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Abstract 

This study addresses the challenge of predicting formation types in petroleum field through a 

machine learning approach. Utilizing around 10,000 datasets from two wells in the Hassi 

Messaoud field, the model, named "Ama" (AI Mud Logger Assistant), demonstrates a mean 

accuracy of 70% in the training phase and high precision in predicting formation classes. Testing 

data confirms its effectiveness. The research overcomes limitations such as time lags and the lack 

of real-time data, employing seven drilling parameters rather than the traditional sole focus on the 

rate of penetration (ROP). The model was trained on a carefully preprocessed dataset from the 

Hassi Messaoud field to ensure unbiased and balanced samples. The primary purpose is to develop 

an machine learning model to accurately predict of geological formation types from drilling data. 

This leads to improve precision, reduce drilling time and costs, and enhance efficiency by 

minimizing uncertainties. This approach aspires to offer significant insights into geosciences, 

formation type detection  and exploration practices.  

Keywords: Machine learning, Artificial intelligence,  drilling data, Formation type, Hassi 

Messaoud. 

 ملخص

مجموعة    10000باستخدام حوالي  ومن خلال نهج التعلم الآلي.  الطبقات الارضيةتتناول هذه الأطروحة التحدي المتمثل في التنبؤ بأنواع  

%  70تبلغ    (، دقة متوسطة   AI Mud Logger Assistant" ) Ama"نموذجنا  يُظهر  حيث  في حقل حاسي مسعود،   بئريينبيانات من  

سبعة معايير للحفر بدلاً من التركيز التقليدي الوحيد نموذجنا  ويستخدم   .  بنوع الطبقات الارضيةفي مرحلة التدريب ودقة عالية في التنبؤ  

(. تم تدريب النموذج على مجموعة بيانات تمت معالجتها بعناية من حقل حاسي مسعود لضمان الحصول  ROPعلى معدل الاختراق )
من بيانات الحفر.  الطبقات الارضيةأنواع الهدف الأساسي هو تطوير نموذج الذكاء الاصطناعي، للتنبؤ بدقة  ومتوازنة.دقيقة  على عينات

ويهدف هذا إلى تحسين الدقة وتقليل وقت الحفر وتكاليفه وتعزيز الكفاءة من خلال تقليل حالات عدم اليقين. ويطمح هذا النهج إلى تقديم 
 وممارسات الاستكشاف.الطبقات الارضية في وصف  مدقرؤى مهمة في علوم الأرض، مما قد يؤدي إلى إحداث ت

 التعلم الآلي، الذكاء الاصطناعي، بيانات الحفر، نوع التكوين، حاسي مسعود.  الكلمات المفتاحية: 

Résumé 

Cette étude  aborde le défi de la prédiction des types de formations souterraines dans l'industrie 

pétrolière grâce à une approche d'apprentissage automatique. Utilisant environ 10 000 jeux de 

données provenant de deux puits de forage du champ de Hassi Messaoud, le modèle, baptisé « 

Ama » (AI Mud Logger Assistant), démontre une précision moyenne de 70 % dans la phase 

d'entraînement et une haute précision dans la prévision des types de formation. Les tests sur de 

nouvelles données confirment son efficacité. La recherche surmonte les limitations telles que les 

décalages temporels et le manque de données en temps réel, en utilisant sept paramètres de forage 

plutôt que de se concentrer uniquement sur le taux de pénétration (ROP). Le modèle a été formé 

sur un ensemble de données soigneusement prétraitées du champ de Hassi Messaoud pour garantir 

des échantillons impartiaux et équilibrés. L'objectif principal est de développer un modèle d'IA, 

en particulier un réseau neuronal, pour prédire avec précision les types de formations géologiques 

à partir des données de forage. Cela vise à améliorer la précision, à réduire le temps et les coûts de 

forage et à améliorer l’efficacité en minimisant les incertitudes. Cette approche aspire à offrir des 

informations significatives sur les géosciences,  détection de type de formation et d’exploration. 

Mots-clés : Machine learning, Intelligence artificielle, données de forage, Type de formation, Hassi 

Messaoud. 
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General Introduction 

Drilling operations are fundamental to the exploration and production of oil and gas. The ability 

to predict formation types in real-time during drilling can significantly enhance the efficiency and 

safety of these operations. Traditional methods of identifying formation types involve post-drilling 

logging and analysis, which, although accurate, are time-consuming and can lead to delays in 

decision-making.  

This approach involves using various drilling parameters such as revolutions per minute (RPM), 

rate of penetration (ROP), torque, weight on bit (WOB), standpipe pressure (SPP), depth, and flow 

pump rate. These parameters provide valuable insights into the behavior of the drilling process and 

the characteristics of the formations being penetrated. By analyzing these parameters, we can 

predict the type of formation encountered, allowing for immediate adjustments to the drilling 

process, which can improve efficiency, reduce costs, and enhance safety. 

Machine learning and data-driven models have shown great promise in this regard. These models 

can learn from historical drilling data to identify patterns and correlations between drilling 

parameters and formation types. Once trained, these models can be deployed in real-time to predict 

formation types as drilling progresses, providing drilling engineers with critical information to  

prompt and well-informed decisions. 

This study outlines the process of developing a predictive model for formation type identification 

using real-time drilling data. It covers data collection and preprocessing, exploratory data analysis, 

model selection and training, and finally, deployment and real-time prediction. By following this 

approach, drilling operations can be optimized to achieve better accuracy in formation 

identification, leading to more efficient and cost-effective exploration and production activities.  

Chapter 1 delves into a comprehensive analysis of the Hassi Messaoud reservoir, a massive oil 

field with unique geological characteristics and production challenges 

Chapter 2 In this chapter we have provided an overview about mudloging, its objective and the 

mud logging sensors witch collecting the data 
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Chapter 3 Examine machine learning and its various algorithms principles, and its potential for 

formation type prediction. The chapter emphasizes the ability of machine learning to handle  

datasets and find patterns. 

Chapter 4 translates theory into practice by applying machine learning techniques to the Hassi 

Messaoud reservoir data. This section details the data preparation steps, the selection of suitable 

algorithms, and the training and evaluation of the prediction models. By analyzing the models' 

performance in predicting formation types .
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Hassi-Messaoud Field
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Introduction 

Hassi-Messaoud field represents one of the most complex fields in the world. During geological 

history, this field has undergone, on the one hand, an intense tectonic evolution characterized by 

distinctive compressive phases. On the other hand, by the diagenetic transformation in the 

reservoir, during its burial over geological time, until it took the current shape or configuration. 

These events can sometimes improve the petrophysical parameters (natural hydraulic fracturing, 

dissolution, etc.) as well as reduce them (reduction of porosity, cementation due to solution 

pressure phenomena, creation of matrices of small grains, etc…). 

I.1 Geographic location 

Hassi Messaoud field is located 850 km southeast of Algiers (650 km as the crow flies) and 350 

km from the Tunisian border. The dimensions of the field reach 2500 km2 with an oil-

impregnated surface of approximately 1600 km2 (KECHAR, 2020). Its location in Lambert 

South Algeria coordinates is as follows: 

• 790,000 to 840,000 East, 

• 110,000 to 150,000 North. 

In geographic coordinates: 

• To the north by latitude 32° 15ʹ, 

• To the west by longitude 5° 40ʹ, 

• In the South by latitude 31° 30ʹ, 

• To the East by longitude 6° 35ʹ. 

I.2 Geological setting: 

The Hassi Messaoud field occupies the central part of the Triassic province, east of the Oued 

Mya depression in district IV which, by its surface area and its reserves, is the largest oil deposit 

in Algeria which covers an area of almost 2500 km² (KECHAR, 2020). It is limited: 
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• In the North-West by the Ouargla deposits (Gellala, Ben Kahla and Haoud Berkaoui) . 

• To the South-West by the deposits of El Gassi, Zotti and El Agreb. 

• To the South-East by the deposits; Rhourde El Baguel and Mesdar. 

Geologically, as shown in figure I-1 it is limited: 

• To the West by the Oued M’ya, 

• To the South by the Amguid El Biod mole, 

• To the North by the Djammâa-Touggourt structure, 

• To the east by the Dahar shoals, Rhourde El Baguel and the Ghadames. 

 

Figure I-1 : Geological situation of the Hassi Messaoud field. (WEC, 2007) 
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The Hassi Messaoud structure develops into a vast sub-circular anticline 45 km in diameter, 

direction: North – East / SOUTH-West. It is partially cracked and the cracks are due to plate 

tectonic movements which caused the structure to become anticlinal. The reservoirs have 

undergone natural hydraulic fracturing(TRABELSI, 2019). 

Accidents affecting the reservoir are of two types: 

• The faults in the submeridian direction and as well as the other faults, perpendicular in 

the northwest/southeast direction, highlight the tectonic character of the region, 

• Breaks without releases which have a great effect on reservoir fracturing 

From the reservoir characteristic point of view, the Hassi Messaoud deposit is defined in a 

perfect trilogy: 

• Heterogeneous on the vertical and horizontal plane. 

• Discontinuous from the point of view of fluid flow. 

• Anisotropic: by the presence of silt and the existence of a matrix of small grains. 

 Hassi Messaoud field sub-divisionThe Hassi Messaoud field divided into Hassi Messaoud North 

and Hassi Messaoud South, Currently, the field is subdivided into 25 production zones (figure I-

2). These zones are relatively independent, corresponding to a set of wells which communicate 

with each other lithologically and behave in the same way from a pressure point of 

view.(TRABELSI, 2019) 

The Hassi Messaoud field is divided from east to west into two distinct parts: The field South 

and the North field, each has its ownpseudoname . 

I.2.1 North Field 

It is a geographical numbering supplemented by a chronological numbering, 

example: Omo38, Onm14, Ompz12 

Where: 
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• O: Capital letter, Ouargla permit. 

• m: area of the oil zone: 1600 km2. 

• o: Tiny, surface area of the oil zone of 100 km2. 

• 3: x, and 8: y. 

I.2.2 South Field 

The numbering of the zones is chronological. Ex: MD1, MD2, MD3,…MDZ509*, MDZ557* 

(see Figure I-2). 
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I.3 Field historical background 

The Hassi Messaoud deposit was discovered on January 16, 1956 by the first MD1 drilling, 

installed following a seismic refraction survey not far from the Hassi Messaoud camel well. 

Figure I-2 : Hassi Messaoud reservoir zones (WEC, 2007) 
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On June 15 of that same year, this drilling discovered oil in the Cambrian sandstones at a depth 

of 3,338 meters. In May 1957, 7 km north-northwest of MD1, the OM1 borehole, drilled by the 

C.F.P.A, confirmed the existence of a very significant quantity of oil in the Cambrian 

sandstones.(KECHAR, 2020) 

The deposit was therefore covered by two distinct concessions: 

• In the North the C.F.P.A 

• To the south the SN. REPAL. 

The boundary cuts the field in the East - West direction into two approximately equal parts. 

I.4 Reservoir Description: 

The Hassi Messaoud field is part of the eastern province of the Saharan platform. This province 

contains the main hydrocarbon accumulations of the Sahara, the reservoirs are mainly made up 

of different sandstone levels from the Cambro-Ordovician and Triassic. Its depth varies between 

3100 and 3380 m. Its thickness is up to 200 m. The oil is light with an API rating of 45.4. Its 

initial pressure evaluated in the well is 482 kg/cm2 for a bubble point between 140 kg/cm2 and 

200 kg/cm2.(TRABELSI, 2019) 

At Hassi Messaoud the hydrocarbons are found in the Cambro-Ordovician which is subdivided 

from top to bottom into: 

• Sandstone from Hassi Messaoud. 

• EL-GASSI sandstone (lower part of the clay-sandstone of Oued Maya). Due to the 

Hercynian unconformity, a large part of it has been eroded and it is the salt Triassic which 

constitutes the cover of the reservoir. 

The black Silurian clays, 40 km northwest of Hassi Messaoud, rich in Kerogen (organic matter), 

are supposed to be the source rock. 
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I.5 Description of the stratigraphy series 

From a stratigraphic point of view (Figure I-3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 : Stratigraphic in the Hassi-Messaoud reservoir 
Figure I-3 : Stratigraphic in the Hassi-Messaoud reservoir (SONATRACH) 
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The Hassi Messaoud area comprises several geological formations from the Paleozoic to the 

Cenozoic eras. The Paleozoic formations, posterior to the Ordovician, are absent in the central 

part but present on the periphery. These formations include the Basement, Infracambrian, 

Cambrian, and Ordovician. 

Three lithozones (R1, R2, R3) are distinguished: 

Level R3: 

- Average thickness of 270m. 

- Composed of poorly sorted sand and gravel with quartz, feldspar, mica, siderite, and heavy 

minerals. 

- Contains 30% clay (illite and kaolinite). 

- Low permeability. 

- Water saturation between 70-80%. 

Level R2: 

- Divided into R2C and R2AB. 

- Average thickness of 80m. 

- Poorly sorted grains with improved sphericity. 

- Contains 17% clay. 

- Improved permeability in R2AB. 

- Water saturation considered. 
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Level Ra: 

- Subdivided into three sedimentological zones. 

- Average thickness of 120m. 

- Deposition in a coastal alluvial plain with flat topography. 

- Consists of coarse, well-sorted sand deposits with low clay content, and finer, less sorted sand 

deposits with clay intercalations. 

- Improved permeability compared to other levels. 

- Transition marked by increased Gamma Ray, Induction, and Neutron log responses due to 

changes in clay content and porosity. 

Zone I (D1, ID, D2): 

- Lower coarse zone. 

- Drain D: Poorly sorted coarse sandstones and silts with clay intercalations. 

- Inter-Drain (ID): Fine sandstones, silts, and clays. 

- Drain D2: Good reservoir characteristics. 

Zone II (D3): 

- Intermediate fine zone. 

- Smaller, better-sorted grains with lateral continuity. 

- Clay and silt layers. 

 

 



Chapter I                                        Presentation of Hassi-Messaoud Field 

 
13 

Zone III (D4): 

- Upper coarse zone. 

- Coarser sandstone layers at the base, similar to Zone I. 

Level Ri (D5): 

- Average thickness of 45m. 

- Deposited after erosion, possibly removing D4 in the East and Southeast. 

- Calm deposition environment with 30% clay. 

- Small grain size, good sorting, and low permeability. 

The Mesozoic: 

- Triassic: Subdivided into Eruptive, Sandy, Clayey, and Saliferous Triassic. 

- Jurassic: Average thickness of 844m with clayey-sandy sequence, limestone intercalations, and 

alternating lagoonal and marine facies. 

- Cretaceous: Average thickness of 1620m with seven stages: Neocomian, Barremian, Aptian, 

Albian, Cenomanian, Turonian, and Senonian. 

 

The Cenozoic: 

- Eocene: Dolomitic limestone. 

- Miocene-Pliocene: Sandy cover. 

- Miocene-Pliocene.
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II.1 Definition of Mudlogging 

The term "mudlogging" is composed of two words: "mud," meaning the drilling fluid or mud, and 

"logging," meaning the recording of data. Technically, it involves recording the data or information 

carried by the drilling mud (Aouimer, 2005). It is one of the important activities in drilling 

operations; it serves as a safety device as well as a means of receiving information gathered by the 

services. This unit mainly consists of three parts: geological control, mud and drilling parameters 

control (which is done using sensors), and gas detection instruments. 

II.2 Objectives of mud logging 

There are several broad objectives targeted by mud logging: identify potentially productive 

hydrocarbon-bearing formations, identify marker or correlatable geological formations, and 

provide data to the driller that enables safe and economically optimized operations. The actions 

performed to accomplish these objectives include the following: (Haywood, 1940) 

• Collecting drill cuttings. 

• Describing the cuttings (type of minerals present). 

• Interpreting the described cuttings (lithology). 

• Estimating properties such as porosity and permeability of the drilled formation. 

• Maintaining and monitoring drilling-related and safety-related sensing equipment. 

• Estimating the pore pressure of the drilled formation. 

• Collecting, monitoring, and evaluating hydrocarbons released from the drilled 

formations. 

• Assessing the productivity of hydrocarbon-bearing formations. 

• Maintaining a record of drilling parameters. 

Mud logging service first focused on monitoring the drilling mud returns qualitatively for oil and 

gas content.  This included watching the mud returns for oil sheen, monitoring the gas evolving 

from the mud as it depressured at the surface, and examining the drill cuttings to determine the 

rock type that had been drilled, as well as looking for indication of oil on the cuttings. Detection 

of the onset of abnormal formation pressures using drilling parameters was proposed with the 
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 century, saw its introduction in mud logging in the 1970s when electronics became sufficientlyكخ

compact, rugged, and robust to be used at rig sites..  

II.3 Results of Mudlogging 

The reports generated from mudlogging during drilling operations include: 

• Ensuring the safety of personnel and the well by predicting blowouts. 

• Reducing drilling costs by avoiding additional operations (fishing, side tracking, 

plugging with cement) through continuous monitoring of drilling parameters. 

• Enhancing the understanding of reservoir levels and real-time characterization of these 

levels. 

• The capability to transfer acquired data from all sensors (contractors) in real time via 

WITS (Wellsite Information Transfer Specification). 

• The final well report, which provides information on all engineering operations 

conducted during well construction, the formations encountered, the intervals cored 

and tested, and the problems and events encountered during drilling (stuck pipes, mud 

losses, kicks, etc.). 

II.4 The Mudlogging Cabin 

II.4.1 Definition 

A mud logging cabin is a specialized mobile unit used on drilling sites, particularly in the oil and 

gas industry. It is designed to house equipment and personnel involved in the process of mud 

logging, which involves the collection, analysis, and monitoring of drilling fluids (mud) and 

geological samples. Here are the main features and functions of a mud logging cabin: 

Data Collection and Analysis: The cabin is equipped with various instruments to collect data on 

drilling parameters, such as rate of penetration (ROP), mud weight, gas levels, and lithology (rock 

types). This data helps in making real-time decisions about drilling operations. 

Sample Examination: Mud loggers examine cuttings brought to the surface by the drilling mud to 

determine the type of rock being drilled and to identify any hydrocarbons present. This involves 

both visual inspection and the use of microscopes and other analytical tools. 
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Safety and Communication: The cabin serves as a communication hub, allowing mud loggers to 

relay critical information to the drilling crew and other stakeholders. It also provides a controlled 

environment for safe handling of potentially hazardous materials. (Houcine A, 2018) 

II.4.2 The Role of the Mudlogging Cabin 

The main role of Mudlogging cabin i : 

• Monitor all drilling parameters in real time. 

• Report all anomalies during drilling operations to the following personnel: 

➢ Drilling supervisor 

➢ Shift leader 

➢ Site manager 

➢ Mud engineer  

➢ Other relevant personnel 

• Create a stratigraphic log during drilling and provide a lithological description of each 

formation. 

• Save all parameters in a database. 

• Prepare a final drilling report for the client. 

II.5 Geological Monitoring 

II.5.1 Sampling 

Cuttings are collected at the shale shaker, taking into account the "lag time". The sample of cuttings 

collected by the Mudlogger must be representative of the entire interval between two samplings.  

The collection of cuttings is done using a sieve and a cup. The size of the cuttings depends on the 

bit's teeth. Therefore, they need to be found on the shale shaker. The shale shaker should be 

equipped with a board fixed at the slope of the screen to collect all the cuttings brought up during 

the sampling interval (10m, 5m, or other). The sampling interval is defined in the sampling 

program with the technical details of the samples. Generally, for exploration wells, the client 

requires several types of samples. (AOUIMER, 2005) 
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II.5.2 Mudlogging Sensors 

II.5.2.1 Weight On Hook Sensor 

The measurement of hook load is performed using tension measurements from the dead line 

through a hydraulic pressure cell. Typically, the sensor used is directly connected to the driller's 

measurement circuit (Figure II-1). The tension applied to the cable is converted into pressure in a 

hydraulic circuit. The sensor, consisting of a hydraulic strain gauge installed on this circuit, 

generates an electrical signal that can be calibrated to indicate weight. (Rahmouni.H, 2012) 

 

II.5.2.2 Stand Pipe Pressure Sensor 

The mud pressure is measured using sensors on the floor manifold to obtain the input value 

Figure II-2:WOH Sensor 
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Figure II-3:SPP Sensor 

 

 

II.5.2.3 Casing Pressure Sensor  

On choke manifold to get the output value 

 

Figure II-4:Casing Pressure Sensor 

II.5.2.4 Pump Sensor (SPM) 

The easiest method is to count the number of pump strokes. Knowing the volume injected at each 

stroke and the efficiency of the pump, the flow rate can be calculated. It is easy to measure the 

number of pump strokes by proximity switches (Figure II-5) or contactors electrical. (Rahmouni.H, 

2012) 
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Figure II-6:Pump Sensor (SPM) 

 

II.5.2.5 Flow Out sensor (flow paddle) 

The flow rate coming out of the sludge is measured using a sensor placed at the level of the chute 

(Figure II-7), the sensor is composed of two main elements, a potentiometer and a paddle (paddle). 

During the circulation, the mud pushes the pellet up which turns the potentiometer, then a signal 

will be transmitted to the acquisition system (Rahmouni.H, 2012). 

 

 

Figure II-8:Flow Out output flow sensor 

II.5.2.6 Depth sensor  

The proximity sensor (depth sensor) is placed on the winch (Figure II-9), indicating the depth. 
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Figure II-10:Depth sensor 

 

II.5.2.7 IN and OUT Density Sensors 

The most common devices use the differential hydrostatic pressure between two membranes of 

different heights in a mud column. (Rahmouni.H, 2012) 

 

Figure II-11:IN and OUT Density Sensors 

II.5.2.8 Tank level sensors 

The measurement of the tank level is carried out using ultrasonic sensors (Figure II-12), which 

send sound waves downwards to detect the level of the fluid, which will then be converted by 

volume by the acquisition system. (Rahmouni.H, 2012) 
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Figure II-13:Tank level sensors 

II.5.2.9 INlet and OUTlet temperature sensors 

The temperature of the sludge at the inlet and outlet is recorded using rods Thermometers with 

platinum filament protected by a stainless-steel sheath (Figure II-14). 

 

 

Figure II-15:IN and OUT temperature sensors 

 

II.5.2.10 Rotation sensor 

At the level of the rotation table, as the name suggests, the rotation sensor works when a metal 

object passes near its nose (Figure II-17), causing a circuit closure internal, which will 

subsequently give an event.  
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Figure II-18: Rotation Sensor 

II.5.2.11 Torque sensors 

At the level of the power cable of the generator (Figure II-19) which drives the table of rotation. 

The torque parameter is of considerable importance during drilling, it gives us an idea on the 

condition of the tool, the drill pipe, and the nature of the drilled formation. 

 

Figure II-20:Torque sensors 
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Introduction 

Since the early days of the oil industry, accurately determining formation types in real-time has 

been crucial for safe and efficient drilling. This information is essential and it maintaining wellbore 

stability. Drilling engineers use rate of penetration (ROP) , formation cuttings, and mud logging to 

identify formation types. However, these methods have drawbacks such as high costs, lower 

accuracy, and significant labor, as well as temporal or depth-related delays, limiting their 

effectiveness and feasibility. 

III.1 Data mining 

Data mining can be defined as the exploration and analysis of large quantities of data to discover 

meaningful patterns and rules (Berry & Linoff, 2008). It is a powerful tool for uncovering 

knowledge that might otherwise remain hidden. Traditionally, oil and gas companies relied on 

educated guesses to analyze information. For example, an engineer might correlate well depth with 

pressure, assuming that deeper wells would have higher pressure. Data mining transforms this 

approach by systematically analyzing all available data collected during oil exploration and 

production without preconceived notions. 

In the context of lithology prediction, data mining can analyse diverse data sources to accurately 

predict rock types and their properties, thereby enhancing drilling efficiency and safety. This 

predictive capability is crucial for optimizing drilling parameters, reducing non-productive time, 

and improving overall well performance. The integration of data mining into lithology prediction 

represents a significant advancement in the oil and gas industry, enabling smarter, data-driven 

decisions that improve operational outcomes. 

III.1.1 Data Mining Process 

1. Data Preparation: The first step involves collecting and cleaning the data. This ensures 

the information is accurate, consistent, and ready for analysis. 

2. Data Exploration: Data mining algorithms then delve into the prepared data, identifying 

interesting trends, outliers, and potential relationships between different data points. 
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3. Pattern Recognition: Sophisticated algorithms analyze the data to uncover hidden patterns 

and relationships that might not be obvious through traditional methods. 

4. Model Building: Based on the discovered patterns, data mining can build models to 

predict future outcomes or identify areas for improvement. 

5. Evaluation and Deployment: The effectiveness of the models is evaluated, and if 

successful, they are deployed to guide decision-making within the oil and gas company. 

III.2 Artificial intelligence 

Artificial intelligence is a suite of innovative analytical methodologies striving to mimic life. These 

AI techniques demonstrate the capacity to learn and adapt to novel circumstances (Zurada et al., 

1994). Key technologies falling under the umbrella of artificial intelligence include artificial neural 

networks, evolutionary programming, and fuzzy logic, all of which exhibit various reasoning 

attributes like generalization, discovery, association, and abstraction (Eberhart et al., 1996). 

Over the past decade, artificial intelligence has evolved into a refined arsenal of analytical tools 

enabling the resolution of previously daunting or insoluble problems. Presently, these AI tools are 

effectively employed, often integrated with traditional statistical analysis methods, to construct 

intricate systems capable of tackling complex challenges. 

The widespread utilization of these tools’ spans across diverse domains, permeating into 

commercial applications. Artificial intelligence finds application in various sectors, including 

medical diagnosis, credit card fraud detection, bank loan approval, smart home devices, public 

transportation systems, automotive technologies like automatic transmissions and driverless cars, 

financial management, robot navigation, among others. In industries such as oil and gas, artificial 

intelligence aids in addressing issues pertaining to pressure transient analysis, well log 

interpretation, reservoir characterization, and the identification of suitable well candidates for 

stimulation, among myriad other tasks.(Shahab D. Mohaghegh, 2017) 

III.2.1 Artificial Neural Network 

Artificial Neural Networks (ANNs) represent a prominent technique within the realm of Artificial 

Intelligence (AI) research. These systems draw inspiration from the structural organization of the 



Chapter III             Data-Driven Technologies 

 
27 

human brain (McCulloch & Pitts, 1943). The simplest definition of ANN is provided by the 

inventor of one of the first neurocomputers, Dr. Robert Hecht-Nielsen. He defines a neural network 

as: 

a computing system made up of a number of simple, highly interconnected processing elements, 

which process information by their dynamic state response to external inputs. 

Inspired by the human brain's structure, artificial neural networks (ANNs) are computational 

models mimicking biological neurons within AI research. The groundwork for ANNs was laid in 

1943 through the groundbreaking work of McCulloch, a neuroscientist, and Pitts, a logician. Their 

conceptual model introduced the artificial neuron, a unit that, mirroring a biological neuron, 

receives input signals, processes them, and generates an output (McCulloch & , 1943). 

Artificial neural networks (ANNs) mimic the brain's structure with interconnected processing units 

called "neurons" or "nodes." These nodes utilize "activation functions" and work in parallel across 

layers to solve problems. Learning in ANNs involves adjusting the connections between neurons, 

represented by numerical weights. These weights determine the output signal based on new input 

data. Information flows from the input layer receiving patterns, through hidden layers where 

complex processing occurs, and finally to the output layer where the final result is generated, as 

illustrated in Figure III-1. 

Here, xj are input nodes, wij are weights from the input layer to the hidden layer, and vi and y 

denote the weights from the hidden layer to the output layer and the output node, respectively. The 

ANN method has been established as a powerful technique to solve a variety of real-world 

problems because of its excellent learning capacity. 
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Figure III-1 : Structure of artificial neural network. 

 

III.2.2 Architecture of ANN 

Neural computing is a mathematical model inspired by the biological model. This computing 

system is made up of a large number of artificial neurons and a still larger number of 

interconnections among them. According to the structure of these interconnections, different 

classes of neural network architecture can be identified, as discussed next. 

III.2.2.1 Feed-Forward Neural Network 

Feed-forward neural networks arrange neurons in layers. Each layer receives input from the one 

before it and sends its output to the next layer, with no feedback loops. Information flows strictly 

forward from input to output neurons. As shown in Figure III-2, the network processes an input 

vector (X), with each element representing a feature (x1, x2, ..., xn). Activation functions (f) 

transform these values within each neuron. Weights (W), organized in a connection matrix, 

determine the influence of each input on a neuron. The net input value is calculated by multiplying 

the weight matrix (W) with the input vector (X).(Zurada, 2004) 

𝑊 = [

𝑤11 𝑤12 … 𝑤1𝑛
𝑤21 𝑤22 … 𝑤2𝑛
⋮ ⋮ … ⋮

𝑤𝑚1 𝑤𝑚2 … 𝑤𝑚𝑛

] 
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Figure III-2 : Block diagram of feed-forward ANN. 

III.2.2.2 Feedback Neural Network 

Unlike feed-forward networks, feedback neural networks allow connections to loop back, enabling 

signals to travel in both directions. This flexibility makes them powerful but potentially complex 

(Figure III-3). All connections between neurons are permitted. These networks excel at 

optimization problems, constantly adjusting their internal state until they reach an equilibrium 

point, making them ideal for scenarios where the best arrangement of interconnected factors needs 

to be identified.(Zurada, 2004) 

 

Figure III-3 : Diagram of feedback neural network. 

III.2.3 Paradigms of Learning 

ANNs possess a powerful capability: learning and generalizing from training data. This learning 

comes in two primary forms – supervised and unsupervised. 
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III.2.3.1 Supervised Learning  

Supervised learning is a powerful training method for ANNs. Here, the network receives both the 

input data and the desired output. It then compares its generated output to the correct one, 

calculating an error. This error guides adjustments to the network's internal parameters, ultimately 

improving its performance. In simpler terms, the network learns by continuously correcting its 

responses based on provided examples.(Zurada, 2004) 

III.2.3.2 Unsupervised Learning 

Unsupervised training throws ANNs into a world of unlabeled data. Unlike supervised learning, 

the network receives only inputs, and must identify patterns and relationships on its own. This 

"self-organization" allows the network to discover hidden structures within the data, making it a 

powerful tool for tasks like data exploration and clustering.(Zurada, 2004) 

III.2.4 Learning Rules or Learning Processes 

These networks store knowledge within the connections' weights, which are adjusted through 

"learning rules" based on the input patterns. The delta learning rule, commonly used in 

backpropagation neural networks (BPNNs), is a popular example. As the name suggests, 

backpropagation involves propagating the error signal backward through the network to fine-tune 

these weights and improve performance. There are, however, various learning rules available for 

ANNs(Bishop, 1995) : 

1. Error Back-propagation (Delta Rule): This widely used rule for multi-layer networks 

propagates the error signal backward, adjusting weights to minimize the difference 

between desired and actual output. 

2. Hebbian Learning: Inspired by biology, this unsupervised rule strengthens connections 

based on the activity of connected neurons. 

3. Perceptron Learning Rule: A foundational supervised rule used in single-layer perceptrons, 

adjusting weights based on the desired and actual output of the network. 

4. Widrow-Hoff Learning Rule: An adaptation of the Perceptron rule for linear networks, 

adjusting weights based on a learning rate and the error signal. 
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5. Winner-Take-All Learning Rule: Used in competitive networks, this unsupervised rule 

strengthens connections of the neuron with the highest activation, while weakening others. 

III.2.5 Multilayer ANN Model 

The chosen architecture for this multi dimension is a three-layer artificial neural network (ANN) 

as depicted in Figure III-4This network consists of: 

• Input Layer: This layer has a single input node (x) representing the raw data fed into the 

network. 

• Hidden Layer: This layer acts as the core processing unit, containing a variable number of 

neurons. Unlike the single input node, the number of hidden layer neurons isn't 

predetermined. A trial-and-error approach will be used to identify the optimal number for 

the task. 

• Output Layer: The final layer houses a single output node, responsible for generating the 

network's prediction or classification based on the processed data. 

 

Figure III-4 : Structure of multilayer ANN. 
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III.2.5.1 Enhancing Learning: Biases and Weight Initialization 

To improve the network's learning ability, biases (uj) are incorporated into each hidden layer 

neuron. These biases act like constant inputs, allowing the network to shift its activation function 

and create a wider range of possible outputs. 

Furthermore, the initial weights (wj) connecting the input layer to the hidden layer and (vj) 

connecting the hidden layer to the output layer are assigned random values. This random 

initialization helps the network avoid getting stuck in local minima during training, allowing it to 

explore the solution space more effectively.(Nielsen, 2015) 

III.2.5.2 Optimizing the Hidden Layer 

The number of neurons within the hidden layer plays a crucial role in the network's performance. 

A limited number of neurons might restrict the network's ability to learn complex patterns, while 

too many could lead to overfitting. To address this, a trial-and-error method will be employed. 

Starting with a small number of hidden layer neurons, the network's performance will be evaluated 

on a validation set as the number is gradually increased.  

The validation set is a separate data pool used to monitor the network's ability to learn and 

generalize without influencing the training process. By monitoring the validation performance, the 

optimal number of hidden layer neurons that achieves the best balance between learning and 

generalization can be identified.(Nielsen, 2015) 

This approach allows for fine-tuning the network architecture for the specific problem at hand, 

maximizing its potential to achieve accurate results. 
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IV.1 The methodology  

The methodology initiates with the acquisition of field data, succeeded by meticulous data 

processing to secure a resilient dataset. The process of feature selection entails scrutinizing 

correlation matrices to pinpoint pivotal variables. During the model training stage, appropriate 

machine learning algorithms are selected, the dataset is partitioned into training, validation, and 

testing subsets, and model performance is enhanced via hyperparameter adjustments. Subsequent 

to the evaluation of the model’s precision, should the outcomes be suboptimal, the procedure 

cycles back to data processing for additional enhancements. This systematic strategy guarantees 

dependable and actionable forecasts for discerning the lithology of formations, aiding in informed 

decision-making as the Figure IV-1 shows. 

 

Figure IV-1 : Workflow for Predicting Formation Type Using Machine Learning 
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IV.2 Data preparation and treatment 

The pre-processing stage is a critical component of machine learning projects, where raw data is 

transformed into a structured format amenable to ML algorithms. During this phase, we aim to 

reveal underlying patterns and rectify any inconsistencies or errors within the data, preparing it 

for subsequent machine learning models. The data, imported as an Excel file, pertains to various 

wells and is organized in Table IV.1 

Table IV-1:Features description 

Feature Description Unit 

Name Formation type / 

Depth 
Depth at which drilling is 

taking place 
m 

RPM Rotation per minute at drill bit rpm 

WOB Weight applied to the drill bit tons 

TORQUE Average surface torque Ft*Lb 

SPP The mud pressure psi 

FLWpmps mud flow rate l/mn 

ROP Average rate of penetration m/h 

IV.2.1 Data treatment 

To treate our dataset and address the unusual values, we first need to identify and remove the 

outliers. The describe() function in pandas reveals that while the percentiles seem reasonable as 
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showed

 

Table IV-2:Features statistics 

Next, we have written a python function that counts the number of negative values of our dataset, 

Since negative values for WOB are not physically meaningful, we will remove any rows with 

WOB less than 0.  

IV.2.2 Label encoding formation names 

Since our data is categorized and distinguished by the formation name feature, one-hot encoding 

can be particularly beneficial for this feature for several reasons. It allows machine learning 

algorithms to effectively handle categorical variables, enables the model to capture potential 

interactions between different formation names, and facilitates the assessment of each formation's 

importance in influencing the target variable.  
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In this process, we used the LabelEncoder library in Python to streamline the work. Ultimately, 

we encoded each dataset with a digit instead of a formation name, with the first formation being 

encoded as the number 1, and so forth. (Figure IV-2) 

Figure IV-2 : Label encoding for formation name 

IV.2.3 Selection of Test Algorithms 

To select the most suitable model for our training, we wrote a code that evaluates the performance 

of several regression algorithms on our data. The model with the lowest mean squared error (MSE) 

was identified as the best fit for predicting our target variable. 

The regression algorithms that are used are:  

• LinearRegression 

• xgboost.XGBRegressor (from XGBoost library) 

IV.2.4 Data Splitting 

In addition, to ensures the model is evaluated on unseen data, we have to divide the data into 

training and testing sets using a technique like “train_test_split” from scikit-learn, we used the 

recommended data split percentage which is: 

• 60% for training data 

• 20% for validation 
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• 20% for testing data 

where the testing data is used for studying how much is our model is accurate when trained on 

training data. 

IV.3 Model training and results 

To calculate the Mean Squared Error (MSE) for each formation, we need to loop through each 

formation and compute the mean MSE. The training results, presented in the table, indicate that 

XGBoost is the best model for our study due to its lowest MSE.  In contrast, Linear Regression  

have higher MSE values, leading to less accurate models. 

To accurately determine the Mean Squared Error (MSE) for each formation, we need to 

systematically loop through each formation and compute the mean MSE. This process involves 

calculating the individual MSE for each data point within the formation and then averaging these 

values to obtain a representative mean MSE for the formation. 

The training results, presented in the accompanying table, reveal significant insights into the 

performance of various models. Among the models evaluated, XGBoost emerges as the most 

effective model for our study. This conclusion is based on its remarkably low MSE, indicating 

superior predictive accuracy and reliability. The lower the MSE, the closer the predicted values are 

to the actual values, signifying a more accurate model. 

In contrast, the other models, specifically Linear Regression, exhibit considerably higher MSE 

values. These elevated MSE values suggest that these models have greater prediction errors, 

making them less reliable and less accurate compared to XGBoost.  

Therefore, based on the comprehensive analysis of the MSE values, XGBoost is identified as the 

best model for our study. It consistently demonstrates the lowest MSE across various formations, 

reinforcing its status as the most accurate and dependable model for our predictive tasks. 
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Table IV-3 : MSE comparison of different models 

Model MSE 

XGBoost 0.419 

Linear Regression 7.514 

 

 

After developing our model using data as the foundation, we thoroughly evaluated its performance 

on the same dataset. The assessment involved comparing the predicted and actual formation type 

results, revealing the model’s impressive accuracy in capturing lithological patterns (Figure IV 3). 

The model achieved a success rate of 70 %. These results demonstrate the model’s ability to learn 

meaningful relationships from the provided drilling parameters and effectively predict the majority 

of formation.

Figure IV-3: Actual vs. Predicted formation  
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Conclusion 

 

In thiswork , we investigated the use of Artificial Intelligence (AI), specifically through Artificial 

Neural Networks (ANNs), for real-time identification of formation types using drilling data. Our 

objective was to develop a model that accurately predicts formation types, enhancing drilling 

operations and decision-making. Accurate predictions are essential for informed drilling strategies, 

mitigating risks, and reducing costs. 

Our ANN model achieved a promising 70% prediction accuracy, demonstrating its ability to 

identify patterns in drilling data. While this is commendable, there is potential for improvement 

through advancements in neural network architectures and training methodologies. Enhancing data 

preprocessing and incorporating more varied datasets can further refine the model's accuracy, 

making it a vital tool for the drilling industry. 

This research underscores AI's transformative role in revolutionizing drilling operations by 

providing precise, real-time predictions. Machine learning, particularly ANNs, can significantly 

improve drilling efficiency, cost-effectiveness, and sustainability. 

Finally, the "Ama" (AI Mud Logger Assistant) software can offer even more effective assistance 

by incorporating additional data, such as lithological and geophysical information. This will make 

predictions more specific, potentially enabling precise reservoir location and further enhancing 

drilling efficiency. The success of our AI model in determining reservoir tops in real time marks a 

significant advancement in drilling technology and precision. 
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