 time step

refers to 1 hour and 40 minutes. This indicates that there is periodicity in the oil temperature
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Figure 4.27: Visualization of the weights(T*L) of each linear layer in UMS-Linear on
ETTm1 dataset. Models are trained with a look-back window L (X-axis) and different
forecasting time steps T (Y-axis).

in ETTm1. We also observe that the model used a new pattern of timestamps to indicate the

current forecasting time period in the timestamp embedding layer. For the decomposition

phase layer, we can’t observe a clear pattern because of the combination between different

components. However, the 100 time step periodicity is still visible in this layer.

4.11 Conclusion

To conclude this chapter, we presented different experiments where this experimental eval-

uation on a wide range of datasets demonstrated the effectiveness of UMS-Linear, out-

performing strong baselines across various forecasting horizons. Moreover, UMS-Linear
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exhibits robustness and sensitivity to different hyperparameters, making it a practical and

reliable choice for time-series forecasting tasks. The interpretability and explainability of

UMS-Linear provide valuable insights into the underlying time series dynamics. enhancing

its usefulness in real-world applications. Overall, UMS-Linear represents a significant con-

tribution to the field of time series forecasting, offering a powerful and effective solution

for both short-term and long-term forecasting tasks.
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CHAPTER 5

CONCLUSION

The appearance of time-related data allows for the introduction of the time series forecast-

ing task, where learning the related patterns within this data and predicting new future data

points is the main objective of this task. However, real-world data and applications include

complex patterns and trends that create limitations in learning these kinds of patterns and

data components. As mentioned in the literature review, several methods and techniques

have been presented over the years to solve this problem; each of them consists of a differ-

ent type of artificial intelligence method (e.g., MLP-based, CNNs, RNNs).

In this thesis, we have deeply studied the MLP-based models that are presented in the

time series forecasting task. This simple model outperforms the existing transformers and

other types of methods for this task, which makes us focus our attention on studying and

analyzing these models. Studying these models reveals that the decomposition and the

training loss function are two important things to enhance the performance of the MLP-

based models.

Because of this, we have proposed a novel approach for time series forecasting tasks

called UMS-Linear. We have used several techniques and methods to enhance the simple

LTSF-linear models. This proposed model inherits the same linear nature as the LTSF-

Linear models while combining two new techniques called multi-scale decomposition and

timestamp embedding. Moreover, the proposed approach presents multiple benefits, where

UMS-Linear is an interpretable, non-complex, and fast-to-use model. Also, we have intro-

duced a new training loss function that combines the mean squared error (MSE), the mean

absolute error (MAE), and the MAE of the differences between the prediction and the truth

values. Using this loss function enhances the balancing and robustness of linear models in

time series forecasting.
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To prove the efficiency of the proposed approach, we have conducted multiple real-

world experiments for time series forecasting. We also conducted experiments on the dif-

ferent components of the model and the effects and impacts of using them separately in

linear models. From these experiments, we can make the following observations:

• UMS-Linear outperforms existing linear models in univariate time series forecasting

in all metrics.

• Our proposed model inherits and improves the performance of linear models in learn-

ing various types of data.

• UMS-Linear is able to learn the different trends and seasonality patterns in clear

datasets.

• Our proposed model shows remarkable performance in dealing with real-world ap-

plications that vary from weather and exchange rates to energy demand generation

and others.

• Each technique used in UMS-Linear is a useful component in enhancing the accuracy

of the forecasting results in linear models.

The advancements made in this thesis contribute to the field of time series forecast-

ing and provide a solid foundation for further research and practical applications. This

thesis opens up several avenues for future research. Some promising directions include ex-

ploration of different decomposition techniques, extension to multivariate time series, and

improving forecasting accuracy in small datasets.
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